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ABSTRACT

Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so the central post which

attaches the resonator to the sensor case is a nodal point of the two Coriolis-coupled modes that are exploited for

angular rate sensing. This configuration eliminates any coupling of linear acceleration to these modes. When the

gyro resonators are fabricated, however, small mass and stiffness asymmetries cause coupling of these modes to

linear acceleration of the sensor case. In a resonator post-fabrication step, this coupling can be reduced by altering

the mass distribution on the resonator so that its center of mass is stationary while the operational modes vibrate.

In this paper, a scale model of the Disk Resonator Gyroscope (DRG) is used to develop and test methods that

significantly reduce linear acceleration coupling.

1 Introduction

High performance axisymmetric vibratory angular rate sensors have become a topic of great interest because of their

potential to perform as well as ring laser gyroscopes while requiring much less power. The Silicon Disk Resonator Gyro-

scope (SiDRG), whose resonator is shown in Fig. 1, is being developed for tactical navigation applications (0.1 degree/hour
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minimum bias instability) and motivates the study in this paper. These gyroscopes operate by utilizing the Coriolis coupling

of in-plane modes to angular motion [1]. This paper focuses on the two elliptical Coriolis-coupled modes, also called the

n=2 modes, which are the pair of modes most widely used for angular rate sensing. Ideally these Coriolis-coupled modes

cannot be excited through linear acceleration of the sensorcase. This theoretical “decoupling” from linear acceleration has

two important benefits. First, it enables the resonators to achieve high quality factors by reducing coupling to the lesslightly

damped modes of the sensor case [2]. Secondly, it removes a source of spurious rate signals when the sensor is operated as

a gyroscope.

No manufacturing process is perfect, however, and small mass and stiffness asymmetries are unavoidable. These

asymmetries cause detuning of the modal frequencies in addition to coupling of the modes to linear acceleration. These two

features can be seen in the frequency response plot in Fig. 1 in which the SiDRG’s in-plane radial velocity is measured at

its outermost ring while its central attachment point is given an in-plane excitation. The deleterious effect of coupling is

demonstrated by the fact that, when the SiDRG is operated as agyroscope while subject to case acceleration, it demonstrates

a rate sensitivity of 2 deg/s/g [3].

The problem of tuning the modal frequencies to degeneracy has been studied at great length for various axisymmetric

resonators. Tuning has been achieved either by altering theresonator stiffness through, for example, electrostatic forces, or

by altering the resonator mass distribution through mass deposition or removal [4–7]. The authors’ recent paper described a

method that uses the embedded drive and sense electrodes to guide a mass perturbation process for tuning resonators similar

to the SiDRG [8].

Methods for decoupling the Coriolis-coupled modes from linear acceleration, however, have not been developed nearly

as thoroughly as those for modal tuning. Zhbanov et al. analytically addressed the analogous decoupling problem in imper-

fect hemispherical resonators and proposed that the elimination of linear acceleration coupling to the n=2 Coriolis-coupled

modes can be achieved by causing the center of mass of the resonator to be a node of these modes [10]. The analysis showed

that the coupling could be eliminated by “balancing” the first and third harmonic of the mass asymmetry.1 The authors did

not, however, explain how one would measure the mass asymmetry harmonics, nor has a reduction in linear acceleration

coupling ever been empirically demonstrated in the open literature. The goal of this paper is to develop a method for exper-

imentally determining the imbalance parameters associated with linear acceleration coupling and to demonstrate how these

parameters can be used to effectively eliminate linear acceleration coupling.

The large scale resonator dubbed the Macro DRG, which was previously used in the authors’ tuning studies [8], is

modified so that in-plane vibration of the center of the resonator is allowed. Thus, as the forcers drive the Coriolis-coupled

modes, accelerometers attached to the post measure the in-plane acceleration at the center of the resonator. The unperturbed

resonator exhibits a clear response at the frequencies of the n=2 Coriolis-coupled modes, which demonstrates couplingof

the modes to vibration at the resonator’s attachment point.2 As small magnets are placed on the outer rings of the resonator

1The first and third harmonics of the mass asymmetry are simplythe first and third harmonics of the mass/unit length function along the equatorial axis

of the hemispherical resonator. The harmonics are considered “balanced” when they have a value of zero. The analysis canbe used to show that imbalances

in the first and third harmonics of mass asymmetry are responsible for linear acceleration coupling in axisymmetric rings as well.
2The linear acceleration coupling experiment conducted on the Macro DRG in this paper is the dual to the experiment conducted on the SiDRG in Fig. 1.
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to implement reversible mass perturbations, a change can beseen in the nature of the linear acceleration coupling.

The discussion begins with an explanation of the process by which a coupling matrix, which includes the four “im-

balance” parameters associated with linear acceleration coupling, can be extracted from multi-input/multi-output frequency

response data. Experiments are then performed to show how the measured imbalance parameters change as the resonator

is mass-loaded at different angular locations along the outer rings. The locations and magnitudes of the mass perturba-

tions required for decoupling are then determined using theempirical relationship between mass placement and changes

in the imbalance parameters. The final result shows a dramatic reduction in total linear acceleration coupling to the n=2

Coriolis-coupled modes. A small increase in the quality factors of the modes is also observed.

The final section presents a general but systematic method for linear acceleration decoupling that uses only approx-

imations of the first and third harmonics of the coupling dataas its guide. By using the simplified model, this solution is

implemented without utilizing the detailed knowledge of the relationship between the perturbation locations and the change

to the coupling matrix. This would likely be the most applicable method for decoupling typical axisymmetric resonatorsin

a manufacturing environment.

2 Experiment Description

The Macro DRG resonator is machined from 1018 grade, cold-rolled steel, has an outer diameter of 11.6 cm and has

a mass of about 187 g. The resonator thickness is 4.7 mm and each of its nineteen rings is 0.9 mm wide with 1.1 mm gaps

between rings. Each ring is connected to its immediate neighbors by eight “spokes,” with 45 degree angular spacing. The

eight spokes connecting a ring to its outer neighbor, however, are rotated by 22.5 degrees from the eight spokes connecting

the ring to its inner neighbor. Thus, the positions of the eight spokes alternate radially between positions 22.5 degrees from

each other giving sixteen angular spoke locations, as can beseen in Fig. 2. The resonator is attached at its center to a 1.2

cm diameter aluminum post that is suspended 19 cm below the location where the post is clamped. Small NdFeB magnets,

each with a 1.6 mm diameter, 0.8 mm thickness and mass of approximately 12 mg, can be attached to the top surface of the

resonator to create reversible localized mass perturbations.

Actuation and sensing of the resonator are achieved using electromagnetic actuators and capacitive sensing pick-offs.

A photograph of the experiment along with a diagram of the layout are shown in Fig. 2 and block diagrams are shown in

Fig. 3. Each electromagnet is a modified relay that uses variable current through its solenoid to exert a radial magnetic force

on the resonator. Each sensing pick-off consists of a 5 mm diameter electrode placed parallel to the outside edge of the

outermost ring of the resonator. The resonator is biased at 60 Volts and, as the resonator vibrates, the capacitance between

the resonator and the electrode changes. Charge on the electrode flows to the virtual ground of the transimpedance amplifier

which is configured with a 1 MΩ feedback resistor, thereby providing a gain of 106 Volts/Ampere.

Sensing of the post motion is achieved with two accelerometers that are mounted onto a nylon sheath near the post’s

attachment to the resonator. The nylon electrically isolates the accelerometers from the resonator bias. The accelerometer

In the latter case the coupling is observed by measuring the response of the rings to an in-plane excitation at the resonator’s attachment point. The methods

discussed in this paper are applicable to the elimination oflinear acceleration coupling using either experimental method as demonstrated in [9].
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measurements are AC coupled and then integrated so that theyare proportional to the post velocity in a neighborhood of the

n=2 Coriolis modes. TheA1 accelerometer is placed so that its sense axis is parallel tothe sensing axis ofS1, and theA2

accelerometer is placed so that its sense axis is 90 degrees counter-clockwise from theA1 accelerometer. The locations of

the sensors and actuators are shown in the right hand illustration in Fig. 2. Each drive signal is applied to opposing paired

electromagnetic actuators so that the net force applied to the entire resonator is minimized. The second pair of actuators

is placed 45 degrees from the first so that they present “orthogonal” excitations with respect to the n=2 Coriolis-coupled

modes. Finally, a pick-off is placed 90 degrees from each electromagnetic so that the two pick-offs are 45 degrees apart (in

a likewise “orthogonal” arrangement). Thex-axis in Fig. 2 acts as a reference for angular locations on the resonator.

The two 2×2 frequency responses of the Macro DRG with no magnets added are shown in Fig. 4. A ten second chirp

signal in a neighborhood of the n=2 Coriolis-coupled modes is used to drive the actuators, which yields frequency response

estimates with a 0.1 Hz resolution.

3 Empirical Estimation of The Coupling Matrix

The linear acceleration coupling model that relates the twofrequency responses displayed in Fig. 4 assumes that the

vibration of the resonator couples to the velocity of the post by the coupling matrix,B, i.e.





v1

v2



= B





s1

s2



 , B ∈ R
2×2, (1)

wheres1 ands2 are the radial velocities of resonator atS1 andS2 while v1 andv2 are the velocities of the structure atA1 and

A2. The bar over the coupling matrix denotes that it is constantwith respect to frequency.

The radial velocities can be thought of as measurements of the “velocity” states of the Coriolis modes and, becauseB

is a real matrix,v1 andv2 are simply linear combinations of these states. The coupling matrix,B, is generally identified for

a particular mass perturbation scenario and can be represented as

B= B0+
N

∑
i=1

∆B(mi,φi), B0,∆B(mi,φi) ∈ R
2×2, (2)

whereB0 is the coupling matrix for the unperturbed resonator and∆B(mi,φi) is the change in the coupling matrix for each

individual mass perturbation of massmi at locationφi. For this paper, the angleφ is the counter-clockwise angle from the

x-axis of that perturbation, as illustrated in Fig. 2. This model is partially inspired by the analytical model of the effects of

mass perturbations on a simple ring as discussed later in Section 4.2.

The experimental setup enables the measurement of a complex-valued 2×2 transfer function,B(ω) (Figure 5). This

coupling transfer function is defined by

B(ω) = Hv(ω)H−1
s (ω)

whereHs(ω) =





s1
d1
(ω) s1

d2
(ω)

s2
d1
(ω) s2

d2
(ω)



 ∈ C2×2 andHv(ω) =





v1
d1
(ω) v1

d2
(ω)

v2
d1
(ω) v2

d2
(ω)



 ∈ C2×2.
(3)
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The real and imaginary parts of a sample measurement ofB(ω) are shown in Fig. 6. In order to agree with (1),B(ω) should

be real and constant with respect to frequency in a neighborhood of the Coriolis-coupled modes. In this experiment, however,

the small imaginary part and the small slope are caused by thedynamics of the post. These dynamics are linear with respect

to frequency in the narrow frequency range of the Coriolis-coupled modes, but change as mass perturbations are made to

the structure. Because it is difficult to compensate for the effect of the post, each of the four components of the real, 2×2

coupling matrix,B, are approximated by averaging the corresponding real parts ofB(ω), denoted below asBR(ω), at the

frequencies of the two Coriolis-coupled modes, i.e.

B=
1
2
(BR(ω1)+BR(ω2)) (4)

whereω1 andω2 are the two frequencies of the n=2 Coriolis-coupled modes.

4 A Model for Mass Perturbation Effects on the Coupling Matrix

4.1 Empirical Derivation of a Coupling Model

An experiment was conducted to measure∆B(m,φ), which is the change in the linear acceleration coupling matrix

B of the Macro DRG for a single mass perturbation. Although it is possible to quantify the effects of mass perturbations

performed on different rings, in this experiment all perturbations are constrained to the ring with the second largest radius.

The first part of the experiment tests the linearity ofm in the ∆B function. A measurement ofB was taken each time

an additional magnet was added to the spoke 11.25 degrees counter-clockwise from thex-axis (i.e. φ = 11.25) and the

difference between the measured perturbed coupling matrixand the unperturbed one, denotedB0 in (2), was computed. The

experiment was conducted five times in order to assess the repeatability of the results. The mean and standard deviation of

the results are shown in Fig. 7. The data closely follows a least squares linear fit, confirming that∆B is adequately linear

with respect tom.

In the second part of the experiment, each mass perturbationconsisted of six small magnets (i.e.m = 72 mg when

using 12 mg magnets) placed at various angular locations,φi. The matrixB was then measured for each case when the

perturbation was applied to the sixteen spokes as well as thesixteen midpoints between the spokes. The differences between

each measured coupling matrix,B, and the unperturbed one,B0, are shown in Figure 8. The experiment was conducted five

times and the plots show the mean and standard deviation of the results.

An expression for relationship between the coupling matrixand mass placement is found using a discrete Fourier

Transform (DFT). The formula for the DFT for this case is

X (k)
pq =

31

∑
l=0

∆BAVE
pq (6 m0,φl+1)e

− j 2π
32 lk k = 0, . . . ,31 for p,q = 1,2 (5)

wherem0 is the mass of one magnet (approximately 12 mg), which is the smallest mass perturbation that can be applied

to the Macro DRG. The superscript(k) on X (k)
pq denotes that it is thekth component of the vectorXpq, the superscript AVE

above∆B denotes that it is the averaged value for that value ofφl+1 and j =
√
−1. The DFT factors the original functions
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into a weighted sum of harmonics. The magnitudes of the first sixteen harmonics are shown in Fig. 9. The approximation of

the linear acceleration perturbation function that uses only X (1)
pq andX (3)

pq (p,q = 1,2) is

∆B(m,φ) ≈ m





1.39cos(φ+0.78◦)+0.53cos(3φ+5.51◦) 1.35sin(φ+0.88◦)+0.51sin(3φ+6.62◦)

−1.41sin(φ+7.17◦)+0.58sin(3φ+5.76◦) 1.34cos(φ+9.98◦)−0.54cos(3φ−1.93◦)



 (6)

wherem is the magnitude of the mass perturbation in milligrams. This approximation fits the data well, and is plotted as the

dotted trace in Fig. 8.

4.2 Comparison to the Analytical Ring Model

The prominent features of theempirically derived perturbation function for the Macro DRG are, perhaps unsurpris-

ingly, similar to the features of theanalytically derived perturbation functions for similar, but simpler structures. The analysis

of Zhbanov et al., which addresses hemispherical resonators, suggests that linear acceleration coupling can be eliminated

by balancing only the first and third harmonics of the angularmass distribution [10]. The same analytical technique can be

applied to a single ring to reach the same conclusion. As the disk resonator structure is essentially a collection of rings, it is

edifying to derive the effect of mass perturbations on linear acceleration coupling in planar rings.

First, the center of mass is expressed in terms of itsx andy components, denotedCx andCy respectively. Next these

are decomposed into static and dynamic parts such that

Cx =Cx0+C′
x

sinωt

2
(

mring+∑N
i=1 mi

) andCy =Cy0+C′
y

sinωt

2
(

mring+∑N
i=1mi

) (7)

whereω is the frequency of vibration,mring is the total mass of the symmetric part of the ring andN is the number of discrete

masses,mi, which cause the deviation from symmetry.3 By applying the mode shape of the n=2 Coriolis-coupled modes,4

the dynamic parts of the center of mass position can be written as

C′
x = Acos(2ψ)∑N

i=1 mi [3cosφi + cos3φi]+Asin(2ψ)∑N
i=1 mi [3sinφi + sin3φi]

C′
y = Acos(2ψ)∑N

i=1 mi [−3sinφi + sin3φi]+Asin(2ψ)∑N
i=1 mi [3cosφi − cos3φi]

(8)

whereψ is the angle between the modal axes and thex-axis,A is the amplitude of vibration, and theN total masses have

angular positionsφi, as illustrated in Fig. 10. One can express this relationship using a coupling matrix for a ring,Bring, that

has the same form as (1)





C′
x

C′
y



= Bring





Acos(2ψ)

Asin(2ψ)



 whereBring =





∑i mi [3cosφi + cos3φi] ∑i mi [3sinφi + sin3φi]

∑i mi [−3sinφi + sin3φi] ∑i mi [3cosφi − cos3φi]



 . (9)

3The denominators of (7) are factored out of the dynamic partsbecause the total deviation from symmetry,∑mi, is much smaller than the total mass of

the resonator, meaning that that the inverse of the denominators are effectively constant with respect to the mass asymmetry.
4The mode shape used in this derivation is defined byw(φ ,t) = 2Acos(2φ −2Ψ)sin(ωt) andu(φ ,t) = Asin(2φ −2Ψ)sin(ωt) wherew andu are the

radial and tangential parts of the velocity of a point on the ring at angular positionφ [11]. An exaggerated mode shape is visualized as the dotted ellipse in

Fig. 10.
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This equation reveals that, in theory, linear accelerationcoupling is only caused by mass distributions with non-zerofirst and

third harmonics. Next, the change inBring for a single mass perturbation is defined as

∆Bring(m,φ) = m





3cosφ + cos3φ 3sinφ + sin3φ

−3sinφ + sin3φ 3cosφ − cos3φ



 . (10)

Note that the signalss1 ands2 in the experimental model given in (1) would act as measurements forAcos(2Ψ) andAsin(2Ψ)

if the resonator were a simple ring. Indeed, it has been shownthat the mode shape of n=2 Coriolis-coupled modes for the

Macro DRG deviates only slightly from that of a simple ring [8]. Thus, it is not surprising that this analytical model for

the perturbation function of a ring and the experimentally derived model for the Macro DRG given in (6) share important

characteristics. Namely, the perturbation relationshipsof both are linear with respect tom and are dominated by the first and

third harmonics with respect toφ .

5 Decoupling Using the Experimental Perturbation Function

The experimental model is ultimately validated by its usefulness in driving each of the elements ofB to zero. Thus,

the decoupling problem is stated as finding the combination of N masses,mi, placed at positionsφi, such that

B+
N

∑
i=1

∆B(mi,φi) = 0. (11)

The decoupling method discussed in this section, dubbed the“Spokes Method,” restricts angular locations of the perturba-

tions to the locations of the spokes. The spokes are logical locations for adding mass because the perturbation results from

the previous section were measured at the spokes. Using the approximation that∆B(m,φ) is linear inm, one only needs to

choose four locations,Φ = {φ1,φ2,φ3,φ4}, so that a solutionM =
[

M1 M2 M3 M4

]T
exists toA(Φ)M = b where

A(Φ) =



















∆B11(m0 ,φ1) ∆B11(m0 ,φ2) ∆B11(m0 ,φ3) ∆B11(m0 ,φ4)

∆B12(m0 ,φ1) ∆B12(m0 ,φ2) ∆B12(m0 ,φ3) ∆B12(m0 ,φ4)

∆B21(m0 ,φ1) ∆B21(m0 ,φ2) ∆B21(m0 ,φ3) ∆B21(m0 ,φ4)

∆B22(m0 ,φ1) ∆B22(m0 ,φ2) ∆B22(m0 ,φ3) ∆B22(m0 ,φ4)



















, andb =



















−B11

−B12

−B21

−B22



















. (12)

Again,m0 is the mass of one magnet so thatM1, M2, M3, andM4 are the number of magnets necessary for each of the four

perturbations. A solution can be chosen from the many possible ones by minimizing the total perturbation mass required

min
φ1,φ2,φ3,φ4

4

∑
i=1

Mi

subject to:A(Φ)M = b

det(A) 6= 0

φi ∈ φspokes, Mi ≥ 0, i = 1,2,3,4

(13)
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in which theMi ≥ 0 constraint is in place because mass cannot be removed in this scenario. The requirement thatA is

nonsingular eliminates the values ofΦ for which the correspondingM is not unique while not disqualifying any minimizing

solutions. Note that the values of∆B used here are simply the average values of∆B as plotted in Fig. 8. The optimization

is performed by determiningM for each of the 1820 possible values ofΦ. The optimalΦ andM are chosen as those that

minimize cost function,∑4
i=1 Mi. Generally, the optimal values ofMi are not integers even though the actual perturbations

require whole numbers of magnets. Thus, the values ofMi are rounded after the optimization.

The unperturbed coupling matrix derived from the data in Fig. 6 is used to start the decoupling process which can be

followed in Table 1. At each step, optimization (13) suggests that perturbations ofMi magnets be added to the locationsφi.

The actual number of magnets utilized for each perturbationis calculated by rounding to the nearest integral value. A new

coupling matrix is estimated and the process is repeated until the optimization suggests that each of the optimal perturbations

is less than 0.6 magnets. The linear acceleration coupling is assessed by computing theH2 norm of the forcer/accelerometer

transfer function in a neighborhood of the n=2 modes. This isdiscussed in more detail in the next section.

5.1 Quantifying Coupling Reduction

The exact and approximated values of theH2 norm ofHv in the frequency band[ f1, f2] are given by

‖Hv‖2
2
=

∫ f2

f1
tr(H∗

v ( f )Hv( f ))d f ≈
N

∑
k=0

tr
(

H∗
v

(

f1+ k∆ f
)

Hv
(

f1+ k∆ f
))

∆ f

where tr(·) is the trace of a matrix andH∗
v is the conjugate transpose ofHv. The H2 norm is a natural choice because

it facilitates the calculation of the root-mean-square acceleration to a white noise force disturbance applied to the n=2

modes. More specifically, if independent band-limited white-noise inputs of intensityγ V√
Hz

are applied to the electromagnetic

actuators, the root-mean-square output of the accelerometers is given byγ‖Hv‖2. The approximated value of‖Hv‖2 is tracked

throughout the linear acceleration decoupling process using f1 = 1620 Hz, f2 = 1660 Hz,N = 400, and∆ f = 0.1 Hz. The

final value‖H2‖2 is less than 5% of the initial value, confirming that there is asignificant reduction in coupling. The value of

tr(H∗
v Hv) is plotted versus frequency in Figure 11 prior to and after decoupling. The reduction in coupling is also qualitatively

confirmed in Figure 12, which displays the accelerometer outputs when uncorrelated band-limited white-noise signals drive

the electromagnetic forcers before and after decoupling. Figure 13 displays the power spectrum before and after decoupling,

averaged over 20 such tests.

Another effect of linear acceleration coupling is that the quality factors of the Coriolis-coupled modes of the resonator

are reduced because energy is transferred from these modes to the more heavily damped post. These quality factors can be

extracted in a ring down test by exciting a single mode and then observing the decay rates after the excitation is removed.

Figure 14 displays the filtered peak amplitude of the output during ring down tests performed before and after decoupling.

The quality factor of the low frequency mode increases from 6.8K to about 7.8K after decoupling while the quality factor of

the high frequency mode increases from 7.9K to about 8.0K.
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6 Decoupling Without Initial Measurement of the Perturbation Function

The linear acceleration decoupling process discussed in the previous section works very well for the resonator un-

der test and demonstrates the feasibility of reducing linear acceleration coupling through mass perturbations. This section

presents a more generalized and robust method. The first improvement removes the need for a previously measured per-

turbation function. This considerably increases the appeal of the method because, when other resonators are fabricated, the

perturbation functions will likely be different. The Spokes Method, which, as implemented in the previous section, requires

that sixteen irreversible perturbations be made to the resonator in order to derive its perturbation function and clearly involves

more testing than necessary. In contrast, the method discussed in this section, dubbed the “General Method,” approximates

the first and third harmonics of the perturbation function with as few perturbations as possible and then updates the pertur-

bation function as more data sets are acquired. The second improvement over the previous method removes the constraint

that perturbations only be made at the spokes. By allowing perturbations to take place at any angular location the optimal

perturbation requires fewer masses. Also, this allows the process to be generalized to ring-shaped resonators that do not have

strongly preferred perturbation locations.

6.1 Online Approximation of the Perturbation Function

For the present approach, the perturbation function uses only the first and third harmonics so that each component can

be expressed as

∆B(mi,φi)pq = mi

(

x(1)pq cosφ + x(2)pq sinφ + x(3)pq cos3φ + x(4)pq sin3φ
)

(14)

wherexpq is the vector of the weightings on the cosine and sine terms ofthe first and third harmonics for∆B(mi,φi)pq. With

N ≥ 4 calibration measurements of∆B, the perturbation function can be estimated by finding the least squares solution of



















m1cos(φ1) m1sin(φ1) m1cos(3φ1) m1sin(3φ1)

m2cos(φ2) m2sin(φ2) m2cos(3φ2) m2sin(3φ2)

...
...

...
...

mN cos(φN) mN sin(φN) mN cos(3φN) mN sin(3φN)



















xpq =



















∆Bpq(m1,φ1)

∆Bpq(m2,φ2)

...

∆Bpq(mN ,φN)



















(15)

for p,q = 1,2. A notable feature of this method is that perturbations of greater magnitude have a greater influence on the

approximation of the perturbation function.
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6.2 Solution to the General Decoupling Problem

The two harmonic perturbation function, built using (14), can now be used to find solutions to (11) in whichφi ∈

[0,2π). The minimization, (13), is generalized to

min
φ1,φ2,φ3,φ4

4

∑
i=1

Mi

subject to:A(Φ)M = b

det(A) 6= 0

φi ∈ [0,2π), Mi ≥ 0, i = 1,2,3,4

(16)

in which the spoke constraint has been removed andA andb are defined as in (12) using the two harmonic perturbation

function,∆B(mi,φi), from (14). Though the problem is not quasiconvex, the steepest descent method appears to converge

to the global minimal solution when the solution to (13) is used as an initial condition [12]. The minimizing result is at

the edge of the feasible region, meaning that the differencebetween two of the optimal angular locations is arbitrarilysmall

(causingA to be nearly singular) and/or one of the optimal mass magnitudes is arbitrarily close to zero. Thus, at least one of

the masses is redundant and the solution actually requires only two or three point masses. A brief discussion comparing this

solution to those found in the literature is contained in theAppendix.

6.3 Choice of Initial Perturbation Locations

The General Method must start with an estimate of the perturbation function. Thus, four “calibrating” perturbations

are made to provide this estimate. Ideally, these perturbations are performed in a way that allows for a balanced estimate of

the perturbation function while not adding additional coupling to the system. In order to ensure that an equal emphasis is

placed on the first and third harmonics, the four test masses of equal magnitude should be spaced using the following relation

φ1 = φ2−π/4 (modπ)

= φ3−π/2 (modπ)

= φ4−3π/4 (modπ).

(17)

This constraint guarantees that the condition number of left hand matrix of (15) is 1 whenN = 4 andm1 = m2 = m3 = m4.

Thus, an error in any individual measurement of∆Bpq will not disproportionately corrupt the approximation ofxpq. In

practice, this constraint forces the perturbation locations to be no closer than 45 degrees apart.

One may choose any four locations that satisfy restraint (17), though, it is advantageous to choose locations that also

reduce coupling. Though crude, the perturbation function for an axisymmetric ring generally approximates the perturbation

function for any axisymmetric device. Thus, this function is used to guide the first step. One chooses locations that best
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reduce the imbalance parameters by solving

min
φ1,φ2,φ3,φ4

[

4

∑
i=1

3cosφi + cos3φi,
4

∑
i=1

3sinφi + sin3φi,
4

∑
i=1

−3sinφi + sin3φi,
4

∑
i=1

3cosφi − cos3φi

]

b

subject to:φi ∈ φspokesandφi satisfies (17) fori = 1,2,3,4

(18)

whereb is defined as in (12). Theφi ∈ φspokes restraint is added here to simplify the minimization. Unlike optimiza-

tions (13) and (16), which theoretically determine the locations and magnitudes of perturbations that eliminate coupling,

optimization (18) theoretically determines the locationsthat will cause the greatest reduction in coupling for set perturbation

magnitudes.

6.4 Implementation of the General Method

The techniques developed in the previous sections are used to guide the General Method, the steps of which can be

followed in Table 2. For this implementation, two magnets were used at each of the four calibration points in the first step,

and the change in the coupling matrix is measured for each calibration mass added. Despite attempting to add the masses in

a way that reduces coupling, it appears‖Hv‖2 increased slightly. The unexpected increase demonstratesa potential pitfall of

putting too much faith in an analytically defined perturbation function (in this case∆Bring(m,φ)).

For the next step, two more calibration masses, made up of four magnets each, are placed at the two locations suggested

by optimization (16). For cases in which three masses are suggested, the calibration masses are simply placed at the two

points requiring the most mass. The measurements are used tore-estimatex11,x12,x21, andx22 . The third and fourth

calibration steps use six and eight magnets respectively, and the estimate of the two harmonic perturbation function achieves

greater accuracy. A plot of one channel of the estimated perturbation function can be seen in Fig. 15. The last two steps

use the refined model to guide the placement of the last few magnets. The process is terminated when all suggested mass

perturbations are less than 0.6 magnets. The value of tr(H∗
v Hv) is plotted versus frequency in Fig. 11 so the result can be

compared to the result using the Spokes Method. Again, the coupling is reduced by a large degree. The General Method

did, however, require more magnets than the Spokes Method. This can be attributed to the use of a less accurate perturbation

function and the addition of magnets that were required for the initial calibration.

7 Conclusions

Axisymmetric resonators are ideal structures for creatingvibratory gyroscopes, however, manufacturing imperfections

inevitably couple the modes that are exploited for angular rate sensing to linear acceleration of the sensor’s case. A systematic

approach to reduce the coupling has been proposed and is suitable for planar MEM resonators in which strategic mass loading

or removal can be implemented. The process was demonstratedon a macro-scale resonator (the Macro DRG) that, by virtue

of its size, facilitated the numerous experiments that wereconducted in order to empirically determine the nature of the

acceleration coupling. Using the Macro DRG allowed us to focus on developing a decoupling process without the challenges

posed by working with MEM devices. Despite the fact that the experimental apparatus is limited by the quantized nature of
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the mass perturbations imposed by the minimum magnet size, the results show that a factor of 20 reduction in coupling is

easily achievable. Although the Macro DRG is considerably more complicated than the ring structures typically addressed

in the literature, the empirically measured Macro DRG linear acceleration coupling perturbation function closely follows the

analytical ring resonator model. Nevertheless, the proposed approach is based on measuring the perturbation functionfor

each resonator with a systematic sequence of experiments. Alogical step for future work is to combine the present approach

with the authors’ previous work on employing mass perturbation to reduce modal frequency detuning.
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A Comparison To Literature

The basic problem of decoupling using a known perturbation function, articulated in (11), can be reformulated as



















∑N
i=1 mi cos(φi)

∑N
i=1 mi sin(φi)

∑N
i=1 mi cos(3φi)

∑N
i=1 mi sin(3φi)



















=



















xT
11

xT
12

xT
21

xT
22



















−1

b (19)

by combining (11) and (14). This formulation more clearly demonstrates that the problem is equivalent to the harmonic

balancing problems solved by Fox et al. and Zhbanov et al. [10, 13]. Fox’s method, formulated for problems involving even

harmonics, produces two mass solutions when they exist, andthese solutions agree with the end result of optimization (16)

in these cases. When the solution requires three masses, however, Fox’s method does not give a solution. For example, if

the right hand side of (19) equates to
[

0 0 1 0
]T

, then 3 masses are required for decoupling. Zhbanov’s method is complete

and simple, but requires four masses, and generally requires more mass than the solution to optimization (16). The results to

optimization (16) are expressed in a well-posed manner in [9], but have been excluded here for brevity.

References

[1] Lynch, D.D., 1988 “Coriolis Vibratory Gyros”, Symposium Gyro Technology, Stuttgart, Germany.

[2] Lynch, D.D., 1984 “Hemispherical Resonator Gyro,” in Ragan, R.R. (ed.) ”Inertial technology for the future,”

IEEE Trans. on Aerospace and Electronic Systems,AES-20(4), pp. 414-444.

[3] M’Closkey., R.T., 2010, Unpublished data.

[4] Kim, D.J., and M’Closkey, R.T., 2006 “A systematic method for tuning the dynamics of electrostatically actuated

vibratory gyros,” IEEE Trans. Control System Technology,14(1), pp. 69–81, 2006.

[5] Gallacher, B. J., “Multi-modal tuning of a ring gyroscope using laser ablation” Proc. Inst. Mech. Eng. C.,217, pp. 557-

76, 2000.

DS-10-1142 M’Closkey 12



[6] Rourke, A.K., McWilliam, S., Fox, C.H.J., 2002 “ Multi-mode trimming of imperfect thin rings using masses at pre-

selected locations” Journal of Sound and Vibration,256(2), pp. 319-345.

[7] Fell, C.P., 1996, “Method for matching vibration mode frequencies on a vibrating structure” US Pat. 5739410.

[8] Schwartz, D., Kim, D.J., and M’Closkey, R.T., 2009 “Frequency Tuning of a Disk Resonator Gyro Via Mass Matrix

Perturbation”, ASME Journal of Dynamic Systems, Measurement, and Controls,131(6), p. 061004 , 2009.

[9] Schwartz, D., 2010, “Mass Perturbation Techniques for Tuning and Decoupling of a Disk Resonator Gyroscope.” PhD

thesis, UCLA, Los Angeles, CA.

[10] Zhbanov, Y. K., and Zhuravlev, V. F., 1998, “On the Balancing of a Hemispherical Resonator Gyro,” Mech. Solids,

33(4), pp. 2–13.

[11] Allaei, D., Soedel W., and Yang, T. Y.,1986,“Natural frequencies of rings that depart from perfect axial symmetry.”

Journal of Sound and Vibration,111, pp. 9-27.

[12] Boyd S., Vandenberghe L., 2004 “Convex Optimization”,Cambridge University Press, Cambridge.

[13] Rourke, A.K., McWilliam S., and Fox, C.H.J., 2001, “Multi-mode trimming of imperfect rings.” Journal of Sound and

Vibration,248(4), pp. 695-724.

DS-10-1142 M’Closkey 13



List of Tables

1 Linear acceleration decoupling using the spokes method . .. . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Linear acceleration decoupling using the general decoupling method . . . . . . . . . . . . . . . . . . . . . 18

List of Figures

1 Left: The Silicon Disk Resonator Gyroscope (SiDRG) has an 8 mm diameter and motivates the study in this

paper. Only one quadrant of the resonant structure is shown here. In an operational gyroscope, electrodes

are embedded between the rings to drive and sense the in-plane elliptical Coriolis-coupled modes.Right:

The frequency response of the SiDRG exterior ring’s radial velocity to in-plane excitation of the resonator’s

central attachment point. The two n=2 Coriolis-coupled modes exist at two slightly different frequencies,

indicating a detuning which is caused by small mass asymmetries. The fact that these modes are observable

in this experiment suggests that the Coriolis-coupled modes exhibit coupling to movement at the attachment

point, which can impact an operational gyroscope’s performance by allowing linear case acceleration to

produce spurious rate signals. By performing mass perturbations on the top surface of the resonator it is

possible to reduce this coupling. This paper investigates methods for reducing the coupling and tests these

methods on a macro-scale model of the SiDRG (shown in Fig. 2).The two n=1 modes, which correspond to

in-phase motion of the resonator rings, are nominally coupled to linear acceleration and Coriolis forces, but

are not generally used for rate detection. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 19

2 Left: The experimental setup of the Macro DRG, configured to measure linear acceleration coupling. The

resonator hangs from the flexible post so that in-plane movement of the resonator’s attachment point can be

measured by the accelerometers. On the right hand side of theresonator, near one of theD2 actuators, two

stacks of the NdFeB magnets can be seen. These are used to create a reversible mass perturbation to the

resonator.Right: A schematic of the forcer/pickoff arrangement for the MacroDRG. The angular positions

for mass perturbations are measured as the angle with respect to thex-axis, which is aligned with theA1 and

S1 sensors and intersects the central axis of the post. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 20

3 Top: Electromagnetic actuator and capacitative sensor setup.Bottom: Testing block diagram. . . . . . . . 21

4 The 2×2 frequency response of the accelerometer velocity to a chirp input from each forcer, denotedHv,

is displayed using the dotted traces, while the frequency response of the capacitative sense measurements

from the same inputs, denotedHs, is displayed using the solid traces. If no linear acceleration coupling were

present, the accelerometer velocity responses would be nearly linear in this frequency range and correspond

to motion of resonator center as a consequence of the cantilever response of the post to which it is attached. 22

5 Block diagram for identification of the coupling matrix,B(ω), from measured responsesHv andHs . . . . 23

6 The real (left) and imaginary (right) parts of the four components ofB(ω). The slopes of the real parts and

the small imaginary parts are caused by post dynamics in the region of the modes of interest. A constant, real

coupling matrix,B, is calculated by taking the average of the real parts ofB(ω) at the two resonant frequencies. 24

DS-10-1142 M’Closkey 14



7 An experiment that tests the linearity of∆B with respect tom. Five separate tests were done in which the

value ofB was measured as magnets were added to an individual spoke. Magnets were attached in two stacks

so that the final test with twelve magnets is performed with two stacks of six magnets. The average of the

four channels of∆B are plotted as the dots whereas the error bars give the standard deviation of the tests.

The solid line is a least squares fit to the averaged data. The assumption that∆B is linear with respect tom

appears to be appropriate. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 25

8 The four components of the perturbation matrix,∆B, plotted against the placement of the perturbing mass.

In this case the coupling matrix,B, was measured as a six magnet test mass is placed at each of thespokes as

well as the midpoints in between the spokes. The perturbation matrix is taken as the difference between the

coupling matrix of the perturbed resonator and coupling matrix associated with the unperturbed resonator.

The test was conducted five times and the error bars representthe standard deviation of the data. The dotted

trace is given by the first and third harmonic approximation of the averaged data explicitly given in (6). . . 26

9 The magnitudes of the discrete Fourier transform of the mean values plotted in Fig. 8. The four bars of each

grouping are the∆B11, ∆B12, ∆B21, and∆B22 components respectively. It is clear that the first and third

harmonics are the dominant features of the perturbation function. . . . . . . . . . . . . . . . . . . . . . . . 27

10 Basic diagram for ring linear acceleration coupling analysis. The dotted shape represents a possible mode

shape for the ring, with antinodal axis an angleΨ from thex-axis. The position of the single attached mass,

mi, oscillates with the ring, thereby causing the center of mass, shown here as ‘×’, to oscillate as well. . . . 28

11 A plot of tr(H∗
v Hv) before and after the two decoupling methods were implemented. Each of the methods ex-

hibit over a 95% reduction in theH2 norm of the forcers-to-accelerometers transfer functions. For reference,

the transfer functionHv measured prior to decoupling is the solid trace plotted in Fig. 4. . . . . . . . . . . 29

12 Uncorrelated white-noise inputs with equal variance areapplied to the two electromagnetic forcers in a

frequency band encompassing the modes of interest for both the original and decoupled cases. The velocities

of the post are measured before decoupling (gray) and after decoupling (black) using the Spokes Method. . 30

13 The averaged power spectrum of both accelerometers with uncorrelated band-limited noise inputs with a 50

mV/
√

Hz spectral density before (gray) and after (black) decoupling is performed using the spokes method.

The modes of interest are located between 1630 and 1650 Hz. . .. . . . . . . . . . . . . . . . . . . . . . 31

14 A ring down test is performed on the resonator before and after decoupling is implemented and the time

responses of the peak outputs are plotted. The quality factors are approximated by the slope of linear least

square fits to the data. The low frequency mode shows a marked increase in its quality factor. . . . . . . . . 32

DS-10-1142 M’Closkey 15



15 A plot of the (1,1) component of∆B(m0,φ) as measured during the calibrations for the example of the Gen-

eral Method. The diameters of the circles scale with the magnitudes of the perturbation used for each calibra-

tion step. The first and third harmonic approximation of the perturbation function,[cosφ sinφ cos3φ sin3φ ]x11,

is plotted using the solid line. This approximation is used to guide the final two decoupling steps. The dotted

line is the first and third harmonic approximation that was shown in Fig.8. Though it does not precisely

match the previous approximation, which utilized more perturbations, the new approximation is still a useful

decoupling tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 33
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Table 1. Linear acceleration decoupling using the spokes method
Added number of mangets

Angular Locations (degrees) number of magnets

First Step 192.9 7.0, 13.3, 5.3, 4.4 7, 13, 5, 4

Iteration 1 67.2 3.3, 1.0, 0.9, 3.0 3, 1, 1, 3

Iteration 2 8.1 0.1, 0.4, 0.1, 0.4 0, 0, 0, 0

Total magnets added

37

Optimization Solution

191.25, 213.75, 258.75, 281.25

33.75, 146.25, 168.75, 281.25

11.25, 123.78, 236.25, 348.75

for next perturbation
kH v k

2

 (  Hz m/s/V)
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Table 2. Linear acceleration decoupling using the general decoupling method

Added number of mangets

Calibration 1

195.9

56.25, 101.25, 146.25, 191.25 NA 2, 2, 2, 2

Calibration 2

163.3

234.45, 299.16 19.96, 14.59 4, 4

Calibration 3

140.5

336.93, 96.92, 216.9 6.7, 0.43, 28.90 6, 0, 6

Calibration 4

44.5

187.0, 260.35 12.5, 12.0 8, 8

Iteration 1

11.9

165.8, 234.2 3.47, 4.09 3, 4

Iteration 2

10.6

58.9, 179.9, 299.9 0.541, 0.8371, 0.33 0, 1, 0

End

192.9

50.41, 312.2 0.54, 0.31 0, 0

Total magnets added

52

Angular Locations (degrees) number of magnets

Optimization Solution

for next perturbation

kH v k
2

 (  Hz m/s/V)
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Fig. 1. Left: The Silicon Disk Resonator Gyroscope (SiDRG) has an 8 mm diameter and motivates the study in this paper. Only one

quadrant of the resonant structure is shown here. In an operational gyroscope, electrodes are embedded between the rings to drive and

sense the in-plane elliptical Coriolis-coupled modes. Right: The frequency response of the SiDRG exterior ring’s radial velocity to in-

plane excitation of the resonator’s central attachment point. The two n=2 Coriolis-coupled modes exist at two slightly different frequencies,

indicating a detuning which is caused by small mass asymmetries. The fact that these modes are observable in this experiment suggests that

the Coriolis-coupled modes exhibit coupling to movement at the attachment point, which can impact an operational gyroscope’s performance

by allowing linear case acceleration to produce spurious rate signals. By performing mass perturbations on the top surface of the resonator

it is possible to reduce this coupling. This paper investigates methods for reducing the coupling and tests these methods on a macro-scale

model of the SiDRG (shown in Fig. 2). The two n=1 modes, which correspond to in-phase motion of the resonator rings, are nominally coupled

to linear acceleration and Coriolis forces, but are not generally used for rate detection.
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Fig. 10. Basic diagram for ring linear acceleration coupling analysis. The dotted shape represents a possible mode shape for the ring, with

antinodal axis an angle Ψ from the x-axis. The position of the single attached mass, mi, oscillates with the ring, thereby causing the center

of mass, shown here as ‘×’, to oscillate as well.
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Fig. 11. A plot of tr(H∗
v Hv) before and after the two decoupling methods were implemented. Each of the methods exhibit over a 95%

reduction in the H2 norm of the forcers-to-accelerometers transfer functions. For reference, the transfer function Hv measured prior to

decoupling is the solid trace plotted in Fig. 4.
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Fig. 12. Uncorrelated white-noise inputs with equal variance are applied to the two electromagnetic forcers in a frequency band encompass-

ing the modes of interest for both the original and decoupled cases. The velocities of the post are measured before decoupling (gray) and

after decoupling (black) using the Spokes Method.
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Fig. 13. The averaged power spectrum of both accelerometers with uncorrelated band-limited noise inputs with a 50 mV/
√

Hz spectral

density before (gray) and after (black) decoupling is performed using the spokes method. The modes of interest are located between 1630

and 1650 Hz.
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Fig. 14. A ring down test is performed on the resonator before and after decoupling is implemented and the time responses of the peak

outputs are plotted. The quality factors are approximated by the slope of linear least square fits to the data. The low frequency mode shows

a marked increase in its quality factor.
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Fig. 15. A plot of the (1,1) component of ∆B(m0,φ) as measured during the calibrations for the example of the General Method. The

diameters of the circles scale with the magnitudes of the perturbation used for each calibration step. The first and third harmonic approximation

of the perturbation function, [cosφ sinφ cos3φ sin3φ ]x11, is plotted using the solid line. This approximation is used to guide the final two

decoupling steps. The dotted line is the first and third harmonic approximation that was shown in Fig.8. Though it does not precisely match

the previous approximation, which utilized more perturbations, the new approximation is still a useful decoupling tool.
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