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Background: B-cell lymphomas are a diverse group of hematological neoplasms with differential etiology and clinical
trajectories. Increased insights in the etiology and the discovery of prediagnostic markers have the potential to improve
the clinical course of these neoplasms.
Methods: We investigated in a prospective study global gene expression in peripheral blood mononuclear cells of 263
incident B-cell lymphoma cases, diagnosed between 1 and 17 years after blood sample collection, and 439 controls,
nested within two European cohorts.
Results: Our analyses identified only transcriptomic markers for specific lymphoma subtypes; few markers of multiple
myeloma (N = 3), and 745 differentially expressed genes in relation to future risk of chronic lymphocytic leukemia (CLL).
The strongest of these associations were consistently found in both cohorts and were related to (B-) cell signaling net-
works and immune system regulation pathways. CLL markers exhibited very high predictive abilities of disease onset
even in cases diagnosed more than 10 years after blood collection.
Conclusions: This is the first investigation on blood cell global gene expression and future risk of B-cell lymphomas. We
mainly identified genes in relation to future risk of CLL that are involved in biological pathways, which appear to be mech-
anistically involved in CLL pathogenesis. Many but not all of the top hits we identified have been reported previously in
studies based on tumor tissues, therefore suggesting that a mixture of preclinical and early disease markers can be
detected several years before CLL clinical diagnosis.
Key words: epidemiology, lymphoma, chronic lymphocytic leukemia, mRNA analyses, prospective cohort
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introduction
Non-Hodgkin lymphomas (NHLs) are a heterogeneous collec-
tion of lymphoproliferative B- and T-cell malignancies [1],
among which B-cell lymphomas [follicular lymphoma (FM),
diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic
leukemia (CLL), and multiple myeloma (MM)] are the most
common [2]. Relatively little is known about NHL etiology [3]
and limited prediagnostic markers are currently known. Global
gene expression investigation of various chronic conditions,
including cancers [4–7], has led to the discovery of molecular
signatures predictive of future risk, survival, or response to treat-
ment. To our knowledge to date, no genome-wide gene expres-
sion studies have been published using peripheral blood
mononuclear cells (PBMCs) to assess the future risk of lymph-
oma and potentially identify transcriptomic profiles reflecting
both the early stages of the disease as well as the influence of
risk factors on lymphomagenesis [8]. Further-more, exploration
of the transcriptomic profiles as a function of time to diagnosis
(TtD) could potentially provide information on gene trajectories
involved in disease development and result in predictive sets of
disease (progression) markers [9].
Within the EnviroGenomarkers project (www.envirogeno

markers.net), we conducted a global gene expression study
using PBMCs from B-cell lymphoma cases collected 1–17 years
before disease diagnosis, and healthy controls nested within two
large European prospective cohorts.

materials andmethods

envirogenomarkers data
The EnviroGenomarkers study was approved by the committees on research
ethics at the relevant institutions. It includes participants from the Italian
component of the European Prospective Investigation into Cancer and
Nutrition [10] (EPIC-Italy, N = 47 749 volunteers aged 35–70) and the
Northern Sweden Health and Disease Study (NSHDS, N = 95 000 healthy
individuals aged 40–60) [11]. Anthropometric measurements, lifestyle
factors, and a blood sample were collected at recruitment (EPIC-Italy 1993–
1998; NSHDS 1990–2006). Incident B-cell lymphoma cases were identified
through local Cancer Registries (loss to follow-up <2%) and occurred
between 1 and 17 years after recruitment. Cases were classified into subtypes
according to the SEER ICD-0-3 morphology [12].

biosamples and genome-wide expression profiles
We recently demonstrated that high-quality RNA can be obtained from
stored PBMC samples from the EPIC-Italy and NSHDS cohorts [13]. We
also showed that samples not cold-stored within 2 h after blood collection
had significantly different expression profiles than fresh samples, and there-
fore only PBMC samples that had been placed in cold storage within 2 h
after blood collection were included in the current study. Gene expression
profiles were acquired using the Agilent 4 × 44K human whole genome
microarray platform.

We analyzed a total of 281 B-cell lymphoma cases and 281 controls
matched on sex, age (±2.5 years), center, fasting status, and date of blood col-
lection (±6 months) in two analytical phases. In addition to the lymphoma
study, the EnviroGenoMarkers project also comprises 100 breast cancer
(BC) case–control pairs (corresponding to 87 and 93 successfully analyzed
cases and controls, respectively), which were added in our B-cell lymphoma
analyses as unmatched controls in order to maximize statistical power. The

final numbers of successfully analyzed samples were 263 B-cell lymphoma
cases and 439 controls (supplementary Table S1, available at Annals of
Oncology online). Technical performance and quality of the microarrays was
assessed according to a protocol described previously [13].

statistical analysis
As proposed before [14], we developed a linear-mixed model controlling for
potential technically induced noise (nuisance variation) and investigated the
relationship between the expression level of each probe and the disease
outcome (see supplementary Section S1, available at Annals of Oncology
online). The general formulation of our mixed model for a given probe
defines its expression level observed in participant i (Yi) as follows:

Yi � aþ b1X
i þ b2FE

i þ uA
i þ[i;

where α is the intercept of the model, εi is the residual error, and Xi is the
outcome of interest, a binary variable indicating if individual i is a B-cell
lymphoma case or not. The resulting regression estimate β1 can be
expressed as the fold-change ( f ) by f = 2β. FEi is a vector of fixed effect
observations for individual i and corresponding regression coefficients are
compiled in the vector β2. Fixed effect covariates included the matching
criteria (age, gender and country), the experimental phase (1 or 2), a set of
a priori potential confounders as observed in previous analyses of lymph-
oma within the EPIC cohort [15, 16]: body mass index (BMI, continuous),
education (5 classes), physical activity (4 classes), smoking at enrollment
(3 classes), and alcohol consumption at enrollment (continuous), and a
binary variable indicating if the participant was a BC case or not.
Nuisance variation was modeled through a random intercept model where
uA

i
represents the shift associated to Ai, the value of the random effect

variable(s) A observed for individual i. The dates of the three main steps
of sample processing were used as random effect variables: RNA isolation,
hybridization, and dye labeling. Model was fitted, using the R-statistical

package lme4, on all 29 662 probes separately, and we accounted for mul-
tiple testing using a stringent Bonferroni correction, setting the family-
wise error rate (FWER) to 5%. Analyses were (i) carried out on the full
population and (ii) stratified by major histological subtypes, and a series
of sensitivity analyses were performed.

Transcripts identified by the genome-wide screen were further investi-
gated through gene-enrichment analyses (see supplementary Section S2,
available at Annals of Oncology online), and gene trajectories linking expres-
sion level and TtD were investigated using both linear and generalized addi-
tive models.

results
In supplementary Table S2, available at Annals of Oncology
online, the characteristics of the study population with respect
to the main demographic covariates are summarized. Among
the study participants, cases (number of successfully analyzed
samples) included CLL (n = 39), DLBCL (n = 41), FL (n = 38),
MM (n = 72), other B-cell lymphomas (n = 69), and four unspe-
cified B-cell lymphoma. The distribution of B-cell lymphoma
cases by histological subtype, cohort, and TtD is summarized in
supplementary Table S3, available at Annals of Oncology online.

genome-wide transcriptomic profiles
The linear-mixed model fitted to all B-cell lymphoma cases and
controls revealed nine significant associations at a Bonferroni 5%
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FWER level (Table 1). Analyses by B-cell lymphoma subtype
showed that eight of the nine probes show highly significant
P-values exclusively in the CLL-specific analysis, while the remain-
ing probe seems to be mainly driven by MM. Consistently, when
CLL cases are excluded from the population, the P-values for
these nine probes dramatically increase (supplementary Table S4,
available at Annals of Oncology online) while, as expected, the
MM-driven candidate remains (but more weakly) associated to
disease status. Our data do not support the presence of a common
signal associated with all B-cell lymphoma subtypes.
Subtype-specific analyses showed numerous associations for

CLL (N = 745 at Bonferroni FWER 5%) and the 60 strongest
signals are reported in Table 2, a. Other subtypes did not
provide any realistic candidate signals, with the exception of
MM for which we found a few (N = 3) weaker candidates with
moderate effect sizes (Table 2, b). Subsequent analyses were
therefore limited to CLL.

CLL-specific transcriptomic signals
High levels of correlation and strong clustering were observed
among the 745 CLL-specific probes (supplementary Figure S3A,
available at Annals of Oncology online). Consistently, the scree
plot from the principal component analysis shows that only 25
components are necessary to explain 80% of the variance within
the data (supplementary Figure S3B, available at Annals of
Oncology online). While the two first principal components
only explained <45% of the variance, they are able to clearly dis-
criminate more than 65% of the CLL cases from controls (sup-
plementary Figure S3C, available at Annals of Oncology online).
As illustrated in supplementary Figure S4, available at Annals

of Oncology online, the vast majority of the CLL-specific signals
show gene upregulation in cases, with the 20 strongest associa-
tions showing up to 25-fold upregulation. A few signals show
downregulation in cases, but their association (P-values) tends
to be weaker.

The 745 CLL-specific probes are spread across all chromo-
somes (Figure. 1A), and show a consistent overexpression pattern
in cases regardless of the chromosome they relate to (Figure 1B).
However, a cluster of three very strong signals (P < 10−40) emerges
in chromosome 17 with large effect size (fold-change >13.9)
(Figure 1C).
The predictive ability of the CLL-specific signals was assessed

by running a stepwise logistic regression procedure described
in supplementary Section S2, available at Annals of Oncology
online. Results (Figure 2) show excellent predictive performances
of the model, even when a single probe is used to predict disease
status (the maximum AUC found for a univariate model was
based on probe A_23_P500400—gene ABCA6—and was over
90%). As expected, predictive ability improves with the number
of probes included in the model and ranges between 89% and
96% for models including 20 probes. Potential for overfitting
was assessed and ruled out from a cross-validation procedure
(supplementary Section S2, available at Annals of Oncology
online).
Additional robustness analyses showed that the inclusion over

BC cases and controls yielded increased power without introdu-
cing a bias, and showed that the strongest findings were detected
in both cohorts (supplementary Section S3, available at Annals
of Oncology online).

biological interpretation of the findings:
gene-enrichment analysis
Based on the consistency of the findings across cohorts, insights
into the underlying biological process were sought by running
gene-enrichment analyses on the 745 CLL-specific markers
from the full population (supplementary Section S4, available at
Annals of Oncology online). The results are summarized in
Table 3 and show over 30 significantly enriched pathways and
gene ontology terms. The identified pathways all relate to prolif-
eration, differentiation, activation, and regulation of B cells, the

Table 1. Strongest associations between expression level and NHL

Agilent ID Full population Lymphoma subtype Symbol

CLL (N = 39) DLBL (N = 41) FL (N = 38) MM (N = 72)

fa P-value fa P-value fa P-value fa P-value fa P-value

A_23_P26854 1.79 2.65E−10 24.25 6.06E−60 1.15 2.92E−01 1.19 1.95E−01 1.06 5.46E−01 ARHGAP44
A_23_P500400 1.59 6.39E−10 16.45 3.71E−81 0.97 7.40E−01 1.26 1.64E−02 0.96 5.02E−01 ABCA6
A_23_P210581 0.76 2.94E−08 0.71 7.29E−04 0.91 2.97E−01 0.84 4.67E−02 0.68 8.06E−08 KCNG1
A_23_P145889 1.25 3.24E−07 3.27 5.55E−36 1.01 1.00E−01 1.12 9.73E−02 0.97 5.84E−01 CDK14
A_24_P29733 1.27 7.06E−07 3.89 3.74E−41 1.01 8.45E−01 1.20 1.90E−02 0.95 1.00E+00 CDK14
A_23_P130158 1.53 1.02E−06 14.32 1.17E−46 1.00 6.00E−01 1.19 1.76E−01 0.93 3.79E−01 WNT3
A_23_P384127 1.22 1.08E−06 2.20 3.11E−18 1.04 5.51E−01 1.11 1.61E−01 1.06 3.17E−01 –

A_32_P44394 1.24 1.20E−06 2.66 2.26E−25 1.12 1.63E−01 1.16 5.62E−02 1.05 4.08E−01 AIM2
A_23_P419213 1.21 1.44E−06 2.28 8.45E−24 1.13 4.89E−02 1.19 3.40E−03 0.99 9.25E−01 KIAA1407

Probes declared significant and listed in the table were identified using a Bonferroni-corrected per-test significance level ensuring a FWER control at
5%. Corresponding P-values and effect size estimates obtained for subtype-specific analyses, only considering cases of a single subtype at a time and
keeping all controls (regardless of the subtype of their matched case) are also given.
aFold-change (f) is derived from the regression coefficient estimate (β) by the mixed model: f = 2β.
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Table 2. Summary of the subtype-specific analyses

Ranka Agilent ID fb P-value Gene Ranka Agilent ID fb P-value Gene Ranka Agilent ID fb P-value Gene

(a) CLL-specific analysis
1 A_23_P500400 16.42 3.7E−81 ABCA6 21 A_23_P201211 5.41 3.0E−33 FCRL5 41 A_23_P147578 2.29 3.5E−26 –

2 A_32_P53234 5.26 4.1E−60 – 22 A_24_P376848 4.11 1.4E−32 FCRL5 42 A_32_P116989 2.20 3.6E−26 ZCCHC18
3 A_23_P26854 24.26 6.1E−60 ARHGAP44 23 A_23_P310931 2.29 2.1E−32 CNR2 43 A_23_P76402 2.10 4.8E−26 TCTN1
4 A_23_P130158 14.37 1.2E−46 WNT3 24 A_23_P46039 3.40 4.4E−32 FCRLA 44 A_23_P39067 2.36 4.9E−26 SPIB
5 A_23_P27332 3.82 3.0E−44 TCF4 25 A_23_P164773 3.39 8.1E−32 FCER2 45 A_23_P116533 2.13 7.1E−26 SWAP70
6 A_23_P131024 5.28 1.0E−43 ZBTB32 26 A_23_P160751 3.89 3.2E−31 FCRL2 46 A_23_P253321 2.35 7.5E−26 PNOC
7 A_24_P691826 5.60 2.3E−43 – 27 A_24_P402588 2.20 3.5E−31 BCL11A 47 A_23_P85269 2.98 8.5E−26 TTN
8 A_24_P29733 3.89 3.7E−41 CDK14 28 A_23_P163697 2.71 4.6E−31 SYT17 48 A_23_P259393 1.85 1.3E−25 SFMBT1
9 A_23_P67529 3.18 7.7E−41 KCNN4 29 A_23_P132378 3.35 2.0E−30 CELSR1 49 A_32_P44394 2.65 2.3E−25 AIM2
10 A_24_P931428 3.69 4.0E−37 TCF4 30 A_23_P17269 2.08 3.3E−30 CCDC88A 50 A_23_P342131 1.81 3.5E−25 CYBASC3
11 A_32_P108156 3.68 9.7E−37 MIR155HG 31 A_23_P45786 2.30 5.7E−30 COL9A2 51 A_24_P662636 3.70 8.3E−25 –

12 A_23_P145889 3.26 5.6E−36 CDK14 32 A_23_P102113 2.10 7.5E−30 WNT10A 52 A_23_P8961 2.39 9.7E−25 IL7
13 A_23_P20427 2.42 6.5E−36 RHOBTB2 33 A_23_P370830 3.92 6.3E−28 KLHL14 53 A_23_P113572 2.77 1.2E−24 CD19
14 A_32_P48054 2.86 9.2E−36 CNR2 34 A_23_P21758 2.81 1.1E−27 ADAM28 54 A_32_P107029 2.14 2.5E−24 NAPSA
15 A_23_P85250 3.01 1.5E−35 CD24 35 A_24_P184803 3.81 1.3E−27 COCH 55 A_23_P4551 2.10 6.1E−24 SETBP1
16 A_23_P156907 4.38 5.6E−35 SOBP 36 A_24_P54390 2.81 3.1E−27 RASGRP3 56 A_23_P419213 2.28 8.4E−24 KIAA1407

17 A_24_P319647 3.37 2.4E−34 FCRL2 37 A_23_P31725 3.09 4.4E−27 BLK 57 A_32_P73507 2.85 1.3E−23 CHDH
18 A_32_P49854 2.08 2.4E−34 – 38 A_24_P410605 2.96 1.4E−26 ROR1 58 A_23_P7185 2.54 4.2E−23 STAP1
19 A_23_P56553 2.59 3.1E−34 METTL8 39 A_23_P40108 3.76 2.3E−26 COL9A3 59 A_32_P72067 2.81 4.4E−23 –

20 A_23_P124335 2.90 8.2E−34 – 40 A_23_P30736 2.13 3.4E−26 HLA-DOB 60 A_23_P91764 2.17 5.6E−23 TNFRSF13C
(b) MM-specific analysis
1 A_24_P139620 0.99 2.9E−11 USP21
2 A_23_P210581 0.68 8.1E−08 KCNG1
3 A_32_P8813 0.67 4.22E−07 LOC283663

(a) lists the 60 strongest associations found for the CLL-specific analysis and (b) the three significant associations found for MM-specific analyses.
aRank: Probes are ordered with respect to their estimated strength of association with the disease status.
bFold-change (f) is derived from the regression coefficient estimate (β) by the mixed model: f = 2β.
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Pleckstrin homology domain (intracellular cell signaling) and
immune system regulation.

relationship between CLL-specific transcriptomic
markers and time to diagnosis
The results presented above suggest the existence of gene ex-
pression signals strongly related to future risk of CLL and
present in blood several years before diagnosis. In order to
evaluate prediagnostic/preclinical nature of these signals, we
ran our CLL-specific analyses on cases enrolled less or more
than 6 years before disease onset. Supplementary Figure S7,
available at Annals of Oncology online clearly shows a large
overlap between candidates significant in both TtD strata and

in the pooled analysis (n = 245). Additional stratification of
TtD shows that based only on the six CLL cases diagnosed
more than 10 years after enrollment, 47 of the 50 strongest
and 68 of the 100 strongest associations found in the full
population are still observed.
We also investigated the temporal evolution of expression of

the main signals observed among CLL cases only. For the 10
strongest transcriptomic signals, we observed a consistent upre-
gulation while approaching diagnosis (supplementary Figure S8,
available at Annals of Oncology online). Furthermore, we
observed stronger effect sizes (absolute values of the slope with
TtD) for the strongest signals with both TtD (supplementary
Figure S9A, available at Annals of Oncology online) and CLL
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Figure 1. Physical repartition of the genes whose expression is measured by the 745 CLL-specific candidates. The per-chromosome proportion of significant
probes (Figure 2A) is calculated from the 739 probes whose chromosome is annotated over the total number of probes assayed per chromosome. Figure 2B
summarizes the expression levels in cases and controls for the probes relating to each of the 24 chromosomes (total 739 in which the chromosome is annotated).
Figure 2C displays for each probe (labeled and colored accordingly to the chromosome they belong to) the P-value measuring the association with the disease
status as a function of their effect size estimate (fold-change).
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status (supplementary Figure S9B, available at Annals of
Oncology online). This suggests an overall tendency for an in-
crease in intensity of CLL-specific signals closer to diagnosis.

discussion
As expected from the biological heterogeneity of B-cell lymph-
omas [17], our results do not support the existence of genes
whose change in expression is common to the pathogenesis of
all or multiple histological subtypes of NHL. Instead, and
despite the limited number of CLL cases available, our analyses
led to the identification of several strong signals associated with
prospective CLL risk (more than 10 years before diagnosis).
These include ABCA6, ARHGAP44, Wnt3, TCF4, ZBTB32,
CDK14, KCNN4, and TCF4, which showed (except for Wnt3),
consistency across both cohorts studied. While variation in the
proportion of different subtypes of normal leukocytes may have
contributed to these transcriptomic signals, it is unlikely to have

been differential by disease status, and by histological subtypes.
The substantial overexpression (up to 25 fold) in cases and the
trend toward increased expression while approaching diagnosis
suggest that the CLL-related signals reflect, at least partly,
markers of disease progression arising from subpopulations of
cells in which disease initiation has occurred long before diag-
nosis. This is further supported by the fact that some of the
strongest associations we found (e.g. ARHGAP44, ABCA6,
and WNT3) are strongly upregulated in CLL malignant cells
[18, 19].
Most cases of CLL are believed to be preceded by monoclonal

B-cell lymphocytosis, a hematological condition commonly
found in normal subjects, increases with age and which evolves
to CLL at a low rate (1%–2% per year) [20, 21], raising the possi-
bility that the CLL-related profile we have observed may arise, at
least to some extent, in CLL-like MBL cells. Some support for
this possibility comes from the inclusion in the latter profile of a
number of genes related to Wnt signaling (e.g. Wnt3, Wnt10A,

Table 3. Summary of the results of the gene-enrichment analyses

Database Term Count P-value Fold enrichment Bonferroni 5%

GOTERM_BP_FAT GO:0051249∼regulation of lymphocyte activation 24 1.6E−11 5.85 3.6E−08
GOTERM_BP_FAT GO:0002694∼regulation of leukocyte activation 25 2.9E−11 5.43 6.2E−08
GOTERM_BP_FAT GO:0046649∼lymphocyte activation 27 4.3E−11 4.89 9.4E−08
GOTERM_BP_FAT GO:0050865∼regulation of cell activation 25 8.9E−11 5.15 1.9E−07
GOTERM_BP_FAT GO:0045321∼leukocyte activation 28 6.9E−10 4.17 1.5E−06
GOTERM_BP_FAT GO:0050670∼regulation of lymphocyte proliferation 17 8.1E−10 7.39 1.8E−06
GOTERM_BP_FAT GO:0070663∼regulation of leukocyte proliferation 17 9.7E−10 7.30 2.1E−06
GOTERM_BP_FAT GO:0032944∼regulation of mononuclear cell proliferation 17 9.7E−10 7.30 2.1E−06
GOTERM_BP_FAT GO:0050671∼positive regulation of lymphocyte proliferation 14 2.3E−09 9.18 4.9E−06
GOTERM_BP_FAT GO:0032946∼positive regulation of mononuclear cell proliferation 14 2.9E−09 9.02 6.3E−06
GOTERM_BP_FAT GO:0070665∼positive regulation of leukocyte proliferation 14 2.9E−09 9.02 6.3E−06
GOTERM_BP_FAT GO:0030098∼lymphocyte differentiation 18 2.9E−09 6.30 6.4E−06
GOTERM_BP_FAT GO:0050863∼regulation of T cell activation 19 3.2E−09 5.86 7.0E−06
GOTERM_BP_FAT GO:0001775∼cell activation 29 7.0E−09 3.65 1.5E−05
GOTERM_BP_FAT GO:0051251∼positive regulation of lymphocyte activation 17 8.7E−09 6.32 1.9E−05
SP_PIR_KEYWORDS B-cell 8 1.2E−08 23.53 4.6E−06
GOTERM_BP_FAT GO:0002521∼leukocyte differentiation 19 2.0E−08 5.23 4.4E−05
GOTERM_BP_FAT GO:0002696∼positive regulation of leukocyte activation 17 3.2E−08 5.79 7.0E−05
GOTERM_BP_FAT GO:0030888∼regulation of B cell proliferation 10 3.7E−08 12.88 8.1E−05
GOTERM_BP_FAT GO:0002684∼positive regulation of immune system process 25 4.5E−08 3.79 9.9E−05
GOTERM_BP_FAT GO:0050867∼positive regulation of cell activation 17 6.3E−08 5.52 1.4E−04
GOTERM_BP_FAT GO:0050864∼regulation of B cell activation 12 1.1E−07 8.49 2.4E−04
GOTERM_BP_FAT GO:0050870∼positive regulation of T cell activation 14 1.4E−07 6.65 3.1E−04
GOTERM_BP_FAT GO:0002520∼immune system development 26 1.9E−07 3.40 4.2E−04
INTERPRO IPR011993:Pleckstrin homology-type 27 2.1E−07 3.30 1.7E−04
GOTERM_BP_FAT GO:0048534∼hemopoietic or lymphoid organ development 25 2.4E−07 3.47 5.3E−04
GOTERM_BP_FAT GO:0042110∼T cell activation 17 3.8E−07 4.87 8.2E−04
INTERPRO IPR001849:Pleckstrin homology 25 5.3E−07 3.34 4.1E−04
KEGG_PATHWAY hsa05340:Primary immunodeficiency 9 4.0E−06 9.08 4.6E−04
KEGG_PATHWAY hsa04662:B cell receptor signaling pathway 12 6.2E−06 5.65 7.1E−04
GOTERM_BP_FAT GO:0051249∼regulation of lymphocyte activation 24 1.6E−11 5.85 3.6E−08
GOTERM_BP_FAT GO:0002694∼regulation of leukocyte activation 25 2.9E−11 5.43 6.2E−08

Pathways found significantly enriched are reported on the basis of their Bonferroni 5% adjusted P-values. Gene-enrichment analyses are based on the
745 CLL-specific candidates found for the full population.
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ARHGAP44, TCF4, CDK14, and ZBTB32) which has been re-
cently reported to be activated in MBL [22]. Furthermore, of 20
genes reported as being differentially expressed in CLL-like
MBL [22], 4 (PRKCB, PAG1, TCL1A, ROR1) fall among the
CLL-related genes identified in the current study. On the other
hand, the MAPKinase and protein kinase A pathways, reported
to be activated in MBL cells, were not among those indicated by
our CLL-related profile. As such, the identified profile seems to
be only in part drive by MBL. This is strengthened by the obser-
vation that the identified CLL-transcriptomic profile predicts
more than 80% of the cases, whereas only ∼5%–10% of subjects
of the MBL phenotype would be expected to progress to CLL
over the 6-year average follow-up period of our study. Taken to-
gether, these observations are compatible with the possibility
that the CLL-related differential expression profile detected is
due to clones of malignant or premalignant cells, including
MBL cells, present at low concentrations in our blood samples
several years before clinical onset, and which evolve toward CLL
via specific transcriptomic signals. This may not be surprising
as, for most patients, CLL is indolent and progresses slowly, and
it may take years for clinical symptoms to arise.
The most common chromosomal abnormalities in CLL,

using conventional and molecular cytogenetics, are trisomy 12,
del(13)(q14), del(11)(q22–23), del(17)(p13), and del(6)(q21)
[23]. We did not find any strong evidence of chromosome spe-
cificity for our signals, except possibly for chromosomes 17, 18,
and 19.
Due to the heterogeneity of NHL pathologies, and despite its

reasonable size, our study was not sufficiently large to enable the
in-depth investigation of signals associated with histological
types other than CLL. The strongest associations we have iden-
tified were almost exclusively associated with CLL, but we
cannot exclude the possibility that, with greater statistical power,
transcripts specific for other subtypes would be identified.

In conclusion, from our agnostic search, several transcrip-
tomics signals have been found to be associated with CLL risk in
preclinical blood samples taken many years before actual diagnosis.
The identified transcripts point toward an important contribution
of B-cell signaling, and B-cell activation and proliferation in the
etiology of CLL.
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