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ABSTRACT OF THE DISSERTATION  
 

A Probabilistic Framework to Evaluate Spatiotemporal Patterns of Participation in the Irvine 
Ranch Water District Turf Rebate Outdoor Water Conservation Program 

 
By 

 
Kimberly Angel Duong 

 
Doctor of Philosophy in Civil and Environmental Engineering 

 
 University of California, Irvine, 2019 

 
Professor Stanley B. Grant, Chair 

 

Despite major advances in water efficiency, urban water resources are increasingly 

strained due to population growth and severe droughts. In arid regions, water managers often 

promote water conservation rebate programs: the most common is known as a “turf rebate” 

program – offering participants a fixed rebate amount per unit area (e.g., $2 per square foot) in 

exchange for replacing turf grass with drought-tolerant landscaping. In southern California where 

outdoor watering can comprise more than half of residential water use, hundreds of millions of 

dollars worth of turf rebates were distributed during the 2011-2016 drought. 

In my thesis, I focus on single-family residence (SFR) participation in a turf rebate 

program in the Irvine Ranch Water District (IRWD) in southern California. Spatial analyses at 

the village (i.e. neighborhood) level and at the parcel level reveal that drivers of participation are 

tied heavily to aspects of the built environment, whether it’s home age (at the village level) or 

outdoor area (at the parcel level). From these results we propose a probabilistic framework for 

estimating, and potentially optimizing, the water savings achieved by cash-for-grass programs, 

taking into account constraints of outdoor area imposed by the built environment, climate, 

demographic drivers of conservation behavior, and financial incentives. 



 xi 
 

I also explore temporal patterns of participation and find that a universal temporal pattern 

captures the majority of the monthly participation probability across all villages (i.e. 

neighborhoods) in the IRWD service area. This temporal pattern is highly correlated with Google 

search rates for the phrase “turf rebate”, which serves as a proxy for mass media coverage on the 

California drought and the turf rebate programs that became more heavily advertised as a result. 

In conjunction with California Governor Jerry Brown’s 2014 emergency drought proclamations, 

IRWD conducted water conservation and education programs. These local and state actions led 

to very high SFR participation in the IRWD turf rebate program.  

Together, these built environment, demographic, and mass media coverage variables help 

explain water savings potential and spatiotemporal patterns of participation in IRWD’s turf 

rebate program. 



 1 
  

INTRODUCTION 

 The world of water resources is often characterized in terms of supply, demand, 

or the gap in between. For arid regions that regularly experience drought, numerous strategies 

have been developed and implemented in attempts to close this gap. Demand reduction 

commonly manifests as conservation marketing campaigns, educational programs, fines, 

rebates/incentives, and watering restrictions. From 2011 to 2016, California experienced the 

most severe drought in the southwest U.S. over the past 1200 years (Griffin & Anchukaitis, 

2014), which spurred policy interventions at multiple policy and regulatory scales. Governor 

Jerry Brown issued statewide emergency proclamations, including unprecedented mandatory 

urban water conservation and a bevy of legislation, programs, and funding that trickled down to 

the 400+ urban water agencies across the state (Mitchell et al., 2017). 

Outdoor watering is typically first to be restricted in times of drought and, in many arid 

regions, can account for 50% or more of the total domestic water usage (Cameron et al., 2012; 

Mini, 2013). Private gardens alone can comprise 22-36% of total urban area (Gaston, Warren, 

Thompson, & Smith, 2005; Mathieu, Freeman, & Aryal, 2007). But outdoor water conservation 

comes at a price: between 2014 and 2016, the Metropolitan Water District of Southern California 

(MWD) spent a record $450 million on water conservation rebate programs - reportedly the 

“largest single investmtabent in water conservation incentives in the nation’s history” 

(Metropolitan Water District of Southern California, 2016). Other water agencies across 

California also doled out millions of dollars for similar water conservation rebates (California 

Department of Water Resources, 2015; Matt Stevens, 2015).  

In light of the prevalence and considerable funds spent on outdoor water conservation 

during times of drought, my dissertation focuses on the success of one such program 
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implemented by the Irvine Ranch Water District (IRWD) in Southern California. Specifically, 

my research evaluates their “turf rebate program” (also referred to as “turf removal” or “cash-

for-grass” programs), which provided a financial incentive (i.e., rebate) for the conversion of turf 

grass (also known as lawns) to drought-tolerant landscapes, e.g., with artificial turf or plants with 

low water demand (Hilaire et al., 2008; Sedlak, 2014; Sovocool, Morgan, & Bennett, 2006). 

Numerous social barriers – such as neighborhood norms and upfront costs – may limit 

participation in these programs (Silvy & Lesikar, 2005). Furthermore, residential yards are 

adaptive coupled human-natural systems, characterized by numerous feedbacks that can affect 

human and ecosystem health, in addition to water supplies (Cook, Hall, & Larson, 2012; Hale et 

al., 2015; House‐Peters & Chang, 2011). In my thesis I set out to address a key knowledge gap: 

namely, how policy interventions can overcome social barriers to program participation while 

avoiding unintended consequences (Hale et al., 2015; Sokolow, Godwin, & Cole, 2016). 

Through a research partnership that I formed with the Water Use Efficiency Department 

at the Irvine Ranch Water District (IRWD), I explore the spatial and temporal patterns of 

participation in their residential turf rebate program. The IRWD service area is divided into 77 

villages, each with a unique development history, architectural theme, demographic composition, 

and clearly defined edges (Forsyth, 2002). As of October 29, 2018, the IRWD service area has a 

spatial extent of approximately 470 km2 and includes six cities (Tustin, Orange, Lake Forest, 

Costa Mesa, Newport Beach, and Irvine) as well as unincorporated land (Irvine Ranch Water 

District). Because single-family residences (SFRs) in all villages are eligible to participate in the 

turf rebate program, the IRWD turf replacement program is a natural experiment in how the built 

environment, local demographic and political factors influence patterns of outdoor water 

conservation. 
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IRWD benefited from the partnership because they had an abundance of data but very 

little opportunity or time to explore and evaluate the effectiveness of their past programs. Our 

findings provide feedback for IRWD to consider more efficient program implementation in the 

future and their input as program managers and water managers provides valuable context for the 

data analysis and discussion. Because of IRWD’s progressive leadership in this region, these 

results may inform greater water management policy reform for the broader southern California 

region, potentially impacting millions of people.  

In each chapter of this dissertation, I go into more depth on a particular aspect of the 

IRWD turf rebate program: 

Chapter 1 explores the spatial and temporal patterns of participation among SFRs in the 

IRWD turf rebate program. We first outline a probabilistic framework that includes 

“participation probability” which is the probability that a SFR will participate in the turf rebate 

program. The participation probability varies from village-to-village (spatially) and month-to-

month (temporally), but we assume in any given village in any given month it is constant 

(stationary) and not influenced by neighbors (statistically independent). Results show that 96% 

of the spatial and temporal variability in participation probability boiled down to a few 

explanatory variables, namely the home age of an SFR (accounting for spatial variability) and 

the Google Trends search rates for the term “turf rebate” (accounting for temporal variability). 

At most, the remaining 4% of the variability in our dataset could be explained by social diffusion 

– a phenomenon whereby participation in a new technology can be attributed to the influence of 

one’s surrounding neighbors or people in the same social networks (Graziano & Gillingham, 

2014; Jackson & Yariv, 2005; Pincetl et al., 2019). This analysis draws a connection between 

temporal patterns of IRWD turf rebate program participation and Google Trends, which we 
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believe serves as a proxy for mass media coverage of the California drought (Quesnel & Ajami, 

2017), triggered by California Governor Jerry Brown’s unprecedented emergency drought 

proclamations in 2014 and sustained by local water conservation campaigns and education 

programs that provided an outlet for residents to participate in water conservation. 

Chapter 2 describes spatial patterns of participation in the IRWD turf rebate program at 

the parcel level. Using built environment, demographic, and political GIS data from the county 

tax assessor office (via IRWD), U.S. Census Bureau American Community Survey, and Orange 

County Registrar of Voters, we evaluate the predictive power of 11 explanatory variables 

(outdoor area, owner occupancy, average household size, median household income, median 

house value, and six voting preferences across several political parties). 46,915 SFR parcels in 

the IRWD service area have a full complement of these 11 explanatory variables and were 

therefore included in our study. Out of these 46,915 SFR parcels, 1366 participated in the IRWD 

turf rebate program (participation probability of 2.9%). This analysis employs the use of a 

machine learning algorithm called CART (classification and regression trees) in which a forest 

of decision trees is generated from the participation status and the explanatory variables of the 

SFR participants and an equal number of randomly chosen non-participants. Of the 33 decision 

trees generated, 23 of them (about 70%) split the dataset according to whether a SFR parcel is 

owner-occupied or not (first node) followed by whether the parcel’s outdoor area is greater than 

164 m2 or not (second node, Figure 2.4a). Participation probability is three times higher if a SFR 

is owner occupied compared to when it is not owner occupied. Among owner occupied SFRs, 

the participation probability is nearly 4% when the outdoor area is greater than 164 m2, whereas 

the participation probability is less than 2% if the outdoor area is less than 164 m2. Participation 

probability also increases monotonically with median outdoor area and the participation 
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probability for owner occupied SFRs with outdoor area < 400 m2 is strongly correlated (R2=0.91) 

with median outdoor area. The lawn area replaced also increases with outdoor area, whether the 

SFR is owner occupied or not. On average, 10 to 15 % of a resident’s outdoor area is replaced 

with drought tolerant landscaping. The distribution of outdoor areas across IRWD’s service area 

are well described by a single log-normal distribution with a median parcel area of 300 m2. 

Using a simple water savings model, we explore a thought experiment seeking to produce more 

equitable participation, whereby we simulate a fixed cash rebate, holding average participation 

probability constant and removing the influence of outdoor area on participation probability. The 

result is surprising: reduced participation from SFRs with large outdoor area is balanced by the 

increase in many more SFR participants with small outdoor areas, due to the log-normal 

distribution of outdoor areas being positively skewed. Based on this result, it appears possible to 

achieve goals of equitable participation and water savings using alternative rebate structures. 

Chapter 3 outlines a theoretical framework to evaluate the distribution of turf patch sizes 

in the IRWD service area. Using a high-resolution aerial imagery land use classification dataset, 

I describe a theoretical framework and construct an empirical turf patch distribution that 

illustrates the wide range of SFR turf patch sizes and their implications for water savings under 

the existing IRWD turf rebate program. One key result is that less than one percent of the 

potential water savings is captured by participation in the turf rebate program thus far. Moreover, 

even if all the SFR turf patches that fall within IRWD’s eligibility range (250 to 1500 ft2) were 

converted to drought tolerant landscaping, the resultant water savings captures only about two-

thirds of the total potential water savings. This results motivates a discussion on the potential 

water savings under several scenarios in which the rebate program structure changes, e.g., when 

the minimum and/or maximum turf area limits are different or when the rebate itself is modified. 
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I conclude my thesis with Chapter 4, which outlines the summary, conclusions, and 

potential ideas for future study that build on the work in the first three chapters. 

Appendix A is a reproduction of “Obstacles to Wastewater Reuse: an overview”, which is 

a literature review that I wrote with co-author Professor Jean-Daniel Saphores (Duong & 

Saphores, 2015). Recycled wastewater is uncommon in most places and even where it is used, its 

potential is typically underutilized. In conjunction with reducing wasteful outdoor water use, like 

lawns, we can also improve water efficiency and reduce urban water demand by using recycled 

water for landscape irrigation and other non-potable uses. This is the trend observed in California 

already: outdoor landscaping legislation and water efficiency legislation in California are further 

restricting the amount of turf grass (California Department of Water Resources), as well as 

imposing water budgets on local water agencies starting in 2020-2021 (2018). As more 

wastewater treatment plants expand their non-potable reuse operations ("Mayor Garcetti: Los 

Angeles Will Recycle 100% of City’s Wastewater by 2035," 2019), recycled water is an ever-

growing component of the urban water supply portfolio. 

Appendix B contains the supplementary information for Chapter 1, a series of figures 

including a set of seven figures that compare the observed and predicted participation probability 

for each of the 42 villages included in the analysis. 

Appendix C contains the supplementary information for Chapter 2, providing figures and 

more detailed explanation of the methods used and the implementation of the water savings 

model, the results of which are described in Chapter 2. 

Appendix D contains supplementary figures for Chapter 3, providing more details on the 

methodology of the ten different land use classifications generated by Quantum Spatial (QSI) for 

the IRWD land use classification dataset. 
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CHAPTER 1 

Multi-Scale Drivers of Outdoor Water Conservation 

Abstract 

Outdoor watering of lawns accounts for about half of single-family residential potable water 

demand in the arid southwest United States. Consequently, many water utilities in the region 

offer customers a cash rebate to replace their lawn with drought tolerant landscaping. Here we 

examine patterns of lawn replacement that took place under the auspices of a “cash-for-grass” 

rebate program offered by the Irvine Ranch Water District (IRWD) during the worst drought on 

record in Southern California. We analyzed 1559 lawn rebate applications received by IRWD 

between October 2010 and March 2017, distributed across 77 villages in the utility’s service 

area. From these data we calculated participation probabilities, defined as the likelihood that a 

resident in a particular village will apply to the rebate program in a particular month. Household 

participation in the program is associated with only two variables (96% variance explained), an 

internal variable reflecting the built environment (average home age) and an external variable 

reflecting mass media coverage of emergency proclamations issued by the Governor of 

California (Google search rates in California for the phrase “turf rebate”). Across all villages, the 

participation probabilities are highest when statewide emergency proclamations coincide with 

multiple carrot-and-stick water conservation programs offered by the local water utility. Thus, 

multi-scale policy interventions can be an effective tool for motivating long-term (structural) 

reductions in outdoor water use. 

1.1 Introduction 
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Climate change and population growth threaten the balance of water supply and demand 

in many urban regions around the world (Feldman, 2017; Stanley B Grant et al., 2013; Stanley B. 

Grant et al., 2012; MacDonald, 2010; Padowski & Gorelick, 2014; Sedlak, 2014). A dramatic 

case in point is the urban water stress brought on by the California Drought of 2011 to 2016, the 

most severe drought in the southwest United States over the past 1200 years (Griffin & 

Anchukaitis, 2014). In January 2014, California’s Governor Jerry Brown issued the first of a 

series of emergency proclamations to address the statewide drought, and California’s roughly 

400 urban water agencies responded with an array of short- and long-term water conservation 

programs (Mitchell et al., 2017). Because irrigation of lawns accounts for roughly half of 

residential water demand in a typical California home (DeOreo et al., 2011; Hanak & Davis, 

2006), many water agencies employed multiple strategies to bring about reductions in outdoor 

water use (Mitchell et al., 2017). In general, utilities can encourage conservation through one or 

more of the following strategies (Wichman, Taylor, & Von Haefen, 2016): (1) direct positive 

financial incentives such as rebates; (2) direct negative financial incentives such as fines; (3) 

indirect financial incentives such as tiered pricing, (4) public education campaigns; and (5) 

sanctions, bans, or norming. In this study we focus on an example of the first approach; namely, 

a “cash-for-grass” lawn replacement rebate program.  

Cash-for-grass programs are a popular approach for incentivizing lawn replacement. In 

these programs, water agencies offer customers a rebate for replacing irrigated grass in their 

yards with drought tolerant landscaping (Hilaire et al., 2008; Sedlak, 2014; Sovocool, Morgan, & 

Bennett, 2006). Even with cash incentives, however, social barriers—such as the preference for 

lawns, requirements for an initial outlay of cash, and neighborhood norms and covenants—can 

limit participation (Silvy & Lesikar, 2005). Residential yards are adaptive coupled human-
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natural systems, characterized by feedbacks between legacy effects, urban design practice, multi-

scale human drivers, yard ecology, and ecosystem services and disservices (Cook, Hall, & 

Larson, 2012; Hale et al., 2015; House‐Peters & Chang, 2011). In this context, a key knowledge 

gap is which policy interventions are likely to overcome social barriers to lawn replacement, 

while avoid unintended consequences such as negative equity impacts and adverse human and 

ecosystem health outcomes (Hale et al., 2015; House‐Peters & Chang, 2011; Sokolow, Godwin, 

& Cole, 2016).  

To address this knowledge gap, we set out to evaluate the impact of policy interventions, 

demographics, and the built-environment on residential uptake of a lawn rebate program 

implemented by the Irvine Ranch Water District (IRWD) in Orange County, California. IRWD’s 

program, which began in late 2010, pays residential customers a fixed unit rebate (i.e., fixed 

dollars per square foot) to replace lawns with drought-tolerant outdoor landscaping. IRWD’s unit 

rebate changed over time as follows: (1) $1.50 per square foot from 1 October 2010 through 1 

June 2014; and (2) $2 per square foot thereafter, except for a roughly three-week period (May 1-

19, 2015) when the rebate was temporarily increased to $3 per square foot. Over the period of 

our study (from October 2010 through March 2017), a total of 1559 single-family residences 

(SFRs), or 2.6% of the 60,000 SFRs in IRWD’s service area, participated in the program, about 

double the participation rate reported for the neighboring City of Los Angeles (1.5%) (Jessup & 

DeShazo, 2016). Over the study period, IRWD’s program replaced approximately 13 hectares of 

lawn area with drought tolerant landscaping for an annual water savings of between 130 and 222 

megaliters (ML), assuming an average reduction in water use of between 1002 and 1711 

L/m2/year (Tull, Schmitt, & Atwater, 2016). IRWD’s service area is divided into 77 villages, 

each of which has its own architectural theme, development history, demographic composition, 
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and clearly defined edges (Forsyth, 2002). Because SFRs in all 77 villages were eligible to 

participate, IRWD’s rebate program is a natural experiment in how policy interventions, local 

demographic and economic factors, and the built environment influence patterns of outdoor 

water conservation. To facilitate apple-to-apple comparisons of water conservation across 

villages and with time, we introduce a new metric (participation probability) for the likelihood a 

resident will change their water use behavior. 

1.2 Probabilistic Framework for Water Conservation Behavior 

Here we describe a probabilistic framework that treats a SFR’s decision to apply (or not 

apply) for a lawn replacement rebate as a Bernoulli trial; i.e., the probability (or “participation 

probability”) that a SFR from a particular village will apply to the program in a particular month 

is constant (stationary) and not influenced by the application status of neighbors (statistically 

independent). Within those constraints, the participation probability can vary from month-to-

month and from village-to-village. Our assumption that the participation probability is statistical 

independent is contrary to some studies showing that visible conservation behavior can diffuse 

through residential communities by “spatial neighbor effects”; e.g., see Graziano & Gillingham 

(2014). Thus, this assumption should be regarded as a null hypothesis, subject to evaluation and 

possible rejection. Also note that SFRs who replaced their yards under the auspices of IRWD’s 

rebate program may inspire other SFRs to do the same pro-bono; i.e., without participating in 

IRWD’s rebate program. Because we only have information on SFRs that applied to the rebate 

program (see later), these pro-bono lawn replacements are not captured in our estimates of the 

participation probability. 

To translate the above concepts into a mathematical framework, we let the indices 	i  and 

	 j  represent, respectively, a particular village in IRWD’s service area (the 	i -th village) and a 
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particular month of the study (the 	 j -th month).  For any particular choice of the indices 		 i , j( )  

there will be 		ni , j SFRs who have not yet replaced their lawn and who are therefore eligible to 

participate in the rebate program. We refer to the decision of these 		ni , j  eligible customers to apply 

(or not apply) to the rebate program as “trials”, and let the random variable 	Xk  represent the 

outcome of 	k  trials. For a single trial (		k =1 ), the random variable realizations 		X1 =1  or 		X1 =0  

correspond to the decision of a single SFR to apply or not, with corresponding probabilities 		pi , j  or 

		1− pi , j , respectively. The probability 		pi , j  is the participation probability we referred to above, and 

therefore 		pi , j  is assumed to be stationary (for any choice of the indices 		i , j ) and statistically 

independent from trial to trial. Given these preliminaries, the probability that exactly 
		
Xk=ni , j = x  

eligible SFRs from the 	i -th village will apply on the 	 j -th month is given by the Binomial 

distribution (Ang & Tang, 2007): 

		
Pr Xk=ni , j = x;pi , j( ) = ni , j

x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
pi , j
x 1− pi , j( )ni , j−x           (1) 

From the Binomial distribution we can also estimate the mean number of rebate applications in 

the 	i -th village on the 	 j -th month (		µi , j ) from the product of the participation probability and 

number of trials in that village and month, where 
	
E ⋅⎡⎣ ⎤⎦  is the expectation operator: 

		
µi , j = E Xni , j ;pi , j

⎡
⎣⎢

⎤
⎦⎥
= pi , j ×ni , j          (2) 

The number of trials 		ni , j  is equal to the number of SFRs in the 	i -th village (		nSFR, i ) minus the 

number of SFRs in the 	i -th village that have already applied for a rebate by the 	 j -th month (and 

hence are no longer eligible to participate in the lawn replacement program): 
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ni , j = nSFR ,i − pi ,k ×ni ,k

k=1

j−1

∑           (3) 

The total number of applications received from the 	i -th village by the 	 j -th month follows from 

summing the mean number of applications from the 	i -th village up to the 	 j -th month and 

substituting equation (2): 

		
Ni , j = µi ,k

k=1

j

∑ = pi ,k ×ni ,k
k=1

j

∑           (4) 

Letting the variable 		Ni , j−1  represent the number of applicants received from the 	i -th village by 

the 		 j −1( ) -th month, the variable 		ni ,k  can be rewritten as follows: 		ni ,k = nSFR ,i −Ni ,k−1 . Substituting this 

last result into equation (4) we arrive at our final result for the cumulative number of applicants 

received from the 	i -th village by the 	 j -th month: 

		
Ni , j = nSFR ,i pi ,k

k=1

j

∑ − pi ,k ×Ni ,k−1
k=1

j

∑          (5) 

The first term on the right hand side of equation (5) represents the cumulative number of SFR 

applications that would be predicted if SFRs are not removed from the pool of eligible applicants 

after they apply for a rebate. The second term is a correction to account for the fact that, 

generally speaking, SFRs that have previously applied for a rebate will not apply for a rebate 

again.  

1.3 Experimental Methods 

1.3.1 Rebate Application Data 

Customers applying to IRWD’s lawn rebate program were included in our analysis 

provided they: (1) filed their application within the study period (October 2010 to March 2017); 

(2) replaced their lawn with drought tolerant landscaping and subsequently received a rebate 
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check from IRWD; and (3) were an SFR customer, defined as a residential detached dwelling 

that holds an individual IRWD account and uses potable water for outdoor irrigation. Because 

lawn rebates were typically processed within 6 months of the initial application, we evaluated the 

status of rebate applications as of November 2017, eight months after our study period ended. 

1.3.2 Maximum Likelihood Estimation of Participation Probabilities  

Participation probabilities were calculated from the rebate application data described 

above as follows. Within our Binomial framework, the maximum likelihood estimator (MLE) of 

the participation probability is the fraction of trials that yield rebate applications (Ang & Tang, 

2007); these MLE values are designated with a caret character. Different participation 

probabilities were estimated from IRWD’s rebate data, depending on the question of interest (see 

Table 1). Specifically, participation probabilities (units of probability month-1) were estimated 

for the: (1) 	i -th village on an average month (		p̂i ); (2) 	i -th village on the	 j -th month (		p̂i , j ); (3) 

service area (“SA”) on an average month (		p̂SA ); and (4) service area on the 	 j -th month (		p̂SA, j ).  

1.3.3 Multiple Linear Regression (MLR) 

Village-specific estimates of the participation probability 		p̂i  were regressed against built-

environment and demographic variables using multiple linear regression (MLR). MLR studies 

were conducted with glmulti in R software (R Core Team). Variables were first (base-10) log-

transformed to improve normality and allow for the expression of regression formulas in power-

law form (see later). Variance inflation factor (VIF) was used to evaluate multicollinearity of 

candidate predictor variables; predictor variables were included in the MLR analysis provided 

the following inequality was satisfied: VIF < 5. Candidate MLR models were ranked by 

Bayesian Information Criterion (BIC) and then evaluated based on two additional criteria: (1) the 
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significance of model terms (p<0.01); (2) leave-one-out-cross-validation Root Mean Squared 

Error (RMSE). The model with the lowest BIC was selected as the top model, except when the 

top two or three models differed by less than 2 BIC units. In such cases, a top model was 

selected from the top two or three models based on the significance of terms (preference given to 

the model for which all terms are significant, p<0.01). If all terms were significant the model 

with the lowest RMSE was selected as the top model. The relative importance of each 

explanatory variable (i.e., the proportionate contribution made to the variance explained) was 

estimated using the averaging over ordering method. The fraction of data variance explained by 

each model was estimated from the coefficient of determination. 

1.3.4 Built Environment and Demographics 

Average built-environment and demographic explanatory variables included in the MLR 

were estimated for each village from the following GIS shapefiles (provided by IRWD, updated 

2015 or later): (i) customer account data; (ii) parcel-scale tax assessor information; and (iii) 

village boundaries. These data were filtered by SFRs and then averaged over village boundaries. 

For data at the parcel scale (lot size, home age, building area, and owner occupancy) SFR 

filtering was accomplished using the Spatial Join tool within ArcMap (Esri, ArcGIS version 

10.5, Redlands, California).  
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Figure 1.1. Village-specific patterns of SFR participation in IRWD’s cash-for-grass lawn 

rebate program 

Maps show for each village the: (a) number of rebates issued to SFRs over the study period; (b) 

number of SFRs based on customer account data; (c) per-month village-specific participation 

probability (		p̂i ); and (d) average lawn area retrofitted per rebate. Villages with fewer than 100 

SFRs were excluded. Abbreviations denote Lake Forest (LF), Riviera (R), Orange Park Acres 

(OPA), and Portola Springs North (PSN). 

1.3.5 Empirical Orthogonal Function (EOF) Analysis.  

EOF analysis was performed to identify the dominant village-to-village and month-to-

month patterns associated with the participation probabilities 		p̂i , j . EOF is a spatiotemporal form 
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of principal component analysis (PCA), in which dominant spatial and temporal patterns are 

represented by PCA coefficients and scores, respectively (e.g., see Jeong et al., 2005). PCA was 

performed (Matlab, Mathworks, MA) on mean-centered values of 		p̂i , j  from the 15 villages that 

account for 80% of lawn rebates. A resampling-based stopping rule (Peres-Neto, Jackson, & 

Somers, 2005) was used to identify PCA modes that explained more variance in program 

participation than expected by chance (5% threshold). 

1.4 Results  

1.4.1 Village-Specific Patterns of Rebate Participation 

To minimize small sample size bias when analyzing village-specific patterns, we 

excluded 25 villages that had fewer than 100 SFRs (only two rebates were issued to these 25 

villages over the study period). The number of rebates issued in the remaining 52 villages ranged 

from zero rebates in six villages to 394 rebates in Lake Forest (“LF” in Figure 1.1a). The 

distribution of rebates is positively skewed (skewness coefficient 	θ =0.93 , Figure B.1), with 

80% of rebates (1246 out of 1557) coming from approximately 30% of villages (15 out of 52).  

Some of the village-to-village variation in rebates may reflect differences in the number 

of SFRs across villages (Figure 1.1b). To remove population size effects, we calculated the 

average probability that a randomly selected SFR in the i-th village will apply to IRWD’s rebate 

program in any given month, or village-specific participation probability 		p̂i . Values of village-

specific participation probability ranged from 0% per month in six villages to 0.1% per month in 

Orange Park Acres (“OPA” in Figure 1.1c). The high participation rate observed in OPA may 

reflect the fact that IRWD conducted extensive outreach to residents of this village, to help them 

transition from an inclining block rate structure to IRWD’s budget based rate structure in July 
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2015. Averaged over the service area, the average participation probability is 		pSA =0.033%  per 

month. The average lawn area replaced per rebate varied from 13.4 m2 per rebate in Portola 

Springs North (“PSN”) to 255 m2 per rebate in OPA (Figure 1.1d). 

Multiple Linear Regression (MLR) studies were conducted to identify built-environment 

and demographic attributes that might explain the village-to-village variation in village-specific 

probabilities 		p̂i . Of the five candidate explanatory variables investigated (see Table 2), average 

lot area (	l otarea ) was excluded due to its covariance with average outdoor lot area (	l otoutdoor	area ) 

(VIF >5, see Methods). In addition, 10 villages were excluded because they lacked a full 

complement of candidate explanatory variables. For the remaining 42 villages, the top MLR 

model (Model 1 in Table 2) captures 74.2% of the variance in log-transformed 		p̂i  values (

		r2 =0.74 ). This model, which includes log-transformed mean home age in a village (		ha ,i , units of 

years) as the sole explanatory variable, is represented in power-law form as follows: 

		p̂i =10
−4.60±0.09ha ,i

0.76±0.07          (6) 

Participation probability is positively correlated with home age 		ha,i  in all top three MLR models 

(Table 2). The top second and third models also include positive correlations with average 

outdoor area (Models 2 and 3) and owner occupancy (Model 3), and a negative correlation with 

average lot value (Models 2 and 3). Consistent with previous studies (Atwater, Schmitt, & 

Atwater; Chang, Bonnette, Stoker, Crow-Miller, & Wentz, 2017; Fielding, Russell, Spinks, & 

Mankad, 2012), all three top MLR models point to features of the built environment (home age, 

outdoor area, and lot value) as key determinants of water conservation behavior. 
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Figure 1.2. Dynamics of SFR participation in IRWD’s lawn rebate program.  

(a) Participation probability in the i-th village on the j-th month for the 15 villages that account 

for 80% of rebates (colored curves). Thick red curve represents the monthly participation 

probability for the service area as a whole. (b) The single temporal pattern (		e1, j ) identified by 

empirical orthogonal function (EOF) analysis. (c) Same data as in (a) but scaled by the village-

specific participation probability. The thick black curve is the universal temporal pattern 
	
f j  

calculated from equation (3). Background shading indicates the unit rebate IRWD paid for lawn 

replacement. Labels I, II, and III indicate the timing of ad campaigns. IRWD annual water 

budgets and tiered pricing structures for fiscal years 2014, 2015, and 2016 are also indicated, as 

described in the main text. 
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1.4.2 Rebate Dynamics 

To receive a rebate, SFRs completed an online application, passed a pre-retrofit 

inspection to confirm eligibility, and passed a post-retrofit inspection to certify that grass was 

replaced with drought tolerant landscaping. Because we know the date successful rebate 

applications were first lodged, we can gauge interest in the rebate program over time by 

calculating the participation probability for the i-th village on the j-th month (		p̂i , j ). The 

probability 		p̂i , j  is similar to 		p̂i  except the latter is calculated from applications received from the 

i-th village over the entire 78-month study period, whereas the former is calculated from 

applications received from the i-th village only in the j-th month. We also averaged 		p̂i , j  over all 

52 villages included in the study, to obtain a monthly participation probability for the service 

area as a whole (		p̂SA, j ) (see definitions in Table 1.1). 

If the monthly participation probability does not vary month-to-month the following 

equality should hold: 		p̂i , j = p̂i . Instead, we found that the participation probability in the i-th 

village 		p̂i , j , and in the service area as a whole 		p̂SA , j , exhibits substantial month-to-month 

variability (Figure 1.2a). An EOF analysis of these data (see Methods) reveals that a single 

dominant mode (denoted here as “Mode 1”) explains 71% of the variance in 		p̂i , j . Thus, 		p̂i , j  can be 

approximated by equation (7), where 		e1,i  and 		e1, j  represent the spatial (village-to-village) and 

temporal (month-to-month) Mode 1 patterns, respectively (a plot of the temporal pattern 		e1, j  is 

presented in Figure 1.2b): 

		p̂i , j ≈ e1,i ×e1, j            (7) 
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The temporal pattern 		e1, j  is strongly correlated with 		p̂SA, j  (Pearson’s correlation coefficient 

		r =0.97 ): 		e1, j ≈6.3p̂SA, j  (Figure 1.3a). Likewise, the spatial pattern 		e1,i  is strongly correlated with 

		p̂i  (		r =0.98 ): 		e1,i ≈591p̂i  (Figure 1.3b). Substituting these correlations into equation (7) and 

rearranging terms, we arrive at equation (8) where 
	
f j  (unitless) is a universal temporal pattern 

that captures how public interest in the rebate program changes over time across all villages:    

		
f j ≡3723× p̂SA , j ≈

p̂i , j
p̂i

          (8) 

 

Figure 1.3. EOF Mode 1 spatial and temporal patterns are correlated with two key 

participation probabilities.  

(a) The temporal pattern 		e1, j  is correlated with 		p̂SA , j  (coefficient of determination, 		r2 =0.94 ). (b) 

The spatial pattern 		e1,i  is correlated with 		p̂i  (		r
2 =0.96 ). 

 



 15 
 

Equation (8) has two important implications. First, 		p̂i , j  should collapse to a single universal 

temporal pattern (i.e., 
	
f j ) when normalized by 		p̂i . As predicted, when the 		p̂i , j  values for the top 

15 villages (accounting for 80% of rebates; see colored curves in Figure 1.2a) are normalized by 

		p̂i , the ratio 		p̂i , j p̂i collapses to 
	
f j  (colored curves in Figure 1.2c). Second, equation (3) can be 

rearranged to yield a simple formula for the participation probability in the i-th village on the j-th 

month: 

		p̂i , j ≈ p̂i f j            (9) 

From our earlier analysis we know that 		p̂i  is strongly correlated with average home age in a 

village (equation (6)). In the next section we show that 
	
f j  is strongly correlated with mass media 

coverage of drought-related topics. 

1.4.3 Mass Media Coverage of Water Scarcity 

What causes interest in IRWD’s rebate program (as represented by 
	
f j ) to rise and fall 

synchronously across all villages? One possible explanation is that the unit rebate offered by 

IRWD changed over time (see shading in Figure 1.2). The first adjustment (from $1.50 to $2.00 

per square foot, white to light grey shading) is not coincident with an increase in rebate 

applications; instead, interest in the program declines modestly (Figures 1.2b and 1.2c). On the 

other hand, the brief (roughly three week) unit rebate increase to $3.00 per square foot (in May 

2015, dark grey shading) may have contributed to the all-time peak rebate application rate one 

month later. While changes in the unit rebate may have influenced application rates in this one 

case, on the whole the dynamics apparent in Figure 1.2 cannot be ascribed to changes in the unit 

rebate alone. 
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In a recent study of urban water conservation behavior, Quesnel and Ajami, 2017 

reported that SFRs in the San Francisco Bay area “decreased water use at the fastest rate 

following heavy drought-related news media coverage.” To evaluate if mass media coverage 

might also drive interest in the rebate program, we evaluated the correlation between 
	
f j  and 

mass media coverage of (and public interest in) drought-related topics in California. As a proxy 

for mass media coverage, we generated from the online tool Google Trends monthly search rates 

in California for several phrases including “drought tolerant landscaping,” “mandatory water 

restrictions,” “turf removal,” and “turf rebate” (see (Quesnel & Ajami, 2017) for a discussion of 

the relationship between Google search rates for, and mass media coverage of, drought-related 

topics in California). The monthly search rates generated by Google Trends are represented as a 

percentage of the largest monthly search rate over the period of interest (in our case, from 

October 2010 to March 2017).  
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Figure 1.4. Google search rates for drought related topics are correlated with participation 

in IRWD’s lawn rebate program.  

Comparison of the Palmer Drought Severity Index for Southern California (PDSI, positive and 

negative values indicate wet and dry conditions, respectively) (upper plot) with the universal 

temporal pattern (
	
f j , black curve) and normalized monthly Google search rates in California for 

the four phrases indicated (colored curves) (lower plot). Inset shows values of 
	
f j  plotted against 

normalized Google search rates for the phrase “turf rebate”, plotted on a log-log basis. The line 

corresponds to equation (10). 
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Google search rates for the four phrases above, which were downloaded from Google 

Trends on 11 June 2018, are presented in the lower panel of Figure 1.4. Search rates for all four 

phrases are relatively low (<10%) during the first two years following the onset of drought 

conditions, as indicated by negative values of the monthly Palmer Drought Severity Index for 

Southern California (PDSI) (upper panel in Figure 1.4). Search rates for “drought tolerant 

landscaping,” “turf removal,” and “turf rebate” begin to increase after January 2014, coincident 

with Governor Brown’s first State of Emergency proclamation urging California residents in 

urban areas to voluntarily curb water use by 20%. Search rates for all four phrases peak in April 

2015, coincident with the Governor’s second State of Emergency proclamation (issued on April 

1, 2015) mandating an unprecedented average statewide 25% reduction in urban potable water 

consumption. While all four search rates peak in April 2015, they taper off at different rates. 

“Mandatory water restrictions” tapers off most quickly followed by “drought tolerant 

landscaping,” then “turf rebate” and “turf removal.”  

The universal temporal pattern 
	
f j  is most highly correlated with search rates for the 

phrase “turf rebate” (		r =0.91 ), followed by “drought tolerant landscaping” (		r =0.79	 ), “turf 

removal” (		r =0.76 ), and “mandatory water restrictions” (		r =0.43	 ). The relationship between 

log-transformed 
	
f j  and log-transformed search rates for “turf rebate” (denoted here by the 

variable 
	
gj , units of percent maximum search rate) can be represented in power-law form as 

follows (see inset in Figure 1.4, coefficient of determination, 		r2 =0.83 ): 

		 f j =10
a gj

b , 	a= −0.95±0.073,	b=0.99±0.07         (10) 
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The linear relationship between 
	
f j  and 

	
gj  implied by equation (10) imply that rebate 

applications increased in direct proportion to Google search rates for the phrase “turf rebate”. As 

noted earlier, month-to-month variations in 
	
gj  are associated with mass media coverage of 

Governor Brown’s emergency proclamations.  

1.4.4 Model for the Evolution of Water Conservation Behavior 

The results presented above suggest that the participation probability 		p̂i , j  can be factored 

into the product of a universal temporal pattern 
	
f j  and a village-specific pattern 		p̂i  (equation 

(9)). Furthermore, the universal pattern increases linearly with the monthly Google search rates 

in California for the phrase “turf rebate” 
	
gj (equation (10)), while the village-specific pattern 

depends on the average home age in a village 		ha ,i  (equation (6)). Combining these results we 

obtain the following simple formula for the participation probability: 

		p̂i , j ≈10
−5.55ha ,i

0.76 × gj           (11) 

Substituting this last result into equation (5), we can estimate the cumulative number of rebate 

applications 		Ni , j  received from the i-th village by the j-th month from only two pieces of 

information: an internal variable reflecting the built environment (average home age, 		ha ,i ) and an 

external variable reflecting public awareness of lawn replacement as a means of addressing the 

water shortfall in California (Google search rates for “turf rebate”, 
	
gj ). Remarkably, equation (5) 

captures 96% (		r2 =0.96 ) of the variance in observed rebate applications over the 78-month period 

of our study and across the 42 villages included in the MLR (Figures B.2 – B.9). The predictive 

power of the model is illustrated in Figure 1.5, where we compare maps of observed and 

predicted cumulative rebate applications from the 42 villages at four points in time. 
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1.5 Policy and Research Implications  

1.5.1 Interventions at Multiple Scales 

Our results document the dramatic impact that the Governor’s statewide emergency 

proclamations had on mass media coverage of the California drought, and participation in 

IRWD’s rebate program. Google search rates for drought-related topics increased after both 

proclamations; furthermore, the magnitude of the response reflects the proclamation’s urgency. 

The Governor’s first proclamation (January 2014, setting voluntary water conservation targets 

across California) coincided with a modest increase in normalized Google search rates. The 

usage across California) coincided with peak search rates for all four phrases investigated 

(Figure 1.4). 

As noted earlier, Quesnel and Ajami (2017) found that Google search rates of drought 

related topics are a proxy for mass media coverage of the California drought, and are strongly 

correlated with voluntary water conservation in the San Francisco Bay area. While a similar 

process may be occurring here, several caveats should be noted. First, some of the voluntary 

water conservation activities captured in Quesnel and Ajami’s study are non-structural (e.g., 

temporary reductions in outdoor watering) and thereby subject to reversion or “drought rebound” 

after the imminent threat of drought recedes (Beal, Makki, & Stewart, 2014) (Gonzales & Ajami, 

2017). By contrast, drought rebound is less likely to occur for structural changes (such as lawn 

replacement) given the significant investment of time and money entailed. Second, while non-

structural conservation may exhibit drought rebound, one potential benefit is that the same 

residents can curtail water consumption again when the next drought occurs. By contrast, 

structural conservation can lead to “demand hardening” in which efforts to induce water 

conservation become progressively more difficult over time (Lund, 1995). As applied to the lawn 
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rebate program, demand hardening might occur if residents more inclined to replace their yards 

sign up initially, leaving behind a population of residents less willing or able to participate. One 

implication is that the dramatic increase in participation probability (as represented by the 

universal pattern 
	
f j ) we observed after the Governor’s second emergency proclamation may not 

be reproducible going forward. 

IRWD also played a critical role in promoting outdoor water conservation, most 

obviously by offering the rebate program, but also through its multiple ancillary water 

conservation and education programs. IRWD (with additional funding from the water 

wholesaler, the Metropolitan Water District) actively marketed the lawn rebate program as part 

of several ad campaigns, including “Do One More Thing”, “Brown is the New Green”, and 

“Color Your World” (designated I, II, and III, respectively, in Figure 1.2). Following the 

Governor’s emergency proclamations, IRWD also increased the unit rebate paid for lawn 

replacement (from $1.50 to $2.00, and briefly to $3.00 per square foot, see Figure 1.2) and 

adjusted its tiered water pricing to incentivize conservation by: (1) decreasing the water budget 

assigned to each home through a decrease in the water allocations for outdoor plants; (2) 

increasing the billing rate within each tier commensurate with the cost of water; and (3) adjusting 

the boundaries between tiers (as a percentage of a resident’s water budget, see water budgets 

(WB) for 2014, 2015, and 2016, Figure 1.2). These (local) “carrot and stick” programs 

reinforced the Governor’s (statewide) emergency proclamations, and enabled the dramatic surge 

in rebate applications that followed. On the other hand, if the Governor had not issued the two 

emergency proclamations, a counterfactual simulation with our probability model reveals that 

IRWD would have received 1431 (95%) fewer rebate applications, equal to a lost water savings 

of approximately 123 to 211 ML per year or roughly 1.2% to 2% of IRWD’s potable water 
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demand reduction target. This counterfactual scenario was simulated by setting the normalized 

Google Trends search rate for the phrase “turf rebate” in equation (11) equal to the average value 

observed prior to the Governor’s first proclamation. Thus, it was the multi-scale and coordinated 

nature of policies and programs implemented during the California drought that convinced so 

many residents to replace their lawns with drought tolerant landscaping. 

Figure 1.5. A comparison of observed and predicted rebate applications received from each 

village by the four dates indicated.  

Rebate applications are predicted from equations (5) and (11) based on only two pieces of 

information: (1) the average home age in a village and (2) the normalized monthly Google search 

rate for the phrase “turf rebate.” 
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1.5.2 Social Diffusion 

In his classic model of social diffusion, Bass (Bass, 1969) postulated that new behaviors 

(or products or innovations) spread through a community through the combined action of 

“innovators” who adopt the behavior spontaneously, and “imitators” who adopt the behavior 

under the influence of those who have already adopted. Various forms of social diffusion have 

been observed in many human and economic systems (Jackson & Yariv, 2005). For example, 

(Graziano & Gillingham, 2014) found that the adoption of rooftop solar photovoltaic (PV) 

systems spread through residential neighborhoods in Connecticut in a “wave-like centrifugal 

pattern” qualitatively consistent with social diffusion of neighborhood scale conservation 

behavior. In contrast, we explained 96% of the variance in IRWD’s rebate applications by 

adopting the null hypothesis that a SFR’s decision to apply for rebate is statistically independent 

of whether or not neighbors have done the same. While this does not prove that social diffusion 

is not occurring (i.e., we cannot assume that the participation probabilities are statistically 

independent based on this result alone), from a practical perspective it implies that the inclusion 

of social diffusion in our probabilistic framework would have improved the variance captured by 

no more than 4%.  

As noted by Graziano and Gillingham (2014), several features of the PV rebate program 

in Connecticut—which have no analogs in IRWD’s rebate program—may have facilitated 

diffusion, including the designation of ‘Solarize’ towns that “choose a preferred installer, receive 

a group buy that lowers the price with more installations and receive an intensive grassroots 

campaign with information sessions and local advertising”. Unlike rooftop PV installation, 

replacing grass with drought tolerant landscaping also requires a complex set of household-
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specific decisions about landscape design, plant selection, irrigation systems, and tolerance for 

ongoing maintenance requirements (Cook et al., 2012).  

1.5.3 Built Environment 

Our results also indicate that the average home age in a village is a strong predictor of the 

probability a resident will apply for a rebate in any given month (equation (6)). We can think of 

at least three possible explanations, operating alone or in combination, for this result. The first is 

homophily, a social phenomenon in which similar people tend to live in close proximity 

(McCrea, 2009). For example, the residents of owner occupied older homes with larger yards 

(see Table 1.2) may, as a group, have more disposable income for undertaking major landscape 

investments. The second is physical constraints imposed by the built environment. For example, 

many newer homes in the IRWD service area are built with drought tolerant landscaping, making 

them ineligible to participate in IRWD’s lawn rebate program. Furthermore, older homes with 

larger yards are more expensive to irrigate under the water budget and tiered pricing structure 

used by IRWD. The third is interactions between the built environment and economic incentives 

intrinsic to IRWD’s rebate program. For example, higher program participation by older homes 

(with larger yards, see above) may reflect the larger cash rebate checks received under IRWD’s 

fixed unit rebate payment structure (either $1.50, $2, or $3 per square foot, depending on the 

time frame). If SFRs respond to the total rebate payout (instead of unit rebate), households with 

smaller yards might be more inclined to participate if the unit rebate increased with decreasing 

lawn area. To the extent that yard size scales with household income, such an approach might 

also address equity concerns, by minimizing payments to customers who are likely to replace 

their lawns without a subsidy and maximizing payments to customers who are likely to replace 

their lawn only with financial assistance. The inequitable phenomenon of higher-income 
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households more commonly taking advantage of environmental rebate programs is well 

documented, due to the lump sum nature of investments, considerable cash flow required, and 

long payback periods (DeShazo, Sheldon, & Carson, 2017). Unpacking how these various local 

demographic and built-environment attributes influence village-scale participation in lawn rebate 

programs, perhaps in concert with the rate structure of the rebate program itself, is an exciting 

topic for future study. 

Table 1.1. Definitions and formulae for key variables. 
 

Symbol Calculation*, †, ‡ Description 

		p̂i   

		
#	rebates	from	village	i 	over	study	period

78	months( )× #	SFRs	in	village	i( )  
Probability an eligible SFR in 
village i  applied to the rebate 

program in any month 

		p̂i , j   

		
#	rebates	from	village	i 	on	month	j
#	eligible	SFRs	in	village	i 	on	month	j

 
In the	 j -th month, the fraction of 

SFR in village 	i   
that applied to the rebate program  

		pSA   

	
#	rebates	from	service	area	over	study	period

78	months( )× #	SFRs	in	service	area( )  

The fraction of SFR in the service 
area 

 that applied to the rebate program in 
any month 

		pSA, j   

		
#	rebates	in	service	area	on	month	j

#	eligible	SFRs	in	service	area	on	month	j
 

In the 	 j -th month, the fraction of 
SFR in the service area that applied 

to the rebate program  

		nSFR, i   		#	SFR	households	in	village	i  
Number of SFR households in 

village 	i  

		Ni , j   

		
#	rebates	received	from
village	i 	on	month	k

⎛
⎝⎜

⎞
⎠⎟k=1

j

∑  
Cumulative number of rebate 

applications received from the 	i -th 
village by the 	 j -th month  

* “month 	 j ” is the j-th consecutive month since the start of the study period on 1 October 2010 
(for example 1 October 2011 corresponds to 		 j =12) 
† “eligible SFRs” are SFRs that appear in IRWD’s customer account records and have not 
already applied to the rebate program  
‡ “service area” includes the 52 villages included in the analysis of village-specific patterns (see 
main text). 
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Table 1.2. Multiple linear regression models for the log-transformed participation probability (

		log10 p̂i ).  
Candidate Explanatory Variables 

Variables Description Units Source 
	l otvalue  Mean value of SFR lots 2015 USD IRWD Parcel data 

	l otarea  Mean area of SFR lots square feet IRWD Parcel data 

	l otoutdoor	area  Mean SFR lot area minus mean building area square feet IRWD Parcel data 

	occupowner  Fraction of owner occupied SFR  -- IRWD Parcel data 

	homeage  Mean age of SFR homes (relative to 2017) years IRWD Parcel data 
Top Three MLR Models§ 

 Model 1 (top model) Model 2 Model 3 
Model Information 

Num. of Observations 42 42 42 
F-statistic¶  119*** (df=40 ) 48.57*** (df=38) 37.57*** (df=37) 

Model Terms Coeff. (SE) VE#  
(%) 

Coeff. (SE) VE# 
(%) 

Coeff. (SE) VE# 
(%) 

Intercept -4.60 (0.09)** --- -3.67 (1.05)* --- -3.28 (1.08)* --- 
	l og10 homeage( )  0.76 (0.07)** --- 0.48 (0.12)** 41.9 0.43 (0.12)* 36.4 

	l og10 occupowner( )  
--- --- --- --- 0.75 (0.57) 10.9 

	l og10 lotvalue( )  --- --- -0.50 (0.20) 19.4 -0.52 (0.20) 17.8 

	l og10 lotoutdoor	area( )  --- --- 0.67 (0.26) 18.0 0.63 (0.26) 15.1 
Model performance metrics 

Adjusted R2 74.2% 77.7% 78.1% 
RMSE 0.189 0.188 0.187 
BIC 7.708 6.925 8.737 
BIC Weight 0.224 0.331 0.134 

§ Significance codes: ‘**’ p<0.001, ‘*’ p<0.01 
¶ df=degrees of freedom 
# VE=variance explained 
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CHAPTER 2 

Parcel Scale Analysis of Participation in IRWD Turf Rebate Program 

Abstract 

Outdoor watering of lawns accounts for about half of single-family residential potable 

water demand in the arid southwest United States. Consequently, many water utilities in the 

region offer customers cash rebates to replace lawns with drought tolerant landscaping. Here we 

present a parcel-scale analysis of water savings achieved by a “cash-for-grass” program offered 

to 60,000 homes in Southern California. The probability a resident will participate in the 

program, and the lawn area they replace with drought tolerant landscaping, both increase with a 

home’s outdoor area. The participation probability also depends on a home’s owner occupancy 

status. From these results we derive and test a simple mathematical model for predicting the total 

water savings achieved by a cash-for-grass program, taking into account the number-distribution 

of parcel outdoor areas across a utility’s service area, climate, cultural drivers of landscape 

choices, conservation behavior, equity concerns, and financial incentives. 

2.1 Introduction 

Climate change and population growth threaten the balance of water supply and demand 

in many urban regions around the world (Feldman, 2017; Stanley B Grant et al., 2013; Stanley B. 

Grant et al., 2012; MacDonald, 2010; Padowski & Gorelick, 2014; Sedlak, 2014). A dramatic 

case in point is the urban water stress brought on by the California Drought of 2011 to 2016, the 

most severe drought in the southwest United States over the past 1200 years (Griffin & 

Anchukaitis, 2014). In January 2014, California’s Governor Jerry Brown issued the first of a 
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series of emergency proclamations to address the statewide drought, and California’s roughly 

400 urban water agencies responded with an array of short- and long-term water conservation 

programs (Mitchell et al., 2017). Because irrigation of lawns accounts for roughly half of 

residential water demand in a typical California home (DeOreo et al., 2011; Hanak & Davis, 

2006), many water agencies employed multiple strategies to bring about reductions in outdoor 

water use (Mitchell et al., 2017). In general, utilities can encourage conservation through one or 

more of the following strategies (Wichman, Taylor, & Von Haefen, 2016): (1) direct positive 

financial incentives such as rebates; (2) direct negative financial incentives such as fines; (3) 

indirect financial incentives such as tiered pricing, (4) public education campaigns; and (5) 

sanctions, bans, or norming. In this study we focus on an example of the first approach; namely, 

a “cash-for-grass” lawn replacement rebate program.  

Cash-for-grass programs are a popular approach for incentivizing lawn replacement. In 

these programs, water agencies offer customers a rebate for replacing irrigated grass in their 

yards with drought tolerant landscaping (Hilaire et al., 2008; Sedlak, 2014; K. A. Sovocool, 

Morgan, & Bennett, 2006). Even with cash incentives, however, social barriers—such as the 

preference for lawns, requirements for an initial outlay of cash, and neighborhood norms and 

covenants—are known to limit participation (Silvy & Lesikar, 2005). Pincetl et al. 2019 analyzed 

the $350 million cash-for-grass program implemented by the Metropolitan Water District 

(MWD) in Southern California and found that, for the approximately 4% of program participants 

enrolled in their study, lawns were replaced with diverse land-cover types, and they found some 

support for a “neighborhood adoption” effect; i.e., when one resident participates in the program 

their neighbors are more likely to follow suit pro bono. These authors also noted a critical need 
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for research looking at the factors that determine a resident’s participation in cash-for-grass 

programs, including “building density, lot sizes, and other characteristics” (Pincetl et al., 2019). 

To address this knowledge gap, this study undertook a parcel scale analysis of a cash-for-

grass program implemented by the Irvine Ranch Water District (IRWD) in Orange County, 

California. IRWD’s rebate program, which began in late 2010, pays residential customers a fixed 

unit rebate (i.e., fixed dollars per square foot) to replace lawns with drought-tolerant outdoor 

landscaping. The unit rebate paid by IRWD changed over time, from $1.50 per square foot (1 

October 2010 through 1 June 2014) to $2 per square foot (1 June 2014 to present), except for a 

roughly three-week period (May 1-19, 2015) when the rebate was temporarily increased to $3 

per square foot. Over the period of our study (from October 2010 through March 2017), a total of 

1559 single-family residential (SFR) parcels, or 2.6% of the approximately 60,000 SFR parcels 

in IRWD’s service area, participated in the program, about double the participation rate reported 

for a similar program offered in the nearby City of Los Angeles (1.5%) (Jessup & DeShazo, 

2016). The program replaced approximately 130,000 m2 of lawn area with drought tolerant 

landscaping, for an annual water savings of between 130 and 222 megaliters (ML), assuming a 

conservative unit reduction in water use of between 1002 and 1711 L/m2/year (Matlock, 

Whipple, & Shaw, 2019; Tull, Schmitt, & Atwater, 2016). IRWD’s service area is divided into 

77 villages, each of which has its own architectural theme reflecting the region’s master-planned 

heritage and development history, demographic composition, and clearly defined edges (Forsyth, 

2002). Because SFRs in all 77 villages were eligible to participate, IRWD’s rebate program is a 

natural experiment in how financial incentives, local demographic and economic factors, 

political orientation and the built environment collectively influence outdoor water conservation. 

2.2 Data 
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2.2.1 IRWD Turf Rebate Program Data 

The IRWD Water Efficiency Department provided a spreadsheet outlining the application 

details of SFR participants in the IRWD turf rebate program, including the (1) turf area replaced 

(m2) for each participant, (2) application received date for the SFR participant (MM/DD/YY), 

and (3) SPID, or Service Point Identification Number, which serves as the unique identifier for 

each individual IRWD customer account.  

IRWD also provided a GIS file which links the SPID with the corresponding unique 

identifier for the parcel where the SFR resides, i.e., the Parcel APN (assessor’s parcel number). 

This allowed us to match the SFR participants of the turf rebate program with the built 

environment data at the parcel scale. 

2.2.2 IRWD Parcel Data  

The IRWD Water Efficiency Department provided a GIS parcel shapefile with built 

environment data attributed to each of the parcels in their service area. The raw data within the 

GIS parcel shapefile is publicly available through the county tax assessor’s office, but the 

shapefile itself was obtained from IRWD. The data used in our study include: (1) outdoor area 

[m2] (calculated as the difference between the lot area and the building area) and (2) owner 

occupancy (described as Yes or No). The parcel shapefile data was curated using the following 

definition queries: (1) include only parcels that are SFRs; (2) exclude parcels for which key 

variables were missing data, e.g., when the lot area was displayed as 0. 
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Figure 2.1. Individual SFR parcels within the IRWD service area 

Approximately 60,000 individual SFR parcels are displayed as points (lime green). Regions with 

no SFR parcels are typically zoned as non-residential land for commercial purposes, parks, or 

wildlife. Regions of the map that appear to be solid green are densely populated with thousands 

of individual parcels. 

2.2.3 Orange County Voting Data for 2016 Presidential Election 

We obtained data from the Orange County Registrar of Voters, which retains archives of 

voting data for the elections in Orange County (Orange County Registrar of Voters, 2016). 

Specifically, we used archive data for the 2016 General Election, which encompasses voting 
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measures at the local, county, state, and federal level for Orange County voters, aggregated 

geographically by 2016 voting precincts (see Figure 2.2). Within this dataset, we focused on the 

votes corresponding to the 2016 Presidential election. 

The data used in our study include: (1) the number of registered voters, (2) number of 

ballots cast, and (3) the number of ballots cast for each of the following Presidential and Vice 

Presidential candidates and their political parties, respectively:  

• Hillary Clinton & Tim Kaine (Democratic Party),  

• Donald J. Trump & Michael R. Pence (Republican Party),  

• Jill Stein & Ajamu Baraka (Green Party),  

• Gary Johnson & Bill Weld (Libertarian Party),  

• and a group of candidates with independent political party affiliation (Bernard “Bernie” 

Sanders; Laurence Kotlikoff; Mike Maturen; Evan McMullin; and Jerry White) whose 

votes we combined to create a variable representing the collective votes for candidates 

with “independent” party affiliation. 

For each precinct in IRWD’s service area, we calculated the fraction of registered voters 

who cast ballots/voted in the 2016 General Election (by dividing the number of ballots cast in a 

precinct by the total number of registered voters in that precinct). Similarly, we calculated the 

fraction of ballots cast for each of the candidates listed above (by dividing the number of ballots 

cast for that particular candidate in a precinct by the total number of ballots cast in that precinct 

for the 2016 Presidential Election). For the “independent” category, we divided the number of 

ballots cast for the 5 independent candidates in a precinct by the total number of ballots cast in 

that precinct for the 2016 Presidential Election. We curated the dataset to exclude precincts 

where there were fewer than 100 registered voters due to lack of data in those precincts. 
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We then have the following variables used for our analysis: (1) Fraction of registered 

voters who cast ballots/voted in the 2016 General Election, (2) Fraction of 2016 Presidential 

Election ballots cast for Hillary Clinton & Tim Kaine (Democratic Party), (3) Fraction of 2016 

Presidential Election ballots cast for Donald J. Trump & Michael R. Pence (Republican Party), 

(4) Fraction of 2016 Presidential Election ballots cast for Jill Stein & Ajamu Baraka (Green 

Party), (5) Fraction of 2016 Presidential Election ballots cast for Gary Johnson & Bill Weld 

(Libertarian Party), (6) Fraction of 2016 Presidential Election ballots cast for candidates with 

independent political party affiliation (Bernard “Bernie” Sanders; Laurence Kotlikoff; Mike 

Maturen; Evan McMullin; and Jerry White). 

 

Figure 2.2. Voting precincts for the 2016 General Election in Orange County 

2016 Voting Precincts
IRWD Service Area

0 5 102.5 km

±
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Boundaries of the 2016 General Election voting precincts are shown (solid magenta pink lines) 

where they intersect with the IRWD service area. SFR parcels that fall within a particular voting 

precinct are designated with the corresponding voting data for that precinct.  

2.2.4 American Community Survey (ACS) 2013-2017 (5-Year Estimates) 

Through Social Explorer (United States Census Bureau American Community Survey), 

an online demographic research tool, we acquired data tables for the American Community 

Survey (ACS) 2013-2017 (5-Year Estimates), querying specifically for the Orange County 

region. This source data is at the census block group level, the smallest resolution geographic 

unit that contains Census Bureau data (United States Census Bureau). 

The data collected for our study are: (1) Average Household Size (i.e., the number of 

people occupying a housing unit), (2) Median Household Income (2017 USD), and (3) Median 

House Value (2017 USD). 
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Figure 2.3. U.S. Census Bureau block group boundaries 

Boundaries of the U.S. Census Bureau block groups are shown (solid blue line) where they 

intersect with the IRWD service area (solid black line). SFR parcels that fall within a particular 

block group are designated with the corresponding census data for that block group. 

2.3 Methods 

2.3.1 Definitions of SFR Parcel and Rebate Participation 

For the purposes of this study, an SFR parcel is defined as a parcel with a residential 

detached dwelling and an IRWD water meter account with associated service point ID (SPID). 

SFR parcels were classified as rebate “participants” provided: (1) a rebate application was filed 

Census Block Groups
IRWD Service Area

0 5 102.5 km

±
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by the resident within our study period (1 October 2010 to 31 March 2017);  (2) the resident 

passed an onsite inspection by IRWD personnel (to verify that lawn was replaced with drought 

tolerant landscaping as promised); and (3) the resident received a rebate check from IRWD 

following the inspection. Because rebates were typically processed within 6 months of the 

resident’s initial application, we evaluated application status as of November 2017, eight months 

after the study window closed. SFR parcels were classified as rebate “non-participants” if they 

failed one or more of the above criteria. Regardless of participation status, SFR parcels lacking a 

full complement of explanatory variables (see below) were not enrolled in our study. 

2.3.2 Explanatory variables 

For each SFR parcel in IRWD’s service area we compiled information from IRWD’s 

customer account data, county tax assessor information, census data, and voting records. IRWD 

customer account data, which was referenced by SPID, included the information needed to 

classify SFR parcels as participants or non-participants (see last section). Tax assessor 

information (referenced by Assessor Parcel Number (APN)) included outdoor area (which was 

calculated as the difference between the parcel’s lot area and building area) and owner 

occupancy. American Community Survey 2013-2017 Five-year Estimates Census Data (United 

States Census Bureau American Community Survey), included average household size, median 

household income, and median house value. These data were attributed to all SFR parcels in a 

single census block group. Precinct-scale voting records for the 2016 General Election were 

obtained from the Orange County Registrar of Voters (Orange County Registrar of Voters, 

2016). This information included the fraction of registered voters who voted in the 2016 General 

Election, and the fraction of the latter who cast ballots for: (i) Hillary Clinton and Tim Kaine 

(Democratic Party), (ii) Donald J. Trump and Michael R. Pence (Republican Party), (iii) Jill 
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Stein and Ajamu Baraka (Green Party), (iv) Gary Johnson and Bill Weld (Libertarian Party), and 

(v) candidates with “independent” political party (Bernard “Bernie” Sanders, Laurence Kotlikoff, 

Mike Maturen, Evan McMullin, or Jerry White). The attribution of census and voting records to 

SFR parcels was accomplished using the Spatial Join tool within ArcMap (Esri, ArcGIS version 

10.5, Redlands, California). A map illustrating the granularity of these various datasets is 

included in Supplemental Information (see Figure C.1 in Appendix C).  

2.3.3 Classification and Regression Trees (CART) 

We used the machine learning algorithm CART (R-PART in R Software) to identify 

explanatory variables that can discriminate between participants and non-participants at the 

parcel scale. Decision trees were generated from the explanatory variables of all rebate 

participants and an equal number of randomly chosen non-participants. Separate trees were 

generated for 33 different realizations of the randomly chosen non-participants to yield a “forest” 

of decision trees from which dominant explanatory variables could be identified.  

2.3.4 Participation Probability and 95% Confidence Intervals 

The participation probability p̂  was estimated as the proportion of residents who 

participated in the rebate program in any sample of n  SFR parcels, p̂= 1
n

Xi
i=1

n

∑  where Xi  is the 

random variable for participation ( Xi =1 ) or non-participation ( Xi =0 ) and the index i  represents 

a particular SFR parcel. The corresponding 95% confidence interval is p̂± k0.05 2 p̂ 1− p̂( ) n  where 

k0.05 2 = −Φ
−1 1−0.05 2( )=1.96  and Φ  is the standard Normal distribution (Ang & Tang, 2007). 

2.4 Results and Discussion 
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2.4.1 Study Statistics 

Of the 60,000 SFR parcels in IRWD’s service area, 46,915 had a full complement of the 

11 explanatory variables (outdoor area, owner occupancy, average household size, median 

household income, median house value, and six voting preferences) and were therefore enrolled 

in our study. Of these 46915 SFR parcels, 1366 participated in IRWD’s lawn rebate program for 

an overall participation probability of 2.9% ( p̂=0.029±0.002 ). 

2.4.2 Classification and Regression Trees (CART) 

To determine which, if any, of the 11 explanatory variables can discriminate between 

rebate participants and non-participants, we generated a forest of decision trees using the 

machine-learning algorithm CART. A forest of 33 decision trees was generated from the 

participation status and explanatory variables of 1366 SFR participants together with an equal 

number of randomly chosen non-participants. Of these 33 trees, 23 (or about 70%) split the 

dataset according to whether a SFR parcel is owner-occupied or not (first node) followed by 

whether the parcel’s outdoor area is greater than 164 m2 or not (second node, Figure 2.4a) 

(higher order nodes were variable across trees and not shown). The same two variables appear in 

reverse order in the top two nodes of three additional trees (Figure C.3b). Owner occupancy 

appears in the six remaining trees, but outdoor area is replaced with either the average number of 

occupants in a household (> 2.6, Figures C.3c and C.3e) or fraction of voters for Trump in the 

2016 General Election (>37%, Figure C.3d). Across the 33 trees, the misclassification rates 

ranged from 39 to 42%. Interestingly, demographic and voting data did not appear prominently 

in the results of the CART analysis.  

Consistent with the CART results and across all enrolled SFR parcels (N=46,915), the 

participation probability is three times higher if a SFR is owner occupied ( p̂=0.033±0.002 ) 



 41 
 

compared to when it is not owner occupied ( p̂=0.011±0.002 ) (Figure 2.4b). When owner 

occupied SFRs are further divided according to their outdoor area, the participation probability is 

nearly 4% if the outdoor area is greater than 164 m2 ( p̂=0.037±0.002 ) compared to less than 

2% if the outdoor area is smaller than this threshold ( p̂=0.015±0.003 ) (Figure 2.4b). Thus, 

participation in the rebate program is highest for SFRs that are owner occupied and have outdoor 

areas >164 m2. 

 

Figure 2.4. Results of CART tree analysis for participation probability 

(a) CART reveals that a resident’s decision to participate in the rebate program depends strongly 

on whether their home is owner occupied (top node) and whether its outdoor area exceeds 164 

m2 (second node). Y and N stand for “yes” and “no”, respectively. P and NP stand for 

“Participant” and “Non-Participant”, respectively. (b) The fraction of residents participating in 

the rebate program (or “participation probability”) is 3.4% if the home is owner occupied, 

compared to 1.1% if it is not. When owner-occupied homes are divided based on outdoor area, 
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homes with outdoor areas of >164 m2 or <164 m2 have corresponding participation probabilities 

of 3.7 and 1.5%, respectively. The number of parcels included in the calculation of participation 

probability is shown for each category (solid bars on upper chart). 

2.4.3 Participation Probability 

To explore the functional relationship between participation probability and outdoor area, 

we sorted all owner-occupied SFR parcels (N=38,255) by outdoor area, assigned the parcels into 

11 equal-sized bins, and then calculated the participation probability and median outdoor area for 

each bin. For outdoor area < 400 m2, the participation probability is strongly correlated 

(R2=0.91) with median outdoor area, increasing 1.2% for every 100 m2 increase in outdoor area 

(Figure 2.5a); the participation probability levels off for outdoor area > 400 m2. For non-owner 

occupied SFR parcels (N=8,658), the participation probability increases with outdoor area, but 

the correlation is weaker (R2=0.67) and the slope is reduced (0.39% increase in participation 

probability for every 100 m2 increase in outdoor area, Figure 2.5a). In summary, program 

participation increases monotonically with median outdoor area, but the magnitude of the 

response (and strength of the correlation) is especially striking for SFRs that are owner occupied. 

Once a resident decides to participate in the rebate program, the lawn area they replace 

also increases with outdoor area. This conclusion was reached by sorting and binning all 

participants in IRWD’s rebate program (N=1,366) by outdoor area, and then calculating for each 

bin the median values of outdoor area and lawn area replaced. For parcels with outdoor areas < 

600 m2, the median lawn area replaced increases linearly with outdoor area (Figure 2.5b). In 

contrast to the participation probability (blue and red filled circles, Figure 2.5a), the dependence 

of lawn area replaced on outdoor area is not altered by owner occupancy status (blue and red 
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filled circles, Figure 2.5b)). From the latter slopes we can infer that residents replace, on 

average, 10 to 15% of their outdoor area with drought tolerant landscaping.  

 

Figure 2.5. Participation probability increases monotonically with outdoor area 

(a) Participation probability increases monotonically with median outdoor area, but the initial 

slope and maximum value depends of this relationship depends on whether the home is owner 

occupied (blue filled circles and line) or not (red filled circles and line). (b) The median lawn 

area replaced also increases with outdoor area, but there is little difference between owner 

occupied (blue filled circles and line) and non-owner occupied (red filled circles and line) 

homes. At the parcel scale, there is considerable variability between parcels (blue and red dots). 

(c) The number distribution of outdoor areas in owner occupied (blue circles) and non-owner 

occupied (red circles) homes closely follows a log-normal distribution (black curve). The 
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participation probability curves from (a) are superimposed on this graph (blue line corresponds 

to owner occupied homes and red line corresponds to non-owner occupied homes). (d) Model 

simulations of total water savings were carried out for the three participation probability curves 

with the different initial slopes indicated. The number distribution of outdoor areas from (b) is 

superimposed on this graph (see Section 2.3.5 for details). 

2.4.4 Size Distribution of Outdoor Area 

How does the dependence of participation probability on outdoor area compare with the 

distribution of outdoor areas in IRWD’s service area? Histograms of the parcel-scale outdoor 

areas of owner-occupied and non-owner-occupied homes (blue and red points, Figure 2.5c) are 

well described by a single log-normal distribution (median parcel area 102.5 or 300 m2, solid 

black curve in the figure). There is substantial overlap between outdoor areas that are most 

common in IRWD’s service area (i.e., outdoor areas with the highest probability density, solid 

black curve) and outdoor areas with the highest participation probability (blue and red curves in 

the figure). However, the highest participation probabilities are skewed toward parcels with the 

largest outdoor areas and higher household incomes (see Figure C.2), consistent with previous 

reports that environmental rebate programs are utilized disproportionately by wealthier residents 

(DeShazo, Sheldon, & Carson, 2017; Pincetl et al., 2019).  

From a theoretical perspective, it is interesting to ask: how might we alter the incentive 

structure of cash-for-grass programs to motivate more equitable participation? Under the fixed 

unit rebate approach employed by IRWD, rebates increase linearly with the lawn area replaced 

(up to a maximum of $3000 during the study period). This may incentivize the participation of 

residents with large yards (and higher household incomes), consistent with the results presented 

in Figures 2.5c and C.2. From an equity perspective, we would like to “flatten” the participation 
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probability curve (i.e., decrease its slope and increase its intercept), for example, by transitioning 

from a fixed unit rebate (which incentivizes the replacement of large lawns) to a fixed dollar 

rebate (to incentivize the replacement of all lawns)). On the other hand, by targeting smaller 

lawns for replacement, the average lawn area replaced per rebate could decline, possibly leading 

to a net reduction in overall water savings. In the next section, we describe a modeling 

framework that can guide the development of rebate strategies that attain both equity and water 

savings goals. 

2.4.5 Model of Outdoor Water Savings 

 The results presented above demonstrate that owner occupancy and outdoor area are key 

controls on the water savings achieved by IRWD’s cash-for-grass rebate program. Outdoor area 

plays a role in all aspects of the program examined here—the probability that a resident will 

participate (Figure 2.5a), the lawn area replaced with drought tolerant landscaping (Figure 

2.5b), and the number of SFR parcels in the utility’s service with an outdoor area of a particular 

size (Figure 2.5c). Owner occupancy affects the slope and intercept of the participation 

probability curves (Figure 2.5a), but otherwise has little influence on either the lawn area 

replaced (Figure 2.5b) or the number-distribution of outdoor areas (Figure 2.5c). In the United 

States, parcel scale data on outdoor area and owner occupancy are easily accessed through the 

local county tax assessor office. Therefore, our research approach should be readily applicable to 

other cities and regions of the country.  

Our results also point to a simple mathematical framework for predicting water savings 

achieved by cash-for-grass rebate programs. To this end, we begin by specifying, for any 

incremental change in outdoor area (from a  to a+Δa , units of square meters), the incremental 

water savings ΔW  (units of liters per year) accrued from a cash-for-grass rebate program. This 
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incremental water savings ΔW  can be expressed as the product of the water savings achieved by 

replacing a unit area of lawn with drought tolerant landscaping ( ′′w , units of liters per square 

meter per year), the probability that a randomly chosen resident will participate in the rebate 

program ( p a( ) , unitless), the lawn area that a participating resident will replace with drought 

tolerant landscaping ( ℓ a( ) , units of square meters), and the number-distribution of outdoor areas 

n a( )  (units of inverse square meters) across the service area, where n a( )Δa  is the number of SFR 

parcels with outdoor areas in the incremental range a  to a+Δa : ΔW = ′′w p a( )ℓ a( )n a( )Δa . Taking 

the limit Δa→0  and integrating, we arrive at the following simple model for total water savings:  

W = ′′w p u( )ℓ u( )n u( )du
amin

amax

∫          (1) 

The variable u  is a dummy integration variable and the limits of integration amin  and amax  (units 

of square meters) represent the range of outdoor areas of interest: 

The unit water savings ′′w  captures the influence of local climate (K. Sovocool & 

Morgan, 2005), cultural preferences for outdoor plants (Hurd, Hilaire, & White, 2006; 

McClintock, Mahmoudi, Simpson, & Santos, 2016; Nassauer, Wang, & Dayrell, 2009), and 

water use behavior (K. Sovocool & Morgan, 2005; K. A. Sovocool et al., 2006) on the water 

savings realized when a unit area of lawn is replaced with drought tolerant landscaping; for their 

service area, IRWD adopts a value of ′′w =1711 liters per square meters per year. The 

participation probability increases linearly with outdoor area, p a( )= bp +mpa ; the slope ( , units 

of inverse square meters) and intercept ( bp , unitless) in this expression depend on the owner 

occupancy status of an SFR parcel and the range of outdoor areas of interest (Figure 2.5a). 

Likewise, the lawn area that a resident replaces with drought tolerant landscaping increases 

mp
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linearly with outdoor area, ℓ a( )= bℓ +mℓa ; the slope (mℓ , unitless) and intercept ( bℓ , units of square 

meters) do not depend on owner occupancy status (Figure 2.5b). Finally, the number-

distribution of outdoor areas, n a( ) , follows a log-normal distribution (solid black curve in Figure 

2.5c). Substituting these results into equation (1), our model predicts that owner and non-owner 

occupied SFR parcels in the IRWD service area should achieve a total water savings of 134 and 

9.8 ML per year, respectively (see Appendix C for details). These model predictions are within 

22% of the estimated water savings for these two groups, calculated by summing up the lawn 

areas replaced and multiplying by ′′w =1711  liters per square meters per year (163 and 12 ML 

per year for owner and non-owner occupied parcels, respectively).  

 One advantage of equation (1) is that it can simulate “what if” scenarios. For example, 

returning to the equity concern mentioned above, we can ask: how would the rebate program’s 

overall water savings change if IRWD “flattened out” the participation probability curve by 

moving to a fixed cash rebate? To simulate this scenario, we decreased the initial slope mp  of the 

participation probability curve while holding the average service area participation probability 

constant at 3.3% (consistent with the average participation probability reported for owner 

occupied SFR parcels in Figure 1.1b). Surprisingly, the model predicts very little change in 

overall water savings (from 133 to 123 ML per year) as the initial slope is reduced from the 

value inferred from IRWD’s dataset (mp =1.22×10−4  m-2) to a completely flat line (mp =0  m-2). 

The reason for this, evident in Figure 2.5d, is that a small reduction in the participation of SFRs 

with large outdoor areas is balanced by an increase in the participation of many more SFRs with 

small outdoor areas; recall, the number-distribution of outdoor areas in IRWD’s service area is 

positively skewed by virtue of being log-normally distributed (Ang & Tang, 2007).  
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Thus, according to the model, there is no inherent trade-off between equity and water 

saving goals. However, it remains to be seen if financial incentives alone can alter the shape of 

the participation probability curve and, even if this were possible, other factors (e.g., 

administrative costs for water managers associated with vastly more rebate inspections) might 

make such a change impractical. Research is presently underway to extend equation (1) to 

address additional factors known to influence the success of cash-for-grass programs, including 

temporal variability (e.g., associated with news coverage of drought (Hollis, 2016; Quesnel & 

Ajami, 2017)), demand hardening (Lund, 1995), and neighborhood adoption effects (Graziano & 

Gillingham, 2014; Pincetl et al., 2017). 
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CHAPTER 3 

Turf Patch Distribution Study 

3.1 Introduction 

In early 2017, IRWD commissioned a study to produce a high-resolution GIS land use 

classification dataset that delineates the locations, boundaries, and areas of ten distinct land use 

categories. In this chapter, I examine the size distribution of individual “turf patches” associated 

with single-family residences (SFRs) in the Irvine Ranch Water District (IRWD) service area in 

Orange County, California. Due to the fixed unit rebate and the large capital costs of landscape 

retrofits, there may be little financial incentive to replace small turf patches. My working 

hypothesis is that much of the turf area in the service area is associated with small patches and 

that large turf patches have already been converted to drought-tolerant landscaping, resulting in 

“demand hardening” or a decreasing participation rate from an ever-smaller group of potential 

participants (Lund, 1995). By isolating for the category of turf patches and generating 

distributions from these data, we can begin to understand the existing turf landscape and the 

potential of demand hardening in the service area. The results described in this chapter could 

help water managers improve future implementation of their turf rebate programs and provide 

alternative metrics of success beyond total area of turf grass replaced. 

3.2 IRWD Land Use Classification Dataset 

As mentioned above, IRWD commissioned a land use classification study in February 

2017. In the first part of the study, IRWD hired a consulting firm called Eagle Aerial Solutions to 

collect 3-inch resolution LiDAR topographic information for the IRWD service area. From May 

to June 2017, Eagle Aerial conducted aerial flyovers over the entire service area, covering an 
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area of approximately 181 mi2 or 469 km2. Quantum Spatial (QSI) then converted the aerial 

imagery data into a Digital Elevation Model (DEM) and used Near-Infrared-emphasized raster 

symbology (NIR) to distinguish vegetation cover and artificial turf (Quantum Spatial, 2017) (see 

Figures D.1 and D.2). Using proprietary software, QSI delineated ten land use categories, 

delivered to IRWD in the form of GIS shapefiles, which were then shared with me for the 

purpose of this study. These categories are: (1) Impervious Surface, (2) Swimming Pools, (3) 

Irrigated Landscape - Non-Turf, (4) Irrigated Landscape - Lawn/Turf, (5) Natural 

Lands/Vegetation, (6) Irrigable - Potentially Irrigated, (7) Artificial Turf, (8) Horse Corrals and 

Arenas, (9) Open Water, and (10) Agriculture (Quantum Spatial, 2017). 

3.3 Theoretical Framework 

This study seeks to characterize and analyze the turf size distribution in relation to the 

range of turf areas that are included in IRWD’s turf rebate program. We begin by carefully 

laying out a mathematical framework for analyzing the turf size distribution. Let 		n a,t( )da  

represent the number of all turf patches in the IRWD service area with areas in the range 	a  to 

	a+da . The function 		n a,t( )  is a turf area distribution function (units: number of turf patches per 

area), analogous to the particle size distribution function used to describe the state of aggregation 

in a coagulating suspension (for example, see (Grant, Kim, & Poor, 2001)).  We have included 

time 	t  in the argument of the turf area distribution function in recognition of the fact that the 

distribution will change with time as turf grass is replaced with drought tolerant landscaping. 

Note that 		n a,t( )  is not a probability density function (PDF), because it does not integrate to unity. 

However, a PDF can be easily constructed from the turf area distribution function by dividing by 

the total number of turf patches in the IRWD service area, 		Ntotal t( ) : 		 fa a,t( ) = n a,t( ) Ntotal t( ) . The 
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PDF of turf area		 fa a,t( )  has units of inverse area; the quantity 		 fa a,t( )da  can be interpreted as the 

fraction of all patches of turf in the IRWD service area with sizes in the range 	a  to 	a+da . 

Depending on the analysis of interest, we will use either 		n a,t( )  or 		 fa a,t( )  to describe the 

distribution of turf patch sizes. 

A complication that we may run into is that turf patches may vary in size by several 

orders of magnitude (e.g., from 1 to 100 m2, or larger).  In this case, it is convenient to represent 

the turf area distribution function on a logarithmic (base 10) basis, as follows: 

		

dNtotal
d log10a

=2.303dNtotal
d lna =2.303adNtotal

da
=2.303an a,t( )   

where 
		
n a,t( )≡ dNtotal t( )

da
 

The last equation follows from the definition of the turf area distribution; i.e., the number 

of patches with areas in the range 	a  to 	a+da .   

An empirical turf area distribution function 		n a,t( )  can be easily constructed from the list 

of turf patch areas exported from ArcGIS (see Section 3.4) using standard procedures for the 

construction of histograms (e.g.,(Ang & Tang, 2007)). This empirical distribution of turf patch 

sizes is of immediate practical interest, because it allows us to estimate: (1) the total turf area 

associated with SFRs in the IRWD service area; (2) the total water savings that could be realized 

if all of that turf was replaced with drought tolerant landscaping; and (3) the fraction of (1) and 

(2) that is currently included in IRWD’s turf rebate program. 

The total turf area available for replacement (item 1 above) can be obtained by simply 

summing all of the turf patch areas exported from the ArcGIS step above, or more formally, by 

taking the first moment of the empirical turf area distribution function: 
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Amax t( ) = an a,t( )

0

∞

∫ da   

The corresponding maximum water savings can be obtained by multiplying the total turf 

area by an estimate of the per unit area water savings achieved by replacing turf grass with 

drought tolerant landscaping, here denoted by the variable 	 ′′w  (the double prime indicates per 

unit area). For example, IRWD uses values in the range of 		 ′′w =1002  to 	1711  liters per square 

meter per year (Tull, Schmitt, & Atwater, 2016). We can imagine cases where 	 ′′w  might vary 

with turf area (e.g., small turf patches may lose more irrigation water from overspray, compared 

to large turf patches, and thus the small patches would be subject to greater water savings, all 

else being equal). However, in the absence of any other information we will assume that same 

per unit area water savings applies across the spectrum of turf areas.  In that case, the maximum 

annual water savings that can be achieved by replacing all turf in the IRWD service area is given 

by the following equation: 

		
Wmax t( ) = ′′w an a,t( )

0

∞

∫ da  

Again, we recognize that this maximum annual water savings is a function of time, 

depending on when the patch area distribution is assessed (e.g., from the LiDAR aerial survey 

mentioned earlier).  In other words, 		Wmax t( )  represents the maximum additional annual water 

savings that could be achieved if all turf area existing at time 	t  was replaced with drought 

tolerant landscaping.   

IRWD’s turf rebate program restricts the range of turf areas that are eligible for a rebate. 

This raises the question: what fraction of the total turf area - and potential annual water savings 

- is IRWD capturing in its turf rebate program? If a large fraction of the turf area falls below 

IRWD’s minimum eligibility threshold (		amin ) and/or above their maximum threshold (		amax ) for 
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rebates, then under the best of circumstances (for example, assuming 100% program 

participation) the resulting water savings will fall short of 		Wmax . Indeed, the fraction of turf area (

		 farea ) and potential annual water savings (		 fwater ) captured by IRWD’s turf rebate program can be 

calculated from the empirical turf area distribution function as follows: 

		

farea t( ) = fwater t( ) =
an a,t( )

amin

amax

∫ da

an a,t( )
0

∞

∫ da
 

In writing this last result, and consistent with our earlier discussion, we have assumed 

that the per unit area water savings 	 ′′w  does not vary with turf patch size. One of the primary 

contributions of this study will be to determine what range of turf patch sizes that should be 

targeted, if the goal is to maximize the total turf area replaced and annual water savings realized. 

To contextualize these results, we will work with IRWD staff to understand what factors led 

them to adopt specific threshold values of 		amin  and 		amax  , and also explore potential 

complications associated with including turf patches smaller and larger than 		amin  and 		amax , 

respectively (e.g., given budget and staff constraints, it may not be feasible to process and 

inspect hundreds to thousands of turf rebate applications for very small turf patches).  

3.4 Methods 

To produce the necessary GIS data for this study, we queried a GIS parcel shapefile 

updated as of October 29, 2018 (data provided by IRWD), which contains a plethora of built 

environment information at the parcel scale for every parcel within the IRWD service area. In 

this query, we first isolated the variables that represented the parcel type and imposed a 

definition query to filter the data so that only SFR parcels remained. From this subset of the data, 
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we then imposed an additional constraint so that vacant lots were not included either. Then we 

filtered the data even more so that parcels with incomplete information would be excluded. 

Because lot size represents the area of the parcel and is therefore an important piece of 

information in this shapefile, we imposed an additional definition query so that the parcels with 

lot size of 0 would be excluded. We also excluded those parcels with no information for the year 

that the structure was built to account for the possibility that the parcel may be zoned as 

residential but may not actually have a physical structure on the property. Of the 60,528 SFR 

parcels, a total of 1,138 parcels (or 1.88% of the SFR parcels) lacked sufficient “lot size” or 

“year built” data and were therefore excluded from the analysis. The remaining 59,390 SFR 

parcels were used to later produce the empirical turf patch distribution. 

Within the land use classification layer, we applied a definition query to isolate turf 

patches only. Then, using Spatial Join tools within ArcMap (Esri, ArcGIS version 10.5, 

Redlands, California). We intersected the filtered SFR parcel layer (containing 59,390 SFR 

parcels) with the filtered land use classification layer (containing only turf patches) based on 

location, yielding a new GIS layer that displays only turf patches within the filtered SFR parcels. 

We then exported the turf patch data into IGOR Pro, where we sorted the turf patches by area, 

then plotted histograms of the empirical turf patch size distribution. The following sections go 

into more depth about the results and implications of the empirical turf patch distribution. 

3.5 Key Results 

 Our key results point to interesting features of the IRWD turf patches that are not readily 

apparent. Of 1.74 million turf patches within the IRWD service area, only 91,700 of them fall 

within SFR parcels (see Figure 3.1).  
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Figure 3.1. SFR turf patches in the IRWD service area 

Over 1.7 million distinct turf patches were identified in the IRWD land use classification dataset. 

When intersected with the locations of SFR parcels in the service area, results yielded only 

91,700 turf patches within the SFR parcels (about 5% of the total number of turf patches). 

 

Using an empirical distribution of turf patches (see Figure 3.2), we focus on three 

different thresholds. The first corresponds to turf patches that are less than 250 ft2 (IRWD’s 

minimum requirement for participation in their turf rebate program). The second corresponds to 

turf patches that are greater than 1500 ft2 (IRWD’s maximum for participation in their turf rebate 

program). The last corresponds to the turf patches that fall within the IRWD program limits, 

between 250 and 1500 ft2.  
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Figure 3.2 Empirical turf patch distribution 

The empirical turf patch distribution, where the turf patch area on the x-axis is log-transformed 

due to a range spanning over 8 orders of magnitude. The left axis shows the number of patches, 

corresponding to the patch size PDF (solid blue line). The right axis displays the cumulative 

probability corresponding to the patch size CDF (dotted black line). The red vertical lines denote 

eligibility limits for IRWD’s turf rebate program: participants must retrofit at least 250 ft2 of turf 

grass (minimum) and no more than 1500 ft2 (maximum). 

 

Among those 91,700 SFR turf patches, the number of turf patches smaller than 250 ft2 

vastly outnumbers patches larger than 250 ft2. In fact, 72% of the turf patches are smaller than 
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250 ft2. However, when summed, these small turf patches comprise just under 20% of the total 

SFR turf area (about 5.06 million ft2). The majority of the turf patch area is associated with a 

very small percentage of the turf patches. Only 0.07% of the SFR turf patches (or 64 individual 

turf patches) are larger than 1500 ft2 (the IRWD maximum limit for turf rebates), yet they 

comprise 13% of the total SFR turf patch area (about 3.66 million ft2). We also learn that only 

30% of the SFR turf patches fit within the bounds of the IRWD turf rebate program (250 to 1500 

ft2, see dashed red vertical lines in Figure 3.2), comprising 67.6% of the total SFR turf patch 

area (about 17.3 million ft2). This fraction was mentioned earlier in Section 3.3 as farea , the 

fraction of turf area that is captured by IRWD’s turf rebate program. 

Using equations outlined in Section 3.3, we can quickly calculate 		Amax  and 		Wmax  using 

the empirical turf patch distribution and IRWD’s unit water savings value of 		 ′′w =1711  liters per 

square meter per year. For the 91,700 SFR turf patches, 		Amax =2.42	x 	10
6  m2 and 

		Wmax = 4.13	x 	109  L/year.  

Participation in IRWD’s turf rebate program resulted in approximately 130,000 m2 of 

drought tolerant landscaping, leading to an estimated water savings of 22.2 x 106  L per year. 

However, this accounts for less than 1% of the potential water savings if all SFR turf patches 

were converted to drought tolerant landscaping. Even if all of the turf patches within IRWD’s 

eligible range were converted, the resultant water savings would be at most two-thirds of the 

potential water savings. The implications of these fascinating results could reframe the 

conversation about water savings and participation in turf rebate programs. To capture even more 

water savings, IRWD should consider inclusion of turf patches outside of their eligibility range. 

3.6 Discussion and Policy Implications 



 60 
 

Although residents can convert multiple turf patches on their property, understanding the 

distribution of individual turf patches may illuminate gaps in participation from residents that 

own a particular turf patch size. For example, under IRWD’s turf rebate program guidelines, 

SFR parcels with total turf area less than 250 ft2 are only eligible to participate if the entirety of 

the turf area is replaced with drought-tolerant landscaping, forcing residents to face an “all-or-

nothing” decision. More often than not, the capital costs associated with turf retrofit projects 

include fixed costs independent of the size of the turf area (IRWD, personal communication). 

Therefore, the cost per area for a smaller retrofit project may be prohibitively high. 

Considering that the majority (over 70%) of the SFR turf patches are below the minimum 

requirement for eligibility in the IRWD turf rebate program, one may wonder how to effectively 

design the program and by what metric of success IRWD should consider. If that metric relied on 

the percentage of participants relative to the population (e.g., 2.6% of SFRs participated), IRWD 

may be inclined to focus their efforts on large-scale marketing campaigns designed to persuade 

more residents to participate. Conceivably, IRWD may be more focused on participation by 

numbers in an effort to promote widespread shifts in cultural norms for outdoor landscaping 

(Hurd, 2006; McClintock, Mahmoudi, Simpson, & Santos, 2016; Nassauer, Wang, & Dayrell, 

2009). Perhaps their aim is to engage their customers in these programs to promote a culture of 

water efficiency. Yet when pressured during a drought or by regulatory requirements to conserve 

more water, IRWD’s larger priority may be to reduce water demand within the service area or 

shift water use away from outdoor irrigation. In this case, a better metric of success could be the 

relative turf area removed. IRWD may preferentially target certain residents with large turf 

patches (who were otherwise eligible), such as the 64 individual turf patches that together 

comprise 13% of the total SFR turf patch area. Given the limitations of the IRWD staff to 
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process turf rebate applications and conduct inspections, this approach may be spur more water 

savings in a shorter period. However, because of the relative rarity of these large turf patches, 

demand hardening is also a problem for future water conservation. When large turf patches are 

no longer available, a shift towards reducing barriers of participation for residents with very 

small turf patches (perhaps by introducing different rebate structures) could be the next logical 

target for the turf rebate program. Although this chapter does not characterize the ideal turf 

rebate program structure, it does introduce a framework to allow water managers to modify their 

programs depending on their priorities, limitations, and goals whether the emphasis is on water 

conservation, broader participation, or landscape transformations. 

Additionally, over 1.6 million turf patches in the IRWD service area are associated with 

non-SFR parcels. The 91,700 SFR turf patches make up only 3.79% of the total turf area. Despite 

the emphasis in this thesis on SFR turf rebates, it’s undeniable that the vast majority of the turf 

area in the service area resides elsewhere. Turning attention to other places where turf resides is 

another important step towards attaining long-lasting water savings in this urban setting.  

The methodology applied in this paper could very well be scaled up to larger regions, 

such as the service area of the Metropolitan Water District of Southern California (MWD), a 

wholesaler and the largest supplier of treated water in the United States, serving 19 million 

people across 26 cities and retail suppliers (Metropolitan Water District of Southern California). 

Considering the hundreds of millions of dollars spent on turf rebate programs during the last 

major drought in California (Matt Stevens, 2015), the results of this work could help inform 

policy reform on local and regional scales where turf rebate programs are implemented. By 

understanding where and what type of turf patches are lacking program participation, water 

managers can develop strategies to better address specific audiences and hopefully cultivate 
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more participation in the turf rebate program. 
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CHAPTER 4 

Summary, Conclusions, and Future Research 

4.1 Summary and Conclusions 

In this thesis, I focus on urban water sustainability from the perspective of reducing urban 

water demand through turf rebate programs. During my time at UC Irvine, I completed three 

major studies. The first is described in Chapter 1, where I discuss the village-level spatial 

patterns of participation in the IRWD turf rebate program, as well as temporal patterns of 

participation and their parallels with mass media coverage on the California drought. From the 

analysis, we show that two key variables – “home age” and Google Trends search rates for the 

term “turf rebate” – account for 96% of the spatial and temporal variability in participation 

probability, respectively. The analysis draws a connection between temporal patterns of IRWD 

turf rebate program participation and Google Trends, which serves as a proxy for California 

Governor Jerry Brown’s unprecedented emergency drought proclamations, mass media coverage 

of the California drought, and local water conservation and education programs (such as 

IRWD’s) that provided an outlet for residents to participate in local water conservation. Similar 

connections between water conservation and mass media coverage have been described in other 

studies (Quesnel & Ajami, 2017). 

Chapter 2 is an analysis that explores the spatial patterns of participation probability of 

the IRWD turf rebate program at the parcel scale, employing several sources of built 

environment, demographic, and political GIS data to do so. Using a machine learning algorithm 

called CART (classification and regression trees), a forest of 33 decision trees were generated 
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from the participation status and the explanatory variables of the SFR participants and an equal 

number of randomly chosen non-participants. 70% of these decision trees split the dataset 

according to whether a SFR parcel is owner-occupied or not (first node) followed by whether the 

parcel’s outdoor area is greater than 164 m2 or not (second node, Figure 2.4a). Furthermore, 

results show that participation probability is three times higher for owner occupied SFRs and 

increases monotonically with larger outdoor areas across all SFRs. Lawn area replaced also 

increases with outdoor area – on average, 10 – 15 % of a resident’s outdoor area is replaced with 

drought tolerant landscaping. We also see that the number-distribution of outdoor areas follows a 

log-normal distribution (positively skewed). Because the highest participation probabilities are 

skewed towards parcels with higher household incomes and larger outdoor areas, we explore a 

scenario wherein we introduce a fixed cash rebate in an effort to encourage more equitable 

participation. Using a simple water savings model (see Section 2.4.5), we predict very little 

change in water savings, attributable to the fact that reduced participation from SFRs with large 

outdoor area is balanced by higher participation from many more SFRs with small outdoor area. 

Thus, this example demonstrates the potential for alternative rebate structures to improve equity 

and still achieve considerable water savings. Of course, there may be other factors that make 

such an alternative rebate structure suboptimal (such as the additional administrative burden on 

water managers to conduct more inspections and process more rebate applications), but this 

serves as an interesting framework for exploring alternative structures of the existing turf rebate 

program. 

In Chapter 3, I describe the turf patch distribution study and potential implications for 

program implementation and policy reform for turf rebate programs generally. After laying out a 

theoretical framework and constructing an empirical turf patch distribution, I find that less than 



 65 
 

one percent of the potential water savings is captured by participation in the turf rebate program 

thus far. Moreover, even if all the SFR turf patches that fall within IRWD’s eligibility range (250 

to 1500 ft2) were converted to drought tolerant landscaping, the resultant water savings captures 

only about two-thirds of the total potential water savings. This then leads to a discussion on the 

potential water savings under different scenarios and alternative metrics of success to help water 

managers improve their turf rebate programs. 

Outdoor water conservation programs are well-funded programs and extremely common 

in times of drought. Their dynamics are of high interest to water managers. My dissertation is 

focused on the spatial and temporal patterns of turf rebate programs for the IRWD service area, 

but the analysis could be scaled up to a larger region, such as southern California or even the 

entire arid Southwest. Collaborations with economists and water managers could provide more 

insight into increasing the amount of turf replaced through turf rebate programs. 

4.2 Topics for Future Study 

The analysis completed on the turf rebate program was illustrative to me as a researcher. 

Not only did it provide a real-world application to the spatial, temporal, and statistical analysis 

tools that I used to complete this work, it also opened up a universe of further questions and 

topics of future study. In this section, I describe three potential directions for future research that 

build on my thesis. 

4.2.1 Parcel scale analysis of turf rebate programs at larger scales 

In and of itself, the parcel scale analysis in Chapter 2 is a very interesting study. It also 

demonstrates a generalizable approach and the relatively easy accessibility of the source data 

(i.e., parcel-scale data from the county tax assessor, voting data, and census block group data). 

Though the results pointed to owner occupancy and a certain outdoor area size as the most 
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important variables in participation probability, it begs the question whether that is also true for 

other regions. Therefore, the next step in this vein of work is to facilitate a larger-scale analysis 

to evaluate whether these results still hold true or whether other drivers will emerge. More 

importantly, in the second iteration of this analysis, an additional variable should be included – 

the cost of water. IRWD employs a tiered rate structure in which the first tier (corresponding to 

small amounts of water use) has the lowest water rates (dollars per volume of water), the second 

tier (corresponding to larger amounts of water use) has a higher unit price, and so on. It would be 

an interesting study to replicate this approach for a study area that has a different water rate 

structure.  

Authors of a recent study on turf rebate programs in southern California noted a critical 

need for research looking at the factors determining a resident’s participation in cash-for-grass 

programs, including “building density, lot sizes, and other characteristics” (Pincetl et al., 2019). 

The comparison between IRWD’s results and those of a larger study area, like the service area of 

the Metropolitan Water District of Southern California (a wholesaler and the largest supplier of 

treated water in the United States, serving 19 million people across 26 cities (Metropolitan Water 

District of Southern California) could illuminate both commonalities and distinct differences 

between drivers of participation probability in each study area. It would also be interesting to 

complete a similar analysis for a region that has vastly different climate or cultural norms around 

outdoor landscaping. Such comparisons across different regions could draw out important 

distinctions that could help water managers in those regions tailor their turf rebate programs 

based on the drivers influencing their local area. 

4.2.2 Demand hardening in turf rebate programs 

Water managers are keenly aware of “demand hardening” in which efforts to induce 
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water conservation become progressively more difficult over time because the pool of potential 

participants shrinks as more residents complete the program. We can think of two fundamental 

causes of demand hardening. First, among the target population there will be a distribution of 

interest and willingness to participate in the turf rebate program. As individuals opt into the 

program, they leave behind a more “hardened” population that is less likely to participate. From 

the perspective of our modeling framework, we would say that the participation probability is, 

itself, distributed amongst the population, and the mean value of 	p  declines over time.  Second, 

generally speaking, customers that have previously applied for a rebate are not eligible to apply 

for a rebate again; i.e., they will have already replaced their turf grass. Because the pool of 

eligible applicants within any village, and within the IRWD service area as a whole, is finite, this 

“sampling without replacement” leads to a reduction in the rate at which turf rebates are 

awarded, even if the probability an individual will apply for a rebate remains constant over time. 

The influence of sampling without replacement can be seen in the formula we derived earlier (in 

Chapter 1) for the total number of turf rebates received from the i -th village by the j -th month:   

		
Ni , j = nSFR ,i pi ,k

k=1

j

∑ − pi ,k ×Ni ,k−1
k=1

j

∑       (1) 

Here, sampling without replacement manifests as the second term on the right hand side of 

equation (1), and has the effect of slowing the rate at which turf rebates are awarded over time; 

i.e., it is another mechanism of “demand hardening” that does not require the probability 		pi , j  to 

decline with time. 

 This paper could bring out these two mechanisms of demand hardening, illustrate their 

relative influence with our probability model (equation (1)), and use the IRWD dataset to 

evaluate the evidence for and against each of these mechanisms. For example, we would expect 
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that demand hardening from the “sampling without replacement” mechanism will only be 

significant when the fraction of the population participating in the turf rebate program is 

relatively high. Importantly, our modeling framework can reveal at what participation fraction 

we would expect to begin seeing a sampling without replacement effect—a result we can 

compare directly. If participation in IRWD’s turf rebate program is far below that threshold, then 

presumably any hardening that is occurring at present is due to the first mechanism; i.e., a 

decline in the participation probability over time. 

         Because IRWD is a model for other water agencies in the region – and because the State of 

California has recently modified water use efficiency legislation for water agencies statewide 

(California State Assembly, 2018), the results of this paper could inform Californian water 

conservation policy reform and provide quantitative feedback on how to improve broader 

participation in outdoor water conservation measures. 

4.2.3 Structural vs. non-structural water conservation 

We can categorize water conservation into two broad categories – structural and non-

structural. Structural water conservation (also called “water use efficiency”) involves changes to 

the built environment that result in less water used in the long term, e.g., water-efficient 

showerheads or drought tolerant landscaping. This type of water conservation typically involves 

an upfront capital cost (such as installation of a new appliance or retrofit of an existing appliance 

or landscape) but largely does not involve day-to-day conscious effort to sustain the water 

conservation. On the other hand, non-structural water conservation involves changes to behavior 

that are typically temporary, e.g., taking shorter showers or skipping car washes during a 

drought. My hypothesis is that the turf replacement is a structural water conservation measure 

because there is minimal reversion (the threshold defining minimal reversion to be addressed 
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later). 

I will test this hypothesis by evaluating reversion rates and how those rates vary by 

village. To do this, I will first filter the IRWD land use classification GIS layer to isolate the 

“Irrigated Landscape - Non-Turf” landscape category, then intersect that with another GIS layer 

that shows the location of SFRs in the service area. This yields a GIS layer that shows the 

location of SFR irrigated non-turf patches. Then I will compare the post-inspection area 

(measured by IRWD staff) of turf retrofits of the program participants between October 2010 and 

March 2017 with the corresponding amount of irrigated non-turf patches on their properties in 

the IRWD landscape classification GIS layer. After preliminary analysis, I will impose a buffer 

(to be decided in consultation with IRWD staff) to account for inaccuracies in the classification 

data. Then I will graph the post-inspection areas of the turf retrofits versus the irrigated non-turf 

patches from the land use classification data. If the post-inspection areas are more than the buffer 

radius but smaller than the irrigated non-turf patches for that particular residence, then it is a 

potential site of “reversion” back to turf grass. Other factors may play a role in the post-

inspection areas being smaller than the irrigated non-turf patches, an aspect which warrants 

further exploration. 
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APPENDIX A 

Obstacles to Wastewater Reuse: an Overview 

Abstract 

With growing water scarcity worldwide, reclaimed wastewater is an increasingly 

attractive option for meeting household water demand, especially in urban areas. However, 

reluctance by households to use treated wastewater persists. In this article, we discuss the ‘yuck 

factor,’ health risk concerns, and cost considerations, which are key obstacles to wastewater 

reuse by households. We then summarize successful and unsuccessful case studies of wastewater 

reuse around the world. Reasons for the success (or failure) of each case study draws upon 

unique contextual, historical, and cultural circumstances. Direct potable reuse—where purified 

wastewater is added to the potable water supply directly—is rare; most successful projects are 

nonpotable wastewater reuse schemes—where purified water is placed into an environmental 

buffer before entering a drinking water distribution system. Our review of experiences around 

the world suggests approaches for improving public acceptability of wastewater reuse schemes. 

The literature also suggests that there is an urgent need to collect more wastewater treatment and 

reuse data, to research ways of better assessing and reducing health risk associated with 

emerging pollutants in reclaimed wastewater, and to better price both drinking water and 

recycled wastewater. 

Text A.1. Introduction 

As outlined in a recent United Nations report (United Nations Development Program, 

2006), clean water is essential to human development; yet over one billion people do not have 

access to clean water and 2.6 billion people lack access to adequate sanitation. Reasons for this 
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dire situation include poverty, inequality, and flawed water management policies that exacerbate 

scarcity (United Nations Development Program, 2006). As the cheapest natural sources of 

freshwater have already been tapped and given projected increases in urban populations 

combined with global climate change (McDonald et al., 2011; United Nations, 2014), it is 

essential to use existing water resources more efficiently (e.g., by reducing leaks and managing 

demand) and to find new sources of water. Although there are other alternatives such as 

desalination, one of the most promising options for increasing water supplies is to reuse 

wastewater (water whose quality has been adversely affected by human activities), especially in 

urban areas where most of the world’s population is now concentrated (United Nations, 2014). 

In this article, we call ‘treated wastewater’ wastewater that has been treated to a quality 

suitable for beneficial reuse. It is common to distinguish between greywater—wastewater 

generated from laundries, showers, bathtubs, and hand basins (but typically not kitchen sinks)—

and blackwater that includes human waste (Allen, Christian-Smith, & Palaniappan, 2010). It is 

also important to distinguish between direct potable reuse—where purified water is introduced 

directly into a potable water distribution system or into the raw water supply just upstream of a 

water treatment plant—and indirect potable reuse—where purified water is discharged into an 

environmental buffer for some time before it is withdrawn for potable uses (George 

Tchobanoglous, 2011). Reusing wastewater allows better matching the quality of water with its 

use; it yields economic benefits (by deferring additional water infrastructure) and environmental 

benefits (by reducing or postponing the withdrawal of water from the environment) (Bruvold, 

Olson, & Rigby, 1981; Grant et al., 2012). 

Wastewater has de facto long been reused indirectly after being discharged in rivers 

upstream of communities, but this reuse has been implicit. Although it has been reclaimed, 
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recycled, and reused in many parts of the world for centuries, as evidenced by the elaborate 

infrastructure of the Minoan civilization (Angelakis & Spyridakis, 1996), explicit wastewater 

reuse has mostly been for irrigating crops. This practice is attractive because it provides both 

water and nutrients, whose value may exceed the value of the water itself (Dalahmeh & Baresel, 

2014). However, there are a number of other uses for reclaimed wastewater, including industrial 

applications, environmental uses, and urban uses.  

Industrial use of treated wastewater is especially important in sectors that require a large 

volume of water for uses such as cooling, including the manufacturing of metals, paper, and 

plastics; in that case, treatment is needed to avoid rusting, biological fouling, and scale 

formation(Rebhun & Engel, 1988). Environmental uses include supplementing stream flows to 

sustain aquatic life, supplying water to wetlands, and recharging aquifers. Residential uses 

include outdoor uses such as irrigating parks, golf courses, and gardens, as well as indoor uses 

for flushing toilets, and—depending on water quality—cleaning vehicles and washing clothes. 

Treated wastewater can also be used for firefighting or for melting snow. The purpose of this 

article is to explore what is known about obstacles to wastewater reuse, with an emphasis on 

households. Starting with keyword searches in Google Scholar and in databases such as Water 

Resources Abstracts and the Web of Science, and then extending our search based on citations 

and cited papers, we attempted to review more recent sources and to provide a broader 

geographic coverage than currently available papers that provide an overview of obstacles to 

wastewater reuse (Asano, 2005; Hochstrat, Wintgens, Melin, & Jeffrey, 2006; Khan, Schäfer, & 

Sherman, 2004; Po, Nancarrow, & Kaercher, 2003).  

A review of the literature on wastewater reuse suggests that the main obstacles to treated 

wastewater reuse by households include public acceptance (the so-called ‘yuck factor’), 
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perceptions of risks from reclaimed wastewater, and cost concerns (Po et al., 2003). We examine 

these issues in turn before summarizing some salient case studies. The last section summarizes 

lessons learned. 

Text A.2. The Yuck Factor 

To gain public acceptance for wastewater reuse, it is critical to overcome instinctive 

disgust, also called the ‘yuck factor,’ i.e., repugnance triggered by the idea of consuming the 

water that was once flushed down a toilet. In their exploration of the nature of disgust, Curtis and 

Biran (Curtis & Biran, 2001) argue that it can best be understood as an evolutionary mechanism 

to defend against infectious diseases.  

The phrase ‘yuck factor’ is attributed to the bioethicist Arthur Caplan who coined it to 

describe instinctive aversion against new technologies (Schmidt, 2008); it has also been invoked 

to explain public opposition to genetically modified foods, animal or human cloning, and 

pollution trading programs. It may combine instinctive disgust (reaction to drinking recycled 

wastewater, for example) with moral aversion to having humans tamper with the natural order 

(Schmidt, 2008). According to Marks(J. S. Marks, 2003), the rejection of reclaimed 

wastewater—especially for drinking—clashes with cultural norms that over the past century and 

a half have called for separating the supply of drinking water from the removal of sewage.  

The ‘yuck factor’ has been invoked at least since the 1970s as an obstacle to wastewater 

reuse by households in public perception studies, with ‘psychological repugnance’ and concerns 

over ‘purity’ as the most frequently cited reason for opposing the use of reclaimed wastewater in 

California (Bruvold & Ward, 1972). Similar concerns have been recorded in countries around the 

world, but not to the same degree, which suggests that geographical—and cultural—differences 

matter. For example, a recent survey of households in Kuwait (Alhumoud, Behbehani, & 
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Abdullah, 2003) found that the top two reasons why 96% of respondents oppose using reclaimed 

wastewater for human use (regardless of its quality) are health risks (69%) and psychological 

repugnance (44%). In contrast, in her 2004–2005 survey of urban Australians, Marks (J. Marks, 

Martin, & Zadoroznyj, 2008) found that nearly three-quarters of respondents would be willing to 

use recycled water for various household purposes (including drinking), although most would do 

so with some reservations.  

The intended use of reclaimed wastewater matters: in general, most studies of public 

acceptance of reclaimed wastewater agree that people are open to considering recycled water if it 

involve limited personal contact, such as watering public parks or nonedible plants in their 

gardens, but they are reluctant to adopt it for personal uses such as showering, cooking, or 

drinking (J. Marks et al., 2008).  

Approaches to win over public support include public education (Bruvold & Ward, 1972) 

(the public needs to be informed about water scarcity and the safety of reclaimed wastewater), 

wide participation by all stakeholders (Ashley, Souter, & Hendry, 2001), and marketing 

techniques (Dolnicar & Saunders, 2006). The Australian experience also suggests that the 

effectiveness of public campaigns by water agencies is enhanced by support from recognized 

experts and from a heightened sense of water scarcity triggered by a crisis (Dolnicar & 

Hurlimann, 2009). Viewing the ‘yuck factor’ as part of the social norms surrounding water 

issues, Ching (Ching, 2010) explains how the stigma associated with wastewater reuse was 

removed in Singapore by renaming it ‘NEWater,’ and by ensuring consistency in official 

discourses that emphasized the importance of ‘NEWater’ for continued economic growth and 

increased independence from Malaysia (Dingfelder, 2004). 
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Russell and Lux (Russell & Lux, 2009) contest the usefulness of framing the public 

debate about reclaimed wastewater around the notion of disgust. They critique psychometric 

methods, attitude causation models, and theories of disgust that claim the existence of an 

intrinsic response to reclaimed wastewater. To more effectively engage the public, they advocate 

instead a sociology-grounded cultural approach that examines local practices of water provision 

and waste handling to understand mismatches between current practices and proposed changes in 

wastewater reuse. Overall, they recommend interactive forms of consultation and education that 

enable people to develop their opinions on specific wastewater reuse projects. 

Text A.3. Health Risks 

The ‘yuck factor’ evokes the fear of pathogens and contamination, both of which can 

adversely impact health and well-being, so let us now examine what is known about health risks 

linked to wastewater reuse and their perception by the public. 

Text A.3.1. An Overview of Health Risks 

Concerns about wastewater reuse are currently centered on microbiological pathogens 

and pharmaceuticals/ personal care products (PPCPs). The latter include any health (prescription 

and over-the-counter therapeutic drugs), cosmetic (e.g., hair colorant, lipsticks, or fragrances), or 

personal care (e.g., deodorants, shampoos, or toothpaste) products used by people, or products 

used by agribusiness to enhance the growth and health of livestock (e.g., veterinary drugs such as 

antibiotics and steroids) (United States Environmental Protection Agency, 2010).  

For microbial pathogens, the risk of water-borne infection depends on the quantity and 

dispersion of bacteria in the water, as well as the susceptibility of the exposed population and the 

amount of treatment prior to exposure. Because microbial pathogens are randomly distributed, 

detection can be very difficult and risk assessment may overestimate the actual risk in order to 
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safeguard against possible infections. Intestinal parasites can also pose substantial risk when 

human fecal matter serves as a fertilizer for growing vegetables (Toze, 2006).  

The importance of PPCPs’ contribution to the combined load of chemicals in the 

environment has been recognized relatively recently (United States Environmental Protection 

Agency, 2010) and many questions remain about pathways to exposure, bioavailability and 

uptake, effects characterization, and risk, not to mention how to prioritize research among the 

thousands of chemicals in PPCPs (Boxall et al., 2012). It is now widely acknowledged that 

PPCPs enter the environment via many pathways, including treated wastewater from municipal 

treatment plants, hospital effluents, runoff from livestock activities, landfill leaks, or sludges 

spread on soils as fertilizers (Vulliet & Cren-Olive, 2011). 

Analyses have shown that concentrations of PPCPs in reclaimed wastewater are usually 

quite small. Although low concentrations typically do not pose any acute risks to human health, 

they may drastically affect other living organisms: e.g., the exposure to a synthetic estrogen of a 

fish population resulted in the feminization of males and near extinction of the population in just 

two years (Kidd et al., 2007). Long-term exposure to low doses of pharmaceuticals may present 

unknown adverse effects (Rabiet et al., 2006). Moreover, these effects may worsen over time as 

treated effluent becomes more concentrated due to increasing population density, a wider use of 

pharmaceuticals, and a decrease in dilution during droughts, or as various pharmaceuticals 

interact (Vulliet & Cren-Olive, 2011).  

Antibiotics and hormones are particularly of concern. For the former, 30–90% of 

antibiotic doses pass through the human body as urine and find their way into sewage. 

Antibiotics in wastewater encourage the proliferation of resistant bacteria, which can breed 

widespread resistance (Costanzo, Murby, & Bates, 2005), hinder the performance of microbial 
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organisms during nitrogen fixation in aquatic ecosystems, and inhibit microbial processes in 

wastewater treatment(Le-Minh, Khan, Drewes, & Stuetz, 2010). Hormones have already been 

found in large enough concentrations to create a risk for human health (Vulliet & Cren-Olive, 

2011).  

For information about environmental and health risks related to urban stormwater 

harvesting, see (Jiang, Lim, Huang, McCarthy, & Hamilton, 2015).  

Text A.3.2. Overcoming Health Risks 

A first step for understanding human health risk linked to microbial pathogens in 

reclaimed wastewater is to assess the magnitude of this risk for various concentrations and types 

of pathogens; this is the purpose of quantitative microbial risk assessment (QMRA) (Haas, 

2002). QMRA includes five steps: identifying pathogens of concern, assessing exposure, 

modelling dose–response relationships, characterizing risk by integrating results of the first three 

steps, and managing risk (Haas, 2002). QMRA is the recommended procedure for assessing 

required pathogen reductions in wastewater used in agriculture (World Health Organization, 

2006). Applications of QMRA to crops irrigated with reclaimed wastewater are becoming 

increasingly popular (Barker et al., 2013; Hamilton, Stagnitti, Premier, Boland, & Hale, 2006; 

Mara & Sleigh, 2010; Mok & Hamilton, 2014). 

After assessing the acceptable concentration of pathogens for a specific use, wastewater 

can be treated appropriately. The most common and effective barrier against microbiological 

pathogens is treatment and disinfection. The level of treatment depends on the source of water, 

the potential for fecal contamination and for contact with people (Toze, 2006). Recycled water 

treated to a standard below the tertiary level should not be used for purposes that involve direct 

human contact because it may still contain pathogens. Reverse osmosis and ozonation often 
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effectively remove antibiotics. Activated sludge processes also effectively remove antibiotics 

and pharmaceuticals, especially with longer retention times (Le-Minh et al., 2010; Rabiet et al., 

2006). Wastewater treatment processes, such as clarification, disinfection, and granular-

activated-carbon filtration, treat organic compounds, such as caffeine or pharmaceuticals to 

nondetectable levels (Stackelberg et al., 2007).  

Risk can also be minimized by imposing physical barriers between recycled wastewater 

and human contact, such as restricting irrigation, barring access to areas where lower-quality 

water is used, and processing goods watered with recycled wastewater (Toze, 2006). 

Testing for unregulated contaminants, such as pharmaceuticals, can help policymakers 

establish priorities for future monitoring (Stackelberg et al., 2007). Because the long-term effects 

of many compounds are unknown and not all chemicals-of-concern may have been identified 

(Toze, 2006), more data, analysis, and regulations are necessary to properly assess risk from 

unregulated contaminants and to develop mitigation strategies (Rodriguez-Mozaz & Weinberg, 

2010). 

Text A.3.3. Risk Perception 

Given the scientific uncertainty about some potential health risks of reclaimed 

wastewater and the complexity of the environmental fate of the pollutants it contains, it is not 

surprising that public perceptions of risks do not agree with expert assessment. In fact, a 

literature review indicates that risk perception issues dominate community acceptance of 

alternative water sources (Mankad & Tapsuwan, 2011). 

Social scientists rely on three main approaches to model risk perception by the public (J. 

Marks et al., 2008). The first approach (labeled scientific-objective) considers risk as an 

objective phenomenon that can be scientifically identified and measured; it has been adopted by 



 79 
 

engineers, economists, and some psychologists (Slovic, 1987). Researchers who rely on this 

approach to study public perceptions of risks have reported that risks tend to be more acceptable 

to the public if they are visible, familiar, voluntary, controllable, fair, forgettable, and if their 

impacts are experienced quickly rather than in an uncertain future (Fischhoff, Slovic, & 

Lichtenstein, 1982; Gould et al., 1988; Marris, Langford, & O'Riordan, 1996). 

Proponents of the second approach (labeled here cultural-relativist) believe instead that 

risk perception is better understood as a reflection of broader social processes embedded in 

cultural and historical environments (Douglas, 1986; Douglas & Wildavsky, 1983; Lash, 1994). 

For Douglas (Douglas, 1986) in particular, the acceptability of risk involves complex factors that 

include moral and ethical judgments, aesthetic dimensions, and the symbolic nature of ‘purity’, 

‘danger’, ‘pollution’, and ‘dirty’. For her, the latter is better understood as a cultural construct 

that reflects a specific social order rather than as a reflection of hygienic knowledge. People are 

more likely to reject what they perceive to be ‘out of place.’  

The third approach (labeled realist) partly bridges the other two (Beck, 1995; Beck, Lash, 

& Wynne, 1992). It sees merit in the empirical assessment and calculation of risks but 

acknowledges that these objectively measured risks may not reflect actual public perceptions of 

these risks, which are colored by mistrust of experts, limited understanding of very complex 

situations, and, in some cases, fear.  

In recent years, a number of studies have assessed public perceptions of risks linked to 

wastewater reuse. In the UK, e.g., Jeffrey and Jefferson (Jeffrey, Jefferson, & Iwa Programme, 

2003) found that people were more willing to reuse their own wastewater rather than wastewater 

from a pooled source. This finding also applies to the United States, where Hartley (Hartley, 

2006) reported that people are more accepting of wastewater reuse when the degree of human 
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contact is minimized, public health is promoted, and the reclaimed water is not associated with 

wastewater. In Australia, Marks (J. Marks et al., 2008) found that the realist view, which is often 

adopted by water professionals and policymakers, and even more so the scientific-objective view 

have limited applicability to understand public acceptance of wastewater recycling. In contrast, 

the cultural-relativist interpretation of different forms and uses of water appears consistent with 

expressed opinions about water recycling. The importance of health concerns and the complexity 

of perceptions are further illustrated by results of a survey of urban residents’ attitudes towards 

wastewater reuse in Israel, where some long established and safe uses such as orchard irrigation 

received less support than higher contact alternatives (Friedler, Lahav, Jizhaki, & Lahav, 2006). 

Text A.4. Cost Concerns 

One major obstacle to (centralized) wastewater recycling is the cost of the infrastructure 

needed (i.e., pipes, sensors, water meters, and pumps) to bring this water where it can be 

productively used. Another potential problem is how to price reclaimed wastewater to make it 

attractive to potential users (who may be concerned about its potential risks) while recovering the 

fixed costs to treat and transport it.  

Several studies have examined household willingness-to-pay (WTP) for reclaimed 

wastewater (Blamey, Gordon, & Chapman, 1999; Dupont, 2013; Gibson & Burton, 2011; 

Hurlimann, 2009; Tapsuwan, Burton, Mankad, Tucker, & Greenhill, 2014). Results show that 

WTP depends on the intended use of this water, on available alternatives, and on the occurrence 

of a crisis. For example, Blamey et al. (Blamey et al., 1999) report that households in Australia’s 

Capital Territory have a negative WTP for reclaimed wastewater used for combined indoor and 

outdoor uses. Gibson and Burton (Gibson & Burton, 2011) obtain a similar result in Perth for 

potable water supply augmentation. However, WTP becomes positive for outdoor purposes 
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(Blamey et al., 1999) and when the proposed wastewater reclamation project is seen to be fairer 

than alternatives (e.g., desalination) (Gibson & Burton, 2011). Encouragingly, Hurlimann 

(Hurlimann, 2009) found that office workers in Victoria (Australia) have a WTP for recycled 

wastewater equal to several times the cost of drinking water if it allows them to avoid severe 

drought restrictions. In Canada, Dupont (Dupont, 2013) estimated that households are willing to 

pay approximately a 30% premium over average annual water bills for recycled wastewater used 

to flush toilets if it allows them to avoid summer water restrictions. A recent study (Tapsuwan et 

al., 2014) suggests, however, that household WTP (in Queensland Australia) may not be 

sufficient to cover the cost of greywater systems, even in severe drought conditions.  

The study conducted by Menegaki et al. (Menegaki, Hanley, & Tsagarakis, 2007) in 

Crete (a Mediterranean island) is particularly enlightening. They surveyed farmers for their 

willingness to use and pay for recycled wastewater for irrigation, and consumers for their 

willingness to use and pay for products irrigated with that water. They found that the labelling of 

reclaimed wastewater (‘recycled water’ vs ‘treated wastewater’) impacted: (1) the willingness-to-

use recycled wastewater by farmers and the resulting products by consumers and (2) the WTP 

for these products by consumers but not the WTP of reclaimed wastewater by farmers (i.e., 

respondents were much more willing to use and pay for ‘recycled water’ than for ‘treated 

wastewater’). This result suggests that successful marketing strategies for reclaimed wastewater 

need to take into account the cultural background of potential consumers. In another study in 

Crete, Genius et al. (Genius, Menegaki, & Tsagarakis, 2012) evaluated farmers’ willingness to 

pay for a local wastewater treatment plant. They found that farmers valued the possibility of 

additional irrigation water (from treated wastewater) and that their willingness was positively 
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influenced by water shortages in the region. However, some farmers preferred the status quo 

over constructing a wastewater treatment plant because of cost concerns. 

To stimulate the use of recycled wastewater, subsidies could be provided (Genius et al., 

2012; Mekala, Davidson, Samad, & Boland, 2007). Unfortunately, nearly 40% of water utilities 

around the world have rates that are too low to compensate for operational and maintenance 

costs (Sergio Jellinek, 2006). Although subsidized prices are meant to provide greater 

accessibility to meet basic sanitary needs, low water tariffs often do not benefit the poorest 

segment of the population in developing countries, because its members are often not connected 

to the water distribution network and they pay much more for water than more affluent 

households (Genius et al., 2012). In this context, subsidizing recycled wastewater so it can 

compete with drinking water would further degrade the financial health of water utilities. 

A better approach would be to first price freshwater appropriately, which entails 

balancing economic efficiency, revenue sufficiency for water utilities, political feasibility, and 

fairness (Hanemann, 1997). To reconcile these conflicting objectives, Hall (Hall, 2009) 

recommends two-part tariffs (as in Coase (Coase, 1946)) for different homogeneous groups 

based on observable characteristics such as climate zone and lot size (which are correlated to 

outdoor water use) and family size (linked to indoor water use). The price in the higher block 

equals the long-term marginal cost of water (inclusive of all relevant costs, including 

environmental costs), and the price in the lower block is designed to cancel monopoly profits. 

The threshold between the two tier-prices is chosen so that on average, different homogeneous 

groups (e.g., based on lot size and climatic sub-areas as in Los Angeles) pay a similar amount for 

water for political feasibility reasons (see Hall (Hall, 2009), p. 540). 
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Reclaimed wastewater could then be priced with respect to this benchmark, based on 

WTP; incentives may be considered in the short run to entice potential users to overcome their 

apprehensions. A recent study in Israel illustrates the complexity of finding the right price for 

recycled wastewater (Lawhon & Schwartz, 2006). 

Text A.5. Case Studies 

This section briefly reviews various case studies of wastewater reuse, starting with the 

United States (California and Florida) and Australia. Table A.5.1 presents an overview of 

obstacles to wastewater reuse by households and how they were addressed. In many countries, 

treated wastewater is used mostly for crop irrigation, environmental applications, and industrial 

activities, but not to increase the supply of drinking water because of the ‘yuck factor,’ fear of 

health risks, and inappropriate regulations. In low-income countries, only 8% on average of 

wastewater is treated (Sato, Qadir, Yamamoto, Endo, & Zahoor, 2013), and approximately 80% 

of the treated wastewater produced is used for irrigation (India, 2007). 

Table A.5.1 Overview of Obstacles to Wastewater Reuse by Households and How They 
Were Addressed 
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23, 
70 

Brisbane, 
Queensland
, Australia 

X   Public Acceptance:  
• perceived lack of choice: respondents in 

Brisbane, who were asked about their 
opinions of drinking recycled water, 
claimed they would probably have no 
choice (Dolnicar & Hurlimann, 2009) 

• Premiere of Queensland issued a statement 
in 2007 to authorize recycled water for 
drinking supplies without a consultation 
process, citing emergency situation of dam 
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levels below 40%(Beattie, 2007) 
• predicted climate variability for the region 

to result in lower rainfall than in past 
(Beattie, 2007) 

71 Melbourne, 
Australia 

X   Public Acceptance:  
• aggressive government campaigns 

broadcasting severity of Millennium 
Drought invoked urgency of the water 
shortage and necessity of alternate water 
sources, such as wastewater recycling 
(Low et al., 2015) 

• severe potable water restrictions for 
outdoor use encouraged acceptance of 
alternative water sources (Low et al., 2015) 

• Victorian government issued education 
programs for schools and homes (Low et 
al., 2015) 

 
72 Hong Kong X   Public Acceptance:  

• demonstration scheme in Sheung Shui, 
which provided reclaimed water for local 
residents, schools, and communities (Yue 
& Tang, 2011) 

24 Singapore X X X Public Acceptance (Ching, 2010): 
• partnership between water agency (PUB) 

and political officials 
• strong support from media outlets 
• decreased dependence on imported water 

from Malaysia 
• consistent terminology and positive 

message between political leaders and 
water officials 

• NEWater bottled in attractive packaging 
• Public education campaign through 

NEWater Visitor Centre 
 

Perceptions of Risk:  
• terminology changed from “wastewater” to 

“NEWater” to avoid invoking “yuck 
factor” 

• advanced new water technologies 
emphasized 

• indirect potable reuse instead of direct 
potable reuse 

• detailed science behind treatment processes 
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presented 
• successful wastewater reuse projects 

elsewhere emphasized 
 
Cost Concerns:  

• sixfold price increases for imported water 
from Malaysia spurred Singapore to 
develop its own water sources 

• after inception, media reports focused on 
new water recycling technologies that 
would produce NEWater at a cheaper price 

73-
75 

Orange 
County, 
California, 
USA 

X X X Public Acceptance: 
• reduced dependence on imported water 

(Markus & Deshmukh, 2010) 
• GWRS managers emphasized benefits of 

protecting local groundwater (Markus & 
Deshmukh, 2010) 

• network of openly supportive health 
officials, water officials, and local 
politicians (Markus & Deshmukh, 2010) 

 
Perception of Risks: 

• public tours of facility allow visitors to see 
the technology working in real time 
(Orange County Water District (OCWD)) 

• injection of treated water into groundwater 
recharge basins remove association with 
“yuck factor” (Orange County Water 
District (OCWD), 2014) 

• water quality monitoring (Orange County 
Water District (OCWD), 2014) 

• research laboratory for developing new 
technologies (Orange County Water 
District (OCWD), 2014) 

 
Cost Concerns: 

• water produced at the GWRS costs less 
than half of that of imported water from 
Northern California (Markus & Deshmukh, 
2010) 

76, 
77 

Windhoek, 
Namibia 

X X  Public Acceptance: 
• water demand management campaign with 

media coverage (du Pisani, 2006) 
• lack of alternatives due to few water 

resources (du Pisani, 2006) 
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Perception of Risks: 
• regular water quality monitoring and 

testing (du Pisani, 2006) 
• school visits at the local water reclamation 

plant (Rygaard, Albrechtsen, & Binning, 
2009) 

• student projects related to wastewater reuse 
(Rygaard et al., 2009) 

• state-of-the-art facilities to ensure high 
quality standards (du Pisani, 2006) 

 

Text A.5.1. The Americas 

In the United States, wastewater is reused mostly in drier areas (e.g., Arizona, California, 

Colorado, and Texas) or in growing areas experiencing strained water supplies (e.g., Georgia and 

Florida) (Hartley, 2006). 

Motivated by droughts, saltwater intrusion in coastal aquifers, and difficulties meeting a 

soaring water demand, Florida currently produces the most recycled wastewater of any state 

(Parsons, Sheikh, Holden, & York, 2010). It began reusing wastewater in 1977 after the Wilson-

Grizzle Act mandated that wastewater discharges into Tampa Bay must meet drinking water 

standards. In 2013, Florida’s 482 domestic wastewater treatment plants provided recycled 

wastewater for public access areas (54%), industry (17%), groundwater recharge (14%), 

agriculture (10%), and other uses (5%) (Florida Department of Environmental Protection (FDEP) 

Water Reuse Program, 2014). Florida’s success with recycled wastewater was bolstered by fewer 

irrigation restrictions on reclaimed water during droughts and no reported illnesses related to its 

agricultural uses (Parsons et al., 2010). 

Although it has the largest population of any state in the U.S. and it was a pioneer in the 

use of recycled wastewater, California is in second place (669,000 acre-feet in 2009 (California 

Environmental Protection Agency, 2012) vs 746,900 acre-feet for Florida in 2008 (Parsons et al., 
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2010)) by volume for recycled wastewater, which is used for agriculture (37%), landscape and 

golf course irrigation (24%), groundwater recharge (12%), industry, and prevention of seawater 

intrusion (7% each) (California Environmental Protection Agency, 2012; Parsons et al., 2010).  

California has known successes and failures for reclaiming its wastewater. Selected 

examples of the latter include the Bay Area Water Recycling Program, the Dublin San Ramon 

Clean Water Revival, and the City of Los Angeles East Valley Water Reclamation Project (Po et 

al., 2003). San Diego also experienced pain with its wastewater reclamation projects. Following 

fierce opposition to an indirect potable reuse scheme in the 1990s and legal requirements to 

reclaim its wastewater, it proposed instead a direct potable project. Strong public opposition 

(which rallied around the ‘yuck factor’) led to the abandonment of this project. Several reasons 

explain this failure: public concerns were not adequately addressed; the project appeared to serve 

predominantly a minority area, leading to accusations of environmental racism; and experts aired 

publicly conflicting opinions (Hartley, 2006).  

Some of California’s most successful wastewater reclamation projects were implemented 

in Orange County in southern California. In 1976, the Orange County Water District (OCWD) 

began injecting treated wastewater in coastal aquifers to halt saltwater intrusion (Water Factory 

21). In the 1990s,OCWD partnered with the Orange County Sanitation District (OCSD) to build 

a new facility that produces 70 millions of gallons per day (MGD) of drinkable water for both 

halting saltwater intrusion and recharging a local aquifer (See Text A.5.1.1.). This facility—the 

Groundwater Replenishment System—which began operating in January 2008, has won a 

number of awards and is known for excellent public outreach (Markus & Deshmukh, 2010). 

In Canada, wastewater is reused at a relatively small scale with regional variations that 

depend on water supply availability and regulatory flexibility (Schaefer, Exall, & Marsalek, 
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2004); in Alberta, e.g., reclaimed wastewater cannot be used inside buildings (Authority). 

Indeed, even though Canada has abundant water resources (Sullivan, 2002), many municipalities 

regularly experience water shortages. The main applications of treated wastewater include crop 

irrigation, golf course and urban landscape irrigation, and toilet flushing (Exall, Marsalek, & 

Schaefer, 2006).  

In Latin America, few water reclamation projects have been implemented (Bixio et al., 

2005). Over 500,000 ha of agricultural land are irrigated with raw wastewater (Van der Bruggen, 

2010), but the lack of treatment makes it unsafe. According to the Pan-American Health 

Organization, the percentage of wastewater treated before it is discharged in the environment is 

under 14% in the region (Van der Bruggen, 2010). 

Text A.5.1.1. GWRS: A California Success Story 

The success of the Groundwater Replenishment System (GWRS) highlights the 

importance of active community involvement. In 1976, the OCWD, which supplies potable 

water to over 2 million people, began injecting treated wastewater into the coastal edge of its 

groundwater basin to halt saltwater intrusion. However, in the 1990s, more water was needed. At 

the same time, the ocean outfall of the OCSD was nearing capacity. An opportunistic partnership 

formed between OCWD and OCSD: it freed some capacity in OCSD’s ocean outfall pipe by 

diverting some treated wastewater to a new facility (the GWRS) that created a reliable source of 

drinking water (this water is first injected in the local aquifer to further reassure the public). 

Learning from the failure of other wastewater reuse projects in southern California, GWRS 

project managers highlighted the benefits of protecting local groundwater, the need to reduce 

Orange County’s dependence on imported water, and forged a coalition of health officials, water 

officials, and politicians in support of the GWRS, detracting attention away from the yuck factor 



 89 
 

(Markus & Deshmukh, 2010). They emphasize transparency by encouraging public visits, which 

continue to this day (Orange County Water District (OCWD)). With a production of 70 million 

gallons of water per day (MGB), which is enough to supply almost 600,000 people, the GWRS is 

the world’s largest water purification system for indirect potable reuse (Orange County Water 

District (OCWD), 2014). An expansion, scheduled to be completed by 2015, will increase its 

capacity to 100 MGD(Orange County Water District (OCWD)). 

Text A.5.2. Australia 

In Australia, a number of cities have successfully implemented wastewater reuse 

schemes. Adelaide sources some of its water (through indirect potable reuse) from the Murray 

River, which receives treated wastewater from several rural communities(Cullen, 2004). In 

Brisbane, the Queensland Government announced in 2007 the implementation of an indirect 

potable reuse scheme, skipping the consultation process altogether (Beattie, 2007; Dolnicar & 

Hurlimann, 2009). In New South Wales, two coastal towns (Gerringong and Gerroa) share a 

wastewater treatment plant that can yield up to 80% of recycled water. This water provides 

irrigation water for a local dairy farm’s pasture and discharges the remainder to local receiving 

waters. High quality water in this coastal region is important because it is a popular tourist 

destination with beaches and local streams (Boake, 2006). For an overview of Melbourne’s 

reliance on reused wastewater, see Low et al. (Low et al., 2015) 

Despite several successful cases, Australia has also experienced some failed wastewater 

reclamation projects. In July 2006, e.g., Toowoomba (in Queensland) held a referendum to 

decide on the construction of an indirect potable wastewater recycling plant. Residents voted 

against the scheme after media coverage mentioned the ‘yuck factor’ (Dolnicar & Hurlimann, 
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2009). This project’s failure was attributed to cultural and management issues, and to a lack of 

support from some local political leaders. 

Text A.5.3. Asia 

In Asia, Japan started experimenting with wastewater reuse in 1951 for an industrial 

paper mill in Tokyo. Large-scale reuse efforts began in 1964 in response to severe droughts that 

affected several regions of the country (Ogoshi, Suzuki, & Asano, 2001). In spite of this 

relatively long history, only 1.4% of treated municipal wastewater is currently recycled in Japan 

(vs 79% of industrial water) (Hiroki Yamagata). Whereas in most other countries reclaimed 

wastewater is predominantly used to irrigate crops, in Japan wastewater reuse is dominated by 

environmental, nonpotable urban, and industrial applications ((UNEP), 2005): in 2006, the top 

three uses of reclaimed wastewater were (1) enhancing urban streams (32.5%), (2) landscape 

irrigation (27%), and (3) melting snow (18%) (Hiroki Yamagata). However, with the Japanese 

population declining slightly, the volume of reclaimed municipal wastewater has remained stable 

in recent years along with the demand for freshwater.  

Two success stories in Asia deserve special attention, although they may be difficult to 

reproduce elsewhere. The first one is Singapore, which implemented in 2001 a wastewater reuse 

scheme for nonpotable industrial uses, in order to decrease its water dependence on Malaysia. 

The recycled water was branded ‘NEWater’ to remove negative connotations associated with 

‘wastewater.’ By 2003, NEWater provided 1% of Singapore’s water via indirect potable reuse. 

This program owes its success to an emergency situation and publicity campaigns where 

newspapers praised NEWater, touted new water technologies, and highlighted the benefit of 

reduced dependency on Malaysia. Political leaders adopted a consistent message to reassure the 
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public and successful wastewater reuse projects elsewhere were emphasized to underscore that 

recycled water is safe and reliable (Ching, 2010). 

The second success story is Hong Kong. To reduce its reliance on imported water from 

China (Yue & Tang, 2011), Hong Kong broadened its water supply portfolio by using seawater 

for toilet flushing, reusing wastewater, and starting a pilot desalination project. It also 

implemented a three-tier tariff structure for fresh water, required individual meters for 

households, repairs leaks, created education campaigns to foster water conservation, and opened 

a tertiary sewage treatment plant (Yue & Tang, 2011). Overall, Hong Kong successfully coupled 

conservation measures with education and public awareness campaigns to gain acceptance for 

nonpotable wastewater reuse. 

Unfortunately, the wastewater recycling situation is not very bright in the rest of Asia. In 

spite of severe water problems that include institutional weaknesses, low water quality, deficient 

pricing, poor infrastructure, and widespread pollution (India, 2007), India has not done much to 

reclaim wastewater for urban uses, and some attempts at implementing wastewater reclaiming 

have run into public opposition, as in Chennai (K, 2008). 

China began using (mostly untreated) municipal wastewater to irrigate crops in the 

1940s; after a demonstration stage (from 1985 to 2000), the use of reclaimed wastewater picked 

up but low public acceptance has prevented it from becoming widespread (Yi, Jiao, Chen, & 

Chen, 2011). Groundwater pollution is a concern in more than half of China’s major wastewater 

irrigation areas; even though China ranks low in the world for water availability, in 2008 only 

8% of total treated municipal wastewater was reclaimed and reused (Yi et al., 2011). In addition 

to public opposition, obstacles to wastewater reuse in China include: unclear or inconsistent 

water quality standards for reclaimed wastewater (Mok & Hamilton, 2014), inadequate pricing; 
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lack of private sector investment (Yang & Abbaspour, 2007); and insufficient planning for 

wastewater treatment (Yi et al., 2011). 

Text A.5.4. Africa 

In Africa, we found only a few examples of wastewater reclaiming projects, most of 

which focus on agriculture. However, there are a few important exceptions. Indeed, the first 

major potable direct reuse project in the world was built in 1968 in Windhoek, the capital of 

Namibia (a country located along the south-western coast of Africa, north of South Africa) (See 

Text A.5.4.1.) (du Pisani, 2006). After a 2002 upgrade that saw the installation of cutting-edge 

technology, Windhoek’s wastewater recycling plant produces up to 21,000m3/day of high-quality 

drinking water, which represents up to a third of the city’s daily potable water needs (du Pisani, 

2006). Although by all accounts this project has been quite successful, it remains the only large-

scale example of direct potable wastewater reuse in the world (Rygaard, Binning, & Albrechtsen, 

2011). Overall, however, sanitation remains insufficient in Namibia, where two thirds of the 

population (including 298 schools) lacks access to improved sanitation (T, 2014).  

Another exception is Durban, a major industrial city in South Africa, with a history of 

periodic droughts, where high-quality recycled water has been provided for industrial use since 

2001 (Friedrich, Pillay, & Buckley, 2004).  

In Egypt (and a few other Mediterranean countries), an international organization called 

Zer0-M has been providing technology to achieve optimized closed-loop usage of water flows in 

small municipalities without central wastewater treatment (Regelsberger, Baban, Bouselmi, 

Shafy, & El Hamouri, 2007). Apart from these examples, it appears that few African countries 

rely on reclaimed wastewater in spite of the dire water situation on this continent. 
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Text A.5.4.1. Windhoek: The Only Large-Scale Direct Potable Wastewater Reuse System 

In The World 

The City of Windhoek that counts approximately 322,000 inhabitants is located in central 

Namibia, a very arid area that is approximately 465 miles from the closest perennial river 

(Rygaard et al., 2009). Most of Windhoek’s water comes from three reservoirs supplied by 

ephemeral rivers; less than 11% of its water comes from groundwater. Because of the dryness of 

central Namibia (the average annual rainfall is 14.4’, which is a fraction of the annual 

evaporation rate of 136’) (du Pisani, 2006), stringent water restrictions that include bans on 

daytime irrigation, use of outdoor hoses, and car washing, are periodically imposed. Efficient 

water fixtures and appliances are heavily promoted, along with advice on preventing leaky water 

taps. As a result, although Windhoek’s population grew at a 5% rate from 1967 to 2005, its per 

capita water consumption decreased from 315 litres/person/day (lppd) in 1967 to 196 lppd in 

2005 (Rygaard et al., 2009). The public’s initial reluctance to consume highly purified reclaimed 

wastewater was overcome partly by a lack of alternatives but also by an on-going water demand 

management campaign (with coverage in the media and in a municipal newsletter) that 

encourages water conservation. Water quality is monitored and tested regularly to ensure the 

quality of reclaimed wastewater (du Pisani, 2006). Moreover, visits of the water reclamation 

plant are periodically organized for schools, and students are involved in projects related to 

wastewater reuse (Rygaard et al., 2009). 

Text A.5.5. Europe 

Although Europe as a whole is well endowed in water resources compared to other parts 

of the world, marked regional differences explain that almost 70% of Europeans are exposed to 

water stress (excessive abstraction of water given available resources) (Bixio et al., 2006). In this 
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context, the EU published in 2012 the ‘Blueprint to safeguard Europe’s water resources’ to foster 

wastewater reuse for agricultural and industrial purposes because, even though wastewater reuse 

has lower environmental impacts than alternatives such as desalination, it is limited by a lack of 

common standards and concerns about agricultural products irrigated with reused water 

(European Union–Environment, 2014). In Italy, e.g., wastewater recycling is only allowed for 

agricultural purposes, and on the condition that it can increase crop yield (Van der Bruggen, 

2010). 

Based on 2006 data (the latest seemingly available) (Union, 2012), 2.4% of treated 

wastewater was reused in Europe, with high values of 100% and ∼60% in Cyprus and Malta, and 

lows between 5 and 12% in Greece, Italy, and Spain. Almost three-quarters of the treated 

wastewater was used to irrigate crops, and the remainder was almost equally distributed between 

environmental uses, groundwater recharge, industrial applications, and urban uses (but not 

human consumption) (Union, 2012). These numbers hide large regional differences: in the EU 

Mediterranean countries, treated wastewater was used mostly for irrigating crops, whereas in 

Atlantic and continental European countries, reuse occurred mainly for urban, environmental or 

industrial applications.  

Increasing demand (often seasonal in nature, driven by tourism), severe droughts, and 

concerns about climate change are driving the EU to rely more on treated wastewater, but so far 

the focus is on environmental, agricultural, and industrial uses to compensate for drinking water 

restrictions (Union, 2012). Overall, a recent EU report on water reuse concludes that urban 

wastewater reuse is not well understood in Europe, although some coastal areas have been 

experimenting with indirect potable reuse (Union, 2012). 
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Text A.5.6. The Middle East 

In the Middle East, where water scarcity is high, reclaimed wastewater is not used in 

urban areas (except for landscaping) but at least eight countries use it for agriculture. However, 

some raw sewage is still used for irrigation in Egypt, Iran, Lebanon, Palestinian Territories, 

Syria, and Yemen (Radcliffe, 2004). Three countries are at the forefront of wastewater recycling: 

Israel, Jordan, and Kuwait.  

Israel is a world-leader in wastewater reuse for agriculture, not only because it has one of 

the oldest wastewater reuse legislations (1953) but also because its institutions and policies 

instilled confidence in reclaimed wastewater users (Guardiola-Claramonte, Sato, Choukr-Allah, 

& Qadir, 2012; Qadir, Bahri, Sato, & Al-Karadsheh, 2010). The fraction of treated wastewater 

reused is high (∼75%) and makes up a large percentage of its water supply (20% in 1994) (Qadir 

et al., 2010; Radcliffe, 2004); approximately 65% of the connected sewage in Israel is reused for 

irrigation purposes (Van der Bruggen, 2010). Several factors contributed to public acceptance of 

reclaimed wastewater and to its adoption by farmers, including a dearth of alternative water 

resources, technical guidance provided by the government to farmers, and prices that are 20% 

lower than for freshwater (Qadir et al., 2010). In addition, the government has been conducting 

research to address the long-run salinization of groundwater caused by irrigation with reclaimed 

wastewater (Qadir et al., 2010).  

Due to low water availability, Jordan focused early on wastewater recycling, creating in 

1971 a public health framework (which has been updated and improved several times) to foster 

the safe use of reclaimed wastewater (Guardiola-Claramonte et al., 2012). In 1998, 95% of the 

treated wastewater (74 million m3/year) was reused for irrigation; most (∼80%) of the treated 
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effluents were used for irrigation in the Jordan Valley, and the remaining 20% was used on site 

as process water (Radcliffe, 2004). 

Kuwait also has very limited water resources. In 1965, it began treating its wastewater 

that was used to irrigate alfalfa (Alhumoud et al., 2003). In Kuwait, treated wastewater is used to 

irrigate one quarter of crops and green areas using, and to recharge groundwater (Radcliffe, 

2004). In spite of its history of reuse, a recent survey of Kuwait residents showed that over 80% 

of respondents had no basic understanding of wastewater reuse and that over 95% of respondents 

oppose using reclaimed wastewater (Alhumoud et al., 2003). 

For more information about other Middle Eastern countries, see Guardiola-Claramonte et 

al. (Guardiola-Claramonte et al., 2012) and Qadir et al. (Qadir et al., 2010). 

Text A.6. Concluding Remarks 

More than one billion people do not have access to clean water and water scarcity is no 

longer reserved to arid regions. It is becoming more common with population and economic 

growth, combined with poor management, dysfunctional water institutions, inadequate 

infrastructure, and global climate change (McDonald et al., 2011; Rygaard et al., 2011; Yi et al., 

2011). This stark reality highlights the need for reliable new sources of water. Reclaimed 

wastewater can fulfill this role (especially for uses that do not require drinking water), and it can 

help reduce water pollution. The idea of reusing wastewater is not new, but explicit reuse is far 

from achieving its potential to augment insufficient water supplies, especially in urban areas.  

A number of obstacles remain before recycled wastewater can become a full-fledged 

component of the residential water portfolio. These include public acceptance, public attitudes 

towards risk, and costs. Public acceptance is also conditional on trust in water authorities, a 

factor we did not focus on herein, but that was examined repeatedly in the literature (Hartley, 
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2006; J. S. Marks, 2003, 2006; Po et al., 2003). Because of the specificities of each community 

and of each wastewater reuse project, there is no magic bullet for solving water supply problems 

worldwide (J. S. Marks, 2006), but certain key features are essential to the success of a 

wastewater reuse project. 

First, to be effective public outreach needs to use multiple methods of communication to 

manage different types of information; there should be equal access to information with 

messages adapted to the target audience; and it is critical to have an open, fair, and transparent 

process to motivate citizens to participate actively in the decision-making process (Hartley, 

2006). As emphasized by Marks (J. S. Marks, 2006), effective public consultation involves 

respectful deliberation that promotes community involvement and attempts to provide 

meaningful answers to community concerns, as opposed to the strategic communication 

approach based on ‘Decide, Advise, Defend’ that is often employed to market a project to the 

public, reducing participation to tokenism. The case studies covered in this review exhibit many 

methods of communication that contributed to acceptance of wastewater reuse, such as: positive 

media coverage in Singapore (Ching, 2010) and Windhoek (du Pisani, 2006); support from 

political leaders in Orange County, California (Markus & Deshmukh, 2010), Singapore, and 

Hong Kong (Yue & Tang, 2011); publicity campaigns by water agencies and their partners in 

Orange County, Singapore, Hong Kong; and education campaigns, as in Orange County, Hong 

Kong, and Windhoek.  

Second, the need for using reclaimed wastewater should be clearly explained and 

motivated (Bruvold & Ward, 1972; J. S. Marks, 2006; Yue & Tang, 2011). As shown in the case 

studies summarized above (Beattie, 2007; Ching, 2010; du Pisani, 2006; Guardiola-Claramonte 

et al., 2012; Qadir et al., 2010), successful wastewater reuse projects were often conceived and 
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realized during a water crisis that forced people to leave their comfort zone and decision makers 

to think creatively (Dolnicar & Hurlimann, 2009).  

Third, it is critical for a wastewater reuse project to have the full support of the scientific 

community and of health experts in particular, as was the case, e.g., for successful projects in 

Orange County, California (Markus & Deshmukh, 2010) and in Hong Kong (Yue & Tang, 2011) 

It is also essential for elected officials to be unified in their support, as in Singapore, where 

political figures publicly supported the NEWater project (Ching, 2010). In other cases, such as in 

Sydney, Australia (2005) and San Diego, California (1990s), the lack of consistency in public 

officials’ support led to confusion and uncertainty in the public, which allowed emotional disgust 

reactions (such as the ‘yuck factor’) to prevail (Ching, 2010; Hartley, 2006).  

In addition, pricing needs to be right both for drinking water and for reclaimed 

wastewater (Sergio Jellinek, 2006; Yi et al., 2011; Yue & Tang, 2011). Drinking water subsidies 

prevent reclaimed wastewater from being cost competitive (Mekala et al., 2007). Controversy 

over who pays also complicates pricing: should the polluter pay for creating reusable wastewater 

or should the beneficiary pay for reclaimed wastewater (Lawhon & Schwartz, 2006)? A sound 

and progressive regulatory framework is also necessary for successful wastewater reuse projects. 

The lack of such frameworks may account for the paucity of successful wastewater recycling 

schemes in Europe, where there is no uniform standards for water reuse (European Union–

Environment, 2014), and in Canada, where water reuse regulations are left to provinces (Exall et 

al., 2006; Schaefer et al., 2004). 

Finally, detailed information about wastewater recycling projects in other jurisdictions 

around the world would help inform managers of water utilities, regulators, and the public. 

Unfortunately, information about wastewater generation, treatment, and reuse is severely lacking 
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for most countries (Sato et al., 2013). Without adequate data about treatment and reuse, e.g., the 

health risks that may arise from wastewater reuse cannot be assessed. The lack of water to serve 

a rapidly growing population (McDonald et al., 2011) and competing interests among 

agriculture, urban use, and industry highlight the urgent need for more data and analysis (Sato et 

al., 2013). 
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APPENDIX B 

 
 

Figure B.1. Histogram of the fraction of single-family residences (SFRs) retrofitted  

This histogram shows the fraction of SFRs that participated in the rebate program from the 52 

villages included in this study. The distribution is positively skewed with a skewness coefficient 

of 	θ =0.934 . 

 

 

 

 

 

 

25

20

15

10

5

0

N
um

be
r o

f V
illa

ge
s

0.080.060.040.020.00
Fraction of SFR Retrofitted

Average
(0.0205)



 108 
 

 

 

 

 

 

 

 

 

Figure B.2. Predicted vs. observed Ni,j 

The Bernoulli trial model for turf retrofit applications captures 96% of the variance in the 

cumulative number of applications received from the i-th village by the j-th month (		Ni , j ). Here, 

the cumulative applications received from 42 villages in the IRWD service area (vertical axis) 

are compared with the number of applicants predicted by equations (6a) and (6b) in Chapter 1.  

Cross plot of observed vs. predicted 		Ni , j  (red points) for 42 villages in the IRWD service area. 

The diagonal line represents a one-to-one relationship. A total of 3276 points (representing 

different combinations of months and villages) are included in this plot. 

300

200

100

0

ob
se

rv
ed

 N
ij

200150100500
predicted Nij



 109 
 

 

Figure B.3 Subset 1 of the data included in Figure B.2  

These plots correspond to six of the 42 villages (Baker Ranch, Cal Homes, College Park, Crystal 

Cove, Culverdale, and Cypress Village). The diagonal lines represent a one-to-one relationship. 

(Note that the axes have been adjusted to reflect the data range). 

2.0

1.5

1.0

0.5

0.0

ob
se

rv
ed

 N
ij

2.01.51.00.50.0
predicted Nij

Baker Ranch
25

20

15

10

5

0

ob
se

rv
ed

 N
ij

2520151050
predicted Nij

Cal Homes

35

30

25

20

15

10

5

0

ob
se

rv
ed

 N
ij

35302520151050
predicted Nij

College Park
8

6

4

2

0

ob
se

rv
ed

 N
ij

86420
predicted Nij

Crystal Cove

15

10

5

0

ob
se

rv
ed

 N
ij

151050
predicted Nij

Culverdale
3.0

2.5

2.0

1.5

1.0

0.5

0.0

ob
se

rv
ed

 N
ij

3.02.01.00.0
predicted Nij

Cypress Village



 110 
 

 

Figure B.4 Subset 2 of the data included in Figure B.2 
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These plots correspond to six of the 42 villages (Deane Homes, Deerfield, Foothill Ranch, 

Greentree, Heritage Fields, and Laguna Altura). The diagonal lines represent a one-to-one 

relationship. (Note that the axes have been adjusted to reflect the data range). 

 

Figure B.5 Subset 3 of the data included in Figure B.2 
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These plots correspond to six of the 42 villages (Lake Forest, Lambert Ranch, Laurelwood, 

Newport Beach, Newport Coast, and Northpark). The diagonal lines represent a one-to-one 

relationship. (Note that the axes have been adjusted to reflect the data range). 

 

Figure B.6 Subset 4 of the data included in Figure B.2 
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These plots correspond to six of the 42 villages (Northwood, Oak Creek, Orchard Hills, 

Peppertree, Portola Hills, and Portola Springs). The diagonal lines represent a one-to-one 

relationship. (Note that the axes have been adjusted to reflect the data range). 

 

Figure B.7 Subset 5 of the data included in Figure B.2 
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These plots correspond to six of the 42 villages (Portola Springs North, Quail Hill, Raquet Club, 

Santa Ana Heights, Stone Gate, and The Colony). The diagonal lines represent a one-to-one 

relationship. (Note that the axes have been adjusted to reflect the data range). 
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Figure B.8 Subset 6 of the data included in Figure B.2 

These plots correspond to six of the 42 villages (The Ranch, Turtle Ridge, Turtle Rock, Tustin 

Legacy, Tustin Ranch, and Tustin Ranch North). The diagonal lines represent a one-to-one 

relationship. (Note that the axes have been adjusted to reflect the data range). 
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Figure B.9 Subset 7 of the data included in Figure B.2 
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These plots correspond to six of the 42 villages (University Park, West Irvine, Westpark, 

Willows, Woodbridge, and Woodbury). The diagonal lines represent a one-to-one relationship. 

(Note that the axes have been adjusted to reflect the data range). 
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APPENDIX C 

 

Figure C.1 GIS demographic data overlaid on the IRWD service area boundaries 

Four sets of GIS data used in the analysis for Chapter 2 and Appendix C. (1) Approximately 

60,000 individual SFR parcels are displayed as points (lime green). Regions with no SFR parcels 

are typically zoned as non-residential land for commercial purposes, parks, or wildlife. Regions 

of the map that appear to be solid green are actually densely populated regions with thousands of 

individual parcels. (2) Boundaries of the census block groups are shown (solid blue lines) where 

they intersect with the IRWD service area. SFR parcels that fall within a particular block group 
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are designated with the corresponding census data for that block group. (3) Boundaries of the 

2016 General Election voting precincts are shown (solid magenta pink lines) where they intersect 

with the IRWD service area. SFR parcels that fall within a particular voting precinct are 

designated with the corresponding voting data for that precinct. (4) The IRWD service area 

(thick black line) has an extent of approximately 470 km2 and includes six cities (Tustin, Orange, 

Lake Forest, Costa Mesa, Newport Beach, and Irvine) as well as unincorporated land. 

 

Figure C.2 Outdoor area (m2) vs. median household income (2017 USD) 

Census block group values of median household income increase linearly with county tax 

assessor records of parcel-scale outdoor area. This plot was generated by sorting all 46,913 SFR 

parcels enrolled in our study by outdoor area, binning the parcels into 11 equally sized bins (each 

bin contained 4,264 SFR parcels), and then computing the median household income and 

outdoor area associated with each bin. 
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Figure C.3 CART analysis of parcel-scale participation 

Each tree (A-E) depicts one possible set of best decisions for predicting the participation status 

of parcels. Tree A) was detected most frequently: 70% (A) > 3% (B, C, D) > 1% (E). Trees A) 

and B) include owner occupancy status and outdoor area as predictor variables. Trees C) and E) 

include owner occupancy status and average household size as predictor variables, and Tree D) 

includes owner occupancy status and the percentage of voters who cast ballots for Trump (2016) 

as predictor variables. 
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A supervised machine learning approach called CART (conducted in R (R Core Team, 

2019) using the package rpart (Therneau and Atkinson, 2018)) was used to assess the capacity of 

11 variables (outdoor area, owner occupancy, average household size, median household 

income, median house value, and six voting preferences, including the percent of registered 

voters who voted in the 2016 General Election, and percent of voters who cast ballots for 

Clinton, Trump, Stein, Johnson, and independent candidates in the 2016 Presidential Election) to 

predict resident participation in a cash for grass turf rebate program at the parcel level. The total 

sample contained information from 1,366 residents that participated in the lawn rebate program 

and 44,484 residents that did not. Because this dataset was highly skewed towards 

nonparticipants, CART was performed 33 separate times on subsets of the data; each subset 

contained 1,348 participants and a randomly selected subset of 1,366 nonparticipants. All 33 

classification trees were grown to their maximum possible depth using weighted Gini impurity as 

the node splitting criterion: 

G =
Nk

Nk +Nj

1− pik
2

i=1

c

∑⎡

⎣
⎢

⎤

⎦
⎥+

Nk

Nk +Nj

1− pij
2

i=1

c

∑⎡

⎣
⎢

⎤

⎦
⎥   

 
where 𝑘 and 𝑗 are two daughter nodes of a possible split, 𝑐 is the number of classes (i.e., 2, 

participants and nonparticipants), 𝑝! and 𝑝! are the proportion of residents in class 𝑐 for nodes 𝑘 

and 𝑗, and 𝑁! and 𝑁! are the total number of residents in nodes 𝑘 and 𝑗. The split resulting in the 

smallest Gini impurity across both nodes is the best split. Trees were subsequently pruned using 

leave-one-out cross validation and the smallest tree method, which prunes trees to within 1 

standard error of the minimum misclassification rate under cross-validation.  

 All pruned trees were assessed for consistency in split criteria and splitting order, which 

indicate that splits are meaningful across the entire dataset. Each split was evaluated, starting 

with the first and progressing in order. The first split that was not common to more than 30% of 
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trees was used as a stopping rule; that split and all subsequent ones were excluded from further 

consideration.  

Text C.2 Implementation of the Water Savings Model 

For the calculations described in the main text, the following functional form was adopted for the 

participation probability, p a( )= bp +mpa . Fitting this model to the participation probabilities 

inferred from the IRWD dataset (see Figure 2.5a of the main text) we find that the intercept and 

slope depend on whether SFR parcels are owner occupied or not owner occupied: 

Owner Occupied  

bp =
0,	a<368	m2

0.0449,	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

mp =
1.22×10−4 ,	a<368	m2

0,	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

Not Owner Occupied  

bp =
0,	a<368	m2

0.01455,	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

mp =
3.95×10−5 ,	a<368	m2

0,	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

Likewise, the lawn area replaced with drought tolerant landscaping increases linearly with 

outdoor area, ℓ a( )= bℓ +mℓa , but in this case the slope and intercept are the same, within error, for 

SFR parcels that are owner occupied and not owner occupied. The slope and intercept values 

inferred by fitting the linear equation to the owner-occupied data in Figure 2.5b (which was 

chosen because it had a much larger N  value) is: 
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b
ℓ
= 14.9	m2,	a<547	m2

90.95	m2,	a≥547	m2

⎧
⎨
⎪

⎩⎪
 

m
ℓ
= 0.139,	a<547	m2

0,	a≥547	m2

⎧
⎨
⎪

⎩⎪
 

Finally, we found the number distribution of outdoor parcel areas follows a log-normal 

distribution (Figure 2.5c) which implies that the base-10 log-transformed outdoor area is 

normally distributed, where NT  is the total number of parcels eligible to participate in the rebate 

program: 

n a( )= NT

2πaσ lna

e
−
lna−µlna( )2
2σ lna

2  

Inferred values of the mean and standard deviation of the base-10 log-transformed outdoor area 

values (see black curve in Figure 2.5c in main text) are µlog10a =2.44±0.01  and 

σ log10a
=0.24±0.006 , respectively. Because the independent variable in the number distribution 

above is log-transformed outdoor area, it is convenient to represent the integral over outdoor 

areas (equation (1) in Chapter 2) in the same way, where µlna =5.62±0.02  and σ log10a
=0.55±0.01 : 

W =
′′w ×NT

2πσ lna

×
p u( )ℓ u( )

u
e
−
lnu−µlna( )2
2σ lna

2
du

amin

amax

∫  

The total number of owner occupied and non owner occupied SFR parcels is, respectively, NT =

38,255 and 8,658. We numerically integrated the integral using the Mathematica computing 

package (v. 11.20, Wolfram Research, Inc.) for outdoor areas ranging from amin  = 101.5 = 31.6 

m2 to amax  = 103.5 = 3160 m2. 

Text C.3. Equity versus Water Savings Simulation 
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The simulation described in Chapter 2 was set up as the following. In general form, the 

participation probability function can be written out as: 

p a( )= bp +mpa, 	a<368	m2

pf inal , 	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

Averaging this expression over the range of outdoor areas,  m2 to amax =692  m2 (this 

particular range of outdoor areas was chosen so that pave  equals the observed service area-wide 

participation probability for owner occupied SFRs of 3.3%; see Figure 2.4b in Chapter 2), we 

obtain the following formula for the average participation probability): 

pave =0.525bp +99.2mp +0.475pf inal   

Because pf inal  equals the participation probability evaluated at 		a=368  m2, we can rewrite the last 

expression as follows: 

pave = bp +274mp  

Combining these results, we arrive at a final formula for the participation probability that 

depends only on the service-wide participation probability (		pave =0.33), the outdoor area, and the 

initial slope of the participation probability curve (
	
mp  ): 

p a( )= pave +mp a−274( ) , 	a<368	m2

pave +94mp , 	a≥368	m2

⎧
⎨
⎪

⎩⎪
 

Thus, if we fix the average service-area participation probability for owner occupied homes (

pave =0.033 ), the participation probability function can be represented solely as a function of the 

outdoor area and initial slope mp . This formula was substituted into the integral expression 

amin =10
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above, to determine how overall water savings varied with different choices of the initial slope 

mp  (see main text in Chapter 2). 
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APPENDIX D 

 

Figure D.1. Standard imagery raster RGB and near-infrared-emphasized raster symbology 

Left: Standard imagery raster RGB (red, green, blue) symbology. Right: Near-infrared-

emphasized raster symbology (NIR). The artificial turf patch in the center of the image on the 

right is visibly gray, while the surrounding vegetation is clearly red (Quantum Spatial, 2017). 
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Figure D.2. A flow chart for how the land use classifications were assigned (provided by 
Quantum Spatial). 
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