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Understanding how shoreline positions change in response to the variability of 

multitemporal climate and weather phenomena is essential for predicting the impact of 

future climate extremes. This dissertation aims to provide the first quantitative assessment 

on the relative influence of climate phenomena operating in the southwest Pacific region, 

i.e. El Niño-Southern Oscillation, on coastal morphodynamics along the southeast 

Queensland coast on a yearly to decadal timescale. Morphodynamic changes occurring at 

the timescale of days are also assessed in response to Tropical Cyclone Oma striking the 
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region in February 2019. Previous attempts at directly correlating climate to natural 

shoreline evolution elsewhere were limited in their ability to observe the geomorphic 

changes as they relied on infrequent aerial photography, isolated beach profile data, or 

morphodynamic modeling results with no ground trothing. In an effort to capture intra-

annual shoreline variability across large spatial scales (100’s km), shorelines are mapped 

using historical Landsat imagery. The accuracy of shorelines mapped automatically using 

spectral water indices was assessed by comparison to two contemporaneous GPS-surveyed 

intertidal zones, which represents the true position of the shoreline interface, which were 

conducted in Brazil and Massachusetts. The Modified Normalized Difference Water Index 

was determined to be the best index for automated shoreline mapping based on its superior 

accuracy and repeatable threshold value. MNDWI was used to automatically map over 

9,000 km of historical shoreline positions along Queensland using Google Earth Engine. 

Shoreline change curves were generated using the USGS Digital Shoreline Analysis 

System and corrected for tidal variations using in situ gauge data and seasonal intertidal 

widths estimated from equilibrium beach profiles. Cross-correlations between the shoreline 

dataset and the various climate indices were calculated using a 20 month maximum lag. 

Correlations suggest a bimodal climate control on shoreline change whereby El Niño-

Southern Oscillation has the largest influence during negative Interdecadal Pacific 

Oscillation with the Subtropical Ridge becoming dominant during positive IPO. As 

observed using revolutionary PlanetScope satellite imagery, longshore transport along SE 

Queensland turned northwards in response to a significant anti-clockwise rotation of 
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incident wave direction during Oma with erosion peaking at 41 m along the Sunshine 

Coast.
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Chapter 1 

Introduction 

 It’s well understood that global sea-level rise will have significant ramifications for 

global populations, ecosystems, and infrastructure. If the upper-end of warming scenarios 

is realized by 2050 (4º C), sea-level rise caused by enhanced ocean thermal expansion and 

mountain glacier melt could potentially displace up to 187 million people and cost over $1 

trillion USD (Hallegate et al., 2013; Nicholls et al., 2008). Retrogradation, or landward 

movement, of shoreline positions is an obvious and expected risk of sea-level rise for 

coastal regions around the world, regardless of shoreline geometry and morphology 

(Reimann et al., 2018; Sahin et al., 2019; Thorne et al., 2018). In addition to the risk posed 

by sea-level rise, variations in wave climate are expected to be a significant influence on 

future shoreline modification of exposed, sandy coastlines in the coming decades (Coelho 

et al., 2009; Hemer et al., 2012; Slott et al., 2006). Changes in the wave climate, such as 

significant wave heights and incident wave directions, can change the rate and direction of 

longshore transport and thus, realign sandy shoreline positions (Thom et al., 2018). Much 

of Australia’s eastern shoreline is dominated by unconsolidated sandy beaches, muddy 

shores, and semi-lithified rock. These erodible coastal landforms are expected to be 

relatively resilient in the face of sea-level rise due to their capacity to accrete in the wake 

of erosion events but will be particularly sensitive to wave climate changes (Thom et al., 

2018). 

 Understanding this coastal morphodynamic relationship, it’s plausible that the 

drivers of wave climate variability in southeastern Australia are, in turn, influencing 
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shoreline position variability. The coupling between atmospheric and wave climate has 

been extensively studied in this region and it’s generally accepted that the regional wave 

climate of southeast Queensland is driven by variability in the El Niño-Southern 

Oscillation (ENSO, McSweeney and Shulmeister, 2018; Mortlock and Goodwin, 2016; 

Ranasinghe et al., 2004). During negative Southern Oscillation Index (SOI, index for 

gauging El Niño/La Niña strength) phases, or El Niño, cooler sea surface temperatures 

(SST) in the Coral Sea promote a more southerly wave direction and lower significant 

wave heights as a result of reduced cyclonic activity. The opposite is held true during 

positive SOI phases, or La Niña, when increased Coral Sea SST amplifies cyclonic activity 

and a more easterly wave direction and higher significant wave heights (McSweeney and 

Shulmeister, 2018). The impacts of ENSO on Australian climate (i.e. rainfall) have been 

shown to be modulated by the Interdecadal Pacific Oscillation (Power et al., 1999). For 

positive IPO phases, the authors found no positive correlation between ENSO and various 

Australian climate variables as there is during negative phases. Splinter et al. (2012) 

suggested that this could be due to IPO’s control over the position of the South Pacific 

Convergence Zone (SPCZ), which moves closer to (away from) Australia during negative 

(positive) IPO phases. As such, Splinter et al. (2012) suggest that when the SPCZ is closer 

to Australia, the wave climate of SE Queensland is more influenced by ENSO and vice 

versa when the SPCZ moves away, although they do not suggest an alternative control 

during the positive IPO phase. 

 Establishing a correlation between atmospheric and wave climate is relatively 

straightforward. Global hindcast wave climate data is readily available through the NOAA 
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WAVEWATCH III model and climate index data can be acquired from a variety of 

sources including NOAA and the National Weather Service. In order to detect primary 

climate drivers of shoreline change, a spatiotemporally robust shoreline position dataset is 

needed to perform correlation analyses with the same climate data. There are very few 

examples of shoreline monitoring programs that have been active long enough to describe 

shoreline variability at the interdecadal (IPO) time scale. Previous studies that have 

attempted to directly correlate natural shoreline evolution with climate relied on marginally 

suitable shoreline datasets with regards to spatial and temporal coverage. These studies 

relied on accurate, yet spatially limited, beach profile data (Ranasinghe et al., 2004), 

infrequent aerial photography with one shoreline measurement every three to five years 

(McSweeney and Shulmeister, 2018), and coastal morphodynamic modeling without 

ground reference data (Mortlock and Goodwin, 2016). While all of these studies agree that 

there is a definitive link between ENSO and SE Australian shoreline variability, none 

attempted to correlate the observed change with other local climate phenomena 

(Subtropical Ridge, Southern Annular Mode, among others) and all failed to investigate if 

and how IPO modulates the shoreline response to ENSO. This dissertation seeks to 

determine if there is indeed a secondary climate control on shoreline change during 

positive IPO phases, when the coupling between Australian atmospheric and wave climate 

with ENSO is weakened. 

 Given that aerial photographic surveys are conducted sporadically in the region and 

there is a paucity of other survey data, there are very few shoreline data sources that satisfy 

the temporal and spatial demands of this investigation. Landsat is likely the only imagery 
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source that has the temporal extent (1972-present) necessary to investigate interdecadal 

trends with a global spatial coverage. Delineating shoreline positions using Landsat 

imagery is far from novel as the data has previously been used to understand the dynamics 

of mangroves (Fromard et al., 2004), impacts of river dams on coastal erosion processes 

(Kuenzer et al., 2014), among many others. Like all studies that primarily utilize satellite 

remote sensing imagery, extensive ground referencing of products derived from the 

imagery should be performed to ensure that what we are interpreting from pixels 

accurately represents real world features.  

 The most commonly used reference data for validating shorelines derived from 

Landsat imagery is high-resolution aerial photography and satellite imagery (Ford, 2013; 

Jimenez et al., 1997; Pradjoko and Tanaka, 2010). While this may be a satisfactory for 

investigations of static features, an aerial photograph only captures the instantaneous 

position of the shoreline at the time of acquisition. By definition, the shoreline is a 2D 

interface delineated as the area between high and low tide (intertidal zone). The 

instantaneous capture of the shoreline, interpreted as the high water line (HWL), does not 

take into account the spatial and temporal variability of the shoreline boundary (Boak and 

Turner, 2005). Shorelines can fluctuate centimeters to hundreds of meters in a horizontal 

direction under the influence of tides, major storms, and anthropogenic activities (Morton, 

1991). As such, it should be assumed that the actual shoreline position during the time of 

aerial survey and Landsat flyover are not identical based on the natural variability of the 

boundary and the uncertainty will only increase as the time elapsed between the two 

increases. This dissertation provides a robust, field-based assessment on the accuracy of 
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shorelines delineated using seven spectral water indices, from which the best performing 

will be used to map historical shoreline positions in the study area for correlation to 

climate. 

 In addition to investigating the influence of climate on yearly to decadal shoreline 

change, the impacts of extreme storm events are analyzed here using revolutionary satellite 

imagery. Early on in my PhD, I was granted an Education and Research partnership with 

Planet Labs, Inc., which affords me 10,000 km2 of free imagery per month. Their 

PlanetScope data product is acquired by over 150 CubeSats operating in low earth orbit, 

enabling them to collect global 3 m multispectral imagery every day. This revelation in 

satellite imaging technology alleviates the previous tradeoff between high temporal and 

spatial resolution using a single platform (i.e. Landsat). Fortuitously, Tropical Cyclone 

Oma struck SE Queensland in February 2019, presenting itself as an opportune event for 

using the new dataset to observe and quantify extreme, near instantaneous shoreline 

changes in response to the storm wave climate. The high spatial and temporal resolution of 

PlanetScope imagery enabled mapping of the high water line (HWL), which was used as a 

shoreline indicator across 200 km of shoreline. 

 Given that this is the first application of using PlanetScope imagery to map 

shoreline positions, this dissertation provides a robust quantitative assessment on the 

uncertainty of the technique (in addition to assessing storm-induced shoreline changes). 

Total shoreline position uncertainty is assessed following the methods of Hapke et al. 

(2006) and Ruggiero and List (2009). Total uncertainty takes into account the ground 

sample distance of the data, geometric accuracy, and water level variations represented as 
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the proxy-offset bias. A robust 31 year wave climate record is used to calculate 

meteorological and oceanographic (metocean) parameters needed to estimate this bias. 

Storm-induced shoreline changes are assessed every 200 m along a nearly 200 km long 

study area with only net shoreline movements greater than the range of uncertainty used 

for interpretation. This dissertation exemplifies the advantages of using this cutting-edge 

satellite data to assess rapid and significant shoreline changes, especially for areas that are 

inaccessible due to infrastructure damage (as was the case for Fraser Island here). 
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Chapter 2 

Using GPS-Surveyed Intertidal Zones to Determine the Validity of 

Shorelines Automatically Mapped by Landsat Water Indices 

Satellite remote sensing has been used extensively in a variety of shoreline studies 

and validated using aerial photography. This ground referencing method only represents an 

instantaneous depiction of the shoreline at the time of acquisition and does not take into 

account the spatial and temporal variability of the dynamic shoreline boundary. The 

availability of Landsat 8’s Operational Land Imager to accurately delineate a shoreline is 

assessed by comparing all known Landsat water index-derived shorelines with two GPS-

surveyed intertidal zones that coincide with the satellite flyover date, one of which had 

near-neap tide conditions.  

Seven spectral indices developed for automatically classifying water pixels were 

evaluated for their ability to delineate shorelines. The shoreline is described here as the 

area above and below maximum low and high tide, otherwise known as the intertidal zone. 

The high-water line, or wet/dry sediment line, was chosen as the shoreline indicator to be 

mapped using a handheld GPS. The proportion of the Landsat-derived shorelines that fell 

within this zone and their alongshore profile lengths were calculated. The most frequently 

used water index and the predecessor to Modified Normalized Difference Water Index 

(MNDWI), Normalized Difference Water Index (NDWI), was found to be the least 

accurate by a significant margin. Other indices required calibration of their threshold value 

to achieve accurate results, thus diminishing their replicability success for other regions. 
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MNDWI was determined to be the best index for automated shoreline mapping, based on 

its superior accuracy and repeatable, stable threshold value.   

2.1 Introduction 

Landsat imagery has been used for decades to study various earth system 

processes; one of significant importance is shoreline change. With the onset and 

acceleration of climate change and measured increases in global air and sea surface 

temperatures, sea level is rising at an alarming rate due to thermal expansion and ice melt 

(IPCC, 2014; Nicholls & Cazenave, 2010). The positions of global shorelines are expected 

to transgress as sea level rises, posing a significant threat to public health (Mendez-Lazaro, 

2012; Ziska et al., 2003), socio-economics of coastal communities (Lane et al., 2013; 

Stern, 2006), coastal ecosystems (Gontz et al., 2013; Hernández-Delgado, 2015; Maio et 

al., 2014), and sites of cultural heritage (Gontz et al., 2011; Maio et al., 2012). 

Applications of various remote sensing techniques have been used to delineate variable 

shoreline positions to confront these issues. Remote sensing data were used to analyze the 

fifty-year evolution of the Guianese shoreline to understand the dynamics of mangroves 

(Fromard et al., 2004), impacts of river dams on coastal erosion processes and ecological 

equilibrium of the Niger Delta (Kuenzer et al., 2014), and to understand the impacts of a 

reduction in river sediment discharge on the Chongming Dongtan National Nature Reserve 

coastline in China as a prerequisite for an integrated management plan (Li et al., 2014).     

 High-resolution aerial photography has been used as reference data for decades in 

various coastal studies such as analyzing short-term shoreline changes (Ford, 2013; 

Jimenez et al., 1997; Pradjoko & Tanaka, 2010), projecting future shoreline positions 
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(Addo et al., 2008; Fenster et al., 1992; Leatherman, 1983), and calculating long-term 

shoreline recession rates (Dolan et al., 1979; Dolan et al., 1991; Smith & Zarillo, 1990). 

Although aerial photography provides a very high-resolution image of the shoreline, it only 

captures the instantaneous position at the time of acquisition. This poses a problem for 

analyzing changing shoreline positions in areas where the land/water boundary can 

fluctuate tens of meters across the beach face daily (Romine et al., 2009). Other survey 

methods have been employed to delineate the position of shorelines including LiDAR 

(Light Detection and Ranging; Liu et al., 2007; Yang et al., 2012), SAR (Synthetic 

Aperture Radar; Trebossen et al., 2005; Yu & Action, 2004), and beach profiling (Corbella 

& Stretch, 2012; Ruggiero & List, 2009). While all of the above techniques offer fine 

spatial resolution, the cost and/or time of data acquisition are excessively high and all but 

prohibit them as practical methods for change analysis with high spatial variability over 

short temporal scales.  

In response to the limitations of previous survey methods, satellite remote sensing 

has been used extensively in a variety of shoreline studies (Garcia-Rubio et al., 2015; 

Kuleli et al., 2011; Pardo-Pascual et al., 2012). This method provides a more practicable 

approach to delineating shoreline positions over various spatial and temporal scales 

(Almonacid-Caballer et al., 2016; Hegde & Akshaya, 2015; Li & Gong, 2016). Several 

spectral indices have been developed for automatically extracting water pixels from 

Landsat imagery. Zhai et al. (2015) compared the performance of these spectral indices 

and concluded that the Automated Water Extraction Index (AWEI) and Modified 

Normalized Difference Water Index (MNDWI) indices perform better than the Normalized 
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Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) 

by comparing extraction results to shorelines manually interpreted from high-resolution 

DigitalGLobe Quickbird imagery. Fisher et al. (2016) performed a similar comparative 

analysis using high-resolution imagery and concluded that AWEIsh, MNDWI, and their 

newly developed index, WI2015, were the most accurate water classification indices.  

Like Zhai et al. (2015), the majority of Landsat shoreline studies use high-

resolution aerial photography to validate the shoreline location derived from the various 

extraction techniques (Almonacid-Caballer et al., 2016; Ghoneim et al., 2015; Li & Gong, 

2016). Some studies did not even attempt to corroborate their shorelines with reference 

data (Dada et al., 2016; Hegde & Akshaya, 2015). A separate ground-based dataset is 

essential to understanding and validating the performance of any remote sensing product 

(Lillesand et al., 2015).  

The biggest complication of using high-resolution aerial photography as validation 

data is that the instantaneous depiction of the shoreline at the time of acquisition does not 

consider the spatial and temporal variability of the shoreline boundary. The assumption 

that the shorelines observed in these images represent “normal” conditions is the most 

substantial and likely incorrect assumption in many shoreline investigations (Boak & 

Turner, 2005), even more so for those using Landsat. Over a given tidal cycle and 

depending on beach geometry, a shoreline can fluctuate centimeters to hundreds of meters 

in a horizontal direction. Over longer time scales (months to years), major storms and 

anthropogenic activities can move a shoreline significantly landward. As such, the 

shoreline is an extremely dynamic boundary that exhibits significant short and long-term 
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spatial fluctuation (Morton, 1991). In most published Landsat shoreline studies, aerial 

photography used as validation data is not collected during the same day as the satellite 

flyover. It can reasonably, and should be, assumed that the actual shoreline position during 

the aerial photography and Landsat acquisition days are not identical based on the natural 

variability of the boundary through the stage and range of tides, wind, and prevailing wave 

energy (Pajak & Leatherman, 2002). Therefore, using aerial photography as validation data 

for Landsat-extracted shorelines is likely not ideal.       

2.1.1 Purpose 

To overcome this limitation and truly test the capability of using Landsat to 

accurately define and describe changing shoreline positions, this paper uses GPS surveying 

to validate Landsat-derived shorelines. The shoreline boundary is best described as the area 

above low and below high tides and as such, the maximum of both of these stages is 

mapped using GPS. The intertidal zone GPS survey data and Landsat 8 imagery were 

collected within hours of each other to ensure the best possible temporal correlation. Seven 

Landsat-based spectral water indices are assessed for their ability to delineate the shoreline 

with the overarching goal of identifying an index best suited for the task.   

2.1.2 Study Areas 

 This analysis was applied to a 5 km stretch of Atalaia Beach in Aracaju, Sergipe 

located in the northeastern region of Brazil (Figure 2.1). This region of Brazil is a classic 

example of a wave-dominated coastline with minimal tidal and river influence 

(Bhattacharya & Giosan, 2003; Dominguez, 1996; Wright & Coleman, 1973). The beach 

consists of clastic sediment predominantly composed of fine grained, well-rounded and 
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well-sorted quartz with small amounts of feldspar and trace amounts of mica and magnetite 

grains. The shoreline experiences a micro- to meso- tidal range (up to 2.5 m) and a falling 

sea level since the mid-Holocene highstand around 5.1 kya (Dominguez et al., 1992; 

Martin et al., 2003).  The low-lying urban area of Aracaju is located adjacent to the beach 

and is at the greatest risk of flooding in northeastern Brazil (Muehe, 2010).  

 A second shoreline was surveyed along a 5 km stretch of the Salisbury State Beach 

Reservation in Salisbury, Massachusetts, USA (Figure 2.2). The beach is a part of the 

larger Merrimack barrier system that extends to Cape Ann, Massachusetts to the south and 

Great Boars Head, New Hampshire to the north and has been well studied (Costas & 

FitzGerald, 2011; Dougherty et al., 2004; FitzGerald & van Heteren, 1999; FitzGerald et 

al., 2002; Hein et al., 2012). The beach consists of fine sand to cobble-sized sediment, 

typical of a paraglacial barrier system and is influenced by both tides and waves (“mixed 

energy”, FitzGerald & van Heteren, 1999). The shoreline experiences a micro- to meso- 

vertical tidal range, averaging 2.6 m (Smith & FitzGerald, 1994). Sea level has risen 

approximately 10 m across northern Massachusetts since 7.5-6.8 kya (Engelhart & Horton, 

2012). 

2.2 Methods 

A single Landsat 8 Operational Land Imager image was acquired for each study 

area. The Aracaju scene (path: 215, row: 68) was acquired on July 11, 2016, one day prior 

to the month’s neap tide. Tidal conditions were verified by tide height observations 

reported by the Banco Nacional de Dados Oceanográficos Centro de Hidrografia da 

Marinha. Landsat 8 flew over the study area (12:36 pm) almost midway between the 
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surveyed semidiurnal high (9:07 am) and low (3:24 pm) tides (Figure 2.3). The Salisbury 

scene (path: 12, row: 30) was acquired on July 16, 2017 during average tidal conditions. 

Tidal conditions were verified by tide height observations at the National Oceanic and 

Atmospheric Administration (NOAA) Plum Island/Merrimack River Entrance Station. 

Landsat 8 flew over the study area (3:26 pm) in between the surveyed semidiurnal low 

(11:18 am) and high (5:15 pm) tides (Figure 2.3). 

The Landsat 8 Surface Reflectance (SR) data products were obtained from the 

USGS data archive (Vermote et al., 2016). SR was calculated using the Landsat 8 Surface 

Reflectance Code (LaSRC). The scenes were given an Image Quality value of 9, or best 

possible with no errors detected. The 30 m Level-1 precision- and terrain-corrected 

products (L1T) were acquired with radiometric calibration and geographic reference and as 

surface reflectance was already calculated, minimal processing steps were required. All 

procedures were carried out using the Environmental Systems Research Institute (ESRI) 

ArcGIS Desktop 10.5.1 software suite.  

Shorelines are interpreted as the boundary separating water and non-water pixels 

calculated by spectral water indices. A total of seven indices were selected for comparison 

(Table 2.1). The Normalized Difference Vegetation Index (NDVI; Rouse et al. 1974) 

divides the difference in the near-infrared (NIR) and visible red bands (5 and 4) by the sum 

of the same bands. The Tasseled Cap Wetness index (TCW; Crist, 1985) subtracts the sum 

of the shortwave infrared bands (6 and 7) from the sum of the visible and NIR bands (2 

through 5, Fisher et al., 2016). The Normalized Difference Water Index (McFeeters, 1996) 

divides the difference in the visible green and NIR bands (3 and 5) by the sum of the same 
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bands to enhance water pixels from the background. The Modified Normalized Difference 

Water Index (MNDWI; Xu, 2006) improved the discrimination of water body pixels by 

substituting the middle-infrared (MIR) band 6 in place of the NDWI’s NIR band 5. The 

Automated Water Extraction Indices (AWEI) use five spectral bands (2, 3, 5, 6, 7) and 

empirically determined coefficients to “maximize separability of water and non-water 

pixels through band differencing, addition, and applying different coefficients” (Feyisa et 

al., 2014). Two separate equations were developed for areas with shadows and built-up 

urban backgrounds (AWEIsh) and areas without (AWEInsh). The WI2015 uses surface 

reflectance data through the combination of bands 3 through 7 and their coefficients 

determined using linear discriminant analysis classification (Fisher et al., 2016).     

Fisher et al. (2016) determined optimum index thresholds for all of these indices 

except NDVI. Thresholds classify each index into two categories, water and non-water 

pixels. They assessed the accuracy of each index’s classification of pure water pixels 

determined from high-resolution imagery by plotting the true positive rate (TPR) against 

the false positive rate (FPR) across a range of thresholds. The optimum index thresholds 

for separating water and non-water pixels as calculated by Fisher et al. (2016) are used in 

this study (Table 2.2).  

If a threshold performed poorly in extracting water pixels, a new optimal threshold 

value was determined using the Jenks-Caspall technique (Jenks & Caspall, 1971). This 

technique separates raster values where large changes in values occur and identifies the 

pixel value at the boundary of the largest difference in value (de Smith et al., 2015). This 
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maximum separation value is then used as the threshold to discriminate water and non-

water pixels in the water index. 

The Landsat-derived shorelines were created by digitizing the boundary of water 

and non-water pixels along the coastline as calculated by the water indices. Each index’s 

digitized line boundary was exported as a unique shapefile for further spatial analysis in 

ArcGIS. To evaluate the true capacity of Landsat’s ability to delineate the shoreline, it was 

imperative that the shoreline position during the maximum low and high tides of the 

Landsat flyover dates (July 11, 2016 and July 16, 2017) were accurately mapped. 

Fortunately, the Aracaju flyover date also fell one day before the bi-monthly neap tide. The 

intertidal zone is at its narrowest during a neap tide and thus provides the most vigorous 

assessment of the accuracy of a Landsat-delineated shoreline. The tidal range during the 

surveyed flyover date in Aracaju was 1.08 m, 0.15 m greater than the neap tidal range the 

following day (July 12, 2016)(Figure 2.3). 

The wet/dry sediment line, representing the high water line (HWL), was chosen as 

the shoreline indicator to be mapped using handheld GPS to capture the true intertidal 

width on the Landsat flyover days. The HWL is the most common shoreline indicator used 

in coastal investigations and is visually observed as the extent of maximum wave run-up 

and the corresponding wet/dry sediment line (Boak & Turner, 2005)(Figure 2.4). It was 

estimated that it would take approximately one hour to survey a 5 km line so the surveys 

began 30 minutes prior to maximum high (and low) tide. A Garmin GPSMAP 64st 

handheld unit was used to survey the low and high near-neap tide shorelines along Atalaia 

Beach, Aracaju and average low and high tide shorelines in Salisbury, MA. The survey of 
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both lines in Aracaju was completed on July 11, 2016 and on July 16, 2017 in Salisbury, 

MA, corresponding with the Landsat flyover dates. Two obstacles, wildlife and 

infrastructure, were encountered during the Salisbury survey. These two areas are omitted 

from the Salisbury analysis resulting in a survey line slightly shorter than 5 km.  

All of the Landsat water index-derived and GPS shorelines were imported into 

ArcMap 10.5.1 and georeferenced to the Universal Transverse Mercator projection system 

(zones: 24° S for Aracaju and 19° N for Salisbury, datum: WGS-84). The Landsat 

shorelines were assessed for their accuracy as a shoreline indicator by comparing them to 

the intertidal zone defined by the GPS shorelines. For both study areas, the proportion of 

the Landsat shoreline that’s situated within the intertidal zone was calculated for each 

index by manually splitting the Landsat shoreline where it crossed in and out of the zone. 

The distance of each “in” and “out” line segment was then calculated and summed for a 

total Landsat shoreline distance and percentage that falls within the intertidal zone (Figure 

2.5). In addition to comparing the “in zone” percentage of each Landsat shoreline, the true 

shoreline distance was calculated and compared to each Landsat shoreline. The actual 

along-shoreline distance was calculated by measuring the distances of the GPS survey 

lines along the high tide line.       

2.3 Results 

2.3.1 Threshold Evaluation 

 The optimal thresholds as determined by Fisher et al. (2016) were successful in 

delineating complete shorelines across the study area in Aracaju for five of the seven water 

indices (WI2015, NDWI, MNDWI, NDVI, and AWEIsh). TCW and AWEInsh did not 
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produce a complete shoreline using the suggested optimal thresholds, -0.07 and -0.01, 

respectively (Figure 2.6). The index results show areas where water pixels were not 

extracted but should have been in the densely clouded region in the northeastern section of 

the study area. The cloud-covered area dominates the eastern one third of the study area 

(Figure 2.6). TCW and AWEInsh struggled to discriminate the boundary of water and non-

water pixels in the clouded coastal area and a complete shoreline delineation was not 

achieved. The AWEInsh shoreline is missing a total of 291 m while the TCW shoreline is 

missing 668 m. Furthermore, a large inland water body was poorly defined by the indices 

using the optimal thresholds, especially AWEInsh with >50% of the area omitted.  

 New thresholds for both the AWEInsh and TCW indices were determined based on 

the performance of Fisher et al.’s (2016) suggested optimal thresholds. The new values 

were determined using the Jenks-Caspall algorithm (Jenks & Caspall, 1971), a form of 

variance-minimization classification, on the complete range of index pixel values. The 

Jenks-Caspall algorithm empirically groups similar data values to a number of classes as 

defined by the user. This is accomplished by minimizing the absolute deviation of each 

class from their mean, while maximizing the deviation of each class from the means of 

others  (Slocum et al., 2009). By selecting only two classes for the AWEInsh and TCW 

index values, the Jenks-Caspall clustering algorithm identified the pixel value that best 

partitions the index into water and non-water pixels (including clouds).   

 The new threshold determined using this method for AWEInsh is -0.55 and  

-0.06 for TCW. Where the total pixel value ranges for AWEInsh and TCW are -4.18 to 2.79 

and -0.90 to 0.54, respectively, these new values represent small departures of 6.8% and 
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3.4% from Fisher et al.’s (2016) suggested values. Although the new threshold value for 

AWEInsh is not a notable deviation from the old, it now classifies a greater number of index 

pixels with values between -0.55 and above as water including a peak reflectance around -

0.3 (Figure 2.7). The mixed cloud and water pixels are no longer ommitted from the water 

pixel extraction using the new threshold values. As such, AWEInsh and TCW are now 

successful in delineating a complete, more accurate shoreline (Figure 2.6). Furthermore, a 

large, cloud-free inland body of water is wholly classified as such using the new threshold 

value as opposed to the >50% ommission error using the old. All shoreline analyses 

involving AWEInsh and TCW were conducted using the new Jenks-Caspall threshold 

values.  

2.3.2 Comparison to True Shoreline Lengths   

 The shorelines extracted from each of the seven spectral index calculations were 

imported into ArcGIS and their lengths were measured (Table 2.3). The high tide line, as 

surveyed, was imported and the length calculated. The GPS-high tide line serves as the 

reference. Comparison of the index-derived shorelines with the GPS-high tide line were 

conducted suggesting all indices, except NDWI, produced shorelines with differences of 

<1.2% in Aracaju and <0.5% in Salisbury. All index-derived shorelines, except NDWI, 

were shorter than the GPS-high tide line.    

2.3.3 Intertidal Zone Assessments 

 The high-water line was successfully mapped during the low and high tides in 

Aracaju and Salisbury using handheld GPS. The surveyed high and low tide lines have 

measured distances of 4,997 and 5,093 m in Aracaju and 4,811 m and 4,808 m in 
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Salisbury. Salisbury had a vertical tidal range of 2.56 m on July 16, 2017 while Aracaju 

had a range of 1.08 m on July 11, 2016 (Figure 2.3). Shoreline widths were measured 

every 100 meters along the study areas using the U.S. Geological Survey’s Digital 

Shoreline Analysis System (Thieler et al., 2009). The average shoreline width in Aracaju is 

52 m and 37.6 m in Salisbury.  

For Aracaju, the Landsat water index that delineated a shoreline with the highest 

accuracy, or largest proportion within the intertidal zone, was WI2015 (Figure 2.9). Of its 

total length of 4,974 m, 4,715 m of the shoreline was located within the surveyed tidal 

zone and only 259 m fell outside the boundary for a total accuracy of 94.8%. MNDWI, 

AWEIsh, and NDVI also produced accurate results as 92.9%, 92.0%, and 90.8% of their 

shoreline boundaries fell within the intertidal zone, respectively. The most inaccurate 

Landsat shoreline was mapped using the NDWI index. It had an accuracy of 6.3% as only 

387 m of its total 6,124 m shoreline length was positioned within the intertidal zone. TCW 

and AWEInsh produced moderately accurate results with delineated shorelines that fell 

within 84.8% and 78.6% of the intertidal zone.  

The water index that mapped the narrow Salisbury intertidal zone with the highest 

accuracy was AWEInsh (Figure 2.10). Of its total 4,788 m length, 4,686 m is positioned 

within the intertidal zone for a total accuracy of 97.8%. No other indices produced 

shorelines with accuracies above 90%. WI2015, TCW, and MNDWI produced moderate 

results with accuracies of 77.5%, 80.6%, and 83.9%, respectively. AWEIsh, NDWI, and 

NDVI yielded poor results with accuracies of 62.5%, 38.9%, and 9.1%.    

2.4 Discussion 
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The optimal thresholds determined by Fisher et al. (2016) proved to be effective for 

some indices, albeit with widely varying degrees of accuracy. Original indices were used 

for all but TCW and AWEInsh, both of which struggled to create a complete shoreline 

through cloudy areas with their suggested thresholds. MNDWI and NDVI both used the 

zero threshold value as suggested by their original authors or others (Xu, 2006; Zhai et al., 

2015), although only MNDWI did so with accurate results. The threshold value used for 

WI2015 (Fisher et al., 2016) was deemed unnecessary to change. Of the remaining two 

indices that utilized optimal thresholds suggested by Fisher et al. (2016), AWEIsh and 

NDWI; only AWEIsh had satisfactory accuracy. These trends point to an underlying 

complication with band index classifications in that the threshold value that is optimized 

for the index’s use in a certain study area (i.e. Australia for Fisher et al., 2016). The 

threshold values may not be suitable for other locations because of different water and land 

surface conditions, cloud coverage, and other prevailing environmental conditions that 

affect index performance. 

The AWEInsh and TCW indices using Fisher et al.’s (2016) threshold struggled to 

discriminate between mixed water, cloud, and beach pixels, producing shorelines with 

missing segments in cloudy areas. This is a common issue in earth surface remote sensing 

studies as clouds and white sand have similar or even identical reflectance properties (Irish, 

2000). A histogram of the complete range of AWEInsh index values for the Landsat tile that 

covers Aracaju shows that Fisher et al. (2016) selected a threshold value that classifies 

only the purest of water pixels (Figure 2.7). Application of the Jenks-Caspall technique 

(Jenks & Caspall, 1971) lowered the threshold to include a shorter secondary reflectance 
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peak that likely includes water pixels that have some component of cloud, land surface, 

and/or breaking waves.  

Using the new Jenks-Caspall threshold, AWEInsh extracted water pixels in the open 

ocean that contained sub-pixel cloud components not identified using Fisher et al.’s (2016) 

suggested threshold. The threshold adjustment allowed for a complete delineation of the 

shoreline through the clouded portions of the Aracaju study area. Furthermore, the Jenks-

Caspall threshold increased the accuracy of the AWEInsh index in Salisbury by 37.5% 

compared to using the Fisher et al. (2016) threshold, which had an accuracy of 60.3%. In 

Salisbury, where the AWEInsh shoreline lies outside the intertidal zone (using the older 

threshold), it falls just outside of the low tide GPS line. Given that the Salisbury study area 

was entirely cloud-free during Landsat acquisition, it is very likely that the index 

interpreted the spectral reflectance of breaking waves or whitecaps as a non-water pixel. 

These features are now almost entirely classified as water pixels based on AWEInsh’s 

incredibly robust shoreline delineation that has an accuracy of 97.8%. In addition, the 

Jenks-Caspall threshold increased the accuracy of TCW’s shoreline delineation in 

Salisbury by 17.5%. While Fisher et al.’s (2016) thresholds for TCW and AWEInsh 

produced the best results for their study area, similar results were not replicated here. An 

index that requires threshold calibration for every unique study area where applied, defeats 

the original purpose to provide a repeatable method that can be used globally. 

The geometry of the two beaches has a significant influence on the width of the 

intertidal zone. Even though the Aracaju survey occurred in near-neap tide conditions, the 

intertidal zone has an average width of 52 m because of its low slope gradient (1-2°, 
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Pereira et al., 2016). Whereas the intertidal zone at Salisbury has a much narrower width of 

37.6 m in spite of a greater vertical tidal range because of its steep gradient, which was 

determined to be 3.9° based on observed hydrographic and geomorphic conditions. Based 

on the average intertidal widths, the narrow Salisbury shoreline provides the most vigorous 

assessment for the Landsat-derived shorelines, even though the Landsat 8 flyover in 

Aracaju was concurrent with near-neap tide conditions. The Salisbury intertidal width is 

nearly completely covered by one Landsat pixel (30 m) providing little room for error. 

The ability of a Landsat water index to delineate the shoreline boundary was 

assessed by comparing its interpreted alongshore length with the actual measured length 

and spatial agreement within the GPS-surveyed intertidal zones. Based on the results of 

both analyses (Table 2.4), it’s quite clear that there is varying capabilities to accurately 

map shorelines among the seven water indices. Most frequently, an index produced an 

accurate result in one study area (>90% accuracy) and would fail to replicate those results 

in the second study area.   

WI2015 produced a very accurate shoreline in Aracaju (94.8%) but not in Salisbury 

(77.5%). Given that it succeeded in delineating an accurate shoreline through cloudy data 

and not in clear, it’s likely that the expanded width (almost two Landsat pixels instead of 

one) of the Aracaju intertidal zone allowed for a greater portion of the WI2015 to coincide 

with the zone boundaries.  

NDVI had the most dichotomous results as it achieved 90.8% accuracy in Aracaju 

and 9.1% in Salisbury. Its shoreline lies within 15 m (half of one Landsat pixel) outside of 
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the low tide line in Salisbury, supporting the notion that the slightly wider (+25 m) 

shoreline in Aracaju has a significant influence on the resulting accuracy.  

The AWEInsh index produced a very accurate shoreline in Salisbury (97.8%), an 

environment with no cloud shadow coverage at the time of Landsat acquisition. On the 

contrary, it produced a moderately accurate shoreline (78.6%) in Aracaju, struggling to 

delineate in the clouded regions. AWEInsh “is suited for situations where shadows are not a 

problem” (Feyisa et al., 2014) so this was an expected result.  

The AWEIsh index produced an accurate shoreline in Aracaju with 92% falling 

within the cloudy intertidal zone. This was a 13.4% improvement over AWEInsh, which 

agrees well with the original intention of AWEIsh to “enhance the separability of water and 

dark surfaces such as shadow” (Feyisa et al., 2014), such as those from clouds present in 

Aracaju. Like the previous indices described, the AWEIsh shoreline fell within one half of a 

Landsat pixel outside of the low tide line in Salisbury for 37.5% of its total length.  

The NDWI index is the oldest and most frequently cited spectral water index 

among the seven compared in this study. This is of particular concern to the authors as it 

was the poorest performing index by a large margin, producing a shoreline with 6.3% 

accuracy in Aracaju and 38.9% in Salisbury. In Aracaju, the NDVI shoreline drastically 

shifts in multiple locales producing an irregular “saw tooth” pattern atypical of an expected 

alongshore beach profile. This result disagrees with other Landsat shoreline studies such as 

Ozturk & Sesli (2015) who concluded that NDWI provided the best result for their study 

area. Although, the authors came to this conclusion by simply visually comparing 
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separability of shoreline infrastructure and water surfaces in the index images (Ozturk & 

Sesli, 2015).       

The NDWI shoreline shows the land/water boundary incorrectly positioned near 

the extreme inland limit of the beach in Aracaju, particularly in the clouded regions. The 

commission of mixed water and cloud pixels with beach sand by NDWI would pose a 

significant problem for the automated mapping of a shoreline in global coastal areas.  

This problem is alleviated by the substitution of the near-infrared band in NDWI 

with the mid-infrared band in MNDWI, which produced far more accurate shorelines 

compared to its predecessor. The MNDWI index had the best combined accuracy of all 

seven indices, with accuracies of 92.9% in Aracaju and 83.9% in Salisbury. It was capable 

of delineating an accurate shoreline through the clouded regions in Aracaju and fitting 

mostly within the narrow boundaries of the Salisbury intertidal zone. Given that all other 

indices could only achieve one of the two, it represents the best water index for automated 

shoreline mapping on a global scale. Of equal importance, MNDWI uses a threshold value 

of zero as suggested by Xu et al. (2006) and has been proven by Fisher et al. (2016) and 

verified by this study that it does not need to be adjusted for site-specific use. This is 

extremely important for its efficacy and use for mapping shorelines on a global scale. 

The selection of MNDWI as the best index for automated shoreline mapping is 

based on performance in cloud and cloud-free areas and its proven and repeatable 

threshold value. While other indices may have performed better in a particular study area, 

they either could not replicate that same result (WI2015) or required threshold adjustment to 

achieve superior results (AWEInsh). While the superb accuracy of AWEInsh in Salisbury 
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(97.8%) is appealing at first glance, it required a determination of a new optimal threshold 

that may or may not be repeatable for other study areas in addition to yielding mediocre 

results in cloudy areas. Should a water index aside from MNDWI be desired for a new 

study area, the Jenks-Caspall technique proved to be a very effective method for 

determining an optimized site-specific threshold value.  

2.5. Conclusions 

Seven Landsat water spectral indices (NDVI, NDWI, MNDWI, TCW, WI2015, 

AWEIsh, AWEInsh) were assessed for their ability to delineate a shoreline that represents 

the temporally and spatially dynamic boundary. Two analytical methods were used: 1) 

comparison of water index derived shoreline lengths with GPS-high tide surveyed lines 

and 2) comparison of the location of the water index derived shorelines with respect to the 

GPS-high tide and GPS-low tide shorelines. The shoreline is most accurately defined as 

the zone above the lowest tide and below the highest. Thus, a comparison of Landsat-

derived shorelines with their corresponding intertidal zones represents the most appropriate 

and rigorous assessment of the efficacy of Landsat shorelines derived by water indices to 

date. 

 MNDWI (Xu, 2006) was determined to be the best index for automated shoreline 

mapping based on its performance and threshold replicability. It had the highest combined 

accuracy with 88.4% of both shorelines falling within the intertidal zone, putting it slightly 

ahead of AWEInsh (88.2%) and WI2015 (86.2%). MNDWI and WI2015 both proved to be 

successful in delineating shorelines through the clouded regions of Aracaju with accuracies 

of 92.9% and 94.8%, respectively. However, WI2015 could not replicate these same results 



 
 

28 
 

in Salisbury (77.5%), as much of its shoreline traced whitecaps located just outside of the 

narrow intertidal zone. The AWEInsh index threshold value required calibration using the 

Jenks-Caspall classification technique in order to produce accurate results in both study 

areas. Of equal importance to MNDWI’s superior performance in both cloudy (Aracaju) 

and narrow (Salisbury) intertidal zones is its repeatable, stable threshold value of zero that 

does not require site-specific calibration.  

This investigation has proven the ability of Landsat to automatically and accurately 

delineate the shoreline boundary with the proper water index. It’s also the first that has 

attempted to automatically map the shoreline boundary using the recently developed 

WI2015 index and has done so with moderate success, particularly in clouded regions. The 

authors suggest that the prototypal NDWI index not be used for future shoreline studies 

based on its combined accuracy of 22.6%.  
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Table 2.1: Water indices used to automatically delineate the shoreline boundary (ρ= surface 
reflectance). 
 
Index Source Equation 

NDVI Rouse et al., 
1974 

𝜌𝜌𝑏𝑏5 − 𝜌𝜌𝑏𝑏4
𝜌𝜌𝑏𝑏5 + 𝜌𝜌𝑏𝑏4

 

TCW Crist, 1985 0.0315𝜌𝜌𝑏𝑏2 + 0.2021𝜌𝜌𝑏𝑏3 + 0.3102𝜌𝜌𝑏𝑏4 + 0.1594𝜌𝜌𝑏𝑏5
− 0.6806𝜌𝜌𝑏𝑏6 − 0.6109𝜌𝜌𝑏𝑏7 

NDWI McFeeters, 
1996 

𝜌𝜌𝑏𝑏3 − 𝜌𝜌𝑏𝑏5
𝜌𝜌𝑏𝑏3 + 𝜌𝜌𝑏𝑏5

 

MNDWI Xu, 2006 
𝜌𝜌𝑏𝑏3 − 𝜌𝜌𝑏𝑏6
𝜌𝜌𝑏𝑏3 + 𝜌𝜌𝑏𝑏6

 

AWEIsh 
Feyisa et al., 
2014 𝜌𝜌𝑏𝑏2 + 2.5 ∗ 𝜌𝜌𝑏𝑏3 − 1.5 ∗ (𝜌𝜌𝑏𝑏5 +  𝜌𝜌𝑏𝑏6) − 0.25 ∗ 𝜌𝜌𝑏𝑏7 

AWEInsh 
Feyisa et al., 
2014 4 ∗ (𝜌𝜌𝑏𝑏3 − 𝜌𝜌𝑏𝑏6) − (0.25 ∗ 𝜌𝜌𝑏𝑏5 + 2.75 ∗ 𝜌𝜌𝑏𝑏7) 

WI2015 
Fisher et al., 
2016 1.7204 + 171𝜌𝜌𝑏𝑏3 + 3𝜌𝜌𝑏𝑏4 − 70𝜌𝜌𝑏𝑏5 − 45𝜌𝜌𝑏𝑏6 − 71𝜌𝜌𝑏𝑏7 
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Table 2.2: Optimal index thresholds used to classify water and non-water index pixels (Fisher et 
al., 2016). 
 

Index Optimal 
Threshold 

WI2015 0.63 
TCW -0.01 
NDWI -0.21 
NDVI 0 

MNDWI 0 
AWEIsh -0.02 
AWEInsh -0.07 
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Table 2.3: Alongshore lengths for the water index shorelines and comparison to measured lengths 
of the surveyed high tide lines. 
 

Index Length (m) Difference (m) % Difference 
Aracaju, Brazil GPS = 4,997   

WI2015 4974 -23 0.5 
TCW 4980 -17 0.3 
NDWI 6124 1,127 22.6 
NDVI 5056 -59 1.2 

MNDWI 4978 -19 0.4 
AWEIsh 4992 -5 0.1 
AWEInsh 4937 -60 1.2 

Salisbury, MA GPS = 4,811   
WI2015 4785 -26 0.5 
TCW 4787 -24 0.4 
NDWI 5592 781 16.2 
NDVI 4783 -28 0.5 

MNDWI 4784 -27 0.5 
AWEIsh 4787 -24 0.4 
AWEInsh 4788 -23 0.4 
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Table 2.4: Proportion of the Landsat shorelines that fall within the intertidal zones. 
 

Index In Zone (m) Out Zone (m) Total Distance % In % Out 
Aracaju, Brazil      
WI2015 4715.62 258.91 4974.53 94.8 5.2 
TCW 4223.45 756.62 4980.07 84.8 15.2 
NDWI 387.89 5736.7 6124.59 6.3 93.7 
NDVI 4590.21 466.48 5056.69 90.8 9.2 
MNDWI 4626.07 352.65 4978.72 92.9 7.1 
AWEIsh 4595.06 397.14 4992.20 92.0 8.0 
AWEInsh 3882.13 1055.16 4937.29 78.6 21.4 
Salisbury, MA      
WI2015 3711 1074 4785 77.5 22.5 
TCW 3863 924 4787 80.6 19.4 
NDWI 2176 3416 5592 38.9 61.1 
NDVI 438 4345 4783 9.1 90.9 
MNDWI 4014 770 4784 83.9 16.1 
AWEIsh 2994 1793 4787 62.5 37.5 
AWEInsh 4686 102 4788 97.8 2.2 
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Figure 2.1: Location of the study area, Atalaia Beach, Aracaju, Sergipe, Brazil. Landsat 8 band 7 
used as basemap (acquired on July 11, 2016).  
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Figure 2.2: Location of the study area, Salisbury Beach State Reservation, Salisbury, 
Massachusetts, USA. Landsat 8 band 7 used as basemap (acquired on July 16, 2017). MA is 
abbreviation for Massachusetts and NH is New Hampshire. 
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Figure 2.3: Tidal curves for Salisbury, Massachusetts (July 2017, top) and Aracaju, Brazil (July 
2016, bottom). Note the near-neap tide conditions during the Landsat flyover in Aracaju on July 
11, 2016. GPS surveys were conducted within 30 minutes of the low and high tide on the day of 
Landsat flyover. 
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Figure 2.4: Intertidal zone at Atalaia Beach, Aracaju. Arrow points to wet/dry sediment line that 
was surveyed by GPS and used as a shoreline indicator at high tide. 
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Figure 2.5: Calculating the accuracy of a Landsat-derived shoreline in Aracaju, Brazil (NDVI 
shown here). The shoreline vector is split where it crosses the intertidal zone boundary and the sum 
of the shoreline segments that are within the zone (green) and out (red) is calculated. RapidEye 5 m 
RGB combination is used as base map. 
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Figure 2.6: AWEInsh and TCW extraction using the threshold values of -0.07 and -0.01 as 
suggested by Fisher et al. (2016) as well as those determined using Jenks-Caspall classification (-
0.55 and -0.06) at Aracaju, Brazil.  The Fisher et al. (2016) indices show significant omission 
errors in the densely clouded region and incomplete shoreline segments as a result. Jenks-Caspall 
classification could discriminate pure beach sand pixels from mixed water and cloud pixels within 
the coastal zone and allowed for the delineation of a complete shoreline in both indices. Green box 
highlights inland body of water that was completely classified using the new threshold value for 
AWEInsh, showing significant improvement over the old. Base map is OLI band 7. 
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Figure 2.7: Range of AWEInsh values calculated for Landsat tile LC82150682016193LGN00 used 
in this study (Aracaju). Fisher et al.’s (2016) and the Jenks-Caspall threshold values are shown. 
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Figure 2.8: Comparing the lengths of the alongshore distance of the Landsat-derived shorelines to 
the measured length of the high tide GPS line (Aracaju). Base map is OLI band 7. 
 
 
 
 
 
 
 
 



 
 

42 
 

 
Figure 2.9: Intertidal zone accuracies for all seven indices (Aracaju, Brazil). WI2015 was the most 
accurate with 94.8% of its shoreline falling between the low and high tide lines while NDWI was 
the least accurate at 6.3%. 
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Figure 2.10: Intertidal zone accuracies for all seven indices. AWEInsh was the most accurate with 
97.8% of its shoreline falling between the low and high tide lines while NDVI was the least 
accurate at 9.1%. 
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Chapter 3 

Bimodal Climate Control of Shoreline Change Influenced by 

Interdecadal Pacific Oscillation Variability along the Cooloola Sand 

Mass, Queensland, Australia 

Wave climate in southeast Queensland, Australia has been correlated to changes in 

the Southern Oscillation Index (SOI), but observations of shoreline change associated with 

the variable wave climate have been limited due to a paucity of aerial photography, 

LiDAR, and other beach profiling datasets in this region. A multi-decadal, sub-annual 

temporal resolution shoreline dataset spanning 1996 to 2017 was produced using satellite 

imagery collected by Landsat 5, 7, and 8. A total of 147 shoreline positions were 

delineated using the Modified Normalized Difference Water Index on cloud-free imagery 

and corrected for horizontal offsets forced by variable tide stages at the satellite flyover 

time. The relative influence of SOI, the Southern Annular Mode (SAM), Pacific Decadal 

Oscillation (PDO), and Subtropical Ridge Latitude (STR-L) and Pressure (STR-P) on 

shoreline dynamics along the Cooloola Sand Mass in Queensland are assessed by 

performing cross correlations between their respective index values and shoreline change 

distances calculated by the Digital Shoreline Analysis System. A bimodal climate control 

of shoreline change is observed dependent upon the phase of the Interdecadal Pacific 

Oscillation (IPO). IPO modulates the impacts of ENSO on eastern Australia through its 

control over the position of the South Pacific Convergence Zone and elevating/lowering of 

tropical Pacific sea surface temperatures. During negative IPO, SOI is negatively 

correlated to the Cooloola Sand Mass shoreline indicating that the shoreline retreats during 
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negative SOI phases. During positive IPO, the impacts of SOI are weakened and the STR 

becomes the primary driver of shoreline change with shoreline response being contingent 

upon its orientation. The SW-NE aligned Noosa North shoreline erodes in response to 

poleward movement of the STR, likely due to the enhanced cross-shore wave attack as a 

result of anti-clockwise wave rotation. The opposite response is shown at the SE-NW 

aligned Rainbow Beach shoreline, which is oriented almost parallel to the incident wave 

direction and is sheltered by the Double Island Point headland. These results suggest that 

climate control on shoreline change at Cooloola Sand Mass, and likely other sand islands 

in the region, is two-tiered, whereby interdecadal variability of the IPO governs the relative 

influence of SOI and STR under the different IPO phases. The linked climate and shoreline 

variability correlation shown in this study provides significant insight into how the 

Cooloola Sand Mass shoreline will respond to future climate changes under a global 

warming scenario. 

3.1 Introduction 

Global sea-level rise has the potential to displace up to 187 million people or 2.4% 

of the global population and cost over $1 trillion USD if the upper-end of warming 

scenarios (4°C) is realized by 2050 (Hallegate et al., 2013; Nicholls et al., 2008). During 

the 20th century, eustatic sea level rose by 1.0 to 2.0 mm/year, primarily driven by ocean 

thermal expansion (0.3 to 0.7 mm/year) and mountain glacier melt (0.2 to 0.4 mm/year; 

Church et al., 2001). Acceleration of SLR throughout the 21st century at a rate of 0.013 

mm/year would culminate in a total rise of 0.28 to 0.34 m globally (Church and White, 

2006). While it is clear that a rise of this magnitude would have significant ramifications 
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for coastal populations and infrastructure across global shorelines, future variability in 

wave-driven sediment transport is expected to be the dominant process influencing 

shoreline modification on exposed, sandy coastlines in the coming decades (Coelho et al., 

2009; Hemer et al., 2012; Slott et al., 2006). 

 In southeast Australia, a link between the Southern Oscillation Index (SOI) and 

regional wave climate is well established (Goodwin, 2005; Harley et al., 2010; 

McSweeney and Shulmeister, 2018; Mortlock and Goodwin, 2016; Ranasinghe et al., 

2004; Short et al., 2000). Negative SOI phases (El Niño), which are associated with cooler 

sea-surface temperatures in the Coral Sea, promote a more southerly incident wave 

direction and dampen significant wave heights (Hs). The opposite is true during positive 

SOI polarity (La Niña), which modulates a more easterly wave component (anti-clockwise 

wave rotation) and elevated Hs (+0.10 m) due to increased extra-tropical cyclonic activity 

(McSweeney and Shulmeister, 2018). Short et al. (2000) and Ranasinghe et al. (2004) both 

describe a statistical relationship between SOI phase and shoreline behavior. They 

suggested that SOI modulation of wave climate drives the mean direction of longshore 

transport along the southeast Australia coast northward during El Niño and southward 

during La Niña (Short et al., 2000). McSweeney and Shulmeister (2018) observed 

widespread erosion along Rainbow Beach, Queensland (Inskip Peninsula) during periods 

of larger waves incident from a more easterly direction (La Niña) and subsequent shoreline 

recovery during El Niño. Similar behavior has been observed along the east coast of New 

Zealand’s North Island beaches (Smith and Benson, 2001). 
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While El-Niño-Southern Oscillation (ENSO) is a climate phenomenon sourced in 

tropical latitudes, the wave climate in southeast Australia is also influenced by weather 

systems that operate in the mid-latitudes. As such, it has been suggested that wave climate 

variability could be modulated by other climate phenomena such as the Southern Annular 

Mode (SAM) (Goodwin, 2005), the Subtropical Ridge (STR) (Hemer et al., 2013a; 

Mortlock and Goodwin, 2015; O’Grady et al., 2015), and the Pacific Decadal Oscillation 

(PDO) (Goodwin, 2005; Pezza et al., 2007). SAM is the principal control on atmospheric 

variability in extratropical and high latitudes in the Southern Hemisphere (Marshall, 2003). 

SAM is zonally symmetric in nature (with opposite signs in Antarctica and mid-latitudes) 

and both models and observations suggest that it drives large-scale variability throughout 

the Southern Ocean (Hall and Visbeck, 2002). Goodwin (2005) suggests that wave climate 

in southeast Australia is modulated by both ENSO and SAM. When SAM is positive, a 

more easterly wave climate is promoted as mid-latitude storms are deflected northward 

(Goodwin, 2005). During negative SAM phases, mid-latitude storms form in the southern 

Tasman Sea generating waves incident from the south. The latitudinal position of the 

subtropical ridge in mean sea-level pressure (MSLP) along the east Australian margin (L 

index) is significantly correlated to yearly variations in rainfall and other atmospheric 

parameters such as wind and temperature (Drosdowsky, 2005; Pittock, 1973). Wind and 

wave climate projections based on future climate scenarios suggest that the latitudinal 

position of the STR is linked to a strengthening of the easterly winds north of the STR 

latitudinal position (Hemer et al., 2013b). As the STR continues to strengthen and move 

poleward under global warming scenarios (Grose et al., 2015), it is predicted that the 
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strengthened easterly winds will lead to an anti-clockwise rotation in incident wave 

direction along the New South Wales coast (Hemer et al., 2013b; Mortlock and Goodwin, 

2015). This poleward trend will also dampen the influence of southerly wave climates at 

more northerly sites along the southeast Australia coast.  

PDO describes the ENSO-like patterns of sea surface temperature (SST) variability 

in the Pacific Ocean basin operating at a decadal scale (Mantua et al., 1997; Tanimoto et 

al., 1993). Pezza et al. (2007) describe a near linear relationship between 

cyclone/anticyclone strength and strong PDO phases (determined as one standard deviation 

above/below its mean) across most of the Southern Hemisphere. During positive PDO 

phases, the Southern Hemisphere is characterized by more intense but fewer cyclones and 

anticyclones with the opposite pattern applying during negative phases. The Interdecadal 

Pacific Oscillation (IPO) is described as the interdecadal component of the PDO and tracks 

SST variability occurring in ~15-30 year intervals across the entire Pacific Basin (Power et 

al., 1999). Power et al. (1999) observed the modulation of ENSO impacts on Australian 

climate by the IPO. During positive IPO phases, there was no significant correlation 

between ENSO and Australian climate variables (i.e. rainfall) as there is during negative 

IPO phases. IPO has also been shown to modulate the position of the South Pacific 

Convergence Zone (SPCZ), which moves closer to (further from) Australia during 

negative (positive) IPO (Splinter et al., 2012). Splinter et al. (2012) suggest that when the 

SPCZ is closer to Australia (negative IPO), the wave climate of southeast Queensland is 

more influenced by ENSO and vice versa when SPCZ moves away (positive IPO).   
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Understanding how the shoreline responds to the variability and interaction of SOI, 

SAM, PDO, and STR during negative and positive IPO phases is integral to predicting the 

impact of future climate extremes. Several studies have suggested that SAM will become 

more positive on average (Gong and Wang, 1999; Kidson, 1999; Marshall, 2003) leading 

to further anti-clockwise rotation of incident wave direction (more easterly; Hemer et al., 

2010). This future wave climate will likely be compounded by a substantial increase in La 

Niña frequency and a predicted doubling of the rate of extreme La Niña events in the 21st 

century due to global warming (Cai et al., 2015). Barnard et al. (2015) suggests that further 

increases in SAM would result in elevated erosion of coastlines in southeast Australia. 

FOAM climate modeling suggests that PDO may become weaker and shift to a higher 

frequency in response to global warming due to increased ocean buoyancy and faster 

Rossby waves under a warmer climate (Fang et al., 2014). A report by the Australian 

Government’s Department of Climate Change highlighted the desire for better information 

on sediment and coastal dynamics and their susceptibility to climate change effects at 

manageable scales (Australian Government, 2009). The compartment scale shoreline-

climate dynamics (as per Thom et al., 2018) presented here with exceptional temporal 

resolution supports these efforts to assess hazard vulnerability and coastal management 

planning. 

3.1.1 Purpose 

This paper aims to provide the first quantitative assessment on determining the 

relative influence of SAM, SOI, PDO, and STR variability during both negative and 

positive IPO phases on shoreline dynamics along the southeast Queensland coast. A high 
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temporal resolution satellite imagery dataset spanning the last 21 years is used to delineate 

shoreline positions and create a shoreline change curve that captures intra-annual 

variability and is statistically compared to contemporaneous SOI, SAM, PDO, and STR 

indices. This represents a significant improvement over previous studies in southeast 

Australia that relied solely on morphodynamic modelling (Mortlock and Goodwin, 2016), 

isolated beach profile data (Ranasinghe et al., 2004), or relatively infrequent aerial 

photography (McSweeney and Shulmeister, 2018) to describe how shoreline positions 

responded to solely SOI phase changes. The results of this study can support the 

development of short and long-term coastal management strategies for the Sand Island 

region of the east Australian coast and to predict changes in coastal sediment budgets and 

realignment.  

3.1.2 Regional Setting 

Sand islands and coastal dune fields constitute a significant part of the southeast 

Queensland coastline (e.g. Ellerton et al., 2018). The Cooloola Sand Mass (CSM) is one of 

these dune fields (Figure 3.1) and is suggested to be one of the oldest continuous coastal 

sand dune complexes in the world. Thermoluminescence dating has revealed an age of 

~700 ka for the oldest dune units (Tejan-Kella et al., 1990), an age recently confirmed by 

optically stimulated luminescence dating (Walker et al., 2018). Most of the 240 km2 sand 

mass is constructed of large, parabolic dunes with elevations reaching up to 240 m.a.s.l 

(Thompson, 1992) and the dune field abuts the ocean on its southeastern and northeastern 

flanks. The ~60 km long CSM shoreline is analyzed in this study (Figure 3.1) and is 

representative of the other SW-NE aligned sand islands (i.e. Fraser and North Stradbroke 
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Islands) and mainland attached dune fields that constitute ~370 km of southeast 

Queensland’s coastline. The CSM is a part of two different secondary coastal 

compartments as defined by the National Climate Change Adaptation Research Facility 

(NCCARF, 2017). The northern half of the CSM (Rainbow Beach) is a part of the Fraser 

Island sediment compartment, which is Queensland’s longest wave dominated beach. The 

southern half of the CSM (Noosa North) is a part of the Cooloola sediment compartment 

and shares similar geomorphic features to Fraser Island. Both compartments have a high 

sensitivity to erosion rating (4.5/5) owing to their susceptibility to sea level rise and erosive 

sandy shores.       

The CSM open coast shoreline is wave-dominated and micro-tidal (Harris et al., 

2002). The wave climate is influenced by six synoptic weather patterns operating in, or 

peripheral to, the Coral Sea: Tropical Cyclones, Tropical Lows, Anti-cyclonic Flows, East 

Coast Lows, Southern Tasman Lows, and Southern Secondary Lows (BBW, 1985; Harley 

et al., 2010; Shand et al., 2011; Short and Trenaman, 1992). These systems develop a wave 

climate with variable amplitudes and directions resulting in a strong seasonal cycle (Hemer 

et al., 2013a). The shoreline is supplied by an extensive longshore transport system that 

originates in New South Wales and is primarily active during periods of lower sea level 

(Boyd et al., 2008; Roy and Thom, 1981). This south-to-north drift system is still active for 

parts of the northern New South Wales and southern Queensland coasts, transporting 

approximately 500,000 m3 of sand per year northward (Boyd et al., 2008). The subaqueous 

Breaksea Spit attached to the northern end of Fraser Island represents the terminus of this 

coastal transport system where estuarine ebb tidal currents transport littoral sands over the 
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shelf edge (Boyd et al., 2008). The sediments transported in this system are sourced from 

the proximal Middle Triassic Hawkesbury Sandstone, Ordovician turbidites, and Silurian 

granitoids (Veevers 2015). Petrographic descriptions of dunes located on Rainbow Beach 

indicate the sediment is mostly quartz with less than 2% heavy minerals and feldspar and 

little to no carbonate material (Thompson, 1983).  

3.2 Materials and Methods 

3.2.1 Shoreline Change Analysis 

Google Earth Engine (EE) is a cloud-based GIS platform designed for conducting 

planetary-scale geospatial analysis (Gorelick et al., 2017). EE houses a multi-petabyte 

catalog of analysis-ready data, the bulk of which is Earth-observing satellite imagery such 

as the USGS Landsat, NASA MODIS, and ESA Sentinel-1 and Sentinel-2 historical 

archives. Google’s parallel computation service can be accessed and controlled using an 

Internet browser-based application programing interface. A custom EE program was 

written using the JavaScript client libraries to automate the acquisition and majority of 

processing steps of the imagery used in this study. 

A total of 364 Landsat satellite images (path: 89, row: 78) spanning 1996 to 2017 

were acquired using EE. These images were collected by Landsat 5’s Thematic Mapper, 

Landsat 7’s Enhanced Thematic Mapper Plus, and Landsat 8’s Operational Land Imager 

sensors. The Level-1 precision- and terrain-corrected products were acquired with 

radiometric calibration and orthorectification in the WGS84 Universal Transverse 

Mercator Zone 56S spatial reference. All images were atmospherically corrected 

(processed to Surface Reflectance) using the Landsat Ecosystem Disturbance Adaptive 
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Processing System (Masek et al., 2006) and the Landsat 8 Surface Reflectance Code 

(Vermote et al., 2016). 

The method for delineating the shoreline position in Landsat imagery described by 

Kelly and Gontz (2018) was utilized in this study. They determined that the Modified 

Normalized Difference Water Index (MNDWI; Xu, 2006) is the best spectral index for 

automatically mapping shorelines in Landsat imagery based on its superior accuracy and 

repeatable threshold value. MNDWI distinguishes water and non-water pixels based on a 

normalized difference between surface reflectance values in the visible green and middle-

infrared bands (equation 1). MNDWI calculations were iterated through the 364 Landsat 

images using the “normalized difference” EE mathematical operator. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝜌𝜌𝑏𝑏3−𝜌𝜌𝑏𝑏6
𝜌𝜌𝑏𝑏3+𝜌𝜌𝑏𝑏6

    (1) 

The MNDWI EE GeoTIFF files were imported into ArcGIS (v. 10.5.1) for further 

processing. The images were visually inspected on a year-by-year basis for cloud 

contamination. Most spectral water indices struggle to discriminate between mixed water, 

cloud, and beach pixels leading to shorelines with missing segments in cloudy areas (Kelly 

and Gontz, 2018). As such, 217 images were discarded due to the presence of clouds. The 

remaining 147 images were reclassified into binary polygons where all pixels with 

MNDWI values greater than 0 representing water and pixels with MNDWI values less than 

0 representing non-water were grouped. The shoreline is interpreted as the boundary that 

separates water (value=1) and non-water (value=0) pixels in the binary MNDWI image. 

With the shoreline positions digitized in ArcGIS, the Digital Shoreline Analysis 

System (DSAS) was used to calculate change statistics on the time series of shoreline 
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vector data in an effort to discriminate distinct geomorphic compartments (Thieler et al., 

2017). DSAS uses a measurement baseline method to calculate change statistics, which 

was constructed here by buffering a Landsat shoreline (February 17, 2017) 1 km landward. 

Transects were cast perpendicular to the shorelines from the baseline at 500 m intervals 

across the 60 km shoreline (Figure 3.2). DSAS calculates the distance each shoreline is 

from the baseline along the transects. The Shoreline Change Envelope (SCE), or distance 

between the shorelines farthest and closest to the baseline, was calculated for each transect 

representing the total change in shoreline movement for all available shoreline positions 

(Thieler et al., 2017). The resulting SCE values were used to define distinct shoreline 

compartments (based on relative morphodynamic behavior), for which shoreline change 

curves were then constructed. The shoreline positions determined by the intersection of a 

single Landsat shoreline with the DSAS transects were averaged to define a single 

position, or “Distance from Baseline” value, for each shoreline compartment. This 

approach was applied to all 147 shoreline positions and used to construct shoreline change 

curves for the individual shoreline compartments  

3.2.2 Tide Correction           

Previous studies that have used Landsat data to describe historical shoreline trends 

noted that vertical water-level changes due to tides produce significant horizontal changes 

in shoreline position, even along micro-tidal coasts (Almonacid-Caballer et al., 2016; 

Pardo-Pascual et al., 2014). Tide data were acquired from the Noosa Head and Mooloolaba 

tide gauges in order to correct the Landsat shoreline positions for tidal variations during 

the satellite flyover. The closest gauge to the study area, Noosa Head, is located 48 km to 
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the south (26° 23’ S, 153° 6’ E) but records managed by the Australian Bureau of 

Meteorology (BoM) are only available dating back to 2014. Records dating back to 1996 

were acquired from the Mooloolaba tide gauge managed by the Queensland Government. 

The Mooloolaba Storm Surge tidal station is located an additional 33 km south of Noosa 

Head (26° 40’ S, 153° 8’ E). Dates and times of daily low and high tides as well as tide 

ranges are compared between the two datasets for 2017 to determine if they can be used 

interchangeably. 

The width of the seasonal intertidal zones were needed in order to adjust shoreline 

positions to their non-tidal position. The seasonal widths are estimated here by 

constructing equilibrium beach profiles following the method of Bruun (1954) and Dean 

(1991) who found the following relationship: 

h(y) = Ay2/3     (2) 

where h is the water depth relative to mean sea level, y is the horizontal distance from the 

shoreline, and A is a sediment scale parameter correlated to grain size (D). The sediment 

scale parameter (A) is determined by: 

A = 0.51w0.44     (3) 

where A is in units m1/3 and w is the settling velocity (cm/s) for D between 0.1 mm and 1 

mm defined by (Vellinga 1983): 

w = 273*D1.1     (4) 

The depth of closure (hc), which represents the most seaward depth of littoral transport, 

marks the horizontal extent of an equilibrium profile and is described by Birkemeier 

(1985) as: 
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hc = 1.75(Hs) – 57.9(Hs
2/g*Tp

2)     (5) 

where Hs the significant wave height, Tp is the wave period, and g is the gravitational 

constant. The width of the beach profile (wb) is then determined by: 

wb = (hc/A)3/2     (6) 

A 31 year (1979-2009) wave record was obtained from the NOAA WAVEWATCH 

III (WWIII) hindcast dataset. These data were used to calculate seasonal mean Hs and Tp 

values for Australia (austral winter = JJA) for the generation of seasonal equilibrium beach 

profiles and intertidal zone widths (Table 3.1). A mean sediment grain size (D) of 0.225 

mm was used based on the work of Walker et al. (2018). Zero water depth on the profiles 

is equivalent to the extent of wave run-up (wet/dry sediment line), which is one of the most 

frequently used shoreline indicators (Boak and Turner, 2005). The distance offshore of the 

Mean Lower Low Water line was extracted from the equilibrium profile knowing the 

average vertical tide range (1.1 m). The distance between these two points represents the 

seasonal intertidal width used to correct the Landsat-derived shoreline positions (procedure 

for austral spring shown in Figure 3.3). 

To correct for tidal variations, Landsat shoreline dates and times (acquired in 

Greenwich Mean Time) were converted to local Australian Eastern Standard Time (+10 

hours). Noosa Head gauge data were used to correct the 2014-2017 shorelines. Since BoM 

only provide daily low and high tide heights, heights at the time of Landsat flyover were 

interpolated based on the time difference between the Landsat flyover and first tide and the 

duration of the tide stage (Table 3.2). This ratio is multiplied by the tide range (in meters) 

to estimate the tide height at the time of Landsat flyover. Mooloolaba tide data are 
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provided in 10-minute intervals and the height at the time closest to the flyover time was 

used. The difference between this height and the high tide provides a percentage of total 

tide range the shoreline has been moved. This ratio is then multiplied with the appropriate 

seasonal intertidal width to determine the absolute distance the shoreline has moved further 

offshore due to tides. To finally “de-tide” the Landsat shoreline, this absolute distance is 

subtracted from the DSAS distance from baseline calculation. The DSAS distances were 

then normalized to the baseline shoreline (February 17, 2017) by subtracting baseline 

buffer distance (1,000 m). 

3.2.3 Correlation to SOI, SAM, PDO, and STR 

Monthly mean Southern Oscillation Index (SOI), Southern Annular Mode (SAM), 

Pacific Decadal Oscillation (PDO), Tripole Index for the Interdecadal Pacific Oscillation 

(TPI), and Sea Level Pressure (as a proxy for the Subtropical Ridge (STR)) data were 

acquired for the study time period (1996-2017) from NOAA and the National Weather 

Service for comparison to observed shoreline change. The SOI is a frequently used 

measurement of large-scale changes in sea level pressure between Tahiti and Darwin, 

Australia. SAM describes the latitudinal shift of the westerly wind belt that surrounds 

Antarctica. PDO describes an ENSO-like SST and pressure variability operating on a 

multi-decadal scale (Mantua et al., 1997). The L index, or latitudinal position of the STR, 

was calculated following the method of Drosdowsky (2005) using the NCEP/NCAR 

Reanalysis Mean Sea Level Pressure (MSLP) dataset (Kalnay et al., 1996). This method 

detects the latitude and magnitude of the maximum SLP over the 150° E longitude band 

over eastern Australia. The gridded 2.5° resolution SLP dataset was imported into ArcMap 
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v. 10.5.1 and interpolated to 0.5° using a Cubic Convolution resampling technique. This 

determines a new cell value based on fitting a smooth curve through the nearest 16 cell 

centers. The resampled global dataset was clipped to the 150° E longitude and 9-45° S 

latitude boundary extent defined by Drosdowsky (2005) and Grose et al. (2015). The 

location and pressure (in millibars) of the pixel with the highest MSLP was determined for 

each of the 264 time slices. These two variables represent the mean monthly position and 

intensity of the STR. TPI is a measure of interdecadal variability in the Pacific calculated 

as the difference between average SST in the central equatorial Pacific and 

southwest/northwest Pacific. A 3-month running mean of the TPI was used to identify the 

onset of negative and positive IPO phases during the study time period.   

Trailing 3 month averages of the climate indices (i.e. SOI in June is the mean of 

AMJ) were calculated in order to prevent the omission of significant climate events in the 

downsampled datasets. The 3 month trailing averaged SOI, SAM, PDO, and STR time 

series (n = 264) were interpolated to match the sample size of the shoreline change curve 

(n = 147). The climate indices and shoreline datasets were split into two different datasets 

based on IPO phase motivated by previous work that has shown IPO’s significant 

modulation of ENSO (Power et al., 1999). Cross correlation analyses were then performed 

on the tidally-corrected shoreline distances and SOI, SAM, PDO, STR-P, and STR-L index 

values in Matlab R2017b software. The sample cross correlation function (crosscorr) 

available in the Econometrics toolbox was used to compute and plot the cross-correlation 

function (XCF) between the two univariate time series. The function returns the lag 

numbers used for XCF estimation (±20 months was the maximum lag used here), the cross 
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correlation coefficient scaled from -1 to 1 for each time lag, and the upper and lower cross-

correlation confidence bounds defined as two standard deviations from the mean.  

3.3 Results 

A total of 147 shoreline positions were extracted for the 1996 to 2017 time period 

(average of 7 positions per year) resulting in a total of ~9,000 km of mapped historical 

shorelines. The Double Island rocky headland was omitted from all shoreline analyses as 

its shoreline consists predominantly of Tertiary volcanics. The DSAS Shoreline Change 

Envelope (SCE) technique shows a wide range of total shoreline movement ranging 

between 37.75 and 212.5 m across the study area (Figure 3.4a). Two narrow regions show 

anomalously high SCE values: the shorelines within the Double Island Point headland 

shadow zone (180.1 m) and along the Great Sandy Strait Inlet (212.5 m). These areas were 

omitted from the climate analyses as they are likely affected by highly dynamic, localized 

effects such as ebb tidal deltas and wave diffraction/refraction around the bordering 

Double Island Point headland. The two sandy, open coast shorelines, Rainbow Beach and 

Noosa North, which constitute most (54 km) of the 62 km shoreline show a similar 

magnitude of total horizontal shoreline movement (Figure 3.4b). The 17 km long, SE-NW 

aligned Rainbow Beach shoreline has a mean SCE value of 68.5 m with a standard 

deviation (SD) of 17.3 m. The 35 km long, SW-NE aligned Noosa North shoreline has a 

mean SCE value of 79.6 m and a SD of 12.8 m. Shoreline change curves were created for 

the Rainbow Beach Open Coast (RB; low SCE, southeast-northwest orientation) and the 

Noosa North Open Coast (NN; low SCE, southwest-northeast orientation).  



 
 

67 
 

The averaged distance from baseline measurement for each NN shoreline shows a 

statistically significant negative correlation to the tide height at the time of Landsat flyover. 

The distance from baseline increases (shoreline progrades) when the tide height decreases 

and vice versa (R2 = 0.23 and p-value << 0.05; Figure 3.5). This correlation indicates that 

the shoreline positions needed to be corrected for horizontal shifts induced by vertical 

changes in water level resulting from variable tide stages at the time of Landsat flyover. 

The mean time difference in the occurrence of daily maximum low and high tides at the 

two locations in 2017 was determined to be 2 minutes. The mean vertical tide range 

difference on the same dates was found to only be 2.5% of the overall tide range (0.03 of 

the 1.1 m vertical tide range, Figure 3.6). The near identical low and high tide timing and 

vertical tide range at these two locations justified their combined use for shoreline 

corrections.      

The seasonal intertidal widths as determined by equilibrium beach profiles are as 

follows: Summer: 34.5 m, Autumn: 34.5 m, Winter: 33.3 m, Spring: 32.6 m. The 147 

shoreline positions were corrected for tidal fluctuations using these widths and the 

percentage of intertidal width exposed at the time of flyover based on time since the 

previous low or high tide. For example, a shoreline extracted from a Landsat image in 

acquired in January that correlated with the daily low tide was moved 34.5 m towards the 

baseline (landward) to account for the horizontal change forced by tides. The tidally-

corrected shoreline change curves that are used to perform cross correlation analyses with 

the climate data are shown in Figure 3.7.   
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The IPO changed phases twice during the study time period: from positive to 

negative in about June 1998 and a switch back to positive in about March 2014 (Figure 

3.8). This agrees well with other studies that have identified a negative IPO phase 

occurring during the 1998 to 2014 period (Gastineau et al., 2018). The presence and 

strength of statistical relationships between the two shoreline change trends and five 

climate indices within each IPO phase were assessed by performing cross correlation 

analyses (Table 3.3). Correlations were not performed for data prior to 1998 due to a 

paucity of shoreline sample points.  

During the 1998-early 2014 negative IPO, cross correlations reveal that the SOI is 

the strongest correlated climate index to shoreline change when it lags the shoreline 

position by 2 months at both NN (r = -0.42; Figure 3.9a) and RB (r = -0.39; Figure 3.9b). 

The 95% confidence bounds for NN = ±0.22 and ±0.21 for RB. The PDO shows slightly 

lower yet still statistically significant positive correlation to both NN (2 month lag, r = 

0.34) and RB (2 month lag, r = 0.3). The latitudinal position of the STR shows positive 

correlations just within the 95% confidence interval at both NN (lag = 1, r = 0.28) and RB 

(lag = 0, r = 0.24). Cross correlations between SAM and STR-P with NN revealed they are 

most correlated when the shoreline change lags climate, indicating no significant climate 

forcing. SAM and STR-P both showed correlation with RB during the negative IPO at a 

zero time lag with r = -0.33 and 0.35, respectively. 

During the mid-2014 to mid-2017 positive IPO period, the position and intensity of 

the STR shows the only significant correlation to shoreline change, where the 95% 

confidence bounds for NN = ±0.33 and ±0.31 for RB. STR-P is most correlated when it 
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lags shoreline changes by 1 month at RB (r = 0.47; Figure 3.10a) and 0 months at NN (r = 

-0.53; Figure 3.10b). STR-L shows slightly lower yet still significant correlation when it 

lags RB by 4 months (r = -0.44; Figure 3.10c) and NN by 2 months (r = 0.39; Figure 

3.10d). SOI shows no correlation to shoreline changes at either RB (lag = 7, r = -0.17; 

Figure 3.9c) or NN where the best correlated lag was the maximum allowed (20 months, r 

= -0.36; Figure 3.9d). Similar results were achieved for PDO, which shows the RB 

shoreline lagging PDO (lag = -8, r = 0.33) and NN lagging by 19 months (r = 0.41). SAM 

shows no statistically significant correlation at either NN (lag = 10, r = -0.28) or RB (lag = 

7, r = -0.30). 

3.4 Discussion 

The coupling between phase changes of the El Niño-Southern Oscillation Index 

and wave climate has been well described for locations along the New South Wales coast 

(Goodwin, 2005; Harley et al., 2010; Mortlock and Goodwin, 2016; Ranasinghe et al., 

2004; Short et al., 2000). Only recently has it been shown that there is a correlation 

between the two along the southeast Queensland coast. McSweeney and Shulmeister 

(2018) show that there is a 0.1 m increase in significant wave height and a 6° anti-

clockwise rotation of the mean wave direction during periods of sustained (>6 month) La 

Niña phases (positive SOI values). Elevated wave heights and a more cross-shore wave 

attack (easterly wave direction incident on a north-south oriented beach) would be 

expected to generate significant shoreline erosion. This was observed at a decadal scale by 

McSweeney and Shulmeister (2018) who used scarce (> 5 years between images for 1996-

2012) aerial photography to relate shoreline erosion (accretion) with La Niña (El Niño).  
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This work expands upon their results by taking advantage of historical Landsat 

imagery to create a high temporal resolution shoreline change curve. The 147 shoreline 

positions mapped over the 21 year study period here show that both of the open-coast 

shorelines do have a negative correlation to SOI as suggested by McSweeney and 

Shulmeister (2018), yet only during negative IPO phases. Observations of shoreline 

changes occurring at the timescale of SOI phases (~2.5 years) are made possible using high 

temporal resolution satellite imagery. Examples of these events include the historically 

strong El Niño event in 1997-98 and the observed ~40 m shoreline progradation and 

similar amplitude erosion immediately following during the extreme La Niña of 1998-1999 

at both RB and NN (Figure 3.7). 

The robust relationship established between shoreline change and SOI only during 

negative IPO phases agrees with previous work that has suggested IPO’s modulation of 

ENSO (Folland et al., 2002; Power et al., 1999; Splinter et al., 2012). A strong correlation 

between the SOI and numerous climate variables such as rainfall and surface temperature 

was observed over eastern Australia only when SST in the tropical Pacific was lowered 

(negative IPO; Power et al., 1999). Furthermore, the location of the SPCZ has been shown 

to influence the impact of ENSO on wave climate in southeast Queensland. Splinter et al. 

(2012) observed that wave climate in the Tasman Sea is more influenced by ENSO when 

the SPCZ, which lies close to Fiji, moves closer to Australia. This only occurs during 

negative IPO phases. They theorized that the Tasman Sea wave climate is likely influenced 

by other climatic variables when the SPCZ is further away from Australia (positive IPO) 

and the ENSO relationship is weakened, but did not perform any analyses to determine 
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which indices become prevalent. Based on this previous work and the cross correlation 

statistics presented here, we theorize that the open coast shorelines at the CSM are 

predominantly controlled by ENSO during negative IPO phases when the SPCZ moves 

southwest towards Australia. Negative correlation between both NN and RB were 

established with SOI indicating that the shorelines retreat (prograde) during La Niña (El 

Niño) phases. This agrees with previous studies that have suggested a more erosive wave 

climate during La Niña phases as incident wave directions become more oblique (easterly) 

and Hs increases (McSweeney and Shulmeister, 2018).     

 During negative IPO, PDO is shown to be positively correlated to both NN and RB 

at a similar time delay as SOI. The signs (+/-) of the correlation between PDO and 

shoreline change would have been expected to be the same as SOI given that PDO and SOI 

phases typically match one another (Mantua and Hare, 2002; Verdon and Franks, 2006). 

This could potentially be explained by large-scale anomalies and trends in cyclone and 

anticyclone behavior in the Tasman Sea. Pezza et al. (2007) show that more (less) frequent 

but weaker (stronger) cyclones occur during the positive (negative) phase of PDO across 

the Southern Hemisphere. The authors note a “remarkable exception” to this trend in the 

Tasman Sea (Figure 3.12), where negative PDO is host to both more frequent and stronger 

cyclones with the opposite pattern during positive PDO holding true. Waves of notably 

higher amplitude would result from enhanced cyclone intensity during negative PDO and 

promote a more erosive shoreline state (concurrently with an underlying La Niña wave 

climate). 
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Both SOI and PDO become notably uncorrelated to shoreline changes during the 

positive IPO phase from April 2014 through the end of the study time period (December 

2017). In their place, STR-P and STR-L become the strongest and only statistically 

significant correlated climate indices to the shoreline change dataset, at a time lag 

comparable to SOI and PDO during the negative IPO phase. Recent work by Mortlock and 

Goodwin (2015) has shown that variability in the sub-tropical ridge influences wave 

climate in the Tasman Sea. They observed that as the STR migrates south, there is an anti-

clockwise rotation in incident wave direction during both the austral summer and winter 

seasons. They noted that under a more southeasterly wave climate, cross-shore sediment 

movement would become the dominant mode of transport due to a more shoreline-

perpendicular wave attack. This shoreline response likely explains why NN and RB are 

anti-correlated with respect to STR-L as NN (positively correlated) erodes as STR-L 

decreases (moves south) while RB progrades (negatively correlated). The more 

southeasterly wave climate would directly impact the exposed, SW-NE oriented NN 

shoreline causing erosion and offshore transport of foreshore beach sediment. The SE-NW 

oriented RB shoreline compartment is aligned near parallel to the southeasterly wave 

climate and is sheltered by the protruding Double Island rocky headland that separates it 

from NN. In addition to RB not being exposed to direct cross-shore wave attack, the 

headland significantly disperses wave energy that likely allows sediment to be removed 

from nearshore bar systems and deposited onshore under a reduced energy state. A 

conceptual model that illustrates the relationships between IPO phase variability, primary 

climate drivers of shoreline change, and shoreline response is shown in Figure 3.11.     
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The relationship between the intensity of the sub-tropical ridge (STR-P) and wave 

climate has not been studied, although an association between Australian rainfall 

variability and STR-P has been observed. The drought-like conditions in southern 

Australia over the past decade is suggested to be related to a more intense STR rather than 

latitudinal variations of the high MSLP band (Larsen and Nicholls, 2009; Timbal and 

Drosdowsky, 2013). The underlying climatic cause of variability of the STR and 

subsequent rainfall are unknown and as such, insight into how STR-P potentially affects 

wave climate (and shorelines) cannot be made. Cross correlations established in this study 

suggest there is a strong link between the two and this should be a focus of further 

investigation. It’s also clear from the results presented here that shoreline changes are 

governed by processes other than global and regional climate cycles as the strongest 

correlation between NN and STR-P (r = -0.53) only accounts for 28% of the variability. 

Local synoptic weather patterns (i.e. trade winds, East Coast Lows) have been shown to be 

key drivers of rainfall variability in QLD in conjunction with climate (Klingaman, 2012) 

and they likely have an influence on shoreline change as well. Future work can include the 

use of newer generation satellite data products (i.e. PlanetScope). The high spatial 

resolution afforded by these platforms (<5 m/pixel) could potentially produce a less noisy 

shoreline change curve and improve upon the correlations established in this study. 

Although, they have not been in orbit near long enough to study shoreline behavior during 

multiple IPO phases.  

3.5 Conclusions 
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A multi-decadal, sub-annual temporal resolution shoreline change curve was 

produced for the open coast sections of one the world’s oldest coastal dune systems, the 

Cooloola Sand Mass, located on the southeast coast of Queensland. Shorelines were 

observed to be horizontally shifted due to variable tide stages at the synchronous sampling 

time and tide data located near the study area were used to correct for these offsets. 

Seasonal intertidal widths ranged from 32.6 to 34.5 m and were determined by correlating 

the known vertical tide range of the study area to its corresponding offshore distance on 

equilibrium beach profiles constructed for each austral season. The tidally-corrected 

change curves show sudden and significant episodes of shoreline progradation and erosion 

in addition to decadal trends in shoreline position.    

The statistical relationship between shoreline change at the two shoreline 

compartments and SOI, SAM, PDO, STR-P, and STR-L index values were quantified by 

performing cross correlations. The climate indices and shoreline datasets were split into 

two different datasets based on IPO phase motivated by previous work that has shown 

IPO’s significant modulation of ENSO. SOI is the strongest correlated index to both RB 

and NN during the 1998-2014 negative IPO phase. During the 2014-2017 positive IPO, 

SOI becomes uncorrelated to the shoreline change dataset and the latitudinal position and 

intensity of the subtropical ridge (STR-P/L) shows the only statistically significant 

correlation to both shorelines. This bi-modal climate-shoreline relationship is likely related 

to IPO’s modulation of ENSO and the position of the SPCZ. During positive IPO, the 

SPCZ moves northeast away from Australia and the impacts of ENSO are dampened, 

allowing STR to become the primary driver of wave climate and subsequent shoreline 
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change. During negative IPO, the SPCZ migrates closer to Australia and ENSO’s impact 

on eastern Australia wave climate are amplified, which is reflected in the strong correlation 

statistics between SOI and RB/NN.  

This study provides the first attempt at describing the relative influence of the four 

major climate cycles on shoreline change in southeast Australia. Previous studies have 

suggested that shoreline change in southeast Australia is primarily driven by ENSO 

variability. These studies were limited either by their spatial coverage (Ranasinghe et al., 

2004) or temporal resolution of their shoreline dataset (McSweeney and Shulmeister, 

2018), thus not allowing for a robust assessment on the correlation of climate variability 

directly with shoreline change on an inter-compartment scale. Using Landsat imagery 

allowed for near bi-monthly mapping of shoreline positions across two decades. This 

drastically improved spatial and temporal resolution shoreline dataset enabled statistical 

analyses and insight into sub-decadal correlations that were previously unfeasible due to 

small sample sizes.       

The bimodal control on shoreline change governed by IPO phases described here is 

a significant advancement in our understanding of how the southeast Queensland Sand 

Island region coastline will respond to future predicted climate changes. The frequency of 

La Niña events and the rate of extreme La Niña events are expected to significantly 

increase in the 21st century due to global warming (Cai et al., 2015). In addition, the 

subtropical ridge is predicted to continue to move poleward under future warming 

scenarios due to the expansion of the Hadley circulation cell (Grose et al., 2015). Based on 

the shoreline-climate relationships described here, it can be expected that Noosa North and 
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possibly other SW-NE aligned coasts (i.e. Fraser and North Stradbroke Islands) will 

experience above average erosion during both positive and negative IPO phases. 

Meanwhile, Rainbow Beach and other SE-NW aligned coasts may also experience above 

average erosion during negative IPO when an enhanced La Niña is in effect, but could 

likely enter a stable to progradational state during positive IPO as STR continues to move 

south.   
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Table 3.1: Seasonal significant wave height (Hs) and period (Tp) derived from a 31 year (1979-
2009) wave record obtained from the NOAA WAVEWATCH III (WWIII) hindcast dataset and 
used to create equilibrium beach profiles. 
 
Season (months) Hs (m) Tp (sec) 
Summer (DJF) 1.93 8.44 
Autumn (MAM) 2.17 8.91 
zWinter (JJA) 1.91 8.92 
Spring (SON) 1.63 8.12 
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Table 3.2: Explanation of technique for correcting DSAS shoreline distances for horizontal tidal 
fluctuations. Tide height at the time of Landsat flyover for 2014-2017 shoreline data based on the 
interpolation of Noosa Head low and high tide times. This method was not necessary for 1996-
2013 as 10-minute archive data was available at Mooloolaba.   
 

Tide 
recor
d 

Flyover 
date 
& time 
(GMT) 

Flyover 
date 
& time 
(AEST) 

1st 
tide 

Heig
ht 
(m) 

2nd 
tide 

Height 
(m) 

Cycle 
time 

Time since 
1st tide  

 

Moolo
olaba 

4/12/96 
22:50 

4/13/96 
8:50 

4:20 1.73 11:00 0.4 
   

Noosa 
Head 

7/19/14 
23:41 

7/20/14 
9:41 

8:43 0.48 15:26 1.64 6:43 0:58 
 

 
% 
Total 
tide 

Tide 
range 

Flyov
er tide  
height 
(m) 

∆Hig
h  
tide 
(m) 

% 
Total 
tide 

Intertid
al width  
exposed 
(m) 

DSAS 
distance 
(m) 

Corrected 
distance (m) 

Normalized 
distance (m) 

Moolo
olaba 

 
1.33 0.58 1.15 0.864 27.2 1026.09 998.89 -1.11 

Noosa 
Head 

0.144 1.16 0.65 0.99 0.856 26.9 1008.55 981.65 -18.35 
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Table 3.3: Cross correlations between SOI, SAM, PDO, STR-P, and STR-L and the NN and RB 
shoreline distances from baseline during negative and positive IPO phases. 
 
Shoreline 
compartment 

Climate 
index 

Lag (months) Cross correlation 95% 
Confidence 
bounds 

Negative IPO 
(1998-2014) 

    

NN SOI 2 -0.42 -0.22 
 SAM -6 -0.31 -0.22 
 PDO 2 0.34 0.22 
 STR-P -1 -0.27 -0.22 
 STR-L 1 0.28 0.22 
RB SOI 

SAM 
PDO 

2 
0 
2 

-0.39 
-0.33  
0.30 

-0.21 
0.21 
0.21 

 STR-P 0 0.35 0.21 
 STR-L 0 0.24 0.21 
Positive IPO 
(2014-2017) 

    

NN SOI 20 -0.36 -0.33 
 SAM 10 -0.28 -0.33 
 PDO 19 0.41 0.33 
 STR-P 0 -0.53 0.33 
 STR-L 2 0.39 0.33 
RB SOI 7 -0.17 -0.31 
 SAM 7 -0.3 -0.31 
 PDO -8 0.33 0.31 
 STR-P 1 0.47 0.31 
 STR-L 4 -0.44 -0.31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    



 
 

80 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Location of the study area, Cooloola Sand Mass, Queensland, Australia. PlanetScope 
RGB band combination used as basemap. 
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Figure 3.2: The required inputs for DSAS: vector shoreline positions, onshore baseline from which 
measurement transects are cast, and measurement transects cast every 500 m.  
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Figure 3.3: Extraction of the austral spring intertidal width from an equilibrium beach profile 
created using seasonal wave parameters.  
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Figure 3.4: a. Total shoreline movement calculations determined by the Shoreline Change 
Envelope DSAS technique. b. Locations of the Rainbow Beach (RB) and Noosa North (NN) open 
coast shoreline compartments. 
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Figure 3.5: Averaged distance from baseline value for each Landsat shoreline (n = 147) plotted 
against the tide height during the time of Landsat flyover. Line of best fit and correlation statistics 
show significant negative correlation.  
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Figure 3.6: Comparison of the times and vertical tide ranges of daily low and high tides at the 
Noosa Head and Mooloolaba tide gauges.    
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Figure 3.7: Historical shoreline change curves for the Rainbow Beach and Noosa North shoreline 
compartments created using tidally-corrected Landsat-derived shoreline position data.  
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Figure 3.8: 3 month averaged Tripole Index for the Interdecadal Pacific Oscillation data during the 
study time period and identification of dates of phase changes.  
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Figure 3.9: Cross correlation analyses between Southern Oscillation Index and a. Noosa North 
(NN) during negative Interdecadal Pacific Oscillation (IPO) b. Rainbow Beach (RB) during 
negative IPO c. RB during positive IPO d. NN during positive IPO. Red line indicates time lag at 
which maximum correlation occurs.  
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Figure 3.10: Cross correlation analyses occurring during positive Interdecadal Pacific Oscillation 
between a. Rainbow Beach and Subtropical Ridge-Pressure (STR-P) b. Noosa North (NN) and 
STR-P c. Rainbow Beach (RB) and Subtropical Ridge-Latitude (STR-L) d. NN and STR-L. Red 
line indicates time lag at which maximum correlation occurs.    
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Figure 3.11: a. Shoreline response to Southern Oscillation Index (SOI) phase variability during 
negative Interdecadal Pacific Oscillation (IPO) phases. The incident wave direction and power 
during each SOI phase are illustrated by arrow size and color (SOI wave climate of McSweeney 
and Shulmeister, 2018 used here) and the corresponding shoreline response is indicated by the 
identical color. b. Shoreline response to the latitudinal variability of the Subtropical Ridge during 
positive IPO phases. Wave climate changes in response to Subtropical Ridge-Latitude variability 
from Mortlock and Goodwin (2015).      
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Figure 3.12: Cyclone pressure (hPa) anomalies across the Southern Hemisphere during negative 
Pacific Decadal Oscillation (PDO) phases (adapted from Pezza et al., 2007). Note the “remarkable 
exception” in the Tasman and Coral Seas (red square), which are host to more frequent and intense 
cyclones during negative PDO phases.   
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Chapter 4 

Rapid Assessment of Shoreline Changes Induced by Tropical Cyclone 

Oma Using CubeSat Imagery in Southeast Queensland, Australia 

Tropical Cyclone Oma impacted the Southeast Queensland coast of Australia in 

February 2019. Significant wave heights exceeding 10 m were further amplified by a king 

tide. Satellite remote sensing of pre- and post-Oma shoreline positions was performed as 

storm impacts hindered the ability to acquire field-based data. The high spatial and 

temporal resolution of PlanetScope imagery enabled mapping of the high water line 

(HWL), which was used as a shoreline indicator across 200 km of shoreline. Where this is 

the first attempt at using PlanetScope to map shoreline positions, the position uncertainty 

using this data was assessed. Comparison to a temporally coincident, LiDAR-derived mean 

high water (MHW) shoreline at a distant site showed an average horizontal offset of 9 m 

with the HWL shoreline. The Oma-impacted shoreline uncertainty ranged between ±13.86 

and 23.28 m, primarily influenced by the geometric accuracy of the data used as well as the 

pixel size of the imagery and the horizontal offset between the HWL and MHW elevation. 

The Net Shoreline Movement (NSM) was calculated every 200 m along the study area 

using the Digital Shoreline Analysis System. Only transects with NSM values greater than 

the uncertainty of their associated shoreline compartment were used to assess change. The 

spatial distribution of erosion and accretion was similar across the SW-NE oriented 

shorelines as the southern ends of Fraser Island and the Cooloola Sand Mass eroded while 

their northern ends prograded. Wave data shows that the wave direction rapidly shifted 56° 

in an anti-clockwise direction during Oma. Wave propagation became primarily from the 
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SE and the direction of longshore transport likely turned northward, leading to the 

shoreline rotation observed in the imagery. This study demonstrates the significant 

improvement on assessments of regional-scale shoreline changes in the aftermath of an 

episodic event using new satellite products. 

4.1 Introduction 

Coastal systems worldwide are under threat from rising sea level (IPCC, 2014), 

coastal flooding (Kirshen et al., 2008), over development of the coastal zone (Harvey and 

Smithers, 2018), and increased storm numbers (Yue et al., 2019) and intensity (Putgatch et 

al., 2019). As a result, at least 24% of the world’s sandy shorelines are eroding at rates 

surpassing 0.5 m/year (Luijendijk et al., 2018), a significant concern for the more than 100 

million people living within 1 m of mean sea level (Zhang, Douglas, and Leatherman, 

2004). Shoreline erosion impacts infrastructure (Laska et al., 2005), coastal sites of cultural 

heritage (Gontz et al., 2011; Maio, et al., 2012) and the recreation carrying capacity of the 

system (Cisneros et al., 2016). Thus, it is critical to understand how coastal systems 

respond to periods of extreme events. 

New advances in satellite technology and geographic information systems provide 

new mechanisms to examine the impacts of episodic events. These techniques couple 

traditional methods used in aerial photography (Boak and Turner, 2005) and apply new 

techniques that take advantage of the multispectral capacity of satellite imagery (Kelly and 

Gontz, 2018; Kelly et al., 2019; van der Werff, 2019; Xu, 2018). High resolution satellite 

imagery (< 5 m/pixel) with high temporal resolution (daily) allows for an unprecedented 

capacity to track the impact of a single event over large areas without the logistical 
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planning, time and/or cost associated with flying low-altitude aerial imagery (Fellman, 

2008), beach profiling (Andrade and Ferreira, 2006; Delgado and Lloyd, 2004), or 

UAS/UAV surveying (Colomina and Molina, 2014; Gonclaves and Henriques, 2015). The 

assessments can also be achieved from areas remote to the location of the event, increasing 

the safety of the individuals surveying the impact. The capacity for rapid assessment of the 

condition of the coastal system after a major event is critical for management, disaster 

relief, and safety.  

Many early studies that examined the morphological changes to beaches after 

energetic storms relied on the rudimentary rod and level technique (Fisher and Stauble, 

1977; Leatherman et al., 1977; Morton et al., 1995). This labor and time intensive survey 

method typically yielded spatially and temporally deficient datasets that required 

interpolation of location points between adjacent profiles (Morton, 1991; Overton and 

Fisher, 1996; Smith and Jackson, 1992). Aerial photography and Light Detection and 

Ranging (LIDAR) surveys are a significant improvement on manual surveying as they 

provide extensive spatial coverage from which quantification of shoreline changes can be 

assessed, albeit at a much higher acquisition cost which limits temporal resolution (Boak 

and Turner, 2005; Dolan, Hayden, and May, 1983; Zhang et al., 2005). More recently, 

freely available multispectral satellite imagery has been used to describe shoreline 

variability over time, although the moderate-resolution of Landsat (30 m) and Sentinel-2 

(10 m) imagery limits the accuracy of the interpreted shoreline position and ability to 

detect smaller scale changes (Hagenaars et al., 2018; Pardo-Pascual et al., 2014). 
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These previous shoreline mapping techniques may be found unsuitable for rapid 

assessments of beach changes induced by high energy storms due to one or a combination 

of logistical difficulties, survey costs, and limited spatial resolution. The recent 

development of small, low-cost satellites known as “CubeSats” potentially represents the 

next step in assessing the impacts of hurricanes and other high energy storms on global 

shorelines in near-real time (<48 hours). The PlanetScope satellite constellation consists of 

150 Triple-CubeSat satellites in a sun-synchronous orbit at an altitude of 475 km. These 

micro-satellites are equipped with a multispectral sensor that acquires imagery in the Blue, 

Green, Red, and Near-Infrared wavelength spectrums with a Ground Sample Distance of 

3.7 m. Owing to the large number of satellites in orbit, the PlanetScope constellation has 

been collecting repeat daily coverage of the earth since early 2017. This revelation in 

satellite technology alleviates the previous tradeoff between high temporal and spatial 

resolution using a single platform (i.e. Landsat). The daily, 3.7 m multispectral imagery 

represents a significant improvement on Landsat’s 30 m imagery acquired in 16 day 

intervals that has been frequently used to assess shoreline changes (Almonacid-Caballer et 

al., 2016; Kelly et al., 2019) and could provide much greater insight into storm-induced 

shoreline changes. 

The true definition of a “shoreline” is the physical boundary between land and 

water (Dolan et al., 1980) and a large number of shoreline indicators have been used to 

delineate its position and track changes over time (Boak and Turner, 2005). The most 

commonly used shoreline indicator has been the high water line (HWL) as it is easily 

identifiable in the field as well as in aerial photography and very-high resolution 
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commercial satellite imagery (Anders and Byrnes, 1991; Dolan et al., 1980; Moore, 2000; 

Pajak and Leatherman, 2002). It is identified as the color contrast between the wet 

intertidal and dry supratidal beach sediment left by the maximum wave runup of the 

previous high tide (Anders and Byrnes, 1991; Moore, Ruggiero, and List, 2006; Zhang et 

al., 2002). The instantaneous high water line imaged by aerial and space-borne platforms 

does not consider the prevailing wind, wave, and tide conditions at the time of capture 

(Boak and Turner, 2005). Elevated wind speeds and wave heights have been shown to 

horizontally offset the HWL and other shoreline indicators by tens of meters, particularly 

on gently sloping beaches (Thieler and Danforth, 1994).      

4.1.1 History of Cyclones 

Cyclonic storms are a significant threat to coastal environments located within the 

tropical to subtropical zone. The storms are common in the southwestern North Atlantic 

and Caribbean oceans as well as the southeastern and southwestern North Pacific Ocean 

(Bengtsson, Hodges, and Roecker, 2006). In eastern Australia, evidence of large-scale 

erosion events, like those associated with hurricane or cyclone strikes, was reported from a 

North Stradbroke Island ground penetrating radar survey that showed storm scarps in 

excess of 2 m occurring on a repetitive basis (Gontz et al., 2013). Other studies have 

shown similar results from beaches throughout Australia (e.g. Forsyth et al., 2010; Knott et 

al., 2009; May et al., 2018). Levin (2011) and Levin, Neil, and Syktus (2014) showed that 

cyclone activity was responsible for controlling blowout development and renewed activity 

on the large sand islands. Sweeney and Shulmeister (2018) demonstrated that the shoreline 

of Rainbow Beach in southeast Queensland has experienced large erosive events using 
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repeat aerial photography and linked the changes to El Niño-Southern Oscillation. 

However, their study did not include any pre- and post-storm imagery and thus, erosive 

episodes could not be linked to specific events. Kelly et al. (2019) expanded their work 

using Landsat imagery over 25 years and showed that long term shoreline change at the 

Cooloola Sand Mass is controlled by variability in the Interdecadal Pacific Oscillation 

(IPO). However, Landsat imagery does not have high-spatial resolution and thus impacts 

of individual storms also could not be discerned, unless the event resulted in shoreline 

migration of more than ~15 m. Other documented shoreline changes occurring in response 

to large-scale storm events not only include erosion and progradation, but washover fan 

development (May et al., 2017; Williams, 2015) and new inlet formation (FitzGerald and 

Pendleton, 2002; Maio et al., 2014). 

4.1.2 Tropical Cyclone Oma 

Tropical Cyclone Oma (Oma) reached tropical cyclone status on 12 Feb 2019 at 

0000 GMT. The storm was then located at 14° S, 164.5° E, approximately 290 km 

northwest of Vanuatu. Over the next nine days, the storm slowly moved generally south-

southwest toward the eastern coast of Australia (Figure 4.1). During this time, the storm’s 

intensity varied from tropical storm to Category 1 and reached Category 2 on 20 February 

2019 at 0400 GMT. On 22 February 2019 at 0000 GMT, the storm intensity had weakened 

to a Category 1 storm and the models suggested the storm would stay well offshore of the 

southeast Queensland coast. In response, the tropical cyclone warning for all sections of 

the southeast coast of Queensland and the northwest coast of New South Wales (NSW) 

was canceled. However, as the storm center was approximately 600 km east of the northern 
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section of Fraser Island, hazard surf and high tide warnings were “still in effect for the next 

several days” as the storm was expected to intensify to a Category 2, slow, turn north and 

remain offshore (BOM, 2019). On 22 February 2019, the wave monitoring buoy 50 km 

east of Point Lookout recorded a 16 m wave and a significant wave height of 10 m.  

Ultimately, the storm turned east and north in a sharp buttonhook, moving the storm center 

farther from the Queensland coast. The storm was off the coast of Queensland for nearly 

five days. 

Coupled with Oma, the southeast coast of Queensland experienced a king tide on 

21 February 2019. Elevated high tide levels resulted in flooding in Brisbane along the 

Brisbane River (Courier News, 2019a), beach erosion near Orchid Rock on Fraser Island 

(Personal Commination, 2019), and a potential for Bribie Island to breach (Courier News, 

2019b). However, the storm did not approach the coast close enough to cause a rainfall 

event. No precipitation was recorded at the Brisbane Airport (BOM, 2019). While Oma did 

not make landfall, or approach the coast closer than 450 km, the situation developed 

conditions that were favorable for large-scale coastal erosion.  

4.1.3 Study Site 

The coast of southeast Queensland is dominated by large sand islands and mainland 

attached dune fields (Ellerton et al., 2018) that have formed as a result of an extensive 

longshore transport system that originates in New South Wales (Boyd et al., 2008). Fraser 

Island (FI), the Cooloola Sand Mass (CSM), and the Sunshine Coast (SC) make up a 

significant part of this region and represent over 200 km of predominantly sandy coastline 

(Figure 4.1). These sediments are sourced from the Triassic Hawkesbury sandstone unit 
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located in the Sydney Basin (Wasantha and Ranjith, 2014) and are mostly quartz with less 

than 2% heavy minerals and little to no carbonate (Thompson, 1983). The CSM is 

suggested to be one of the world’s oldest continuous coastal dune fields based on 

thermoluminescence dating of sand grains revealing an age of 700 ka (Tejan-Kella et al., 

1990; Walker et al., 2018). The mostly open coast shorelines of the study area are wave-

dominated and micro-tidal (Harris et al., 2002) and are influenced by a variety of synoptic 

weather patterns that operate in and around the neighboring Coral Sea (Harley et al., 2010). 

These weather patterns (i.e. East Coast Lows, Tropical Cyclones, etc.) interact and 

influence a seasonal wave climate that is highly variable with respect to wave heights and 

direction (Hemer, McInnes, and Ranasinghe, 2013). Recent work has shown that long-term 

CSM shoreline dynamics are predominantly controlled by IPO phase variability (Kelly et 

al., 2019).  

4.1.4 Purpose 

The purpose of this study is twofold: to understand the capabilities and limitations 

of using high spatial and temporal resolution PlanetScope imagery to map shoreline 

positions and to quantitatively assess shoreline changes induced by Tropical Cyclone Oma 

in southeast Queensland in February 2019. 

4.2 Methods 

PlanetScope (PS) Analytic Ortho Scene (Level 3B) products were acquired from 

Planet Labs, Inc. directly. These imagery products are orthorectified using ground control 

points and fine Digital Elevation Models to achieve <10 m RMSE positional accuracy. 

Further geometric corrections of the Level 3B imagery are performed using sensor 
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telemetry and attitude telemetry of the spacecraft. The Analytic Ortho Scene products are 

radiometrically corrected for any sensor artifacts and conversion to absolute radiometric 

values based on calibration coefficients, which are continuously updated with on-orbit 

calibration techniques (Planet, 2017). The Level 3B data are provided as both at-sensor 

radiance and surface reflectance products, of which surface reflectance was used because 

of the removal of atmospheric artifacts and improved consistency between images acquired 

at different times. Surface reflectance is calculated using MODIS near-real time aerosol 

optical depth, ozone, and water vapor parameters sourced from the MOD09CMA and 

MOD09CMG datasets. The products are supplied in a WGS84 Universal Transverse 

Mercator coordinate system (Zone 56S for this study area). 

Visual inspection of all available PS Analytic scenes in the study area was required 

to identify scenes with suitable cloud-free coverage along the shoreline area. Data were 

acquired pre- and post-Oma as close as possible to the storm date, limited primarily by 

extensive cloud coverage (to be expected during a tropical cyclone). Although no entirely 

cloud-free days were found, mostly clear days were observed on February 15 and 19, 2019 

(pre-Oma) and February 27 (immediately post-Oma). Georectified Level 3B data products 

were acquired for the study area on these dates and used for shoreline delineation. The PS 

images were imported into ArcGIS Pro and resampled using Cubic Convolution, which 

determines each cell value based on fitting a smooth curve through the 16 nearest input cell 

centers. The red (band 3), green (band 2), and blue (band 1) layers contained within each 

4-band product were composited to create a true color image for visual interpretation. The 

spatial coverage of the post-Oma imagery is slightly less than the pre-Oma dataset as it 
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does not cover the northernmost 17 km of Fraser Island. Although post-Oma imagery for 

this region of Fraser Island is available, the data has not been georectified and was opted 

not to be used in this study. The ~195 km shoreline area analyzed in this study spans 24° 

51’ 5” S to 26° 36’ 41” S. 

The high spatial resolution of the PS imagery enabled the manual digitization of the 

HWL across the study area for both the pre- and post-cyclone image datasets (Figure 4.2). 

Interpretation of shoreline areas covered by clouds and shadows was avoided as they 

obscure the contrast difference between the dry supratidal and wet intertidal sand. Separate 

shoreline datasets were created for each of the shoreline compartments: Fraser Island (FI), 

Cooloola Sand Mass (CSM), and Sunshine Coast (SC). Multiple shoreline segments 

mapped within each compartment (separated by uninterpretable areas) were aggregated 

into a single feature for further analysis. 

A LiDAR dataset was acquired from the NSW Government Department of 

Finance, Services, and Innovation in order to derive a Mean High Water (MHW) shoreline 

position. This datum-based shoreline has become the modern standard for shoreline 

position estimates (Ruggiero and List, 2009) and is used here to assess the accuracy of the 

satellite-derived HWL shoreline estimate. The LiDAR dataset covers 12 km of the Gaagal 

Wanggaan National Park and Carpe Diem Beach coastlines in the Macksville region of 

NSW. The LiDAR survey occurred between July 25-28, 2016 and a cloud-free PS image 

was acquired only a few days later on August 1, 2016, a short enough time interval to 

assume no significant geomorphic changes had occurred. An annual average MHW value 

of 1.421 m was described for the nearby Coffs Harbor recording station (~42 km N of 
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Gaagal Wanggaan) for the period 1990-2010 (MHL, 2012). A MHW shoreline was 

derived from the LiDAR dataset by extracting elevation values equal to 1.421±0.05 m.    

The Digital Shoreline Analysis System (DSAS; Thieler et al., 2017) was used in 

ArcMap 10.5.1 to quantify the horizontal change in shoreline position pre- and post-Oma 

as well as to calculate the average horizontal offset between the HWL and MHW shoreline 

positions. In preparation for analysis for DSAS, the two shorelines were merged into a 

single feature class and an attribute table was populated following Himmelstoss (2009). A 

baseline used to cast alongshore measurement transects was created by buffering the post-

Oma and MHW shorelines 250 m landward. Transects were then cast perpendicular to the 

shorelines and spaced 200 m apart along the 183 km Oma shoreline (Figure 4.3; total of 

915 measurement transects) and 10 m apart along the 12 km validation shoreline (1,228 

transects). The migration of the shoreline post-Oma is assessed by calculating the Net 

Shoreline Movement (NSM) for each of the 915 transects. A total horizontal error for the 

PS HWL shoreline position is reported as the mean offset from the MHW shoreline.  

While a robust positional error is assessed by comparing to a datum-based MHW 

position and likely provides a suitable uncertainty benchmark for using PS-derived HWL 

shorelines, survey data were not available to assess the uncertainty of the Oma shorelines 

as the most recent LiDAR survey was conducted prior to the launch of the PS satellites 

(late 2015). As such, the uncertainty of the pre- and post-Oma shoreline positions are 

quantitatively assessed following the methods of Hapke et al. (2006) and Ruggiero and 

List (2009). Total shoreline position uncertainty accounts for errors due to: (1) 

georeferencing (source accuracy) (2) source Ground Sample Distance (GSD) and (3) 
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shoreline position uncertainty due to water level variations (“proxy-offset bias”; Ruggiero 

and List, 2009). The proxy-offset bias, or horizontal offset between the HWL and MHW 

shoreline positions, is estimated by Equation 1: 

Bias=(XHWL – XMHW)=([ZT + 1.1{0.35 tan β2(H0L0)1/2+([ H0L0(0.563 tan β2+ 0.004)]1/2)/2}] ZMHW)   
(1) 
                           tan β 
 

where ZT is the tide level at the time of survey, tan β is the foreshore beach slope, H0 is the 

offshore wave height, L0 is the deep-water wave length given by linear theory as (g/2π)/T2, 

where g is the acceleration of gravity and T is the wave period.  

Following Ruggiero and List (2009), the long term median wave height and 

wavelength were used to calculate the best bias estimate. A 31 year (1979-2009) wave 

record from the NOAA WAVEWATCH III (WWIII) hindcast dataset was used to 

calculate median H0 and TP values (Figure 4.4). The WWIII hindcast record has been 

widely used due to its good agreement with in situ wave buoy data (Hemer, Church, and 

Hunter, 2007; Hughes and Heap, 2010). The 31 year record provided for this study by 

McSweeney and Shulmeister (2018) was selectively acquired from the 25.90° S, 153.73° E 

grid point due to its proximity to the coast yet still uninhibited wave passage. The elevation 

of Mean High Water (ZMHW) was estimated to be the average of long term Mean High 

Water Neap and Mean High Water Spring elevations provided by the State of Queensland 

Department of Transport and Main Roads for tidal datum epoch 1992-2011. The tide 

elevation at the time of image acquisition (ZT) was interpolated from daily low/high tide 

records provided by the Commonwealth of Australia Bureau of Meteorology. The closest 

Queensland Standard Ports to each shoreline compartment were used, which included 
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Waddy Point (24° 58’ S, 153° 21’ E) for FI and Noosa Head (26° 23’ S, 153° 06’ E) for 

CSM and SC.  

Due to the unavailability of beach profile data, LiDAR data were used to calculate 

an average foreshore beach slope (tan β) for each of the three shoreline compartments. A 1 

m-resolution LiDAR dataset was acquired from the State of Queensland Department of 

Natural Resources, Mines, and Energy (survey conducted in 2009). Three polygons 

defining the spatial extent of the foreshore zone at each compartment were digitized using 

very-high resolution (0.5 m) DigitalGlobe imagery and used to clip the DEM. The slope of 

each cell located within the foreshore DEM was calculated in ArcGIS Pro as shown for a 

stretch of SC in Figure 4.5. The mean foreshore slope values for FI, CSM, and SC were 

used to calculate the proxy-offset bias for each shoreline compartment. 

The total estimated shoreline position uncertainty (Esp) for the FI, CSM, and SC 

shoreline compartments was estimated following the method of Hapke et al. (2006) and 

Cenci et al., (2013). The total error is estimated by taking the square root of the sum of the 

squares of georeferencing error (Eg), source pixel error (EGSD), and the proxy-offset bias 

(Ep) as shown by Equation 2:   

Esp= √Eg
2+EGSD

2+Ep
2       (2) 

Per Hapke et al. (2006), the georeferencing error (Eg) is the maximum RMS error 

for the data source, which is defined as 10 m for PS imagery (Planet, 2017). The source 

pixel error is equal to the GSD of orthorectified PS imagery (3 m) and is included as 

features smaller than the GSD cannot be resolved (Cenci et al., 2013). Only transects with 

NSM values greater than the ±Ep of their associated compartment were considered valid 
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and used to describe Oma-induced shoreline change. The greater of the two Ep values for 

the pre- and post-Oma images at each compartment was used as the uncertainty threshold.  

Wave monitoring data were acquired in order to understand the interaction between 

the Oma-enhanced wave climate and the observed shoreline change. The Mooloolaba 

Waverider buoy is located offshore of Coolum Beach at the southern extent of SC (26° 

33.960’ S, 153° 10.870’ E; Figure 4.1) in 32 m water depth and is jointly operated by the 

State of Queensland Department of Environment and the Department of Transport and 

Main Roads. The buoy acquires a suite of wave climate parameters such as significant 

wave height, maximum wave height, wave period, wave direction, and sea surface 

temperature at a 30 minute interval. A record spanning January 1, 2019 through February 

28, 2019 was acquired to characterize the Tropical Cyclone Oma wave climate. 

4.3 Results 

The absolute positional uncertainty of a PS-derived shoreline was assessed by 

comparing to a contemporaneous MHW shoreline derived from a 1 m LiDAR dataset 

(Figure 4.6). The horizontal offset between the HWL and MHW shorelines along the 12 

km study area ranged from 0.01 to 22.06 m with an average offset of 9.02 m. The MHW 

shoreline position was almost ubiquitously landward of the HWL shoreline as only 36 of 

the 1,227 (3%) measurement transects recorded a negative NSM value.    

Storm events in southeast Australia are typically defined as waves exceeding 3 m 

significant wave height (Harley et al., 2010). This threshold is only achieved during 

Tropical Cyclone Oma and more specifically, from February 21, 21:30 to February 25, 

0:00 AEST (Figure 4.7). The mean Hs during Oma (3.14 m) was more than double the two 
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month mean Hs leading up to the storm event (1.54 m) with a maximum Hs of 4.21 m 

recorded on February 22 at 13:30. The average peak wave direction (Dp) during the 

approximately 3 day storm event was 101.1°, a substantial 11.4° increase over the two 

month mean (89.7°). The peak wave direction ranged over 50° as a sharp anti-clockwise 

rotation in wave direction occurred between 63° and 119° (Figure 4.7).  

The southeast Queensland coast analyzed in this study is divided into three separate 

compartments on the basis of political boundaries (i.e. Fraser Island) and broad 

geomorphic characteristics, i.e. the high dune bluffs backing the CSM shoreline versus the 

predominantly built-up area adjacent to the SC shoreline. A description of the total 

shoreline uncertainty (Esp) and the geomorphic and metocean characteristics used for each 

of these compartments is provided in Table 4.1. The total mapped shoreline length for the 

pre-Oma shoreline across the entire study area is 183.2 km and 181.5 km for the post, 

where the remaining 12 to 14 km of the study area were uninterpretable due to the presence 

of clouds and cloud shadows masking the HWL boundary. Net shoreline movement was 

calculated every 200 m alongshore with negative values representing erosion and vice 

versa for accretion in Figures 4.8 through 4.10. Any NSM values that are within the ranges 

of uncertainty (Esp) were omitted from shoreline change analysis.  

Net shoreline movement derived from pre- and post-storm PS imagery shows that 

the FI shoreline both prograded and eroded during Tropical Cyclone Oma (Figure 4.8). 

Areas of significant erosion are clustered in the northern and southern extents of FI. 

Approximately 53% of the SE-NW trending Orchid Beach shoreline (16.7 km) located at 

the northernmost extent of the FI study area eroded with an average landward movement of 
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17.4 m and NSM values ranging from -11.99 to -33.4 m. A 12 km, SE-NW trending stretch 

at the southern end of Seventy-Five Mile Beach shows significant erosion with an average 

NSM of -19.8 m ranging between -14.25 and -31.66 m. Areas of progradation are clustered 

throughout much of the SW-NE trending 75 Mile Beach and at the Great Sandy Strait inlet 

that separates FI from CSM. The northernmost 9 km of 75 Mile Beach prograded an 

average of 22.1 m within a range of 15.1 to 34.9 m. A 5 km stretch in the north-central 

region of 75 Mile Beach prograded an average of 19.6 m within a range of 14.2 to 29.0 m. 

A 9 km stretch in the central region of the same beach showed an average progradation of 

17.6 m ranging between 14.4 to 22.9 m. The largest amount of accretion occurred near the 

Great Sandy Strait inlet where a 3 km stretch of the shoreline prograded an average of 22.4 

m within a range of 14.7 to 28.6 m. Within this same section, a narrow, 400 m band of 

erosion amounting to 22.7 m was observed.     

Net shoreline movement statistics show that the CSM mostly prograded in response 

to Tropical Cyclone Oma (Figure 4.9). A 1.6 km, SE-NW trending stretch at the 

northernmost extent of the CSM near the inlet experienced the most extreme shoreline 

change as it predominantly prograded an average of 42.9 m (with a maximum of 70.2 m) 

with a narrow band of erosion amounting to -21.7 m. Further south, a 500 m stretch located 

near the Double Island headland shadow zone prograded 19.7 m. The widest area of 

progradation occurred along the northern end of SW-NE trending Noosa North Shore 

where a 5 km stretch prograded an average of 21.7 m within a range of 16.0 to 29.7 m. The 

southernmost 1 km of CSM, bounded by the Noosa River to the south, prograded an 

average of 19.9 m within a range of 15.0 to 32.8 m. The significantly higher shoreline 
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position uncertainty for SC (±23.28 m) led to most of the NSM values not being used for 

shoreline change analysis. Although, discrete locations of erosion are observed throughout 

the region and most (>90%) of the uncertain NSM data points indicate erosion (Figure 

4.10). An NSM value of -41.1 m was calculated at the beach fronting the town of Coolum 

and is aligned with a tidal creek. To the north, two transects with NSM values of -24.6 and 

-24.5 m indicate significant erosion of the beach bordering the town of Sunshine Beach. 

Finally, the NW facing beach at Noosa Spit, which marks the northern terminus of SC, 

experienced significant erosion with NSM amounting to -29.0 m.  

4.4 Discussion 

The 3 m imagery provided by the PS constellation proved to be an effective source 

for mapping the HWL, the most commonly used shoreline indicator in change studies. The 

color contrast between the dry supratidal and wet intertidal sediment was easily observable 

in true color composites, which enabled a reliable manual digitization of the shoreline 

indicator across a large study area for multiple dates. This represents a significant 

improvement on previous shoreline change studies that utilized lower spatial resolution 

satellite imagery such as Landsat (30 m) and Sentinel-2 (10 m). Where these image 

products are too coarse to visualize the HWL, spectral water indices such as NDWI and 

MNDWI are used to define and track the movement of the shoreline boundary. This 

mapping technique was found to be significantly influenced by tide height at the time of 

satellite flyover (Kelly et al., 2019) where interpretation of imagery collected at low tide 

would show apparent shoreline progradation (and vice versa at high tide). The ability to 

define the HWL in PS imagery removes much of the uncertainty associated with the 
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horizontal movement of the shoreline due to tidal variability, which is typically 

encountered when using spectral water indices to extract a shoreline boundary.   

The response of the three shoreline compartments to the storm wave climate show 

some similarities, primarily based on the relationship between the orientations of the 

shorelines and their observed response. The northern ends of the extensive SW-NE 

oriented coasts of FI and CSM show significant progradation, where they are both bound 

by rocky headlands to the north. Concurrently, the southern end of the same coast on FI 

that is oriented SE-NW shows similar amplitude erosion. There is a possibility that the 

southern end of CSM also eroded in a similar manner to FI, although the amount of 

shoreline erosion detected (-12.0 m) is just below the level of local Esp uncertainty (±13.86 

m) but is beyond the bounds of MHW offset error (±9 m). In between the southern 

erosional and northern progradational hot spots, both the FI and CSM shorelines show 

stable to progradational change in response to Oma. The second, more northern shoreline 

compartment on FI (Orchid Beach) shows nearly ubiquitous erosion, with the largest 

retreat amounting to -33.6 m. The orientation of this section is similar to that of the 

southern erosional area on FI (SE-NW). While most of the NSM values on SC were 

omitted due to a much higher uncertainty threshold, areas of significant erosion were 

detected and the general trend of the alongshore NSM is erosional. SC does not show the 

shared southern-erosion northern-accretion pattern as FI and CSM, which could be due to 

its more N-S orientation and exposure to wave incidence. 

The rapid and significant anti-clockwise rotation in peak wave direction from 63° 

(incident from the NE) to 119° (incident from the SE) could potentially describe the spatial 
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relationship in erosional and progradational patterns observed in the study area. Previous 

studies have attempted to describe the geomorphic response of shorelines to changes in El 

Niño-Southern Oscillation (ENSO) influenced wave climates (Ranasinghe et al., 2004; 

Short, Trembanis, and Turner, 2000). Ranasinghe et al. (2004) show that La Niña phases 

are associated with a predominantly northeasterly wave direction, which leads to the 

erosion at the northern end and accretion at the southern end of embayed shorelines in New 

South Wales (anti-clockwise rotation). The opposite is held true during El Niño phases 

when a more southeasterly wave climate leads to accretion in the northern end of the same 

shoreline areas (clockwise rotation).  

The same shoreline rotation response likely occurred here, except at the time scale 

of days rather than years due to the amplified erosive wave power. As the incident wave 

direction rotated to the SE, the direction of longshore transport switched from a 

predominantly southerly direction to the north. The southern ends of FI and likely CSM 

eroded and the material was transported north along the coast where it was ultimately 

deposited due to blocking from the Double Island and Waddy Point rocky headlands, 

leading to significant shoreline progradation. Although spatial coverage of the PS imagery 

did not allow for analysis of the northern end of Fraser, material eroded from Orchid Beach 

is likely transported to the northern end of the island and transported over the shelf edge 

due to uninhibited littoral drift (Boyd et al., 2008). The significant progradation observed 

on the downdrift sides at the inlets of the Great Sandy Strait and Noosa River are likely 

related to tidal dynamics. This could potentially be due to storm surge-induced ebb-

channel switching that ultimately released sediment within a few kilometers downdrift of 
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the Great Sandy Strait inlet, as has been observed at other inlets during hurricane 

conditions (Morton et al., 1995). Significant erosion of the ebb tidal delta is also likely to 

occur during storms, mobilizing sediment that is transported and deposited downdrift 

(Miner et al., 2009; Morton et al., 1995). The inflection point of the shoreline area 

influenced by tidal dynamics on FI is likely within the 3 km section located 7 to 10 km 

alongshore just prior to the erosive section. The predominantly erosive response of SC 

could be due to its steeper beach slope that could have reduced wave dissipation in the 

nearshore zone leading to enhanced wave energy at the shoreline (Vousdoukas et al., 

2009). Due to this process, offshore transport of beach sediment along SC would cause a 

reduction in beach slope and significant landward migration of wave runup and the HWL.                       

In addition to seaward migration of the HWL, geomorphic indicators of shoreline 

erosion were visually observed in the PS imagery throughout the study area (Figure 4.11). 

A 2 km long sand spit was present along the southern extent of Orchid Beach on the 

northern half of FI. Much of the pre-Oma sand spit was subaerial based on similar spectral 

characteristics with the mainland attached beach. A narrow lagoon (50 m at its widest) 

separated the sand spit from the mainland and a 15 m wide inlet breached the spit and 

connected the lagoon to the Coral Sea. The post-Oma image shows significant infilling of 

the lagoon, with the remnants taking on the form of “cat’s eye” ponds. The once subaerial 

sand spit appears to have been completely submerged during Oma based on the distinctly 

darker color of the sediment (Figure 4.11a). Just downdrift from the spit, significant 

sediment migration over partially vegetated foredune ridges and lagoons is visible in the 

imagery (Figure 4.11b). Approximately 2 km of Orchid Beach fronting the identically 
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named seaside resort town experienced significant sand encroachment with an observed 

maximum migration distance of 61 m. Additionally, significant sediment migration into 

the Stumers Creek tidal inlet on SC is visible in the post-Oma imagery and is spatially 

coincident with southernmost erosive NSM transect (-41.1 m; Figure 4.11c). In the pre-

Oma image, recent channel outflow onto the beach is apparent based on the appearance of 

darker, wet sediment spanning the width of the beach and into the channel. In the post-

Oma image, there is no longer evidence of active outflow as the backshore now consists of 

dry, supratidal sediment that has migrated ~30 m into the Stumers Creek inlet.    

The acquisition of global, high resolution imagery at a daily repeat interval has 

been and will continue to be shown to be paramount in modern and future global change 

studies. The daily acquisition of PS imagery has already been shown to optimize the timing 

of harvesting events (Houborg and McCabe, 2018), enhance volcano monitoring (Barnie et 

al., 2018), and aid in global disaster response efforts (Zajic et al., 2018). This work shows 

for the first time that PlanetScope’s daily repeat interval allowed for a near-immediate 

mapping of the shoreline in the aftermath of a significant storm event. This enabled a 

detailed description of storm-induced shoreline change and identification of areas that 

experienced enhanced erosion/progradation, which is of great interest to local decision 

makers for shoreline management strategies. The method used here represents a notable 

improvement in rapidly assessing shoreline changes in the aftermath of a storm event. 

Previous techniques for describing shoreline change in a rapid response manner are limited 

due to logistical difficulties (expedited mobilization and access to field site) as well as cost 

(aerial imagery acquisition). Using satellite imagery for rapid assessment was also 
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previously difficult due to low repeat intervals (5 days for Sentinel-2 and 16 for Landsat) 

that would likely be exacerbated if the area of interest was cloud covered during the initial 

post-storm satellite flyover. Classifying geomorphic changes observed during the 

subsequent flyover up to 4 weeks after the event ended would likely be imprudent. While 

other commercial satellites that acquire near-daily, very-high resolution imagery such as 

DigitalGlobe’s WorldView constellation have been used to describe shoreline change 

(Maglione, Parente, and Vallario, 2014; Sekovski et al., 2014), the acquisition cost can be 

prohibitively expensive.  

While the PS imagery can be used for mapping the HWL on a near daily basis, it is 

not without its own drawbacks. The PS-derived HWL shoreline shows an average 

horizontal offset of 9 m from the optimal MHW shoreline position at the validation study 

site. This could potentially be due to drying of the intertidal sediment, which would cause 

an apparent shoreline progradation of the mapped HWL. This is likely the cause of the 

error determined here as 97% of the HWL shoreline was positioned seaward of the MHW 

shoreline. Regardless, this positional error analysis based on in situ, temporally coincident 

survey data provides a benchmark for future studies that use PS imagery to map and 

describe shoreline changes over time. It’s likely that this uncertainty value will decrease in 

beach environments with steeper foreshore slopes as the excursion zone is narrowed. 

The total shoreline position uncertainty (Esp) of the three Oma study areas omitted 

88.3% of the total NSM values as they were within the error of the mapping technique, 

which ranged between ±13.86 (CSM) and ±23.28 m (SC). This translates to 21.4 km of the 

181.5 km long study area ultimately being retained and used to assess geomorphic changes 
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to the shoreline. A potential source of error in estimating Esp here is the measurements of 

tanβ at each shoreline segment, which was derived from a LiDAR dataset collected in 

2009. The Esp of SC was calculated for variable tanβ values in an effort to assess its 

potential variability based on fluctuating foreshore slopes. Stockdon et al. (2006) describe 

oceanographic and geomorphic characteristics of a wide range of natural beaches. They 

noted that gently sloping (dissipative) beaches that have a mean slope of 0.06 can vary by 

up to ±0.002. Using these upper and lower slope limits, the Esp at SC (20.65 m when tanβ 

= 0.049) is 0.32 m greater when tanβ = 0.047 (1.3% difference) and 0.57 m less when tanβ 

= 0.051 (2.4%). As such, variability of tanβ should not be considered a significant source 

of error for calculating Esp, although this may not hold true at steeper, more reflective 

beaches where significant lowering can occur.   

The greatest source of error in the Esp calculations for all but one of the image 

datasets was the georeferencing error (geometric accuracy) of the PS data product (10 m). 

Only the pre-Oma dataset for SC had a larger source of error, which was its proxy-offset 

bias (Ep; 20.65 m). The pre-Oma SC Ep value of 20.65 was due to the abnormally high tide 

during the survey on February 19 (ZT; 1.79 m), which was 0.17 m higher than the ZMHW. 

Given that the proxy-offset bias is primarily due to wave driven water level variations 

(setup and swash) driving the horizontal displacement between the HWL and MHW 

(Ruggiero and List, 2009), Ep is expected to be anomalously large if ZT >ZMHW and wave 

runup is amplified. The lowest Ep values were achieved when ZT< ZMHW (i.e. Ep = 3.30 and 

3.21 m when ZT = 0.99 and 1.03 m for the post-Oma FI and CSM datasets) as wave runup 

during low-to-mid tide positions the HWL close to MHW. Future studies using PS to map 



 
 

123 
 

shorelines using this technique should consider the tide height during the time of satellite 

flyover to minimize the position error due to the proxy-offset bias. Future improvements 

on the orthorectification of the PS data products will also significantly improve the 

shoreline position uncertainty, although its 10 m RMS geometric accuracy is already an 

improvement on Landsat 8 (12 m RMS; Roy et al., 2014) and Sentinel-2 (11 m RMS; 

ESA, 2019). 

4.5 Conclusions 

Tropical Cyclone Oma was a powerful, Category 2 storm that moved towards the 

southeast Queensland coast over the course of 9 days. Although the storm never made 

landfall in Australia, it reached within 450 km of Fraser Island during which time it had 

weakened to a Category 1 cyclone. The close proximity of the massive storm to the Sand 

Island coast produced remarkably high surf conditions, as observed by wave monitoring 

buoys that recorded significant wave heights up to 10 m. These storm surge conditions 

were amplified by a king tide that resulted in flooding along the Brisbane River. The 

impacts of these extremely energetic oceanographic conditions on the sandy, open coast 

shorelines of southeast Queensland were assessed using newly available, high temporal 

and spatial resolution satellite imagery. 

The HWL was mapped on the 3 m resolution, multispectral PlanetScope imagery 

by manually defining the boundary between wet intertidal and dry supratidal sediment. 

Pre-storm shoreline positions were mapped across the study area using imagery collected 3 

and 6 days prior to the arrival of Oma and post-storm positions were defined a mere 3 days 

after the storm wave conditions returned to normal. For the first time, the total shoreline 
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position uncertainty associated with using PS imagery to map the HWL was assessed by 

comparison to a temporally coincident MHW shoreline at a distant validation site and by 

calculating the proxy-offset bias at the Oma-impacted study area. The average horizontal 

offset between the MHW and HWL shorelines across the 12 km validation site was 9.02 m 

with the HWL shoreline nearly entirely seaward of the MHW. The local Esp across the 

three shoreline compartments ranged from ±13.86 to 23.28 m. Uncertainty of the PS-

derived shorelines was primarily due to the geometric accuracy of the Level 3B PS 

imagery (10 m RMSE), in addition to its pixel size (3 m) and site-specific proxy-offset 

bias. 

Net Shoreline Movement statistics calculated by the Digital Shoreline Analysis 

System show that the FI and CSM both prograded and eroded and SC eroded during 

Tropical Cyclone Oma. The FI and CSM shorelines display similar spatial patterns in the 

locations of erosion and accretion. The northern ends of their extensive SW-NE oriented 

shorelines experienced significant progradation that was contemporaneous with shoreline 

erosion at their southern ends with stable to uncertain progradation occurring in between. 

The wave climate during the three day storm period (when Hs > 3 m) experienced a rapid 

and significant 56° anti-clockwise rotation (from 63° to 119°). This likely shifted the mean 

direction of longshore transport to the north and resulted in clockwise beach rotation, a 

geomorphic process observed at quasi-biennial time scales due to ENSO phase variability. 

Although the higher Esp of the SC shoreline omitted most of the NSM values, regions of 

exceptional shoreline erosion were identified and are theorized to have been due to its 

steeper beach slopes that lowered due to enhanced wave energy.  
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This study demonstrates for the first time the capability of using PS imagery to map 

shoreline positions and detect their horizontal change occurring at a weekly time interval in 

response to episodic events. The daily repeat interval of the PS satellites allowed for 

acquisition of mostly cloud-free, georectified imagery one week prior to and after Oma’s 

arrival. This ensured that the significant shoreline changes described by both the migration 

of the HWL and through direct observation of geomorphic processes were entirely due to 

Oma. This study also shows that using PS imagery significantly improves rapid detection 

and assessment of shoreline changes in the immediate aftermath of a storm or other 

powerful event. Previous techniques were limited due to prohibitively expensive costs 

(airborne surveys), logistical difficulties (access to damaged field site), and inadequate 

temporal coverage (Landsat repeat interval of 16 days). Future improvements in the 

accuracy of PS-derived shoreline positions can be achieved through enhancement of the 

geometric accuracy of the PS data products and selective use of images that were acquired 

at mid-to-low tide. Automated mapping of the HWL using PS imagery across regional-to-

continental scale study areas could be possible using Support Vector Machine and other 

machine learning classification techniques and is the subject of future work. 
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Table 4.1: Geomorphic and metocean characteristics used to calculate the proxy-offset bias (Ep) 
and total shoreline position uncertainty (Esp) of the three shoreline compartments. 
 
Shoreline 
Compartme
nt 

Mea
n tan 
β 

ZT 

(pre/pos
t, in m) 

ZMH

W 
(m) 

Media
n H0 
(m) 

Media
n Tp 
(s) 

Media
n L0 
(m) 

Ep 
(pre/pos
t, in m) 

Esp 
(m) 

FI 0.02
9 

1.18/0.98
7 

1.62 1.76 8.60 115.35 8.82/3.30 ±13.9
2 

CSM 0.03
5 

1.19/1.03 1.62 1.76 8.60 115.35 8.73/3.21 ±13.8
6 

SC 0.04
9 

1.79/1.03 1.62 1.76 8.60 115.35 20.65/5.1
4 

±23.2
8 
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Figure 4.1: Locations of wave and tide monitoring buoys and the three shoreline study areas: 
Fraser Island (FI), Cooloola Sand Mass (CSM), and the Sunshine Coast (SC), Queensland, 
Australia. Inset maps show the geographical context of the study area, the track of Tropical 
Cyclone Oma, and an image of the storm on February 22, 2019 (courtesy of NASA MODIS). 
DigitalGlobe WorldView imagery used as basemap. 
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Figure 4.2: Delineation of the High Water Line boundary on a PlanetScope RGB composite image. 
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Figure 4.3: Components of the Digital Shoreline Analysis System: pre- and post-storm shoreline 
positions, baseline constructed landward of the shoreline dataset, and measurement transects cast 
every 200 m alongshore from the baseline. 
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Figure 4.4: 31 year (1979-2009) wave height (m) and period (s) record from the NOAA 
WAVEWATCH III (WWIII) hindcast dataset used to calculate median H0 (1.76 m) and Tp (8.60 
s) values. 
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Figure 4.5: Process of deriving average foreshore slope values from 1 m LiDAR data a. Manual 
delineation of the foreshore area in very high resolution WorldView imagery b. Digital Elevation 
Model (DEM) derived from the LiDAR point cloud data c. Extraction of the DEM for the mapped 
foreshore area d. Slope calculation for every cell located in foreshore. 
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Figure 4.6: a. LiDAR and PlanetScope imagery used to extract MHW and HWL shoreline 
positions at the validation site (indicated by red line) b. Extraction of MHW and HWL shorelines c. 
DSAS components showing HWL and MHW shorelines with 10 m-spaced measurement transects 
d. Histogram count of 1,227 NSM calculations indicating an average horizontal offset of 9.02 m. 
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Figure 4.7: a. Normal and storm wave directions (° from north) measured from the Mooloolaba 
Waverider buoy from January 1 to February 28, 2019. Inset plot highlights Oma storm wave 
directions b. Normal and storm significant wave heights (m) as defined by the 3 m Hs threshold. 
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Figure 4.8: Net Shoreline Movement across the Fraser Island (FI) study area. Positive NSM values 
(green) indicate areas of certain progradation and negative NSM values (red) highlight erosion. The 
grey region in the plot indicates NSM values within the range of uncertainty (±13.92 m). Numeric 
values on the map show distance alongshore for correlation to the plot. 
 
 
 
 
 



 
 

136 
 

 
Figure 4.9: Net Shoreline Movement across the Cooloola Sand Mass (CSM) study area 
(uncertainty = ±13.86 m). 
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Figure 4.10: Net Shoreline Movement across the Sunshine Coast (SC) study area (uncertainty = 
±23.28 m). 
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Figure 4.11: Geomorphic indicators of shoreline erosion in pre- (2/15 and 2/19) and post-storm 
(2/27) PlanetScope imagery a. Submergence of a 2 km long spit and infilling of lagoon at Orchid 
Beach, FI b. Sediment migration over partially vegetated foredune ridges at Orchid Beach, FI c. 
Sediment migration into and blocking of the Stumers Creek tidal inlet at Coolum Beach, SC.  
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Chapter 5 

Summary 

 The spectral water indices using optimal thresholds determined by Fisher et al. 

(2016) mapped complete shoreline segments for five of the seven indices. TCW and 

AWEInsh struggled to discriminate the shoreline boundary in mixed cloud pixel regions. In 

addition, only one index utilizing their threshold produced satisfactory results (AWEIsh). 

MNDWI and NDVI both used a zero threshold value as suggested by their original authors 

with only MNDWI achieving accurate results. Jenks-Caspall classification improved the 

accuracy results of TCW and AWEInsh by 17.5 and 37.5%. These mixed results point to 

underlying complication with spectral index classifications in that the threshold values 

optimized for use in a certain area may not be suitable at other locations. This could be due 

to a number of parameters such as variable water and land surface conditions, cloud 

coverage, among others. As such, an index that requires threshold calibration produce 

accurate results for every unique study area defeats the purpose of having a supposed 

“repeatable” method to be used globally. Therefore, MNDWI is the most suitable index for 

mapping Landsat-derived shorelines based on its superior accuracy (88.4%) and stable, 

repeatable threshold value (0).  

 Based on the previous results, MNDWI was used on a stack of Landsat 5, 7, and 8 

images to derive a high temporal resolution shoreline change curve along the Cooloola 

Sand Mass in southeast Queensland, Australia. The 21 year horizontal shoreline position 

record was cross-correlated with climate index data for climate phenomena operating in the 

Australian region. Cross-correlations were split into two datasets corresponding to IPO 
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phase as determined by TPI data. During Negative IPO phases, ENSO is the strongest 

correlated index with a 2 month time lag, agreeing with previous studies that have 

suggested ENSO has a strong control on Australian wave and atmospheric climate during 

negative IPO phases. During the more recent positive IPO phase, STR-P and STR-L show 

the only significant correlation to the shoreline change curves at a 4 month time lag with 

ENSO showing no correlation at all. The relationships established in this study allow for 

prediction of future shoreline behavior based on global climate model outputs. Positive 

IPO is expected to remain for at least 8 more years and changes in the Subtropical Ridge 

will drive shoreline erosion and growth throughout SE Australia. Over the next century, 

the frequency and intensity of La Niña events are expected to increase, which will likely 

promote amplified erosion along SE Australia during negative IPO phases. The 

Subtropical Ridge is predicted to continue to migrate poleward under global warming 

scenarios, which will amplify erosion along SW-NE aligned coasts during positive IPO 

phases. 

  Revolutionary PlanetScope imagery was used here for the first time to map high 

water line shoreline positions for the purpose of assessing changes induced by Tropical 

Cyclone Oma, which struck SE Queensland in February 2019. Similar spatial patterns of 

progradation at the northern and erosion at the southern ends of the three distinct shoreline 

compartments was observed. This geomorphic change was likely a response to a rapid and 

significant clockwise wave rotation, which shifted the local mean direction of longshore 

transport to the north. The clockwise beach rotation observed along Fraser Island and the 

Cooloola Sand Mass is a known occurrence along many of New South Wales’ and 
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Queensland’s pocket beaches, except it’s occurring at a timescale of days as opposed to 

years due to the storm wave climate. In addition, the total positional uncertainty of 

shorelines mapped using PlanetScope imagery was assessed using the proxy-offset bias 

technique. The total positional uncertainty was determined to be primarily due to the 

geometric accuracy of the PlanetScope data (10 m RMS) and secondarily due to the proxy-

offset bias, or the horizontal error due to wave runup. Future studies using PlanetScope 

data to assess shoreline change should attempt to use imagery acquired at mid-to-low tide 

to minimize the proxy-offset bias and total uncertainty. This study shows that PlanetScope 

is a remarkably useful tool for providing rapid response surveys of storm damaged 

shorelines, particularly those that are inaccessible due to infrastructure damage.  
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Appendix 

Data Sources 

Chapter 2:  

Landsat Surface Reflectance products were provided by the United States Geological 

Survey at earthexplorer.usgs.gov. 

Chapter 3:  

Landsat Surface Reflectance products were provided by the United States Geological 

Survey at earthexplorer.usgs.gov and earthengine.google.com.  

Southern Oscillation Index data were acquired from NOAA at 

ncdc.noaa.gov/teleconnections/enso/indicators/soi/       

Southern Annular Mode data were provided by NOAA at 

cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml 

NCEP/NCAR Reanalysis Monthly Mean Sea Level Pressure data were provided by NOAA 

at esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis 

Tripole Index for the Interdecadal Pacific Oscillation data were provided by NOAA at 

esrl.noaa.gov/psd/data/timeseries/IPOTPI/ 

Pacific Decadal Oscillation data were provided by NOAA at 

esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/ 

Chapter 4: 

PlanetScope image products were provided by Planet Labs, Inc. through their Education 

and Research program at planet.com/explorer  

Wave and tide data were provided by the State of Queensland at qld.gov.au/waves 
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LiDAR data were provided by the New South Wales Government at elevation.fsdf.org.au 

Google Earth Engine Script (Chapter 3) 

var geometry = /* color: #0b4a8b */geometry; 
 
// Define an example collection. 
var collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') 
                   .filter(ee.Filter.eq('WRS_PATH', 89)) 
                   .filter(ee.Filter.eq('WRS_ROW', 78)) 
                   .filterDate('2015-01-01', '2015-12-31'); 
 
// Calculate MNDWI. 
var calculateMNDWI = function(image) { 
  // get a string representation of the date. 
  var dateString = ee.Date(image.get('system:time_start')).format('yyyy-MM-dd'); 
  var mndwi = image.normalizedDifference(['B3', 'B6']); 
  var area = mndwi.clip(geometry); 
  return area.rename(dateString); 
}; 
var MNDWIcollection = collection.map(calculateMNDWI); 
print(MNDWIcollection) 
 
var ExportCol = function(col, folder, scale, type, 
                         nimg, maxPixels, region) { 
    type = type || "float"; 
    nimg = nimg || 500; 
    scale = scale || 1000; 
    maxPixels = maxPixels || 1e10; 
 
    var colList = col.toList(nimg); 
    var n = colList.size().getInfo(); 
 
    for (var i = 0; i < n; i++) { 
      var img = ee.Image(colList.get(i)); 
      var id = img.id().getInfo(); 
      region = region || img.geometry().bounds().getInfo()["coordinates"]; 
 
      var imgtype = {"float":img.toFloat(),  
                     "byte":img.toByte(),  
                     "int":img.toInt(), 
                     "double":img.toDouble() 
                    } 
 
      Export.image.toDrive({ 
        image:imgtype[type], 
        description: id, 
        folder: folder, 
        fileNamePrefix: id, 
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        region: region, 
        scale: scale, 
        maxPixels: maxPixels}) 
    } 
  } 
var col = MNDWIcollection 
ExportCol(col, "GEE", 30); 
 

 
 
 
 
 

 
 
 




