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a b s t r a c t 

We report on an experiment that distinguishes between rational social learning and behav- 

ioral information source bias. Subjects are asked to correctly guess the current binary state 

of the world. Differently from other social learning studies, subjects must choose between 

receiving a private, noisy signal about the current state or observing the past guesses of 

other subjects in the prior period. Our design varies the persistence of the state across 

time, which affects whether private or social information is optimal. Thus our design en- 

ables us to separate subjects who choose information optimally from those who exces- 

sively use either social information (“herd animals”) or private information (“lone wolves”). 

We find sizable proportions of both behavioral types. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Humans are highly social. We seem to have a keen interest in the actions chosen by others. Does this interest reflect

an intrinsic , “herd animal,” desire to follow and imitate the actions of others even when relying on such information is

suboptimal? 1 By contrast, according to the social learning literature, it can be rational to observe others instrumentally be- 

cause there is information contained in their actions. What has often been neglected in the debate between conformity and 

rationality is a third possibility that individuals could have a “lone wolf” bias against social information or following others. 
� We thank Philipp Albert, Jose Apesteguia, Juergen Bracht, Steven Broomell, Ignacio Esponda, Maia Guell, Steffen Huck, Chad Kendall, Gilat Levy, Mingye 

Ma, Dimitra Politi, Emanuel Vespa, Georg Weizsäcker, and Leeat Yariv for helpful comments, and Qixin He and Fiona Ross for research assistance. We also 

are grateful to the audiences at BEAT, Berlin Behavioral Economics Seminar, Chapman University, Higher Economic School, New Economic School, UC Irvine, 

UC San Diego, UC Santa Barbara, University of Aberdeen, University of Innsbruck, University of Manchester, and WZB for thought-provoking questions and 

suggestions. Funding for this project was provided by the Dietrich School of Arts and Sciences. 
∗ Corresponding author. 

E-mail addresses: duffy@uci.edu (J. Duffy), E.Hopkins@ed.ac.uk (E. Hopkins), Tatiana.Kornienko@ed.ac.uk (T. Kornienko). 

URL: http://www.socsci.uci.edu/~duffy/ (J. Duffy), http://homepages.econ.ed.ac.uk/hopkinse (E. Hopkins), http://homepages.econ.ed.ac.uk/~tatiana/ 

(T. Kornienko) 
1 Grant et al. (1998) consider agents with purely intrinsic , non-instrumental preferences for more information (or information avoidance) and make a 

connection between attitudes toward information and attitudes toward risk. 
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In this paper, we test whether individuals’ interest in social or private information is rational, and if not, whether they

exhibit persistent information source biases , with some individuals always preferring private information while others always 

preferring social information, even if that information source leads to a lower payoff. 2 We conduct an experiment that has

several novelties compared with the classic social learning experiment of Anderson and Holt (1997) , 3 which is based on

the seminal information herding theory of Banerjee (1992) and Bikhchandani et al. (1992) . First, we use a direct elicitation

approach, requiring subjects to choose between receiving either private or social information. Second, in our design, the 

binary state of the world that all subjects are seeking to guess can change over time, and depending on the persistence

of this state of the world, social information is the optimal choice in some environments, while private information is the

optimal choice in other environments. Third, our within-subjects design exposes subjects to a pair of these contrasting 

environments. 4 Fourth, choices in our setup are simultaneous, so the decision problem is symmetric across subjects. 

We find clear and sizeable heterogeneity in information choices. While a little more than 63% of subjects choose infor- 

mation optimally more than three quarters of the time, the remaining nearly 37% of subjects can be roughly divided up

equally between lone wolves and herd animals. Specifically, more than 19% of subjects can be broadly classified as lone 

wolves, as they chose private information in more than three quarters of their decisions, while the remainder of more than

17% of subjects can be broadly classified as herd animals as they chose social information in more than three quarters of

their decisions. Thus, one should not simply contrast rationality with conformism; it is really a three-way contest. 

Our model predicts that the past choices made by others can be informative about the state of the world if that state is

sufficiently persistent. By contrast, in a volatile environment, where the state of the world is likely to change, information 

about the past choices of others would not be as useful as a new private signal draw. For example, compare restaurant

reviews that praise a restaurant’s chef and hotel reviews that praise the hotel’s central location. If both reviews are years

old, we might doubt whether the chef is still working at the restaurant, but may trust a hotel review as it is unlikely the

hotel has changed location. 5 The question we explore in this experiment is the degree to which subjects can solve such

relatively simple inference problems. 

Most prior experiments on social learning, including Anderson and Holt (1997) ; Celen and Kariv (2004) ; 

Goeree et al. (2007) ; Ziegelmeyer et al. (2010) and De Filippis et al. (2018) involve a permanent state of the world that

subjects are seeking to determine. Further, when it is a subject’s turn to make a choice in these experiments, they are given

both a private signal and social information on the prior choices of others in the sequence; there is no information choice. 

Thus, our model differs from the classic social learning design, where subjects move in sequence and are required to com-

bine statistical inference with strategic reasoning and higher order beliefs. However, from the above examples, our model’s 

predictions are also important for making everyday social inferences. Further, our revealed preference approach identifies 

more clearly the relative value that subjects place on private versus social information. Given the many repetitions and full 

feedback we provide on the information that was not chosen, subjects in our design are as well placed as in the standard

design to judge the relative merits of social versus private information. Importantly, our design allows for analysis of both 

the choice of private or social information as well as how that information is subsequently used in guessing the state of the

world, which is not possible in the standard design. Perhaps surprisingly, we find that some subjects choose not to follow

the information that they choose in making their guess about the state. By contrast, the standard social learning design has

to back out the weighting of private versus social information sources as well as errors, all from a single choice, i.e. the

subjects’ guess about the state. 

Kübler and Weizsäcker (2004) is closer to our model in that they make private information optional and only visible if

a subject chooses to pay a small fee. Cavatorta et al. (2018) make one action unobservable and then vary how the informa-

tion about the unobserved action is presented to subjects. Experiments examining social learning in finance, Cipriani and 

Guarino (2005) , Drehmann et al. (2005) , allow for the cost of different options to vary but not a choice between different

sources of information. Thus, a novelty of our approach is that we ask subject to choose the type of information (private or

social) they wish to receive. 

Meta-study analysis of the standard, sequential move social learning experimental design conducted by 

Weizsäcker (2010) finds that subjects follow their own private information more frequently than is empirically opti- 

mal. Ziegelmeyer et al. (2013) analyse an augmented meta-dataset, and, using an updated methodology, confirm that 

subjects overweight their private signals though to a lesser degree than was previously found. 

Yet suboptimal actions can be due to a variety of mistakes, whether in Bayesian updating, statistical inference, strategic 

reasoning, second order beliefs, or something else. Such mistakes are difficult to disentangle in the standard binary choice 

sequential design, as one mistake (say, due to mistrust in the rationality of a predecessor) might offset a second mistake
2 Such persistent biases could be taste or belief-based - for example, one could have a desire to observe others or a strong belief that social information 

is uninformative because other people are unreliable. 
3 The classic experimental design of Anderson and Holt (1997) involves subjects taking turn in a sequence guessing the fixed state of the world. Subjects 

are exogenously provided with both a private signal and the (social) history of their predecessors’ guesses. In equilibrium, it is optimal to follow private 

signals relatively early in the sequence, and switch to following others later on. 
4 Charness et al. (2019) similarly use pairs of contrasting environments to analyze choices over information structures. 
5 According to surveys ( Sterling, 2018 ), consumers are aware of such issues, with 85% claiming to disregard online reviews of local businesses that are 

more than three months old. This may be because positive reviews for a business typically are not erased even when that business changes management 

or ownership. 
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(say, in Bayesian reasoning), so that a subject making two mistakes might end up behaving in a manner that appears to be

perfectly rational. (Most of the existing literature deals with this problem by ruling out one type of mistake altogether.) Even

more, the behavior of someone who is biased towards a particular information source might be observationally equivalent 

to rational behavior, depending on their position in the sequence. For example, a subject who is biased towards private 

information and who happens to act early in the sequence, might be misidentified as acting rationally. If, instead, the same

player made the decision later in the sequence, she might correctly be identified as someone who relies too much on private

signals. Equally, another subject’s bias towards social information might only be uncovered if she made her decisions early 

in the sequence. Since in a sequential design it is optimal to follow the herd in most rounds beyond the earliest, such

design might be prone to uncovering a built-in information source bias largely in one direction, over-reliance on private 

information, and conflate biases towards social information with rational behavior. 

In contrast, some more recent and complex experiments, Goeree and Yariv (2015) , Eyster et al. (2018) , March and

Ziegelmeyer (2018) , and Duffy et al. (2019) modify the standard social learning design so that excessive, suboptimal over-

weighting of social information is possible, and all of these studies find evidence in this direction. 

Most similar to this paper, Duffy et al. (2019) also examine information choice but in the context of the standard,

sequential-move social learning design. There, at each point in the sequence, each subject must choose whether to receive 

a new private signal or to look at the history of guesses made by other subjects (social information) about the unchanging

state of the world. While they document both herd animal and lone wolf-like behaviour in this sequential design, they find

a tendency towards favoring social information relative to equilibrium predictions. They attribute this bias to particular fea- 

tures of the classic sequential design, which are not an issue in the present study. 6 Indeed, in the model considered here,

the proper choice of social versus private information depends only on the persistence of the state of the world. Thus for

the purpose of identifying the frequency of herd animals versus lone wolves versus fully rational types in the population, 

we believe the symmetric design of the present experimental study provides the better framework. 

While we urge caution about whether the bias we observe toward one information source or the other is driven by

a persistent preference for or against social information versus simple errors, nonetheless, there are indications that the 

behavioral types we identify in our symmetric, information choice-based design are a more general phenomenon, worthy 

of further study. Overall, we see our design as complementary to the classic sequential one in understanding social learning 

and inference. 

2. A simple model of social learning 

We first develop a simple model of social learning, which we will use to form hypotheses that we test in our experi-

ment. 7 

There are two periods. In each period, the state of the world is either X or Y . In period 1, the state is X or Y with equal

probability. The state of the world in period 2 is the same as in period 1 with probability p and changes to the other state

with probability 1 − p. This probability, p, is the main treatment variable in our experiment. 

There are n agents/subjects. In each period, all agents must choose an action X or Y . The payoff to choosing X when the

state is X is k > 0 dollars and similarly the payoff to choosing Y when the state is Y is also k dollars. The payoff to choosing

X when the state is Y or to choosing Y when the state is X is zero. In period 1, each agent receives a noisy but informative

private signal, x or y, with commonly known precision Pr (x | X ) = Pr (y | Y ) = q ∈ ( 1 2 , 1) . Each agent’s signal is independent

of the signals of others. At the end of period 1, no feedback or payoff information is given. In period 2, each agent must

choose between receiving another informative, independent, private signal (“private information”) having the same precision, 

q, as in period 1, but based on the (possibly different) period 2 state of the world or seeing all actions taken by the other

agents in period 1 (“social information”) when the state of the world was possibly different. Once the chosen information is

received, the agent makes her period 2 choice of X or Y . Importantly, the number of agents n, the persistence parameter, p,

and the precision of the private signal, q, are all common knowledge. 

A strategy for an agent consists of three decisions: (i ) a decision about whether to follow (or comply with) her signal

in period 1, (ii ) a decision about which information to receive at the beginning of period 2, and finally (iii ) a final period

2 decision about which state to guess, conditional on the type of information received. This decision problem is formally a

game as the payoff to the information choice in period 2 depends on whether agents follow their signal in period 1, and

thus we write the result below in terms of perfect Bayesian equilibrium. However, the strategic aspects of this game are

minimal, so weaker concepts such as rationalizability generate the same outcome. 

In period 1, following one’s signal is a dominant strategy (in expected payoffs) because, as q > 

1 
2 , the signal is informative.

In period 2, if an agent chooses to see an independent signal, then as before, that signal will be correct with probability q . It

will be optimal for the agent to follow this signal in period 2 and consequently the agent’s expected probability of guessing
6 In particular, when actions and signals are binary, choosing social information in the third position of the sequence is, in theory, no more informative 

than choosing it in the second position, because the first two agents can contradict each other. However, in practice, subjects in the third position chose 

social information more frequently than those in the second position. 
7 Our model draws inspiration from Samuelson (2004) who shows that in a sufficiently stable world, it can be optimal to observe the past actions of 

others as these convey information about the underlying state of the world. Moscarini et al. (1998) also study social learning with a changing state of the 

world. 

3 
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correctly from choosing private information in period 2 will also be q . 8 If instead an agent chooses social information in

period 2, that agent can recall her own action and now sees the actions chosen by the n − 1 others in period 1. Let n be

odd so that there is always a majority for one of the two actions. Assume that all took the dominant action in period 1

of following one’s signal, then the optimal action, given an agent’s choice of social information, is to copy the majority (or

median) action in period 1 if p > 0 . 5 and to take the opposite action if p < 0 . 5 . 

The probability of success with this strategy depends on the key parameters n, p and q in the following way. The proba-

bility that the majority (or median) action was the correct action in period 1 for n = 3 is Q 3 = q 3 + 3 q 2 (1 − q ) and for n = 5

it is Q 5 = q 5 + 5 q 4 (1 − q ) + 10 q 3 (1 − q ) 2 and so on. That is, 

Q n (q ) = 

m ∑ 

i =1 

(
n 

i − 1 

)
q n +1 −i (1 − q ) i −1 (1) 

where m = (n + 1) / 2 . 

The probability that the majority (or median) action is still the correct action in period 2 is equal to the probability that

it was the correct action in period 1 multiplied by p. The probability that the majority action was incorrect in period 1 is

1 − Q n (q ) . The probability that it was both incorrect in period 1 but it would be correct to follow it (because meanwhile

the state of the world has changed) is (1 − p)(1 − Q n (q )) . Thus, the overall accuracy, A, of social information, that is, the

probability of correctly predicting the state in period 2 by following the majority (or median) action in period 1, is 

A (n, p, q ) = pQ n (q ) + (1 − p) ( 1 − Q n (q ) ) . (2) 

The value of social information is increasing in all three variables n, p and q . This allows us to prove the following proposi-

tion regarding when the choice of social or private information is optimal. 

Proposition 1. In the unique Perfect Bayesian Equilibrium, in period 1 all follow their signals. In period 2, there exists a p ∗(n, q ) ∈
( 1 2 , 1) such that the equilibrium strategy is to select social information and to follow it when the persistence of the state, p, is

greater than p ∗. Further, if p < 1 − p ∗, then in equilibrium all select social information and go against the majority. Finally, for p

in (1 − p ∗, p ∗) , the equilibrium strategy is to choose private information and to follow it. 

Proof. In period 1, the returns to following and not following one’s signal are q and 1 − q, respectively. As this is inde-

pendent of the actions of others, following one’s signal is a dominant action. Thus, any equilibrium strategy will place 

probability one that the accuracy of social information is equal to A (n, p, q ) as given in (2) . Thus any such strategy will

select social information when A is greater than q, the accuracy of private information. Because Q n (q ) > q > 

1 
2 , then clearly

A (n, p, q ) is strictly increasing in p with A (n, 1 2 , q ) = 

1 
2 and A (n, 1 , q ) = Q n (q ) > q . So there is a unique p ∗(n, q ) ∈ ( 1 2 , 1) such

that A (n, p, q ) = q, and the result follows. Next, note that the accuracy of going against the majority is 1 − A (n, p, q ) and by

a similar argument this will be greater than q when p < 1 − p ∗. It similarly follows that A is less than q in (1 − p ∗, p ∗) . �

2.1. Experimental parametrization 

In our experiment, the values of the three parameters n, p and q were chosen with the following considerations. The 

group size, n, was chosen to be 9, as this number is sufficiently large for social information to be an attractive choice and

an odd number of subjects facilitates analysis of majority actions. Our choice for the signal precision, q = 0 . 7 , was influenced

by parameter values used in previous social learning experiments (see Weizsäcker, 2010 ). 9 

While n and q were fixed, we varied the persistence, p, across treatments, having three different environments, labeled 

Persistent, Erratic and Anti-Persistent . We intended the Persistent environment to have high persistence, p, and so p = 0 . 9 is

an obvious choice. We then specified an Anti-Persistent environment to test for blind conformism and by symmetry, p = 0 . 1

is a natural choice. Finally, we chose p = 0 . 6 for the Erratic environment (where choosing private information is optimal)

so that the Persistent and Erratic environments are almost exactly reverse symmetric in terms of the strength of incentives. 

Given n = 9 subjects per group, Eq. (1) results in the probability that the majority is correct being Q 9 (0 . 7) = 0 . 901 . Thus, it

follows from Eq. (2) that the accuracy of social information in the Persistent environment, where p = 0 . 9 , is A (9 , 0 . 9 , 0 . 7) =
0 . 821 , so that in the Persistent environment, social information is more accurate than one’s own private signal (of precision

0.7) by 0 . 821 − 0 . 7 = 0 . 121 . In contrast, in the Erratic environment, where p = 0 . 6 , A (9 , 0 . 6 , 0 . 7) = 0 . 580 , and thus private

information is 0 . 7 − 0 . 58 = 0 . 12 more accurate than social information. 

In the Anti-Persistent environment, where p = 0 . 1 , using Eqs. (1) and (2) , one can calculate that in period 2 the accuracy

from following the majority action of period 1 is A (9 , 0 . 1 , 0 . 7) = 0 . 179 . Thus, choosing the action opposite to the majority

action in period 1 yields the optimal period 2 action with probability 1 − 0 . 179 = 0 . 821 . As this probability is greater than

drawing a private signal in period 2 with precision q = 0 . 7 , the equilibrium strategy in the Anti-Persistent environment is to

choose social information in period 2 but to guess the choice opposite to the majority’s choice in period 1. By design, this
8 As Appendix A shows, the expected payoff from choosing private information in period 2 is q, even though the agent already has a private signal from 

period 1. This is because these two private signals may disagree. 
9 Furthermore, this choice for q is very close to 0.697, which is the value of q that maximizes the difference between social and private information, 

A (n, p, q ) − q, when n = 9 and p = . 9 . 

4 
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Table 1 

Summary of environments and parameterizations. Note: p denotes the persistence of the state of the world, q 

denotes the accuracy of private information, n is the number of subjects, and A is the (theoretical) accuracy of 

social information. 

Environment Persistence Accuracy of Number of Accuracy of Equilibrium Strategy 

p Private Info q Subjects n Social Info A (Period 2) 

Persistent 0.9 0.7 9 0.821 Social (S), Follow (F) 

Erratic 0.6 0.7 9 0.580 Private (P), Follow (F) 

Anti-Persistent 0.1 0.7 9 0.821 Social (S), Not Follow (N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strategy has the same expected success rate (0.821) as the equilibrium strategy (choose the social information and follow 

the majority choice) in the Persistent environment. 

2.2. Experimental predictions 

Given our parameterization of the model, the equilibrium strategy involves following the private signal in period 1, while 

in period 2 it varies with the persistence environment. In the Erratic environment, the equilibrium strategy is to choose 

private information and to follow the private signal received. In the other two environments, the equilibrium strategy is to 

choose social information, and to follow the majority’s action choice from the previous period in the Persistent environment, 

and to do the opposite of the majority in the Anti-Persistent environment. 10 

The actual accuracy of social information in period 2 depends on other subjects having played optimally in period 1, 

namely guessing the state corresponding to their period 1 private signal. It would not be optimal to choose social informa-

tion if these period 1 actions were sufficiently noisy. Let the compliance rate , γ , be the probability that an agent follows her

signal in period 1. Then ˜ q = 0 . 7 γ + 0 . 3(1 − γ ) is the realized accuracy of the period 1 guess. We show that so long as the

compliance rate, γ , is greater than a certain critical level, the main results of the theory remain unchanged. 

Proposition 2. For fixed n, q, and p > p ∗, there exists a compliance rate γ ∗ ∈ ( 1 2 , 1) such that choosing social information is

optimal for all γ > γ ∗. For n = 9 , q = 0 . 7 and p = 0 . 9 , then γ ∗ = 0 . 77 . 

Proof. Given the possibility of error in the period 1 behavior, the realized social accuracy ˜ A = A (n, p, ̃  q ) is clearly strictly

increasing in ˜ q with A (n, p, 1 2 ) = 

1 
2 and A (n, p, 1) = 1 , so that there is unique ˜ q such that ˜ A = q . Given ˜ q is strictly increasing

in γ , the result follows. The final specific value for γ ∗ is calculated numerically. �

In contrast, if the compliance rate γ < 0 . 77 , then choosing private information and following it is always the optimal

choice in period 2 of all three persistence environments. However, as we will see later in Section 4.1 , the overall real-

ized compliance rate is very high, averaging 0.978, which is far above the cutoff level of 0.77, so the strategy described in

Proposition 1 is indeed optimal. 

3. Experimental design 

Our experiment involved 144 inexperienced subjects recruited from the undergraduate population of the University of 

Pittsburgh. Each subject participated in a single experimental session involving 18 subjects, who were divided up into two 

groups of size n = 9 and remained in the same group for the duration of the experiment. Thus each session yielded two

independent groups, and we have a total of 16 such independent groups of size 9. 

The experiment consists of two main parts. Subjects were initially given written instructions only for the first part that 

were read aloud in an effort to make these instructions common knowledge. Subjects had to answer some control questions 

to verify their understanding of these experimental instructions and they then completed the first part of the experiment. 

After the first part was completed, the experiment was paused. Subjects were handed out new written instructions for the 

second part which emphasized that the only change from part 1 was to the persistence parameter, p. 

One of the two parts of each experimental session always had a persistence of p = 0 . 6 , referred to as the “Erratic” envi-

ronment. The other part had a persistence of either p = 0 . 9 , the “Persistent” environment, or p = 0 . 1 , the “Anti-Persistent”

environment. Thus each subject went through 48 rounds of two different persistence levels, for a total of 96 rounds (see

Table 2 ). We refer to the different “within subjects” treatments by number labels. For example, “69” ( Erratic then Persis- 

tent ) refers to the treatment where the p = 0 . 6 environment was played for 48 rounds followed by 48 rounds of play of

the p = 0 . 9 environment; “61” ( Erratic then Anti-Persistent ) to p = 0 . 6 followed by p = 0 . 1 . We controlled for possible order
10 Risk aversion is unlikely to affect the equilibrium. In each period, the strategy with the highest expected payoff also has the lowest variance. Potentially, 

subjects could reduce the variance of their payoffs across the two periods by hedging, i.e., in period 2 guessing the opposite of their period 1 guess, 

irrespective of period 2 information, but it comes at high cost. In the Persistent environment, someone defecting to this strategy would reduce her expected 

return by almost 50% in order to reduce the standard deviation by 10%. 

5 
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Table 2 

Experimental parameters. Group size n = 9 and accuracy of private signal q = 0 . 7 was fixed in all sessions. 

Treatment 

Part 1 Part 2 Total 

Sessions Groups Subjects 
Persistence Rounds Persistence Rounds Rounds 

96 p = 0 . 9 48 p = 0 . 6 48 96 2 4 36 

69 p = 0 . 6 48 p = 0 . 9 48 96 2 4 36 

16 p = 0 . 1 48 p = 0 . 6 48 96 2 4 36 

61 p = 0 . 6 48 p = 0 . 1 48 96 2 4 36 

Total 8 16 144 

Table 3 

Summary statistics for the Signal Compliance Rate, (i.e., the subject-specific proportion of period 1 signals followed by each subject in each 

persistence environment, out of 48 rounds), and the ensuing realized accuracy, ˜ A , of social information (based on the pooled compliance 

rate), for each persistence environment. Part 1 (2) means that the p environment was in the first (second) part of the session. 

Persistence Period 1 Signal Compliance Rate per Environment Social Info 

p Part 1 Part 2 Both Parts Pooled Realized 

Mean (SD) No. Obs. Mean (SD) No. Obs. Mean (SD) No. Obs. Accuracy ˜ A 

p = 0 . 9 0.992 (0.021) 36 0.976 (0.100) 36 0.984 (0.072) 72 0.815 

p = 0 . 6 0.970 (0.081) 72 0.979 (0.061) 72 0.975 (0.072) 144 0.578 

p = 0 . 1 0.964 (0.071) 36 0.992 (0.027) 36 0.978 (0.055) 72 0.812 

Pooled 0.974 (0.069) 144 0.982 (0.067) 144 0.978 (0.068) 288 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

effects by varying the order of the two environments faced across sessions, so the other treatments are thus, “96” ( Persis- 

tent then Erratic ) and “16” ( Anti-Persistent then Erratic ). 11 Different pairs of contrasting persistence environments were run in

different sessions and the order of each persistence pair was varied (see Table 2 ). 

In each part, subjects were repeatedly confronted with the “main task” of: (i ) guessing the state of the world in period 1

followed by (ii ) an information choice and finally, (iii ) guessing the state of the world in period 2. 12 In each part, this main

task, consisting of three decisions, was repeated 48 times or “rounds” under a part-specific constant value for the persistence 

parameter, p. We chose to have a large number of rounds for each environment to allow time for subject learning. The

number of group members n = 9 , the precision of the private signal, q = 0 . 9 , and the number of rounds in each part N = 48 ,

were held constant across all treatments/sessions, were always at least public knowledge; they were explained in the written 

instructions which were then read aloud to all subjects at the start of each part. The persistence parameter, p, which varied

across parts/treatments, was always announced in the instructions and aloud at the beginning of each part. 

At the end of each 2-period round of play, subjects were presented with a complete, updated history of individually- 

relevant outcomes from all prior rounds of play, including the state of the world, and both subject’s own private signal and

the other group members’ guesses, whether or not they chose to see that. Our design prevented subjects from imitating

other group members’ behavior, as the only social information that is available is other subjects’ period 1 guesses, which 

subjects have to choose whether or not to view. Since our focus is on the choice between private and social information,

we wanted to rule out any other channels of social influence that might affect that information choice. 

At the end of the experiment, one round was randomly chosen from each of the two parts of the experiment. Since

subjects could earn up to 2 points for each round (one point per period), they could earn up to a maximum of 4 points

total for parts one and two. Points were converted into money payments at the fixed and known rate of 1 point = $6. In

addition, all subjects earned a fixed show-up payment of $6 that required completion of an ex-post experimental survey. 

Thus, subjects could earn between $6 and $30 for a session lasting between 1.5 and 2 h. Average total subject earnings were

$21.80. 

4. Experimental results 

Each of our 144 subjects participated in a two-part “within subjects” treatment, with each part consisting of 48 rounds 

of a single persistence environment (thus 96 rounds in total across the two parts). While some variables exhibit small 

differences across the two parts, we do not find evidence for significant order effects in our primary outcome variables

of interest, namely signal compliance and information choice rates. (See Appendix C for additional details including order 

effects, as well as Appendix D for dynamical aspects of our experimental data.) 
11 Copies of the written instructions used in the “96” treatment ( p = 0 . 9 in part 1 and p = 0 . 6 in part 2) are found in the Appendix. Instructions for the 

other treatments are similar. 
12 The details of the experimental implementation of the main task are described in Appendix B . 

6 



J. Duffy, E. Hopkins and T. Kornienko European Economic Review 134 (2021) 103690 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Period 1 signal compliance rate 

In period 1, subjects receive a private signal with a commonly known signal precision q = 0 . 7 , and have to decide

whether to follow it or not. Since the signal is informative (i.e., q > 0 . 5 ), the period 1 optimal action is to follow it. This

first decision is important as the optimality of choosing social information in period 2 of the Persistent ( p = 0 . 9 ) and Anti-

Persistent ( p = 0 . 1 ) environments depends on subjects being sufficiently “compliant”, i.e., correctly following their signal in

period 1. We find that in fact subjects are highly compliant. 

In Table 3 , the signal compliance rates are broken down according to whether the p-treatment value was in place for the

first (part 1) or the second (part 2) 48 rounds of a session. By design, all subjects faced the Erratic ( p = 0 . 6 ) environment,

as well as either the Persistent ( p = 0 . 9 ) or the Anti-Persistent ( p = 0 . 1 ) environment. Thus, there are twice as many subjects

facing the Erratic ( p = 0 . 6 ) environment (72 in each part, 144 total) than the other two environments (36 in each part, 72

total for each). 

Overall, as Table 3 demonstrates, 97.8 percent of all period 1 decisions were to follow the signal. 13 Thus, the period

1 compliance rates are significantly above the cut-off value, γ ∗ = 0 . 77 , from Proposition 2 (one-sided t = 29 . 915 , p-value =
0 . 0 0 0 ), and so the equilibrium strategy in period 2 is always to choose social information in the Persistent and Anti-Persistent

environments. We note further that even for the lowest observed mean compliance rate (0.964 in the p = 0 . 1 environment

for part 1), the realized accuracy ˜ A of social information is 0.806. This is not as high as the theoretical benchmark of 0.821,

but it is still clearly above the accuracy of private information which is 0.7. 

Result 1. The average period 1 signal compliance rate, 0.978, is significantly greater than the cut-off value, γ ∗ = 0 . 77 . Thus,

choosing social information is the optimal strategy in the Persistent ( p = 0 . 9 ) and Anti-Persistent ( p = 0 . 1 ) environments. 

4.2. Period 2 information choice 

We now turn to evaluation of the theoretical predictions of Section 2.2 , and explore whether subjects choose information

optimally in period 2 of each round of the different persistence environments. Given our Result 1 , it is optimal to choose

social information in the Persistent ( p = 0 . 9 ) and Anti-Persistent ( p = 0 . 1 ) environments, and choose private information about

the period 2 state in the Erratic ( p = 0 . 6 ) environment. We introduce the Information Optimality Index ( IOI i ), which is the

overall average proportion of the time that each subject i made optimal information choices across the 48 rounds of each

of the two persistence environments that they faced: 

IOI i = 

1 

2 

∑ N 1 ,i 
t=1 

I IO 
i,t 

(i f pri v ate optimal) 

N 1 ,i 

+ 

1 

2 

∑ N 2 ,i 
t=1 

I IO 
i,t 

(i f social optimal) 

N 2 ,i 

(3) 

= 

1 

2 

∑ 48 
t=1 I 

IO 
i,t 

(p = 0 . 6) 

48 

+ 

1 

2 

∑ 48 
t=1 I 

IO 
i,t 

(p � = 0 . 6) 

48 

Here, I IO 
i,t 

(·) is a binary indicator variable equal to 1 if subject i chose optimal information in round t in the corresponding

environment (i.e., private information if p = 0 . 6 and social information if p � = 0 . 6 ), and zero if subject i chose the suboptimal

information instead, in N 1 ,i = N 2 ,i = 48 rounds. Note that IOI i ∈ [0 , 1] , and here it can be regarded as the overall rate of

optimal information choice across both of the persistence environments faced, 96 rounds in total. 14 If subject i chose social

information when it is optimal to do so and private information when that is optimal, then her IOI i is 1. If she always made

the wrong choice, then her IOI i is 0. If she always chose either social information or private information in all 96 rounds,

then her IOI i is 0.5. 

Across all treatments, the mean (st. dev.) I OI is: 0.787 (0.217) (see Table C.6 in the Appendix C.6 ), which means that an

average subject made optimal choices 78.7% of the time. However, as the population shares in Fig. 1 (left panel) show, the

distribution of this Information Optimality Index is bimodal. First, there is a large spike at perfect optimality ( IOI = 1 ), with

21.5% of subjects being perfectly optimal in their information choice across both persistence environments. Second, there is 

another large spike at 0.5, with 13.2% of subjects making exactly half optimal choices and half suboptimal choices. 

Result 2. Only about one fifth of subjects are perfectly optimal in their information choice across our two different persis-

tence environments. About one-eighth of subjects make exactly half optimal choices and half suboptimal choices. 

Note that if the subject-specific rates of optimal information choice across the two persistence environments , were instead 

calculated separately for a single persistence environment p, we would get a very different picture of subjects’ individual 

rationality. As reported in Appendix C.3 , such a “between-subjects” slicing of our data leads to an overstatement of the 

proportion of optimal choices since it is more difficult to distinguish information source biases from optimal behavior in a 

single environment, as a bias towards private information may look like an optimal choice in Erratic environment, while a 
13 While period 1 compliance rates varied over rounds, the lowest compliance rate in any single round was 93.1%. We do not find any systematic or 

robust order effects in signal compliance rates across the two parts, and in any case, order effects for the compliance rate are not important as long as the 

signal compliance rate is sufficiently high relative to the cut-off value, γ ∗ = 0 . 77 . 
14 Observation counts N 1 ,i and N 2 ,i in each environment may vary across subjects (e.g., Appendix E ). 
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Fig. 1. The distributions of period 2 subject-specific indices (pooled over all treatments, calculated over all 96 rounds, 144 individual observations). Left: 

Information Optimality Index IOI i , right: Payoff Optimality Index POI i (or period 2 expected payoff). The vertical axes report population shares, and the 

horizontal axes report the subject-specific indices. 

Table 4 

Table of information use strategies, corresponding theoretical payoffs, and empirical frequencies for each persistence environment. Roman 

numerals denote ranking of strategies in terms of payoff: I is best (in bold), II is second best (in italics), III is second worst, and IV is worst. 

QRE represents Quantal Response Equilibria (QRE) fitted frequencies (see Section 5 ). 

Strategy 

p = 0 . 9 p = 0 . 6 p = 0 . 1 Pooled 

Payoff π Empir. QRE Payoff π Empir. QRE Payoff π Empir. QRE Empir. 

(Rank) Freq. Freq. (Rank) Freq. Freq. (Rank) Freq. Freq. Freq. 

PF (Private, Follow) 0.700 (II) 0.172 0.284 0.700 (I) 0.741 0.654 0.700 (II) 0.186 0.284 0.460 

PN (Private, Not Follow) 0.300 (III) 0.039 0.012 0.300 (IV) 0.045 0.027 0.300 (III) 0.028 0.012 0.039 

SF (Social, Follow) 0.821 (I) 0.761 0.699 0.580 (II) 0.199 0.247 0.179 (IV) 0.030 0.005 0.297 

SN (Social, Not Follow) 0.179 (IV) 0.028 0.005 0.420 (III) 0.015 0.072 0.821 (I) 0.755 0.699 0.203 

No. Obs. 3456 6912 3456 13,824 

 

 

 

 

 

 

 

 

 

 

 

 

 

bias towards social information may look like an optimal choice in the other two environments. Using the between subjects 

optimality measure would lead us to conclude that 47.9% of our subjects were perfectly optimal, more than twice the pop-

ulation share of rational types found using the overall, within-subjects, information optimality measure. For this reason, in 

what follows, we conduct our analysis using only our overall, within-subjects I OI measure, which we believe to be a better

indicator of individual rationality. 

4.3. Period 2 information use and expected payoff

We now examine whether subjects optimally used the information they chose to receive before making their period 2 

choices as predicted in Section 2.2 , as well as the payoff consequences of their choices. 

Since there are only two types of information, private ( P ) and social ( S), and the state of the world is binary, a subject

can choose either to follow ( F ) the private signal or, in case of social information, the majority (or median) guess; or not

to follow ( N) this same information, i.e., do the opposite. This results in 4 strategies denoted as: P F , P N, SF , and SN - e.g.,

the strategy SF is to choose social information and to follow it. The strategies can be ordered in terms of their theoretical

expected payoff π, with rank I being the equilibrium strategy in that environment and rank IV being the worst, and this

ordering will depend on the persistence environment. 

We find that there is a high degree of optimal information use, but it is still far from 100%. As Table 4 (and also

Table C.3 in Appendix C.4 ) shows, the frequencies of strategies chosen are largely ordered in terms of their relative pay-

offs. The frequency of the optimal information use strategy, ranked I in Table 4 , averages 0.75 across both parts of the

three persistence environments. Further, by summing up the frequencies of the strategies ranked I and II, one can see from

Table 4 that the overall frequency of the correct use of chosen information was high (at 0.933, 0.940, and 0.942 in environ-

ments p = 0 . 9 , p = 0 . 6 , and p = 0 . 1 , respectively), with an overall average of 0.939. 

Result 3. In the aggregate, across all three environments, information-use strategies in period 2 are highly rational, with 

three quarters of all observations corresponding to the optimal (best-ranked) strategy. 

We now turn to examining the overall payoff consequences of subjects’ choices. Recall that all subjects participated 

in two of the three environments, one of which was always the Erratic environment, and the other one was either the
8 
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Persistent or the Anti-Persistent environment. As predicted in Section 2.2 , the latter two have the same theoretical expected 

payoff. We thus further calculate an overall subject-specific Payoff Optimality Index, P OI i , which is the expected period 2

payoff, averaged over both parts of the experiment. 15 It is defined as the sum of payoffs to each of the four strategies, P F ,

P N, SF and SN, defined earlier and weighted by the proportion of times that a subject used those strategies in period 2 of

each part (and thus in each persistence environment): 

P OI i = 

1 

96 

48 ∑ 

t=1 

[0 . 7 · I PF 
i,t (p = 0 . 6) + 0 . 3 · I PN 

i,t (p = 0 . 6) + 0 . 580 · I SF 
i,t (p = 0 . 6) + 0 . 420 · I SN 

i,t (p = 0 . 6)] 

+ 

1 

96 

48 ∑ 

t=1 

{ 

0 . 7 · I PF 
i,t 

(p) + 0 . 3 · I PN 
i,t 

(p) + 0 . 821 · I SF 
i,t 

(p) + 0 . 179 · I SN 
i,t 

(p) if p = 0 . 9 

0 . 7 · I PF 
i,t 

(p) + 0 . 3 · I PN 
i,t 

(p) + 0 . 179 · I SF 
i,t 

(p) + 0 . 821 · I SN 
i,t 

(p) if p = 0 . 1 

The theoretical minimum and maximum values for the overall average expected payoff are P OI min = 0 . 2395 and P OI max =
0 . 7605 , so that P OI i ∈ [0 . 2395 , 0 . 7605] . 

As Fig. 1 (right panel) shows, the distribution of period 2 expected payoffs is skewed, with a mean expected payoff (st.

dev.) of 0.709 (0.051) and a median of 0.720. There is a clear and distinct mode around the maximum expected payoff

of P OI max = 0 . 7605 from following the (best) optimal strategy in each environment, however only 15 subjects out of 144

(10.4%) achieved this maximum payoff. 16 As we will explore in the next section, there is significant payoff heterogeneity, 

with a long leftward tail in Fig. 1 (right panel) representing subjects who persistently chose suboptimally. The worst total 

expected payoff was P OI i = 0 . 503 , which is close to a pure random guess. 

Result 4. On average, subjects achieved an expected payoff of 0.709. However, only 10.4% of all subjects obtained the maxi- 

mum period 2 overall expected payoff, P OI max = 0 . 7605 , by both choosing and using information correctly. 

4.4. Information source bias and its consequences 

We will now turn to our main question of interest, whether subjects exhibit any bias toward a particular source of

information, and develop a methodology which allows one to explore the consequences of such a bias. 

4.4.1. Identifying information source bias 

To quantify subjects’ tendency to choose private information, we construct a subject-specific “Lone Wolf Index” ( LW I i ) by

adding the proportions of time that each subject i made private information choices across 48 rounds of each of the two

persistence environments they faced, and subtracting 1: 

LW I i = 

∑ N 1 ,i 
t=1 

I PI 
i,t 

(i f pri v ate optimal) 

N 1 ,i 

+ 

∑ N 2 ,i 
t=1 

I PI 
i,t 

(i f social optimal) 

N 2 ,i 

− 1 (4) 

= 

∑ 48 
t=1 I 

PI 
i,t 

(p = 0 . 6) 

48 

+ 

∑ 48 
t=1 I 

PI 
i,t 

(p � = 0 . 6) 

48 

− 1 

Here, I PI 
i,t 

(·) is a binary indicator variable equal to 1 if subject i chose private information in round t in the relevant envi-

ronment, and zero if she chose social information instead, in N 1 ,i = N 2 ,i = 48 rounds. As LW I i ∈ [ −1 , 1] , here it is simply a

rescaled overall rate of private information choice across both persistence environments, 96 rounds in total. For example, if 

a subject chooses optimally in the 69 treatment, she chooses private information 100% of the time (or 48 times) in the first

part, and after the environment switches from Erratic to Persistent, she chooses social information 100% of the time in the

second part. Thus, her LW I i is 0, as she is unbiased. If, however, she always chooses social information, then she will have a

LW I i of -1, as a fully prosocial, pure “herd animal”. If she always chooses private information, then her LW I i would be 1, as

a fully antisocial, pure “lone wolf”. 

Fig. 2 depicts population shares of subject LW I i and shows that the distribution of the Lone Wolf Index is broadly uni-

modal and symmetric around zero. In the aggregate, the population of subjects is effectively unbiased, with the mean 

(st.dev.) LWI of −0 . 001(0 . 558) and median of 0, and a 95% confidence interval of [ −0 . 093 , 0 . 091] . The mean LWI is not

different from zero (according to a two-tailed, one-sample t -test, p-value = 0.975). A test for skewness and kurtosis gives

Pr (Skewness ) = 0 . 784 and Pr (Kurtosis ) = 0 . 544 , with adjusted χ2 (2) = 0 . 45 ( p-value = 0.799), suggesting that there is no

systematic bias for or against a particular source of information. 

We find that scores for the Lone Wolf Index vary widely across subjects, allowing us to classify them by their choice

rates of a particular type of information (see Fig. 2 and Table 5 ). We find that 28 (19.4%) of subjects are “broad lone wolves”
15 Given that the theoretical range of the period 2 expected payoff varies with the persistence parameter, p, there is no obvious way to normalize a 

combination of the expected payoffs from the two parts. As we are interested in understanding differences in subjects’ behavior, we see the “raw” average 

expected payoff as a meaningful payoff metric. 
16 The spike at the maximum value of period 2 expected payoff in Fig. 1 (right panel) includes extra three subjects who earned slightly less than the 

maximum payoff. 
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Fig. 2. The distribution of period 2 subject-specific Lone Wolf Index LW I i (pooled over all treatments, 144 individual observations). The vertical axis reports 

population shares, and the horizontal axis reports the rescaled subject-specific private information choice rates. 

Table 5 

Summary statistics on the Payoff Optimality Index POI i (or the overall expected payoff in period 2, and its normalization, NPOI i = 

P OI i −P OI min 

P OI max −P OI min 
, averaged over all 96 rounds), by broad subject type as defined by their LW I i . 

Broad 

Type LW I i #Subj. (%) 

Expected Payoff in Period 2, POI i Normalized Expected Payoff, NPOI i 

Mean (St.Dev.) Min Max Mean (St.Dev.) Min Max 

Herd Animal [ −1 , −0.5) 25 (17.4%) 0.687 (0.016) 0.652 0.721 0.859 (0.031) 0.792 0.924 

Unbiased [ −0.5,0.5] 91 (63.2%) 0.731 (0.041) 0.503 0.7605 0.943 (0.078) 0.506 1.000 

Lone Wolf (0.5,1] 28 (19.4%) 0.655 (0.054) 0.548 0.728 0.797 (0.104) 0.591 0.937 

 

 

 

 

 

 

 

 

 

who choose private information in at least 75% of their information choices. As we will see later in Fig. 3 , a typical “broad

lone wolf” would always choose private information in the Erratic ( p = 0 . 6 ) persistence environment, and more than half of

the time in the other (non-erratic) persistence environment (either the Persistent ( p = 0 . 9 ) or the Anti-Persistent ( p = 0 . 1 )

environment, depending on the session). Approximately the same number, 25 (17.4%) of subjects are “broad herd animals”

who chose social information at least 75% of the time, typically choosing social information in all rounds of the non-erratic

environment they faced, as well as more than half of the time in the other, Erratic ( p = 0 . 6 ), persistence environment. 

Moreover, as Fig. 2 shows, some subjects demonstrated an extreme bias toward a particular type of information. Surpris- 

ingly, 8 out of 144 subjects (5.6%) were pure lone wolves, that is, they chose private information 96 out of 96 times so their

LWI score was 1. Almost the same number, 9 out of 144 subjects (6.3%), were pure herd animals, that is, they chose social

information 96 out of 96 times giving them an LWI score of −1. Thus we find that 17 out of the 144 subjects (11.8%) were

100% optimal in one persistence environment but 100% suboptimal in the other environment. As Appendix D.2 demonstrates, 

the behavior of these pure types cannot be explained by individual histories of signal realizations. 

We classify the remaining 91 (63.2% of all 144 subjects) of subjects as “broadly unbiased”, because they have no strong

bias in either direction, among whom 34 (23.6%) subjects have a LWI score of exactly 0 (with 31 (21.5%) subjects always

choosing optimal information and 3 subjects making suboptimal choices of private information that were exactly offset by 

suboptimal choices of social information). 

Result 5. There is no aggregate bias in information choice. 19.4% of subjects are “broad lone wolves” who choose private 

information in at least 75% of their information choices, and 17.4% of subjects are “broad herd animals” who chose social 

information in at least 75% of their information choices. The remaining 63.2% of subjects are “broadly unbiased” in their 

information choices which includes 21.5% of subjects who make perfectly optimal information choices in both environments. 

4.4.2. Information source bias vs. information optimality 

We will now combine the Information Optimality and Lone Wolf Indices and explore the interaction between optimality 

and information source bias that neither index by itself can address. Fig. 3 plots the Information Optimality Index IOI 
i 
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Fig. 3. The “Diamond of Rationality” plots each of the 144 subjects’ optimal information choice rate, as measured by their Information Optimality Index, 

IOI i (horizontal axis) against their information bias as measured by the Lone Wolf Index, LW I i (vertical axis). By construction, LWI and IOI are constrained 

by the dashed lines. Circle sizes are proportional to the number of subjects with a given pair of indices. Shaded areas represent classification into broad 

types. 

 

 

 

 

 

 

 

 

 

 

 

 

(horizontal axis) against the corresponding Lone Wolf Index LW I i (vertical axis) for each subject i, creating a “diamond

shape” of possible values. Full or pure optimality, i.e., always choosing the correct information without bias, results in the 

point (1,0). A pure lone wolf subject corresponds to the point (0.5, 1), as she always chooses private information and thus

is always correct only in the Erratic environment and always wrong in the Persistent or Anti-Persistent environments. Pairs 

of indices located on the line between these two points represent subjects who always choose private information in the 

Erratic environment, and who choose a mixture of private and social information in the other two environments. Similarly, 

the point (0.5,-1) represents pure herd animal subjects who always choose social information in the two environments. The 

final vertex of the diamond, point (0,0) represents consistently incorrect behavior, only choosing social information when 

private information is optimal and vice-versa. 

Fig. 3 shows how the population of subjects is distributed within the Diamond of Rationality, with the size of each

circle reflecting the frequency count of subjects. A majority of subjects are close to the far right vertex of the diamond,

corresponding to optimal behavior and no bias, yet only 31 (21.5%) subjects are completely rational with scores of (1, 0).

There are also significant numbers of subjects at two of the other vertices, with 9 (6.3%) subjects (pure lone wolves) at (0.5,

1), and 8 (5.6%) subjects (pure herd animals) at (0.5,-1). 

Result 6. There is considerable heterogeneity with herd animals and lone wolves coexisting with unbiased/optimal types. 

The distribution is symmetric, with herd animals and lone wolves appearing in approximately equal numbers. 

The distribution of types reported on in Result 6 is not much affected if we allow for learning over time, specifically if

we classify subjects based on their behavior in the first 6 versus the last 6 rounds of each part (see Appendix D.3 for a

detailed analysis). 

4.4.3. Information source bias vs. payoff optimality 

In Fig. 4 , we map subjects’ Lone Wolf Index LW I i scores against their total expected payoffs P OI i earned given their

strategy choices, with the dashed lines representing the maximum payoffs (obtainable by always using chosen information 

correctly), conditional on a particular LWI score. For example, pure lone wolf subjects (LWI = 1) who always followed their

chosen private information, would guess the state of the world correctly with probability 0.7 which is the precision of 

private information. Indeed there is a small cluster around the point (0.7,1) in Fig. 4 , which can be contrasted with another

small cluster around the point (0.7005, −1) representing pure herd animal subjects (LWI = -1) who always followed their 

chosen social information. There is a larger cluster around the equilibrium strategy at LWI = 0 with an expected payoff of
11 
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Fig. 4. The “Arrow of Rationality” plots each of the 144 subjects’ Payoff Optimality Index POI i (horizontal axis) against their information bias as measured 

by the Lone Wolf Index LW I i (vertical axis) with dashed lines outlining the envelope of possible combinations. Circle sizes are proportional to the number 

of subjects with a given pair of indices, and point D depicts the average of the data. Shaded areas represent classifications of subjects into broad types 

as in Fig. 3 . The solid curve, labeled logit QRE, depicts the set of logit QRE for all values of the QRE precision parameter, β, and the point Q shows the 

aggregate QRE prediction with 99% confidence intervals around it (see Section 5 for a discussion of the QRE estimates). 

 

 

 

 

 

 

 

 

 

0.7605 (derived from 0.7 being the highest accuracy in the Erratic environment and 0.821 in the Persistent and Anti-Persistent 

environments). 17 

Interestingly, subjects’ biases, as captured by their Lone Wolf Indices ( LW I i ), result in marked reductions in their payoffs.

As Table 5 shows, the 91 “broadly unbiased” subjects (63.2% of the subject population) lost, on average, 5.7% of the nor-

malized payoff across all period 2 decisions. By contrast, the 25 (17.4%) “broad herd animals” lost, on average, 14.1% of the 

normalized payoff. Interestingly, the 28 (19.4%) “broad lone wolves” stand out, as on average they lost the most, 20.3% of 

the normalized payoff, at least in part because these biased subjects were more prone not to use their information correctly 

(see Appendix C.4 ). 

Result 7. Information source biases have payoff consequences across all period 2 decisions, with broadly unbiased subjects 

losing on average only 5.7% of the normalized overall payoff, while broad lone wolves and broad herd animals lose on

average 20.3% and 14.1% of the normalized overall payoff, respectively. 

5. Alternative explanations 

We now explore whether prominent behavioral models can explain our findings. We start with the logit Quantal Re- 

sponse Equilibrium (QRE) model (see Goeree et al., 2016 for details), which assumes that all subjects play noisy best re-

sponses to the play of others, and which has been successful in explaining deviations from Nash equilibrium. We calculate 

the payoffs to choosing social information using the empirical average period 1 signal compliance rates as given in Table 3 .

The payoff precision parameter, β, that maximizes the log-likelihood for the logit QRE model, is found to be 7.955. One 

can see that the associated QRE frequency estimates shown in Table 4 are close to the experimental data frequencies, but

that QRE slightly underestimates the frequencies of both the highest-paying and the lowest-paying strategies. Importantly, 

the standard, symmetric QRE model does not predict any particular bias in favor of or against following a specific source of

information. 

To examine the fit of a logit QRE to our data, we first calculate the logit QRE for different possible values of the logit

precision parameter, β . In Fig. 4 , the set of QRE is the curve running from (0.5, 0) to (0.7605, 0). When β is zero, in QRE

agents choose at random, giving a payoff of 0.5. As β becomes very large, subjects choose the correct information with a 
17 Theoretically, pure lone wolves (LWI = 1) and pure herd animals (LWI = −1) are expected to earn at most 0.7 and 0.7005, respectively, thus losing money 

at an approximately symmetric rate relative to those following equilibrium strategy. 
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probability close to one, giving them the highest possible payoff. These calculations take into account the noisy behavior in 

period 1. Apart from a small non-monotonicity for relatively small payoffs, for the most part the predicted QRE frequencies 

are very close to being symmetric (see Fig. 4 ). The estimated logit QRE (as given in Table 4 ) is represented by the point

labeled Q with coordinates (0.703, −0.023) in Fig. 4 , while the point D with coordinates (0.709, −0.001) shows the average

from the experimental data pooled across all sessions. As one can see, the two points Q and D are remarkably close. 

The good fit of QRE at the aggregate level masks a considerable mismatch at the individual level. Subjects who are very

strongly biased either for or against private information cannot easily be explained by a symmetric QRE, in which the choice

probabilities are the same for all subjects. Compare the point Q with the data point D also plotted in Fig. 4 . If the data had

been generated by a symmetric QRE then there should be a unique mode around the estimated QRE, point Q . Indeed, on

Fig. 4 , we have drawn a two-dimensional interval such that if a subject chose information according to the estimated QRE

frequencies across 48 repetitions, her choices would be within both intervals with 99% probability. However, as Fig. 4 clearly 

reveals, the experimental data look very different. There are many subjects that are far more accurate than is predicted by

QRE, so the mode is not around (0.703, −0.023) but is instead at (0.7605,0), which lies well outside the 99% confidence

intervals for the QRE. There are further modes in two other corners representing subjects who appear to be biased for

or against social information. Thus, a symmetric QRE cannot explain the simultaneous existence of lone wolves and herd 

animals. 18 

Result 8. Symmetric logit QRE estimates are a good fit to the aggregate empirical data, slightly underestimating the frequen- 

cies of both the highest and the lowest paying strategies. However, the QRE fails to predict the heterogeneity in information

source bias found in our data. 

Another prominent behavioral model is the Level- k model of differing levels of strategic sophistication (see, for example, 

Crawford et al. (2013) ). In that model, the lowest “Level 0” subjects are assumed to randomize uniformly over their choice

of the two types of information and would thus not contribute to any overall bias. However, the next, Level 1 subjects,

believing that all others are Level 0, would reason that period 1 actions of others are uninformative and thus would always

choose the private signal. Thus, the Level- k model predicts an overall bias towards lone-wolf behavior, as long as there is

some positive measure of Level 1 types as is typically the case. However, as we saw in Section 4.4 , overall subjects are

unbiased in their information choices. 19 

6. Conclusions 

We have conducted an experiment on social learning using a novel experimental design that enables us to distinguish 

between rational behavior and information source bias. Subjects have to choose whether to observe a private signal or the 

previous period choices of fellow subjects (social information). By altering the persistence of the state, we alter the optimal 

information source to choose. Mistakes can therefore run in both directions: subjects can choose private information when 

social information is optimal and vice versa. This allows for a clearer identification of biases in subject behavior. 

Most importantly, we find that there is considerable subject heterogeneity with what we call lone wolves and herd 

animals both being present alongside rational individuals. We argue that these deviations from optimal behavior are driven 

at least in part by persistent behavioral types rather than error. First, in this experiment subjects make many decisions with

detailed feedback and so have plenty of opportunity to learn if they desire. Second, standard behavioral models based on 

bounded rationality and error-making such as quantal response equilibrium and Level- k do not predict the observed pattern 

of behavior. 

Our finding of no bias in favor of private information is another main take-away result from our paper and stands in

contrast to previous social learning experiments. In the sequential structure of these previous studies, both social and private 

information are given to subjects, and it is optimal to follow social information unless one’s position is very early in the

sequence. Thus, it is more likely that bias is in terms of excessive use of private information. 20 In contrast, our current

design is more symmetric, and thus provides cleaner identification of the frequencies of lone wolves and herd animals in 

the population. 21 

We realize that some readers may view the observed heterogeneity in our experiment as reflecting preferences with 

respect to social interaction rather than “rules of thumb”, habit or heuristics. In settings such as the one we study, it may

be difficult to separate these different explanations. For example, when trying to find one’s way in an unknown city, some

individuals may opt to use a map, while others may ask passers-by for directions. Do these different choices express a
18 Even allowing the logit precision parameter β to vary at the individual level cannot explain data in which there are subjects who always choose social 

(private) information when it is optimal, implying a very high precision level, and who also always choose same type of information when it is not optimal, 

implying a low or even negative precision level. 
19 Another behavioural theory, ambiguity aversion, also suggests a bias towards private information that is not observed. 
20 Nevertheless, using the data from previous standard sequential binary choice social learning experiments compiled in the meta-studies of 

Weizsäcker (2010) and Ziegelmeyer et al. (2013) , a within-subjects analysis (see Appendix E ) finds evidence for both lone wolf and herd animal player 

types. 
21 In future research, it would be of interest to implement a modified within-subjects design to determine whether the lone wolves, herd animals and 

rational types identified here act in a similar manner in the standard social learning setting. 

13 
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preference for private versus social interaction or for different rules of thumb? Equally here, having a preference for private 

over social information could be considered as a preference for different ways of approaching decision problems. We are 

open to either way of describing the observed behavior in our experiment. 

In conclusion, we find evidence in support of the notion that social influence is an important aspect of human behavior.

At the same time we also find that its reverse, an aversion to social influence, also exists, and that both herd animals and

lone wolves coexist in approximately equal numbers – a finding that is new to the literature. Further, we also find that many

subjects in our experiment appear to have no intrinsic interest in, nor an aversion to learning from others’ behavior, but

simply choose to rely on such information when it is most useful. Our findings parallel the literature on social preferences

where inequality averse and reciprocal agents have been identified to co-exist alongside the entirely self-interested. We 

hope that the menagerie of social types introduced in this paper will also find widespread applications. 

Appendices 

A. Accuracy of period 2 private signal 

One might think that if an individual chooses private information, then the accuracy with which that individual can guess 

the state in period 2 is greater than q as she already has a signal from period 1. However, this previous signal is dominated

by the new signal in that it can never be optimal to follow the first signal over the second signal when the two signals

disagree. Hence, the first signal has no effect on the individual’s accuracy in period 2 if she opts for private information. 

Formally, if an individual follows the equilibrium strategy and guesses the state is X in period 2 if and only if the signal is

x in period 2 (and the period 1 signal has no effect on the guess she makes in period 2), then the probability that this guess

is correct is the probability that the state is X when the signal is x, that is Pr (X 2 | x 2 ) = Pr (x 2 | X 2 ) = q, where the subscript

indicates period. 

It is true that if the signals from periods 1 and 2 agree, then the probability of being correct, conditional on agreement is

greater than q . But it can also happen that the two signals disagree. In this case, it is still optimal to follow the more recent

signal, but the conditional probability of being correct is lower. It turns out that the overall expected accuracy is exactly 

equal to the signal precision, q . To see this, note that the probability of the state being X in period 2, given that the signals

are x in both periods, is 

Pr (X 2 | x 1 x 2 ) = 

Pr (x 1 x 2 | X 2 ) Pr (X 2 ) 

Pr (x 1 x 2 | X 2 ) Pr (X 2 ) + Pr (x 1 x 2 | Y 2 ) Pr (Y 2 ) 

where Pr (x 1 x 2 | X 2 ) = q (pq + (1 − p)(1 − q )) and so on. Then, for example, in the Persistent environment where p = 0 . 9 ,

Pr (X 2 | x 1 x 2 ) = 0 . 819 which is indeed greater than 0.7. Thus, if an individual sees the same signal in both periods, she would

correctly infer that the probability of the state truly being X is high. But equally one has that 

Pr (X 1 | y 1 x 2 ) = 

Pr (y 1 x 2 | X 2 ) Pr (X 2 ) 

Pr (y 1 x 2 | X 2 ) Pr (X 2 ) + Pr (y 1 x 2 | Y 2 ) Pr (Y 2 ) 

where y 1 x 2 is the event of having signal y in period 1 and x in period 2. Foe example, in the Persistent environment where

p = 0 . 9 , Pr (X 2 | y 1 x 2 ) = 0 . 546 . Thus, the presence of the period 1 signal can also reduce the predicted accuracy of the period

2 signal. 

The overall accuracy is 

Pr (X 2 | x 2 ) = 

Pr (x 1 x 2 ) Pr (x 1 x 2 | X 2 ) Pr (X 2 ) 
Pr (x 1 x 2 | X 2 ) Pr (X 2 )+ Pr (x 1 x 2 | Y 2 ) Pr (Y 2 ) 

+ 

Pr (y 1 x 2 ) Pr (y 1 x 2 | X 2 ) Pr (X 2 ) 
Pr (y 1 x 2 | X 2 ) Pr (X 2 )+ Pr (y 1 x 2 | Y 2 ) Pr (Y 2 ) 

= Pr (x 1 x 2 | X 2 ) Pr (X 2 ) + Pr (y 1 x 2 | X 2 ) Pr (X 2 ) = q, 

as Pr (y 1 x 2 | X 2 ) = Pr (x 1 x 2 | X 2 ) = q and Pr (X 2 ) = 

1 
2 . So the overall accuracy is q, as claimed. 

B. Experimental design: implementation of the main task 

In the main task, each round consists of two periods, period 1 and period 2. Subjects were instructed to imagine that

there exist two urns, a “black” urn containing 7 black balls and 3 red balls, and a “red” urn containing 3 black balls and 7

red balls. These distributions of balls in the two urns reflect our signal precision choice of q = 0 . 7 , which was fixed across

all treatments. For all members of each 9-member group, one urn was randomly chosen at the start of each new period 1

(in a two period round) with an equal (0.5) probability of either urn. Subjects were instructed that: “it is as though a coin

flip determines which of the two urns is chosen in each round”. 

We used a paired-group design involving paired groups of n = 9 subjects (18 subjects per session). This allowed for

only one sequence of random numbers to determine the sequence of urn draws for both paired groups. Thus, when one

of the paired groups faced a “black” urn, the other faced a “red” urn, and vice versa. This was done to ensure that the

dataset contained the same number of red and black urns. The random urn choice draws were “live” for the first session

of 18 subjects, but thereafter we used the same sequence of random draws in all subsequent sessions. We did this so that

subjects in the different sessions faced the same empirical frequencies of urn colors. 

For period 2, the urn color remains the same as in period 1 with probability p, or changes to the other colored urn with

probability 1 − p. The paired-group design ensures that the urn draws in period 2 follow the same switching pattern for
14 
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both paired groups. That is, if in period 2 there was a switch from the black to the red urn in the first paired group, then

the second paired group would have a switch in period 2 from the red to the black urn. 

Given the urn that is in place for a given period, ball colors drawn corresponded to the color of the urn with proba-

bility q = 0 . 7 or not with probability 1 − q = 0 . 3 . The individual ball draws were made randomly, independently and with

replacement for each subject viewing a colored ball; the latter draws were live (i.e., real-time) in all sessions; only the urn

sequence was pre-determined following the first experimental session. 

In period 1, subjects are shown the color of a ball selected from the unknown urn and must guess the color of that

unknown urn. The decision screen at the end of period 1 shows the subject’s choice of Red or Black for the urn color, but

subjects do not immediately learn the color of the urn that was chosen. Instead, we move to a second decision screen,

where subjects are reminded of the color of their period 1 ball draw (their signal) and their period 1 choice of urn. They

are told that for period 2, there is a p percent chance that the (still unknown) urn will be the same color urn as in period 1

and a 1 − p percent chance that for period 2, the urn will be the opposite of the one used in period 1. Note that the urn in

each period is common to all n = 9 members of a group. Following period 1 but prior to the start of period 2, each subject

is asked whether s/he would prefer to draw a ball from the urn chosen for period 2, or would prefer to look at the actual

urn choices (guesses) made by the other 8 subjects in his/her matching group for period 1 (and not the 8 signals the other

8 players received in period 1). 

After making this information choice, play proceeds to period 2. If the subject chose to draw a new ball (i.e., private

information), then a ball is drawn randomly from the urn that is in place for period 2 and the color of that ball is revealed

to the subject. The subject then chooses the color of the period 2 urn that s/he thinks the ball was drawn from. On the other

hand, if the subject chose to look at the urn choices made by the other 8 subjects in period 1 (i.e., social information), then

the subject is shown the numbers m and 8 − m of the other 8 subjects who chose the Black and the Red urns, respectively.

The subject was reminded of her own choice for period 1 and is asked to make an urn choice for period 2. 

After all period 2 urn choices were submitted, the round was over and subjects received feedback on the outcomes of

that round. Specifically, subjects were reminded of the color of the ball they had drawn for period 1, their guess of the

urn for period 1 and the actual color of the urn in period 1. They were further reminded of their information choice prior

to period 2 (i.e., new ball draw or group information from period 1), and the contents of both their chosen and foregone

information (i.e., both the group information and the random ball draw from the period 2 urn) - so that subjects had an

opportunity to assess whether their choice of information was optimal or not, without experimenting with different sources 

of information. Finally, subjects were also informed of their guess of the urn color for period 2 and the actual color of the

urn in period 2, as well as their payoffs for the round. For each period in which they correctly guessed the true color of the

urn, they received 1 point and 0 points otherwise. Thus, for each round, subjects could earn 0, 1, or 2 points, depending on

the accuracy of their guesses for the urn colors in periods 1 and 2. 

At the end of each 2-period round of play, a complete, updated history of outcomes from all prior rounds of play was

reported at the bottom of subjects’ decision screens. This history included (i ) the color of the ball drawn in the period

1 of each prior round, (ii ) the subject’s own guess of which urn was selected in each period, (iii ) the information the

subject chose to view (New Draw /Group), (i v ) the other piece of information the subject did not choose to view (to allow

for learning)), (v ) the actual group urn that was selected for periods 1 and 2, and (v i ) the subject’s points earned for the

round. 

Note that our design prevents subjects from imitating other group members’ information choices or period 2 guesses as 

we do not reveal any information about those choices. The only social information that is available is other subjects’ period

1 guesses, which subjects have to choose whether or not to view. Since our focus is on the choice between private and

social information, we wanted to rule out any other channels of social influence that might affect that information choice. 

C. Further results 

Before presenting additional results, we first check for order effects, i.e., whether those subjects who faced a particular 

environment in part 1 made different decisions from subjects who faced that same environment in part 2. In our design,

no subject experienced the same persistence environment in both parts, permitting the use of tests for two independent 

samples. 

C1. Period 1 signal compliance rate, order effects 

We define the period 1 signal compliance rate SCR i (p) ∈ [0 , 1] per environment p as the proportion out of 48 rounds

when a given subject i followed his/her period 1 signal when facing a specific persistence p, or 

SCR i (p) = 

∑ 48 
t=1 I 

SC 
i,t 

(p) 

48 

where I SC 
i,t 

(p) is a binary index equal to 1 if subject i ’s guess of the state in period 1 of round t coincided with their period

1 signal, and zero if subject’s guess was the opposite of their signal, in an environment p. 22 
22 Note also that a subject’s expected payoff in period 1 is linear in her compliance rate. 
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Table C.1 

Subject-specific signal compliance ( SCR i ). Left: random effects tobit censored at upper limit of 1 (with bootstrapped 

errors), right: random effects OLS (with robust errors clustered on groups), without and with session dummies. (Ro- 

bust) standard errors in parentheses, Erratic environment ( p = . 6 ) as base. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p- 

value < 0 . 01 .). 

SCR i 

Random-Effects Tobit Random-Effects OLS 

(1) (2) (3) (4) (5) (6) (7) (8) 

p = 0 . 9 0.065 ∗∗∗ 0.061 ∗∗ 0.064 ∗∗ 0.061 ∗ 0.010 ∗ 0.009 ∗ 0.010 ∗∗ 0.009 ∗

(0.025) (0.029) (0.027) (0.031) (0.005) (0.005) (0.005) (0.005) 

p = 0 . 1 −0.003 −0.009 0.002 −0.006 0.002 0.001 0.002 0.001 

(0.022) (0.022) (0.027) (0.026) (0.005) (0.005) (0.006) (0.006) 

Part2 0.059 ∗∗∗ 0.310 0.059 ∗∗∗ 0.305 0.008 ∗∗ 0.075 0.008 ∗∗ 0.073 

(0.017) (0.254) (0.022) (0.298) (0.004) (0.073) (0.004) (0.073) 

q emp 
i 

0.584 ∗∗ 0.576 ∗ 0.117 ∗ 0.113 

(0.258) (0.300) (0.068) (0.070) 

Part2 × q emp 
i 

−0.378 −0.370 −0.098 −0.095 

(0.371) (0.422) (0.104) (0.104) 

_cons 1.100 ∗∗∗ 0.703 ∗∗∗ 1.088 ∗∗∗ 0.700 ∗∗∗ 0.971 ∗∗∗ 0.891 ∗∗∗ 0.979 ∗∗∗ 0.901 ∗∗∗

(0.032) (0.179) (0.067) (0.209) (0.005) (0.047) (0.009) (0.050) 

Session Controls No No Yes Yes No No Yes Yes 

chi2 14.24 21.61 25.28 31.33 10.04 24.67 112.82 657.33 

p 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 

N 288 288 288 288 288 288 288 288 

Table C.2 

Summary statistics for “between” period 2 optimal information choice rate 

IOR i (p) (i.e., subject-specific period 2 optimal information choice rates by each 

subject per each environment, out of 48 rounds). The numbers of observations 

are as in Table 3 . 

Persistence Information Optimality Rate per environment, IOR i (p) 

p

Part 1 Part 2 Both Parts Pooled 

Mean (SD) Mean (SD) Mean (SD) 

p = 0 . 9 0.774 (0.360) 0.804 (0.351) 0.789 (0.354) 

p = 0 . 6 0.790 (0.319) 0.782 (0.370) 0.786 (0.344) 

p = 0 . 1 0.752 (0.395) 0.819 (0.355) 0.786 (0.374) 

Pooled 0.776 (0.347) 0.797 (0.360) 0.787 (0.353) 

 

 

 

 

 

As mentioned earlier, order effects in signal compliance rates are not important as long as the compliance rate exceeds 

the cutoff value, which would be particularly important in non- Erratic environments. We find that subjects’ signal com- 

pliance rate SCR i responds to the empirical period 1 signal accuracy q 
emp 
i 

in random effects regressions, both using tobit 

regressions with censoring at the upper limit of 1, and OLS regressions (see Table C.1 ), and that controlling for this accuracy

in each part eliminates any order effect, namely whether the Erratic environment occurs in the first part (baseline) or the

second part (dummy variable labeled “Part 2.”) 23 Relative to the (baseline) Erratic ( p = 0 . 6 ) environment, subjects appear to

follow their period 1 signal marginally more often in Persistent ( p = 0 . 9 ) environment, which is important for accuracy of

social information. Session controls further weaken the above effects. Overall, while the order effects and learning may exist 

for the signal compliance rate, they are neither systematic nor robust. More importantly, order effects in signal compliance 

are not important in our setup. 

Result C1. There is no robust evidence for any order effects in signal compliance rates across treatments. 

C2. Period 2 information choice, order effects 

We now define the Individual Optimality Rate IOR i (p) ∈ [0 , 1] for a given persistence environment, p, which is a subject-

specific optimal information choice rate across 48 rounds of that environment: 

I OR i (p) = 

∑ 48 
t=1 I 

IO 
i,t 

(p) 

48 

Using this “between-subjects” measure, we find no systematic order effect in the main task of information selection (see 

summary statistics in Table C.2 ). 
16 
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Fig. C.1. Cumulative distributions (population shares) of period 2 optimal information choice rate IOR i (p) for all persistence/treatment combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C.1 presents the cumulative distributions (population shares) of optimal information chosen in each persistence en- 

vironment, in the relevant treatments. We find a statistically significant difference only for the pair of treatments T r= 61 and

T r= 96, equal to 0.361, with one-sided exact Kolmogorov-Smirnov p-value of 0.009, though the difference in the two means

is only marginally different (one-tailed t -test t= 1.367, p-value = 0.088). In all other pairwise comparisons, the differences are

not statistically significant. 

Result C2. There is no systematic order effect in the period 2 optimal information choice rate. 

C3. Period 2 information choice, between- vs. within-subjects optimality measures 

As noted in the main text, using the overall, within-subjects optimality rate over 96 periods, we find a surprisingly 

low degree of rationality, for instance, just 21.5% of subjects make perfectly optimal information choices. By contrast, the 

“between-subjects” optimal information choice rates, IOR i (p) in Table C.2 suggest that there is a high level of optimal infor-

mation choice, with rates all exceeding 75%. That is, if we looked only at a between-subjects measure of optimal information

choice, we obtain an artificially inflated measure of the frequency of rational, period 2 information choices. 

Further, there does not appear to be any systematic differences in optimal information choice rates among the three 

persistence environments. Indeed, when comparing cumulative distributions within the same part but across different envi- 

ronments, the Kolmogorov-Smirnov two-tailed test for two independent samples fails to find any significant difference. If we 

ignore the within-subjects design (and thus potential non-independence) and pool all observations for each environment, 

this test again fails to find any pairwise differences among the three environments. This leads us to the following important

result. 

Result C3. Subject-specific period 2 optimal information choice rates are distributed similarly across the three persistence 

environments. 

Furthermore, as Fig. C.2 (left panel) shows, the modal IOR i is at 1. That is, out of 72 “between” subjects (or subject-part

observations) in the Erratic ( p = 0 . 6 ) environment, 44% involve choices of private information 100% of the time; while out of

36 subject-part observations in the Persistent ( p = 0 . 9 ) and Anti-Persistent ( p = 0 . 1 ) environments 50% and 54%, respectively,

involve choices of social information 100% of the time. Across the three environments, 138 out of 288 (47.9%) “between”

subjects make optimal information choice 100% of the time, with 74.6% of subjects making at least 75% of optimal choices. 

Interestingly, despite the high prevalence of perfectly optimal behavior, there is notable heterogeneity in optimal infor- 

mation choice rates. Specifically, 8% of “between” subjects made 100% suboptimal choices - that is, 100% choices of social 

information in the Erratic ( p = 0 . 6 ) environment, and 100% choices of private information in the Persistent ( p = 0 . 9 ) and

Anti-Persistent ( p = 0 . 1 ) environments. Overall 45 out of 288 (15.6%) “between” subjects made at least 75% of suboptimal

choices. These tendencies for optimal and suboptimal information choices can be further observed when one explores the 

cumulative frequency distributions (population shares) as in the right panel of Fig. C.2 . 

Result C4. Across the three environments, almost half of the “between” subjects made perfectly optimal information choices, 

with almost three quarters of these subjects making optimal information choices at least 75% of the time. However, more 

than 15% of the “between” subjects made suboptimal information choices at least 75% of the time including 8% of subjects 

who made perfectly suboptimal information choices. 

Thus, our “between-subjects” analysis suggests an interesting pattern. There appears to be a remarkably high average 

level of optimal information choice accompanied by a substantial rate of suboptimal choices by some subjects. Yet, as we 

pointed out earlier in Section 4.2 , in our “between” subject analysis, errors can run only in one direction. Instead, as we

showed in our “within” subjects analysis in the text, some subjects follow (suboptimal) payoff-independent strategies, but 
23 The subject-specific empirical accuracy of the period 1 signal q emp 
i 

has a mean (st.dev.) of 0 . 696 (0 . 065) with a range of [0.479,0.875]. Two subjects 

experienced uninformative signals, with q emp 
i 

of 0.479 and 0.5, but their compliance rates SCR i were 1 and 0.896, respectively. 

17 
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Fig. C.2. Frequencies (left) and cumulative distributions (right) of “between” subjects’ optimal information choice rates OIR i (p) in each of the three p

environments, overlayed (as proportions out of 48 rounds). The vertical axes report (cumulative) frequencies, and the horizontal axes - rates of “between”- 

subject-specific information choices (out of 48 rounds).. 

 

 

 

 

 

 

 

this suboptimality cannot be detected by the “between” subjects analysis simply because their payoff-independent choices 

happened to coincide with optimal choices. 

As the above results together with Result 2 suggest, that there could be important differences between the “within- 

subjects” and “between-subjects” estimates of the optimality of information choices. In the above between-subjects analysis, 

we explored how often each individual subject chose information optimally in a single environment . This approach, however, 

pools together those subjects who select information optimally with those subjects who made optimal information choices 

simply by accident as their bias happened to match a particular persistence environment. In contrast, in our within-subjects 

analysis, we look at how often each individual subject chose information optimally in a pair of contrasting environments , 

where, by construction, the benefits to any given bias in a “matching” persistence environment are canceled by out by 

losses from a “mismatching” persistence environment, thus separating choices driven by subjects’ rationality from those 

driven by their biases. If each individual chose equally optimally across the two environments, there would be no difference 

between the two measures. Thus, the fact that a difference is observed indicates that a substantial number of subjects 

perform consistently better in one environment than in the other. 

Fig. C.3 compares the cumulative frequency distribution (population shares) of “between” optimal information choice 

rates for each subject-part, pooled over all three environments with the cumulative frequency distribution of “within” opti- 

mal information choice rates for each subject for the pair of environments. Notice that according to the “within” optimality 

measure only 21.5% of subjects are perfectly optimal in their information choice across both persistence environments. By 

contrast, as reported earlier, using the between optimality measure, 47.9% of subjects are found to be perfectly optimal, more 

than twice bigger than the population share found using the within subject optimality measure. As noted in Section 4.2 ,

13.2% of subjects make exactly half optimal choices and half suboptimal choices. That is, more than half of the subjects who

were 100% optimal in one environment made a significant proportion (up to 100%) of suboptimal information choices in the 

other environment, leading to the following result. 

Result C5. The “between-subjects” measure of optimal information choice overstates optimal and understates suboptimal 

behavior relative to the “within-subjects” measure. 

Support for Result C5 is immediate from Fig. C.3 . As, by construction, the two measures are simply two different parti-

tions of the same data set, the “between” and “within” mean optimal information choice rate is identical at 0.787. However, 

the “between” information optimality rate is “noisier” (or more dispersed) with the “between” measure having a standard 

deviation of 0.353, as compared with the 0.217 standard deviation of the “within” measure. 

C4. Period 2 information use: by expected payoff rank and by information source 

Table C.3 gives the overall frequencies of strategy choices, where the strategies are labeled S for social, P for private, F 

for follow the signal received and N for not following. For example, the strategy SF is to choose social information and to

follow it, or go against it. The strategies are ordered in terms of their expected payoff, with I being the equilibrium strategy

in that environment and IV being the worst. 

Furthermore, in the aggregate, conditional on choosing the optimal information , that information was used correctly 95.3% 

of the time. Even in the Anti-Persistent ( p = 0 . 1 ) environment, where the equilibrium strategy is to go against the previous

period majority, subjects followed this strategy 96.1% of the time. Note, however, that in the Erratic ( p = 0 . 6 ) environment

where the equilibrium strategy was simply to choose private information and follow it, the frequency of following this 
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Fig. C.3. Cumulative distributions of “between-subjects” period 2 optimal information choice rates IOR i (pooled over all 3 persistence environments and 

both parts, 288 individual observations) and “within-subjects” optimal information choice rate ( IOI i ) (both parts combined, 144 unique subject observa- 

tions). The vertical axes report cumulative frequencies, and the horizontal axes - subject-specific optimal information choice rates (as proportions out of 

48 rounds for “between” measures, and out of all 96 rounds for “within” measures). 

Table C.3 

Table of summary statistics for choice of Period 2 payoff-ranked strategies by environment and by part. N is 

the number of subjects and mean (SD) is the percentage rate of the number of times (out of 48) that each 

strategy was chosen. 

Persistence Strategy 

Part 1 Part 2 Total 

N Mean (SD) N Mean (SD) N Mean (SD) 

p = . 9 SF (I) 36 0.741 (0.350) 36 0.781 (0.358) 72 0.761 (0.352) 

PF (II) 36 0.180 (0.285) 36 0.164 (0.307) 72 0.172 (0.294) 

PN (III) 36 0.046 (0.106) 36 0.031 (0.087) 72 0.039 (0.097) 

SN (IV) 36 0.032 (0.051) 36 0.023 (0.061) 72 0.028 (0.056) 

p = . 6 PF (I) 72 0.742 (0.328) 72 0.740 (0.364) 144 0.741 (0.345) 

SF (II) 72 0.191 (0.303) 72 0.207 (0.355) 144 0.199 (0.329) 

SN (III) 72 0.019 (0.029) 72 0.011 (0.025) 144 0.015 (0.027) 

PN (IV) 72 0.048 (0.084) 72 0.042 (0.087) 144 0.045 (0.086) 

p = . 1 SN (I) 36 0.719 (0.388) 36 0.792 (0.351) 72 0.755 (0.369) 

PF (II) 36 0.200 (0.326) 36 0.172 (0.348) 72 0.186 (0.335) 

PN (III) 36 0.047 (0.094) 36 0.009 (0.029) 72 0.028 (0.072) 

SF (IV) 36 0.034 (0.035) 36 0.027 (0.036) 72 0.030 (0.036) 

Pooled I (Best) 144 0.736 (0.347) 144 0.763 (0.357) 288 0.750 (0.352) 

II 144 0.191 (0.302) 144 0.188 (0.340) 288 0.189 (0.321) 

III 144 0.033 (0.075) 144 0.016 (0.049) 288 0.024 (0.064) 

IV (Worst) 144 0.041 (0.067) 144 0.034 (0.071) 288 0.037 (0.069) 

 

 

 

 

 

optimal information was 94.3%, which is still very high but slightly lower than in the other environments, and also lower

than the frequency with which subjects followed their period 1 signal, the “between” Signal Compliance Rate, SCR i (see 

Table 3 ). 

Interestingly, as Fig. C.4 shows, the rates of correct use of private information by 135 subjects who chose it at least once

is both more variable across subjects, and lower than the similar figure for 136 choosers of social information, but there are

far more subjects who always followed private, rather than social, information. Specifically, the mean (st. dev.) and median 

of optimal use rate of private information are 0.916 (0.162) and 1, while the corresponding numbers for social information 

use are 0.933 (0.144) and 0.975. Interestingly, optimal use of social information is negatively correlated with Lone Wolf Index 

( LW I i ) ( r = −0 . 3317 , p-value = 0 . 0 0 01 ), indicating that herd animals are more likely to comply with the social information

they chose to observe. In contrast, such correlation is absent for optimal use of private information ( r = 0 . 0677 , p-value =
0 . 4354 ). 
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Fig. C.4. Overall frequencies of correct use of private and social information, pooled across all environments. Left: Cumulative distributions. Right: Scatter 

plots (with jitter) of information use rates versus Lone Wolf Index. 9 and 8 subjects who never chose private and social information, respectively, are 

excluded. 

Table C.4 

Rates of correct use of optimal and suboptimal information, for each persistence environment. Num- 

bers of subjects reflect those subjects who chose optimal or suboptimal information at least once. 

Persistence Use of Optimal Info Use of Suboptimal Info 

Definition #Subj. Mean St.Dev. Definition #Subj. Mean St.Dev. 

p = 0 . 9 SF 
SF+ SN 

66 0.947 (0.141) PF 
P F+ P N 36 0.857 (0.224) 

p = 0 . 6 PF 
P F+ P N 132 0.927 (0.144) SF 

SF+ SN 
81 0.856 (0.261) 

p = 0 . 1 SN 
SF+ SN 

67 0.923 (0.157) PF 
P F+ P N 33 0.788 (0.305) 

Pooled 144 0.943 (0.091) 113 0.859 (0.209) 

 

 

 

 

Result C6. Compliance use of chosen information depends on the type of information (private or social), with herd animals 

more likely to follow chosen social information. 

Furthermore, as Table C.4 demonstrates, the rates of correct use of optimal information exceed the rates of correct use 

of suboptimal information. That is, those subjects who choose suboptimal information, also tend to use it incorrectly. As 

we will see in Section 4.3 , both the incorrect choice of information and incorrect use of information contribute to subjects’

expected payoffs. 24 

Result C7. For each of the three environments, the rates of optimal use of optimal information source exceed the rates of

optimal use of suboptimal information source. 

C5. “Between-Subjects” expected payoff

Here we examine the subject-specific “between” expected period 2 payoff per environment, denoted by πi (p) , which is 

defined as the sum of payoffs to each of the four strategies defined in Table 4 , weighted by the proportion of times that a

subject used that strategy in period 2 in each part (and thus in each persistence environment): 

πi (p = 0 . 9) = 

∑ 48 
t=1 [0 . 7 I PF 

i,t 
(p = 0 . 9) + 0 . 3 I PN 

i,t 
(p = 0 . 9) + 0 . 821 I SF 

i,t 
(p = 0 . 9) + 0 . 179 I SN 

i,t 
(p = 0 . 9)] 

48 

πi (p = 0 . 6) = 

∑ 48 
t=1 [0 . 7 I PF 

i,t 
(p = 0 . 6) + 0 . 3 I PN 

i,t 
(p = 0 . 6) + 0 . 580 I SF 

i,t 
(p = 0 . 6) + 0 . 420 I SN 

i,t 
(p = 0 . 6)] 

48 

πi (p = 0 . 1) = 

∑ 48 
t=1 [0 . 7 I PF 

i,t 
(p = 0 . 1) + 0 . 3 I PN 

i,t 
(p = 0 . 1) + 0 . 179 I SF 

i,t 
(p = 0 . 1) + 0 . 821 I SN 

i,t 
(p = 0 . 1)] 

48 

where I 
j 
i,t 

(p) is a binary index equal to 1 if subject i followed strategy j ∈ { P F , P N, SF , SN} in round t given the environment

p and zero otherwise. The maximum “between” expected payoff πmax (p) thus varies across environments, and thus πi (p) ∈ 

[1 − πmax (p) , πmax (p)] , where πmax (p) is the theoretical maximum listed in Table C.5 . 
24 Our finding that those subjects who rely on suboptimal information also more likely not to follow it underscores the difficulties of identifying infor- 

mation source biases in standard binary choice designs, as these subjects might generate false positives. 
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Table C.5 

Summary statistics for “between” subject-specific period 2 expected payoff πi (p) (averaged over 48 rounds), and the share of 

the corresponding maximum theoretical payoff π(p) max , in each environment p. The numbers of observations are as in Table 3 . 

Persistence “Between” Expected Payoff in Period 2 per Environment πi (p) 

p π(p) max 

Part 1 Part 2 Both Parts Pooled 

Mean (SD) % π(p) max Mean (SD) % π(p) max Mean (SD) % π(p) max 

p = 0 . 9 0.821 0.754 (0.079) 91.8% 0.770 (0.085) 93.8% 0.762 (0.082) 92.8% 

p = 0 . 6 0.7 0.653 (0.053) 93.3% 0.655 (0.053) 93.6% 0.654 (0.053) 93.4% 

p = 0 . 1 0.821 0.750 (0.079) 91.4% 0.778 (0.053) 94.8% 0.764 (0.068) 93.1% 

Pooled 0.7605 0.702 (0.084) 92.4% 0.715 (0.086) 93.9% 0.709 (0.085) 93.2% 

Table C.6 

Summary statistics for overall “within” variables, Information Optimality Index IOI i and Pay- 

off Optimality Index POI i , and Lone Wolf Index LW I i , in each of the four treatments. 

Treatment 

IOI i POI i LW I i 
N 

Mean (S.D.) Mean (S.D.) Mean (S.D.) 

69 0.805 (0.215) 0.712 (0.062) 0.001 (0.529) 36 

96 0.822 (0.201) 0.713 (0.051) 0.097 (0.514) 36 

61 0.796 (0.201) 0.714 (0.032) −0.045 (0.534) 36 

16 0.723 (0.245) 0.695 (0.054) −0.058 (0.655) 36 

Total 0.787 (0.217) 0.709 (0.051) −0.001 (0.558) 144 

Fig. C.5. Cumulative distributions (population shares) of the overall “within” variables, Information Optimality Index IOI i , Payoff Optimality Index POI i , and 

Lone Wolf Index LW I i , in each of the four treatments.. 

 

 

 

 

 

 

 

 

 

Recall that, as Table 4 shows, in the Erratic ( p = . 6 ) environment, the theoretical maximum payoff is lower and the

theoretical minimum is higher than in the other two environments. This is reflected in the empirical findings of Table C.5 ,

which shows that, on average, subjects earned similar proportions of the maximum payoff across the three environments, 

losing, on average, just under 7% of the theoretical maxima. However, as we show in the next section, there is strong effect

of subjects’ biases on their payoffs. 

Result C8. In period 2, on average over both persistence environments, subjects achieved 93.2% of the maximum theoretical 

expected payoff. 

One can calculate the overall subject-specific Payoff Optimality Index P OI i (defined earlier in Section 4.3 ) in an alternative

way, as the expected period 2 “between” payoffs πi (p) , averaged over both parts of the experiment: 

P OI i = 

1 

2 

πi (p = 0 . 6) + 

1 

2 

πi (p � = 0 . 6) 

C6. “Within-Subjects” variables, order effects 

In this section we show that there are no systematic differences across treatments, allowing us to pool together all overall

(“within”) observations. 

As one can see in Table C.6 , the mean of information optimality IOI i is significantly higher in only one pairwise com-

parison (96 vs 16, one-tailed t -test t = 1 . 873 , p-value = 0 . 033 ), The cumulative distributions (population shares) of IOI i in

these two treatments also also markedly different in Fig. C.5 , with the largest distance of 0.306 significant according to the

one-sided exact Kolmogorov-Smirnov p-value of 0.035. However, this difference cannot be explained by the order effect, as 

the Erratic (p = 0 . 6) environment appears in the second part. A further marginal difference in means (61 vs 16, one-tailed

t -test t = 1 . 384 , p-value = 0 . 085 ) is not captured by the exact Kolmogorov-Smirnov p-value of 0.105. 
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Table D.1 

Random-effects logit regressions on a dummy variable Pri v ate i,t , indicating whether subject i chose private 

information in round t, for all 288 subject-part “individuals”, without and with session controls. Robust 

standard errors (in parentheses) clustered at the group level. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 

0 . 01 .) . 

Pri v ate i,t (1) (2) (3) (4) (5) (6) 

p = 0 . 9 −9.707 ∗∗∗ −10.495 ∗∗∗ −10.572 ∗∗∗ −11.277 ∗∗∗

(1.512) (0.815) (1.373) (0.884) 

p = 0 . 1 −9.961 ∗∗∗ −10.860 ∗∗∗ −8.705 ∗∗∗ −9.432 ∗∗∗

(1.233) (0.800) (1.039) (0.966) 

t 0.041 ∗∗∗ 0.041 ∗∗∗ 0.041 ∗∗∗ 0.041 ∗∗∗

(0.012) (0.004) (0.012) (0.004) 

p = 0 . 9 × t −0.017 −0.017 ∗∗ −0.018 −0.017 ∗∗

(0.018) (0.008) (0.018) (0.008) 

p = 0 . 1 × t −0.023 −0.022 ∗∗ −0.023 −0.022 ∗∗

(0.020) (0.009) (0.020) (0.009) 

Private i,t−1 > 0.344 ∗∗∗ 0.370 ∗∗∗ 0.344 ∗∗∗ 0.369 ∗∗∗

Social i,t−1 (0.107) (0.110) (0.107) (0.110) 

Private i,t−1 < −0.255 ∗∗ −0.290 ∗∗∗ −0.254 ∗∗ −0.290 ∗∗∗

Social i,t−1 (0.107) (0.109) (0.107) (0.109) 

_cons 3.826 ∗∗∗ −1.769 ∗∗∗ 4.167 ∗∗∗ 4.619 ∗∗∗ −0.975 5.088 ∗∗∗

(0.634) (0.238) (0.467) (0.923) (0.845) (0.911) 

Session 

Controls 

No No No Yes Yes Yes 

chi2 81.70 21.41 379.57 114.51 48.96 406.30 

p 0.00 0.00 0.00 0.00 0.00 0.00 

N 13,824 13,536 13,536 13,824 13,536 13,536 

 

 

 

 

 

 

 

 

 

 

Furthermore, we find no systematic differences in the Payoff Optimality Index P OI i across different treatments. The mean 

of this index is significantly higher only in one pairwise comparison (16 vs 61, one-tailed t -test t = 1 . 849 , p-value = 0 . 034 ),

but even that difference is not captured by the exact Kolmogorov-Smirnov p-value of 0.105. The largest difference between 

the cumulative functions in Fig. C.5 is 0.333 (between treatments T r = 69 and T r = 16 ), with one-sided exact Kolmogorov-

Smirnov p-value of 0.036 - however this difference cannot be explained by the order effect. The difference in means between

these two treatments is only marginally different (one-tailed t -test t = 1 . 401 , p-value = 0 . 083 ). 

Finally, we find no systematic differences in the Lone Wolf Index LW I i across different treatments. Again, the largest

difference between the cumulative functions in Fig. C.5 is 0.306 (96 vs 61), significant according to one-sided exact 

Kolmogorov-Smirnov p-value of 0.035. However, again, this difference cannot be explained by the order effect. 

Result C9. There is no systematic treatment effect in the overall “within” variables, Information Optimality Index IOI i , Payoff

Optimality Index P OI i , and Lone Wolf Index LW I i . 

D. Dynamics of Period 2 behavior 

Recall that at the end of each round, subjects were given feedback about both the information they chose, and the

other piece of information that they did not choose to view, and were also informed about the true state of the world, so

in principle they could weigh the accuracies of the two different types of information. We will now explore the effect of

feedback, as well as other dynamical aspects of subjects behavior. 

To preview the results, while some subjects adjust their choices, there is very little overall change. First, 48 out of 144

subjects never change their information choices within each part, including those who are lone wolves and herd animals. 

Second, among those who do change, the overall number of unbiased subjects does not rise over time (Result D3 ). Some

subjects learn to choose optimal actions more frequently, but others become less optimal over time. 

D1. Dynamics of period 2 strategies (“between-subjects”) 

Regressions in Table D.1 reveal that subjects are affected by both introspection about the persistence environment and by 

the feedback they received about the two information sources they could choose between. 25 First, subjects’ choice of private 

information is clearly affected by the persistence environment in which they were placed, as evidenced by the significant 

coefficients on the persistence environment dummy variables, p = 0 . 9 and p = 0 . 1 (the baseline environment is p = 0 . 6 ).

Second, their choice of private information is also affected by the predictive accuracy of private relative to social information 

in the immediate preceding period. When private (social) information strictly outperforms social (private) information in the 
25 The results are qualitatively similar if one excludes 161 out of 288 (55.9%) “committed” subject-part “individuals” (explored further in Section D.2 ), 

who always choose the same type of information in all 48 rounds, and consider only the 127 out of 288 (44.1%) “adjusting” subject-part “individuals”, 

(explored further in Section D.3 ), who changed their choice of information at least once (results available on request). 
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Fig. D.1. Dynamics of information choice and use in each persistence environment. Proportion of subjects who have settled on a strategy versus time 

period. SF = follow social info, PF = follow private info, SN = go against social info, and PN = go against private info.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

preceding period ( P ri v ate i,t−1 > (< ) Social i,t−1 ), then private information is more (less) likely to be chosen. 26 Finally, subjects

are also more likely to choose the correct information source over time, as evidenced by the positive coefficient on round

number t (for the baseline p = 0 . 6 environment) and the environment specific interactive time trend variables p = 0 . 9 × t

and p = 0 . 1 × t . 

Result D1. Subjects respond both to the persistence structure of the environment, p, and to feedback given about the dif-

ferent types of information they could choose to view. In all three environments, there is a trend toward more optimal

information choice over time, i.e., toward the choice of private information in the Erratic ( p = . 6 ) environment, and toward

the choice of social information in the other two environments. 

Fig. D.1 further shows the speed with which subjects “settle” into a particular information choice, “social” versus “pri- 

vate”, and information use strategy, in the form of the four strategies “SF”, “PF”, “SN” and “PN” as in Table 4 . These graphs

are cumulative over time and they give the proportion of subjects who, starting from round t, have settled on a strategy

choice, never subsequently changing their strategy. 27 

The left panel of Fig. D.1 shows that, when p = 0 . 9 , already in the period 1 approximately half the subjects have settled

on choosing social information. However, only about half of these have settled on the correct use of that social information.

Both proportions rise over time, with the gap between the two decreasing. In the middle panel, when p = 0 . 6 , there is a

similar pattern of the choice and use of private information. There is also a similar pattern in the last panel, when p = 0 . 1 ,

though it takes time before subjects settle into (correctly) going against the social information they chose to see. So it

seems that which information to choose is clearer to subjects than whether to follow it. Alternatively, subjects might be 

more prepared to experiment on whether to follow information than which information to choose. 

To further explore the effect of past experience, we consider whether subjects use simple, naive best-response strategies 

of the “Win-Stay, Lose-Shift” variety (though we recognize that they could employ more sophisticated strategies as well). 

Specifically, we ask: if subject i ’s guess of the period 2 state at time t − 1 was correct (“W in i,t−1 ”), would this subject’s

information use strategy at time t be the same (“Stay i,t ”)? Table D.2 indicates that winning is indeed associated with keeping

the same strategy in the following round. However, as the round t variable indicates, it also appears that subjects settle on

a particular (optimal or suboptimal) strategy with time as well. 

Result D2. The dynamics of subjects’ information use exhibits both “settling down” and “Win-Stay, Lose-Shift” behavior. 

D2. Signal experiences of the pure types 

Do subjects’ individual signal histories affect their self-selection into a particular player type? We note first that 48 of 

our 144 subjects, a third of the total, never switch their information choice within each of the two parts, i.e., they were

“committed” to choosing a particular information in each part. 31 (65% of these committed 48 subjects) are fully rational - 

always choosing private information in the part with the Erratic ( p = 0 . 6 ) environment and always choosing social informa-

tion in the other part. By contrast, 8 (17% of the committed subjects) are apparent “pure” herd animals and always choose

social information, while 9 (19%) are “pure” lone wolves. Thus, of the subjects who never adjust their information choice, 

most are rational and the distribution of bias is approximately symmetric (see Fig. 3 ). 

We now check whether individual histories might be responsible for creating these “pure” player types. For example, pure 

“lone wolves” might have rationally opted to always choose private information simply because, by chance, their sequence 

of private information draws was more accurate than past social information in the non- Erratic environments. Similarly, pure 

“herd animals” might have rationally opted to always choose social information because the private information they drew 

happened to be less accurate in the Erratic environment. If there was such a history-dependent explanation for emergence of 

the pure types, then the group of 8 pure “lone wolves” would have more accurate private ball draws as compared with the
26 We need more than one dummy variable for this distinction since there are instances where both sources of information are equally correct or equally 

incorrect. 
27 These graphs were inspired by the graphing of convergent behavior in Esponda and Vespa (2018) . 
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Table D.2 

Random-effects logit regression (without and with session dummies) of Stay i,t , which is a 

dummy variable indicating whether subject i ’s information use strategy at time t is the same 

as in the prior round, t − 1 . Robust standard errors (in parentheses) have been clustered at the 

group level. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

Stay i,t (1) (2) (3) (4) (5) (6) 

p = 0 . 9 0.107 0.064 −0.172 −0.229 

(0.403) (0.386) (0.405) (0.387) 

p = 0 . 1 0.028 −0.064 0.323 0.245 

(0.330) (0.337) (0.356) (0.369) 

t 0.027 ∗∗∗ 0.028 ∗∗∗ 0.027 ∗∗∗ 0.028 ∗∗∗

(0.007) (0.007) (0.007) (0.007) 

p = 0 . 9 × t −0.006 −0.008 −0.006 −0.008 

(0.008) (0.009) (0.008) (0.009) 

p = 0 . 1 × t 0.001 −0.001 0.001 −0.001 

(0.010) (0.010) (0.010) (0.010) 

W in i,t−1 1.033 ∗∗∗ 1.030 ∗∗∗ 1.034 ∗∗∗ 1.031 ∗∗∗

(0.080) (0.081) (0.081) (0.081) 

_cons 2.217 ∗∗∗ 2.185 ∗∗∗ 1.602 ∗∗∗ 2.213 ∗∗∗ 2.029 ∗∗∗ 1.609 ∗∗∗

(0.249) (0.167) (0.263) (0.405) (0.410) (0.399) 

Session Controls No No No Yes Yes Yes 

chi2 57.48 164.98 221.26 75.46 181.51 261.93 

p 0.00 0.00 0.00 0.00 0.00 0.00 

N 13,536 13,536 13,536 13,536 13,536 13,536 

Fig. D.2. Evolution of the variable C umPri v at eBett er i,t , representing the cumulative experience with greater accuracy from private rather than social infor- 

mation, averaged over pure subject types. 

 

 

 

 

 

 

 

 

 

 

 

 

group of 9 pure “herd animals” and the group of 31 pure “rational” subjects. Similarly, the group of 9 pure “herd animals”

would have less accurate private ball draws as compared with the group of 8 pure “lone wolves” and the group of 31 pure

“rational” subjects. 

For each subject in each round, we constructed an index that had a value of 1 when private information outperformed

social, a value of −1 when social information outperformed private, and a value of 0 when both pieces of information where

either correct or wrong - similar to the procedure followed in Section D.1 . We then calculated the cumulative value of this

index as each part of the experiment ( Erratic or Persistent / Anti-Persistent ) proceeded. Finally, we constructed the average

cumulative index of private information being the better predictor, averaged over a particular subject type, pure lone wolf, 

pure herd animal or pure rational type. We focus on pure types as these provide the least ambiguous cases for which the

history of signal accuracies could have played a role. 

The average cumulative indices of the superiority of private information in predicting the state of the world are plotted in

Fig. D.2 , representing the experiences of the pure types, as a group. These figures suggests that the experience of the 8 pure

“herd animals” and the 31 pure “rationals” were similar. In the Erratic environment, the superiority of private information 

is increasing over time while in the other two environments it is decreasing over time. Notice that in the early rounds of

the Erratic environment, 9 pure “lone wolves”, as a group, actually experienced a slightly worse performance from private 

draws than from a choice of social information, which works against the hypothesis that history matters for the creation of

types. (Similar figures disaggregated by subject are available on request.) 

The panel regression in Table D.3 confirms that private information becomes cumulatively better in the Erratic ( p = 

0 . 6 ) environment, and cumulatively worse in the non-Erratic ( p ∈ { 0 . 1 , 0 . 9 } ) environments, as evidenced by the significant

positive and negative coefficients, respectively, on the time trend, t . However, there are no differences in the experiences of 

the pure types, as evidenced by non-significant interaction of the time trend variable with each pure type index. Thus, the

decisions of the 8 pure “herd animals” and, in particular, of the 9 pure “lone wolves” to always choose, respectively, social 

and private information in all environments cannot be explained by their signal experiences within our experiment – since 

these experiences are not statistically different from those of the 31 pure “rational” subjects. 
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Table D.3 

Fixed-effects panel regression on a variable C umPri v at eBett er i,t , which is a cumulative 

experience of more accurate private information than social information, for subject i 

in round t, for 48 “pure type” subjects (pure “rational” subjects are a baseline). Robust 

standard errors (in parentheses). ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

C umPri v at eBett er i,t p = 0 . 6 p ∈ 0 . 1 , 0 . 9 
t 0.082 ∗∗∗ −0.101 ∗∗∗

(0.015) (0.016) 

LoneWol f × t −0.052 −0.053 

(0.049) (0.033) 

HerdAnimal × t 0.002 0.000 

(0.028) (0.031) 

_cons −0.100 −0.148 

(0.326) (0.308) 

F 14.16 27.28 

p 0.00 0.00 

N_g 48 48 

N 2304 2304 

Table D.4 

Random-effects logit regressions on a dummy variable Pri v ate i,t , indicating whether subject i chose private information 

in round t for all “non-pure” type 192 subject-part “individuals”, by their broad type, without and with session controls. 

Robust standard errors (in parentheses) clustered at the group level. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

Pri v ate i,t 

(1) (2) (3) (4) (5) (6) (7) (8) 

All UB LW HA All UB LW HA 

Private i,t−1 > 0.346 ∗∗∗ 0.521 ∗∗∗ −0.378 0.442 ∗ 0.345 ∗∗∗ 0.521 ∗∗∗ −0.380 0.448 ∗

Social i,t−1 (0.106) (0.132) (0.241) (0.250) (0.106) (0.132) (0.241) (0.250) 

Private i,t−1 < −0.252 ∗∗ −0.222 ∗ −0.211 −0.542 ∗ −0.252 ∗∗ −0.222 ∗ −0.204 −0.541 ∗

Social i,t−1 (0.106) (0.132) (0.237) (0.319) (0.107) (0.132) (0.237) (0.319) 

_cons −0.401 −0.852 ∗ 3.743 ∗∗∗ −4.126 ∗∗∗ 1.005 −0.659 4.282 ∗∗∗ −2.601 

(0.386) (0.446) (0.394) (0.553) (0.992) (1.102) (0.845) (1.716) 

Session Controls No No No No Yes Yes Yes Yes 

chi2 21.73 23.73 2.70 7.88 34.65 28.68 6.27 11.57 

p 0.00 0.00 0.26 0.02 0.00 0.00 0.71 0.17 

N 9024 5640 1880 1504 9024 5640 1880 1504 

 

 

 

 

 

 

 

 

Result D3. The self-selection of some subjects to “pure” information choice types cannot be explained by idiosyncratic draws 

of private signals. 

D3. Dynamic adjustment of non-pure type subjects (“within-subjects”) 

Let us now turn to the remaining 96 “adjusting” subjects (two thirds of our sample) who changed their choice of in-

formation at least once within at least one part of the experiment. Do these adjusting subjects learn to make optimal

information choices over time? 

To capture possible learning from the provided feedback by these adjusting types we conducted a regression analysis 

analogous to specifications (2) and (5) of Table D.1 for all of these adjusting subjects as well as those broadly classified

as unbiased (UB), lone wolves (LW) or heard animals (HA). As the regressions in Table D.4 demonstrate, broadly unbiased

“adjusting” subjects strongly react to history, choosing private information when it outperforms social information and vice 

versa (see specifications (2) and (6)). In contrast, broad lone wolves have a strong bias towards private information, which is

manifested by a significantly positive intercept, and insignificant coefficients on lagged performance (specifications (3) and 

(7)). The patterns for broad herd animals are more complex, as they both have marginally significant coefficients on lagged 

performance, and the negative intercept is significant only without session controls (see specifications (4) and (8)). As we 

will show below, some, but not all subjects who behaved as broad herd animals in the early rounds of each part, turn out

to learn over time, which might explain these regression results. 

These regression results suggest that learning from past signals largely occurs among broadly unbiased subjects, as well 

as possibly among a subset of broad herd animals. Note that, because subjects’ types are determined by their information 

choices rather than being exogenous, this regression analysis is only illustrative, as it utilizes the same choice data twice 

- first, subjects’ choices of information source were aggregated to determine their broad type, and then these same in- 

formation choices (though disaggregated) were explored to see whether subjects’ unique signal performance affected their 

information choices. 

Thus, to better understand the evolution of the 96 “adjusting” subjects’ information choices over time, we compare their 

behavior in the first 6 and the last 6 rounds of each of the two parts. First, we construct two analogues of the Lone Wolf

Index LW I i for the first 6 and the last 6 rounds of each of the two parts, which we denote by P I6 initial 
i 

and by P I6 
f inal 
i 

(for
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Table D.5 

Number of the adjusting subjects (who changed their information choice at least once, out of 96 subjects) by Private 

Information type classification (combined across both parts) using the PI6 initial 
i 

index for the first 6 rounds and the PI6 f inal 
i 

index for the final 6 rounds. 

PI6 initial 
i 

PI6 f inal 
i 

Total 

6-Broad Herd Animal 6-Broad Unbiased 6-Broad Lone Wolf in Initial 

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 6 Rounds 

6-Broad −6 3 0 0 0 0 1 3 0 0 0 0 0 0 7 

Herd −5 4 0 0 0 0 0 0 1 0 0 0 0 0 5 

Animal −4 2 0 0 0 0 1 4 0 0 0 0 0 0 7 

−3 1 0 0 0 1 0 8 0 0 0 1 0 0 11 

−2 1 1 1 0 0 1 6 0 0 0 0 0 1 11 

6-Broad −1 1 1 0 0 1 0 7 1 0 0 0 0 0 11 

Unbiased 0 0 0 0 0 0 0 14 0 0 1 0 1 3 19 

1 0 0 0 0 0 0 4 0 0 0 0 0 2 6 

2 0 0 0 0 0 0 4 0 0 0 0 1 4 9 

6-Broad 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Lone 4 0 0 0 0 0 0 0 0 0 0 1 1 1 3 

Wolf 5 0 0 0 0 0 0 0 0 0 0 0 0 5 5 

6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Total in Final 6 Rounds 12 2 1 0 2 3 51 2 0 1 2 3 17 96 

Table D.6 

Number and percentages of the adjusting subjects (out of 96 subjects) by aggregated 6-broad Private Informa- 

tion type classifications (combined across both parts) using the PI6 initial 
i 

index for the first 6 rounds and the 

PI6 f inal 
i 

index for the final 6 rounds. 

Initial 6-Broad Type 

Final 6-Broad Type Total in Initial 

6-Broad Lone Wolf 6-Broad Unbiased 6-Broad Herd Animal 6 Rounds 

6-Broad Lone Wolf 9 (9.4%) 1 (1.0%) 0 (0%) 10 (10.4%) 

6-Broad Unbiased 13 (13.5%) 38 (39.6%) 5 (5.2%) 56 (58.3%) 

6-Broad Herd 

Animal 

1 (1.0%) 19 (19.8%) 10 (10.4%) 30 (31.1%) 

Total in Final 6 

Rounds 

23 (24.0%) 58 (60.4%) 15 (15.6%) 96 (100%) 

 

 

 

 

 

 

 

 

 

 

the initial and final number of private information choices): 

P I6 

initial 
i = 

6 ∑ 

t=1 

I PI 
i,t (p = 0 . 6) + 

6 ∑ 

t=1 

I PI 
i,t (p � = 0 . 6) − 6 

P I6 

f inal 
i 

= 

48 ∑ 

t=43 

I PI 
i,t (p = 0 . 6) + 

48 ∑ 

t=43 

I PI 
i,t (p � = 0 . 6) − 6 

Subjects with P I6 i values of {−6 , −5 , −4 , −3 } are classified as “within-6-round-block” broad (“6-broad”) herd animals (since

at least 75% of their choices in the corresponding 6-round blocks of each part were for social information); those with P I6 i 
values of { 3 , 4 , 5 , 6 } are classified as “6-broad” lone wolves (since at least 75% of their choices were for private information),

and the remaining subjects with P I6 i values of {−2 , −1 , 0 , 1 , 2 } are classified as “6-broad” unbiased (since at least 75% of

their information choices were unbiased). 

As Table D.5 shows, while the number of adjusting subjects who made fully unbiased information choices in a 6-round 

block (i.e. P I6 i = 0 ) increased from 19 (19.8%) to 51 (53.1%), most of this net increase comes from those 21 subjects (21.9%)

who started out (i.e., in the initial 6-round block) as broadly but not fully unbiased ( 6 + 7 + 4 + 4 ), as well as from those

15 subjects (15.6%) who started out as “6-broad” herd animals ( 3 + 0 + 4 + 8 ), By contrast, 5 subjects (5.2%) who started as

fully unbiased moved to becoming “6-broad” lone wolves ( 1 + 0 + 1 + 3 ), with only one subject transiting in reverse. 

Aggregating the number of adjusting subjects by their “6-broad” subject type, Table D.6 further shows that there is only 

a slight net increase in the number of “6-broad” unbiased subjects over time (from 56 in the initial 6 rounds of each part to

58 in the final six rounds). This is because the net inflow of 19 − 5 = 14 (14.6%) subjects who moved from initially being “6-

broad” herd animals to in the end being “6-broad” unbiased is almost fully offset by the net outflow of 13 − 1 = 12 (12.5%)

subjects who moved from being “6-broad” unbiased to being “6-broad” lone wolves. While in the first 6 rounds there were 

three times more “6-broad” herd animals (30) than “6-broad” lone wolves (10), by the final 6 rounds there were more broad 

lone wolves (23) than broad herd animals (15). 

Result D4. Comparing behavior in the initial and final 6 rounds of each part, a majority of the 96 “adjusting” subjects

remain in the same “6-broad” category, with a plurality of subjects (39.6% of the “adjusting” subjects) maintaining their 
26 
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Table D.7 

Number of the adjusting subjects (out of 96 subjects) making optimal information choices in the initial and final six 

rounds, (combined across both parts), as classified using the OI6 initial 
i 

and OI6 f inal 
i 

indices. 

OI6 initial 
i 

OI6 f inal 
i 

Total in Initial 

0 1 2 3 4 5 6 7 8 9 10 11 12 6 Rounds 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 3 0 1 0 0 0 1 5 

6 1 0 0 0 0 0 8 0 0 0 0 1 3 13 

7 0 0 0 0 0 0 6 1 0 0 0 0 2 9 

8 0 0 0 0 0 1 1 1 2 0 0 2 4 11 

9 0 0 0 0 0 0 1 0 1 0 1 0 7 10 

10 0 0 0 0 0 0 3 2 0 0 0 0 9 14 

11 0 0 0 0 0 0 3 1 0 0 0 1 10 15 

12 0 0 0 0 0 0 3 1 0 0 0 0 13 17 

Total in Final 6 Rounds 1 0 0 0 0 1 29 6 4 0 1 4 50 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

“6-broad” unbiasedness, and almost equal numbers of subjects remaining in each of ‘6-broad” lone wolf and herd animal 

classifications (9.4% and 10.4%, respectively). The overall number of subjects who started out being “6-broad” unbiased is 

almost the same as the number who ended up being “6-broad” unbiased. However, this is because the net inflow of 14.6%

of adjusting subjects who moved from being “6-broad” herd animals to being “6-broad” unbiased is similar to the net 

outflow of 12.5% subjects who moved from being “6-broad” unbiased to being “6-broad” lone wolves. 

While most of the fully unbiased choices are fully rational, not all are. One could see this using two analogues of the

Information Optimality Index IOI i for the first 6 and the last 6 rounds of each of the two parts, which we denote by OI6 initial 
i 

and OI6 
f inal 
i 

, respectively: 

OI6 

initial 
i = 

6 ∑ 

t=1 

I IO i,t (p = 0 . 6) + 

6 ∑ 

t=1 

I IO i,t (p � = 0 . 6) 

OI6 

f inal 
i 

= 

48 ∑ 

t=43 

I IO i,t (p = 0 . 6) + 

48 ∑ 

t=43 

I IO i,t (p � = 0 . 6) 

As Table D.7 shows, there is some improvement in terms of optimal information choice, as 46 subjects (47.9% of “adjusting”

subjects) made more optimal decisions in the final 6 rounds relative to the initial 6 rounds, while 25 (27.1%) subjects made

more suboptimal decisions - for a net of 21 (21.9%) “adjusting” subjects exhibiting improvement. However, the set of subjects 

who exhibited improvement in their choice of optimal information includes 27 (28.1%) subjects who made at least 75% opti- 

mal information choices (but not fully optimal) even in the first 6 rounds of each part (i.e., those with OI6 initial 
i 

∈ { 9 , 10 , 11 } ),
while among the group of those 16 (16.7%) subjects who initially made at least 75% of optimal choices, including fully op-

timal choices (i.e., those with OI6 initial 
i 

∈ { 9 , 10 , 11 , 12 } ) but who failed to improve in their choice of optimal information

includes 10 (10.4%) subjects who closer to the end settled on making optimal choices only half of the time, which is consis-

tent with choosing one type of information only. 

Result D5. Comparing subjects’ behavior in the initial and final 6 rounds of each part, only a net of 21.9% of “adjusting”

subjects exhibited an improvement in optimal information choice. 

The dynamics of behavior of the 96 “adjusting” subjects, is summarized by Fig. D.3 . In this figure, arrows represent the

direction of movement from a point { OI 6 initial 
i 

, P I 6 initial 
i 

} in the initial 6 rounds of each part to a point { OI 6 
f inal 
i 

, P I 6 
f inal 
i 

} in

the final 6 rounds of each part, and the area of the circles is proportional to the number of subjects with a given level of

index counts in the final six rounds. Initial choices, as indicated by the beginning point of each of the arrows, are quite

dispersed. In contrast, the arrow ends are more concentrated, suggesting that over time, subjects appear to experiment less, 

settling on a particular strategy. While many arrows point to the far right corner of the Diamond of Rationality (representing

an increase in optimal choices over time), not all subjects settle on the correct strategy with experience, as many arrows

point in other directions, with significant minorities locking onto lone-wolf-type behavior (top corner) or to herd-animal- 

type behavior (bottom corner). The lone arrow pointing to the far left corner represents one subject whose initial behavior 

was broadly unbiased and close to purely random, but whose final behavior was perfectly counter-optimal. 
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Fig. D.3. Evolution of information choices from the initial six rounds to the final six rounds, combined across both persistence environments (see 

Tables D.5 and D.7 ), for “adjusting” subjects (i.e., those who changed their choice of information at least once, total N = 96 ). Circle areas are propor- 

tional to the number of “adjusting” subjects with a given sum of frequency counts in the final 6 rounds in both environments (as given by the final row in 

each of the Tables D.5 and D.7 ). Arrows start at the sum of counts in the initial 6 rounds in both environments (frequencies of subjects at initial conditions 

are not shown to reduce clutter), so each arrow may represent more than one subject. Cases of identical initial and final frequency counts at points (6, −6), 

(6,6), (8,4), and (12, 0) are represented by downward pointing arrowheads without shafts. 

 

 

 

 

 

 

 

 

E. Comparison to existing studies 

Here, we ask whether our identification of persistent behavioral types in social learning environments has wider validity 

beyond this particular setting that we study. 

E1. Identification issues with the standard sequential design 

We first clarify the reasons why the standard sequential-move design of Anderson and Holt (1997) is not well suited to

identify the kind of heterogeneity in social learning behaviour found in our simultaneous-move information choice design. 

The main issue with the standard sequential design is its asymmetric nature. Apart from the very early rounds of the

sequence, it is almost always optimal to follow the herd and ignore one’s own private signal. Thus, excessive herd behaviour,

defined as following the herd when it is not optimal to do so (which we term here as “herd animal behavior”), is almost

excluded ex ante by design. Instead, herd animal behaviour found in our experiment would be classified as rational behavior 

in the standard experiments. 

A second problem with the standard design is that only a handful of previous experiments employed sufficient number 

of different sequential move games to allow for a meaningful within-subjects analysis, and so (as we will show below) the

existing data sets are not well-suited for identification of behavioural types. Further, this design generates many realizations 

that are uninformative because a subject’s private information agrees with the previous history of guesses. 

Third, the standard, sequential move, binary choice design cannot distinguish information source bias from irrational 

misuse of information. When a subject takes an off-equilibrium-path action, one cannot tell whether this is due to the sub-

ject’s bias in favor of a less accurate source of information, or this is instead due to the subject irrationally contradicting a

more accurate source of information. In a similar vein, the standard design does not distinguish rational behavior from com- 

pounded mistakes. For example, in the standard binary setup, if a subject favors less accurate information and irrationally 

contradicts that less accurate information (thus making both types of mistakes simultaneously), their action would coincide 

with a rational choice! Thus, the irrational misuse of information that we found in our experimental design would instead 

be classified as bias – or even as rational behavior – in standard experiments. 

The final difference between the standard sequential move setting and our own is, in our opinion, less important. The 

sequential-move game potentially requires second- or higher-order strategic reasoning. For example, how much information 

is contained in the action of player 2, given that she also observed player1 ′ s action prior to acting on her own? By contrast,

our simultaneous move design involves a dominance solvable game and thus has little strategic uncertainty if all players 
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Table E.1 

Streamlined subset of metaset of Ziegelmeyer et al. (2013) (ZMK): the list of exclusion criteria and the included observa- 

tions. 

Datasource 

Original ZMK Exclusions Streamlined 

NObs SubjN NObs Reasons NObs SubjN 

Alevy et al. (2007) 1647 109 1,005 q A � = q B 642 42 

Anderson (2001) 270 18 270 18 

Anderson and Holt (1997) 810 54 540 q A � = q B 270 18 

Cipriani and Guarino (2005) 161 48 161 48 

Dominitz and Hung (2009) 1760 90 560 “Replication rounds” retained 1,200 90 

Drehmann et al. (2005) 2789 1,840 2,549 Pr(A ) � = Pr(B ) � = 0 . 5 240 240 

Fahr and Irlenbusch (2011) 1080 72 1,080 72 

Goeree et al. (2007) 8760 400 8,760 400 

Hung and Plott (2001) 889 40 889 40 

Kübler and Weizsäcker (2004) 482 35 482 35 

Nöth and Weber (2003) 9834 126 9,834 q vary with positions 0 0 

Oberhammer and Stiehler (2003) 840 36 840 36 

Willinger and Ziegelmeyer (1998) 324 36 324 36 

Ziegelmeyer et al. (2010) 1440 96 1,440 Pr(A ) � = Pr(B ) � = 0 . 5 0 0 

Total 31,086 3,000 15,158 1075 

 

 

 

 

 

 

 

are rational. However, even in our simpler setting, we observe substantial deviations from optimal behaviour and apparently 

persistent use of heuristics such as always choosing private over social information and vice versa. An obvious hypothesis is 

that the use of such heuristics would only be more frequent in more complex situations. 

Further, a recent experiment by Kawamura and Vlaseros (2017) finds, in a slightly different context, that subjects’ sub- 

optimal behaviour is largely driven by their failure to understand the combined accuracy of multiple independent signals 

rather than strategic complexity. Thus, we suspect that the use of suboptimal heuristics is widespread in all settings but 

may not always be observable due to reasons given above. 

E2. Exploring the existing meta-data 

Given the above mentioned difficulties, can we still utilize the existing data from the standard sequential move game 

to identify evidence for heterogeneous player types? To address this question, we employ the comparable existing se- 

quential move experimental data compiled by Weizsäcker (2010) and extended by Ziegelmeyer et al. (2013) . We follow 

Weizsäcker (2010) in focusing on the sequential move social learning games with symmetric signal structure (i.e., symmet- 

ric priors P r(A ) = P r(B ) = 0 . 5 and position-invariant symmetric precision of private signals q A = q B ) as these designs are

most comparable to our own. Using the resulting “streamlined” subset of the Ziegelmeyer et al. (2013) metaset (thereafter 

ZMK) for the sequential move games (see Table E.1 for details), we pursue the following identification strategy to attempt 

to detect the “lone wolf” and “herd animal” player types documented in our simultaneous move design. 

First, we follow Weizsäcker (2010) and look only at players facing histories of unanimous prior action choices by others, 

i.e., when all predecessors choose the same action, and thus are in full agreement. This is because the sequential design

does not allow a clear interpretation of non-unanimous histories. Indeed, there exist situations where it is optimal to go 

against the simple majority. For example, consider the sequence of choices ABA which is consistent with the first three 

subjects each optimally having followed their own signal. Then if the fourth subject gets a b signal, the equilibrium (with 

the standard tie-breaking rule) prescribes her to go with her signal thus contradicting the simple majority. Further, the lack 

of unanimity can be the result of other subjects having taken actions that are off the equilibrium path (e.g., AAB ), which

makes it difficult to determine the optimal action. 

Second, we will look at situations where a subject’s own private signal differs from the unanimous actions taken by all

predecessors. Otherwise, if a subject’s action coincides both with their own private signal and the unanimous actions of 

others, it is not clear whether one should classify that subject as being rational, or a herd animal, or a lone wolf. 

Third, we will interpret subjects’ choices as if they followed their preferred source of information. This is not an in-

nocuous assumption, as subjects sometimes go against not only the most accurate available piece of information, but also 

– clearly irrationally – against all information available to them, even when all sources of information are in full agree- 

ment. Specifically, in the 1831 observations where the subjects’ private signal coincided with the unanimous history in the 

“streamlined” dataset, subjects choose to contradict both sources of information in 65 (3.6%) of these observations (the 

highest proportion of such irrational behavior is 6.0% in position 4, and one subject went both against a 29-subject-long 

unanimous herd and against own signal which agreed with this very long herd). 

Fourth, recall that in the symmetric sequential-move social learning model it is rational to follow one’s own signal at 

early positions in the sequence. But at a certain point in the sequence it becomes optimal for the player to go with the herd

and against their own private information. So, if instead a subject sufficiently far from the start of the sequence follows her

private signal that differs from the herd choice, we identify that subject as exhibiting (suboptimal) “lone wolf” behaviour. 
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Fig. E.1. Rationality vs information source bias in the “streamlined” subset of Ziegelmeyer et al. (2013) (ZMK) metadata set of experimental data using the 

standard design, for 276 subjects who experienced both type identifying situations (as discussed in the text) at least once. Information optimality index 

(horizontal axis) against Lone Wolf Index (vertical axis). Diamonds represent the 62 subjects who experienced both of the type-identifying situations at 

least twice, and circles represent the other 214 subjects. The marker size is proportional to the number of subjects with a given pair of indices.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead, if a subject contradicts her own signal and follows the predecessors too early in the sequence, we identify that

subject as exhibiting (suboptimal) “herd animal” behaviour. 

Finally, to separate subject’s rationality from information source bias, we explore each subject’s actions in both types of 

situations – the one where it is optimal for the subject to contradict others and instead follow their own signal, and the

other situation where it is optimal to do the opposite - to contradict one’s own signal and instead follow the others. We

identify subjects as being a “rational” player type if they consistently switch their preferred source of information depending 

on the situation they are in. Similarly, we identify subjects as being “lone wolf” or “herd animal” types if, in both types of

situations, they consistently follow their private signals or their predecessors, respectively. 

Consistent with our identification strategy, we thus look at all cases where subjects face an unanimous history. As we 

have already argued, the standard sequential-move setting presents little opportunity for purely irrational herd behavior. In- 

deed, we can identify only one situation where following a herd is clearly irrational - when the private signal of the subject

in position 2 contradicts the action of the first subject in the sequence (position 1). Under the refinement of equilibrium

due to Banerjee (1992) , the subject in position 2 should follow her own signal, which is also the empirically optimal choice,

simply because in 8.5% of observations, subjects in position 1 irrationally do not follow their private signal. So following a

“herd” consisting of a single subject is a very strong measure of suboptimal herd behavior. However, we cannot weaken our 

measure of excessive herd behavior – as following the unanimous choice made by others is optimal at any position beyond 

position 2. 

Thus, all instances where subject i ’s signal contradicted the unanimous history, can be divided into two sets – those N 1 ,i 

instances at position 2 where subject either optimally follows their private signal or behaves as a strong “herd animal”, and

those N 2 ,i instances starting with position 3 where a subject either optimally copies all of her predecessors, or behaves as

a “lone wolf”. Using Eqs. (3) and (4) for each subject i with their subject-specific number of instances N 1 ,i and N 2 ,i , we

then construct the corresponding within-subjects Information Optimality Index ( I OI ZMK 
i 

) and Lone Wolf Index ( LW I ZMK 
i 

), by

looking at the subject-specific fractions (or rates) of such clearly suboptimal lone wolf and herd animal choices among those 

instances where the private signal contradicts a uniform social history. 

It is clear that the previous experiments were not designed to generate such data, as there are relatively few subjects

who are observed in both types of the above-mentioned situations that permit clearly suboptimal choices. In our streamlined 

subset of the metadata, 244 (22.7%) out of the total of 1,075 subjects made only one decision, and thus are excluded by our

identification strategy. We identify only 276 (25.7% of the total) subjects who experienced both types of “clear” identifying 

situations (where they could behave suboptimally) at least once. We also look at a smaller subset of these subjects - only

62 (5.8% of total) - who experienced both situations at least twice. 

Fig. E.1 is a sequential-move counterpart of the earlier Figure 3 . It presents the corresponding within-subjects measures 

for sequential move data, where the size of the markers represent the number of subjects with corresponding subject- 
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Fig. E.2. Rationality versus information source bias in the two-stage sequential move design of Duffy et al. (2019) . Information Optimality Index (horizontal 

axis) against Lone Wolf Index (vertical axis), for each of 128 subjects. The marker size is proportional to the number of subjects with a given pair of indices. 

 

 

 

 

 

 

 

 

 

 

 

specific indices. The diamonds represent the smaller subset of subjects who experienced each of the two kinds of type- 

identifying situations at least twice, while the circles represent the larger subset of subjects who experienced one type of 

situation only once, and the other type at least once. Note that there is heterogeneity across subjects with both lone wolves

and herd animals present. 

Furthermore, both pure biased types are less frequent in the smaller, more experienced, subset (represented by the dia- 

mond markers). In fact, pure herd animal types are absent in this smaller subset - which is hardly surprising, as repeatedly

following a “group” consisting of a single subject would indicate a very strong herd animal bias that one would expect 

to happen only very rarely. Still, the two subjects in this smaller subset with the Lone Wolf Index values of −0 . 75 each

(irrationally) followed “the herd” consisting of a single subject 3 times and also (rationally) followed larger herds at later 

positions another 3 times, to a total of 6 counts of following the herd out of 7 total instances (i.e., with an overall 85.7%

rate of following social information). At the same time, only three subjects in the smaller subset turned out to be pure lone

wolf types, choosing to always follow their own signals in fewer (only 4 and 5) total instances across all situations of our

interest. 

We are quite aware of the small numbers of observations per subject involved in this analysis, as well as very imperfect

identification of information source biases, but these are some of the limitations of using data from the standard design. 

Nevertheless, we believe that this exercise provides indicative evidence for the existence of behavioral types even in standard 

sequential social learning experiments. 

E3. More complex sequential move designs 

Finally, we consider some other experiments where the design is in some way intermediate between sequential and 

simultaneous moves. Duffy et al. (2019) (DHKM) modify the standard sequential move design by introducing information 

choice similar to the way it is done here. That is, at each point in the sequence, each subject must choose whether to

receive a new private signal or to look at the history of guesses by other subjects (in contrast to the standard sequential

design where each subject sees both). The equilibrium prediction is to choose private information at positions 2 and 3 

and social information at position 4. However, significant proportions of subjects choose social information too early, while 

others choose private information at position 4. There is thus evidence of both herd animal and lone wolf like behaviour

in this sequential context. Overall, relative to equilibrium predictions, they found an overall (irrational) tendency towards 

favouring social information. 

We can see this by again constructing Information Optimality and Lone Wolf Indices for the DHKM data using 

Eqs. (3) and (4) , with N 1 ,i = 18 for choices at positions 2 and 3, where private information is optimal, and N 2 ,i = 6 for

choices at position 4, where social information is theoretically (but not empirically) optimal. Fig. E.2 represents the resulting 

distribution of rationality vs bias. 
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Comparing the Figs. 3, E.1 , and E.2 , we see the following patterns. In the first, plotting data from the current symmetric

design, there is a strong mode at optimality while many other subjects are symmetrically distributed between lone wolf 

and herd animal behavior. In Fig. E.1 , which plots data from the standard sequential design (that as we argue above is

highly asymmetric) errors that run in the direction of lone wolf behavior are much more common. The idea that this may

simply be the result of the asymmetry of the design is supported by Fig. E.2 , which plots data from DHKM whose design

is asymmetric but in the opposite direction. In the DHKM setting it is mostly optimal to choose private information, so

mistakes there generally run in the direction of choosing social information too early in the sequence. And, indeed, the 

biggest mode of subjects in Fig. E.2 is somewhat herd animal in behavior. Thus, we suggest that herd animals and lone

wolves are common behavioral types. However, their apparent relative frequency is heavily influenced by the symmetry of 

the experimental design. 

Eyster et al. (2018) examine social learning in a design that has both simultaneous and sequential moves as one treat-

ment involves a sequence of groups, in which all members of the group move simultaneously. There, equilibrium behaviour 

involves ignoring or acting against the observed history. Instead, overall they found excessive imitation leading to substantial 

payoff losses relative to equilibrium. But, perhaps consistent with our finding of heterogeneity, they also observe a minority 

of subjects who do anti-imitate. 

Goeree and Yariv (2015) also find evidence for excessive imitation. In their experiment, subjects choose between receiving 

a private signal and observing the previous choices of other subjects who themselves did not receive a private signal. Thus,

the optimal policy in Goeree and Yariv’s study is to always choose private information. Nonetheless, about one-third of 

subjects chose social information suggesting either confusion or conformism. 

March and Ziegelmeyer (2018) employ a design with two parallel sequences of subjects. The second sequence can observe 

the first, but their own guesses are only observed by the experimenter. These unobserved subjects can have private signals of

high, medium or low accuracy. When these signals contradict the public information, subjects with low or medium quality 

signals should follow the crowd, but those with high quality signals should follow the private signal. Thus, with this design,

it is possible to make mistakes in both directions, and indeed, it is found that there is both over-reliance on private signals

by some subjects and on social information by others. 

In summary, in social learning experiments where excessive imitation (herd animal behavior) is possible, it is, in fact, 

observed. By design, in the standard sequential move social learning game, such herd animal behavior is difficult to observe 

as following the herd is largely optimal in that setting and thus it is difficult to separate bias toward social information from

rational behavior. However, in our symmetric, two-stage within-subjects design it is possible to separate the information 

source bias from information misuse, as well as to identify simultaneously both lone wolf and herd animal behaviour. For 

this reason and the others identified above, we are broadly optimistic that these behavioural types are present in other 

settings, even though they are not easily detectable. 

F. Quantifying individual differences 

At the end of the experiment, subjects were offered a flat fee of $6 for completing a non-incentivized post experiment

survey. In all sessions, subjects were asked to report on their gender, age, and college major and were further asked to

answer 20 “core” multiple-choice individual personality trait questions. 28 All 144 subjects completed the survey. The average 

and median age were 20.4 and 20 years, respectively, with an age range of 18–27; just 12 (8.3%) subjects were 23 years of

age or older. The sample had 73 (50.7%) females and 71 (49.3%) males, almost perfectly gender balanced. 

F1. Proxies for cognitive abilities 

It is plausible that subjects’ choices can be explained by their cognitive skills. College majors are widely seen as noisy

signals of these skills. For example, if quantitative skills were important in our setup, engineering majors, on average, would 

make optimal choices more frequently than communications majors because engineering majors, on average, have higher 

quantitative ability. We do not take a position on the origin of any such differences. Instead, we sim ply attem pt to explore

the correlations between subjects’ choices and their college majors as proxies for their cognitive abilities. 

Specifically, we used subjects’ self-reported college majors to construct a proxy for their cognitive abilities. There are two 

issues involved in using college majors as a cognitive proxy. First, college majors are categorical variables, which without 

additional information cannot be used to quantify or even rank subjects’ cognitive abilities. Second, our subject pool consists 

of students from a large US university, many of whom study a combination of several subject disciplines, complicating the 

analysis. 

We thus used a non-conventional (though novel) approach of using publicly available data on two standardized test 

scores, averaged by discipline (major), to quantify the expected differences (and similarities) across the different majors. 

First, we use the average scores from the quantitative section of the Graduate Record Examination (GRE) General Test (see 
28 The rest of the survey varied across sessions. In 5 sessions, subjects also faced additional multiple-choice questions: three cognitive reflection questions 

(to be described further), three probabilistic reasoning questions, and a single social interactions “vignette” question. In the remaining 3 sessions, there were 

additional 9 “individual traits” questions, and a simple calculation question, but neither cognitive reflection nor statistics questions. Among the additional 

questions, only the cognitive reflection scores were used as a supplementary variable, and other questions were discarded as uninformative. 
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Fig. F.1. Probability density distributions of GRE Q , SAT M , and CRT MCQ .. 

Table F.1 

Multiple-choice version of Cognitive Reflection Test of Frederick (2005) . 

1. A bat and a ball cost $1.10 in total. (a) 0.10 

The bat costs $1.00 more than the ball. (b) 10 

How many cents does the ball cost? (c) 100 

(d) none of the above. 

2. If it takes 5 machines 5 minutes to make 5 widgets, (a) 5 

how many minutes would it take 100 machines (b) 25 

to make 100 widgets? (c) 100 

(d) none of the above. 

3. In a lake, there is a patch of lily pads. (a) 4 

Every day, the patch doubles in size. (b) 16 

If it takes 32 days for the patch to cover the entire lake, (c) 31 

how many days would it take for the patch to cover half of the lake? (d) none of the above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Service, 2014, Table 4 ), which is a standardized test used for most US graduate admissions. This test is typically taken by

students prior to apply for graduate school. The association of GRE quantitative test scores with student majors is thus more

clear, since test takers would almost certainly have a declared major to report. Second, we use the average scores for the

mathematics section of the Scholastic Aptitude Test (SAT) (see Board, 2013 , Table 25), which is a standardized test used for

US college admissions. 29 The SAT test is take prior to entering college and so the major associated with test scores is more

speculative, based on student’s pre-entry expectations. 

We note that average SAT and GRE scores vary across disciplines in predictable ways. For example, the average scores 

of individuals who expect to major in mathematics ( QRE Q = 162 and SAT M 

= 604 ), are higher than the average scores of

individuals who expect to major in sociology ( QRE Q = 149 and SAT M 

= 553 ), allowing us to rank disciplines using these two

standardized tests. We thus ascribed these standardized test scores to each subject based on their self-reported major field 

of study. When a subject’s reported major involved more than one field, we averaged the scores over the reported fields. 30 

There are relative advantages to using each of the set of scores. Publicly available GRE scores offer finer classification, 

but are unavailable for some broad categories such as “Law” and “Undecided”, - thus, we were able to ascribe GRE scores

only to 136 subjects. In contrast, we were able to ascribe SAT scores to all 144 subjects, but publicly available SAT scores

are aggregated into broad categories. As probability densities in Figure F.1 show, one can see that the SAT (middle panel)

provides a coarser, and thus potentially noisier, measure relative to GRE (left panel). Average (st.d.) and median scores are 

154.07 (4.23) and 153 for GRE Q and 541.54 (28.32) and 547 for the SAT M 

. Overall, the two sets of ascribed average tests

scores are highly correlated, with r(GRE Q , SAT M 

) = 0 . 77 , p-value = 0 . 00 . 

We emphasize that we do not have GRE or SAT scores for our experimental subjects. Furthermore, our subjects are by

no means a random sample from the population who take either of the tests. Our subject pool involves both domestic and

international students, attending a selective US university. Apart from a small number of postgraduate students, most of our 

subjects are undergraduate students, who may or may not intend to go to a graduate school. In comparison, the SAT exam

is taken by both those who end up attending highly selective US universities and those who end up attending technical

colleges, while the GRE exam is taken by individuals from all over the world who intend to study at US graduate schools. 

To further check the validity of average quantitative GRE and mathematics SAT scores as noisy proxies for our subjects’ 

cognitive skills, a subset of our 90 subjects were presented with a multiple-choice version of the free-form Cognitive Re- 

flection Test (CRT) test of Frederick (2005) (see Table F.1 ). The CRT MCQ score ranges from 0 to 3, based on the number of

correct answers to the 3 questions of the test. Figure F.1 (right panel) presents a probability density of the CRT MCQ scores

of our subjects, who had average (st.d.) and median scores of 1.27 (1.09) and 1. These CRT MCQ scores are significantly cor-
29 See, for example, Leslie et al. (2015) for use of GRE General Test to account for potential differences across disciplines. 
30 When in doubt about the classification of major fields, we consulted the major field codes used in the corresponding test application forms adminis- 

tered by ETS and College Board, respectively. 
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Table F.2 

20 “individual traits” questions employing frequency rating of “Always” (6), “Frequently” (5), 

“Sometimes” (4), “Occasionally” (3), “Rarely” (2), “Never” (1). 

Question Facet α

Understand how others think Understanding1 0.740 

Able to predict others’ behavior Understanding2 

Feel that others don’t know what they are doing Mistrust1 0.740 

Doubt others’ abilities or intentions Mistrust2 

Go my own way rather than following others OwnWay1 0.748 

Follow my judgment rather than what other people do OwnWay2 

Am curious about what other people do Curiosity1 0.766 

Interested to see what others are up to Curiosity2 

Feel that winning or losing doesn’t matter to me Rivalry1 (-) 0.810 

Avoid situations involving competition Rivalry2 (-) 

Drawn to compete with others Rivalry3 

Feel that I must win at everything Rivalry4 

Feel I am no good at understanding others’ behavior (dropped) 

Feel that what other people do is irrelevant to me 

Take the opposite route from everyone else 

Am at ease when behaving differently from others 

Avoid being directed by others 

Avoid contradicting others 

Feel uncomfortable to do things differently from the group 

Ignore my own gut feeling and instead copy others’ behavior 

Table F.3 

Pairwise correlations between five “indi vidual traits” scales. ( ∗ p-value < 0 . 10 , ∗∗ p- 

value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

Understanding Mistrust OwnWay Curiousity Rivalry 

Understanding 1 

Mistrust 0.098 1 

OwnWay 0.168 ∗ 0.324 ∗∗∗ 1 

Curiousity 0.271 ∗∗∗ 0.122 0.077 1 

Rivalry 0.206 ∗∗ 0.353 ∗∗∗ 0.275 ∗∗∗ 0.156 ∗ 1 

 

 

 

 

related with both test scores assigned to majors, particularly the GRE, with r(CRT MCQ , GRE Q ) = 0 . 381 , p-value = 0 . 0 0 0 and

r(CRT MCQ , SAT M 

) = 0 . 256 , p-value = 0 . 015 , cross-validating all three proxies for cognitive abilities. 

F2. Proxies for behavioral biases (predispositions) 

Since individuals tend to engage in social learning situations outside of the laboratory, it is plausible the they may bring

these “home made” biases with them to the laboratory. Thus, our post-experiment questionnaire contained 20 “core” in- 

dividual personality trait questions aimed at eliciting potential behavioral predispositions of subjects with regard to their 

preferences for social versus private interactions. The questions asked subjects to indicate the frequency of experiencing a 

feeling or taking an action on a 6-item frequency rating scale (“Always”, “Frequently”, “Sometimes”, “Occasionally”, “Rarely”, 

and “Never”). 

All 144 subjects completed the 20 questions, but we discarded the individual trait responses of 14 subjects as being un-

reliable. 31 Using responses of the remaining 130 subjects, we retained 12 out of 20 questions, and constructed five scales, 

which appear to capture the relevant aspects of social interaction, and have sufficient or close to sufficient internal con- 

sistency as captured by Cronbach’s α (see Table F.2 ). The remaining 8 questions were omitted from the analysis as being

internally inconsistent (see, e.g. Duffy and Kornienko (2010) for the relevant methodology). 32 As Table F.3 shows, the five 

scales are heavily inter-correlated. 

G. Individual differences 

In this section we investigate the extent to which individual differences in subject characteristics (traits) described in 

Appendix F can explain the heterogeneity in subjects’ behavior. As Table G.1 shows, the “Understanding (Others)” individual 

trait scale, age and gender affect the extent of bias toward private information, as measured by the Lone Wolf Index. 
31 These subjects chose the same answer option on at least one questionnaire screen (i.e., they had zero within-screen variance in their answers). However, 

these subjects’ answers to CRT MCQ questions (where available) exhibited consistent variability, and thus were retained. 
32 Our main results do not change if instead we use the common factor approach on all 20 question items. We also confirm that the Rivalry scale of 

Duffy and Kornienko (2010) is both internally consistent (with Cronbach’s scale reliability coefficient α of 0.810) and factorable (with Kaiser–Meyer–Olkin 

(KMO) measure of “middling” sampling adequacy of 0.769). 
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Table G.1 

Bias towards private information: censored (tobit) regressions, robust standard errors in brackets, 

clustered on unique subject group. Lone Wolf Index LW I i left-censored at −1 and right-censored at 

1. Specifications (1)-(3) and (4)-(6) without and with inclusion of session dummies. ( ∗ p-value < 0 . 10 , 
∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

LW I i (1) (2) (3) (4) (5) (6) 

female −0.200 ∗∗ −0.186 ∗∗ −0.202 ∗∗ −0.186 ∗∗

(0.089) (0.089) (0.080) (0.088) 

age −0.054 −0.065 ∗∗ −0.053 −0.067 ∗∗

(0.033) (0.032) (0.034) (0.032) 

Understanding −0.133 ∗∗ −0.133 ∗∗∗ −0.137 ∗∗ −0.143 ∗∗∗

(0.052) (0.048) (0.053) (0.052) 

_cons 1.201 ∗ 0.549 ∗∗∗ 1.975 ∗∗ 1.275 ∗ 0.747 ∗∗∗ 2.253 ∗∗∗

(0.700) (0.195) (0.768) (0.706) (0.271) (0.822) 

Session Controls No No No Yes Yes Yes 

F 3.22 6.54 3.80 34.99 10.73 170.23 

p 0.04 0.01 0.01 0.00 0.00 0.00 

N 144 130 130 144 130 130 

Table G.2 

Effect of cognitive proxy on payoff-relevant variables: censored (tobit) regressions, robust standard er- 

rors in brackets, clustered on unique subject group. Signal Compliance Index ( SCI i ) right-censored at 1, 

Total expected payoff POI i right-censored at 0.7604. Specifications (1)-(3) and (4)-(6) without and with 

inclusion of session dummies. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

Signal Compliance Index SCI i (1) (2) (3) (4) (5) (6) 

female 0.015 0.019 0.007 0.014 

(0.029) (0.035) (0.027) (0.033) 

age 0.030 ∗∗∗ 0.026 ∗∗ 0.030 ∗∗∗ 0.026 ∗∗

(0.011) (0.011) (0.011) (0.012) 

GRE Q 0.006 ∗ 0.006 ∗ 0.005 0.005 

(0.003) (0.003) (0.003) (0.003) 

_cons 0.456 ∗∗ 0.116 −0.375 0.464 ∗∗ 0.309 −0.215 

(0.211) (0.480) (0.584) (0.217) (0.500) (0.613) 

Session Controls No No No Yes Yes Yes 

F 4.48 3.85 2.60 2.31 16.08 5.62 

p 0.01 0.05 0.05 0.02 0.00 0.00 

N 144 136 136 144 136 136 

Total Expected Payoff POI i (1) (2) (3) (4) (5) (6) 

female 0.007 0.008 0.005 0.008 

(0.009) (0.010) (0.008) (0.009) 

age 0.007 ∗ 0.005 0.006 ∗∗ 0.005 

(0.004) (0.004) (0.003) (0.004) 

GRE Q 0.003 ∗∗ 0.003 ∗∗ 0.003 ∗∗ 0.003 ∗∗

(0.001) (0.001) (0.001) (0.001) 

_cons 0.567 ∗∗∗ 0.254 0.159 0.579 ∗∗∗ 0.270 0.175 

(0.076) (0.200) (0.233) (0.063) (0.202) (0.239) 

Session Controls No No No Yes Yes Yes 

F 1.85 5.17 1.91 1.59 3.07 14.81 

p 0.16 0.02 0.13 0.12 0.00 0.00 

N 144 136 136 144 136 136 

 

 

 

 

 

Result G1. A proxy for behavioral bias is correlated with the Lone Wolf Index. In addition, on average, young and male

subjects display a greater tendency towards being Lone Wolves. 

As Table G.2 shows, in addition to age, subjects’ cognitive abilities (proxied by the average quantitative GRE score associ- 

ated with their college major) indeed have an effect on both payoff-relevant indices. The effect of age is more pronounced

for period 1 average payoff (which is linear in the Signal Compliance Index, SCI i ), while the effect of the cognitive proxy

GRE Q dominates for the period 2 payoff (given by total expected payoff, P OI i ). 

Result G2. Individual differences in payoff-relevant variables can be explained by age and a proxy for cognitive abilities. 

We further double check whether our results are robust to alternative proxy specifications. As Table G.3 shows, when 

cognitive proxies are used as explanatory variables in addition to demographic characteristics, the cognitive measures have 

an effect on payoff-relevant variables, age has further effect on signal compliance, while information bias is correlated only 

with gender. The SAT M 

scores (which, as Fig. F.1 shows, are coarser than GRE Q scores) are worse at explaining subjects’

payoff-relevant indices than GRE Q , and thus is not used in the main analysis. The best measure is CRT MCQ , however it is not

available for a substantial number of subjects. 
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Table G.3 

Censored (tobit) regressions, robust standard errors clustered on groups in brackets, without and with session dummies. 

Top panel: Signal Compliance Index SCI i right-censored at 1. Middle panel: Total Expected Payoff POI i right-censored at 

0.7604; Bottom panel: Lone Wolf Index LW I i left-censored at −1 and right-censored at 1. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , 
∗∗∗ p-value < 0 . 01 .) . 

(a) SCI i (1) (2) (3) (4) (5) (6) 

female 0.019 0.019 0.015 0.014 0.011 0.013 

(0.035) (0.032) (0.023) (0.033) (0.030) (0.023) 

age 0.026 ∗∗ 0.030 ∗∗∗ 0.012 ∗∗ 0.026 ∗∗ 0.030 ∗∗∗ 0.013 ∗∗

(0.011) (0.011) (0.006) (0.012) (0.011) (0.006) 

GRE Q 0.006 ∗ 0.005 

(0.003) (0.003) 

SAT M 0.001 0.001 

(0.001) (0.001) 

CRT MCQ 0.029 ∗∗ 0.030 ∗∗

(0.013) (0.013) 

_cons −0.375 0.106 0.740 ∗∗∗ −0.215 0.132 0.717 ∗∗∗

(0.584) (0.461) (0.109) (0.613) (0.487) (0.132) 

Session Controls No No No Yes Yes Yes 

F 2.60 2.86 8.52 5.62 6.40 4.71 

p 0.05 0.04 0.00 0.00 0.00 0.00 

N 136 144 90 136 144 90 

(b) POI i (1) (2) (3) (4) (5) (6) 

female 0.008 0.009 0.017 0.008 0.007 0.016 

(0.010) (0.011) (0.012) (0.009) (0.010) (0.012) 

age 0.005 0.006 ∗ 0.003 0.005 0.005 ∗ 0.003 

(0.004) (0.004) (0.004) (0.004) (0.003) (0.004) 

GRE Q 0.003 ∗∗ 0.003 ∗∗

(0.001) (0.001) 

SAT M 0.000 ∗ 0.000 

(0.000) (0.000) 

CRT MCQ 0.018 ∗∗∗ 0.018 ∗∗∗

(0.002) (0.002) 

_cons 0.159 0.387 ∗∗ 0.625 ∗∗∗ 0.175 0.398 ∗∗ 0.625 ∗∗∗

(0.233) (0.151) (0.082) (0.239) (0.152) (0.081) 

Session Controls No No No Yes Yes Yes 

F 1.91 1.58 26.55 14.81 0.98 26.35 

p 0.13 0.20 0.00 0.00 0.46 0.00 

N 136 144 90 136 144 90 

(c) LW I i (1) (2) (3) (4) (5) (6) 

female -0.215 ∗∗ -0.207 ∗∗ -0.218 ∗∗ -0.217 ∗∗ -0.212 ∗∗ -0.224 ∗∗

(0.091) (0.090) (0.098) (0.083) (0.082) (0.088) 

age -0.036 -0.052 -0.076 -0.035 -0.049 -0.072 

(0.033) (0.033) (0.046) (0.033) (0.034) (0.045) 

GRE Q -0.007 -0.009 

(0.015) (0.017) 

SAT M -0.001 -0.002 

(0.002) (0.002) 

CRT MCQ -0.004 -0.004 

(0.072) (0.072) 

_cons 1.841 1.793 1.659 ∗ 2.230 2.154 1.686 ∗

(2.587) (1.340) (0.978) (2.800) (1.469) (0.913) 

Session Controls No No No Yes Yes Yes 

F 2.00 2.28 1.92 45.82 25.70 84.04 

p 0.12 0.08 0.13 0.00 0.00 0.00 

N 136 144 90 136 144 90 

 

As Table G.4 shows, when, instead, behavioral trait proxies are used as explanatory variables, both payoff relevant vari- 

ables, Signal Compliance Index SCI I and Pay Optimality Index P OI i , tend to correlate with age, as well as the “Mistrust” trait

scale (though for P OI i , session effects are important, as indicated by the penultimate line reporting the significance of F 

statistics). In contrast, the information bias captured by the Lone Wolf Index LW I i negatively correlates with age (weakly), 

and with the “Understanding” scale (strongly). Male subjects tend to have a stronger bias toward choosing private informa- 

tion. In what follows, we thus will only use “Understanding” and “Mistrust” scales as individual trait proxies. The combined 

effect of both cognitive and individual traits variables is presented in Table G.5 . 

Result G3. Payoff relevant variables tend to be correlated with age, cognitive proxies GRE Q and CRT MCQ , and the “Mistrust”

trait scale. Information bias tends to be negatively correlated with age, being female, and with the “Understanding” trait 
scale. 
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Table G.4 

Censored (tobit) regressions, robust standard errors clustered on groups in brackets, without and with session dummies. 

Top panel: Signal Compliance Index SCI i right-censored at 1. Middle panel: Total Expected Payoff POI i right-censored at 

0.7604; Bottom panel: Lone Wolf Index LW I i left-censored at −1 and right-censored at 1. ( ∗ p-value < 0 . 10 , ∗∗ p-value < 0 . 05 , 
∗∗∗ p-value < 0 . 01 .) . 

(a) SCI i (1) (2) (3) (4) (5) (6) 

female −0.006 −0.004 −0.001 −0.014 −0.010 −0.007 

(0.018) (0.017) (0.019) (0.019) (0.018) (0.020) 

age 0.020 ∗∗∗ 0.020 ∗∗∗ 0.022 ∗∗∗ 0.022 ∗∗∗ 0.022 ∗∗∗ 0.024 ∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.008) 

Understanding 0.001 −0.003 0.004 −0.002 

(0.011) (0.012) (0.012) (0.014) 

Mistrust 0.023 ∗∗ 0.017 ∗ 0.023 ∗∗ 0.016 ∗

(0.011) (0.009) (0.010) (0.009) 

OwnWay −0.007 −0.006 

(0.012) (0.013) 

Curiosity −0.011 −0.013 

(0.012) (0.012) 

Rivalry −0.010 −0.015 

(0.015) (0.014) 

_cons 0.643 ∗∗∗ 0.650 ∗∗∗ 0.541 ∗∗∗ 0.600 ∗∗∗ 0.615 ∗∗∗ 0.512 ∗∗∗

(0.158) (0.137) (0.152) (0.184) (0.162) (0.164) 

Session Controls No No No Yes Yes Yes 

F 1.77 3.30 3.62 33.49 5.35 12.90 

p 0.10 0.02 0.02 0.00 0.00 0.00 

N 130 130 130 130 130 130 

(b) POI i (1) (2) (3) (4) (5) (6) 

female 0.004 0.003 0.005 0.002 0.002 0.004 

(0.008) (0.009) (0.009) (0.007) (0.008) (0.008) 

age 0.008 ∗∗ 0.006 ∗ 0.007 ∗ 0.007 ∗∗ 0.006 ∗ 0.006 ∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 

Understanding 0.002 0.002 0.004 0.002 

(0.007) (0.006) (0.007) (0.006) 

Mistrust 0.010 ∗ 0.007 0.010 ∗∗ 0.006 

(0.005) (0.005) (0.004) (0.004) 

OwnWay −0.002 −0.004 

(0.006) (0.006) 

Curiosity 0.005 0.003 

(0.004) (0.004) 

Rivalry −0.008 −0.009 

(0.007) (0.007) 

_cons 0.508 ∗∗∗ 0.572 ∗∗∗ 0.541 ∗∗∗ 0.532 ∗∗∗ 0.579 ∗∗∗ 0.559 ∗∗∗

(0.094) (0.079) (0.086) (0.088) (0.078) (0.073) 

Session Controls No No No Yes Yes Yes 

F 1.76 1.08 1.50 83.84 1.22 1.76 

p 0.10 0.36 0.22 0.00 0.29 0.08 

N 130 130 130 130 130 130 

(c) LW I i (1) (2) (3) (4) (5) (6) 

female −0.143 −0.186 ∗∗ −0.186 ∗ −0.129 −0.186 ∗∗ −0.181 ∗

(0.096) (0.089) (0.101) (0.092) (0.088) (0.096) 

age −0.058 ∗ −0.065 ∗∗ −0.050 −0.062 ∗ −0.067 ∗∗ −0.049 

(0.033) (0.032) (0.032) (0.033) (0.032) (0.031) 

Understanding −0.152 ∗∗ −0.133 ∗∗∗ −0.170 ∗∗ −0.143 ∗∗∗

(0.060) (0.048) (0.065) (0.052) 

Mistrust 0.074 0.077 0.073 0.077 

(0.083) (0.080) (0.080) (0.080) 

OwnWay −0.003 −0.027 

(0.070) (0.066) 

Curiosity −0.007 0.006 

(0.060) (0.063) 

Rivalry 0.056 0.079 

(0.051) (0.059) 

_cons 1.636 ∗ 1.975 ∗∗ 0.875 2.027 ∗∗ 2.253 ∗∗∗ 1.002 

(0.896) (0.768) (0.807) (0.953) (0.822) (0.801) 

Session Controls No No No Yes Yes Yes 

F 2.31 3.80 2.64 131.05 170.23 109.44 

p 0.03 0.01 0.05 0.00 0.00 0.00 

N 130 130 130 130 130 130 
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Table G.5 

Censored (tobit) regressions, robust standard errors clustered on groups in brackets, without and with session dummies. 

Signal Compliance Index SCI i right-censored at 1; Total Expected Payoff POI i right-censored at 0.7604; Lone Wolf Index 

LW I i left-censored at −1 and right-censored at 1. Top panel: using GRE Q ; bottom panel: using CRT MCQ . ( ∗ p-value < 0 . 10 , 
∗∗ p-value < 0 . 05 , ∗∗∗ p-value < 0 . 01 .) . 

(a) 

SCI i POI i LW I i 

(1) (2) (3) (4) (5) (6) 

female 0.004 0.001 0.006 0.005 −0.215 ∗∗ −0.204 ∗∗

(0.023) (0.024) (0.009) (0.008) (0.096) (0.094) 

age 0.021 ∗∗ 0.023 ∗∗ 0.006 0.005 −0.052 ∗ −0.054 ∗

(0.009) (0.009) (0.004) (0.004) (0.031) (0.029) 

GRE Q 0.001 −0.001 0.003 ∗ 0.002 ∗ −0.003 −0.006 

(0.003) (0.003) (0.001) (0.001) (0.015) (0.016) 

Mistrust 0.015 0.018 ∗∗ 0.004 0.002 

(0.009) (0.009) (0.005) (0.004) 

Understanding −0.139 ∗∗∗ −0.141 ∗∗∗

(0.045) (0.047) 

_cons 0.380 0.656 0.184 0.234 2.261 2.794 

(0.464) (0.513) (0.251) (0.242) (2.438) (2.694) 

Session Controls No Yes No Yes No Yes 

F 1.98 50.61 1.24 2.30 4.02 108.42 

p 0.10 0.00 0.30 0.01 0.00 0.00 

N 124 124 124 124 124 124 

(b) SCI i POI i LW I i 

(1) (2) (3) (4) (5) (6) 

female 0.027 0.022 0.021 0.020 −0.241 ∗∗ −0.230 ∗∗∗

(0.027) (0.029) (0.013) (0.013) (0.096) (0.083) 

age 0.013 ∗ 0.015 ∗∗ 0.003 0.003 −0.102 ∗∗ −0.094 ∗∗

(0.007) (0.008) (0.005) (0.004) (0.043) (0.041) 

CRT MCQ 0.033 ∗∗ 0.035 ∗∗ 0.019 ∗∗∗ 0.018 ∗∗∗ −0.005 −0.011 

(0.015) (0.016) (0.003) (0.003) (0.081) (0.078) 

Mistrust 0.018 ∗ 0.019 ∗∗ 0.005 0.005 

(0.009) (0.009) (0.003) (0.003) 

Understanding −0.106 ∗∗ −0.107 ∗

(0.051) (0.054) 

_cons 0.654 ∗∗∗ 0.599 ∗∗∗ 0.602 ∗∗∗ 0.605 ∗∗∗ 2.718 ∗∗ 2.677 ∗∗

(0.150) (0.166) (0.094) (0.094) (1.066) (1.063) 

Session Controls No Yes No Yes No Yes 

F 7.15 27.98 17.13 25.07 2.69 89.36 

p 0.00 0.00 0.00 0.00 0.04 0.00 

N 79 79 79 79 79 79 
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