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ABSTRACT

Axisymmetric microelectromechanical (MEM) vibratoryeagyroscopes are designed so the central post which
attaches the resonator to the sensor case is a nodal polre tfd Coriolis-coupled modes that are exploited for
angular rate sensing. This configuration eliminates anylog of linear acceleration to these modes. When the
gyro resonators are fabricated, however, small mass dffidess asymmetries cause coupling of these modes to
linear acceleration of the sensor case. In a resonatorf@logtation step, this coupling can be reduced by altering
the mass distribution on the resonator so that its centeragiris stationary while the operational modes vibrate.
In this paper, a scale model of the Disk Resonator GyroscDRE) is used to develop and test methods that

significantly reduce linear acceleration coupling.

1 Introduction
High performance axisymmetric vibratory angular rate sesiave become a topic of great interest because of their
potential to perform as well as ring laser gyroscopes witgiiring much less power. The Silicon Disk Resonator Gyro-

scope (SIDRG), whose resonator is shown in Fig. 1, is beingldped for tactical navigation applications (0.1 degneaf
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minimum bias instability) and motivates the study in thip@a These gyroscopes operate by utilizing the Coriolipling

of in-plane modes to angular motion [1]. This paper focusethe two elliptical Coriolis-coupled modes, also called th
n=2 modes, which are the pair of modes most widely used foulangate sensing. Ideally these Coriolis-coupled modes
cannot be excited through linear acceleration of the seress®. This theoretical “decoupling” from linear accelerabas

two important benefits. First, it enables the resonatorshieae high quality factors by reducing coupling to the lkggistly
damped modes of the sensor case [2]. Secondly, it removeseesof spurious rate signals when the sensor is operated as
a gyroscope.

No manufacturing process is perfect, however, and smalsraad stiffness asymmetries are unavoidable. These
asymmetries cause detuning of the modal frequencies ini@altth coupling of the modes to linear acceleration. Thase t
features can be seen in the frequency response plot in Figwhich the SIDRG's in-plane radial velocity is measured at
its outermost ring while its central attachment point isegivan in-plane excitation. The deleterious effect of cawypls
demonstrated by the fact that, when the SiDRG is operateg@asacope while subject to case acceleration, it demaestra
a rate sensitivity of 2 deg/s/qg [3].

The problem of tuning the modal frequencies to degeneragypblan studied at great length for various axisymmetric
resonators. Tuning has been achieved either by alteringeimmator stiffness through, for example, electrostatice's, or
by altering the resonator mass distribution through mapssigon or removal [4—7]. The authors’ recent paper destria
method that uses the embedded drive and sense electrodedeémgnass perturbation process for tuning resonatortasimi
to the SiDRG [8].

Methods for decoupling the Coriolis-coupled modes froradinacceleration, however, have not been developed nearly
as thoroughly as those for modal tuning. Zhbanov et al. gically addressed the analogous decoupling problem in impe
fect hemispherical resonators and proposed that the etinimof linear acceleration coupling to the n=2 Coriolsipled
modes can be achieved by causing the center of mass of threatesto be a node of these modes [10]. The analysis showed
that the coupling could be eliminated by “balancing” thetfasd third harmonic of the mass asymmeétrJhe authors did
not, however, explain how one would measure the mass asymimaimonics, nor has a reduction in linear acceleration
coupling ever been empirically demonstrated in the openditire. The goal of this paper is to develop a method forrexpe
imentally determining the imbalance parameters assabiaith linear acceleration coupling and to demonstrate Hwge
parameters can be used to effectively eliminate linearlaatgon coupling.

The large scale resonator dubbed the Macro DRG, which wasgopidy used in the authors’ tuning studies [8], is
modified so that in-plane vibration of the center of the redonis allowed. Thus, as the forcers drive the Coriolispted
modes, accelerometers attached to the post measure tlenmgerceleration at the center of the resonator. The wrped
resonator exhibits a clear response at the frequenciegaft8 Coriolis-coupled modes, which demonstrates couplfng

the modes to vibration at the resonator’s attachment gok.small magnets are placed on the outer rings of the resonato

1The first and third harmonics of the mass asymmetry are sithgl§irst and third harmonics of the mass/unit length fumctitong the equatorial axis
of the hemispherical resonator. The harmonics are corsidéalanced” when they have a value of zero. The analysi®earsed to show that imbalances

in the first and third harmonics of mass asymmetry are rediplerfer linear acceleration coupling in axisymmetric rénas well.

°The linear acceleration coupling experiment conductedeMacro DRG in this paper is the dual to the experiment cateduan the SiDRG in Fig, 1.
DS-10-1142 M’'Closke 2



to implement reversible mass perturbations, a change caadyein the nature of the linear acceleration coupling.

The discussion begins with an explanation of the processhighaa coupling matrix, which includes the four “im-
balance” parameters associated with linear acceleratiopling, can be extracted from multi-input/multi-outpreduency
response data. Experiments are then performed to show leomelasured imbalance parameters change as the resonator
is mass-loaded at different angular locations along theratnngs. The locations and magnitudes of the mass perturba-
tions required for decoupling are then determined usingetheirical relationship between mass placement and changes
in the imbalance parameters. The final result shows a drametuction in total linear acceleration coupling to the n=2
Coriolis-coupled modes. A small increase in the qualitydesof the modes is also observed.

The final section presents a general but systematic methidohéar acceleration decoupling that uses only approx-
imations of the first and third harmonics of the coupling daddts guide. By using the simplified model, this solution is
implemented without utilizing the detailed knowledge dof tielationship between the perturbation locations andlbege
to the coupling matrix. This would likely be the most appbtamethod for decoupling typical axisymmetric resonators

a manufacturing environment.

2 Experiment Description

The Macro DRG resonator is machined from 1018 grade, cdldersteel, has an outer diameter of 11.6 cm and has
a mass of about 187 g. The resonator thickness is 4.7 mm ahdéé#s nineteen rings is 0.9 mm wide with 1.1 mm gaps
between rings. Each ring is connected to its immediate heighby eight “spokes,” with 45 degree angular spacing. The
eight spokes connecting a ring to its outer neighbor, howewe rotated by 22.5 degrees from the eight spokes comgecti
the ring to its inner neighbor. Thus, the positions of théhegpokes alternate radially between positions 22.5 dedrem
each other giving sixteen angular spoke locations, as caeée in Fig. 2. The resonator is attached at its center to a 1.2
cm diameter aluminum post that is suspended 19 cm below tiagidm where the post is clamped. Small NdFeB magnets,
each with a 1.6 mm diameter, 0.8 mm thickness and mass of @ppately 12 mg, can be attached to the top surface of the
resonator to create reversible localized mass perturimtio

Actuation and sensing of the resonator are achieved usanfremagnetic actuators and capacitive sensing pick-offs
A photograph of the experiment along with a diagram of theldyare shown in Fig. 2 and block diagrams are shown in
Fig. 3. Each electromagnet is a modified relay that useshiar@irrent through its solenoid to exert a radial magneticd
on the resonator. Each sensing pick-off consists of a 5 mmetier electrode placed parallel to the outside edge of the
outermost ring of the resonator. The resonator is biase@ &blis and, as the resonator vibrates, the capacitancesbatw
the resonator and the electrode changes. Charge on thedkfibws to the virtual ground of the transimpedance anaplifi
which is configured with a 1 I? feedback resistor, thereby providing a gain of 1@Its/Ampere.

Sensing of the post motion is achieved with two accelerora¢tmat are mounted onto a nylon sheath near the post's

attachment to the resonator. The nylon electrically issldhe accelerometers from the resonator bias. The acoedtep

In the latter case the coupling is observed by measuringetfonse of the rings to an in-plane excitation at the resosatttachment point. The methods

discussed in this paper are applicable to the eliminatidme&r acceleration coupling using either experimentathwoe as demonstrated in [9].
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measurements are AC coupled and then integrated so thadth@yoportional to the post velocity in a neighborhood ef th
n=2 Coriolis modes. Thé&; accelerometer is placed so that its sense axis is paralteeteensing axis db, and theA,
accelerometer is placed so that its sense axis is 90 degraatec-clockwise from thé, accelerometer. The locations of
the sensors and actuators are shown in the right hand dtiestrin Fig. 2. Each drive signal is applied to opposing geir
electromagnetic actuators so that the net force appliebee@ntire resonator is minimized. The second pair of actsato
is placed 45 degrees from the first so that they present “gahal” excitations with respect to the n=2 Coriolis-couple
modes. Finally, a pick-off is placed 90 degrees from eacttelmagnetic so that the two pick-offs are 45 degrees apart (
a likewise “orthogonal” arrangement). Thexis in Fig. 2 acts as a reference for angular locations emgkonator.

The two 2x 2 frequency responses of the Macro DRG with no magnets addegshawn in Fig. 4. A ten second chirp
signal in a neighborhood of the n=2 Coriolis-coupled modassied to drive the actuators, which yields frequency respon

estimates with a.Q Hz resolution.

3 Empirical Estimation of The Coupling Matrix
The linear acceleration coupling model that relates thefteguency responses displayed in Fig. 4 assumes that the
vibration of the resonator couples to the velocity of thetixysthe coupling matrixB, i.e.

\Y _ S _
Y1-B . BeR?>?2 1)

V2 S
wheres; ands, are the radial velocities of resonator&tandS, while v; andv, are the velocities of the structureAst and
A,. The bar over the coupling matrix denotes that it is consathit respect to frequency.
The radial velocities can be thought of as measurementgdf/#iocity” states of the Coriolis modes and, becaBse
is a real matrixy; andv, are simply linear combinations of these states. The cogpiiatrix, B, is generally identified for

a particular mass perturbation scenario and can be repeesas

N
B=Bo+ ZAE(m,tn), Bo,AB(my, @) € R?*2, )
i=

whereBy is the coupling matrix for the unperturbed resonator ABdm, @) is the change in the coupling matrix for each
individual mass perturbation of mass at locationg. For this paper, the anglgis the counter-clockwise angle from the
x-axis of that perturbation, as illustrated in Fig. 2. Thisdabis partially inspired by the analytical model of the effeof
mass perturbations on a simple ring as discussed later tiroSeic2.

The experimental setup enables the measurement of a cowallead 2x 2 transfer functionB(w) (Figure 5). This

coupling transfer function is defined by

B(w) = Hy(w)Hs ()
S S Vi Vi

whereHs(w) = & (@) (@) € C2*? andH,(w) = @ (@) 5 (@) € C?x2, ©
F(w) Z(w) #(w) g(w)
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The real and imaginary parts of a sample measuremeBwj are shown in Fig. 6. In order to agree with (B),w) should

be real and constant with respect to frequency in a neigldoarbf the Coriolis-coupled modes. In this experiment, hawe

the small imaginary part and the small slope are caused yyth@mics of the post. These dynamics are linear with respect
to frequency in the narrow frequency range of the Coriotispgied modes, but change as mass perturbations are made to
the structure. Because it is difficult to compensate for ffeceof the post, each of the four components of the real 22
coupling matrix,B, are approximated by averaging the corresponding reas paB(w), denoted below aBg (w), at the

frequencies of the two Coriolis-coupled modes, i.e.

B = 5 (B (@) + Ba(w) @

wherew, andw, are the two frequencies of the n=2 Coriolis-coupled modes.

4 A Model for Mass Perturbation Effects on the Coupling Matrix
4.1 Empirical Derivation of a Coupling M odel

An experiment was conducted to meas&(m, @), which is the change in the linear acceleration couplingimat
B of the Macro DRG for a single mass perturbation. Althougls ipossible to quantify the effects of mass perturbations
performed on different rings, in this experiment all peotions are constrained to the ring with the second largeksts.
The first part of the experiment tests the linearitynofin the AB function. A measurement & was taken each time
an additional magnet was added to the spoke 11.25 degreatecalockwise from the-axis (i.e. ¢ = 11.25) and the
difference between the measured perturbed coupling mardxhe unperturbed one, denofggin (2), was computed. The
experiment was conducted five times in order to assess tleataility of the results. The mean and standard deviafion o
the results are shown in Fig. 7. The data closely follows atlequares linear fit, confirming thAB is adequately linear
with respect tom.

In the second part of the experiment, each mass perturbetiosisted of six small magnets (i.en= 72 mg when
using 12 mg magnets) placed at various angular locatignsThe matrixB was then measured for each case when the
perturbation was applied to the sixteen spokes as well asixteen midpoints between the spokes. The differencesdagtw
each measured coupling matri, and the unperturbed ong, are shown in Figure 8. The experiment was conducted five
times and the plots show the mean and standard deviatiore oégults.

An expression for relationship between the coupling madrid mass placement is found using a discrete Fourier

Transform (DFT). The formula for the DFT for this case is

31 o
X = %Aﬁﬁﬁ% mo,@i1)e 8% k=0,...,31forp,q=1,2 (5)

wheremy is the mass of one magnet (approximately 12 mg), which is thedlest mass perturbation that can be applied
to the Macro DRG. The superscrifk) on Xég) denotes that it is thkth component of the vectofy, the superscript AVE

aboveAB denotes that it is the averaged value for that valu@ of and j = v/—1. The DFT factors the original functions
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into a weighted sum of harmonics. The magnitudes of the fitgten harmonics are shown in Fig. 9. The approximation of
the linear acceleration perturbation function that usésg Kéé) andxé? (p,g=1,2)is

— 1.39cog¢+0.78°)+0.53cog3¢p+5.51°) 1.35sin¢+0.88°)4-0.51sin3¢+6.62°)
AB(m, @) ~m (6)

—1.41sin@+7.17°)+0.58sin(3p+5.76°) 1.34cog¢+9.98°)—0.54co$3p—1.93°)
wheremis the magnitude of the mass perturbation in milligrams sEgproximation fits the data well, and is plotted as the

dotted trace in Fig. 8.

4.2 Comparison tothe Analytical Ring Model

The prominent features of thempirically derived perturbation function for the Macro DRG are, peghapsurpris-
ingly, similar to the features of themalytically derived perturbation functions for similar, but simpleustures. The analysis
of Zhbanov et al., which addresses hemispherical resa)aoggests that linear acceleration coupling can be aimih
by balancing only the first and third harmonics of the angmass distribution [10]. The same analytical technique @n b
applied to a single ring to reach the same conclusion. Asigierdsonator structure is essentially a collection of sirigis
edifying to derive the effect of mass perturbations on lireeeleration coupling in planar rings.

First, the center of mass is expressed in terms of &ady components, denotdg) andC, respectively. Next these
are decomposed into static and dynamic parts such that

sinwt sinowt
andC, =Cy,o+C/
2 (Mg + 3iam) o OO S g s my)

CX == C)(O + C)/( (7)

wherew is the frequency of vibratiomy,g is the total mass of the symmetric part of the ring ahid the number of discrete
massesm, which cause the deviation from symmetrBy applying the mode shape of the n=2 Coriolis-coupled mddes

the dynamic parts of the center of mass position can be writse

C, = Acog2¢) TN, m [3cosp + cos3a] + Asin(2y) TN, mi [3sing + sin3q]

(8)
C, = Acog(2y) sV, my [~3sing + sin3@] + Asin(2g) TN, m [3cosp — cos 3]

wherey is the angle between the modal axes andxtaeis, A is the amplitude of vibration, and th total masses have
angular position®, as illustrated in Fig. 10. One can express this relatignsking a coupling matrix for a rin@ring, that

has the same form as (1)

Cl Bing Acoq2y) whereBng = Yimi[3cosp +cos3p] Sim [3sin@ + sin3g] . ©)

o6 Asin(2y) Yim [—3sin@ +sin3@] 3;m [3cosy —cos3p]

3The denominators of (7) are factored out of the dynamic fmtsuse the total deviation from symmegfyn, is much smaller than the total mass of

the resonator, meaning that that the inverse of the dendoninare effectively constant with respect to the mass astmym
4The mode shape used in this derivation is definedvby,t) = 2Acog2¢ — 2W) sin(wt) andu(@,t) = Asin(2p — 2W¥) sin(wt) wherew andu are the

radial and tangential parts of the velocity of a point on tihg &t angular positiop[11]. An exaggerated mode shape is visualized as the ddtipseein

Fig. 10.
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This equation reveals that, in theory, linear acceleratampling is only caused by mass distributions with non-fiesband

third harmonics. Next, the changeﬁmng for a single mass perturbation is defined as

3cosp+cos3p 3sing+sin3p

AEring(ma (P) =m (10)

—3sin@+sin3p 3cosp—cos3p .
Note that the signalg ands, in the experimental model given in (1) would act as measunesrferAcog2¥) andAsin(2W¥)

if the resonator were a simple ring. Indeed, it has been shbatrthe mode shape of n=2 Coriolis-coupled modes for the
Macro DRG deviates only slightly from that of a simple ring.[8hus, it is not surprising that this analytical model for
the perturbation function of a ring and the experimentaélyived model for the Macro DRG given in (6) share important
characteristics. Namely, the perturbation relationsbffgsth are linear with respect to and are dominated by the first and

third harmonics with respect p.

5 Decoupling Using the Experimental Perturbation Function
The experimental model is ultimately validated by its usedas in driving each of the elements®to zero. Thus,

the decoupling problem is stated as finding the combinatidth massesn, placed at positiong, such that
— N —
B+ ZAB(m,qq):O. (112)
i=

The decoupling method discussed in this section, dubbetSihekes Method,” restricts angular locations of the pédyaur
tions to the locations of the spokes. The spokes are logications for adding mass because the perturbation resoits f
the previous section were measured at the spokes. Usinggiexamation that\B(m, @) is linear inm, one only needs to

T
choose four locationsp = { @1, @, @3, @}, so that a solutiol = |M; My M3 |v|4} exists toA(®)M = b where

AB11(my, 1) AB11(my,¢2) AB11(my,@3) AB11(My. ) —B11
AByo(my,@1) DB1a(My,¢n) AB1o(my @) AB1a(my, -B
A(®) = 12(My,@1) BB12(My.¢2) AB12(My,@3) AB12(My,¢u) “andb — _12 . (12)
AB21(my.@1) AB21(my,¢2) AB21(my,¢3) ABa1(my, ) —Ba1
| 8B22(Mg,¢1) AB2(My,42) AB22(My,¢3) AB22(My ) | _—Ezz_

Again, my is the mass of one magnet so thdy, My, M3, andM, are the number of magnets necessary for each of the four

perturbations. A solution can be chosen from the many plassites by minimizing the total perturbation mass required

4
min M;
@.v@v%v%i; !
subject to:A(®)M =b (13)
detA)#£0
(ﬂ € (pSpokes Mi 2 O; i= 1727374
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in which theM; > 0 constraint is in place because mass cannot be removedsisdanario. The requirement thatis
nonsingular eliminates the values®ffor which the correspondinigl is not unique while not disqualifying any minimizing
solutions. Note that the values AB used here are simply the average valueABfas plotted in Fig. 8. The optimization

is performed by determininiyl for each of the 1820 possible values®f The optimal® andM are chosen as those that
minimize cost functionzi“:1 M;. Generally, the optimal values &; are not integers even though the actual perturbations

require whole numbers of magnets. Thus, the valuég; @fre rounded after the optimization.

The unperturbed coupling matrix derived from the data in Bigs used to start the decoupling process which can be
followed in Table 1. At each step, optimization (13) suggélsat perturbations d¥l; magnets be added to the locatians
The actual number of magnets utilized for each perturbasi@alculated by rounding to the nearest integral value. ¥ ne
coupling matrix is estimated and the process is repeatédhmbptimization suggests that each of the optimal pegtions
is less than 0.6 magnets. The linear acceleration couingsessed by computing tHe norm of the forcer/accelerometer

transfer function in a neighborhood of the n=2 modes. Thikssussed in more detail in the next section.

5.1 Quantifying Coupling Reduction

The exact and approximated values of Hyenorm ofHy, in the frequency banff, f,] are given by

2 f2 s
HH\,H2 :/f tr(Hy (f)Hy(f))df =~ Z tr(H\j‘ (f1+kAf) Hv(f1+kAf))Af
1 k=0

where tr() is the trace of a matrix anH; is the conjugate transpose Bf. The H, norm is a natural choice because
it facilitates the calculation of the root-mean-squareeteration to a white noise force disturbance applied to th2 n
modes. More specifically, if independent band-limited whibise inputs of intensity,f\/LFTZ are applied to the electromagnetic
actuators, the root-mean-square output of the acceleessistgiven byy||Hy|,. The approximated value ¢H,||, is tracked
throughout the linear acceleration decoupling processgugi= 1620 Hz,f, = 1660 Hz,N = 400, andA; = 0.1 Hz. The
final value||Hy||, is less than 5% of the initial value, confirming that there ségmificant reduction in coupling. The value of
tr(H; Hy) is plotted versus frequency in Figure 11 prior to and afteodeling. The reduction in coupling is also qualitatively
confirmed in Figure 12, which displays the accelerometguatstwhen uncorrelated band-limited white-noise signeisd
the electromagnetic forcers before and after decoupliiggirE 13 displays the power spectrum before and after déiogup

averaged over 20 such tests.

Another effect of linear acceleration coupling is that thality factors of the Coriolis-coupled modes of the resonat
are reduced because energy is transferred from these nmothesmore heavily damped post. These quality factors can be
extracted in a ring down test by exciting a single mode and tieserving the decay rates after the excitation is removed.
Figure 14 displays the filtered peak amplitude of the outpuwing) ring down tests performed before and after decoupling
The quality factor of the low frequency mode increases froiK@o about 7.8K after decoupling while the quality factér o

the high frequency mode increases from 7.9K to about 8.0K.
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6 Decoupling Without Initial M easurement of the Perturbation Function

The linear acceleration decoupling process discusseceiprivious section works very well for the resonator un-
der test and demonstrates the feasibility of reducing fiaeaeleration coupling through mass perturbations. Tédtien
presents a more generalized and robust method. The firsbumprent removes the need for a previously measured per-
turbation function. This considerably increases the alppiethe method because, when other resonators are faldjchte
perturbation functions will likely be different. The Spaki®lethod, which, as implemented in the previous sectionyires
that sixteen irreversible perturbations be made to thenagsoin order to derive its perturbation function and digewvolves
more testing than necessary. In contrast, the method disdus this section, dubbed the “General Method,” approtema
the first and third harmonics of the perturbation functiothvés few perturbations as possible and then updates tha-pert
bation function as more data sets are acquired. The secqrdwement over the previous method removes the constraint
that perturbations only be made at the spokes. By allowimtugzations to take place at any angular location the optima
perturbation requires fewer masses. Also, this allows thegss to be generalized to ring-shaped resonators thait thave

strongly preferred perturbation locations.

6.1 Online Approximation of the Perturbation Function

For the present approach, the perturbation function udggtoafirst and third harmonics so that each component can

be expressed as

(1)

AB(M, @) pg = M (qu e

cosp + X4 sing + X\ cos 3p+ X by sin&p) (14)

wherexpq is the vector of the weightings on the cosine and sine terrtisediirst and third harmonics f&B(m, @)pq- With

N > 4 calibration measurementsAB, the perturbation function can be estimated by finding thstlequares solution of

—mlcos((pl) mysin(@) mpcog3¢) msin(3@) DB pg(My, 1)
mpcog¢2) Mpsin(¢z) Mpcos3¢z) Mpsin(3¢y) DBpg(M, 2)

Xpq = : (15)
| mycos @) musin(@y) My cos(3@y) mysin(3gy) | | ABpa(my, @) |

for p,g=1,2. A notable feature of this method is that perturbationsrefiter magnitude have a greater influence on the

approximation of the perturbation function.
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6.2 Solution to the General Decoupling Problem

The two harmonic perturbation function, built using (14anaow be used to find solutions to (11) in whighe

[0,27). The minimization, (13), is generalized to

4
min M;
0000 E

subject to:A(®)M =b (16)
detA)#0

@e€l0,2m), M >0,i=1,2,3,4

in which the spoke constraint has been removed/Arahdb are defined as in (12) using the two harmonic perturbation
function,AB(m;, @), from (14). Though the problem is not quasiconvex, the sisegescent method appears to converge
to the global minimal solution when the solution to (13) i®diss an initial condition [12]. The minimizing result is at
the edge of the feasible region, meaning that the differbeteeen two of the optimal angular locations is arbitrasityall
(causingA to be nearly singular) and/or one of the optimal mass madegis arbitrarily close to zero. Thus, at least one of
the masses is redundant and the solution actually requitg$wo or three point masses. A brief discussion compatiigy t

solution to those found in the literature is contained inAlppendix.

6.3 Choiceof Initial Perturbation L ocations

The General Method must start with an estimate of the peatimb function. Thus, four “calibrating” perturbations
are made to provide this estimate. Ideally, these pertiotmbare performed in a way that allows for a balanced estirofat
the perturbation function while not adding additional clingto the system. In order to ensure that an equal emplgsis i

placed on the first and third harmonics, the four test madsagual magnitude should be spaced using the followingiozlat

@ =@-—rm/4 (modrm)
=@ — /2 (modn) a7

= @ —31/4 (modm).

This constraint guarantees that the condition number bhkefid matrix of (15) is 1 wheN = 4 andmg = my = mz = my.
Thus, an error in any individual measurementéﬁ!fpq will not disproportionately corrupt the approximationofg. In

practice, this constraint forces the perturbation locetito be no closer than 45 degrees apart.

One may choose any four locations that satisfy restraint (h@ugh, it is advantageous to choose locations that also
reduce coupling. Though crude, the perturbation functiwrah axisymmetric ring generally approximates the petttion

function for any axisymmetric device. Thus, this functignuised to guide the first step. One chooses locations that best
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reduce the imbalance parameters by solving

PL P2, P3Py

4 4 4 4
min 3cosp +cos 3y, 3sin@ +sin3q, —3sing +sin3q, 3cosp — cos b
L; A 3 i; @ +sin3p i; @ +sin3g i; A Cm] (8

subject to:@ € @pokesandq satisfies (17) fori =1,2,3,4

whereb is defined as in (12). Th@ € @pokesrestraint is added here to simplify the minimization. Uelikptimiza-
tions (13) and (16), which theoretically determine the tmoes and magnitudes of perturbations that eliminate dogpl
optimization (18) theoretically determines the locatithret will cause the greatest reduction in coupling for setysbation

magnitudes.

6.4 Implementation of the General Method

The techniques developed in the previous sections are osguide the General Method, the steps of which can be
followed in Table 2. For this implementation, two magnetsevased at each of the four calibration points in the first,step
and the change in the coupling matrix is measured for eadbraibn mass added. Despite attempting to add the masses in
away that reduces coupling, it appefis ||, increased slightly. The unexpected increase demonstaatetential pitfall of
putting too much faith in an analytically defined perturbatiunction (in this caséBying(m, @)).

For the next step, two more calibration masses, made up ofifagnets each, are placed at the two locations suggested
by optimization (16). For cases in which three masses argestgd, the calibration masses are simply placed at the two
points requiring the most mass. The measurements are usedegiimatex;1,X12,X21, andXy» . The third and fourth
calibration steps use six and eight magnets respectivedythee estimate of the two harmonic perturbation functidriexes
greater accuracy. A plot of one channel of the estimatedugdzation function can be seen in Fig. 15. The last two steps
use the refined model to guide the placement of the last fewnetag The process is terminated when all suggested mass
perturbations are less than 0.6 magnets. The valuetdf k() is plotted versus frequency in Fig. 11 so the result can be
compared to the result using the Spokes Method. Again, tbplicw is reduced by a large degree. The General Method
did, however, require more magnets than the Spokes Methad .c@n be attributed to the use of a less accurate pertarbati

function and the addition of magnets that were requiredHerinitial calibration.

7 Conclusions

Axisymmetric resonators are ideal structures for creatibtatory gyroscopes, however, manufacturing imperéeci
inevitably couple the modes that are exploited for angale sensing to linear acceleration of the sensor’s casestarsatic
approach to reduce the coupling has been proposed andablsiidr planar MEM resonators in which strategic mass logdi
or removal can be implemented. The process was demonstratedacro-scale resonator (the Macro DRG) that, by virtue
of its size, facilitated the numerous experiments that veereducted in order to empirically determine the nature ef th
acceleration coupling. Using the Macro DRG allowed us taifogn developing a decoupling process without the challenge

posed by working with MEM devices. Despite the fact that thgezgimental apparatus is limited by the quantized nature of

DS-10-1142 M’'Closkey 11



the mass perturbations imposed by the minimum magnet siggesults show that a factor of 20 reduction in coupling is
easily achievable. Although the Macro DRG is considerabdyercomplicated than the ring structures typically addréss
in the literature, the empirically measured Macro DRG lireaeleration coupling perturbation function closelydols the
analytical ring resonator model. Nevertheless, the pregp@pproach is based on measuring the perturbation furfction
each resonator with a systematic sequence of experimetdgidal step for future work is to combine the present apphoa

with the authors’ previous work on employing mass pertudpetb reduce modal frequency detuning.
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A Comparison To Literature
The basic problem of decoupling using a known perturbatimetion, articulated in (11), can be reformulated as
- - I ——

SIimcogq) X1
N ; T

i, msin X
2i=1 (@) _ M2l (19)
SiLimeos3@)|  |x];

ShamsinBa) | (x5

by combining (11) and (14). This formulation more clearlyrimstrates that the problem is equivalent to the harmonic
balancing problems solved by Fox et al. and Zhbanov et a).]2P Fox’s method, formulated for problems involving even
harmonics, produces two mass solutions when they existtheaseé solutions agree with the end result of optimizatid@) (1

in these cases. When the solution requires three massesyéigwox’s method does not give a solution. For example, if
the right hand side of (19) equates{tg)o 1 o}T, then 3 masses are required for decoupling. Zhbanov’s rdeshaomplete
and simple, but requires four masses, and generally reguioge mass than the solution to optimization (16). The tesol

optimization (16) are expressed in a well-posed manner]jrb[@ have been excluded here for brevity.
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Linear acceleration decoupling using the spokes method

DS-10-1142

M’'Closkey

Table 1.
kHVk2 Optimization Solution Added number of mangets
(VHz m/s/V) Angular Locations (degrees) number of magnets |for next perturbation
First Step 192.9 191.25, 213.75, 258.75, 281.25 7.0, 13.3, 53, 44 | 7, 13, 5, 4
Iteration 1 67.2 33.75, 146.25, 168.75, 281.25 3.3, 1.0, 09, 3.0 3 1, 1, 3
Iteration 2 8.1 11.25, 123.78, 236.25, 348.75 | 0.1, 04, 0.1, 04 | O 0, 0, 0
Total magnets added

37

17



Table 2.

Linear acceleration decoupling using the general decoupling method

DS-10-1142

kH\k, Optimization Solution Added number of mangets
(VHzZ m/s/V) Angular Locations (degrees) number of magnets |for next perturbation
Calibration 1 192.9 56.25, 101.25, 146.25, 191.25 NA 2, 2, 2, 2
Calibration 2 195.9 234.45, 299.16 19.96, 14.59 4, 4
Calibration 3 163.3 336.93, 96.92, 216.9 6.7, 0.43, 28.90 6, 0, 6
Calibration 4 140.5 187.0, 260.35 12.5, 12.0 8, 8
Iteration 1 44.5 165.8, 234.2 3.47, 4.09 3, 4
Iteration 2 11.9 58.9, 179.9, 299.9 | 0.541, 0.8371, 0.33 00 1, o
End 10.6 50.41, 312.2 | 0.54, 0.31 0, 0
Total magnets added
52

M’'Closkey

18



n=2 Coriolis—cdupled modes

n=1 modes

10°F \—:

—_
o

m/s? | mis?

1090 11 12 13 14 15 16 17 18 19 20
Frequency (kHz)

Fig. 1. Le€ft: The Silicon Disk Resonator Gyroscope (SiDRG) has an 8 mm diameter and motivates the study in this paper. Only one
quadrant of the resonant structure is shown here. In an operational gyroscope, electrodes are embedded between the rings to drive and
sense the in-plane elliptical Coriolis-coupled modes. Right: The frequency response of the SIDRG exterior ring's radial velocity to in-
plane excitation of the resonator’s central attachment point. The two n=2 Coriolis-coupled modes exist at two slightly different frequencies,
indicating a detuning which is caused by small mass asymmetries. The fact that these modes are observable in this experiment suggests that
the Coriolis-coupled modes exhibit coupling to movement at the attachment point, which can impact an operational gyroscope’s performance
by allowing linear case acceleration to produce spurious rate signals. By performing mass perturbations on the top surface of the resonator
it is possible to reduce this coupling. This paper investigates methods for reducing the coupling and tests these methods on a macro-scale
model of the SIDRG (shown in Fig. 2). The two n=1 modes, which correspond to in-phase motion of the resonator rings, are nominally coupled

to linear acceleration and Coriolis forces, but are not generally used for rate detection.
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D,,D forcers

S,,S, capacitive
pick-offs

A, ,A; accelerometers

flexible hanging post

Fig. 2. Le€ft: The experimental setup of the Macro DRG, configured to measure linear acceleration coupling. The resonator hangs from the
flexible post so that in-plane movement of the resonator’s attachment point can be measured by the accelerometers. On the right hand side
of the resonator, near one of the D actuators, two stacks of the NdFeB magnets can be seen. These are used to create a reversible mass
perturbation to the resonator. Right: A schematic of the forcer/pickoff arrangement for the Macro DRG. The angular positions for mass
perturbations are measured as the angle with respect to the x-axis, which is aligned with the A1 and S; sensors and intersects the central

axis of the post.
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Fig. 3. Top: Electromagnetic actuator and capacitative sensor setup. Bottom: Testing block diagram.
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Fig. 4. The 2 X 2 frequency response of the accelerometer velocity to a chirp input from each forcer, denoted Hy, is displayed using the
dotted traces, while the frequency response of the capacitative sense measurements from the same inputs, denoted Hs, is displayed using
the solid traces. If no linear acceleration coupling were present, the accelerometer velocity responses would be nearly linear in this frequency

range and correspond to motion of resonator center as a consequence of the cantilever response of the post to which it is attached.
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Fig. 6. The real (left) and imaginary (right) parts of the four components of B(w). The slopes of the real parts and the small imaginary parts

are caused by post dynamics in the region of the modes of interest. A constant, real coupling matrix, B, is calculated by taking the average

of the real parts of B(w) at the two resonant frequencies.
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Fig. 7. An experiment that tests the linearity of AB with respect to M. Five separate tests were done in which the value of B was measured
as magnets were added to an individual spoke. Magnets were attached in two stacks so that the final test with twelve magnets is performed
with two stacks of six magnets. The average of the four channels of AB are plotted as the dots whereas the error bars give the standard
deviation of the tests. The solid line is a least squares fit to the averaged data. The assumption that AB is linear with respect to Mappears

to be appropriate.
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Fig. 8. The four components of the perturbation matrix, AE, plotted against the placement of the perturbing mass. In this case the coupling

matrix, §, was measured as a six magnet test mass is placed at each of the spokes as well as the midpoints in between the spokes. The

perturbation matrix is taken as the difference between the coupling matrix of the perturbed resonator and coupling matrix associated with the

unperturbed resonator. The test was conducted five times and the error bars represent the standard deviation of the data. The dotted trace

is given by the first and third harmonic approximation of the averaged data explicitly given in (6).
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Fig. 9. The magnitudes of the discrete Fourier transform of the mean values plotted in Fig. 8. The four bars of each grouping are the AEll,

A§12, A§21, and AEZZ components respectively. It is clear that the first and third harmonics are the dominant features of the perturbation

function.
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anti-nodal -,
axis

Fig. 10. Basic diagram for ring linear acceleration coupling analysis. The dotted shape represents a possible mode shape for the ring, with
antinodal axis an angle Y from the x-axis. The position of the single attached mass, I, oscillates with the ring, thereby causing the center

of mass, shown here as ‘X', to oscillate as well.
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Fig. 11. A plot of tr(H, Hy) before and after the two decoupling methods were implemented. Each of the methods exhibit over a 95%

reduction in the Hy norm of the forcers-to-accelerometers transfer functions. For reference, the transfer function Hy measured prior to

decoupling is the solid trace plotted in Fig. 4.
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Fig. 12. Uncorrelated white-noise inputs with equal variance are applied to the two electromagnetic forcers in a frequency band encompass-

ing the modes of interest for both the original and decoupled cases. The velocities of the post are measured before decoupling (gray) and

after decoupling (black) using the Spokes Method.
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Fig. 13. The averaged power spectrum of both accelerometers with uncorrelated band-limited noise inputs with a 50 mVv/y/Hz spectral

density before (gray) and after (black) decoupling is performed using the spokes method. The modes of interest are located between 1630

and 1650 Hz.
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Fig. 14. A ring down test is performed on the resonator before and after decoupling is implemented and the time responses of the peak
outputs are plotted. The quality factors are approximated by the slope of linear least square fits to the data. The low frequency mode shows

a marked increase in its quality factor.
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Fig. 15. A plot of the (1,1) component of AE(mo, (p) as measured during the calibrations for the example of the General Method. The
diameters of the circles scale with the magnitudes of the perturbation used for each calibration step. The first and third harmonic approximation
of the perturbation function, [COS(p sing cos3p sin 3(p] X11, is plotted using the solid line. This approximation is used to guide the final two
decoupling steps. The dotted line is the first and third harmonic approximation that was shown in Fig.8. Though it does not precisely match

the previous approximation, which utilized more perturbations, the new approximation is still a useful decoupling tool.
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