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Abstract

Background—Neuroblastoma is the second most common extracranial cancer in children. 

Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have 

limitations for high-risk subtypes and can cause significant long-term adverse effects in young 

patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor 

MXD3 as a potential therapeutic target in neuroblastoma.

Methods—MXD3 expression was analyzed in five neuroblastoma cell lines by 

immunocytochemistry and quantitative real time reverse transcription PCR and in 18 primary 

patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and 

superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as 

a single agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or 

maphosphamide, common drugs used in current neuroblastoma treatment.

Results—MXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had 

high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes 

showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, combining MXD3 

siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.

Conclusions—These results indicate that MXD3 is a potential new target and MXD3 siRNA 

nanocomplexes are a novel therapeutic approach for neuroblastoma.
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Introduction

Neuroblastoma is a cancer of the sympathetic nervous system and the most common 

extracranial solid tumor in children (1). Despite improvement in outcome for patients with 

low and mid-risk subtypes of neuroblastoma, the outcome for patients with high-risk 

subtypes remains poor, with survival rates as low as 50% (2). Additionally, many survivors 

develop irreversible, long-term adverse effects from systemic chemotherapy and radiation 

(3). Therefore, there is a need for treatments that are more effective and less toxic than 

current therapies.

One new therapeutic approach uses siRNA to target genes that are essential for cancer 

survival and progression (4). Using siRNA to target specific cancer-associated genes could 

increase treatment efficacy and potentially replace or reduce doses of currently used 

chemotherapy drugs, ameliorating undesirable adverse effects. siRNA has already been used 

in clinical trials, for example, to target BCR-ABL for chronic myeloid leukemia and KRAS 

for pancreatic cancer with some success (5, 6). Therefore, there is great potential in further 

expanding siRNA therapeutics to other cancers, including pediatric cancers such as 

neuroblastoma. Several genes have been identified and studied as therapeutic targets for 

neuroblastoma, such as MYCN and ALK (7, 8). Since monotherapy does not work for most 

cancers, an ideal therapy should include multiple molecular-targeted approaches. Previously, 

we identified the transcription factor MXD3 as a novel target for precursor B-cell acute 

lymphoblastic leukemia (preB ALL) (9–11). MXD3 is a member of the family of Mad 

proteins that interact with Max proteins (12) and is reported to play a role in 

medulloblastoma tumorigenesis (13). Furthermore, a public microarray data set (R2: 

Genomics Analysis and Visualization Platform) shows that patients with high MXD3 

neuroblastoma have a significantly inferior survival rate compared to those with low MXD3 

neuroblastoma (http://hgserver1.amc.nl/cgi-bin/r2/main.cgi). We hypothesized that MXD3 is 

important for neuroblastoma cell survival; therefore, targeting MXD3 using siRNA can be of 

therapeutic potential.

One of the major challenges for siRNA therapeutics is efficient siRNA delivery into tumor 

cells (14). Unmodified siRNA is large compared to chemotherapy drugs like doxorubicin or 

vincristine, negatively charged, and cannot pass through cell membranes by itself (15). One 

way to solve this problem is to use a vehicle, such as nanoparticles (NPs), to facilitate 

intracellular delivery (14). Multiple types of NPs have been studied (16). For instance, 

liposomal NPs carrying chemically stabilized siRNA against PKN3 were used to treat 

sixteen different types of advanced solid tumors such as breast, pancreatic, colon, and 

ovarian cancers (17). In another study, polymer NPs using a human transferrin protein-

targeting ligand were used to treat prostate, gastrointestinal, and melanoma tumors by 

delivering siRNA against RRM2 intracellularly (18). Metal NPs have also been studied for 

clinical use (19). For instance, many superparamagnetic iron oxide (SPIO) NP formulations 

have been approved for MRI imaging and diagnostics (20). SPIO NPs have been used to 

develop a new strategy for treating tumors with magnetic induced hyperthermia (21). SPIO 

NPs have also been studied to deliver siRNA to inhibit apoptosis in transplanted pancreatic 

β-cells (22). These studies show that SPIO NPs have the potential to be used as a therapeutic 
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vehicle. In our study, we investigated SPIO NPs with a modified polyethylenimine (PEI) 

surface as our delivery vehicle for MXD3 siRNA.

In summary, our study identified and validated a new therapeutic target MXD3, and 

demonstrated a novel therapeutic approach using siRNA and SPIO NPs for neuroblastoma. 

The results of this study should help guide future preclinical and clinical studies to develop 

and validate this new strategy for neuroblastoma treatment.

Materials and Methods

Cells and cell cultures

The human neuroblastoma cell lines SH-SY5Y, IMR-32, SK-N-DZ, SK-N-BE, and SK-N-

SH were purchased from ATCC (Manassas, VA). Cells were used within the first 25 

passages. SK-N-DZ cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, 

ATCC), supplemented with non-essential amino acids (Thermo Fisher Scientific, Waltham, 

MA). SH-SY5Y and SK-N-BE cells were cultured in a 1:1 mixture of Modified Eagle 

Medium (MEM) and F12 medium, supplemented with non-essential amino acids, and 100 

mM sodium pyruvate (all Thermo Fisher Scientific). IMR-32 and SK-N-SH cells were 

cultured in MEM supplemented with non-essential amino acids, and 100 mM sodium 

pyruvate (Thermo Fisher Scientific). All media formulations were further supplemented with 

10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin 

(all Thermo Fisher Scientific).

Immunochemistry and fluorescence intensity quantification

MXD3 protein expression was evaluated by immunochemistry as previously described (10). 

Briefly, cells were fixed with 10% buffered formalin, smeared onto slides, and blocked with 

10% FBS. Slides were incubated with anti-MXD3 monoclonal mouse antibody (Antibodies 

Inc, Davis, CA) overnight at 4 °C. Secondary goat anti-mouse antibody conjugated to Alexa 

Fluor 488 (A488) (Thermo Fisher Scientific) incubation was performed at room temperature 

for 3 hours. MXD3 protein expression was quantified by measuring the fluorescent image 

intensity of all cells within a representative image (TIFF) and averaged to obtain the mean 

fluorescence intensity. Measurement and quantification was performed using ImageJ (NIH) 

(23). Briefly, individual cell boundaries were marked and the mean fluorescence intensity 

(MFI) was measured for each cell. A background signal (without cells) was subtracted from 

each MFI. Corrected MFI for each cell was then averaged per experiment and treatment 

type.

Tumor microarrays with 18 human neuroblastoma tissue samples were stained for MXD3 at 

the University of California, Davis (UC Davis) Cancer Center Pathology Core.

Western Blot

Frozen whole cell pellets were prepared for western blotting as described previously (11). 

Briefly, cell pellets were denatured and boiled, run on a 4–20% Tris-Glycine SDS-PAGE 

gel, and transferred to a nitrocellulose membrane using a wet transfer system. Blots were 

blocked, incubated with primary antibodies overnight at 4 °C, then incubated with secondary 
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antibodies for 1 hour at room temperature. Blots were washed, then incubated with 

SuperSignal™ West Pico Chemiluminescent kit (Thermo Fisher Scientific) according to 

manufacturer’s instructions for imaging.

Reagents

siRNA molecules and NPs were purchased as described in our previous study (10). The 

MXD3 siRNA sense strand sequence was 5'-AUGGACUAAAAGGACCCUUTT-3', and the 

antisense strand was 5'-AAGGUCCUUUAGUCCAUTT-3'. AllStars Negative siRNA 

(Qiagen, Hilden, Germany) was used as a negative control. Both MXD3 and control siRNAs 

were tagged with A488 on the 3' end of the antisense strand (Qiagen). SPIO NPs were 

purchased from OceanNanotech (San Diego, CA). The SPIO NPs had iron oxide cores 

measuring 15nm, and outer layers composed of amphiphilic polymer and polyethylenimine 

groups (PEI). Succinimidyl ester with Alexa Fluor 532 (A532) (Thermo Fisher Scientific) 

was used to label the SPIO NPs. Clinical-grade doxorubicin and vincristine were provided 

by the UC Davis Pharmacy. Maphosphamide and clinical-grade cisplatin were purchased 

from Santa Cruz Biotechnology (Dallas, TX) and the UC Davis Pharmacy, respectively.

siRNA nanocomplexes

Nanocomplexes were formulated as described previously (10). Briefly, SPIO NPs with PEI 

groups on the surface were reacted with A532 amine-reactive succinimidyl ester and 

incubated for 3 hours at 4 °C. siRNAs were adsorbed onto the surface of the A532 SPIO 

NPs by vortexing. The final siRNA nanocomplexes were then resuspended in Opti-mem 

Reduced Serum Medium (Thermo Fisher Scientific).

The hydrodynamic diameter and zeta potential of the siRNA nanocomplexes were 

characterized using the Zetasizer Nano ZS (Malvern, UK) as described previously (10). For 

each measurement, 0.5 mg of SPIO NPs (without A532 labeling) were combined with 0.5 

mg of siRNA and resuspended in 1 mL of ultrapure water. A total of 3 measurements for 

both size and zeta potential were performed.

Loading efficiency of siRNAs on the SPIO NPs was measured using fluorescent titration 

curves as described previously (10). After vortexing A488-labeled siRNAs with SPIO NPs 

(without A532 labeling) in water, the solution was centrifuged at 900g for 4 minutes. After 

centrifugation, pelleted nanocomplexes and supernatant were measured for fluorescence 

with a SpectraMax Paradigm Multi-Mode Microplate Reader (Molecular Devices, 

Sunnyvale, CA) to determine the amount of siRNA. A total of 3 experiments were 

performed.

Apoptosis assay

Cell apoptosis was measured by annexin V and caspase activity. siRNA nanocomplexes 

(without A532 labeling) were used. Annexin V was measured by flow cytometry using 

annexin V conjugated to APC (BD Biosciences, San Diego, CA). Treated cells as described 

above were stained in their wells with 95 µL of binding buffer and 5 µL of annexin V 

according to the manufacturer's instructions. Data were acquired with an FC500 flow 

cytometer and analyzed with CXP analysis software (Beckman Coulter, San Jose, CA). 
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Caspase activity was measured using the Caspase 3/7 Glo kit (Promega, Madison, WI). Cells 

were plated in 96-well tissue culture-treated plates with seeding densities of 20,000 cells/170 

µL of growth medium per well. Each sample was mixed with 40 µL of Caspase 3/7 Glo 

reagent and incubated for 1 hour at room temperature according to the manufacturer's 

instructions. Samples were analyzed using a Centro LB 960 Microplate Luminometer 

(Berthold Technologies, Oakridge, TN). These experiments were independently performed 3 

times, in triplicate for caspase assay.

Cell viability following treatment with siRNA nanocomplexes and chemotherapy drugs

Cells were seeded in complete media at least 12 hours before treatment. The seeding density 

was 600,000 cells/2 mL media/well or 60,000 cells/0.5 mL media/well in 6- or 48-well 

tissue culture-treated plates, respectively. The siRNA nanocomplexes were added to the cells 

in Opti-mem, and they were then incubated for 4 hours, followed by replacement with fresh 

media. Cells were collected for analysis of MXD3 protein expression by 

immunocytochemistry at the indicated times. This experiment was repeated 3 times, and for 

each treatment group and time point wells were prepared in triplicate.

For combination therapy experiments, cells were treated with doxorubicin, vincristine, 

cisplatin, or maphosphamide at their respective half maximal inhibitory concentration (IC50) 

for each drug 4 hours after siRNA nanocomplex treatment. The IC50 values had been 

determined from 3 repeated MTS assays. For SK-N-DZ the average IC50 values for 

doxorubicin, vincristine, cisplatin, and maphosphamide were 176.93 ng/mL and 33.34 

ng/mL, 1,566 ng/mL, and 1,963 ng/mL, respectively, for SK-N-DZ, and 33.82 ng/mL and 

4.65 ng/mL, 695 ng/mL, and 804.7 ng/mL, respectively, for SK-N-BE.

Statistical methods

Statistical analysis was performed using standard linear models implemented in SAS® 

Version 9.4; cell counts were log-transformed. Multiple comparisons of means used SAS® 

PROC MULTTEST, adjusted for multiple comparisons via the Hochberg-Benjamini 

approach (24). Significant findings in analysis of variance comparisons of means were 

further examined with Tukey’s studentized range test for experiment-wise control of Type I 

error. A P value <0.05 was considered significant for all statistical calculations.

Results

MXD3 is highly expressed in neuroblastoma

MXD3 expression was evaluated in neuroblastoma cell lines and primary tumor samples 

based on mRNA and protein levels (Supplemental Figure S1). mRNA levels were measured 

using RT-qPCR. We used normal human adrenal gland (containing both medulla and cortex) 

as a control because adrenal gland (medulla) is a common site for neuroblastoma to arise 

(25). Based on our previous study, we also used peripheral blood mononuclear cells 

(PBMCs) and Jurkat cells, and Reh cells as negative and positive controls, respectively (10). 

In five neuroblastoma cell lines, MXD3 mRNA expression was substantially and 

significantly elevated, ranging between 2.6 to 14.6-fold relative to PBMCs or adrenal gland 

(Supplemental Figure S1a all p<0.001 after Bonferroni adjustment). A public mRNA 
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expression data set of 24 neuroblastoma cell lines (BioGPS, array E-GEOD-28019) also 

shows a trend of high MXD3 expression relative to PBMCs (http://biogps.org). MXD3 

protein expression was also elevated in these cell lines using immunocytochemistry 

(Supplemental Figure S1b and c). Next, MXD3 protein expression was tested in 18 primary 

human neuroblastoma samples using tumor microarray immunohistochemistry. Normal 

kidney and liver tissues were used as controls, both of which showed low levels of MXD3 

expression. Seven out of 18 samples showed high MXD3 expression (Figure 1). In this 

group, all 7 patients had at least one high-risk factor (age > 18 months, advanced stage, N-

myc amplification, poor or no differentiated histology) (Supplemental Table S1). These 

results showed that MXD3 is highly expressed in a subset of neuroblastoma at both mRNA 

and protein levels.

Novel nanocomplexes are created using MXD3 siRNA and SPIO NPs

siRNAs were combined with SPIO NPs based on electrostatic interactions between the NPs 

and siRNA molecules and characterized by size and charge (Figure 2) (10). The size of the 

SPIO NPs was 40.4 nm in diameter (polydispersity 0.120). When electrostatically combined 

with siRNA, the size of the siRNA nanocomplexes was 56.1 nm in diameter (polydispersity 

0.399). Surface charges of the SPIO NPs alone and the siRNA nanocomplexes were +58.8 

mV and +42.4 mV, respectively. These results were similar to the previously reported 

characteristics of NPs (26). High loading efficiency of the siRNA onto the NPs was shown 

by fluorescence measurements: 95.6% of the siRNA molecules when loaded alone to the 

NPs, which was an average of 294 molecules of siRNA per SPIO NP, or 79.55 pmol of 

siRNA per 1 µg of SPIO NP by iron content.

Intracellular uptake of siRNA nanocomplexes results in MXD3 knockdown and apoptosis 
in neuroblastoma cells

We next investigated the in vitro delivery and therapeutic effects of the nanocomplexes in the 

neuroblastoma cell lines SK-N-DZ and SK-N-BE. These two cell lines were chosen because 

they showed the highest MXD3 expression among the tested cell lines. After incubating 

cells for 4 hours with the siRNA nanocomplexes, intracellular co-localization of the A488-

siRNA and A532-SPIO NPs was observed (Figure 3a and d), indicating intracellular delivery 

of the nanocomplexes. In SK-N-DZ, cells treated with the MXD3 siRNA nanocomplexes 

showed a MXD3 protein knockdown by immunocytochemistry compared to untreated cells 

(73.4% reduction, p=0.007) or cells treated with the control siRNA nanocomplexes (63% 

reduction, p=ns) (Figure 3b and c). MXD3 protein expression was also confirmed using 

western blotting (Supplemental Figure S2). In SK-N-BE, cells treated with the MXD3 

siRNA nanocomplexes also showed a significant MXD3 protein knockdown compared to 

untreated cells (72% reduction, p≤0.001) or cells treated with the control siRNA 

nanocomplexes (68% reduction, p≤0.001) (Figure 3e and f).

We then investigated whether the nanocomplex treatment induces apoptosis using annexin V 

and caspase assays. SK-N-DZ cells treated with MXD3 siRNA nanocomplexes showed a 

significant increase in the annexin V positive population when compared to the control 

groups at both 4 and 8 hours after a single treatment (Figure 4a and b). At 4 hours, untreated 

cells and control siRNA nanocomplex-treated cells were 2.5% and 4.2% positive for annexin 
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V, respectively, while MXD3 siRNA nanocomplex-treated cells were 11% positive 

(p<0.001) (Figure 4b). At 8 hours, untreated cells and control siRNA nanocomplex-treated 

cells were 2.8% and 5.2% positive for annexin V, respectively, while MXD3 siRNA 

nanocomplex-treated cells were 12.3% positive (p<0.001) (Figure 4b). For both time points, 

there was no significant difference in annexin V between untreated cells and the control 

siRNA nanocomplex-treated cells. Cells were also analyzed for caspase 3 and 7 activities. 

Cells treated with MXD3 siRNA nanocomplexes showed a significant increase in the 

caspase activity compared to the control groups both 4 and 8 hours after a single treatment 

(all p<0.001) (Figure 4c). Of note, there was a significant increase in caspase activity in the 

control siRNA nanocomplex-treated cells compared to untreated cells at both time points 

(p<0.001) (Figure 4c). The results in SK-N-BE cells were similar to those in SK-N-DZ 

(Figure 4d–e). At 4 hours, untreated control siRNA nanocomplex-treated cells were 11.2% 

and 14.5% positive for annexin V, respectively, while MXD3 siRNA nanocomplex-treated 

cells were 22.7% positive. At 8 hours, untreated cells and control siRNA nanocomplex-

treated cells were 12.1% and 17.1% positive for annexin V, respectively, while MXD3 

siRNA nanocomplex-treated cells were 35.1% positive (vs. untreated p<0.001, vs. control 

siRNA nanocomplexes p<0.01) (Figure 4e). For both time points, there was no significant 

difference between untreated cells and control siRNA nanocomplex-treated cells. Cells 

treated with MXD3 siRNA nanocomplexes also showed a significant increase in the caspase 

activity compared to the control groups at both time points (p<0.001) (Figure 4f). Together, 

these results indicate that MXD3 knockdown induced rapid cell apoptosis in SK-N-DZ and 

SK-N-BE cells.

To confirm that the higher levels of apoptosis we observed were indeed due to MXD3 

knockdown and not off-target effects, we tested the treatment on SK-N-DZ cells expressing 

a rescue construct coding for knockdown-insensitive, wild-type MXD3 (9). SK-N-DZ cells 

were stably transduced using lentiviral vectors expressing MXD3 shRNA and the rescue 

sequence (shMXD3Rescue), MXD3 shRNA alone (shMXD3), or a negative control shRNA 

(shControl) designed to not knockdown any known human gene. shMXD3 and shControl 

sequences were designed to produce the exact siRNA sequences used in the rest of this 

study. All constructs also included GFP for analysis of transduction efficiency. Transduction 

efficiency at 72 hours after transduction, measured as GFP expression by flow cytometry, 

ranged from 67–98% (Supplemental Figure S3a). Cells transduced with the shMXD3 

showed MXD3 protein knockdown by immunocytochemistry compared with untransduced 

cells (70.1% reduction, p=0.03) or cells transduced with shControl or shMXD3Rescue 

(Supplemental Figure S3b and c). Cells transduced with shMXD3 also had decreased viable 

cell counts 72 hours after transduction compared to the control groups (Supplemental Figure 

S3d). Importantly, when treated with MXD3 siRNA nanocomplexes, shMXD3Rescue-

transduced cells showed significantly lower caspase activity when compared to untransduced 

cells or shControl-transduced at 4 hours (vs. untransduced p=0.0064, vs. shControl p=0.043) 

and 8 hours (vs. untransduced p=0.0024, vs. shControl p<0.001) after a single treatment 

(Supplemental Figure S3e). These results together indicate that the increase in apoptosis 

observed in SK-N-DZ cells treated with MXD3 siRNA nanocomplexes was mediated by 

MXD3 knockdown and not by an off-target effect.
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Combination of the MXD3 siRNA nanocomplexes and doxorubicin, vincristine, cisplatin, or 
maphosphamide shows additive cytotoxic effects

We assessed the therapeutic potential of the MXD3 siRNA nanocomplexes with 

chemotherapy drugs currently used in neuroblastoma treatment in SK-N-DZ and SK-N-BE 

in vitro. We added a single dose of doxorubicin, vincristine, cisplatin, or maphosphamide at 

the respective cell line's IC50 doses 4 hours after treatment with the siRNA nanocomplexes 

and measured cytotoxicity after 72 hours using a standard MTS assay.

In SK-N-DZ cells, the average cytotoxicity of the combination therapy (91.2%) was 

significantly higher than that of nanocomplexes (30.5%) or doxorubicin (61.2%) (both 

p≤0.001) (Figure 5a). Similarly, the average cytotoxicity of the combination therapy (52%) 

was higher than that of nanocomplexes (24.5%, p<0.001) or vincristine (45.5%) (Figure 5b). 

The cytotoxicity of MXD3 siRNA nanocomplexes, cisplatin, or maphosphamide was an 

average of 49.2%, 44.9%, and 41.2%, respectively, whereas the cytotoxicity of the 

combination of MXD3 siRNA nanocomplexes with either cisplatin or maphosphamide was 

an average of 70% or 69.3%, respectively (single agents vs. combination all p<0.001) 

(Figure 5c and d).

In SK-N-BE, the average cytotoxicity of the combination therapy (83%) was significantly 

higher than that of nanocomplexes (32.6%, p<0.001) or doxorubicin (60%, p<0.01) (Figure 

5e). The average cytotoxicity of the combination therapy (63.7%) was significantly higher 

than that of nanocomplexes (28.5%) or vincristine (46.2%) (both p<0.001) (Figure 5f). The 

cytotoxicity of MXD3 siRNA nanocomplexes, cisplatin, or maphosphamide was an average 

of 42.3%, 50%, and 53%, respectively, whereas the cytotoxicity of the combination of 

MXD3 siRNA nanocomplexes with either cisplatin or maphosphamide was an average of 

74.5% or 72.9%, respectively (single agents vs. combination all p<0.001) (Figure 5g and h). 

These results demonstrate the potential of using the MXD3 siRNA nanocomplexes as part of 

current chemotherapy regimens for neuroblastoma treatment.

Discussion

Neuroblastoma is a heterogeneous disease, ranging from a type which spontaneously 

regresses to high-risk types which require intensive treatment (2). Over the past several 

decades, greater understanding of the biology of neuroblastoma and the development of 

treatments based on risk type has improved the overall prognosis. However, patients with 

high-risk disease continue to have a very poor prognosis despite the most intensive 

treatments currently available (27). In addition, these treatments have significant short- and 

long-term adverse effects (28). The development of targeted therapies can be one alternative 

to increase current treatment efficacy without adverse effects. Although there are few 

targeted therapies currently used for neuroblastoma, recent introduction of an anti-GD2 

antibody dinutuximab, targeting GD2 receptors on the tumor cell surface and inducing 

immune-mediated cytotoxicity, has shown promising results (29). Several drugs targeting 

genes are also currently being evaluated in clinical trials. The anti-protozoan drug 

difluromethylornithine, for example, has been recently investigated in clinical trials as an 

inhibitor of polyamine synthesis in neuroblastoma with MYC-dependent proliferation (30). 
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Crizotinib, an ALK-inhibitor, is currently undergoing Phase I/II trials as a treatment for solid 

refractory tumors, including neuroblastoma (31).

To further improve the outcome of high-risk neuroblastoma, it is necessary to use 

combination therapies of drugs with different targets. Our study discovered a potential new 

molecular target, MXD3. We demonstrated high MXD3 expression in both cell lines and 

primary tumor samples at either mRNA or protein levels (Supplemental Figure S1 and 

Figure 1). Interestingly, primary tumor samples taken from 18 patients with neuroblastoma 

showed a trend between elevated MXD3 expression and high-risk status: all 7 patient 

samples with high MXD3 expression had more than one high-risk factor (Figure 1 and 

Supplementary Table 1). Publicly-available microarray data on patients with neuroblastoma 

also indicate that MXD3 expression is associated with poor outcomes (R2: Genomics 

Analysis and Visualization Platform). Our study and others showed that MXD3 expression 

is very limited in normal tissues, including adrenal glands and hematopoietic stem cells 

(genecards.org) (10), which makes MXD3 an ideal therapeutic target. We demonstrated that 

inhibition of MXD3 induced cell apoptosis in neuroblastoma cells (Figure 4) and that the 

cell apoptosis was indeed mediated by MXD3 knockdown with the siRNA (Supplemental 

Figure S3).

We have developed a successful compound to deliver siRNA into tumor cells using SPIO 

NPs. Our conjugate showed 95.6% loading efficiency of siRNA (an average of 294 

molecules of siRNA per SPIO NP) (10). One study showed that siRNA was conjugated to 

SPIO NPs, using a succinimidyl 3-(2-pyridyldithio) propionate (SPDP) linker and thiol-

modified siRNA, in ratios of 4.2 pmol of siRNA per 1 µg of SPIO NP by iron content (22). 

Our siRNA nanocomplexes had a ratio of about 77 pmol of siRNA per 1 µg of SPIO NP, by 

iron content. The difference in the amount of siRNA on NPs between ours and this study 

could be due to conjugation efficiency since the siRNA nanocomplexes used in our study 

were made using electrostatic interactions to adsorb siRNA onto SPIO NPs. In addition to 

our nanocomplex’s high loading efficiency, the siRNA nanocomplexes were able to enter 

intact (co-localization of fluorescent markers) into the cells in vitro (Figure 3a and d). Lastly, 

cells treated with the MXD3 siRNA nanocomplexes showed knockdown of MXD3 

expression compared to untreated and control siRNA nanocomplexes (Figure 3b–c and e–f). 

These results together suggest that the nanocomplexes were taken up and released functional 

siRNA intracellularly. For this delivery platform to work successfully in vivo, we expect that 

protective modifications to the siRNA (32) or to the surface of the nanocomplexes (33) will 

be necessary.

MXD3 knockdown in neuroblastoma cells led to a significant increase in apoptosis 

measured by annexin V and caspase activity (Figure 4). The control siRNA nanocomplexes 

showed some increase in apoptosis compared to untreated cells, which is likely due to the 

properties of the SPIO NPs. We expect that with further modifications to the NP surface, 

nonspecific toxicity of the nanocomplexes will decrease. For instance, SPIO NPs with PCL-

PEG-modified surfaces for increased biocompatibility can be used to deliver cancer drugs 

such as methotrexate in vitro (34). Another study conducted with doxorubicin-loaded SPIO 

NPs utilized a bovine serum albumin shell to encapsulate doxorubicin, along with a PEG-

modified outer shell (35). Additional modifications include dextran and aminosilane-
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modified outer groups, which have been shown to reduce the cytotoxicity of SPIOs with 

amine groups (36).

We demonstrated that the MXD3 siRNA nanocomplexes are not only therapeutic as a single 

agent but also have the potential to be combined with currently used chemotherapy drugs. 

For both SK-N-DZ and SK-N-BE, the cytotoxicity of all four drugs: doxorubicin, 

vincristine, cisplatin, or maphosphamide, was increased when combined with MXD3 siRNA 

nanocomplexes (Figure 5). These results are highly encouraging since we only investigated 

single treatments of each drug, at its IC50 dose, with MXD3 siRNA nanocomplexes. It is 

possible to further increase cytotoxicity by optimizing dose and schedule of these 

combination therapies, combining multiple drugs or including other drugs. It is also possible 

that the MXD3 siRNA nanocomplexes may replace some of the current chemotherapy drugs 

and minimize toxic adverse effects. DNA-intercalating chemotherapy drugs, such as 

doxorubicin, and alkylators, such as cisplatin, have been reported to work synergistically 

with deacetylase inhibitors which induce apoptosis in cells (37). Further studies are 

necessary with more samples and different regimens.

In conclusion, we have shown that MXD3 is a new potential molecular target for treating 

neuroblastoma, particularly for high-risk type which has high MXD3 expression, and 

demonstrated a proof-of-concept for a drug that targets MXD3 using siRNA-mediated 

knockdown. Future studies will focus on introducing siRNA structure modification to 

protect them from endonucleases (32), optimizing SPIO NP surface chemistries to minimize 

its inherent toxicity (36, 38), and using a targeted molecule unique to neuroblastoma to 

deliver the nanocomplexes more specifically to the tumor cells (39).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MXD3 is highly expressed in patient neuroblastoma tumor samples
High MXD3 protein expression is observed in subset (high-risk) of patient tumor samples 

(images acquired at 40× magnification) (Supplemental Table S1). Normal kidney and liver 

tissues were used as a control.
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Figure 2. Characterization of siRNA nanocomplexes
Diameter and zeta potential of the siRNA nanocomplexes are shown. The size and zeta 

potential of the nanocomplexes changed after loading the siRNAs on the SPIO NPs. Top and 

bottom graphs indicate before and after siRNA loading, respectively.
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Figure 3. Intracellular delivery of the MXD3 siRNA nanocomplexes results in MXD3 knockdown 
and cell growth inhibition in vitro
(a–c) SK-N-DZ and (D–F) SK-N-BE. (a and d) Intracellular co-localization of siRNA 

(green) and NPs (red) at 4 hours after treatment are shown. Untreated cells were shown as a 

control. (b and e) MXD3 protein knockdown is observed in the cells treated with the MXD3 

siRNA nanocomplexes at 4 hours after treatment. Control siRNA nanocomplex-treated cells 

showed similar levels of MXD3 expression to untreated cells. (c and f) MXD3 protein 

knockdown was quantified using mean fluorescence intensity (MFI). Each point represents 

the average MFI of all measured cells per treatment type, in 4 independent experiments. (c) 

untreated vs. MXD3 siRNA nanocomplexes (**) p=0.007. (f) untreated or control siRNA 

nanocomplexes vs. MXD3 siRNA nanocomplexes (***) p<0.001.
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Figure 4. Treatment with the MXD3 siRNA nanocomplexes increases apoptosis in the SK-N-DZ 
and SK-N-BE cells
SK-N-DZ (a–c) or SK-N-BE (D–F) cells treated with the MXD3 siRNA nanocomplexes 

were more annexin V or caspase positive than untreated cells or cells treated with the control 

siRNA nanocomplexes at both 4 and 8 hours after treatment. (a and d) Flow cytometry 

graphs are shown from one representative experiment out of 3 independent experiments. (b 

and e) quantification of annexin V positive cells from 3 experiments. Data as mean ± SD. n 

= 3 for each time point. (b) Untreated or control siRNA nanocomplexes vs. MXD3 siRNA 

nanocomplexes at both time points (***) p<0.001. (e) Untreated vs. MXD3 siRNA 

nanocomplexes at 8 hours (***) p<0.001. Control vs. MXD3 siRNA nanocomplexes at 8 

hours (**) p<0.01. (c and f) Cell apoptosis measured by caspase 3 and 7 activities are 

shown. Data include 3 independent experiments. Data as mean ± SD. n = 9 for each time 

point. (c) Untreated vs. control or MXD3 siRNA nanocomplexes, and control vs. MXD3 

siRNA nanocomplexes, at both time points (***) p<0.001. (f) Untreated vs. control or 

MXD3 siRNA nanocomplexes, and control vs. MXD3 siRNA nanocomplexes, at both time 

points (***) p<0.001.
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Figure 5. Combination therapy of MXD3 siRNA nanocomplexes with doxorubicin, vincristine, 
cisplatin, and maphosphamide showed additive cytotoxic effects
SK-N-DZ (a–d) or SK-N-BE (E–H) cells were treated with various drugs as described. (a) 

Nanocomplexes or doxorubicin only vs. combination (***) p<0.001. (b) Nanocomplexes vs. 

combination (***) p<0.001. (c) Nanocomplexes or cisplatin only vs. combination (***) 

p<0.001. (d) Nanocomplexes or maphosphamide vs. combination (***) p<0.001. (e) 

Nanocomplexes or doxorubicin only vs. combination (***) p<0.001 and (**) p<0.01, 

respectively. (f) Nanocomplexes only vs. combination (***) p<0.001. Vincristine only vs. 

combination (***) p<0.001. (g) Nanocomplexes or cisplatin only vs. combination (***) 

p<0.001. (h) SK-N-BE with MXD3 siRNA nanocomplexes or maphosphamide vs. 

combination (***) p<0.001.
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