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Abstract— Monitoring of environmental phenomena with
embedded networked sensing confronts the challenges of
both unpredictable variability in the spatial distribution
of phenomena, coupled with demands for a high spatial
sampling rate in three dimensions. For example, low dis-
tortion mapping of critical solar radiation properties in
forest environments may require two-dimensional spatial
sampling rates of greater than 10 samples/m2 over transects
exceeding 1000 m2. Clearly, adequate sampling coverage of
such a transect requires an impractically large number of
sensing nodes. This paper describes a new approach where
the deployment of a combination of autonomous-articulated
and static sensor nodes enables sufficient spatiotemporal
sampling density over large transects to meet a general set
of environmental mapping demands.

To achieve this we have developed an embedded networked
sensor architecture that merges sensing and articulation with
adaptive algorithms that are responsive to both variability in
environmental phenomena discovered by the mobile sensors
and to discrete events discovered by static sensors. We begin
by describing the class of important driving applications, the
statistical foundations for this new approach, and task allo-
cation. We then describe our experimental implementation of
adaptive, event aware, exploration algorithms, which exploit
our wireless, articulated sensors operating with deterministic
motion over large areas. Results of experimental measure-
ments and the relationship among sampling methods, event
arrival rate, and sampling performance are presented.

I. INTRODUCTION

A broad class of environmental monitoring objectives
in fundamental science, environmental resource manage-
ment, and public health protection demand distributed
sensing capabilities [1]. For example, the potential global
impact of climate change creates a requirement for under-
standing the interaction between the forest canopy and
the atmosphere. Understanding critical phenomena, for
example the nature of carbon flux from the atmosphere
to forest biomass, requires direct experimental charac-
terization of spatiotemporally distributed phenomena [2].

This includes measurement of solar radiation (driving fun-
damental photosynthesis and growth), atmospheric water
vapor, temperature, and chemical composition. Distributed
measurements are required since these phenomena are
sensitive to (and in turn influence) the heterogeneous
structure of the natural environment.

A. High Fidelity Environmental Field Monitoring

Many environmental monitoring applications share the
challenge for achieving high fidelity characterization ca-
pability for environmental field variables. This is conven-
tionally achieved with high spatiotemporal sampling rate.
For example, solar radiation and atmospheric properties
must be mapped in natural environments over a spatial
extent comparable to those of the forest structure (where
a measurement transect height may exceed 50m and
the width required to adequately span the heterogeneous
structure may exceed 100m) . At the same time, some
phenomena display a characteristic spatial variability on
the scale of centimeters, reflecting the fine scale of natural
structure and important phenomena. Thus, in considering
high fidelity sampling for these phenomena over a two-
dimensional plane with the required spatial extent of over
1000 m2 and resolution of greater than 10 sample/m2

requires an impractically large number of sensing elements
with 10,000 measurement points.

Measurement distortion may also result from an im-
proper spatial-sampling distribution (specifically due to
mismatch between the spatial structure of the phenomena
and sensor node placement). This introduces yet fur-
ther challenges for environmental monitoring by limiting
the capability for distributed sensor node deployment
planning. Specifically, the inherent unpredictability and
variability of environmental structure and phenomena
precludes the possibility of achieving adequate spatial
sampling density by advance planning. The conventional



Fig. 1. The NIMS system exploits suspended aerial infrastructure
to enable sustainable and precise transport of mobile nodes within
complex three-dimensional environments. Phenomena are mapped within
a spatially extensive transect where sensing nodes have precise command
over horizontal and vertical motion.

solution for reducing this source of distortion has been
to increase spatiotemporal sampling rate. However, this
results in excessive disturbance to the sensed environment.
Clearly, fixed sensor distributions, alone, are not adequate
for many important environmental monitoring phenomena.

Since it is the presence of dynamic physical structures
that lead to unpredictable and variable sensor coverage re-
quirements, sensor networked systems must exploit wide-
ranging and high-spatial-resolution sensor node mobility
in order to ensure adequate coverage.

B. Coordinated Fixed and Mobile Sensing Nodes for High
Fidelity Coverage

This paper describes a new Networked Infomechanical
Systems (NIMS) architecture that combines both fixed and
mobile sensor nodes to achieve a spatiotemporal environ-
ment coverage that is dramatically advanced over that of
either system alone. Mobility allows the networked sensor
system to always seek the most efficient spatiotemporal
sampling distribution to achieve a specified accuracy of
environmental variable reconstruction. Further, mobility
also permits the NIMS system to respond to initially
unpredictable and variable environmental evolution.

While it is shown here that this architecture enables
mobile sensors that adapt to variable environments, their
coverage at any instant is restricted to their effective area
of regard. Thus, temporal measurement distortion will
appear in the presence of rapidly changing phenomena.

Fig. 2. Map of solar radiation intensity obtained in a forest ecosystem by
a NIMS system transporting a light intensity sensor within the canopy.
Solar radiation intensity is indicated in contours as it varies spatially
according to horizontal and vertical sensor displacement.

The NIMS architecture introduces coordination between
fixed and mobile devices. Sparsely distributed fixed sensor
nodes, each remaining vigilant over a localized area of
regard, provide a distributed event detection service for the
combined network. We experimentally demonstrate that
proper task allocation of mobile devices permits both high
spatial sampling rate and low event response time.

The NIMS architecture coordinating mobile and fixed
devices provides the ability to accommodate high fidelity
sensing with limited resource constraints. For example,
typical environmental monitoring characterization tasks
require costly sensing modalities where the cost is mea-
sured in terms of energy, mass, volume, monetary ex-
pense, or other value). Examples in natural environmental
monitoring are tasks that require gas phase analysis or
multi-spectral imaging. Thus, while the demand for dense
spatial coverage is high, the resource cost associated with
supporting a vast number of individual sensor elements
for adequate spatiotemporal coverage may be excessively
high and the disturbance to the environment due to their
introduction may be prohibitive. However, it is demon-
strated here that the combination of low spatial-density
fixed sensors (providing the required assets for mobile
node task allocation) and highly capable mobile devices
results in both adequate spatiotemporal coverage as well
reduced overall resource cost.

The NIMS architecture for mobile and adaptive sam-
pling must include the attributes of 1) wide range mo-
bility within three-dimensional volumes, 2) precise and
high resolution position and orientation control, 3) long
term autonomous, sustainable operation, and 4) mobile
operation without disturbance to the environment. The
combination of these requirements are met by NIMS



Fig. 3. A NIMS system deployed at the James San Jacinto Mountain
Reserve [4]. This image shows the NIMS cable infrastructure, horizontal
transport node (carrying an embedded computing platform, image sensor,
and vertical transport control, and vertically mobile meteorological
sensor node.

infrastructure-supported mobility, as shown in Figure 1.
Here, infrastructure is adapted to the environment and
uniquely enables each of the attributes above.

C. Motivating Application

An example of a fundamental phenomenon that controls
processes within natural ecosystems is the flux of solar ra-
diation. Solar radiation is spatially filtered by the complex
ecosystem structure and ultimately controls photosynthesis
and growth [3]. The characterization of solar radiation spa-
tiotemporal patterns is of primary interest to understanding
growth, evolution, and global change trends [2].

NIMS provides the first method for extensive spa-
tiotemporal mapping of phenomena, including solar ra-
diation in the ecosystem. Figure 2 displays a map of
solar illumination intensity in the photosynthetically active
spectral region (PAR). This two dimensional PAR map
was acquired by a NIMS system operating in a mixed
conifer forest within the James San Jacinto Mountain
Reserve [4]. Note the characteristic scale of variability for
solar radiation is less than 1m with a need to characterize
a spatial extent that equals the dimensions of the forest
canopy itself.

Figure 3 shows a NIMS system deployed in the forest
reserve for continuous operation. This system includes
supporting cable infrastructure, a horizontally mobile em-
bedded computing platform payload, image sensing, and
a vertically mobile meteorological sensor system carrying

water vapor, temperature, and PAR sensing capability.
Wireless networking is incorporated to link fixed nodes
(distributed on the surface or suspended) with the verti-
cally and horizontally mobile elements. The NIMS infras-
tructure is elevated in the environment and thus lies above
environmental obstacles to solar radiation. NIMS systems
have exploited this and have been deployed with battery
energy sources supplied solely by solar photovoltaic cell
energy harvesting. Energy is transported as needed along
the NIMS cable infrastructure by an articulated cable
system. The NIMS system is deployed in a transect of
length 70m and average height of 15m with a total area
of over 1,000 m2.

The experimental NIMS system operates with a linear
speed range for node motion of 0.1 to 1 m/second. Thus,
the time required to map an entire 1,000 m2 transect with
0.1 m2 resolution with a simple ’raster’ regular scanning
schedule will exceed 104 to 105 seconds. Phenomena that
vary at a characteristic rate exceeding this scanning rate
may not be accurately mapped. However, without knowl-
edge of the spatial variability of measured phenomena, the
sampling system must sample at high spatial rate in order
to achieve low measurement distortion.

D. Event-Aware Adaptive Sampling Systems

Thus, as will be described below, the requirements for
the measurement system to respond to variable environ-
mental structure and to accurately map environmental vari-
ables at minimum time and resource cost has lead to the
introduction of a NIMS architecture that combines mobile
adaptive sampling with task allocation methods controlling
node motion. These rely on fixed sensor networks as well
as mobile elements to ensure that measurement is most
efficient and then to focus exploration and mapping at
the point in a transect for which change in environmental
variables has occurred.

This paper first describes the Adaptive Sampling, Task
Allocation, and also Event-Aware Adaptive Sampling
methods and algorithms. A new Fidelity Driven Sampling
adaptive method is introduced and tested with experimen-
tal data. Then, experimental methods including system
hardware and software architecture are discussed. This
includes description of a laboratory-scale NIMS system
(NIMS-LS) employed for algorithm and verification of
combined software and mobile embedded hardware sys-
tem implementations. Finally, experimental results ob-
tained with NIMS-LS demonstrating the marked benefits
of combined adaptive sampling and task allocation are
described. It is important to note that Related Work is
discussed in each Section below.

II. ADAPTIVE SAMPLING ALGORITHM

Sampling configurations (e.g., sample density) for em-
bedded networked sensor systems are generally limited by



considerations related to the availability of communication
channel resources or energy constraints. This has spawned
a number of recursive estimation techniques that make
decisions in a hierarchical fashion [5]. For example, local
cluster heads accumulate information and propagate this
according to a value metric. By introducing infrastructure-
supported mobility, it is now possible to characterize envi-
ronmental variable fields with much greater spatiotemporal
density than was previously practical. While this enables
new applications, it also creates new choices for estimators
and for optimizing sampling. A new algorithm, Fidelity
Driven Sampling will be described that exploits mobile
sampling to first stratify the environment into regions
requiring varying degrees of sample density, then samples
in these regions while tracking estimated sampling error
(fidelity). Fidelity Driven Sampling has the advantage
over conventional raster (or other pre-planned sampling
strategies) of actively seeking to minimize error without
prior knowledge of the variable field.

A. Methodology

Optimal designs for estimators have been studied ex-
tensively in the statistics literature; see [6], [7], [8], [9].
These approaches often assume a parametric form for the
estimate. Given a generic learning algorithm, the problem
of optimal design is much harder. Optimal designs for
simple kernel methods were studied by [10] where it
was found that the best placement of points depends on
the second derivative of the function; places with high
curvature should have relatively more points than flat
regions. [11] study designs for local linear smoothing,
ultimately proposing a batch-sequential algorithm.

The NIMS adaptive sampling algorithms are designed
with the goal of sequentially constructing a sampling
pattern where at each step, samples are chosen that
improve the estimate of the sensed field. [12] studies
such sampling plans in the context of kernel smoothing.
Points are added one at a time, chosen so as to reduce
an estimate of the integrated squared error. [13], [14]
study the same problem, but with neural networks as
their estimators. They use the term “active learning” to
describe the adaptive sampling process. [13] selects points
to minimize an information criterion, while [14] studies
the mean squared error. In each case, it is assumed the
bias is negligible and attention is focused on the variance
of the estimator. [14] also introduces the notion of path
constraints on the samples, a topic that will be important
in our ultimate deployment of adaptive sampling.

The Adaptive Sampling algorithm reported here, relies
on a mean squared error estimation approach and an
underlying learning algorithm based on a local linear
smoother. Further, a variable bandwidth is assumed based
on nearest neighbors. This algorithm, termed Fidelity
Driven Sampling (FDS), attempts to reduce mean square

Fig. 4. Pseudocode description of the Fidelity Driven Sampling
algorithm.

error at each sampling point by adjusting point density and
location. It will be further described and evaluated below.

Mean squared error can be decomposed into a bias
component and a variance component. In our application
of solar illumination mapping, measurement noise is a
negligible fraction of the overall signal, and hence our
greatest concern will be bias. In other applications, bias
may not be dominant, and other estimation methods will
be needed. In these other regimes, attention will likely
focus on tasks other than field estimation; or if a snapshot
of the field is desired, a longer learning process involving
repeated measures in time will be required. This is all the
subject of future work.

Throughout the sampling process, FDS maintains an
estimate of the field being observed. In this paper, a local
linear fitting routine is chosen, with its bandwidth varying
to include a fixed number of nearest neighbors. Using
this estimate, the FDS loop identifies regions or strata
exhibiting a high degree of misfit. At each step in the
sampling process, FDS adds points to that stratum with
the largest error. In so doing, the FDS algorithm reduces
the distance between neighbors and effectively lowers the
bandwidth of the local linear fit within the stratum. The
algorithm continues adding points to poor fitting strata
until either an overall sample budget is exhausted or a
desired fidelity limit is achieved.

Local linear fits have been chosen because these can tie
the notion of sampling with the resolution of structures
expected in the variable field. In principle, any nonpara-
metric procedure could be employed including thin plate
splines or other radial basis functions.



B. The Fidelity Driven Sampling System

Figure 4 shows pseudo code description of the Fidelity
Driven Sampling adaptive algorithm. The NIMS robotic
system continues adaptive sampling for the entire period
of operation in the environmental mapping state. The
FDS algorithm then calls the procedure predict-frame()
which returns the estimate of the environmental variable
field. The algorithm follows a procedure of stratifying a
sampling region and according to observed measurements
in the region and for each strata, adjusting the number of
sampling points.

In addition, in the discussion below, the performance
of Raster Scanning, Stratified Random Sampling, and the
new Fidelity Driven Sampling algorithms are compared
through simulation of each sampling method with actual
experimental data. It is important to note that Fidelity
Driven Sampling provides an autonomous system that
seeks to assign sampling points to achieve a specified
threshold error value (or a specified stratification rank).
By estimating error magnitudes, Fidelity Driven Sampling
can actively adapt to achieve a sampling fidelity objective.
This differs fundamentally from raster scan methods that
are not informed of residual errors. It is most important
to note that Fidelity Driven Sampling, being adaptive,
requires no prior knowledge of the environmental variable
field characteristics and will rather report these character-
istics. The successful demonstration of this is enclosed in
Section VI.

This predict-frame() procedure starts by inserting a root
stratum in a queue. Here, the root stratum corresponds to
the entire transect - the entire region of study. predict-
frame() then initiates a loop that extracts strata with high-
est product of mean square error and area. It determines
the sampling points to be added to the strata and then
the mobile sensor moves to visit those points and sample
corresponding data. After sampling points in the strata, it
performs a local linear kernel regression and reevaluates
the estimate of the phenomenon. Error is computed in
terms of the absolute difference between estimated and
sampled values. If the computed error in the strata falls
below a threshold, predict-frame() exits the inner loop and
proceeds to examine more strata or otherwise divides the
strata into horizontal or vertical substrata depending on
which division leads to the greatest reduction in error.

Following Fidelity Driven Sampling operation (or raster
scanning data acquisition) the returned variable field with
its distribution of sample points was then supplied to a
standard estimation algorithm (that performs an interpola-
tion ) and returns an environmental field map. This final
result is referred to as a reconstruction of the variable field.
Experimental results and evaluation of reconstructions will
be discussed below for varying field characteristics.

III. TASK ALLOCATION ALGORITHM

Task Allocation (TA) is the problem of assigning avail-
able resources to tasks. There are two major subdivisions:
offline and online. The offline TA is the problem of
assigning resources to different tasks if certain information
(e.g. the distribution of task arrival times, relative task pri-
ority) is known a priori. The assignment process proceeds
offline. The offline TA problem, in its most general form,
is equivalent to the conjunctive planning problem [15]
which is NP-Complete.

Our focus here is on online task allocation. In online
TA, all information about the tasks becomes available only
upon task arrival. The assignment of resources to tasks
must be computed in real time. It has been shown [16] that
greedy algorithms provide good approximate solutions to
online TA. It has also been shown [16] that in some cases
the greedy online TA solution is within a bounded limit
of the optimal solution obtained by offline TA. Following
the model in [17], we think of task assignment occurring
in decision epochs. A decision epoch is a period of time
during which only the tasks which have arrived since the
end of the previous epoch are considered for assignment.
Increasing the decision epoch to infinity converts the
online TA into the offline TA problem. We model the
NIMS system as an online TA problem, since it is designed
for real-life autonomous field applications in dynamic
environments.

Our work is related to the body of work on the
problem of online multi-robot task allocation (MRTA).
For an overview and comparison of the key MRTA ar-
chitectures see [18], which subdivides MRTA architec-
tures into behavior-based and auction-based. For example,
ALLIANCE [19] is a behavior-based architecture that
considers all tasks for (re)assignment at every iteration
based on robots’ utility. Utility is computed by mea-
sures of acquiescence and impatience. Broadcast of Local
Eligibility [20] is also a behavior-based approach, with
fixed-priority tasks. For every task there exists a behavior
capable of executing the task and estimating the utility
of robot executing the task. Auction-based approaches
include the M+ system [21] and Murdoch [22]. Both
systems rely on the Contract Net Protocol (CNP) that puts
available tasks for auction, and candidate robots make
’bids’ that are their task-specific utility estimates. The
highest bidder (i.e., the best-fit robot) wins a contract for
the task and proceeds to execute it.

The proposed system differs from the above MRTA
approaches. Our system relies on a static network, and
communication, sensing and computation are distributed.
The motivation for this system derives from the need to
efficiently sample the entire environmental space. As has
been discussed in the Introduction, it is impractical to
deploy enough fixed sensors to achieve required sensing
fidelity. As will be shown, the system combining fixed and



mobile nodes enables efficient sampling. TA becomes the
primary driver of efficient data collection in this system,
since it allows the user to select a portion of the envi-
ronment for sampling, as opposed to sampling the entire
environment. In addition, TA manages system resources,
so that resources are not consumed unless assigned most
effectively.

A. Methodology

The general online TA system functions in the following
way. Suppose at a given decision epoch the system main-
tains a set of resources R = {r1, ..., rn} and tasks T =
{t1, ..., tk}. Tasks are prioritized based on a criterion C.
C is an application dependent function and can combine
such parameters as task arrival time, task importance, etc.
A set of assignments A = (l = min(n, k) : {a1, ..., al})
is computed as follows.

∀a∈Aa = argmaxj=(1,...,|R|)(U(rj , t)) (1)

where t is the next unassigned task according to C
and U(rj , t) is the j-th resource utility value for ac-
complishing t. The assigned resource and corresponding
task are removed from R and T respectively, before
the next assignment. The utility function is chosen to
be application and resource dependent. In our model,
once assigned, resources cannot be reallocated. After a
resource has completed its task it becomes available for
a new assignment. In the terminology of [23] we adopt a
commitment strategy as opposed to opportunism.

The system consists of a mobile node suspended on a
cable and a static sensor network. We assume that the net-
work is predeployed where each node knows its location
in a global coordinate system. The network monitors the
environment for events of interest (motion, change in light
intensity, etc). The problem then is to prioritize the events,
and drive the mobile node to a vantage point from which a
particular event is better observed. Once the node arrives,
the local phenomenon is measured. In TA terminology, a
robot is a resource and a detection by a sensor node of an
event requiring perusal by a robot is a task.

Figure 5 shows two network topologies that we define
- positioned on the ground (the 2D-case) and more gener-
ally, in the volume surrounding the transect (the 3D-case).
In order for TA system to plan node’s motion the goal
points should lie in the transect plane. Hence, we project
the nodes locations onto the transect plane. As a result
we get a set of points on a line l (2D-case, Figure 5a)
or a plane Πr (3D-case, Figure 5c), both of which lie
in the transect plane. In the 2D-case, l is the line where
the transect plane intersects the ground plane. Since, the
mobile node cannot move along that line, we translate l to
a parallel line lr on the transect. We define the projection
function in the 2D-case PROJlr and 3D-case PROJΠr

.

Based on tasks projected locations TA divides the
transect into slices (2D-case, Figure 5b), or generally cells
(3D-case, Figure 5d). With every projected node k we
associate a cell Cn.

Note that a 2D system is sometimes preferred because
it is easier to setup in the field and for some applications a
2D perspective is enough. As an example, consider study-
ing sunlight intensity shining through a forest canopy. In
this case a sensor network with illumination detectors can
be placed on the ground. Suppose node k discovered an
interesting reading (say an abnormal light value). The TA
system then would guide the robot towards the goal point
on lr computed by PROJlr . The mobile node then can
study appropriate slice Ck. The general 3D-case system
is investigated in this paper.

B. The Task Allocation System

Our system consists of two algorithms - one running on
the robot and another within the network. First we describe
the algorithm that runs on every static node. It consists of
two parts - Task Generation and Task Management.

1) Task generation. If node’s sensor reading is above a
threshold a task is created and a notification message
NEW TASK is broadcasted. The notification message
contains the notifying node’s ID, location, sensor
reading, and time stamp (time when the task was
generated).

2) Task management. Each node maintains a set of
currently active tasks Ta and non-active tasks Tna.
If a node receives NEW TASK message and the task
is new (it is neither in Ta nor in Tna) then Ta

is updated and the message is redirected to the
network several times. As we discuss later, when the
robot fulfills its assigned task it sends a TASK DONE
message containing the id of the node that generated
the task and task’s time stamp. If the task is in Ta,
then it is removed from Ta, added to Tna and the
message is redirected to SN several times.

Note that in practice the sizes of Ta and Tna are
fixed (20 and 30 in our experiments). Both sets can be
overwritten, so where is no overflow problem. At the same
time, the size of Ta should be set with care to avoid loss
of data about currently active tasks and potentially failing
to propagate this data to the rest of the system.

Our system is a special case of the TA methodology
described above - with only one resource (mobile node)
for task assignment. Consider task assignment Equation
1. Since there is only one mobile node, the next task with
highest priority (according to criterion C) is assigned to
the mobile node, no matter what the mobile node’s utility
function might be. The task prioritization criterion selected
here is C based on the time stamp associated with every
task. The algorithm running on the mobile node is as
follows.
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Fig. 5. Different SN topologies and corresponding projections onto the transect.

All incoming new tasks (specified by NEW TASK mes-
sage) are sorted according to the criterion C (tasks with
smaller time stamp get priority - a FIFO policy) and stored
in a set of currently active tasks Ta. When the mobile node
becomes available for reassignment, the task of highest
priority is extracted from Ta and assigned to it. Next,
based on the task information the mobile node needs to
compute a goal point.

If the task’s position is p then the goal position will be
PROJlr (p) in 2D-case and PROJΠr

(p) in 3D-case (see
Figure 5). After the robot completes its last task it sends a
TASK DONE message containing the id of the sensor node
that generated the task and task’s time stamp.

The TA algorithm computes projections of the static
network onto the transect and separates the transect into
slices (in the 2D-case) or more refined cells (in the 3D-
case). This is the cornerstone for Event-Aware Adaptive
Sampling Algorithm discussed next.

IV. EVENT-AWARE ADAPTIVE SAMPLING

The Adaptive Sampling approach we proposed in Sec-
tion II (Fidelity Driven Sampling or FDS) is designed
to capture static phenomena with an adjustable level of
accuracy. On the other hand, consider a dynamic scene
when the phenomenon to be observed changes spatially
and temporally. If this change is faster than the time it
takes adaptive sampling to complete, the algorithm would
not obtain a correct result - the final “sensor picture” will
consist of superimposed phenomena.

A. Methodology

Suppose the task is to observe a dynamic phenomenon
P which changes rapidly in time (Figure 6a). Thus,
P consists of {p1, p2, ...pn}. One solution is to deploy

many high fidelity sensors so that every point of the
environment is sampled. This is impractical. Consider a
hybrid approach where a large number of static low-
fidelity sensors capable of detecting pi are used in con-
junction with the mobile NIMS node which carries the
high fidelity sensor. The adaptive sampling algorithm can
then focus on a portion of a transect containing pi that
TA system provides. As shown in Figure 6b, the sensor
network effectively discretizes the environment, allowing
to localize pi and limit the adaptive sampling to a part
of the transect. Note that multiple nodes can detect the
same phenomenon pi. For simplicity we assume that only
the node with highest sensor reading of the phenomenon
detects it. In principle, there are two ways to address that
problem. One is to let the mobile node cluster tasks and
then create a combined slice of the transect to run the
adaptive sampling. Another way is to let the SN locally
determine the cluster, and the ’leader’ of the cluster will
create a combined task.

B. Event-Aware Adaptive Sampling System

The following describes the Event-Aware Adaptive
Sampling (EAAS) Algorithm:

1) TA module monitors the environment for new tasks;
2) If unassigned tasks set Ta 6= 0, TA assigns the robot

to the next task in order, say task t;
3) TA determines the appropriate goal position and a

corresponding transect cell as discussed in previous
section;

4) TA delivers the robot to the computed goal position
of the cell to sample;

5) TA sends request to the adaptive sampling system
with (x, y, z) of the center of the scan and dimen-
sions of the scanning cell;
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Fig. 6. Dynamic phenomenon P and a static sensor network. a) Rapidly changing spatially and temporally phenomenon P = {p1, p2, ...pn}, occurring
forward in time; b) Static predeployed sensor network (SN), where each node is equipped with relatively cheap, low fidelity sensor capable of detecting
pi; c) SN detects p1, p2, p3 and creates tasks;

6) TA system pauses, while monitoring the environ-
ment for new events;

7) The adaptive sampling scans designated area, returns
to TA (sends AS DONE MSG);

8) TA sends TASK DONE message into SN containing
id of the node that generated the task and task’s time
stamp.

9) TA resumes. Repeat;

In summary, when a node detects a phenomenon (sensor
reading reaches a predetermined threshold) it notifies the
SN and the mobile node. We say that a task is created. The
notification message contains the node ID, its location and
the sensor reading. Given this information we can use the
TA algorithm to assign robot to the task, navigate the robot
to that task and start the adaptive sampling on a limited
cell provided by TA. Figure 6c shows nodes that detected
phenomena of Figure 6a and created corresponding tasks.

V. SYSTEM PROTOTYPE AND EXPERIMENTAL SETUP

The combined Adaptive Sampling and Task Allocation
methods have been introduced to both enable efficient
measurement (for a specified accuracy estimate) while also
enabling fast response to events. This section describes the
enabling architecture and design methods.

A. System Hardware Prototype

As described in the Introduction, a NIMS system has
recently been deployed in the field and characterization
of forest canopy phenomena using NIMS methods may
begin. However, the rapid development of NIMS algo-
rithms and the verification of NIMS software, embedded
hardware, and sensor systems benefit from characteriza-
tion and testing with complete systems that operate in an
indoor laboratory-scale facility where all inputs may be
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Fig. 7. The NIMS system architecture combines the adaptive sampling
and Task Allocation (TA) algorithms providing interfaces to actuation
and sensing. While the adaptive sampling relies on mobile sensor inputs,
TA responds to events emanating from distributed fixed sensors. The
adaptive sampling and TA algorithms are coordinated and hosted by the
embedded Stargate platform shown in Figure 8

controlled. This laboratory-scale system, NIMS-LS, has
been developed and is shown in Figure 7.

NIMS-LS includes a mobile node system suspended by
a cable network (see Figure 8a) that is articulated by a
“stepper” motor control system (see Figure 8b) controlled
by a StargateTM embedded node. The motor control
system alternately winds and unwinds cable length from
a pair of cable spools thereby causing a horizontal and
vertical translation of the mobile node. Through proper
calibration, this system provides less then 1 cm resolution
for localization of the node at any point within the transect
plane. While configurable in height and width, the transect
used for the experiments reported here was 8m in length
and 2.5m in height. Fixed sensor nodes were distributed



(a) (b)

Fig. 8. a) The NIMS-LS system employs a cable network to allow rapid deployment of a NIMS transect within an indoor environment. The cable system
permits a sensor node to operate over the length and depth of a transect area. Software system interfaces are devised to enable applications to operate
both on NIMS field-scale systems as well as NIMS-LS where development and verification may occur. In addition, reconfigurable lamp illumination
sources and obstacles allow the designer to select a transect environmental variable distribution for the purposes of testing. Note that both mobile and
fixed sensors appear in this architecture. Note that fixed sensors are distributed in the two dimensional transect plane as well. For the experimental
characterization reported here, six MICA-2 mote sensors were deployed in two rows, equally spaced along the transect (of length 2m) and with the
first row at a height of 80cm and second row at a height of 160cm as shown. b) The NIMS-LS system incorporates a standard mote sensor node for
mobile measurement and an Intel StargateTM platform for hosting of Adaptive Sampling and Task Allocation algorithms. The platform manages cable
actuator control that, in turn, provides accurate node motion in the transect plane. This embedded platform, its motor systems, and cable spools for cable
actuation are shown.

on the surface of the transect region and also elevated in
the transect as well, as will be discussed below.

The mobile node is a standard wireless mote sensor
system. In addition, this device is included in a wireless
network with both the Stargate platform as well as the
distributed fixed sensors.

B. System Software Prototype Architecture

The NIMS software architecture (as illustrated in Fig-
ure 7) is based on the Emstar system [24]. This has
been selected for NIMS and provides the following ben-
efits. First, Emstar provides a common set of embedded
platform interfaces for multiple embedded platforms that
compose NIMS field and NIMS-LS systems. This offers
the benefit that applications developed for the NIMS-LS
system may then be directly applied to NIMS field sys-
tems. Second, the Emstar event architecture provides the
designer with robust methods for servicing unscheduled
events and order of operations. The Adaptive Sampling
and Task Allocation systems both benefit from this for
implementation of their reactive nature. Third, the Emstar
system provides a regular means for implementing the

many complex device drivers that appear in NIMS elec-
tromechanical systems. Finally, Emstar has enabled NIMS
emulation that includes rapid verification of mobile sens-
ing algorithms (on standard x86 workstation platforms) in
preparation for testing on the NIMS-LS platform.

The Adaptive Sampling and Task Allocation algorithms
operate on the Stargate platform and communicate over
socket interfaces as shown in Figure 7 Both Adaptive
Sampling and Task Allocation exploit Emstar device
drivers. The degree to which this Emstar-based archi-
tecture accommodates diverse applications is illustrated
by this example. Here, the Adaptive Sampling algorithm
(with its interfaces to motor control systems) is developed
in C and C++. However, the Task Allocation algorithm
is implemented in Java. The NIMS-LS architecture has
incorporated this diversity and enables robust operation of
the combined complex and event-ware Adaptive Sampling
and Task Allocation processes.

C. Experimental Setup

The environmental variable field is created through use
of an optical lamp system that illuminates the transect.



Fig. 9. An environmental field map for a complex variable field
with superimposed sampling points as autonomously selected by Fidelity
Driven Sampling. The image grey level indicates illumination intensity
variation (varying by a factor of 5.7 from the darkest to lightest regions).

Just as in the natural environment, photodiode sensors
are employed for light intensity measurement. In addition,
cylindrical obstacles are available and are placed in the
environment to create a variable field for test purposes.
For the experiments reported here, the variable field was
selected to follow that observed in the natural environ-
ment.

Fig. 10. The reconstructed variable field derived from the Fidelity
Driven Sampling points of Figure 9

VI. RESULTS FOR ADAPTIVE SAMPLING

As described in Section II, Fidelity Driven Sampling
exploits mobile sensing capabilities to explore the variable
field, stratify this into regions of greatest required sample
density, and then sample in these regions adaptively to
minimize estimated sampling error. Fidelity Driven Sam-
pling operates in an iterative architecture seeking to reach
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Fig. 11. Mean Squared Error for reconstructions of the environmental
field of Figure 9 as a function of stratification level. Note that unlike pre-
planned raster scanning or related sampling strategies, Fidelity Driven
Sampling may proceed autonomously reach a specified error threshold.
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a desired threshold error. While multiple error threshold
policies may be applied, two are explored here: 1) an error
threshold defined as a maximum tolerated mean squared
error estimate across the entire environmental field, and
2) a maximum allowed stratification rank. Adjustment of
these thresholds permit the mobile sensor node to return an
environmental field map with a specified estimated fidelity
without the requirement for any prior knowledge of the
field characteristics. An inability to reach a specified esti-
mated error (within a given time or rank level limit) will



be reported by the Fidelity Driven Sampling algorithm.
This then provides the user with yet further assurance of
proper sampling and confidence in returned data.

Fidelity Driven Sampling is evaluated here by subject-
ing the algorithm to environmental variable fields having
two extremes in their “curvature” characteristics. For
one limit, the environmental variable field was created
by placing many obstacles in the illumination field (see
Figure 8) to emulate the characteristically most complex
patterns observed in the natural environment. In addition,
the algorithm was also subjected to an environmental
variable field that showed low curvature created by casting
only diffuse shadowing on the transect. This latter case
is characteristically similar to the least complex fields
observed under clear forest canopy structure.

The performance of the Fidelity Driven Sampling al-
gorithm was evaluated by allowing the algorithm to
autonomously operate and return a sample distribution.
This distribution then was supplied to the estimator to
return a reconstructed variable map. Finally, this map
was compared with the actual measured data obtained
by exhaustively moving the node at his highest resolution
through the variable field. This returned a “ground truth”
map of the scene.

The results of Fidelity Driven Sampling were then com-
pared with conventional raster scanning data acquisition
that performs the role of a conventional pre-planned and
non-adaptive sampling strategy.

Fidelity Driven Sampling algorithm shows a value of
Mean Squared Error for its reconstruction compared to
ground truth that meets or is superior to that of raster
scanning. However, this must be achieved without pre-
planning and must be independent of the nature of the
field characteristic. We examined both the returned recon-
struction as well as its mean of squared error over the
entire transect.

It is important that Fidelity Driven Sampling shows a
monotonic decrease in mean squared error for an increase
in stratification rank level. We compared the result of
FDS with raster scanning for both rough and smooth
phenomena.

A. Fidelity Driven Sampling vs. Rough Phenomena

Figure 9 shows a map of both ground truth and the po-
sitions of both strata and actual sample points selected by
Fidelity Driven Sampling during an experimental session.
Note that the sample point density increases in regions of
greatest field curvature. This experimental result was cap-
tured as the Field Driven Sampling system passed through
stratification rank 5 and had selected 489 sample points
within the transect. Figure 10 shows the reconstruction
resulting from this. Close agreement in field shapes is
observed.

Fig. 13. n environmental field map for a low curvature variable field
with superimposed sampling points as autonomously selected by Fidelity
Driven Sampling. The image grey level indicates illumination intensity
variation (varying by a factor of 1.5 from the darkest to lightest regions).

Fig. 14. The reconstructed variable field derived from the Fidelity
Driven Sampling points of Figure 13

A test of the performance of this approach is shown
in Figure 11. Note that the actual mean squared error
(computed between the reconstruction and ground truth
across the transect) reduces with increasing stratification
rank. Also, Figure 12, shows the dependence of mean
squared error on sample density for Fidelity Driven Sam-
pling (Adaptive) and raster scanning (Raster) methods.

B. Fidelity Driven Sampling vs. Smooth Phenomena

The sample distribution results and reconstruction re-
sults for a rank level of 5 are shown in Figures 13 and
14 for an environmental field showing dramatically less
curvature than that of Figure 9. A comparison of mean
squared error performance between Fidelity Driven and
raster scanning is shown in Figure 14. Note that for this
reduced curvature, not only does Fidelity Driven Sampling
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converge to a specified mean squared error, it is equal or
superior to raster scanning in efficiency with respect to
numbers of sample points.

The combination of these tests provides a successful
evaluation of the performance of Fidelity Driven Sampling
for autonomously adjusting sample density through appro-
priate motion control and sampling of the mobile sensing
system. As has been discussed this sampling method
seeks to establish a reconstructed variable field with a
specified maximum sampling error without requiring prior
knowledge or planning.

VII. RESULTS FOR EVENT-AWARE ADAPTIVE
SAMPLING

Both Task Allocation and Event-Aware Adaptive Sam-
pling use a notion of a task. In the following experiments
we will compare the cumulative task OnTime across all
tasks, over the duration of every experiment. Each task’s
OnTime is computed as the difference between the time
the task was turned off by a Robot (TASK DONE message
is sent) and the time the task was detected by one of the
nodes of the network.

As shown on Figure 8, a network of 6 Mica2 Motes
was predeployed in a test environment with predetermined
coordinates. We use the general 3D topology. Hence, by
knowing nodes locations and computing nodes’ projec-
tions onto the transect plane, the TA algorithm produces
a subdivision of the transect similar to Figure 5b.

A. Task Allocation vs. Raster Scan

Following the same approach as described for charac-
terization of the Fidelity Driven Sampling system compo-
nent, experiments were conducted comparing Task Alloca-

tion(TA) methods with conventional Raster Scan methods.
The Raster Scan method scans every point of the transect
with a specified resolution. When the Raster Scan reaches
the location of an event it clears it by sending TASK DONE
message. Raster Scan method proved to be prohibitively
low in performance. In particular, experimental results
showed that at the maximum NIMS-LS spatial resolution
of 1 cm, with a sampling dwell time of 1 second at each
location, OnTime results were dramatically inferior to TA
methods. Raster Scan method was also characterized at
reduced spatial resolution of 5cm with a corresponding
improvement in response time. This however, is still
inferior to TA algorithm described in this paper.

In this experiment an artificial event is first generated on
a remote server. Then the server sends an event message
to the node designated for task generation and the node
proceeds as if this event was detected by the node’s sensor.
For this experiment, schedules of 3, 5, 7, 10 and 20 events
were drawn (in time) from a Uniform distribution to arrive
within 600 seconds, with uniformly distributed nodes that
detected the event. Note that for actual applications we do
not expect to receive/process more than 1 - 10 events in
10 minutes on average. Hence the case of 20 events shows
the behavior of the system at the limit.

Figure 16 shows experimental results comparing On-
Time performance of TA and Raster Scan. The number
of events varies between 3 and 20. Both algorithms were
evaluated from 3 different starting positions of the mobile
node on the transect (drawn from a Uniform distribution).
The results were averaged. As can be seen from the graph,
TA performs 9-22 times better on the entire interval of 3-
20 events. Note also that TA is stable, as indicated by
error bars, and hence is favored for use in this application
since it provides reduced bounds on system run time over
Raster Scan method.

In addition to response time comparison, it is also
important to compare mobility requirements for TA and
Raster Scan methods. Specifically, the use of mobility
requires energy. Thus, this can be computed and compared
for each method. Now, when the density of the events is
low, the TA algorithm enables the mobile node system
to remain in a static position for extended periods - “in
between events”. This occurs when it has serviced all
events that have arrived and is awaiting new events. Raster
Scan, however, forces the robot to move constantly. Hence,
this method will consume far greater energy and mobility
resources than TA. A measure of energy for mobility is
determined for the purposes of comparison by computing
the total time of mobile node motion. Figure 17 shows
comparison of energy consumption in units of time-in-
motion between TA and Raster Scan. As expected, TA
outperforms Raster Scan significantly. However as the
number of events increases to infinity, the TA should
approach Raster Scan energy consumption. Also note, that
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on interval [5, 20] the slope of the Raster Scan curve is
very small and the energy consumption is insensitive to
event arrival rate.

B. Event-Aware Adaptive Sampling

The introduction of Event-Aware Adaptive Sampling
produces a potential dramatic improvement in event re-
sponse time. Thus, in this section the results of measure-
ment of task OnTime is described for the system using
the Event-Aware Adaptive Sampling (EAAS) algorithm. A
previous investigation has evaluated an algorithm approach
intended to enable mobile sensor nodes to perform an
adaptive samplinnog [25]. This was evaluated on data from
a mobile sensor system that was acquired using a regular

raster scan. In contrast, the system architecture reported
here allows adaptive sampling algorithms to be hosted
directly on mobile embedded systems. In addition, this
system architecture enables cooperation between adaptive
sampling and Task Allocation algorithm. This is demon-
strated through direct experimental evaluation with the
NIMS-LS system. The results for EAAS operation com-
bining task allocation and adaptive sampling are compared
directly with results for the adaptive sampling system
operating alone.

It is important to note that adaptive sampling does not
provide an accurate sampling of the scene if the frequency
of events is such that events arrive at a rate greater than the
time required for adaptive sampling to complete. But if the
event frequency will be sufficiently low then on average
every task OnTime will be approximately the same. Hence,
it suffices to compare the results for OnTime of only one
task.

This experimental characterization was performed using
light intensity variations to induce events (exactly as
occurs in natural environment conditions.) As shown in
Figure 8, the mobile and fixed nodes form a network.
Also, each node is equipped with a light intensity sensor
as deployed on the mobile node. Here, a node generates an
event when the sensor sampled value exceeds a threshold.

The task OnTime performance of adaptive sampling
is 20524 seconds and 577 seconds for EAAS. Hence
EAAS significantly outperforms adaptive sampling (with
an improvement by a factor greater than 35). This dramatic
advantage of EAAS results from its ability to determine
the location of the task, deliver the mobile node to the
proper location, and then reduce the scan area require-
ments for the adaptive sampling module by focusing
attention on the proper event region.

VIII. SUMMARY AND FUTURE WORK

Sensor network systems are now being applied in
critical science and engineering applications in complex
environments. Such environmental field characterizations,
confronts the challenge of spatiotemporal evolution of
obstacles in the sensing environment, introducing an un-
known level of measurement distortion. This paper de-
scribes a new architecture that augments fixed sensor
networks with infrastructure-supported mobile nodes. This
architecture incorporates systems that exploit adaptive
mobility to actively explore environments and determine
sampling point distribution, achieving a specified level
of sensing fidelity. The coordination of fixed and mobile
nodes also calls for new task allocation algorithms and
associated systems that direct mobile node resources to
events. This paper describes the integration of a Fidelity
Driven Adaptive Sampling method with new Task Alloca-
tion algorithms and systems. Experimental measurements
demonstrate that this combined system offers dramatically



improved spatiotemporal coverage over that of either fixed
or mobile sensors alone.

Future work will both develop new Fidelity Driven
sampling and exploration systems and also apply these
systems more broadly to field biology and civil engi-
neering environmental monitoring needs. Sensing diver-
sity will also be introduced to enhance Fidelity Driven
Sampling with measurements made available from fixed
and mobile sensors of diverse modes and locations. It is
anticipated that this will permit Bayesian-style updating
or learning that can draw on possibly coarse or noisy
auxiliary measurements when forming an estimate of the
variable field.

Finally, New architectural features will appear that in-
clude ’sensor strands’ consisting of fixed nodes suspended
from the infrastructure in the three dimensional environ-
ment and emplaced and reconfigured by mobile NIMS
node systems. Multiple NIMS mobile node transects will
also be deployed in large and varied environments and
transect types. This will lead to investigation and de-
velopment of new utility functions for task allocation
that coordinate fixed node networks and multiple mobile
assets for further advances in sensing fidelity for complex
environmental field characterization.
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