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Abstract 

Previous applications of the distorted wave Born approximation 

(DWBA) to reactive scattering have often given reasonably good relative 

cross sections--i.e., angular distributions, product state distributions, 

etc.--but absolute reactive cross sections have been poor. It is 

argued in this paper, however, that the DWBA for reactive scattering 

should be accurate if (1) the reaction probability is sufficiently 

small (as it is, for example, in the threshold region of a reaction), 

and (2) the non-reactive scattering is described sufficiently accurately. 

To describe the non-reactive scattering "sufficiently accurately" this 

paper utilizes a non-reactive coupled-channel scattering wavefunction 

for distorted waves in the DWBA. Application to a standard test 

problem (collinear H + if2) shows this tnultichannei DWBA indeed to be 

extremely accurate if the reaction probability is no larger than 0,1 

and if '\' 3 to 4 vibrational states are included in the non-reactive 

coupled-channel expansion. This approach thus provides an excellent 

description of the threshold; region of a reaction which has. an  activation. 

barrier. 



-2- 

I. 	Introduction. 

Although classical trajectory simulations adequately describe many 

aspects of chemical reaction dynamics, there are situations for which 

a quantum mechanical treatment is necessary. One such case where 

quantum effects are important is the threshold region of a chemical 

reaction with an activation barrier, where tunneling can significantly 

modify the reaction rate (particularly so for light atom transfer 

reactions). Also, it is the threshold region of the cross section 

that is most important for determining the thermal rate constant. 

The goal of describing the tunneling behavior of the threshold 

region has, in fact, been one of the motivations for recent work seeking 

a rigorous quantum mechanical version of transition state theory. 1  The 

reasoning is that since clãs,scal transition state theory is known to 

describe the classical threshold of reactions correctly, a correct 

quantum extension of classical transition state theory ought to describe 

the quantum threshold. correctLy. Although considerable progress has 

been made within this framework of "tunneling corrections to transition 

state theory," 2  the ultimate triumph has been illusive because, as 

emphasized by Pechukas, 3  there is no absolutely rigorous quantum version 

of transition state theory other than the complete solution of the 

reactive scattering problem. 

In this paper we consider another approach to describing the 

threshold region of chemical reactions, namely the distorted wave 

Born approximation (DWBA). 4  This is basically first order quantum 

mechanical perturbation theory, and our reasoning is as follows: 

in the threshold region the reactive cross section is small compared 
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to non-reactive (inelastic/elastic) cross sections, so in some 

sense reaction is a small perturbation to non-reactive scattering; 

therefore if one describes the non-reactive scattering sufficiently 

accurately, one should be able to describe the reactive scattering 

perturbatively. 

The key to achieving this goal lies in describing the non-reactive 

scattering "sufficiently accurately". Thus there have been over the 

years many applications of DWBA s to reactive scattering, 
5-12 and 

although the results often seem to describe relative cross sections 

(product state distributions, angular distributions, etc.) quite well, 

they have given poor results13  for the absolute reactive cross sections 

(or probabilities). In our view this shortcoming is due to the fact 

that the distorted wavefunctions in these applications have essentially 

described:  only elastic scattering in each arrangement channel, and this 

is certainly not an ac•rate description of the non-reactive 

scatterin which includes inelastic as well as elastic scattering, 

The purpose of this paper, therefore, is to explore use of the 

DWBA for reactive scattering but where the distorted wavefunctions 

describe the elastic and inelastic scattering (in each arrangement 

channel separately) as accurately as possible; i.e., the distorted 

wavefunctions are those which result from non.-reactive coupled-channel 

scattering calculations in each arrangement. Section II summarizes 

the essential theoretical methodology, and application to a standard 

test problem (the collinear H + H 2  reaction on the Porter.-Karplus 

potential energy surface) is presented in Section III. The important 

observation here is that in the threshold region the DWBA reaction 

probability does indeed converge to the correct quantum mechanical 

values as the number of channels in the non-reactive coupled channel 
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wavefunctions is increased, i.e., as the description of the 

non-reactive scattering is made more exact. Section IV concludes 

with a discussion of some additional features of the DWBA for 

reactive scattering. 
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II, Summary of Relevant Features of the DWBA. 

All expressibns in this section pertain explicitly to a collinear 

A + CB + AC + B reaction, although they can be taken over in a 

straight-forward manner to general reactions. The notation and 

methodology follows that of earlier work 7  by one of us, and the 

relevant aspects of the DWBA are only summarized (not derived). 

If 	is the distorted wavefunction for arrangement a 

(A + CB) with outgoing wave boundary conditions and normalization 

as given below, and 	the similar distorted wavefunction (with 

incoming wave boundary conditions) for arrangement b (AC + B). then 

the S-matrix element for the reaction from vibrational state n a  of 

CB to vibrational state nb  of AC, is given within the DWBA by 

S%n = (i/h')<X 	Ja-E..I;> 
	

(2.1) 

where H is the total Hamiltonian and E the total energy. Cften in 

DWBtA expres;sions the I{amiiitonian H is div.ided into a distorting 

Hamiltonian for arrangement a, Ha  and a residual interaction 

H = H +W 	, 	 (2.2) 
a 	a 

with the operator (H-E) in Eq. (2.1) replaced by Wa•  Since the 

distorted  wavefunction 	satisfies the Schrdinger equation with 

(H -E)x 	= 0 a 	n 	
, 	 (2,3) 

a 
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one easily sees that 

(H-E)X 	= w an 	
, 	 (2,4) 

a 	a 

so that Eq. (2.1) is equivalent to the more coimnon expression. An 

advantage of Eq. (2.1) is that the residual interaction need not be 

explicitly constructed; one simply utilizes the best possible distorted 

wavefunction x7 (and xZ for arrangement b), and the operator (H-E) 

generates the effective residual interaction automatically. (There 

are errors in the literature, in fact, because a residual interaction 

W has been used that was inconsistent with the distorted wavefunction 
a 

that was used; this can never happen if one starts with Eq. (2.1).) 

The only restriction on the distorted wavefunctions for the validity 

of Eq. (2.1) is that nether contain any reactive amplitude in it; 4  

i.e., 	must decay exponentially in the asymptotic region of 

arrangement b, and vice versa for X. 

The distorted wavefunctions utilized in this paper are coupled 

channel expansions, 

X7(ra ,Ra) 

X(rb , Rb) 

n(ta) u,+  (+) (Ra) 
a 	a a 

4,(rb) 

(2.5a) 

a 

(2.5b) 

where {4' } and {4 } are the eigenfunctions of the vibrational 
b 

Hamiltonian for the free diatoinic molecules CB and AC, respectively. 

Coordinates r a 	a 
and R are the usual Jacobi coordinates, i.e., the 
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vibrational coordinate of the diatom CB and the translation 

coordinate of A relative to the center of mass of CB, respectively, 

and coordinates rb  and  Rb  are the corresponding coordinates for 

arrangement b. (Only -two coordinates are independent; e.g., if 

(ra,Ra) are considered as the independent coordinates, rb  and Rb 
can be expressed as linear combinations of them.) The sums over 

vibrational statesfn
a' 
 and {%} in Eqs. (2.5a) and (2.5b) include 

all the open channels in each arrangement, and possibly a finite 

number of closed channels as well. 

The translational functions {u 
n, -n 

(1(R  a )} satisfies the 
a a 

standard non-reactive coupled channel Schrdinger equation 

a dRa - Ena,)un;+n:+)(Ra) + 	V,,,.(R) 

0 	,  

where p  is the translational reduced mass for a-rraig.ement a., and 

the coupling potential is 

* 
a a V n a , a 	

a 	a ,n ,,(R ) = fdr 	
ii 	a 
a ,(r ) V (r , aR ) n a ,i(ra ) 

	 1 	(2.7) 

where 

V = V - v(r) 	, 	 (2.8) 

IS 

where V Is the total potential energy function and v(ra)  the vibrational 

potential function, for diatom CB. The translational functions for 
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arrangement b satisfies similar nonreactive coupled-channel Schrdinger 

equations for arrangement b. The boundary conditions which define the 

translational functions uniquejy are 

v 

-ik ,R 
n a 

6 R) 	
-1/2 	a 

9dm u , 	 ' 	, 	(-e 
n •4-n 	 n 	 n ,n 

R- 	a a 	 a 	 a a 
a 

1k ,R 
n a a 

S 	, 	I (2.9) 
n a a 

if n ' is an open channel; if n ' Is a closed channel then k , +ilk j. a 	 a 	 n 	n 

(Note that here n a 
 is always an open channel,) vn , is the asymptotic 

a 
velocity for channel 1a'  

v 	/2E /p. n 	a a a 	a 

where E, is the asynptotic translational energy for channel na', 

E ,-E-c 
n 	n 
a 	a 

where 
E ' 

is the vibrational energy for state 1a'  of diatom CB. 
a  

Similar boundary conditions apply to the translational functions of 

arrangement b. 

Taking the total Hainiltonian H in the form 

H=- 	d2 +h +v 
211 a dR 2 
	a 	a 

a 

'I 



where 

2 	2 h =------ 	d 	
+v(r) 

a 	2m a dr 2 
	a a 

a 

is the vibrational Hamiltonian for diatom CB, and utilizing Eq. (2.6), 

one can easily show that 

(H-E)y 	
= 	

[V a a 
(r ,R) 	,(ra) 

a 

	

	 a 
a 

- 	,,(r ) V ,, 	,(R flu 	, 	 R) 
n 	a n ,n 	a n -n a 	a a 	a a 

n a 

(2.10) 

Also, in the integral in Eq. (2.1), 

fdr 
a 
 JdR X% (_) (rb ,1) * (H_E)Xn (ra ,Ra ) 

it is useful to change from integration variables r a 	a 
and R to 

R and Rb;  with Eq. (2.10), Eq. (2.1) then takes the form 

	

(_) 	* 
S 	= (i/h) 	fdRbfdRa 	 (R,0 ) W 	,(Rb,R) n 
b ' 1 a b a 

% 'a 
I. 

	

u , 	a) 	 (2.11) 
a a 

where the exchange kernel W is defined by 
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(mB+xnC) (mA+mC) 

W%tn?(RbRa) = mC(mA+mB+lnC) 	,(rb) 

x [V(r,Ra) n'a - I 	V,,,(R a 

n a 

where mA, ni, mC  are the masses of atoms A, B, C, and where ra  and 

rb in Eq. (2.12) are expressed as linear combinations of Ra  and  Rb. 

Equation (2.11) is conveniently expressed in matrix notation 

	

b,a = (i/h) <bb,aa> 
	

(2.13) 

where <ubo)  is the adjoint (complex conjugate and matrix transpose) 

of 	It is of practical importance to note that the exchange 

kernel W, defined by Eq. (2.12), is energy-independent. 

For numerical calculations one wishes always to integrate the 

coupled channel equations, Eq. (2.6), with real boundary conditions, 

and then to construct the formally proper wavefunction by multiplying 

the matrix function from the right by the appropriate constant matrix. 

For our applications the real translational function i+n(Ra) 

are defined by the boundary conditions 

-1/2 2.im 	ii 	(R) "- v, 	fsin(k ,R )S 
n 	 n 	 n a n',n 
a a 	a 	 a 	a a 

a 

(2.14a) 

	

+ cos(k ,R ) K , 	I n 	a 	n ,n 
a 	a a 

for n' = open channels, and 
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' Iv ,j_l'2 (sinh(k ,R )6 
n 	 n an ,n 
a 	 a 	a a 

+ - cosh(k . 	n 
,R  a ) K n ,,

fl 
3 	, 	 ( 2.14b) 

a 	a a 

for n = 
a 	 a 

closed channels, where n = open and closed channels. 

Defining the matrix E a  by 

	

1-iK  I 	 -1 

	

:00: 	0C 

	

E =21 -------.. 	 , 	 (2.15) 
Rfa 

K. 	' 1+K 

	

do • 	cc 

where the indicated partitioning of the K-matrix is between open (subscript 

"o") and closed (subscript "c") channels, the proper translational 

functions for arrangement a, u a 0 a) 	{u+n(Ra)} are given 

by 

u 	) = i (R )'E a 	a a .,a 
(2 .16a) 

(Eq. (2.16a) defines u (+)a 	
as a full (i.e., square) matrix between 

open and closed channels, but the only physically meaningful part Is 

for the right matrix index an open channel.) The real translational 

functions for arrangement b {i , 	(R.0)} and the matrix Eb  are defined 

by equations precisely analogous to Eqs. (2.14) and (2.15), and 

b(Rb) is given by 

(..) 	 * 
b 	= 	'bb 	

(2.16b) 
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where * denotes complex conjugation. The final expression for the 

DWBA reactive S-matrix is then 

b,a = Eb <ubIWbIuE 	 (2,17) 

where ii (R ) and iLo(R.D)  are t a a 

(<iib l is the matric transpose 

S 	as a matrix between open , a 

and b, but only the corner of 

he real translational wavefunctions 

of ib(Rb).)  Equation (2.17) gives 

and closed channels of arrangement a 

the matrix between open channels of each 

arrangement is physically meaningful. 

Additional specifics of the calculations are described in the 

Appendix. 
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III. Results and Discussion. 

The collinear H + H 2  + H2  + H reaction on the Porter-Karplus 15  

potential energy surface provides an excellent test problem for 

describing quantum threshold behavior for a reaction with an activation 

barrier. Exact quantum results 16  for this now standard model problem 

are available for comparison. 

Table I gives our results for the distorted wave reaction 

probability for various numbers of channels (i.e., vibrational states) 

in the non-reactive coupled channel expansion for the distorted wave-

functions; only one channel is energetically open at these energies, 

so that all channels except the ground vibrational state are closed 

channels. For reference, the exact quantum reaction probabilities 

are also listed in Table I. 

The most important feature seen in Table I is that the energy 

region for which the reaction probability is small, P 	0,1, th.e 

distorted wave value converges quickly (with three to four or fewer 

channels) and is quite stable with respect to the addition of more 

closed channels; up to 14 channels were included in some calculations. 

Furthermore, the converged distorted wave reaction probability is 

in excellent agreement (within a few %) with the exact quantum values 

in this region. In contrast, the one-channel distorted wave result--

which is what is usually meant by "distorted wave"--is seen to be 

much too small (by a factor of " 2 to 5) over the entire region. 

These results thus confirm our supposition that the failure of the 

ordinary (i.e., one-channel) DWBA is due to its poor description of 

the non-reactive scattering within a given arrangement, 
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As the reactive probability becomes large, P > 0.1, the DWBA 

begins to fail, as one knows it must. This shows up in the present 

calculations by a lack of convergence in the reaction probability as 

the number of channels in the non-reactive distorted wavefunctions is 

increased. This behavior is depicted graphically in Figure 1: shown 

is the ratio of the distorted wave reaction probability to the exact 

quantum value, as a function of the number of channels in the non-

reactive distorted wavefunctions. The solid line connects the values 

corresponding to energy E = 0,4276 eV, for which the reaction probability 

is small (1.7 x 10_ 2) and which thus does show convergence; as noted 

above, this is typical of all cases for which P 0,1, and the values 

are essentially unchanged even up to 14 channels. The dashed and 

dash-dot lines, on the other hand, connect values corresponding to 

energies E = 0.4826 eV and 0.50 eV, respectively, with reaction 

probabilities of 0.37 and 0.60, which do not converge. This behavior 

is typical of all cases here for which P > 0,1: the reaction probability 

goes through a maximum as the number of channels is increased, and 

then becomes quite unstable if the number of channels is increased 

beyond this. In this higher energy region, P > 0.1, we make a "best 

estimate" of the distorted wave reaction probability by choosing the 

probabilities to be the "most nearly stable" value, i.e., the value at 

the relative maximum with respect to channel number. Thus for E = 

0.4826 eV (the dashed curve in Figure 1) we choose the probability to 

be the value given by the 5 channel calculation, and for E = 0.50 eV 

(the dash-dot curve) we choose the value given by the 4 channel 

calculation. 
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Figure 2 shows how the resulting multichannel DWBA reaction 

probability (DW) diverges from the exact quantum (EQ) values as 

01 

	

	 the probability increases from below 0.1, in which region it is 

essentially exact, to above 0.1, where it becomes progressively too 

large. 	The dotted curve shows that the distorted wave values can 

be improved by resorting to an exponential unitarization 17  of the 

"primitive" DWBA: If P is the primitive DWBA, then in the presentDW  

case of one open channel, the exponentially unitarized reaction 

probability is given by 

EU = sin2 PDwh/2 . 	. 	 (3.1) 

Finally, the dashed curve in Figure 2 shows the one-channel DWBA 

values which, as noted above, are considerably too small. 

In summarizing the results, therefore, one sees that a first order 

perturbative treatment of the reaction is quantitatively accurate 

if (1) the reaction probability is sufficiently small (P Z 0.1 in 

the present application), and (2) the non-reactive scattering is 

determined sufficiently accurately (a 3 to 5 non-reactive coupled 

channel calculation for the present example). This inultichannel DWBA 

is thus an accurate description of the threshold region of the reaction 

that is important for the thermal rate constant. 
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IV. Concluding Remarks. 

It is clear that the formulae developed in Section II can be 

applied in a straight-forward manner to the three-dimensional version of 

an A + CB + AC + B reaction. This would, however, require non-reactive 

coupled-channel wavefunctions for rotationally/vibrational].y inelastic 

scattering of A + CB and AC + B, not a trivial matter in itself. 

In many cases, though, it has been found that rotational inelasticity 

can be treated reasonably accurately within the sudden approximation;' 8  

it is then necessary only to carry out vibrationally inelastic coupled 

channel calculations at several different fixed relative orientation 

angles. Thus one relatively practical avenue for extending the 

present approach to three-dimensional systems is to employ this 

"sudden rotation-coupled channel vibration" model to generate the 

non-reactive distorted wavefunctions, and then to proceed as in 

Section II. 

Finally, it is interesting to show how the reactive DWBA can be 

written in a much more compact, and perhaps more useful form if one 

is interested only in the net thermal rate constant for the reaction 

and not initial and/or final state information. The quantity needed 

is the cumulative reaction probability19  N(E), in terms of which the 

rate constant is given by 

00 

= (2irh Q 	 f dE N(E)e .-E/kT 
	

(4.1) 

where Q 
a  is the partition function of reactants. N(E) can be expressed 

in several equivalent ways, and for present purposes its most useful 

form is 
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N(E) = 	fd k aj,4s(k2/ir) 	
(4.2) 

n ,n 
-a -b 

where a is the reactive cross section for an incident relative wave 

vector k 
a 	 a 	a and initial diatom state n (n = v 

, j a , m a ) and final 

	

- 	-  

relative wave vector k and final diatom :tate nb. The reactive 

cross section is given within the DWBA by 

Uakb 	2p,, 	
(+)

> 

2 

	

bkaa  = 	- 4 2 <Xj 	I H_E  nb 	IXica 	

' 

where the translational part of the distorted wavefunctions are 

normalized here like plane waves. Since after integrating the cross 

section over the angles k.1,  the result is independent of the angles 

one can also Integrate over k and divide by 47r, so that with 

Eq. (4.3),Eq. (4.2) takes on the following more symmetrical form 

1 	
2ik 

N(E) 	(4.i) 	
fd 2~ Idk 	( 

aa)( 	
2 

 47Th 	4irh 

I<x - 	 JH-EIx 	(+)>12 	. 	 (4.4) k  Ob 	
kn 
aa 

ly 	
This can be written as 

N(E) 
= 
 47

2 	f d kJdE 
aJi2k2 	a 	bfdEb b  a  

	

(E-E ) 6(E-E )!<x 	IH-EIx- 	(+) >1 2  
Y'b 	k n 	

(4.5) 
a 	b a-a 
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where p and p b 
 are the "densities of translational states" 2°  

211 k 

	

- 1 	aa 
a 	47r 	47rh' 

- 1  

p1- ----- 

	

4ir 	4irh 

Then since one has the identities 

J
f]

d k 
dE 

p 6(E-E )i X n 	k )<X~  n I aa 	a k 

	

aa 	a-a 

= 5(E-H 
a ) 	

, 	 (4.6a) 

Jd21% JdEbPb S(_Eb )  Ix-- 	
kbnb kbnb 

= 5(E-H,1, ) 	, 	 (4.6b) 

where H and H. are the non-reactive Hamiltonians for reactants and 
a 	b 

products, respectively, Eq. (4.5) can be written in its final 

simplified form as 

N(E) = 4ir 2  trace [6(E_H)(H_E)5(E_Hb)(H_E)] 	 (4.7) 

EquatIon (4.7) shows that in order to construct N(E) one does not 

	

need the individual wavefunctions X 	 -- and  x 	which contain k 
a-  
n 
 a 	k 

information on initial and final states, but rather only the projection 

operators 6(E_Ha)  and  6(E_11.D)  onto any complete set of states of Hb 
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and H, respectively, at energy E. Equation (4.7) is in principal 

easier to evaluate directly than the individual DWBA reactive cross 

sections, for it involves only the net reactive flux and contains 

no information on how this flux comes from and goes into individual 

reactant and product states, respectively. In this regard, Eq. 

(4.7) is similar to transition state theory, which is also an approximation 

to N(E). Also similar to transition state theory, one can show that 

the trace in Eq. (4.7) depends mainly on the transition state theory 

region of the potential energy surface and not on the asymptotic 

regions. Equation (4.7) may, in fact, be a useful expression by which 

to define a quantum transition state theory in the tunneling region 

near and below the classical threshold for reaction. 
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App end ix 

Here we give more specifics about the methodology used to generate 

the non-reactive coupled channel wavefunctions. In matrix form the 

coupled-channel equations are 

2 	211  
[1 	-- (V(R)-'E)]'u(R) = 0 	, 	 (A.l) 

dR 	h 

where the arrangement indices, a or b, have been dropped, and 

(.E 	-c) = n,nt tot n 

ft} being the vibrational eigenvalues for the free diatom. 

The renorinalized Numerov method 
21

was used to integrate Eq. (A.l). 

Its matrix version is based on the three-term recursion relation 

2 	 2 

	

- h 	m -  2(1 + 	
m-1 m-1 

2 
+ (1 - 	T 2 ).u 2  = 0 	, 	 (A.2) 

where the index m corresponds to a particular translational coordinate 

R, i.e., m h is the (constant) spacing between grid points, 

and 

T = 	(v(R )-E) 	. 	 (A.3) ...m 	h2 : 

Defining 
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h2 
	

(A.4) 

and introducing the matrix ratio of the function matrix at two adjacent 

grid points, 

QM  = m-im' 	' 	 (A.5) 

Eq. (A.2) gives the following two-point recursion formulae for 

Q: 

= [12 1 - 10 F1 	
m-2m-1m 	 (A.6) 

Since the initial conditions for the function matrix are ul  = 0 and 

0, the initial condition for Q is 0. From Eq. (A.6) one can 

then generate Q2, 23 ••• 

Having obtained the quotient matrix Q at the grid points m1,. . . 

it is a straight-forward matter to generate the function matrix u at 

these grid points; the integrals over Rand R.1, in Eq. (2.17) are 

then carried out by Simpson's rule using these grid points. It is 

also straight-forward to match the function matrix to the boundary 

conditions specified by Eq. (2.14); the K matrix, for example, is 

given explicitly by 

	

= 9m!m - m-1 ' mm - m-1 	' 	 (A.7) 

for m any grid point in the asymptotic region, and where the matrices 

N and J are 
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n,n 	fl,fl 
j 	,(R) = 15 	, Iv 

n 1-1/2 	
n 

sin (k R) 

fl,fl 
N n,n ,(R) = 6 ,I"n I

-1/2 	
n cos (k R) 

for n an open channel, and 

J 	,(R) = 6 I 1 -1/2 sinh (kR) 
n,n 	n,fl 	n 

i 
N 	,(R)=ô 	,ivI -1/2 cos
n,n n,n 	11 	

h(kR) 

for n a closed channel. 

4. 
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Table I. DWBA Reaction Probabilities for Collinear H + H 2  on the 

Porter-Karplus Potential Surface 

No. of Channels b  

Total Energy (eV)a 
	

1 	2 	3 	4 	6 	8 	14 

0.3028 

0.3128 

0.3228 

0.3428 

0.3628 

0.3828 

0.4028 

0.4228 

0.4276 

0.4324 

0.4428 

0.4405 

0.4546 

0.4628 

0.4768 

0.4820 

0.4898 

0.50 

0.60 

C 

Exact Quantum 

7.76-10 

1.07-8 

9.33-8 

2.88-6 

4.37-5 

3.89-4 

2.46-3 

2.91-10 7.61-10 7.74-10 7.75-10 7.75-10 

4.07-9 1.08-8 1.10-8 1.10-8 1.10-8 

3.43-8 9.28-8 9.44-8 9.45-8 9.45-8 

1.03-6 2.89-6 2.94-6 2.95-6 2.95-6 

1.43-5 4.24-5 4.32-5 4.33-5 4.33-5 

1.19-4 3.78-4 3.87-4 3.90-4 3.90-4 

6.90-4 2.39-3 2.47-3 2.50-3 2.51-3 

3.03-3 1.16-2 1.22-2 1.25-3 1,25-3 

4.20-3 1.21-2 1,64-2 1.73-2 1.77-2 1.77-2 

6.00-3 1.79-2 2.46-2 2.61-2 2.68-2 2.68-2 

1.06-2 4.57-2 4.90-2 5.07-2 4.97-2 

1.31-2 4.11-2 5.77-2 6.21-2 6.45-2 6.42-2 

2.01-2 6.56-2 9.34-2 1.02-1 1.06-1 9.32-2 

3.04-2 1.03-1 1.48-1 1.63-1 1.71-1 8.94-2 

5.79-2 2.06-1 3.06-1 3.41-1 3.43-1 3.76+1 

7.40-2 2.69-1 3.99-1 4.49-1 4.28-1 5.40 

9.44-2 3.66-1 5.45-1 6.15-1 5.07-1 1.20-1 

1.43-1 5.47-1 8.14-1 9.08-1 4.09-1 1.31-1 

1.46+1 3.77+1 9.95-1 8.41-1 8.74-2 2.87-1 

1.74-2 

2.65-2 

4.90-2 

6.17-2 

1.00-1 

1.56-1 

2.97-1 

3.70-1 

4.65-1 

6.01-1 

1.00 

1.74-2 

2.66-2 

6.45-2 

1.06-1 

4.09-2 

1.12+1 

8.90-1 

aThe zero of energy is the bottom of the reactant diatom potential well. 

bmi5 is the numbers of channels in the non-reactive coupled-channel expansion for 

the distorted waves; see Section II. 

cRef. 16. 
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Figure Captions 

Ratio of the distorted wave (DW) reaction probability to the 

exact quantum (EQ) value, as a function of the number of channels 

used in the non-reactive coupled channel expansion of the distorted 

waves. The reaction probabilities are those from Table I. 

Reaction probability as a function of energy E. The distorted 

wave (DW), exact quantum (EQ), and one-channel (dashed curve) 

are the values given in Table I. The dotted curve is the 

exponentially unitarized result as defined by Eq. (3.1). 
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