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ABSTRACT OF THE DISSERTATION 

 

Identifying decision-making and reinforcement learning deficits in psychosis:  

Clinical, neural and transdiagnostic implications 

 

by 

 

Pooja Kirit Patel 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2023 

Professor Katherine H. Karlsgodt, Chair 

 

In schizophrenia (SZ) and psychotic illnesses, negative symptoms (i.e., avolition, 

anhedonia) contribute to profound social and role impairment and are largely unresponsive 

to existing pharmacological and psychotherapeutic interventions. One specific process, 

reinforcement learning (RL), defined as mapping outcomes to certain actions to guide 

decision-making and behavior based on feedback, has been repeatedly implicated in the 

etiology of negative symptoms in psychotic illness. Some evidence suggests that 

schizophrenia is characterized by difficulty learning from positive but not negative feedback, 

deficits in learning initial associations between stimuli and certain outcomes, and deficits in 

making decisions under ambiguity (i.e., when probabilities of adverse outcomes are 

unknown). However, existing work is limited by contradictory findings about whether initial 

learning of associations is impaired, modeling methods that do not fully account for 

asymmetries in learning, and inconsistent evidence linking deficits to actual 

symptomatology in participants.  
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The goal of this dissertation was to address these limitations in the literature and 

rigorously investigate negative symptoms, reward-guided decision-making and RL deficits in 

psychotic illness. I endeavored to characterize moderators of deficit severity and symptom 

severity across the full spectrum of psychotic presentations. To this end, I adopted a 

dimensional approach that ensured variability in patient samples through use of a psychosis 

spectrum sample in Study 1, investigation of possible shared and distinct RL deficits in 

schizophrenia and bipolar disorder in Study 2, and exploration of how white matter integrity 

in the brain may be a meaningful predictor of variability in RL in Study 3.  In Study 1, I 

demonstrated that when making decisions under ambiguity, individuals with psychosis can 

learn to differentiate high risk/low reward from low risk/high reward contexts; however, 

severity of negative symptoms is associated with a failure to maximize rewards in low-risk 

situations.  In Study 2, I employed a computational RL model that accounts for asymmetries 

in integrating positive and negative feedback, as well as retention of the values of specific 

choices over time. While individuals with psychosis are seemingly acquiring initial 

associations, there appear to be differences in how they use feedback to modify future 

behaviors. Negative symptoms moderate this difference, such that increased severity is 

associated greater weighting of negative feedback and lesser weighting of positive 

feedback. In Study 3, I explored the relationship between computational RL parameters 

from Study 2 and white matter connectivity in frontoparietal and corticostriatal circuits, two 

RL-associated circuits; though I did not find any associations between RL parameters and 

structural brain connectivity, I highlight the need to provide other relevant circuits and 

provide avenues for future investigation of neural contributions to reinforcement learning. 

The link between the work presented in this dissertation and broader implications for 

etiological frameworks for psychotic illness is also discussed.   
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CHAPTER 1 

BACKGROUND 
 

Psychotic disorders are characterized by a constellation of complex symptoms 

including positive symptoms (e.g., delusions, hallucinations, disorganized thought content) 

and negative symptoms (e.g., anhedonia, avolition) as well as cognitive deficits. Despite the 

advent of second-generation antipsychotics and psychosis-specific psychosocial 

interventions, economic and functional outcomes for psychotic illness remain remarkably 

poor (Addington, Leriger, & Addington, 2003; Pencer, Addington, & Addington, 2005). 

Negative symptoms continue to impact outcomes even when positive symptoms are 

managed by pharmacotherapy (Fervaha, Foussias, Agid, & Remington, 2014; Fusar-Poli et 

al., 2014). The ability to seek and maintain gainful employment and cultivate meaningful 

relationships can be substantially disrupted by pronounced negative symptoms. Economic 

burden due to psychosis-related unemployment, suicide, and need for caregiving is in 

excess of $150 billion in the United States(Cloutier et al., 2016). Interventions designed to 

reduce negative symptoms would impact ability to seek and maintain gainful employment 

and engage in rewarding social activities, which could then limit economic burden and 

improve functional outcomes. However, creating such interventions requires clarification of 

mechanisms and identification of relevant clinical and neural moderators of functioning and 

outcome.   

 

Goal-Directed Behavior in Psychosis: Reward Processing Deficits 
 

Given that negative symptoms have long been an unmet treatment need in the 

psychosis population, understanding factors contributing to negative symptoms has become 

a high priority. Thus, there is a considerable body of literature focused on identifying how 
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differences in reward-related learning and decision-making may cause negative 

symptomatology. Here, I discuss the broader literature on reward processing to provide 

context for current understand of concepts such as punishment sensitivity, positive 

feedback sensitivity, and effort expenditure to underscore the importance of examining 

reinforcement learning as a relevant mechanism underlying both intact and deficit 

processes observed in individuals with schizophrenia and related conditions.  

Reward processing refers to several subcomponent processes dependent on both 

reward and executive function processes that are critical for decision-making and action 

selection. Researchers have investigated different aspects of reward processing and sought 

to link them with negative symptoms. These efforts have employed a wide variety of tasks, 

paradigms, and theoretical models of processes such as associative learning, response to 

punishment or non-reward, monetary gain, valuation of effort expended to obtain reward, 

use of past reward information to guide future behaviors, and use of reward-related 

feedback when making decisions under ambiguity.   

Prior to engaging in action selection, an individual has a certain degree of 

responsiveness to reward (hedonics) and capacity to predict reward (reward anticipation). 

Several studies have focused on hedonics and reward anticipation, typically using Monetary 

Incentive Delay style tasks in which participants are presented with cues that are associated 

with certain amounts of monetary reward, are required to make a choice related to the cues, 

and then receive immediate feedback about whether they receive a reward and what the 

magnitude of that reward is. In schizophrenia and psychosis, hedonics upon receipt of 

reward and initial responsiveness to reward are relatively intact, but responsivity to cues 

predictive of reward is reduced (Barch & Dowd, 2010; Zeng et al., 2022).  

Recently, building on the idea that there may be difference in how individuals predict 

and respond to rewards, there has been an emphasis on understanding how individuals 
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with schizophrenia choose to allocate and expend effort based on individual differences in 

reward valuation. This process, called effort-cost computation, has been investigated using 

the Effort Expenditure for Reward Task (EEfRT) (Treadway, Buckholtz, Schwartzman, 

Lambert, & Zald, 2009). To perform optimally on this task, individuals must appropriately 

engage reward and cognitive control processes, and choose to expend effort that is relative 

to both the probability of actually obtaining reward and the magnitude of the reward itself. As 

a result of this structure, the EEfRT task is believed to better approximate real-world 

decision making, and in-the-moment evaluations of choices. Schizophrenia is associated 

with deficits in expending effort commensurate with probability of reward, and decreased 

willingness to expend effort scales with negative symptom severity (Barch, Treadway, & 

Schoen, 2014).  

Risk-taking, which involves decision-making under conditions of uncertain probability 

of reward versus punishment/non-reward, necessitates initial reinforcement learning to 

guide choices and updating of action-outcome mappings in response to feedback.  Data 

from risk-taking paradigms like the Iowa Gambling Task (Shurman, Horan, & Nuechterlein, 

2005) and Balloon Analog Risk Task(Reddy et al., 2014) suggest that individuals with 

schizophrenia may exhibit difficulty making decisions under ambiguity (i.e., when 

probabilities of adverse outcomes are unknown and associations must be learned).  

Reinforcement learning (the process by which actions are mapped to particular 

outcomes)  has been conceptualized as a relatively “upstream” learning process relative to 

effort-cost computation (Barch & Dowd, 2010) that contributes to action selection and goal-

directed behavior (Sutton & Barto, 2018). Reinforcement learning tasks like the Probabilistic 

Selection Task (PST) have been employed to dissociate “positive feedback sensitivity” 

versus “negative feedback sensitivity”, defined as preferential selection of highly rewarded 

stimuli versus preferential avoidance of stimuli with low probability of reward(Frank & Claus, 
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2006). Schizophrenia has been associated with deficits in learning of contingencies on the 

PST (Strauss et al., 2011; Waltz, Frank, Robinson, & Gold, 2007), which is comparatively 

more complex than other tasks where schizophrenia is associated with otherwise intact 

learning of contingencies. Evidence suggests an asymmetry in feedback sensitivity, with a 

preserved ability to learn from negative feedback but an impaired ability to learn from 

positive feedback (Waltz & Gold, 2007). However, it is worth noting that positive and 

negative feedback sensitivity as defined in non-computational studies of the PST do not 

allow for parsing of how individuals are using feedback to build representations of the task, 

how they update action value trial-to-trial based on feedback, or whether they weight 

feedback differently depending on if its positive or negative. 

To investigate these constructs further, probabilistic reversal learning tasks (PRLT) 

have been used at length to probe reinforcement learning in schizophrenia to understand 

how individuals use new information or feedback to modify behavior appropriately. In PRLT, 

individuals must learn stimulus-reward pairs and then modify action selection in the context 

of switching reward contingencies.  In many PRLT paradigms, the number of reversals is 

determined by the individual’s ability to reach criterion (e.g., choosing the higher probability 

choice in 9 out of 10 trials), at which point the contingencies reverse. Number of reversals 

has been used to evaluate reinforcement learning deficits in schizophrenia. Previous 

studies have suggested deficits in schizophrenia during reversal phases of PRLT but 

possibly intact ability to initially discriminate stimuli; patients who are able to successfully 

learn contingencies initially take longer to reach criterion on reversal trials and fail to 

complete as many reversals (Culbreth, Westbrook, Xu, Barch, & Waltz, 2016; Pantelis et al., 

1997; Reddy, Horan, & Green, 2016; Waltz & Gold, 2007).   

It is evident that a variety of approaches, paradigms, and aspects of learning theory 

have been applied to gain mechanistic clarity related to negative symptoms. There is 



 5 

evidence to suggest individuals with psychosis experience selective deficits in anticipating 

but not in experiencing reward, in using positive feedback to guide behavior but not in using 

negative feedback or punishment to guide behavior, in allocating appropriate cognitive 

resources and effort in service of reward, in making decisions under ambiguity, and in 

modifying behavior when contingencies shift. However, the central feature cutting across all 

these paradigms is a reliance on reinforcement learning for acquisition of initial associations 

and for learning new associations after receiving feedback.  

 

Cognitive Correlates of Negative Symptoms 
 
 Negative symptoms have long been associated with cognitive deficits in 

schizophrenia(Bilder et al., 2000; Good et al., 2004; Heydebrand et al., 2004). Working 

memory in particular is a key cognitive process necessary for the representation and 

maintenance of action values used to guide future behavior, and deficits of working memory 

in schizophrenia have been consistently documented (Carter et al., 1996; Deserno, Sterzer, 

Wüstenberg, Heinz, & Schlagenhauf, 2012; J. Lee & Park, 2005; Park & Holzman, 1992). 

Working memory has also been implicated in other aspects of reward processing, including 

effort-cost computation. Poor working memory, over and above reward responsivity or 

ability to learn associations, predicts decreased willingness to expend effort but only in 

individuals with less severe negative symptoms (Whitton, Merchant, & Lewandowski, 2020). 

A number of studies have identified unique contributions of working memory to 

reinforcement learning deficits in schizophrenia (Collins, Brown, Gold, Waltz, & Frank, 2014; 

Collins & Frank, 2012; Hager et al., 2015), highlighting the importance of cognitive 

processes in decision-making processes. 
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Alterations in cortical regions like the prefrontal cortex (PFC) (Waltz & Gold, 2007) 

and cognitive control associated regions like anterior cingulate cortex (ACC) have been 

implicated in the reinforcement learning abnormalities observed in schizophrenia (Culbreth, 

Gold, Cools, & Barch, 2015). Functional magnetic resonance imaging (fMRI) studies have 

demonstrated prefrontal dysfunction in schizophrenia which is believed to contribute to 

behavioral deficits in reinforcement learning and symptomatology (Chung & Barch, 2016; 

Morris, Quail, Griffiths, Green, & Balleine, 2015).  

However, findings about the link between corticostriatal abnormalities and cognitive 

processes are mixed. Some studies have found no differences in activation of striatal 

regions during decision-making tasks in schizophrenia (Culbreth, Westbrook, Xu, et al., 

2016), but that schizophrenia is associated with dysconnectivity and abnormal functional 

connectivity patterns between prefrontal and striatal regions. A recent meta-analysis 

investigated reward anticipation studies in those who are at clinical high risk for psychosis 

(CHR). This work indicated that there may actually may be increased activity in brain 

regions associated with cognitive control, such as the medial PFC and ACC, as well as 

hypoactivity in dorsal striatum during reward anticipation (Zeng et al., 2023), contrary to 

findings in fully psychotic populations. This suggests that a shift in this pattern to decreased 

prefrontal activity, and, as an extension of that, altered cognitive contributions to 

reinforcement learning could be a key part of the transition from risk state to full psychosis.  

 Negative symptom etiology in psychosis is complex, and it is not yet fully 

understood. To gain a better understanding of the basis of these important symptoms, there 

is a need to systematically evaluate and integrate across findings related to reinforcement 

learning deficits, including contributions of cognitive processes such as working memory, 

and neural dysfunction in reward and cognitive neural circuits.  
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Reinforcement Learning Accounts of Psychosis  
 

Having discussed the broader literature on reward processing accounts of 

psychosis, I provide a deeper review of reinforcement learning specifically in this section. 

Decades of research have implicated altered reinforcement learning in the pathophysiology 

of psychosis (Schultz, 1998), with a particular emphasis on the causal role of abnormalities 

in dopaminergic circuits comprising striatal and frontal brain regions such as the 

orbitofrontal cortex(Groman et al., 2019; Wallis, 2007). For example, there is an extensive 

body of literature focused on altered phasic dopaminergic error signaling in the ventral 

tegmental area(Deserno, Schlagenhauf, & Heinz, 2016; Gold, Waltz, Prentice, Morris, & 

Heerey, 2008; Juckel et al., 2006; Radua et al., 2015),with research historically focusing on 

the role of prediction error signaling in the learning of stimulus-reward pairs specifically. 

Traditional reinforcement learning accounts of negative symptoms posit that there is a 

critical failure to use reward-related feedback to effectively direct and modify behavior as a 

result of reduced dopamine neurotransmission in frontal brain regions (Dowd, Frank, 

Collins, Gold, & Barch, 2016).  Inability to adequately predict reward would, in theory, 

diminish ability to initiate and maintain goal-directed behaviors and decrease engagement in 

social and role (e.g., school, work) settings. However, schizophrenia and other psychotic 

disorders are also associated with over-learning of associations between neutral or 

irrelevant events, which is believed to contribute to positive symptomatology like delusions 

and hallucinations (Schmack, Rothkirch, Priller, & Sterzer, 2017). Over-learning of irrelevant 

stimuli has been attributed to dopamine hyperactivity in the striatum (Fusar-Poli & Meyer-

Lindenberg, 2013; Sarpal et al., 2015).  

Taken together, reinforcement learning disruption in psychosis is complex. 

Alterations in different dopaminergic circuits may lead to both poor integration of reward-

related feedback as well as over-association of otherwise irrelevant information, thus 
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contributing to both negative and positive symptomatology(Millard, Bearden, Karlsgodt, & 

Sharpe, 2022). Here I leverage the reinforcement learning framework and focus specifically 

on how deficits may contribute to negative symptomatology due to their persistence 

throughout the course of psychotic illness, lack of targeted treatments for negative 

symptoms, and their impact on functioning.  

Despite substantial scientific interest, the development of novel paradigms, and the 

identification of discrete reward processes, the precise relationship between reward 

processing, reinforcement learning, and psychosis symptomatology requires further study to 

move towards a unified etiological framework.  

 

Computational Psychiatry Approaches   
 

Computational psychiatry exists at the nexus of mathematical modeling, 

neuroscience and cognitive science, and has emerged as a powerful framework for 

investigating reinforcement learning. Computational models provide estimates of precise 

decision-making functions that can be integrated across different levels of analyses (e.g., 

genetic factors, brain circuits, symptoms, behavior) to improve our understanding of 

cognitive and neural processes(Friston, 2023; Maia & Frank, 2011) that are affected in 

specific disorders.  

Computational models can be conceptualized as mathematical expressions of 

theories, with parameters believed to correspond to specific psychological, cognitive, and 

neural mechanisms. Computational modeling can be applied to a variety of tasks, including 

tasks described earlier in this Chapter.  In the reinforcement learning literature, they are 

many models that have been applied to better understand learning behavior. Broadly, they 

all posit that individuals (or “agents” in traditional mathematical literature) are navigating 
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states with a given environment. Within a state, there are a number of actions an individual 

can take that result in specific outcomes, with outcomes being used in some form to update 

the value of an action. Individuals must balance exploration, or gathering information, and 

exploitation, or using known information, to maximize certain outcomes. Existing 

computational studies of reinforcement learning in schizophrenia have been fruitful, namely 

in their ability to quantify specific deficits in reward prediction errors and how those deficits 

correspond to neural signals and cognitive measures but studies vary in the algorithm used 

which limits which subprocesses can be evaluated.   

Computational theoretical models of reinforcement learning posit two decision-

making systems: model-free learning (MF-RL), in which value of a behavior is learned from 

reward history, and model-based learning (MB-RL), in which value of a behavior takes into 

account environmental structure, predicted changes in environment, and outcomes (Daw, 

Niv, & Dayan, 2005; Gläscher, Daw, Dayan, & O'Doherty, 2010). To probe differences in 

MB-RL and MF-RL, previous studies have utilized a 2-stage reinforcement learning task 

that allow parsing of decision-making based on previously experienced outcomes versus 

decision-making based on a representation of task structure to maximize future rewards. 

MF-RL is believed to subserve habitual behavior; MB-RL is believed to subserve goal-

directed behavior.  Few studies have used 2-stage tasks in clinical populations, but existing 

evidence from computational studies evaluating MF-RL vs MB-RL suggests specific MB-RL 

deficits in psychosis, with preserved habitual or MF-RL learning (Culbreth, Westbrook, Daw, 

Botvinick, & Barch, 2016). Per this framework, MB-RL deficits would by definition result in 

deficits in goal-directed behavior and negative symptomatology.  

Model-free algorithms are further classified as value-based or policy-based (Zhang & 

Yu, 2020). Policy-based models involve building a decision-making rule and maintaining it in 

memory; value-based models do not involve storage of explicit policy but rather an implicit 
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policy of choosing actions with the best value. Commonly used value-based models in the 

existing computational psychiatry literature in schizophrenia include State-Action-Reward-

State-Action (SARSA) and Q-learning models. These models can fit data from tasks like 

probabilistic reversal learning tasks and probabilistic selection tasks.  

SARSA is a type of temporal difference model that accounts for delayed reward with 

the assumption that an agent seeks to maximize cumulative reward. SARSA models lead to 

action selection based on a current decision-making rule, and then uses outcomes from the 

executed action to update the same decision-making rule.  SARSA models can also be 

modified to include an eligibility trace that speeds up learning by updating values for 

previously visited state-action pairs. Q-learning models are similar to SARSA in that they 

are temporal difference models; however, Q-learning relies on a decision-making rule for 

the environment and separate decision-making rule that is updated after executed actions.  

A commonly employed combined policy and value-based model is Actor-Critic. The “Critic” 

evaluates the reward value of a state, and the “Actor” chooses an action based on learned 

stimulus-response pairs. Prediction errors are used to adjust the critic.  

Existing literature employing model-free algorithms like Q-learning and Actor-Critic 

have mixed findings. Some evidence suggests that reinforcement learning in schizophrenia 

is best captured by an Actor-Critic, where learning is driven solely by prediction errors, 

rather than Q-learning (Gold et al., 2012; Strauss et al., 2015). Other studies have shown 

that schizophrenia is characterized by simpler associative learning captured by the 

Rescorla-Wagner (RW) rule (Schlagenhauf et al., 2014). Across existing computational 

studies, that differ in the task modeled and the algorithm applied, evidence suggests 

schizophrenia may be associated with selective deficits in certain forms of reinforcement 

learning that depend on task demands such as complexity and type of feedback received. 
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Furthermore, data suggest that increasingly complex models are unlikely to capture patient 

choice behavior.  

Existing studies have largely focused on Q-learning models with one updating 

parameter, regardless of whether an individual experiences a gain or loss, and regardless of 

whether one receives positive or negative feedback.  In Study 2 and Study 3, we employ a 

modified Q-learning model that accounts for asymmetries in integrating positive and 

negative feedback, as well as retention of action value over time. This will allow us to better 

identify asymmetry in prediction error signaling and have quantified selective deficits in 

learning from reward but not punishment. 

 

Overview of Current Project 
 

The goal of this dissertation is to investigate negative symptoms, reward-guided 

decision-making and reinforcement learning deficits in psychotic illness. In this work I focus 

on two paradigms that require reinforcement learning, and thus initial learning of outcomes 

of specific choices and integration of feedback to guide future decisions: 1) a risk-taking 

paradigm in which individuals must integrate feedback and modify behavior appropriately to 

optimize rewards (Study 1) and 2) a reversal learning paradigm that allows us to model how 

individuals integrate different kinds of feedback and retain information about previous 

choices when contingencies shift (Studies 2 & 3).  

Through use of these paradigms, we stand to gain a deeper understanding of how 

reinforcement learning deficits relate to decision-making under uncertainty. We also can 

learn what features of reinforcement learning may differentiate psychosis from other 

psychopathology and capture possible asymmetries in prediction error signaling and 

integration of different kinds of feedback. Underlying all three studies is an emphasis on a 
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broadly defined spectrum of psychotic symptoms, including how deficits manifest across 

stage of illness (e.g., early course of illness versus chronic), across and between diagnostic 

boundaries (e.g., schizophrenia versus bipolar disorder), and across the spectrum of 

severity (e.g., subclinical psychotic features in healthy controls). In these studies I 

endeavored to characterize moderators of deficit severity and symptom severity across the 

full spectrum of psychotic presentations.  

 

Study 1: Individual differences in optimal risk-taking in early psychosis 
 

I first focused on risky decision-making, which in part relies on reinforcement 

learning to learn associations between specific actions and outcomes. I investigated how 

risk-taking in optimal contexts (i.e., low probability of loss or punishment, high probability of 

reward) may be disrupted in the early course of psychotic illness and the extent to which 

optimal risk-taking deficits scale with symptomatology. The sample included individuals with 

a variety of psychotic disorder diagnoses, including schizophrenia and bipolar disorder with 

psychotic features, that showed variability in illness presentation and symptom severity to 

allow us to probe if differences in optimal risk-taking scale with negative symptomatology.  

 

Study 2: Computational modeling of shared and unique reinforcement learning 
deficits in schizophrenia and bipolar disorder.  
 

I employed a computational approach to quantify specific reinforcement learning 

processes that may be disrupted in psychotic illness. I looked across and between 

schizophrenia and bipolar disorder to identify common and unique deficits in both classes of 

disorders. I also investigated alterations in reinforcement learning in healthy controls to 

identify whether there is continuity in reinforcement learning alterations in the subclinical 

range of the psychosis spectrum.  
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Study 3: White matter alterations and reinforcement learning deficits 
 

Using the metrics derived in Study 2, I sought to identify the relationship between 

computational parameters and structural neural metrics of white matter connectivity to 

integrate across levels of analysis (brain, behavior, symptoms). 
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CHAPTER 2 

 

STUDY 1: Individual Differences in Optimal Risk-Taking in Early Psychosis 
 

INTRODUCTION 
 

Psychosis typically emerges in adolescence and early adulthood (F. S. Lee et al., 

2014), a developmental period associated with substantial neural (Galvan et al., 2006), 

psychological, and social change (Spear, 2013). As a part of this developmental stage, 

sampling a diversity of experiences and exploring one’s environment is normative and may 

be critical to social learning and emotional maturation. Such experiences include an 

inherent amount of risk-taking that can be considered to be normal and even adaptive 

(Crone & Dahl, 2012; Hauser, Iannaccone, Walitza, Brandeis, & Brem, 2015). Alterations in 

reward processing and adaptive risk-taking in adolescence and early adulthood may then 

be especially deleterious, leading to failure to meet developmental milestones foundational 

to functioning in adulthood, including living independently and seeking and maintaining 

gainful employment.  

Alterations in risky decision-making have been evaluated at length in chronic 

schizophrenia samples, using a variety of paradigms such as the Iowa Gambling Task (IGT) 

(Bechara, Damasio, Tranel, & Damasio, 1997) or the Balloon Analogue Risk Task (BART) 

(Lejuez et al., 2002).  The IGT requires individuals to choose gambles from four decks of 

cards, with two decks offering larger monetary rewards and two decks offering smaller 

monetary rewards. Some cards carry risk of a monetary penalty, and participants must 

identify an optimal strategy to minimize penalty; importantly, every card carries immediate 

monetary reward, but every card does not carry risk of penalty. Alternatively, the BART 

involves inflating a virtual balloon to gain reward, with reward increasing with each 
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successive inflation. However, the balloon will explode if inflated too many times; the 

number of inflations before explosion varies probabilistically. Participants can “cash out” at 

any time on a given trial. Unlike the IGT, loss is certain on each and every trial if an 

individual inflates the balloon too many times. Because of this key difference, the BART 

allows for exploration of how much risk of eventual loss an individual is willing to tolerate to 

optimize reward. Furthermore, by using a very simple and relatable real life negative 

outcome (the balloon popping), the BART was developed to provide a more realistic index 

of risk taking, relative to the more abstract risks of the IGT. 

Previous studies using the BART in schizophrenia samples show that, on average, 

schizophrenia is associated with less risk-taking (i.e., fewer inflations) compared to healthy 

controls and other psychiatric groups, resulting in fewer earned points. However, the ability 

to make “safe” choices (i.e., “cash out” before explosion) and to avoid punishment appear to 

be intact (Boka et al., 2020; Cheng, Tang, Li, Lau, & Lee, 2012; Reddy et al., 2014). While 

individuals with schizophrenia learn initial contingencies and are able to modify behavior to 

some extent, risk propensity is blunted overall compared to controls (Brown et al., 2015).   

Performance on the risk-taking tasks including the BART is reliant on reinforcement 

learning, as individuals must learn to associate choices with specific outcomes, and then 

use feedback (e.g., gaining points and/or monetary reward, explosions, and loss of points 

and/or monetary reward) to modify choice behavior on successive trials. Failure to 

appropriately learn associations and use feedback to optimize reward has been implicated 

in negative symptomatology in schizophrenia and psychosis. The negative symptom of 

avolition, defined as diminished goal-directed behavior and reduced environmental 

engagement, may contribute to variability in optimal risk-taking specifically. Individuals with 

pronounced avolition may be less able to use feedback to build representations of different 
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risk contexts to effectively modify their behavior. Here I have focused on avolition, with the 

goal of gaining a greater understanding of this relationship.  

Evidence for the relationship between altered risk-taking and negative 

symptomatology overall is mixed, with several studies reporting no significant relationship 

between symptoms and task metrics (Brown et al., 2015; Reddy et al., 2014). However, few 

studies have examined alterations in risk-taking specifically in the early course of psychotic 

illness or in spectrum-based samples that ostensibly have greater clinical variability than 

schizophrenia-only or chronic samples. Additionally, existing studies focusing on evaluating 

differences in risk-taking between patients with schizophrenia and healthy controls have not 

explicitly considered the role of context. Most studies use variant of the BART with one type 

of balloon with a single risk level (probability of explosion on each inflation), as opposed to a 

version that includes different balloons with differing probabilities of explosion that require 

participants to discriminate between stimuli (i.e., different colored balloons) and modify 

behavior depending on the degree of risk carried by a certain balloon.  

It is important to understand how people behave in circumstances when greater risk-

taking might be optimal, or how decision-making behavior can vary depending on the 

degree of risk (i.e., in higher or lower risk scenarios). If an individual is unable to modulate 

their level of risk-taking based on risk context, it may lead to engaging in maladaptive risk-

taking (e.g., substance use or unsafe sex practices) where there are serious potential 

negative outcomes, over more adaptive forms of risk-taking (e.g., prosocial risk-taking, 

environmental exploration) which might take place in a context of more potential long term 

positive outcomes and less severe negative outcomes.  The extent to which the ability to 

appropriately modulate behavior based on degree of risk is impaired in psychosis remains 

underexplored, along with whether the relationship between negative symptoms and risk-

taking behavior varies based on risk context.  
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While understanding the link between symptoms and behavior is of interest, the 

existing data on the relationship between altered risk-taking and broadly construed negative 

symptomatology is mixed, with several studies reporting no significant relationship between 

overall negative symptom scores and task metrics from the BART (Brown et al., 2015; 

Cheng et al., 2012; Luk et al., 2019). This may be because different aspects of negative 

symptoms have different relationships with task performance. Here, I use a version of the 

BART that contains both high and low risk conditions, to probe the relationship between 

symptoms, behavior, and context. I proposed that the negative symptom of avolition, 

defined as diminished goal-directed behavior and reduced environmental engagement, may 

particularly contribute to variability in optimal risk-taking. For example, I expected that 

individuals with pronounced avolition will be less able to use information about the degree of 

risk to effectively modify their behavior.   

I aimed to characterize differences in risk-taking behavior between early psychosis 

(EP) participants and healthy controls (HC). Optimal risk-taking was evaluated using two 

BART metrics: (1) inflations on low-risk trials with high probability of reward and low 

probability of punishment with more successful inflations indicating good performance and 

(2) number of explosions (i.e., adverse outcomes) across all trials, with more explosions 

indicating poor performance. In addition to evaluating overall risk-propensity and number of 

adverse outcomes, I also evaluated differences in behavior following punishment. I 

hypothesized that, consistent with prior studies suggesting overall blunted risk propensity in 

schizophrenia, EP will show less risk-propensity across both high- and low-risk trials. 

Additionally, I hypothesized that EP would show more explosions across all trials and no 

differences in response to punishment compared to HC. Taken together, reduced risk-

propensity regardless of the degree or risk and more explosions across the task would 

reflect suboptimal risk-taking behavior in EP, with response to punishment conserved. 
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Within the patient group, I hypothesized risk-taking deficits in EP would scale with 

symptomatology, such that avolition would be associated with reduced inflations across 

both high- and low-risk contexts, more explosions, and fewer inflations following 

punishment.  

 

METHODS 
Participants 
 

The sample included 56 early psychosis participants (EP) and 52 age-matched 

healthy controls (HC) between the ages of 16 and 25 who participated in a longitudinal 

study at Zucker Hillside Hospital and the Feinstein Institute for Medical Research in New 

York (Table 1). The study protocol was approved by the Institutional Review Board of 

Northwell Health. Participants ages 18 and older were provided with written informed 

consent. Minor participants were provided with written assent along with parental written 

informed consent. Inclusion criteria for the EP group included duration of illness less than 

two years, current treatment with atypical antipsychotic medication, and a primary psychotic 

illness diagnosis including Schizophrenia, Schizoaffective, Bipolar Disorder with Psychotic 

Features, Major Depressive Disorder with Psychotic Features, and Unspecified Psychotic 

Disorder. Inclusion criteria for the HC group included no primary psychotic illness or current 

mood disorder diagnosis in the participating individual or their first-degree relatives. 

Exclusion criteria for both EP and HC groups included IQ less than 70, insufficient fluency in 

the English language, and history of neurological disorders or significant head trauma.  

 

Diagnostic Interview 
 

All EP and HC participants were evaluated for current and lifetime Axis-I disorders 

using the Structured Clinical Interview for the DSM-IV (First & Gibbon, 2004). All diagnostic 
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interviews were conducted by trained graduate-level assessors. All information collected 

during the SCID was compiled into a summary for each participant, which was then 

reviewed by at least two faculty psychologists to reach consensus on diagnoses.  

 

Balloon Analogue Risk Task (BART) 
 

Participants completed a version of the BART, a risk-propensity task, modified for 

use in the Consortium for Neuropsychiatric Phenomics (CNP) (Poldrack et al., 2016). On 

each trial, participants inflated a balloon via button press to gain points. The balloon on 

each trial was initially 152 x 152 pixels and increased by 2 x 2 pixels for each successive 

inflation. The likelihood of the balloon exploding on a given inflation was determined 

probabilistically; if the balloon popped, no points were gained (Figure 1). Trials were either 

high-risk, where fewer inflations were required before the balloon popped (probability 

ranging from 1 to 32 inflations), or low-risk, where more inflations were required for the 

balloon to pop (probability ranging from 1 to 128 inflations). Degree of risk was indicated by 

balloon color, the mapping of which was unknown to the participant at the start of the task. 

Participants were instructed to earn as many points as possible, and to decide during each 

trial whether to “cash out”; if the balloon exploded before cashing out, no points would be 

gained. All participants completed 40 trials (20 high-risk and 20 low-risk balloons, 

randomized across the task). Points gained were displayed after each trial, with a 

cumulative total presented at the end of the task.  
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Figure 1. BART Schematic. Participants inflate a virtual balloon via button press. In the trial depicted at 
the top of the figure, the participant inflated the balloon and chose to cash out, leading to retention of 
points. In the trial at the bottom of the figure, the participant continued inflating until the balloon exploded, 
leading to no points gained on that trial.  
 

 

 

To perform optimally and maximize points, individuals must learn the association 

between balloon color and risk, and subsequently alter the number of inflations and “cash 

out” selectively according to trial type to minimize punishment (i.e., balloon explosions). 

Therefore, an optimal performer would inflate more on low-risk trials, where there is greater 

likelihood of reward and lower likelihood of punishment.  

The first metric derived from the BART is mean adjusted inflations (MAI), which 

averages the number of button presses (i.e., inflations) across trials where the balloon did 

not pop, with higher values indicating greater risk-propensity. On low-risk trials, greater risk-

propensity is adaptive and optimal to take advantage of the opportunity to gain points. On 

high-risk trials, reduced risk-propensity is optimal to avoid punishment and retain as many 

points as possible. The second metric is total explosions (TE) which is the number of trials 

with an adverse outcome (i.e., explosions) across all trials in the task, serving as an 

Inflate Inflate Inflate 

Inflate Inflate Inflate 
Explosion :(  

Cash out 
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indicator of suboptimal performance, The third metric is mean adjusted inflations after an 

explosion (IAE), calculated as the number of inflations on a trial immediately following an 

explosion, serving as an indicator of behavioral change following a punishment.  

 

Clinical and cognitive measures 
 

EP participants completed an additional clinical interview including measures of 

symptomatology. Negative symptom ratings were obtained via the Scale for Assessment of 

Negative Symptoms (SANS)(Andreasen, 1989). The Global Rating of Avolition score from 

the SANS was the primary clinical variable of interest. The SANS also includes an Avolition-

Apathy subscale which includes items assessing for grooming, role functioning, and 

physical anergia. While the Avolition-Apathy subscale simply averages its items, the Global 

Rating of Avolition captures the full severity of an individual’s amotivated state. Thus, I used 

the Global Rating of Avolition score in lieu of the Avolition-Apathy subscale as an overall 

indicator of severity, across domains of amotivated behavior. Scores on the Global Rating of 

Avolition rating range from 0 (No Avolition) to 5 (Severe).  

IQ was estimated using combined scaled scores on the Wechsler Adult Intelligence 

Scale (WASI)- Third Edition. The WASI-III was administered as part of a larger 

neuropsychological battery, including subtests of the MATRICS Cognitive Consensus 

Battery (MCCB) (Nuechterlein et al., 2008).  

 

Statistical analysis 
 

All statistical analyses were conducted in Stata v. 16.1. Age was centered at the 

mean across both EP and HC groups. Sex was dummy coded with 0 indicating male 

biological sex. BART metrics were evaluated for non-normality using the Shapiro-Wilk test. 
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Non-normal variables were square root transformed to correct for skew, kurtosis and non-

normality, and re-evaluated to confirm normality.  

ANCOVAs were conducted to identify differences in risk-taking behavior, as indexed 

by BART, between the HC and EP groups. Age and sex were evaluated for inclusion as 

covariates given documented associations with risk-taking behavior (Braams et al., 2015). 

Additional post-hoc t-tests were conducted to determine if there were differences in 

behavior based on risk condition. Within the EP group, multiple regression analyses were 

conducted to determine the relationship between avolition, as indexed by the SANS, and 

risk-taking behavior, as indexed by the BART, to evaluate the relationship of 

symptomatology and risk behaviors.  

 

RESULTS 
 
Demographic and Clinical Characteristics  
 

Demographic and clinical characteristics are shown in Table 1. The EP group 

included individuals with a range of diagnoses and variability in clinical presentation. As in 

many previous studies, the EP sample was predominantly male. 

 

Comparison of Early Psychosis and Healthy Control: MAI, TE, IAE  
 

First, I conducted analyses collapsed across EP and HC. In the full sample, 

collapsed across group, participants inflated more on low-risk trials relative to high-risk trials 

(t(108)=7.14, p < 0.001) (Figure 2). This indicates that the differences in risk probabilities 

were meaningful and detectable by participants and suggests that both EP and HC 

participants on average appropriately modified their behavior as a function of trial type and 

risk context. In addition, across both risk conditions and participant groups, female 
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participants inflated less than male participants (t(107)=-2.39, p=0.009), which is consistent 

with prior literature indicating greater risk-propensity in males. Therefore, sex was included 

as covariate for all analyses.  

 

Table 1. Study 1 Demographics 
  Group  
  HC (N=52) EP (N=56) 
Sex*     

% Male 40.4 71.9 
% Female 59.6 28.1 

IQ*   
 106.8 (1.4) 99.5 (1.9) 

Race     
% Asian or Pacific Islander 25 10.5 

% Black or African American 15.4 40.4 
% Native American 0 1.8 

% White 53.8 33.3 
% Mixed Race or Other 5.8 14 

Age     
Minimum 16.2 16.2 
Maximum 26.9 26.9 

Average (SD) 20.7 (2.0) 21.7 (2.5) 
Diagnosis      

% Schizophrenia Spectrum -- 67.8 
% BP with psychotic features -- 28.6 

% MDD with psychotic features  -- 2.4 
% Other Specified Psychotic Disorder -- 1.2 
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Figure 2. Inflations in High versus Low-Risk Contexts. * p < 0.05 

 

Notably, age was not correlated with any task metrics and thus was not included as a 

covariate in any analyses. Previous studies have suggested a quadratic relationship 

between age and risk behavior in youth. However, risk-taking peaks in mid-adolescence, 

both behaviorally, in terms of increased risk-taking, and neurally, as indexed by nucleus 

accumbens activity in response to reward (Braams et al., 2015). The study sample consists 

of individuals in later adolescence and early adulthood, and no individuals under 16, which 

may have contributed to the lack of age effects.  

While the overall ANCOVA model evaluating differences in MAI across trial types 

between EP and HC was significant (F(2,106=3.14, p=0.047), group was not a significant 

predictor of differences over and above sex (p=0.43). Similarly, an ANCOVA evaluating 

differences in MAI specifically on low-risk trials was significant (F(2,106)=4.21, p=0.019), 

but group was not a significant predictor of differences over and above sex (p=0.42). The 

*



 25 

ANCOVA evaluating differences in MAI on high-risk trials was non-significant 

(F(2,106)=0.21, p=0.52).  

An ANCOVA evaluating differences in TE between EP and HC was trending (F(2, 

106)=2.69, p=0.072), but group was a nonsignificant predictor (p=0.47). An ANCOVA 

evaluating differences in IAE on low-risk trials was significant, but group was a 

nonsignificant predictor (p=0.57). An ANCOVA evaluating differences in IAE on high-risk 

trials was nonsignificant (F(2,106)=0.08, p=0.92).  

 

Early Psychosis Group Analysis  
 

To determine whether individual differences in negative symptoms might explain 

some of the variability in risk propensity within the patient group, multiple regression 

analyses were conducted to evaluate the relationship between avolition (via the Global 

Rating of Avolition of the SANS) and MAI, IAE, and TE in the BART (Table 2). Global Rating 

of Avolition and sex significantly predicted mean adjusted inflations across both risk-

contexts of the BART (F(2,52)=3.69, p=0.032), where avolition significantly predicted 

inflations over and above sex (b=-0.198, p=0.019).  

Next, I sought to clarify whether the effect of avolition on inflations varied by risk 

context, to understand whether avolition impacted EP participants’ ability to modify their 

behavior according to risk level. Two post-hoc regressions were conducted to evaluate the 

impact of avolition in high-risk versus low-risk trials. For high-risk trials, a multiple regression 

with global ratings of avolition and sex did not significantly predict MAI (F(2,52)=0.92, 

p=0.41). For low-risk trials, avolition and sex did significantly predict MAI (F(2,52)=3.68, 

p=0.032), with avolition significantly predicting MAI over and above sex (b=-0.25, p=0.015) 
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such that an increase in ratings of avolition was associated with fewer inflations on average 

on low-risk trials. 

 
Figure 3. Avolition and Mean Adjusted Inflations on Low-Risk Trials on the BART. Depicted with 
95% CI.   

 

Table 2. Avolition and BART Performance in EP 
  MAI: Across All Trials 
Variable B SE B F df p Adj R2 

Global Rating of Avolition  -0.198* 0.0815 3.69 2,52 0.032 0.0701 
Sex  .370* 0.247         

Constant 3.461* 0.241         
             
  MAI: Low-Risk Trials 
Variable B SE B F df p Adj R2 

Global Rating of Avolition  -0.245* 0.0971 3.68 2,52 0.032 0.0730 
Sex  0.466 0.310         

Constant 3.722* 0.289        
       
 IAE: Low-Risk Trials 
Variable B SE B F df p Adj R2 

Global Rating of Avolition  -0.314* .0952  2,51 0.0002 0.186 
Sex  0.937* .0952     

Constant 3.454* .0300    * p < .05 
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I conducted a multiple regression to determine if avolition was associated with the 

number of trials with a punishment outcome. Avolition and sex did not significantly predict 

TE (F(2,52)=2.06, p=0.14). I then conducted multiple regressions to determine if avolition 

was associated with reduced inflations following punishment in both low-risk and high-risk 

trials. Avolition and sex did not significantly predict IAE on high-risk trials (F(2,51)=0.91, 

p=0.41). However, avolition and sex did significantly predict IAE on low-risk trials 

(F(2,52)=9.96, p=0.0002), with avolition predicting IAE on low-risk trials over and above sex 

(b=-0.31, p=0.002), such that an increase in ratings of avolition was associated with few IAE 

on low-risk trials (Figure 4). 

Figure 4. Avolition and BART Mean Adjusted Inflations After Explosion on Low-Risk Trials. 
Depicted with 95% CI.   
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Exploratory Analyses 
 
IQ and Task Performance 

EP and HC significantly differed in IQ, consistent with previous studies in psychosis 

populations (t(107)= 3.05, p=0.002)(Aylward et al., 1984). IQ was not considered as a 

covariate initially due to concerns that it would minimize meaningful variability between 

groups related to my questions of interest. In supplementary analyses including IQ as a 

covariate in ANCOVAs evaluating EP vs. HC differences in MAI, TE, and IAE, all models 

remained non-significant. In the EP group analyses, with the inclusion of IQ as a covariate, 

the effect of avolition on MAI and IAE after explosions on low-risk trials remained significant.   

Exploratory Factor Analysis  

Because BART metrics were correlated with one another, an exploratory factor 

analysis with no limitations on retained factors was run in Stata to investigate if MAE, TE, 

and IAE index different constructs (Table 3). All three BART metrics showed high 

communality (communality= 1 - uniqueness), and TE showed the most uniqueness of all 

three metrics.   

 

Table 3. Study 1 Exploratory Factor Analysis 

Variable Factor 1 Factor 2 Uniqueness 

Total Explosions 0.7874 0.2216 0.0735 

Mean Adjusted Inflations 0.9625 0.0025 0.3309 

Inflations After Explosion- Low Risk 0.8711 -0.2031 0.1999 
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CONCLUSION 
 
Group Differences 
 

Contrary to my hypotheses, results suggested that at the group level, EP and HC do 

not significantly differ in BART task engagement as indexed by MAI, TE, or IAE on either 

high- or low-risk trials. Instead, findings indicate that alterations in risky decision-making 

may not be unilateral in psychosis, with the ability to modulate behavior based on degree of 

risk and punishment potentially conserved in individuals with psychosis. Regardless of 

group, participants on average inflated more in the low-risk trials suggesting that both EP 

and HC individuals understood the task and successfully learned to modulate behavior 

based on balloon and trial type. These findings are partially consistent with existing 

literature suggesting that participants with psychosis can learn contingencies and modify 

behavior (Culbreth et al., 2015; Strauss et al., 2011) but are inconsistent with literature 

suggesting overall blunted risk-propensity relative to healthy controls (Boka et al., 2020; 

Cheng et al., 2012; Luk et al., 2019; Tikàsz et al., 2019). This may be in part due to greater 

clinical variability within the spectrum-based sample, with some EP with less severe 

symptomatology performing at a level similar to HC.  

 

Individual Differences in EP 
 

When exploring variability within the EP group, clinical ratings of avolition accounted 

for a significant amount of variability in risk propensity over and above sex. The effect of 

avolition on task engagement was significant on low-risk but not on high-risk trials. This may 

suggest that when the likelihood of an adverse outcome (i.e., balloon exploding and loss of 

points) is high, individuals with elevated avolition may be appropriately risk-averse, similar 

to individuals without elevated avolition and healthy controls. In conditions of low-risk with 
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maximum likelihood of reward, there is an opportunity to adaptively exploit the task context 

to gain more points. In this context, individuals with elevated avolition ratings do not 

optimize performance, which is reflected in fewer inflations despite the decreased chance of 

negative outcome and increased opportunity for higher reward. This is consistent with the 

notion that individuals with more avolition may be less likely, in daily life, to take advantage 

of opportunities and engage with the environment to obtain rewarding outcomes. However, 

avolition was not associated with TE, the second metric of optimal risk-taking. Based on 

EFA results, TE may index a different risk-related construct than MAI and had the greatest 

uniqueness amongst BART metrics. Further rigorous investigation of symptom moderators 

of risk behavior must be conducted before concluding that negative symptoms moderate 

risk behavior in low-, but not high-risk situations.  

Avolition was associated with IAE, the measure of behavior in response to 

punishment. Specifically, avolition was associated with reduced IAE on low-risk rather than 

high-risk trials. By nature of having a lower probability of explosion, low-risk trials have a low 

incidence of adverse outcomes or punishment. In theory, an optimal performer could be less 

sensitive to punishment in low-risk trials (which could be interpreted as coincidental or 

spurious) and more sensitive to punishment on high-risk trials in order to maximize points 

on future trials. My findings could indicate that EP with elevated avolition may weight 

punishment heavily when making decisions on subsequent trials even when the likelihood 

of actual punishment is low. These findings are consistent with literature suggesting greater 

punishment sensitivity in schizophrenia (Brown et al., 2015; Luk et al., 2019; Waltz et al., 

2007).  

Taken together, findings suggest that suboptimal risk-taking and response to 

punishment in EP may be influenced by negative symptom severity, specifically avolition. 

However, the relationship between avolition and risk-taking varies depending on the degree 
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of risk for a given trial. Risk-taking deficits may not be unilateral in psychotic illness, with 

substantial within-group variability affecting risk-taking in a context-dependent manner.  

 

Limitations and Future Directions 
 

I sought to use a broad-spectrum approach, examining the relationship between 

negative symptoms and risk-taking across different psychotic disorder diagnoses. Negative 

symptomatology can cut across psychotic disorder diagnoses and may be a clinical 

correlate that meaningfully predicts risk-taking behavior over and above diagnosis. I was not 

sufficiently powered to compare psychotic mood disorders and schizophrenia spectrum 

disorders. Secondly, the study did not include comprehensive measure of real-world 

adaptive or optimal risk-taking. Existing measures frequently assess risk across domains, 

include life threatening and/or sexual risk-taking, rather than specifically prosocial risk-

taking or exploratory behavior that is adaptive in the adolescent and early adulthood period. 

In addition, a wider age range would have allowed us to observe EP and HC differences in 

the broader developmental trajectory of adaptive risk-taking.  

Future studies may seek to identify the mechanistic links between reduced real-

world adaptive risk-taking, task-based measures of optimal risk-taking, and psychosocial 

functioning in psychotic illness. Additionally, longitudinal studies may allow the precise 

mapping of developmental trajectories of risk-taking behavior in early psychosis compared 

to typical development.   
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CHAPTER 3 

STUDY 2: Computational modeling of shared and unique reinforcement learning 
deficits in schizophrenia and bipolar disorder. 

 

INTRODUCTION 
 
 In Chapter 2, I detailed an investigation of how individuals early in the course of 

psychotic illness tolerate risk and make decisions under different degrees of uncertainty. I 

demonstrated that psychosis participants were able to distinguish high- and low-risk 

contexts, and on average modified their behavior appropriately to optimize reward. Within 

the psychosis group, there was considerable heterogeneity, and negative symptomatology 

was associated with decreased risk-taking in the low-risk context and decreased risk-taking 

after punishment on low-risk trials. However, I was not able to assess how individuals with 

psychosis may be updating value representations trial-to-trial based on positive vs. negative 

feedback, and whether reinforcement learning subprocesses scaled with symptomatology.  

Computational psychiatry exists at the nexus of mathematical modeling, 

neuroscience, and cognitive science, and has emerged as a powerful framework for 

investigating reinforcement learning. Computational models provide estimates of precise 

decision-making functions that can be integrated across different levels of analyses (e.g., 

brain, behavior) to improve our understanding of cognitive and neural processes (Maia & 

Frank, 2011) that are affected in specific disorders such as schizophrenia and bipolar 

disorders. In providing discrete parameters, computational reinforcement learning models 

allow for dissociation of specific deficits in reinforcement learning. This may reveal disorder 

specific, or symptom specific, deficits in the underlying cognitive architecture in different 

psychiatric disorders. 

Here, I choose to focus on schizophrenia spectrum and bipolar disorders, which 
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share a number of overlapping symptoms, etiological factors and treatments (Badner & 

Gershon, 2002; Ellison-Wright & Bullmore, 2010). For example, schizoaffective disorder and 

bipolar disorder with psychotic features are both characterized by prominent, impairing, and 

distressing mood (i.e., depressive symptoms and/or manic symptoms sufficient for a major 

depressive episode or manic episode classification per the DSM-V) and psychotic 

symptoms. The key distinction between these diagnoses is whether mood episodes ever 

occur in the absence of psychotic symptoms (bipolar disorder with psychotic features) or if 

psychotic symptoms ever occur in the absence of mood symptoms (schizoaffective 

disorder).  

There is limited evidence to suggest that schizoaffective disorder and bipolar 

disorder with psychotic features have fully distinct etiology, or distinct clinical presentation 

particularly when individuals of either diagnosis experience mood and psychosis 

concurrently.  Even when considering just non-affective psychosis, individuals with a 

schizophrenia diagnosis still endorse considerable mood symptoms (Conley, Ascher-

Svanum, Zhu, Faries, & Kinon, 2007); likewise, a large percentage (~58%) of individuals 

with bipolar disorder without psychotic features still endorse some psychotic-like 

experiences particularly in the form of unusual beliefs (Dunayevich & Keck Jr, 2000). Many 

researchers have posited a continuum between schizophrenia and bipolar disorder, 

particularly in light of empirical evidence suggesting a substantial percentage of 

schizophrenia and bipolar cases falling on a continuum of what is conventionally diagnosed 

as schizoaffective disorder (Keshavan et al., 2011; Pearlson, 2015).  

In both schizophrenia and bipolar disorder, reinforcement learning alterations are 

believed to contribute to social and role impairment, which in turn substantially limit 

functional recovery. However, whether specific aspects of reinforcement learning are 

differentially impacted in schizophrenia and bipolar disorder remains unclear. Some 
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evidence suggests that over and above diagnostic group, symptom severity may predict 

alterations in reinforcement learning (Strauss et al., 2015). Research evaluating reward 

processing more broadly suggests possible opposite responses to reward and punishment, 

differences in risky reward-seeking behavior and more pronounced deficits in associative 

learning in schizophrenia compared to bipolar disorder. However, real-world reward-seeking 

behavior, particularly in disadvantageous situations like substance use, and impulsive 

behavior are elevated in the clinical presentations of both schizophrenia and bipolar 

disorder. Genome-wide association studies (GWAS) have identified shared genetic 

tendency towards risky reward-seeking behavior in both schizophrenia and bipolar disorder 

(Hindley et al., 2021).  

Previous studies suggest that individuals with schizophrenia have specific 

reinforcement learning deficits, including impairments learning from positive but not 

negative feedback (Strauss et al., 2011) and deficits in the ability to maintain action value 

representations (Gold et al., 2008; Waltz & Gold, 2007, 2015). Reinforcement learning 

deficits specific to associating actions and rewards may underlie negative symptoms such 

as avolition and anhedonia, with failure to use feedback to inform behavior impeding goal-

directed behavior and engagement in rewarding activities (Strauss et al., 2011).  

Existing computational studies of reinforcement learning in schizophrenia vary in the 

model used, and several studies have a substantial percentage of participants whose data 

cannot be fit with more complex computational models intended to capture learning 

asymmetries or participant beliefs about task structure. Additionally, existing studies vary in 

schizophrenia medication status, which is particularly relevant given the potential for 

antipsychotics to impact reward-related dopaminergic signaling in the brain. Taken together, 

these inconsistencies limit ability to generalize findings and the ability of these datasets to 

inform one another. 
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In studies investigating reinforcement learning in bipolar disorder, evidence suggests 

trait hypersensitivity to reward-related stimuli and cues both behaviorally and neurally, which 

in turn contributes to vulnerability for mania (Alloy, Olino, Freed, & Nusslock, 2016). Reward 

hypersensitivity may be mood-independent, with previous work identifying behavioral and 

neural reward hypersensitivity in healthy individuals with hypomanic traits (Damme, Young, 

& Nusslock, 2017), euthymic bipolar disorder patients and even in depressed bipolar 

disorder patients (Chase et al., 2013). However, findings are mixed across studies. There is 

evidence of greater resting-state functional connectivity amongst reward-relevant regions 

overall, but state-related decreases in hypersensitivity in bipolar depression (Satterthwaite 

et al., 2015). Computational modeling provides a unique opportunity to rigorously test the 

reward hypersensitivity theory by explicitly probing reward-mediated learning and 

comparing these measures to loss-related behavior. Despite the benefits of the 

computational approaches, this framework has been underutilized in the investigation of 

reward hypersensitivity in bipolar disorder. Critically, reward hypersensitivity may distinguish 

schizophrenia and bipolar disorder, but conclusions about shared versus distinct deficits are 

limited by a lack of transdiagnostic computational studies.  

While differences in integrating positive feedback may distinguish schizophrenia and 

bipolar disorder, cognitive deficits may be a transdiagnostic mechanism that leads to altered 

integration of feedback, suboptimal retention of action values, and deficits in action 

selection. My objective was to evaluate shared and unique deficits in reinforcement learning 

in schizophrenia and bipolar disorder, using a publicly available dataset from the 

Consortium for Neuropsychiatric Phenomics (CNP). Furthermore, I sought to identify clinical 

and cognitive correlates associated with identified deficits. I first established general 

patterns of group differences using traditional summary statistics across all trials of the task. 

I then further probed differences in summary statistics by fitting a computational model 
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using trial-by-trial data with separate parameters for action value updating after positive 

feedback and action value updating after negative feedback, and a value representation 

retention parameter; the use of this model in other clinical samples suggested a high 

likelihood that all participants’ data could be fit with this model.  

I hypothesized that value updating of action values after positive feedback (i.e., 

gains), but not value updating after negative feedback (i.e., losses), would be lower in 

schizophrenia compared to healthy controls and bipolar disorder. Alternatively, in bipolar 

disorder value updating after positive feedback, but not negative feedback, would be higher 

relative to healthy controls and schizophrenia. Across diagnostic groups, I predicted that 

lower working memory performance in bipolar disorder and schizophrenia would be 

associated with a worse retention of value representations.  

I also pursued an exploratory aim and leveraged the large healthy control group to 

assess the relationship between variability in subclinical symptoms present in healthy 

controls and reinforcement learning parameters. Evidence suggests subclinical levels of 

psychotic symptoms and mood symptoms are present in otherwise healthy controls; 

spectrum-based approaches are consistent with neurodevelopmental framework wherein 

individuals possess varying degrees of genetic risk, which in turn results in a range of 

endophenotypes and confers risk for broader phenotypes than are associated with clinically 

significant psychosis alone (Cannon & Keller, 2006). Previous studies have found 

alterations in cognition, brain and behavior even in individuals with subthreshold symptoms 

(Barber, Lindquist, DeRosse, & Karlsgodt, 2018; Hegarty et al., 2019; Karlsgodt, Niendam, 

Bearden, & Cannon, 2009). Specifically, I examined the impact of impulsivity, bipolar traits, 

and anhedonia, which have been associated with reinforcement learning in schizophrenia 

and bipolar disorder populations. 
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METHODS 
 
Project Infrastructure 
 

This study leveraged a publicly available dataset from the Consortium for 

Neuropsychiatric Phenomics (CNP). The CNP investigated neuropsychological phenotypes 

and mechanisms on a genome-wide and phenome-wide scale. The CNP consisted of two 

research cores, the Human Translational Applications Core (HTAC) and Translational 

Methods & Facilities Core, along with a coordinating center. The HTAC LA2K study was a 

large project that recruited a sample of approximately 1200 adults from the Los Angeles 

area to participate in broad phenotyping (clinical and behavioral interviews, cognitive 

testing) and genetic testing. Within that study was the LA5C neuroimaging study, which 

included approximately 50 individuals each with schizophrenia (SZ), bipolar disorder (BP), 

and attention deficit/hyperactivity disorder. I used data from all healthy controls from the 

LA2K study and data from SZ and BP collected as part of the LA5C study nested within the 

parent LA2K study. All data were collected at UCLA.  

Participants included 1101 healthy controls (HC) from the community, 58 SZ, and 49 

BP (Table 4).  Participants aged 21-50 were recruited via community advertisement in Los 

Angeles; racial and ethnic distribution was consistent with the diverse greater Los Angeles 

area. Exclusion criteria included: (1) neurological disease, (2) head injury with loss of 

consciousness of cognitive sequelae, (3) substance dependence within past 6 months, (4) 

contraindications for MRI (e.g., claustrophobia, pregnancy, metal implant), (5) vision 

impairment that sufficiently impeded ability to complete tasks, (6) left-handedness. Healthy 

controls were additionally excluded for history of major mental illness or ADHD, and current 

mood or anxiety disorder. Participants completed a urine drug screen (testing for cannabis, 

amphetamines, opioids, cocaine, benzodiazepines) on the day of testing, and were 
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excluded if results were positive.  

Clinical Measures and Working Memory Measure 
 

Diagnoses were obtained via SCID-IV.  SZ and BP participants completed the Brief 

Psychiatric Rating Scale (BPRS)(Ventura, Nuechterlein, Subotnik, & Gilbert, 1995), Scale 

for the Assessment of Negative Symptoms (SANS)(Andreasen, 1989), Scale for the 

Assessment of Positive Symptoms (SAPS) (Andreasen, 1984), Young Mania Rating Scale 

(YMRS) (Young, Biggs, Ziegler, & Meyer, 2000), and Hamilton Psychiatric Rating Scale for 

Depression (HAMD-28) (Williams, 1988).  

Additionally, SZ, BP and HC completed additional clinical and trait measures, 

including the Hopkins Symptom Checklist (Derogatis, Lipman, Rickels, Uhlenhuth, & Covi, 

1974), Barratt Impulsiveness Scale (BIS-11) (Patton, Stanford, & Barratt, 1995); Dickman 

Functional and Dysfunctional Impulsivity Scale(Claes, Vertommen, & Braspenning, 2000), 

Scale for Traits that Increase Risk for Bipolar II Disorder, Hypomanic Personality Scale 

(HPS) (Eckblad & Chapman, 1986) and the Chapman Scales (Perceptual Aberrations, 

Social Anhedonia, Physical Anhedonia) (Chapman, Chapman, & Raulin, 1976). These 

additional measures can capture variability in traits associated with schizophrenia and 

bipolar disorder even in healthy controls.   
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Table 4. Demographics of Full CNP Sample    
  Group  
  HC (N=1101) SZ (N=58) BP (N=49) 
Sex       

% Male 46.7 75.9 57.1 
% Female 53.3 24.1 42.9 

Race       
% Native American 0.9 3.4 2.0 

% Black or African American 22.2 22.4 8.2 
% Asian 0.4 1.7 0 
% White 73.8 65.5 75.5 

% Native Hawaiian/Pacific Islander 0.1 3.4 0 
% Mixed Race or Other 1.7 6.9 14.3 

Age       
Minimum 21 21 21 
Maximum 50 49 50 

Average (SD) 31.24 (8.47) 35.84 (8.61) 35.29 (9.01) 
Diagnosis        

% Schizophrenia  -- 79.3 -- 
% Schizoaffective -- 20.7 -- 

% BP 1 without psychotic features -- -- 93.3 
% BP 1 with psychotic features -- -- 6.1 

 

Participants also completed a spatial working memory capacity task (SCAP) (Glahn 

et al., 2002) both inside the scanner and as part of behavioral testing. I used data from 

behavioral testing sessions as only a subset of controls completed scans. The SCAP varies 

working memory load; participants were shown an array of 1, 3, 5, or 7 yellow circles 

pseudorandomly around a central fixation. After delay, participants were shown a green 

circle and had to indicate whether the green circle was in the same position as one of the 

yellow circles in the previously displayed target array. I used participant data from the SCAP 

as a performance-based measure of working memory ability in analyses of cognitive 
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correlates of reinforcement learning deficits. Given limited variability in working memory 

capacity, I used percent correct as the primary index of working memory.  

Medications 
 

Antipsychotic medications, commonly prescribed in both schizophrenia and bipolar 

disorder, typically function as dopamine antagonists. Antipsychotic medication may 

subsequently alter midbrain dopaminergic signaling and dopamine-mediated reward 

behaviors. To be eligible for the study, schizophrenia participants had to be medicated with 

antipsychotics. Medication data was collected during clinical assessment; however, 

medication history was self-reported leading to incomplete medication histories for all 

participants. In the bipolar group, medications prescribed varied including antipsychotics, 

mood stabilizers, anticonvulsants, and antidepressants, all of which have the potential to 

impact reward and cognitive neural circuitry. Approximately 45% of the bipolar sample were 

prescribed antipsychotics. 

I analyzed medication as a potential confound and examined the effect of medication 

in secondary analyses. I calculated chlorpromazine-equivalent dose for antipsychotics 

(calculated (Woods, 2003) as in our existing studies) based on provided medication 

histories. In the schizophrenia group, seven participants (approx. 13%) had incomplete 

medication data and chlorpromazine equivalents were not able to be calculated.  In the 

bipolar group, given the small number of participants in the other medication categories 

other than antipsychotics, the study was not sufficiently powered to evaluate the impact of 

each class of medication.  

CNP Reinforcement Learning Task 
 

The CNP Reinforcement Learning Task (CNP RL) was programmed in e-Prime 2.0.  

The task consisted of a probabilistic selection task (PST) (Frank, Seeberger, & O'reilly, 
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2004) followed by a probabilistic reversal learning task (PRLT)(Swainson et al., 2000). 

During the task, participants were instructed to choose between two abstract stimuli; 

feedback was probabilistic such that one stimulus was more associated with positive 

feedback than the other (e.g., one stimulus is correct 80% of the time, the other is correct 

20% of the time). Feedback appeared as “Correct” in green font, or “Incorrect” in red font 

above the stimuli. The task was self-paced, and responses were made by left or right 

keyboard arrow button press. Participants completed four blocks: (1) Training 1, (2) PST (28 

trials), (3) Training 2 (40 trials), and (4) PRLT (40 trials).  

During the first training phase of the task, participants were presented with pairs of 

fractal stimuli with varying probabilities of reward associated with each stimulus (100/0 

deterministic pair, 80/20 probabilistic pair, 70/30 probabilistic pair, 60/40 probabilistic pair). A 

learning criterion was enforced (70%, 65%, 60%, and 55% for each respective pair). 

Accuracy was calculated once 60 trials were completed, and then was continuously 

calculated for each subsequent trial until criterion had been reached for each pair. If 

criterion was not reached at 80 trials, participants completed an additional 80 trials (max 

160 trials) before moving to PST trials.  

During PST trials, to determine if participants favor learning from positive feedback 

or negative feedback, cards were then recombined across pairs, such that every stimulus is 

presented in a pair with every other stimulus (e.g.,70/20, 70/40, 70/60, etc.). Feedback 

sensitivity is evaluated based on response to the novel stimulus pairs, such that a positive 

bias is characterized by preferential selection of high probability stimuli and negative bias is 

characterized by preferential avoidance of low probability stimuli.  

Following completion of the PST, participants completed another training phase of 40 

trials of the original pairs (10 trials each of 100/0, 80/20, 70/30, and 60/40 pairs). The PRLT, 

similar to other reversal learning tasks, requires participants to modify behavior in response 
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to changing stimulus-outcome contingencies (Figure 5). Following the second training, the 

contingencies in the 100/0 and 70/30 pairs reversed, whereas the 80/20 and 60/40 

contingencies remained consistent. Participants completed 10 trials of each pair following 

reversal (40 trials total during the PRLT).  

Figure 5. PRLT Schematic. Participants choose stimuli and receive probabilistic feedback; for example, 
the left stimulus above is correct 70% of the time. After reaching a learning criterion, participants 
completed probabilistic selection trials and additional training trials, followed by a reversal in the 100/0 
and 70/30 pairs. Intertrial interval was 500 msec.  

 

CNP RL Cleaning Rules 
 
 Trials were eliminated for unrealistically low (e.g., 100ms) or very long (e.g., 

6000ms) reaction times. Because PST and PRLT phases of the task only begin once a 

learning criterion has been reached, it is assumed all participants with PST and PRLT task 

data appropriately learned the rules of PST and PRLT phases of the task. For summary 

data analysis, individuals were only included if they had responses for every trial of the PST 

as each recombination is presented for only one trial.  

Correct 

Correct 

Incorrect 

Choice 
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Analysis of PRLT summary data  
 
 To establish patterns of behavior across all trials, I evaluated group differences in 

task summary statistics from both PST and PRLT phases of the RL task. For PST trials, 

positive feedback sensitivity and negative feedback sensitivity were defined in accordance 

with Frank et al, 2004; positive feedback sensitivity is the proportion of times the highest 

probability stimulus is chosen during the recombination phase (i.e., 80% stimulus chosen 

from 80/70, 80/60, 80/40, 80/30, and 80/0 pairs) and negative feedback sensitivity is the 

proportion of times the lowest probability stimulus was avoided during the recombination 

phase (i.e., 20% stimulus avoided in 20/100, 20/70, 20/60, 20/40, and 20/30 pairs).  

For the PRLT, I evaluated differences in switches in choice behavior after first 

correction following reversal, which can reflect differences in behavior modification following 

feedback. Given that the PRLT phase of the task had one reversal, I was not able to 

evaluate group differences in total number of reversals.  

Variables were entered into ANCOVAs covarying for age and sex to evaluate group 

differences in positive feedback sensitivity, negative feedback sensitivity and switches after 

first correction; post-hoc tests were conducted to determine the nature of group differences 

using Bonferroni correction for multiple comparisons. Age and sex were centered to group 

mean for all analysis, as well as any predictors that took on non-meaningful zero values.  

Computational modeling of trial-by-trial data 
 

Individual choice data was fit using a forgetting reinforcement learning model to 

estimate retention of value representations (γ), updating after positive feedback (i.e., 

“Correct”) (∆!), and updating after negative feedback (i.e., “Incorrect”) (∆") (Barraclough, 

Conroy, & Lee, 2004; Groman, Rich, Smith, Lee, & Taylor, 2018). Δ" takes on a negative 

value, with interpretation of differences in Δ" based on absolute value of the parameter.  
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Parameters were estimated using maximum likelihood with the fminsearch function in 

MATLAB (2019a).  

𝐼𝑓	𝑅 = 1										𝑄#!$ = 	𝛾𝑄#(𝑎#) +	∆! 

𝐼𝑓	𝑅 = 0									𝑄#!$ = 	𝛾𝑄#(𝑎#) +	∆" 

∆= 	𝛼(𝑅 − 𝑄#(𝑎#)) 

Estimated parameters (Δ!, Δ", γ) were then entered as outcome variables in a 

MANCOVA with age and sex as covariates, conducted in Stata v 16.1. Age and sex were 

centered to group for individuals included in the computational sample. Post-hoc univariate 

tests were conducted to determine the nature of significant group differences, using 

Bonferroni correction for multiple comparisons.  

I conducted post-hoc analyses with Δ!, Δ", and γ parameters fit separately for 

training versus reversal phases of the task. I hypothesized that in the reversal phase, high 

retention may be less adaptive, where high retention during training would be ideal as 

participants learn to discriminate pairs. I sought to evaluate if SZ showed worse retention 

overall, or if it was specific to task phase. I conducted a repeated-measures MANCOVA to 

evaluate whether there was a within-subjects effect of task phase, and whether there was 

an interaction between group and task phase.   

 

RESULTS 
 
Group Differences in Summary Statistics 
 
 On the PST, ANCOVA detected statistically significant differences in overall positive 

feedback sensitivity (F(3,1198)= 7.273, p<0.001), such that SZ show significantly lower 

probability of choosing stimuli associated with positive feedback relative to HC (p=0.003). 

BP did not differ significantly from SZ or HC (Figure 6). There were no significant group 
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differences in negative feedback sensitivity.  

 On the PRLT, ANCOVA detected statistically significant differences in number of 

switches following reversal, such that HC performed significantly fewer switches following 

1st correction compared to SZ (p<0.001) (Figure 7). There were no significant group 

differences in switches following 1st correction between HC and BP groups, or BP and SZ 

groups. Within SZ and BP groups, there were no significant correlations between summary 

statistics, symptoms, or working memory performance. 

Figure 6: Group Differences in PST Positive Feedback Sensitivity. * p < 0.05 corrected for multiple 
comparisons.  
 

 

Figure 7: Group Differences in PRLT Switches After First Correction Post-Reversal. * p < 0.05 
corrected for multiple comparisons.  
  

 

* 

* 
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Group Differences in RL Computational Parameters  
 

Retention (γ) is bounded, with values between 0 and 1. However, Δ! and  Δ" are not 

bounded and can therefore take on extreme values. Outlier exclusion was based on z-

scores (z-score > 3.2), resulting in a slightly smaller sample (Table 5).  

MANCOVA detected statistically a significant difference in	Δ!, Δ", and γ between HC, 

SZ, and BP groups, controlling for age and sex (F(6, 2,306)=2.32 p =.031, Wilks' Λ = .988, 

partial η2 = .006). Post-hoc univariate tests detected that retention of action values (γ) was 

significantly greater in BP compared to HC (p=.048), with no significant differences between 

HC and SZ, or SZ and BP (Figure 8). Value updating after positive feedback (	Δ!) was 

significantly lesser in SZ compared to HC (p=.046), with no significant differences between 

HC and BP, or SZ and BP (Figure 9).  

 

Table 5. CNP Demographics- Participants with Usable Computational Data  
  Group  
  HC (N=1058) SZ (N=55) BP (N=48) 

Sex       
% Male 46.9 75.9 57.1 

% Female 53 24.1 42.9 
Race       

% Native American 0.9 3.6 2.1 
% Black or African American 22.2 21.4 8.3 

% Asian 0.4 1.7 0 
% White 73.7 64.3 75.5 

% Native Hawaiian/Pacific Islander 0.1 3.4 0 
% Mixed Race or Other 2.2 9 14.6 

Age       
Minimum 21 21 21 
Maximum 50 49 50 

Average (SD) 31.40 (8.47) 35.89 (8.59) 35.56 (8.91) 
Diagnosis        

% Schizophrenia  -- 82.1 -- 
% Schizoaffective -- 17.9 -- 

% BP 1 without psychotic features -- -- 93.8 
% BP 1 with psychotic features -- -- 6.2 
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Figure 8: Group Differences in γ (Retention). * p < 0.05 corrected for multiple comparisons.  

 

 

Figure 9: Group Differences in 	𝚫! (Value Updating After Positive Feedback). * p < 0.05 corrected for 
multiple comparisons.  

 

Symptom Predictors of RL Computational Parameters  
 
 In SZ participants, more severe negative symptoms were associated with reduced 

updating of action values after positive feedback (	Δ!), over and above age and sex 

(F(3,51)=2.93 p=0.042) (Figure 10). In SZ participants, more severe negative symptoms 

*

*
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were associated with greater updating of action values after negative feedback (Δ"), over 

and above age and sex, (F(3,51)=2.81, p=0.048) (with more negative values equating to 

greater updating, resulting in a negative slope) (Figure 11).  

 

Figure 10. Negative Symptom Severity in SZ and 	𝚫!	(Value Updating after Positive Feedback). 
Depicted with 95% CI.  

 

Figure 11. Negative Symptom Severity in SZ and 𝚫𝟎 (Value Updating after Negative Feedback). 
Depicted with 95% CI.  
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In BP, mania was not significantly predictive of 	Δ! or Δ". However, more severe 

mania was associated with greater retention of action values (γ), over and above age and 

sex (F(3,44)=3.25, p=0.03) (Figure 12).  

Figure 12. Mania Severity in BP and γ (Retention). Depicted with 95% CI. 

 

Working Memory and RL Computational Parameters  
 
 ANCOVA covarying for age and sex detected significant group differences in working 

memory performance as indexed by percent correct on the SCAP (F(2,1152)=13.425, p < 

0.001). Post-hoc univariate tests revealed that SZ had significantly lower SCAP 

performance compared to HC (p < 0.001) and BP (p=0.002) (Figure 13). There were no 

significant differences in working memory performance between HC and BP.  

Due to significant working memory performance differences between SZ and BP, 

patient group was included as a predictor in working memory analyses to determine if there 

was an effect of working memory performance on γ over and above patient group. A linear 
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regression predicting γ from patient group, age, sex, and working memory performance was 

non-significant (F(4,94)=0.54, p=0.71). 

 

Figure 13: Group Differences in Working Memory Performance. * p < 0.05 corrected for multiple 
comparisons.  
 

 

   

Medication Effects 
 

There were no significant correlations between medication, as indexed by CPZ 

equivalents, and any computational parameters. As a result, medication was not controlled 

for or evaluated as a confound in any additional analyses.  

Exploratory Analyses  
 
Group Differences in RL Parameters: Schizophrenia and Bipolar Disorder 

I removed SZ individuals with a schizoaffective diagnosis and BP individuals with a 

psychotic features specifier, and examined if there were group differences between 

schizophrenia and bipolar disorder once individuals with substantial overlap in 

* * 
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symptomatology were removed. Similar to my results including all diagnoses, MANCOVA 

detected statistically a significant difference in	Δ!, Δ", and γ between HC, SZ, and BP 

groups, controlling for age and sex (F(6, 2,306)=2.32 p =.031, Wilks' Λ = .988, partial η2 = 

.006). Post-hoc univariate tests detected that retention of action values (γ) was significantly 

greater in BP compared to HC (p=.031), with no significant differences between HC and SZ, 

or SZ and BP. Value updating after positive feedback (	Δ!) was significantly lesser in SZ 

compared to HC (p=.039), with no significant differences between HC and BP, or SZ and 

BP. There were no differences in Δ".  

RL Computational Parameters: Training versus Reversal Trials 

 In general, the greater the number of trials, the better the solution that the algorithm 

can find. By looking at each phase of the task separately, there were substantially fewer 

trials to be modeled and a large number of participant data could not be fit (Table 6). 

A repeated measures MANCOVA detected a significant within-subject effect of task 

phase (training vs reversal) on 	Δ!,  Δ" and γ. The interaction between group and task 

phase was nonsignificant, indicating no significant difference in the pattern of change in 	Δ!,  

Δ" and γ from training to reversal phases based on group. Between-subject effects in 	Δ!,  

Δ" and γ were nonsignificant. Within-subjects effects for Δ"were nonsignificant. However, 

there was a significant within-subjects effect of task phase on γ, such that collapsed across 

group, individuals increased their retention in the reversal phase compared to the training 

phase (p<.001) (Figure 14). There was also a significant within-subjects effect of task phase 

on 	Δ!, such that collapsed across group, value updating after positive feedback decreased 

in reversal trials compared to training trials (Figure 15).  
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Healthy Controls: Sub-clinical Traits and RL Parameters 

 There were no significant correlations between RL parameters (	Δ!,  Δ" and γ), 

bipolar traits as indexed by the Scale for Traits that Increase Risk for Bipolar II Disorder, and 

psychotic-like experiences as indexed by the Chapman Scales (Perceptual Aberrations, 

Social Anhedonia, Physical Anhedonia) (Chapman et al., 1976). 

 

Table 6. CNP Demographics- Participants with Usable Computational Data: Training vs 
Reversal 

  Group  

  HC (N=672) SZ (N=35) BP (N=29) 

Sex       
% Male 48.2 75 69 

% Female 51.8 25 31 
Race       

% Native American 0.1 0 10.3 
% Black or African American 23.1 30.6 3.4 

% Asian 0.4 2.8 0 
% White 73.5 58.3 75.9 

% Native Hawaiian/Pacific Islander 0.1 2.8 0 
% Mixed Race or Other 2.2 2.8 10.3 

Age       
Minimum 21 22 22 
Maximum 50 49 47 

Average (SD) 31.14 (8.44) 34.89 (8.15) 34.54 (7.55) 
Diagnosis        

% Schizophrenia  -- 82.1 -- 
% Schizoaffective -- 17.9 -- 

% BP 1 without psychotic features -- -- 93.8 
% BP 1 with psychotic features -- -- 6.2 
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Figure 14. Retention (γ)- Training versus Reversal Trials. *p < 0.05 

 
 

Figure 15. Value Updating after Positive Feedback (	𝚫!)- Training versus Reversal Trials. *p <0.05 
 

 
 

 

 

 

*

*
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CONCLUSION 
 
Summary Statistics 
 

Analysis of summary statistics was consistent with existing literature suggesting that 

schizophrenia is associated with reduced positive feedback sensitivity relative to controls, 

preserved negative feedback sensitivity, and an overall less organized response when 

modifying behavior following feedback. However, while the bipolar group was qualitatively 

intermediate compared to healthy control and schizophrenia groups, there were no 

significant differences between bipolar and schizophrenia, or bipolar and healthy controls. 

There were no significant relationships between summary statistics, symptom measures, or 

working memory performance, which partially could be attributed summary statistics 

providing coarser metrics of participant reinforcement learning processes.  

The objective of this study was not to replicate existing findings using summary 

statistics, but these findings further highlight selective and not unilateral deficits, particularly 

in schizophrenia, that bear further investigation. They also highlight that even at a broader 

level, there are no clear differences in performance between schizophrenia and bipolar; we 

were able to extend upon these findings and identify if actual symptomatology is more 

predictive of reinforcement learning deficits over and above diagnostic category in our 

computational analyses.  

Computational Analyses 
 
 Computational analyses provided more detailed information about the nature of 

reinforcement learning deficits in schizophrenia and bipolar disorder by allowing us to 

evaluate how individuals were using feedback to guide future behavior. Furthermore, we 

could then link these specific processes with symptomatology to characterize within-group 

variability in our patient groups. Schizophrenia may be associated with selective deficits 
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updating value based on positive but not negative feedback relative to healthy controls; 

however, there were no differences in any parameters between schizophrenia and bipolar 

groups. While reinforcement learning is believed to be differentially impacted in 

schizophrenia and bipolar disorder, results indicate considerable heterogeneity within 

patient groups and substantial overlap in the distributions of parameters between 

schizophrenia and bipolar disorder. The lack of clear differences between schizophrenia 

and bipolar is consistent with dimensional approaches focused on deficits core to actual 

symptomatology that can cut across disorders, rather than deficits found on average within 

separate diagnostic groups.  

Consistent with my hypotheses, elevated avolition in schizophrenia moderates 

updating after positive feedback, with diminished ability to update after positive feedback as 

avolition increases in severity. However, avolition was also associated with increased 

updating after negative feedback. These results may indicate that schizophrenia 

participants with pronounced negative symptoms have a less organized strategy in 

response to both positive and negative feedback, suggesting that greater severity of 

negative symptoms may be related to difficulties integrating feedback broadly. This general 

failure to appropriately use feedback, regardless of valence, could contribute to 

disorganized representations of action value that are updated ineffectively and behavioral 

inertia. On the other hand, those with less pronounced negative symptoms may be better 

able to “rely” on learning from negative feedback to drive behavioral change and respond to 

their environments, even if behaviors remain ineffective.  

Contrary to my hypotheses, severity of manic symptoms in bipolar disorder was not 

associated with increased value updating after positive feedback. BP with elevated mania 

did show greater retention of action values. While retention of action values does facilitate 

continued engagement in rewarded behaviors, very high retention could reflect a suboptimal 
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strategy wherein participants stay with the same decision even when contingencies shift 

and they should alter their behavior accordingly. In real-world settings, this tendency may be 

seen in continued engagement in risky behavior in mania, even when those behaviors are 

no longer rewarding or likely to yield positive outcomes.   

There was no significant relationship between retention and working memory 

performance in SZ and BP, even when controlling for baseline group differences in working 

memory performance. I chose to use a performance-based metric of working memory that 

previously has been shown to differentiate patient groups from healthy controls (Poldrack et 

al., 2016). However, it may not fully index working memory as a construct, which may limit 

its predictive utility. Retention may also be mediated by other cognitive constructs that I did 

not examine, including attention. Additionally, use of a chronic sample may have led to less 

variability in working memory functioning overall, further limiting my ability to probe how 

working memory differences account for variability in reinforcement learning parameters like 

retention.   

Post-hoc analyses evaluating value updating after positive feedback updating, value 

updating after negative feedback, and retention in training versus reversal trials indicated 

that value updating after positive feedback and retention were greater in reversal trials 

compared to training trials. This suggests that across groups, individuals were changing 

their integration of positive feedback at different phases of the task. Greater retention and 

greater value updating after positive feedback may facilitate performance on the reversal 

stage of the task and support individuals in modifying choice behavior to optimize positive 

feedback. However, training versus reversal trial results should be interpreted very 

cautiously as only the half of the sample was able to be fit due to fewer trials per task 

phase.  

Exploratory analyses examining the relationship between sub-clinical traits and 
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computational parameters in healthy controls were non-significant, suggesting no continuity 

across the spectrum of severity in the symptom-parameter relationships demonstrated in 

the patient groups. However, the impact of sub-clinical traits on performance has been 

shown to have a very small effect size. Though the healthy control sample was large, I still 

may have been underpowered to detect these relationships. Additionally, studies 

demonstrating a relationship between sub-clinical traits and performance typically use 

measures like the Community Assessment of Psychic Experiences (CAPE) (Mark & 

Toulopoulou, 2016) or the Prodromal Questionnaire- Brief (PQ-B) (Loewy, Pearson, 

Vinogradov, Bearden, & Cannon, 2011), which distinguish psychotic-like experiences from 

their associated distress and provide more information about the overall structure of 

psychotic-like experiences. The traits measures included in the CNP do not provide the 

same degree of specificity and have not been used as extensively in the literature to probe 

sub-threshold symptoms.  

Limitations and Future Directions 
 

Findings in the bipolar group should be interpreted in light of recruitment across 

phase of illness (i.e., mania, depression, and euthymia) in the CNP sample. Bipolar disorder 

is associated with trait reward hypersensitivity, which would suggest that behavioral 

responses in pursuit of and in response to reward may be stable across phase of illness 

(Alloy et al., 2016). However, state-related changes during depressive episodes in bipolar 

disorder may also impact reinforcement learning (Satterthwaite et al., 2015). Given the 

small bipolar sample size, limited information about phase of illness at time of actual testing, 

and small effect sizes, I was not able to evaluate the impact of phase of illness on 

reinforcement learning.   

The computational model fit in this study does not account for a participant’s beliefs 
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or updating of beliefs. “Beliefs” are probability distributions about particular events that may 

or may not be consciously accessible. The mean of the distribution corresponding to the 

expected state. Individuals may have more or less variance within these probability 

distributions, which is framed as uncertainty (more variance) versus precision (less 

variance. Within the predictive coding framework, beliefs are organized hierarchically with 

prediction errors serving as low level beliefs (i.e., uncertainty related to information) that 

propagate upwards through the hierarchy (i.e., uncertainty related to environmental 

volatility) (Valton, Romaniuk, Steele, Lawrie, & Seriès, 2017). Belief-updating models can be 

particularly relevant when attempting to characterize behavior on reversal learning tasks, 

where individuals must update beliefs in response to feedback indicating a switch in 

previously established contingencies.   

Previous studies specifically in schizophrenia have accounted for belief updating 

using models such as Hierarchical Gaussian Filters (HGF) (Deserno et al., 2020) and 

Hidden Markov Models (HMM) (Schlagenhauf et al., 2014). Results suggest that 

schizophrenia may be associated with greater estimates of environmental volatility, and 

tighter coupling between levels of beliefs leading to poor integration of feedback and worse 

performance overall. However, HGF and HMM are substantially more complex to fit, and 

previous work has also shown that these models do not fit the choice behavior of a large 

number of patients (ranging from ~30% to ~50% of the sample) (Deserno et al., 2020; 

Schlagenhauf et al., 2014), resulting in those patients being excluded from analyses. 

Eliminating substantial portions of the sample, particularly in a non-random way, as is often 

the case in studies using more complex models, was inconsistent with the goal of 

understanding sources of heterogeneity across the entire patient sample. Furthermore, 

evidence suggests that simpler models better capture patient choice behavior.  

My results suggest that individuals in the patient groups were able to learn 



 59 

associations necessary for the task, but I was not able to identify which cognitive processes 

mediate differences in learning processes in schizophrenia and bipolar disorder. Future 

studies may choose to examine additional cognitive correlates (e.g., attention) of 

computational parameters to gain mechanistic clarity and to identify which aspects of 

cognition critically support updating after feedback and retention of action values over time.   
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CHAPTER 4 

STUDY 3: White Matter Alterations and Reinforcement Learning Deficits 
 
  

INTRODUCTION 
 
 Computational models of reinforcement learning are theory-driven, with parameters 

believed to map on to psychological decision-making processes such as prediction and 

retention of action values. Moreover, these computations can be linked to specific biological 

mechanisms, such as dopaminergic prediction error signaling (Schultz, 1998). However, the 

relationship between computationally derived parameters and structural neural metrics has 

yet to be rigorously investigated in schizophrenia or bipolar disorder. 

Striatal regions such as the nucleus accumbens (NAcc) and prefrontal regions, such 

as the orbitofrontal cortex (OFC), are believed to critically support reinforcement learning 

(Frank & Claus, 2006; Groman et al., 2019; Wallis, 2007). Dopamine release in the NAcc 

via the mesolimbic pathway has been associated with reward response and goal-directed 

behavior.  In the schizophrenia literature, the role of the OFC has historically been 

described as maintaining representations of expected value (Waltz & Gold, 2015); however 

preclinical studies implicate the OFC in the representation of the current state (i.e. a 

cognitive representation of relevant contingencies). An individual may learn several 

contingencies, and the OFC may facilitate navigation to the most relevant set of 

contingencies for the given task (Schuck, Cai, Wilson, & Niv, 2016; Sharpe et al., 2019).  

I previously established that there were no significant differences in value updating 

after positive feedback or retention between schizophrenia and bipolar disorder. However, 

heterogeneity in computational reinforcement learning processes was associated with 

different aspects of symptomatology typically associated with schizophrenia compared to 
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bipolar disorder. Schizophrenia and bipolar disorder not only have shared genetic risk, but 

may also show similar patterns of deficits in white matter connectivity that serve as a 

possible transdiagnostic predictor of computational reinforcement learning processes 

(Koshiyama, Fukunaga, Okada, Morita, Nemoto, Usui, et al., 2020).  

Altered white matter integrity in corticostriatal and frontoparietal circuitry that has 

been observed in schizophrenia and bipolar disorder (Kochunov et al., 2020; D.-K. Lee et 

al., 2020) could, therefore, impact reinforcement learning and probabilistic reversal learning 

performance. To our knowledge, no studies to date have evaluated the relationship between 

white matter alterations and computational reinforcement learning parameters in 

schizophrenia and bipolar disorder, despite the relevance of corticostriatal and frontoparietal 

tracts in supporting key process for reinforcement learning.  

In bipolar disorder, it has been suggested that reward hypersensitivity plays a causal 

role in mania and hypomania. In healthy controls, structural connectivity between the OFC 

and NAcc scaled with hypomanic traits, such that greater white matter integrity 

corresponded to elevated hypomanic traits (Damme et al., 2017). Hypomania and is 

associated with reward hypersensitivity (Martin & Potts, 2004); as such, findings about 

structural connectivity between the OFC and NAcc could be extended to suggest a 

relationship between value updating after positive feedback/reward and increased 

corticostriatal integrity. Previous work has also identified a relationship between trait 

impulsivity and greater connectivity in the accumbofrontal tract, the anatomical connection 

between the OFC and NAcc, in healthy controls (Ikuta, del Arco, & Karlsgodt, 2018). The 

accumbofrontal tract has primarily been described using histology (Rigoard et al., 2011) and 

was only recently found to be detectable in human brains using diffusion tensor imaging 

(Karlsgodt et al., 2015). As such, few studies have examined the accumbofrontal tract in 

clinical populations specifically.  
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The superior longitudinal fasciculus (SLF) is a major white matter tract with 

projections across wide areas of the human brain. The SLF includes anatomical connection 

between frontal and parietal cortices in the brain, and as such has been a tract of interest 

related to associative learning, and various cognitive functions such as working memory, 

visuospatial ability and verbal memory (Koshiyama, Fukunaga, Okada, Morita, Nemoto, 

Yamashita, et al., 2020). Schizophrenia has been associated reduced SLF integrity, which 

has in turn predicts working memory deficits (Karlsgodt et al., 2008).  

I sought to identify and compare structural neural correlates of reinforcement 

learning processes across diagnostic groups. I investigated whether white matter alterations 

in reward and cognitive circuits moderate reinforcement learning alterations within 

schizophrenia and bipolar disorder by leveraging the advantages of computational models, 

which allow for precise mapping of parameters to biological and psychological processes. I 

focused on two specific white matter tracts based on prior literature: the accumbofrontal 

tract (Karlsgodt et al., 2015) and the superior longitudinal fasciculus. I hypothesized that 

across diagnoses, heightened action value updating after positive feedback will be 

associated with increased white matter connectivity between the OFC and NAcc. I also 

hypothesized that across diagnoses, greater retention in value representation will be 

associated with increased frontoparietal white matter connectivity.  

 

METHODS 
 
Sample 
 

I utilized previously collected data from a publicly available dataset, the Consortium 

for Neuropsychiatric Phenomics (CNP). The CNP investigated neuropsychological 

phenotypes and mechanisms on a genome-wide and phenome-wide scale. The CNP 
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consisted of two research cores, the Human Translational Applications Core (HTAC) and 

Translational Methods & Facilities Core, along with a coordinating center. The HTAC LA2K 

study was a large project that recruited a sample of approximately 1200 adults from the Los 

Angeles area to participate in broad phenotyping (clinical and behavioral interviews, 

cognitive testing) and genetic testing. Within that study was the LA5C neuroimaging study, 

which included approximately 50 individuals each with schizophrenia (SZ), bipolar disorder 

(BP), and attention deficit/hyperactivity disorder. All data were collected at UCLA.  

Imaging data was collected in all schizophrenia (SZ) and bipolar disorder (BP) 

participants, and the subset of 138 healthy controls (HC) participants who were part of 

LA5C. The CNP inclusion criteria are detailed in Chapter 3 (Study 2) included: (1) 

neurological disease, (2) head injury with loss of consciousness of cognitive sequelae, (3) 

substance dependence within past 6 months, (4) contraindications for MRI (e.g., 

claustrophobia, pregnancy, metal implant), (5) vision impairment that sufficiently impeded 

ability to complete tasks, and (6) left-handedness. 

In addition to study-wide exclusion criteria, additional quality control criteria for 

imaging diagnostics were enforced to determine participant inclusion in the final imaging 

sample. Diagnostic criteria were the following: (1) Global in-mask signal: Mean (mean 

range= 4-12) showing a gradual decline and overall negative slope, (2) Log power spectrum 

of global signal time course (mean range= 2-9) showing a gradual decline and overall 

negative slope, (3) Signal-to-Noise (SNR) ratio (mean range 2-8) displaying no isolated 

spikes, (4) Mean slice intensity by time showing a range of colors, no white spots, no white 

lines, no large bands of color, and (5) Motion parameters: Translation (mean range 0.2-

1.2mm) showing no large spikes that extend the overall range by >1mm, spikes >2mm-

3mm.   

 



 64 

Task and Parameters 
 

I used parameters extracted from the computational models fit described in Study 2 

from the CNP PRLT (Figure 5), previously described in detail in Chapter 3. Parameters of 

interest include retention of value representations (γ), and updating after positive feedback 

(i.e., “Correct”) (∆!) (Barraclough et al., 2004; Groman et al., 2018). For exploratory 

analyses, I also used medication data and symptom and trait measures, also described in 

Chapter 3.  

Image Acquisition  
 

Data were collected at two different UCLA facilities: the Ahmanson Lovelace Brain 

Mapping Center (ALBMC) and the Staglin Center for Cognitive Neuroscience (CCN). Each 

were equipped with a 3T Siemens Trio MRI scanner. Functional T2*-weighted echoplanar 

images (EPIs) were collected with the following parameters: slice thickness = 4 mm, 34 

slices, TR = 2 s, TE = 30 ms, flip angle = 90°, matrix 64 x 64, FOV = 192 mm, oblique slice 

orientation. Additionally, a T2-weighted matched-bandwidth high-resolution anatomical scan 

(same slice prescription as EPI) and MPRAGE were collected. The parameters for the high-

resolution scan were: 4mm slices, TR/TE=5000/34, 4 averages, matrix = 128x128, 90-

degree flip angle. The parameters for MPRAGE were the following: TR = 1.9 s, TE = 2.26 

ms, FOV = 250, matrix = 256 x 256, sagittal plane, slice thickness = 1 mm, 176 slices. DTI 

parameters were: 64 directions, 2mm slices, TR/TE=9000/93, 1 average, 96x96 matrix, 90-

degree flip angle, axial slices, b=1000. 

Processing of Imaging Data 
 
DTI Preprocessing: 

Standard DTI processing was done in FSL (FMRIB Software Library(Smith et al., 

2004), including eddy_correct and BET). CNP diffusion data was collected with a single 
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phase-encoding direction (AnterioràPosterior), which is incompatible with susceptibility 

distortion correction with topup in FSL, which requires reverse phase-encoding scans. For 

eddy current correction, eddy requires outputs from topup. Data were preprocessed using 

FSL eddy_correct instead of eddy.  

After susceptibility distortion correction and eddy current correction, fractional 

anisotropy (FA), L1, L2 and L3 images were calculated using FSL DTIFit, which fits a tensor 

model at each voxel. I then used tract based spatial statistics (TBSS)(Smith et al., 2006). A 

TBSS skeleton was created based on the FA data; other modalities (radial, axial, and mean 

diffusivity) were projected onto the TBSS skeleton, as recommended by FSL. I then masked 

the skeleton using ROIs of interest from the JHU white matter atlas, in addition to the 

accumbofrontal tract as defined in Karlsgodt et al(Karlsgodt et al., 2015).This yielded an FA 

value per tract per subject that was entered into statistical models. I focused on the 

accumbofrontal tract (Karlsgodt et al., 2015)(AF), a corticostriatal tract between the 

orbitofrontal cortex and nucleus accumbens, and superior longitudinal fasciculus (SLF), a 

frontoparietal tract associated with working memory (Karlsgodt et al., 2008) (Figure 16). 

Diffusion Tensor Imaging (DTI) Quality Assurance: 

 DTI Quality Assurance (QA) included visual inspection of the fractional anisotropy 

map for unusual features, inspection of the color map to check whether the directions of 

major tracts in the brain were appropriately colored (e.g. anterior-posterior tracts should be 

green, right-left tracts should be red, superior-inferior tracts should be blue), evaluation of 

the percentage of voxels missing in the brain and comparing against the fractional 

anisotropy map to determine whether large regions, and in particular, tract data is cropped, 

and visual inspection of each volume of the raw data for artifacts. Data was then given an 

overall quality score, based on the degree of cropping (0=no cropping, 1=minor cropping, 

2=severe unusable cropping), motion flags, tensor direction flags, and artifact flags. In a 
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small percentage of participants, there were scanner-related vibration artifacts. All 

participants with vibration artifacts were excluded from analyses. Following QA, the final 

number of participants with useable DTI data and usable computational RL data were as 

follows: 95 healthy controls, 43 schizophrenia participants, and 40 bipolar participants.  

 

Figure 16. White Matter Masks. Top- right and left superior longitudinal fasciulus. Bottom- right and left 
accumbofrontal tract.  
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Table 7. Demographics of CNP DTI Sample 

  Group  

  HC (N=95) SZ (N=43) BP (N=40) 

Sex       
% Male 48.4 74.4 62.5 

% Female 51.6 25.6 37.5 
Race       

% Native American 1.1 2.3 2.5 
% Black or African American 20 25.6 10 

% Asian 1.1 2.3 0 
% White 76.8 60.5 70.0 

% Native Hawaiian/Pacific Islander 0 3.4 0 
% Mixed Race or Other 1.1 7 17.5 

Age       
Minimum 21 21 21 
Maximum 50 49 50 

Average (SD) 31.38 (8.69) 35.65 (8.77) 35.12 (9.01) 
Diagnosis        

% Schizophrenia  -- 76.7 -- 
% Schizoaffective -- 23.3 -- 

% BP 1 without psychotic features -- -- 95 
% BP 1 with psychotic features -- -- 5 

 

Establishing the relationship between neural correlates and computational parameters  
 
 All statistical analyses were conducted in Stata v 16.1. I first established group 

differences in FA values for right and left SLF, and right and left AF by conducting a 

MANCOVA predicting FA values from group, covarying for mean centered age and gender. I 

then conducted post-hoc univariate tests to determine the nature of group differences with 

Bonferroni correction for multiple comparisons.  

I then collapsed across diagnostic groups SZ and BP, particularly in light of recent 

evidence suggesting shared white matter alterations in schizophrenia and bipolar disorder 

(Kochunov et al., 2020). I conducted a linear regression predicting frontoparietal white 

matter integrity from the decay parameter (γ) covarying for age, sex and scanner and a 
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linear regression predicting corticostriatal white matter integrity from value updating after 

positive feedback (∆!) covarying for age, sex and scanner. I conducted secondary post-hoc 

analyses including diagnostic status to determine the effect of action value updating and 

retention over and above group.  

 
RESULTS 

 
Group Differences in FA Values  
 
 MANCOVA detected a statistically significant group difference in right SLF, left SLF, 

right AF, and left AF FA values in HC, BP, and SZ groups, covarying for age, sex and 

scanner (F(8,38)=2.115 p =0.03, Wilks' Λ = .907, partial η2 = .048). Post-hoc univariate tests 

detected a statistically significant difference in FA values, such that SZ showed significantly 

lower right AF FA (p<0.001), relative to HC (Figure 17). SZ showed reduced FA in the right 

and left compared to HC, but results did not survive Bonferroni correction for multiple 

comparisons. There were no significant differences in any FA values (right SLF, left SLF, 

right AF, left AF) between BP and HC, or BP and SZ.  

SZ and BP: SLF Integrity and Retention of Action Values 
 
 Collapsing across diagnostic group, a linear regression predicting retention from 

right and left SLF FA covarying for age, sex, and scanner was non-significant 

(F(7,78)=0.806, p=.525). Post-hoc linear regression examining whether right and left SLF 

FA predict retention of action values in SZ alone was non-significant (F(4,38)=0.9, p=0.474). 

Post-hoc linear regression examining whether right and left SLF_FA predict retention of 

action values in BP alone was also non-significant (F(4,38)=0.9, p=0.474).  
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Figure 17. Group Differences in Right Accumbofrontal Tract Integrity. * p <0.05  

 

 

SZ and BP: AF Integrity and Value Updating after Positive Feedback 
 
 Collapsing across diagnostic group, a linear regression predicting value updating 

after positive feedback from right and left AF F covarying for age, sex, and scanner was 

non-significant (F(4,78)=0.691, p=0.600). Post-hoc linear regression examining whether 

right and left AF FA predict value updating after positive feedback in SZ was non-significant 

(F(4,38)=.296, p=0.879). Post-hoc linear regression examining whether right and left AF FA 

predict value updating after positive feedback in BP was non-significant (F(4,35)=.595, 

p=0.669).  

 

Exploratory Analyses 
 
Medication Effects  

 Medication history as indexed by chlorpromazine equivalents (CPZ) was not 

significantly correlated with integrity in right SLF, left SLF, right AF, or left AF. As a result, 

medication was not controlled for or evaluated as a confound in any additional analyses. 

*
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Trait and Symptom Correlations 

 I conducted non-parametric correlations (Spearman’s rho) to evaluate if FA values in 

the right and left SLF and right and left AF were associated with symptom and trait 

measures within groups.  

 In HC, FA values were not correlated with any trait measures of impulsivity, bipolar 

traits, or anhedonia. In SZ, FA values were not correlated with negative symptoms.  In BP, 

FA values were not correlated with mania severity.  

Updating After Negative Feedback 

 In light of some evidence suggesting that OFC damage(Wheeler & Fellows, 2008) 

leads to deficits in negative feedback learning specifically, I evaluated the relationship 

between AF FA and updating after negative feedback. A linear regression predicting value 

updating after negative feedback from right and left AF FA and group, covarying for age, 

sex, and scanner was non-significant.  

 
CONCLUSION  

 
 Schizophrenia participants did show decreased integrity relative to controls in the 

right accumbofrontal tract, but contrary to my hypotheses, white matter integrity in the 

accumbofrontal tract and the superior longitudinal fasciculus did not moderate 

computational reinforcement learning parameters in schizophrenia and bipolar disorder. 

When developing this study and its hypotheses, the rationale for examining the superior 

longitudinal fasciculus in relation to retention was based on literature suggesting that 

retention may be mediated by working memory performance. However, as detailed in 

Chapter 3, I found no significant relationship between retention and working memory; other 

cognitive processes mediated by other circuitry may better account for variability in retention 

in schizophrenia and bipolar disorder.  
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 Despite findings in clinical research suggesting that connectivity between the NAcc 

and OFC is associated with reward hypersensitivity, preclinical research suggests discrete 

functions from different OFC projections that support different reinforcement learning 

processes. NAcc-OFC circuitry has been implicated in positive symptomatology and over-

learning of associations between irrelevant stimuli, rather than in negative symptomatology 

and use of reward feedback to guide future behaviors (Powers, Mathys, & Corlett, 2017). I 

initially chose to focus on the accumbofrontal tract based on existing findings in the clinical 

literature, but the link between the accumbofrontal tract and value updating after positive 

feedback is more tenuous in light of preclinical evidence. Other brain structures like the 

hypothalamus and its projections to the ventral tegmental area may be mechanistically 

more relevant (Nieh et al., 2016), but there are a number of challenges in attempting to 

image this circuit in the human brain (Billot et al., 2020). Additionally, value updating after 

positive feedback is not the same as reward hypersensitivity and responsiveness to reward, 

and may be more cognitively mediated and thus reliant on prefrontal circuits as opposed to 

NAcc-OFC circuitry.  

 While planned analyses were based prior literature, OFC circuitry has been of 

particular scientific interest in recent years with evolving information about its function and 

role in reinforcement learning emerging rapidly (Stalnaker, Cooch, & Schoenbaum, 2015). 

Likewise, while working memory has been implicated in reinforcement learning, the types of 

parameters fit and paradigms used vary considerably which may be why I was not able to 

replicate findings with this specific form of modeling.  

 
Limitations and Future Directions 
 
 The acquisition of diffusion data in the CNP presented some limitations for the 

planned analyses. CNP data was collected in a single phase-encoding direction. To address 
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susceptibility-induced distortions from echoplanar imaging, diffusion images were 

normalized to an anatomical scan without distortions. More advanced methods of 

addressing susceptibility-induced distortion involve collecting reverse phase-encoding 

scans or collecting a field map; however, these methods increase overall scan time which 

can be undesirable when working with clinical populations. Previous research has shown 

that group analyses can be affected by the polarity of phase-encoding direction, as can FA 

estimates (Kennis, Van Rooij, Kahn, Geuze, & Leemans, 2016). Due to its location, the 

accumbofrontal tract is particularly prone to susceptibility artifacts. While scan sequences 

can be optimized for imaging the accumbofrontal tract, the CNP diffusion scan sequence 

was not optimized in this way.   

Future analyses will focus on whole brain analyses, which would involve entering the 

computational parameters into a GLM to see which areas across the TBSS skeleton 

correlate with the parameters. Additionally, as I endeavored to link computational 

mechanisms with possible neural mechanisms, future directions also include identifying 

possible functional neural correlates of retention and value updating. The CNP LA5C study 

included resting state functional magnetic resonance imaging (rs-fMRI), as well as task-

based fMRI including task-switching and a scanner-modified version of the BART.  
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CHAPTER 5 
 

General Discussion 
 

 
 This series of studies compliments a larger body of work investigating decision-

making and reinforcement learning deficits in schizophrenia and psychosis and identifying 

possible mechanistic links to negative symptomatology. They indicate that there is 

considerable variability within patient groups, and that some aspects of reinforcement 

learning may be unimpaired in schizophrenia and may even be shared with other 

psychopathology like bipolar disorder. While individuals with psychosis are seemingly 

acquiring initial associations between actions and outcomes in a manner similar to healthy 

controls, there appear to be differences in how they use feedback to update action values 

and modify future choice behaviors. This difference appears to be moderated by the 

severity of their negative symptomatology, such that increased negative symptom severity is 

associated with poor optimization of reward when making decisions under ambiguity, and 

with greater weighting of negative feedback and lesser weighting of positive feedback when 

reward contingencies shift. While previous studies have implicated working memory, 

corticostriatal circuitry, and frontoparietal circuitry in reinforcement learning, I was not able 

to replicate these findings.   

 
Early versus Chronic Schizophrenia 

 
 In using a dimensional approach, I examined both early psychosis in Study 1, and 

chronic illness in Studies 2 and 3. Though I used different paradigms reliant on 

reinforcement learning in Study 1 versus Studies 2 and 3, overall findings suggest that 

across early and chronic phases of illness, schizophrenia is not associated with gross 

impairments relative to controls and within-group variability in task performance is similarly 
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accounted for negative symptomatology. There has been limited work explicitly linking the 

precise nature of reinforcement learning deficits and deficits in reinforcement learning-

reliant behaviors across the trajectory of illness, though there has been substantial research 

specifically within early psychosis and chronic schizophrenia related to other domains of 

functioning. This work is an early step in identifying how reinforcement learning 

mechanisms of negative symptomatology manifest similarly or different across phase of 

illness. Deepening understanding of the role of phase of illness has implications for the 

timing of interventions and for identifying when in illness trajectory may be optimal for 

interventions.  

 

Limitations of Dimensional Approaches  
 
 In this dissertation, I adopted a largely dimensional approach to psychopathology 

through use of a psychosis spectrum sample in Study 1, investigation of transdiagnostic 

reinforcement learning deficits and possible contributions of shared cognitive deficits 

between schizophrenia and bipolar in Study 2, and exploration of how white matter integrity 

may be a meaningful predictor of reinforcement learning parameters across diagnostic 

groups in Study 3. Furthermore, I also sought to identify if lower-level symptoms in healthy 

controls show similar relationships with reinforcement learning parameters. Dimensional 

approaches confer many advantages, including that they account for the considerable 

overlap seen in clinical presentation and in conventional treatments for severe mental 

illness. This approach enabled me to identify within-group contributors of variability; 

continued research on moderators of performance and variability in outcome is an essential 

aspect of the growing field of precision medicine.  
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 However, this dissertation also highlights possible challenges of using a dimensional 

approach. Namely, while risk-taking and reinforcement learning constructs have 

tremendous relevance in terms of social and role functioning, defining and describing 

syndromes by these transdiagnostic mechanisms rather than diagnostic classifications 

introduces significant challenges in communicating amongst and between researchers, 

clinicians and patients. It is also tremendously challenging to identify patient profiles based 

on computational parameters. In other words, at some point, it becomes essential to identify 

people on some level to facilitate treatment and to group them by whichever primary 

mechanism drives their symptomatology.  

 While this dissertation does identify sources of variability within schizophrenia and 

psychosis that relate to clearly defined reinforcement learning mechanisms and decision-

making constructs, it also revealed some shortcomings of using a dimensional approach 

particularly in chronic samples with less variability in presentation overall. While there were 

no differences between schizophrenia and bipolar disorder on any metric across any of the 

three studies presented here, I was also not able to fully evaluate the overlap in distributions 

between diagnostic groups, or account for any cognitive or neural mediators that play a 

causal role in the pathophysiology of either diagnosis.  

 
Broader Implications and Future Directions 

 
 The work presented in this dissertation has many implications for areas for further 

study. Future investigations may seek to explicitly probe continuity in deficits across phase 

of illness, potentially by modeling the same task across phase of illness and examining 

within-person changes in parameters and associated correlates. Furthermore, it may be 

particularly elucidating to see if deficits or alterations in reinforcement learning are more 

reflective of current and active symptomatology, rather than trait-like risk for particular 
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disorders. For example, future studies may probe mood state (mania, euthymia, 

depression) to identify state-related changes that further clarify overlap in symptomatology 

in schizophrenia and bipolar disorders. Lastly, future studies should continue to test and 

build a unified framework identifying the role of reinforcement learning deficits in the 

pathophysiology of positive symptoms, negative symptoms, and cognitive deficits seen in 

psychotic illness.   
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