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1. Introduction

First-principle calculations and simulations have emerged as a third scientific tool on par with
experiment and theory. Since the seminal work of Hohenberg and Kohn in establishing the foun-
dation (proving the existence of a unique functional that gives the lowest value when a system is
at its ground state) of density functional theory (DFT) [1], and the creation of a practical cal-
culation scheme (on finding the ground-state energy and corresponding electronic charge density)
by Kohn and Sham [2], DFT has become an indispensable tool for understanding and predicting
material properties. The idea that the ground-state energy is a functional of the electronic charge
density leads to a great simplification of the corresponding many-body Schrödinger equation. The
minimization of the functional results in the Kohn–Sham equations [2].

The “routinely solvable” system size for materials has increased from dozens of atoms in the
1990s to thousands of atoms nowadays, thanks to the theoretical developments and the advances
in computing power. Real-space pseudopotential DFT along with the Chebyshev-filtered subspace
iteration (CheFSI) algorithm has shown the ability to solve the electronic structures of systems
containing up to 20,000 atoms (e.g., a silicon nanocrystal, Si20389H3076 [3]) [4, 5].

The bottleneck of DFT calculation often rests on an eigensolver. However, it is now widely
recognized that during a self-consistent-field (SCF) calculation, the linear eigenvalue problems do
not need to be solved to full accuracy in the early SCF iterations when the electronic charge density
is far from converged [6]. The CheFSI algorithm explores this characteristic of SCF calculations
and focuses on improving the wave functions and electronic charge density at the same time over
SCF iterations. This strategy often proves to be time-saving when solving the nonlinear eigenvalue
problem defined by the Kohn–Sham equations.

The CheFSI algorithm has been adopted in several other large-scale DFT based electronic
structure analysis software such as DGDFT [7], SPARC [8], and FE-DFT [9]. A library that
implements a Chebyshev Accelerated Subspace Iteration has recently become available [10]. In
2016 Michaud-Rioux et al. also demonstrated that a combination of CheFSI and their partial
Rayleigh–Ritz method enables the routine calculation of thousands of atoms with only moderate
computational resources [11]. The CheFSI algorithm is applied by Banerjee et al. [12] to not
only the original Kohn–Sham Hamiltonian, but also the projected subspace problem. It is even
employed in introductory textbooks [13].

Here, we use PARSEC, a DFT software package featuring real-space calculations and the pseu-
dopotential approximation, to solve the Kohn–Sham equations [14]. The real-space representa-
tion of the wave functions has the advantages of making a parallel implementation and software
development relatively straightforward [4]. Furthermore, pseudopotential theory and techniques
encapsulate the chemically inert core electrons into the ion core and consider them as part of the
external electric field felt by valence electrons. This enables us to solve the Kohn–Sham equations
only for the valence electrons, greatly reducing the computational demands.

CheFSI has proven to be an effective way for approximating the invariant subspace associated
with the occupied states in a real-space DFT calculation algorithm. The advantages of using
Chebyshev polynomial filtering are: 1) It only requires multiplying the Hamiltonian matrix, H,
with vectors; 2) The three-term recurrence of the Chebyshev polynomials makes the filtering process
efficient in terms of memory footprint; 3) Ritz vectors from a previous SCF iteration can be used
as the starting guess for the desired eigenvectors in the current SCF iteration; 4) CheFSI is a block
method that increases concurrency and memory efficiency.
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For small to medium sized problems, the time cost of CheFSI is dominated by the multiplica-
tion of H with vectors. These operations can be efficiently parallelized. However, for large systems
the Rayleigh–Ritz procedure used to extract the desired eigenvalue approximation and the other
dense linear algebra operations required to construct and analyze the projected problem become
a bottleneck. Spectrum slicing (SS) methods have been proposed to address this issue. Spectrum
slicing refers to dividing the spectrum of interest into several spectral slices and computing approx-
imate eigenpairs within each slice simultaneously. Although the SS methods can clearly reduce
the overhead associated with solving the projected subspace problem (because each slice contains
a much smaller subset of the eigenvalues), it needs to compute interior eigenvalues that may be
clustered. A different type of polynomial filters needs to be constructed to amplify eigenvalues
within each slice, just as a Chebyshev polynomial is used to amplify eigenvalues at the left end of
the spectrum in the CheFSI method. The degree of these types of polynomials, which we will refer
to as “bandpass filter polynomials,” may be much higher than that of the Chebyshev polynomials
used in CheFSI when eigenvalues to be computed are very close to each other.

Previously, a thick-restart Lanczos algorithm was proposed to compute interior eigenvalues
filtered by bandpass filter polynomials [15]. The method converges fast, but has limited levels of
concurrency. In this paper, we propose using a subspace iteration method to compute interior
eigenpairs. Although the subspace iteration method tends to have a slower convergence rate,
especially at the beginning of a SCF calculation when no good initial guess to the approximate
eigenpairs is available, it is a block method that exhibits multiple levels of concurrency that lead
to superior parallel scalability.

To address the potential slow convergence of the subspace iteration method, we propose using
CheFSI in the first few SCF iterations and then transitioning to SS based polynomial filtering
in the subsequent SCF iterations. We show by numerical examples that this hybrid polynomial
filtering scheme is effective.

One of the keys to achieving scalable performance in SS is an optimal partition of the desired
part of a spectrum. The partition must take into account the distribution of eigenvalues (which
can be obtained from either an estimated density of states or approximated eigenvalues computed
in a previous SCF iteration) as well as load balance needs in a parallel implementation. We present
a practical way to perform such a partitioning.

In Section 2, we briefly review the governing equations of Kohn–Sham DFT eigenvalue problems.
We describe how to perform polynomial filtering in Section 3. In particular, we review the major
computational components of both CheFSI and SS algorithms. We discuss how to construct both
Cheybshev and bandpass filter polynomials for computing eigenpairs at the low end and within a
spectral slice respectively. Furthermore, we examine how to partition the spectrum into spectral
slices using an estimated density of states obtained from a Lanczos iteration, and refine the partition
using Ritz values obtained from previous SCF iterations. In Section 4, we discuss a number of
issues related to an efficient implementation of polynomial filtering algorithms. These include
the use of an appropriate data layout for carrying out the computation on a two-dimensional
(2D) process grid, how to achieve good load balance, and the type of communications involved in
the parallel implementation. We present a number of computational examples in Section 5. In
particular, we show the performance characteristics of both CheFSI and SS, and note the relative
cost of Hamiltonian vector multiplications and dense matrix computations performed within a
subspace. We demonstrate that rapid SCF convergence can be achieved in a hybrid CheFSI and
SS scheme when the degrees of bandpass filters used in SS are sufficiently high for a number of
test problems. These results indicate that the use of subspace iteration and bandpass filters can
produce sufficiently accurate approximations to the desired eigenpairs. We demonstrate that SS
has much better strong parallel scalability compared with CheFSI for a sufficiently large problem
when it is performed on an adequately large number of compute cores. In fact, for a large test
problem, we show the crossover point (in terms of computational resources) beyond which the time
cost used by SS is lower than that used by CheFSI.

2. Kohn–Sham Equations

The Kohn–Sham equations are used to reformulate a quantum many-body problem of electrons
in molecules and solids in terms of a system of single-particle equations (in atomic units) of the
form
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[
−1

2
∇2 + Vion(r) + VH[n(r)] + Vxc[n(r)]

]
ψi(r) = εiψi(r), (1)

where Vion is the external ionic potential experienced by an electron, VH the Hartree potential that
describes electron repulsion, and Vxc the exchange-correlation potential that accounts for many-
body effects. The single-particle orbital ψi and the corresponding energy εi form the ith eigenpair
of the Kohn–Sham Hamiltonian HKS = − 1

2∇
2+Vion(r)+VH[n(r)]+Vxc[n(r)], which is a functional

of the ground-state electronic charge density n(r) defined by

n(r) = 2

Ns∑
i=1

fi|ψi(r)|2, (2)

where the prefactor 2 accounts for electronic spins (which we do not distinguish in this work), Ns
is the number of states being calculated, and fi is the Fermi–Dirac distribution function:

f(t) =
1

exp((t− εF)/kBT ) + 1
(3)

evaluated at the single-particle energy εi. Here, kB is the Boltzmann constant, and T is the
temperature, which is typically set to 80 K through our simulations. This issues proper occupancy
for nearly degenerate states. The eigenvalues εi’s are ordered in ascending order, i.e., ε1 ≤ ε2 ≤ · · · .
The first Nocc eigenpairs, (ψi, εi), i = 1, 2, ..., Nocc, where Nocc is the number of occupied states,
are known as the occupied states, and all others are known as the unoccupied states. We assume
spin unpolarized states.

If there is a spectral gap between the occupied and unoccupied states, the Fermi level εF is
between εNocc

and εNocc+1 and ensures the electronic charge density n(r) integrates to 2Nocc. When
the temperature T is relatively low, f(t) decreases from 1 to 0 rapidly near the Fermi level. As a
result, the number of effective terms Ns to be summed in (2) is slightly larger than the number of
occupied states. For metallic systems no gap occurs between the occupied and unoccupied states.
For finite systems, a vanishingly small gap might occur. A larger T may be needed to ensure that
the Kohn–Sham problem is well posed by allowing the admixtures of states near the Fermi level.
In this case, Ns may be much larger than Nocc, i.e., more states are included in the summation in
(2) to make sure the system is neutral.

The Kohn–Sham equations define a nonlinear eigenvalue problem. The Hamiltonian depends on
the electronic charge density, which is in turn defined in terms of the eigenpairs of the Hamiltonian.
In practice, the solution to (1) is computed iteratively by solving a sequence of linear eigenvalue
problems defined by a sequence of electronic charge densities n(i)’s that become self-consistent at
convergence, i.e., the electronic charge density n(i) obtained from the eigenvectors of HKS(n(i−1))
is the same, or within some predefined tolerance, as n(i−1) for some i.

When HKS is discretized by a real-space method such as finite difference, the discretized HKS is
extremely sparse. The dimension of the discretized Hamiltonian is much larger than the number of
eigenstates Ns to be computed. Therefore, an iterative method is preferred to compute the desired
eigenstates.

3. Polynomial Filtering

There are a number of iterative methods for solving large sparse eigenvalue problems. In the
early days, PARSEC first used the implicitly restarted Lanczos (IRL) algorithm implemented in
the ARPACK software [16, 14]. Although the method is robust and accurate, its computational
cost increases rapidly with respect to the number of eigenstates need to be computed. This is
partly due to the fact that more iterations and restarts are needed to converge eigenvalues deep
inside the spectrum, e.g., near the Fermi level. Moreover, IRL can only make use of a good initial
guess to a single eigenvector. This feature makes it less effective for subsequent SCF iterations in
which a good initial guess to the entire subspace associated with the occupied states is available.
Furthermore, IRL is not a block method, i.e., in IRL the Hamiltonian can be multiplied with only
one vector at a time. This makes it less scalable on a parallel machine.

Both the LOBPCG [17] and Davidson algorithms [18] are block algorithms that can take ad-
vantage of a good initial guess of the subspace associated with the occupied states. However,
without a good preconditioner, these methods tend to converge slowly. For real-space methods,
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it is generally difficult to construct an effective preconditioner. Thus these methods are less ef-
fective. Furthermore, these methods are less stable when a large number of eigenpairs are to be
computed [19].

The use of polynomial filtering for computing eigenvalues of a large sparse matrix dates back
over 50 years to the work of Stiefel [20] and was carefully examined by Yang [21]. The innovative
use of Chebyshev filtering for solving the Kohn–Sham eigenvalue problem was first developed by
Zhou et al. [22], where effective spectral bounds were developed to construct an effective Chebyshev
filtering polynomial. The CheFSI was used to compute the invariant subspace associated with the
occupied states instead of eigenvectors explicitly. The success of Zhou et al. brought a speed-up
of five to ten times compared to other eigensolvers, and marked the beginning of the prevalence of
the CheFSI method in electronic structure calculations.

We review the CheFSI method in Section 3.1, and briefly discuss how to construct a bandpass
polynomial filter to amplify eigencomponents associated with interior eigenvalues in Section 3.2.
We explain why it is a good idea to combine spectrum slicing using bandpass polynomials with
CheFSI in a hybrid polynomial filtering algorithm for accelerating the SCF iteration in Section 3.3.

3.1. Chebyshev-filtered subspace iteration
An mth-degree Chebyshev polynomial of the first kind can be defined recursively as

Tm(t) = 2tTm−1(t)− Tm−2(t), (4)

with T0(t) = 1 and T1(t) = t. The magnitude of Tm(t) is bounded by 1 within [−1, 1] and grows
rapidly outside of this interval. Figure 1 shows Chebyshev polynomials of various degrees.
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Figure 1: Chebyshev polynomials of the first kind.

We define the estimated lower and upper bounds of the spectrum of H, λlb and λub, and an
estimated Fermi level, εF. By mapping the unwanted eigenvalues (e.g., the unoccupied states) of the
Kohn–Sham Hamiltonian H enclosed by [εF, λub] to [−1, 1] through the linear transformation (t−
c)/e, where c = (εF+λub)/2 and e = (λub−εF)/2, we can use T̂m(H) = Tm((H−cI)/e)v to amplify
the eigenvector components in v that correspond to eigenvalues outside of [εF, λub]. Applying
Tm((H − cI)/e) repeatedly to a block of vectors V filters out the eigenvectors associated with
eigenvalues in [εF, λub]. The desired eigenpairs can be obtained through the standard Rayleigh–
Ritz procedure [23] described in Algorithm 3.

Owing to the three-term recurrence in (4), W = T̂m(H)V can be computed recursively without
forming T̂m(H) explicitly in advance. Algorithm 1 describes how this step is carried out in detail.
To maintain numerical stability, we orthonormalize vectors in W . The orthonormalization can be
performed by a (modified) Gram–Schmidt process or by a Householder transformation based QR
factorization [24].
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Although these algorithms can achieve high accuracy, they are not the most efficient ones,
especially when implemented on a distributed, parallel computer. We choose the Cholesky QR
algorithm described in Algorithm 2 to perform orthonormalization because Algorithm 2 can make
use of highly efficient matrix computation kernels such as matrix-matrix multiplication, Choleksy
factorization, and triangular substitution with multiple right-hand sides. We perform a fixed
number of Chebyshev polynomial filtering (Algorithm 1) and orthonormalization (Algorithm 2)
steps before using Rayleigh–Ritz procedure to extract approximations to the desired eigenvalues
and eigenvectors. The overall Chebyshev-filtered subspace iteration procedure is described in
Algorithm 4.

In Algorithm 1, the required inputs are λlb, λub, εF, and a filter degree, m. In the first SCF
iteration, λlb and λub can be calculated by running a few Lanczos iterations, and εF is typically
set to (2λlb + λub)/3. In the subsequent SCF iterations, λlb can be replaced by the lowest Ritz
value while εF can be computed by solving an equation of the conservation of valence electrons,
i.e., Ne =

∫
n(r)dr, where Ne is the total number of valence electrons. See the work of Saad [25]

and Zhou et al. [5] for more details on Chebyshev filtering.
We note that for systems with a relatively large gap between the occupied and unoccupied

states (e.g., insulators), it may not be necessary to perform the Rayleigh–Ritz procedure because
the basis vectors ψi’s used in (2) can be any orthonormal basis vectors that span the same invariant
subspace defined by the occupied states. For gapless systems (metals) or systems with a relatively
small energy gap, approximate eigenvalues near the gap are needed to obtain the occupancy defined
in (3). Moreover, the use of the Rayleigh–Ritz procedure may also allow us to lock eigenvectors
that have already converged to reduce the computational cost of subsequent subspace iterations.

Algorithm 1 Chebyshev filtering
1: procedure W = ChebyFilter(H, V , m, εF, λub, λlb)
2: e = (λub − εF)/2
3: c = (λub + εF)/2
4: σ = e/(c− λlb)
5: τ = 2/σ
6: W = (HV − cV )(σ/e)
7: for i = 2→ m do
8: σnew = 1/(τ − σ)
9: Wt = (HV − cV )(2σnew/e)− (σσnew)V

10: V = W
11: W = Wt

12: σ = σnew

Algorithm 2 Cholesky QR
1: procedure V = Orth(W )
2: A = WTW . A is positive definite
3: Find an upper triangular R such that A = RTR . Cholesky factorization
4: V = WR−1

Algorithm 3 Rayleigh–Ritz procedure
1: procedure (V ,D) = RayleighRitz(H, V )
2: A = V THV
3: Compute Q and D such that AQ = QD and QTQ = I. . D has the Ritz values
4: V = V Q

3.2. Spectrum slicing
When the number of eigenpairs to be computed (usually the occupied states plus some unoccu-

pied states), Ns, is relatively small (e.g., less than a thousand), the computational cost of CheFSI
is dominated by sparse matrix-vector multiplications HV . By making these multiplications scal-
able through the distribution of vectors in V on a 2D process grid, we can compute the desired
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Algorithm 4 Chebyshev-filtered subspace iteration
1: procedure (V,D) = ChebySubIt(H, V , m, εF, λub, λlb, maxiter)
2: for iter = 1 → maxiter do
3: W = ChebyFilter(H, V , m, εF, λub, λlb);
4: V = Orth(W );
5: (V ,D) = RayleighRitz(H, V );

eigenpairs efficiently. However, as the system size increases, the number of eigenpairs Ns becomes
very large. As a result, orthonormalization and Rayleigh–Ritz procedure, which scale cubically
with respect to Ns, start to dominate the computational cost. Furthermore, because these types of
computation involve more collective communication among all processes, the overall computation
is difficult to scale to a large number of compute cores.

To address this difficulty, a spectrum slicing algorithm was proposed by Schofield et al. [26] to
divide the eigenvalues to be computed into several subintervals (i.e., slices) that can be examined
simultaneously. Eigenvalues within each subinterval can still be computed by a polynomial filtered
iterative method. However, with the exception of the leftmost subinterval, a different type of filter
needs to be constructed to focus on eigenvalues within the other subintervals.

Schofield et al. [26] and Li et al. [15] implemented methods for constructing polynomial filters
pm(t) for computing eigenvalues within an interval [a, b]. A thick-restart Lanczos iteration is used
to compute the largest eigenpairs of pm(H). Although these studies examined several key issues
of the SS algorithm, and provided a proof of concept, a few important details such as how to
partition the spectrum to achieve scalable performance on a large number of compute cores were
not addressed.

Here we examine several implementation details that are key to achieving scalable performance.
Instead of using a thick-restarted Lanczos iteration method, which cannot take full advantage of a
2D process grid to compute eigenpairs within each interval, we propose to use a subspace iteration
method to compute the largest eigenpairs of pm(H). However, because the subspace iteration
method typically has a slower convergence rate, a high degree polynomial or a large number of
iterations may be required.

3.2.1. Spectrum partition
Although spectrum slicing is conceptually easy to understand, there are a number of issues that

we must address in order to make it a practical computational method. The first pertains to the
partition of a spectrum into distinct slices that can be examined in parallel. Because we often do
not know how the eigenvalues are distributed in advance of the solution, this is not a trivial task.

One way to estimate the distribution of eigenvalues is to use the Lanczos algorithm [27]. We
use an ensemble of ` randomly generated vectors v(j), j = 1, 2, ...`, with Gaussian independent
and identically distributed elements to start ` k-step Lanczos iterations, which produce ` k × k
tridiagonal matrices T (j), j = 1, 2, ..., `. If the eigenvalues of T (j) are denoted by θ(j)i , i = 1, 2, ..., k,
and the first component of the eigenvector associated with θ(j)i is denoted by τ (j)i , an approximation
to the density of states can be expressed as

d(t) =
∑̀
j=1

k∑
i=1

(τ
(j)
i )2 exp

(
− (t− θ(j)i )2

σ
(j)
i

)
, (5)

where σ(j)
i ’s are scaling parameters that should be chosen carefully [27]. Note that the ` Lanczos

runs can be carried out in parallel on different process groups.
Although the function d(t) describes the distribution of eigenvalues, the value d(t) for a specific

t is not so useful. It is more useful to work with the cumulative density of states defined as

g(t) ≡
∫ t

−∞
d(s)ds =

√
π

2

∑̀
j=1

k∑
i=1

(τ
(j)
i )2σ

(j)
i

[
erf

(
t− θ(j)i
σi

)
+ 1

]
. (6)

In particular, given two real numbers t1 and t2 with t1 < t2, g(t2) − g(t1) yields the number of
eigenvalues within the interval [t1, t2).

The strategy we use to partition the spectrum of interest is to divide the interval [a, b], where a
is a lower bound of the eigenvalues of H and b is an (estimated) upper bound of the occupied states,
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uniformly into p slices of equal size [li, ui), i = 1, 2, ..., p, where l1 = a, up = b and li = ui−1 for
i > 1, ui = li+1 for i < p. We call this partition scheme a uniform partition. The optimal number
of slices p depends on a number of factors, which we will discuss later in Section 4.2. The uniform
partition will also need to be modified to achieve good load balance in a parallel implementation.

In order to avoid missing eigenpairs in each slice [li, ui), we construct the polynomial on a
slightly larger interval [li − δ, ui + δ], where δ is typically chosen to be a fraction of the width of a
slice. (We use δ = (ui − li)/10 in our simulations.)

We use ci = g(ui + δ)− g(li − δ) to estimate the number of eigenvalues within that augmented
interval. Note that some of the eigenvalues within [li−δ, ui+δ) overlap with those in [li−1−δ, ui−1+
δ) and [li+1−δ, ui+1+δ), as shown in Figure 2. Once the eigenvalues in each slice are computed, we
use the slice bounds li and ui to select eigenvalues and eigenvectors to be included in the occupancy
and electronic charge density calculation. An eigenvalue in the overlap regions is possibly captured
by both adjacent slices, but will be counted by only one of the two adjacent slices when the SCF
calculation approaches convergence. The overlaps between adjacent augmented slices allow us to
eliminate the need to orthogonalize approximate eigenvectors computed in different slices, which
requires additional data communication.

Figure 2: (a) An illustration of uniform partitioning. (b) Extension of the bounds of a filter by δ in both directions,
and overlaps (shaded regions) of 2δ between adjacent slices.

Based on the eigenvalue count ci and the degree of the bandpass filter used to amplify eigen-
values within the ith slice, we assign an appropriate number of processes to each slice to balance
the computational load among different processes. We will discuss the load balance details in
Section 4.2.

An alternative way to partition a spectrum is to determine values li and ui such that g(ui)−g(li)
are approximately the same for all i’s. This approach will yield slices of different spectral widths
even though each slice contains nearly the same number of eigenvalues. The potential difficulty with
this approach is that bandpass filters of drastically different degrees may be needed for different
slices (see the next section), thereby making load balancing more difficult to achieve.

We should point out that the use of the Lanczos-based density of states estimation to partition
the spectrum is only needed in the first few SCF iterations. When the Ritz values computed from
each spectral slice are sufficiently accurate, we can use them to refine the spectrum partition. Such
a partition will not change much in subsequent SCF iterations.

3.2.2. Filter polynomial construction
The bandpass filter polynomials we construct can have a large impact on the convergence of

the SS algorithm. An ideal filter F (t) should map the eigenvalues within a spectral slice [l, u] to
a much larger value than the values of F outside of this interval (but within [λmin, λmax]. If the
interval [l, u] is sufficiently large, the bandpass filters proposed by Schofield et al. [26] generally
works well. These bandpass filter functions are expanded in terms of Chebyshev polynomials. To
simplify the discussion, let us assume the eigenvalues of H are within [−1, 1], and we are interested
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in the eigenvalues within an interval [l, u] with −1 < l < u < 1. With αk = π
k+2 , the following

polynomial filter

F (t) ≈ p(t) =

k∑
i=0

γig
k
i Ti(t), (7)

where

γi =

{
1
π (cos−1(l)− cos−1(u)) as i = 0,
2
π ( sin(i cos−1(l))−sin(i cos−1(u))

i ) as i > 0,
(8)

and

gki =
(1− i

k+2 ) sin(αk) cos(iαk) + 1
k+2 cos(αk) sin(iαk)

sin(αk)
, (9)

amplifies λ ∈ (l, u).
Figure 3 shows four bandpass filters of different degrees defined on the interval [−0.8,−0.7].

Note that in practice we will use li − δ and ui + δ as bounds in polynomial filtering but select the
converged eigenpairs based on li and ui, as explained in Section 3.2.1.

−0.9 −0.8 −0.7 −0.6
t
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0.0
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t)

deg=400
deg=200
deg=100
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Figure 3: Bandpass polynomial filters of different degrees. The dashed lines indicate the lower and upper bounds
of the slice.

If [l, u] is relatively small compared with the spectrum width of H, a polynomial filter con-
structed from a least squares approximation to the Dirac-δ distribution (function), which was
proposed by Li et al. [15], works well. Such a polynomial can be expressed as

Fk(t) =

k∑
j=0

µjTj(t), (10)

with

µj =

{
1
2 as j = 0,
cos(j cos−1(γ)) otherwise, (11)

where γ is the center of the Dirac-δ function. By specifying the value of F (t) at the bounds, we
can determine the degree of the polynomial.

We should note that a Chebyshev polynomial can be used as the filter for the leftmost slice.
Because the degree of the Chebyshev polynomial required to amplify the eigenvalues in the leftmost
slice is typically much lower than those of the polynomials constructed for other interior slices, we
may include more eigenvalues in the leftmost slice in a parallel implementation of the SS algorithm
to achieve good load balance. We will discuss this more in Section 4.2.
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3.2.3. Lanczos vs subspace iteration
In the previous work by Schofield et al. [26] and Li et al. [15], polynomial filtering is combined

with a thick-restarted Lanczos algorithm to generate a Krylov subspace of the form

K(F (H), v0) = {v0, F (H)v0, F
2(H)v0, ...}, (12)

where v0 is typically chosen to be a random starting vector. Rayleigh–Ritz procedure is then
performed on the orthonormal basis V of K(F (H), v0) produced by the Lanczos algorithm. Because
the eigenpairs of interest are those associated with the largest eigenvalues of F (H), which are
known to emerge rapidly [28], this approach can produce highly accurate approximations after k
iterations, where k is typically a small (e.g., 2 to 3) multiple of the number of eigenvalues within the
the interval of interest. This observation was reported by Schofield et al. [26]. However, the main
drawback of the Lanczos algorithm is that only one matrix-vector multiplication can be applied
at a time. Because F (H) cannot be applied simultaneously to a number of vectors, this procedure
prohibits us from using a 2D process grid employed in the parallel implementation of CheFSI.

We propose to use a subspace iteration instead of the Lanczos algorithm to obtain approxima-
tions to the desired eigenpairs. The algorithm is nearly identical to Algorithm 4 except the filter
used in line 3 of the algorithm is different. The convergence of subspace iteration is linear. The
rate of convergence depends on the minimum of the ratio

F (λin)

F (λout)
,

where λin is an eigenvalue of H within the interval of interest [a, b) and λout is an eigenvalue outside
of [a, b). When the ratio is small (close to 1), many iteration may be required to reach convergence.
To make the ratio large, a high degree polynomial may be required, thereby increasing the cost
per iteration. Thus, there is a tradeoff between the number of subspace iterations and the degree
of filter polynomials. The optimal values depend on the size of the interval and the distribution of
eigenvalues.

Another way to improve the convergence rate of subspace iteration is to make the subspace
slightly larger than the number of eigenvalues within the target interval [a, b). The enlarged
subspace can include a fraction of the states from adjacent slices. (See Section 4.2 also.) In this
case, the effective convergence rate is defined by the minimum of the ratio

F (λin)

F (λout′)
,

where λout′ is outside of an interval [a′, b′], with a′ < a and b′ > b. The overlap intervals [li−δ, ui+δ]
proposed in Section 3.2.1 allow us to achieve this. The exact values of a′ and b′ depend on the size
of the spectral slice and the distribution of eigenvalues outside of that slice. We only take the Ritz
values within [a, b) and the corresponding harmonic Ritz vectors as the approximate eigenpairs of
H. Other Ritz pairs obtained from the same space V approximate eigenpairs in other intervals.
Therefore, Ritz pairs computed in different slices have some overlap. This overlap allows us to
eliminate the need to move vectors across different slices as the Ritz values change throughout the
SCF iterations.

As the Hamiltonian H changes over SCF iterations, a Ritz value θ(i) ∈ [a, b) obtained in the ith
SCF iteration may move outside of that interval in the next iteration, i.e., θ(i+1) may move into
an adjacent interval. This type of shift tends to occur more often in the first few SCF iterations,
when the electronic charge density is far from converged. By making the dimension of the subspace
larger than the number of eigenvalues within [a, b), we avoid the need to move the harmonic Ritz
vector z associated with θ(i+1) explicitly to a different slice which is typically mapped to a different
process group. An explicit move would require additional communication. A harmonic Ritz vector
in another interval whose corresponding Ritz value was previously outside of that interval but
lands in that interval in the (i+ 1)th iteration, may take the place of z. Multiple approximations
to the same eigenpair obtained from different slices can be easily sorted out by simply using the
bounds of the intervals.

We should note that in most SCF iterations, a subspace iteration is started from previous
approximations to the eigenpairs of interest. The subspace iteration method does not need to
produce highly accurate approximations to the desired eigenpairs until the SCF calculation is near
convergence. Therefore, the number of subspace iterations in a SCF iteration can be set to a
modest number (e.g., between 1 and 5).

9



We note that for interior eigenvalues, the standard Rayleigh–Ritz procedure can produce some
spurious eigenpairs as indicated by relatively large residuals [29]. Although including more basis
vectors in a subspace can improve the accuracy of the Ritz approximation, in general, the standard
Rayleigh–Ritz procedure cannot completely eliminate the presence of spurious Ritz approximations
to interior eigenpairs [26]. However, it is well known that the harmonic Rayleigh–Ritz procedure
can be used to address this issue [30]. The harmonic Rayleigh–Ritz procedure imposes the condition
that

(H − σI)−1v − (θ̃ − σ)−1v ⊥ (H − σI)2V, (13)

where the harmonic Ritz vector v lies in the subspace V, σ is the center of a spectral slice, and θ̃
is the corresponding harmonic Ritz value. If V forms an orthonormal basis of V, and v = V c for
some c, v and θ̃ can be obtained by solving the generalized eigenvalue problem

V T (H − σI)V c = ξV T (H − σI)2V c, (14)

where ξ = (θ̃ − σ)−1. For completeness, we outline the harmonic Rayleigh–Ritz procedure in
Algorithm 5. The eigenvalue approximations θi’s are computed as θi ≈ θ̃i = ξi

−1 + σ.

Algorithm 5 Harmonic Rayleigh–Ritz
1: procedure (V ,D) = HarmonicRayleighRitz(H, V , σ)
2: A = V T (H − σ)V
3: B = V T (H − σ)2V
4: Compute Q, D̃ such that AQ = BQD̃ and QTQ = I.
5: V = V Q

3.2.4. Convergence monitoring and termination criterion
To ensure the convergence of a SCF calculation, which is monitored by examining charge-

weighted self-consistent residual error (SRE), defined as

SRE =

√
1

Ne

∫
drn(r)[V

(i)
tot (r)− V (i−1)

tot (r)]2, (15)

where n(r) is the electronic charge density, V (i)
tot (r) is the total potential after the ith SCF iteration,

and Ne is the total number of valence electrons, we need to make sure that the approximate
invariant subspace returned from the polynomial filtered subspace iteration is sufficiently accurate
over SCF iterations. Although the accuracy of the approximate invariant subspace can be measured
by the residual

R = HV − VΘ,

where V contains the Ritz or harmonic Ritz vectors and the diagonal matrix Θ contains the Ritz
values on its diagonal, such a measure is likely to be conservative in early SCF iterations where
the SRE is likely to be large. In these early SCF iterations, we can also adopt an alternative
termination criterion that simply counts the number of Ritz values that falls within a perturbed
spectral bounds of each slice, where the size of the perturbation is related to the residual norm of
each Ritz pair. We could therefore terminate the subspace iterations when the counts no longer
change. Although the question of how to set the convergence tolerance in an optimal fashion
remains open, from our experience, a crude tolerance commensurate with the magnitude of SRE
can be used in early SCF iterations. The tolerance can be gradually tightened in subsequent SCF
iterations as SRE becomes smaller.

3.3. Hybrid polynomial filtering
Owing to the relatively slow convergence of the subspace iteration method used in the SS

algorithm for computing eigenvalues within each slice, applying the SS algorithm directly to a
random guess of the invariant subspace associated with the desired eigenvalues can be costly. Either
an extremely high degree polynomial or many subspace iterations may be required to obtain an
approximation to the invariant subspace of interest with sufficient accuracy in the first few SCF
iterations. In both cases, the large number of multiplications of H with vectors in subspace
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iterations may offset the reduction in calculation cost of orthonormalization and Rayleigh–Ritz
procedure.

When a good initial guess of the invariant subspace associated with the eigenvalues within
a slice is available, a bandpass-filtered subspace iteration can be effectively used to refine the
approximation to the desired invariant subspace.

Based on this observation, we combine CheFSI with SS to devise a hybrid polynomial filtering
method for SCF calculations. In the first few SCF iterations, CheFSI is used to obtain a reasonably
accurate approximation to the desired invariant subspace of a converging sequence of Kohn–Sham
Hamiltonians. In the subsequent SCF iterations, the SS method that utilizes bandpass filter
polynomials is applied to the approximate subspace produced in previous SCF iterations.

4. Parallel Implementation

Although the hybrid filtering method that combines CheFSI and SS is conceptually easy to
understand, an efficient implementation on a large-scale, distributed memory, parallel computing
platform is nontrivial. The implementation requires a careful data layout on a 2D computational
process grid to increase concurrency and reduce communication overhead. To achieve good load
balance in SS, the spectrum partition must take into account both the number of eigenvalues to be
computed and the degree of the bandpass filter used to amplify eigenvalues within a slice, which
may vary from slice to slice.

4.1. Data layout
To implement Algorithm 4 efficiently on a distributed memory parallel computer, we need to

develop a data distribution scheme to perform both polynomial filtering and orthonormalization
in parallel. We employ a 2D process grid nr×nc. By partitioning vectors in V into nc groups and
mapping each group to a distinct column group in the 2D process grid (Figure 4), we can com-
pute several column groups of T̂ (H)V independently with essentially no communication between
different column groups (shaded regions in Figure 4). Within each column group, matrix-vector
multiplication w = Hv can be performed in parallel by partitioning and distributing w and v by
rows and mapping each row block onto a distinct row process in each column group. The kinetic
energy part of H, which can be represented by a finite difference stencil, is not explicitly stored.
Both the pseudopotential and the LDA/GGA exchange-correlation potential can be partitioned
conformally with the partition of the vectors. Only nearest neighbor communication is needed to
combine local computation.

A 2D process grid can also be used to perform the matrix-matrix multiplication A = V TV
required in the Cholesky QR algorithm by calling the PDGEMM subroutine in PBLAS.

Both the Cholesky factorization and the subspace diagonalization used in Rayleigh–Ritz pro-
cedure may be performed among a subset of the processes if the total number of processes is
large.

The optimal choice of nr and nc depends on the size of a problem and the number of available
processes. Polynomial filtering favors a large nc because the multiplication of H with vectors
mapped to different column groups can be performed simultaneously with no communication. On
the other hand, the dense matrix-matrix multiplication used for inner product calculation V TV
favors a large nr, especially when the leading dimension of V is large.

Switching from one 2D process grid to another (using the ScaLAPACK utility PDGEMR2D)
can be beneficial when different types of operations are performed. The overhead associated with
such a switch is relatively small.

For SS, the column groups are further partitioned into supergroups according to slice parti-
tioning, i.e., each slice is assigned a set of column groups. For example, Figure 5 shows that eight
column groups are divided into three supergroups, each associated with a spectral slice. The first
spectral slice uses only one column group (highlighted in red), whereas the second and third use four
(highlighted in green) and three column groups (highlighted in blue) respectively. Each bandpass-
filtered subspace iteration is carried out on a 2D process grid with nr × nci processes, where nci
is the number of column groups assigned to the ith slice, and

∑
i nci = nc. Unlike polynomial fil-

tering, which is done within each column group, orthonormalization and Rayleigh–Ritz procedure
require communication between column groups and are done within each slice independently.
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Figure 4: Different process grids with 512 MPI processes. The shaded regions denote the first column group.

Figure 5: (a) A 2D process grid with nr × nc = 4 × 8. (b) A slice partition of the eight column groups into three
slices. In this example, slices 1, 2, and 3 have 1, 4, and 3 column groups, respectively.

4.2. Load balance
To achieve good load balance in a parallel implementation of CheFSI, we need to divide Ns

evenly among different column groups and partition V according to this division.
Balancing computational load for SS is a bit more complicated. The uniform spectrum partition

scheme discussed in Section 3.2.1 suggests that different slices may contain a different number of
eigenvalues. To achieve good load balance, we proportionally map more processes to slices that
have more eigenvalues. This is achieved by partitioning column groups according to the number of
eigenvalues in each slice. In addition, because the degrees of the polynomials used for different slices
may be different, the partitioning of column groups needs to take the degrees of the polynomials
into account as well. In particular, because the degree of the Chebyshev polynomial used for the
leftmost slice is generally much lower than that of a bandpass filter polynomial used for an interior
slice, fewer column groups should be assigned to the leftmost slice.

Furthermore, the degrees of bandpass filters associated with different interior slices of equal
sizes may be slightly different as well. This is because the amplification effect of a bandpass filter
for a particular slice depends on the location of the slice within the spectrum region of interest [26].
Figure 6 shows four filters, and the three on the right are bandpass filters of the same degree for
different interior slices of the same size. We can see that the filter associated with the rightmost
slice is flatter and its maximum within the slice is lower than that associated with the second slice
from the left.

Figure 7 shows that, in order to achieve the same amplification effect, the degrees of the
bandpass filters for different slices may be slightly different, with the rightmost slice having a
higher degree than the others. We note here that one method to estimate the necessary degree of a
bandpass filter has been proposed by Schofield et al. [26], which requires a user-specified amplifying
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Figure 6: Four filters used in the simulation of Si1947H604. The degree of the Chebyshev polynomial (for the leftmost
slice) is 20, while the degrees of the bandpass filters for the interior slices are 160. The dashed lines visualize the
slice bounds.

ratio, ramp, and demands that both p(li)
p(li−δ) ≥ ramp and p(ui)

p(ui+δ)
≥ ramp are satisfied.

−1.2 −1.0 −0.8 −0.6 −0.4
Energy, ε (Ry)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fi
lte

r F
un

ct
io

n,
 p

(ε
) (

-)

Figure 7: Four filters with the same slice bounds as those in Figure 6 but of different polynomial degrees. The
degree of the Chebyshev polynomial (for the leftmost slice) is 20, while the degrees of the bandpass filters for slices
2, 3, and 4 are 137, 168, and 195, respectively. The amplifying ratio is 1.1. The dashed lines visualize the slice
bounds.

Once a partition of the spectrum into multiple slices has been determined, the number of column
groups assigned to the ith slice (nci) can be set according to the following formula

nci =

⌊
nc ·

pimi∑s
i=1 pimi

⌋
, (16)

where pi is the number of eigenvalues in the ith slice, mi is the degree of the polynomial constructed
for that slice, s is the total number of slices, and nc is the total number of column groups defined
in Section 4.1. Some adjustment may be needed to ensure that nci ’s add up to nc. In practice,
we use a larger pi, which is the number of eigenvalues in that slice plus some states from adjacent
slices. These extra states may originate from as many as two column groups in each of the adjacent
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slices. This strategy improves the stability of the SS algorithm and prevents the potential necessity
of moving overlap states between slices over SCF iterations.

One of the challenges in implementing SS is to choose an optimal partition so that

max
i
pimi (17)

is minimized. Because the degree of the Chebyshev polynomial used for the leftmost slice is
generally much lower, it makes sense to make the leftmost slice slightly wider to include more
eigenvalues. To minimize (17), we can perform an exhaustive search on the number of slices, s,
that yields the minimum of (17). That is, at first the degree of the Chebyshev polynomial is set
to 20. If 20p1 is significantly less than (17) for any interior slice, we merge nl leftmost slices with
nl = 2, 3, .., s− 1 until 20p1 is as close to maxi pimi as possible.

4.3. Communication
There are two types of communications in both CheFSI and SS. One is within a column group,

and the other is within a slice. The communication required in the multiplication of the Hamilto-
nian with a distributed vector is limited to within each column group. Processes in the same column
group exchange data via neighborhood collective communication. Communication overhead can
be lowered by using non-blocking communication and overlapping the communication and local
computation. Another improvement can be done is to use space-filling curves when partitioning
the real-space grid. A real-space grid partition based on space-filling curves has good locality of
neighboring grid points and thus the communication for stencil traversal can be reduced. This
improves the efficiency and scalability of the multiplication of H with vectors. Our preliminary
result has shown that, if not communication-bound, a speed-up of 1.5 to 2, compared with a simple
real-space grid partition, can be achieved. This will be one of our future studies.

In CheFSI, orthonormalization of basis vectors and other dense matrix-matrix operations such
as solving the projected eigenvalue problem involves all processes on the 2D process grid. We rely on
the communication layers implemented in PBLAS and ScaLAPACK to perform the necessary data
communication required to carry out these operations. The communication cost can be relatively
high. In SS, all dense matrix computation is carried out among the column groups mapped to a
spectral slice. Consequently, all communication takes place within a subset of processes, which can
significantly reduce the communication overhead.

5. Computational Results

In this section, we evaluate the performance of the polynomial filtering algorithm. The compu-
tational experiments are carried out on the Cori Haswell compute nodes (Intel Xeon E5-2698 v3,
32 cores per node) maintained at the National Energy Research Scientific Computing (NERSC)
Center.

We use a silicon nanocrystal with 1,947 Si atoms passivated by 604 H atoms to test the per-
formance of the proposed algorithm. This system is denoted by Si1947H607 below. The finite
difference order is 12, and the grid spacing is 0.7 bohr, which corresponds to a kinetic energy
cutoff of ∼20 Ry in a plane wave representation. The simulation domain is a sphere, beyond
which the wave functions are set to zero. A margin of at least 7 bohr is preserved between the
atoms and the boundary of the simulation domain. The Hamiltonian size is 1,527,083, and the
number of states to be calculated is set to 4,352 (though the number of occupied states is 4,196,
we include extra (unoccupied) states to accelerate the convergence, as explained in Section 3.2.3).
We use Troullier-Martins norm-conserving pseudopotentials [31], and for H atoms the cutoff radius
for 1s is 1.80 bohr, while for Si atoms the cutoff radii for 3s/3p are 2.80/2.80 bohr, respectively.
The exchange-correlation functional is local density approximation with the parameterization by
Perdew and Zunger (LDA CA PZ) [32]. The Anderson mixing scheme [33] is used. The mixing
ratio is 0.3, and the potential mixing performed at a particular SCF iteration uses the potentials
computed in the previous 4 SCF iterations. The convergence criterion (SRE) is set to 0.0001 Ry.
Smaller silicon nanocrystals are used to study SCF convergence with filter polynomials of different
degrees, and a larger one (Si3893H988) is used to study the strong parallel scalability of the SS
algorithm.

In all experiments, we use CheFSI in the first few SCF iterations, and then transition to SS
in the subsequent SCF iterations. Communication groups are created to map column groups to
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Component Description
FLTR Amplification of lowest-energy states
ORTH Orthonormalization of wave functions via Cholesky QR
RR Rayleigh–Ritz procedure (i.e., projection of wave functions into a

Ritz matrix, eigen-decomposition of the Ritz matrix, and subspace
rotation)

Table 1: Main computational components of subspace iteration

different spectral slices so that the ith spectral slice owns nci column groups, where nci is defined
in (16). Data redistribution among column groups is required as we transition from CheFSI to SS.
Some Ritz vectors kept on one column group are sent to adjacent column groups to create Ritz pair
overlap that can help accelerate subspace iteration within each slice as discussed in Sections 3.2.3
and 4.2.

5.1. Performance profile
We first report the performance characteristics of both CheFSI and SS when they are run with

256 Cori Haswell cores. The timing measurements of subspace iteration are grouped into the three
categories listed in Table 1.

We use a Chebyshev polynomial of degree 20 in the CheFSI calculation. The definition of
the 2D process grid for the CheFSI calculation is not unique. For example, we can use only one
column group and partition the basis vectors into 256 row blocks, which was used in previous
implementations of the PARSEC software. At the other extreme, we can partition the basis
vectors into 256 column groups (i.e., 1 process per column group). Figure 8 shows for one subspace
iteration how the timing measurements of different components in the CheFSI calculation change
as we change the data layout. By partitioning the basis vectors into multiple column groups that
do not require communication during polynomial filtering (FLTR), the performance of this part
can be significantly improved. When the basis vectors are distributed among 32 columns groups
(i.e., 8 process per column group), the time spent on FLTR is reduced by a factor of 3.9 when
compared with the approach in which 256 processes are used in a single column group to perform
the multiplication of H with vectors distributed by rows among the 256 processes. However, as
we continue to increase the number of column groups and reduce the number of row blocks within
each column group, the performance of FLTR does not change much. This is because the parallel
implementation of the sparse matrix-vector multiplication Hx scales well to a modest number of
processes (in this case, 8).

However, we can also see that as the number of column groups increases, the orthonormalizaton
(ORTH) and Rayleigh–Ritz procedure (RR) in CheFSI become more costly. This is because these
components make use of parallel dense matrix-matrix multiplication (PGEMM) which attains the
best performance with the ratio between the number of rows and the number of columns is not
too large nor small. In order to achieve optimal performance, we use two different data layouts
in the CheFSI calculation for FLTR and other dense linear algebra computation. The last bar in
Figure 8 depicts the performance profile using a 8 × 32 process grid for FLTR, and transitioning
to a 256×1 process grid for other dense linear algebra operations. We use PDGEMR2D to change
data distribution. The overhead associated with data reshuffling, which is embedded in ORTH and
RR, appears to be small, as we can see from the last bar in Figure 8.

The performance profile of the SS algorithm for one subspace iteration is illustrated in Figure 9.
The process grid is 16 × 16, and four slices are used. The numbers of column groups in slice 1–4
are computed to be 1, 5, 6, and 4, respectively. A Chebyshev polynomial of degree 40 is used to
compute approximate eigenpairs in the leftmost slice. Bandpass filters of degree 160 are used to
compute approximate eigenpairs in the other slices. For comparison, we also plot the performance
profile using CheFSI as the leftmost bar. The leftmost slice contains 1,334 eigenvalues among which
808 are actually within the spectral bounds associated with that slice. Slice 2–4 contain 1,970,
2,496 and 1,820 eigenvalues, respectively. Among them 891, 1,482 and 1,015 eigenvalues of interest
are within the spectral bounds associated with these slices. As we can see from Figure 9, FLTR
takes most of the time in the SS algorithm. All the other computational kernels (ORTH, RR) take
a small faction of the total wallclock time. Since pimi/nci ≈ 64, 000, we expect the computation
to be well load-balanced as is the case. The time spent on each slice is roughly the same (∼ 800
seconds). We can see FLTR in SS costs about an order of magnitude more than that in CheFSI,
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Figure 8: Computational time of the key components in the CheFSI calculations with different process grids.

due to the requirement of high degree filters in SS. Though FLTR in SS is more expensive than
that in CheFSI, in this case, the cost of the cubically scaling operations (ORTH+RR) in SS is less
than that in CheFSI. This shows the SS algorithm can indeed reduce the cost of the dense linear
algebra operations. We note that for slices 2–4 there is no time cost shown for ORTH, because
we solve a generalized eigenvalue problem for these interior slices, so the time cost of ORTH is
embedded in RR.

Because the degrees of the bandpass filter polynomials used in SS are much higher than the
degree of the Chebyshev polynomial used in CheFSI, we expect the wallclock time spent on FLTR
to be much longer in SS than that in CheFSI.

For this problem, the significantly higher cost of FLTR in SS cannot be completely offset by the
reduction in the cost of ORTH and RR. As a result, the total cost of SS is still higher than that of
CheFSI when the problem is solved on 256 cores. We show in Section 5.4 that, as the problem size
becomes larger and more compute cores are used, the time spent on ORTH and RR will start to
dominate in CheFSI calculation regardless how many compute cores are used, whereas such cost
is relatively low in SS calculation. Because FLTR can easily scale to tens of thousands of cores,
whereas it is difficult to achieve this kind of scalability for ORTH and RR, SS will scale to much
larger number of compute cores and eventually outperform CheFSI.

5.2. Comparing subspace iteration with Lanczos for spectrum slicing
As we argued in Section 3.2.3, using subspace iteration to compute the desired eigenpairs within

a spectral slice has the advantage of allowing the multiplication of H with different vectors to be
performed among different column groups on a 2D process grid. The multiple levels of concurrency
are likely to yield better parallel scalability even though the subspace iteration method has a
slower convergence rate compared with the Lanczos algorithm, which cannot perform multiple
Hamiltonian and vector multiplications simultaneously.

Figure 10 shows, from one of the slices in the simulation of Si1947H604, how the cumulative
wallclock time spent on both FLTR and ORTH of the Lanczos method increases with respect
to the Lanczos iteration number. We compare the cost of the Lanczos method with that of the
subspace iteration method for a spectral slice that contains the most eigenpairs. The number of
eigenvalues in this slice is 1, 363. The degrees of the polynomials are 200. The Lanczos iteration
is performed on a 1D process grid with 256 processes. The subspace iteration is carried out
on a 16 × 16 2D process grid. As expected, the wallclock time increases as we perform more
Lanczos iterations. For this slice, 2, 538 Lanczos steps are needed to produce sufficiently accurate
approximate eigenpairs. As a result, the total number of Hamiltonian and vector multiplications
used by the Lanczos method is 2, 538×200 ≈ 500, 000. The corresponding wallclock time is nearly
1, 500 seconds.
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Figure 9: Computational time of the key components in the SS calculation. The leftmost bar shows the wallclock
time by CheFSI, serving as a reference.

When subspace iteration is used, we include 3, 616 basis vectors in the subspace to accelerate
convergence. The dashed line in Figure 10 shows the wallclock time for one subspace iteration,
which is around 700 seconds. Even though the subspace iteration perform 3, 616× 200 > 720, 000
Hamiltonian and vector multiplications, which are more than those performed in the Lanczos
method, the wallclock time used by subspace iteration is much less than that used by the Lanczos
method. This is due to the much better parallel scalability of the subspace iteration method as we
discussed earlier. We should point out that in many cases, one subspace iteration with a sufficiently
high degree polynomial is enough to make the SCF iteration converge. However, in some cases,
more than one subspace iterations may be required to ensure SCF convergence.
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Figure 10: Cumulative wallclock time spent on FLTR and ORTH in the Lanczos method with respect to the Lanczos
iteration number. The dashed line shows the wallclock time using the subspace iteration method for the same slice.

5.3. SCF convergence
The convergence of a SCF calculation depends partially on how well the eigenvectors associated

with occupied states and a few unoccupied states near the Fermi level are computed. In the first few
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SCF iterations, these eigenvectors do not need to be computed to full accuracy. A few Chebyshev
filtering steps starting with the eigenvectors obtained in a previous SCF iteration are often sufficient
to make the SCF loop converge. In this section, we examine how the accuracy of the polynomial-
filtered subspace iteration method affects the convergence of a SCF calculation. In particular, we
are interested in the degrees of the bandpass filters required in the polynomial-filtered subspace
iteration method to ensure the convergence of SCF.

We use silicon nanocrystals of different sizes for testing (the atomistic structures of which are
included as supplementary material). These systems are listed in Table 2 along with the number
of atoms, computed states as well as the dimension of the Hamiltonians associated with these
problems. For Si29H36, only 32 compute cores are used, and we transition from CheFSI to SS at
the 2nd SCF iteration; for other cases, 256 compute cores are used, and we transition from CheFSI
to SS at the 6th SCF iteration.

test problems n Ns degree # of SCF iterations Time to solution
CheFSI Hybrid CheFSI Hybrid

Si29H36 97,569 104 60 9 19 15 71
Si275H172 329,749 768 120 12 11 474 2,106
Si837H348 780,983 2,176 120 14 14 1,058 7,266
Si1947H604 1,527,083 4,352 160 14 13 3,070 35,590

Table 2: Test problems and their sizes (in terms of the number of atoms, the dimension of the Hamiltonian and
the number of computed states), the optimal degrees of the bandpass filter polynomials required to reach SCF
convergence, and the number of SCF iterations taken by CheFSI and SS. The time to solution (in seconds) is
compared with that of CheFSI in which a Chebyshev polynomial of degree 20 is used.

Figure 11 shows the SCF convergence history when the hybrid CheFSI and SS scheme is applied
to Si29H36. All tests are run on a 4 × 8 process grid. The number of column groups assigned to
the three slices is (1, 4, 3). The degree of the Chebyshev polynomial is 20, and the degrees of
the bandpass filter polynomials range from 60 to 480 (Figure 11(a)). As we can see, the SCF
calculations converge in all tests. When the degrees of bandpass filters are relatively low (e.g., 60),
more SCF iterations may be required to reach convergence. When the degrees of bandpass filters
are sufficiently high (e.g. 240 or 480), the SCF convergence history is nearly indistinguishable from
that produced by CheFSI. For this problem, setting the degrees of bandpass filters to 60 appears
to be optimal in terms of time to solution, even though a few more SCF iterations are required to
reach convergence compared with the run in which bandpass filters of degree 240 are used.

Due to the high degrees of the bandpass filter polynomials compared with the Chebyshev
polynomial, and also the small size of this problem for ORTH and RR to become dominant, the
time to solution of the hybrid CheFSI-SS approach is about five times longer than that of CheFSI.

Figure 11(b) shows that it is possible to lower the degrees of bandpass filters to 60 at the
expense of performing a few subspace iterations in one SCF iteration. Among all the tests, it
appears that performing one subspace iterations per SCF iteration yields the shortest time to
solution. Moreover, instead of performing a fixed number of subspace iterations, we can terminate
subspace iterations by checking the residual norms of the approximate eigenpairs as discussed in
Section 3.2.4. However, in this case, it appears that such a termination criterion (which we label
as “dynamic”) is too stringent.

We can see from Table 2 that high degree bandpass filters are possibly needed as the problem size
increases, although the increase in degree is modest. For the larger problem Si1947H604, the optimal
degree appears to be 160 instead of 120 (Figure 12). In Figure 12 the degrees of the bandpass
filters are 120, 160, and 200. The number of subspace iterations is dynamic. In our implementation,
during a SCF iteration we run subspace iterations until either a maximum number of subspace
iterations is reached or until the relative residual norms of all desired eigenpairs are sufficiently
small (10−2 in our simulations). This is why the time to solution is less when the degree is set to
160, compared with the run using degree 120. In both runs, the total number of SCF iterations
required to reach convergence is almost the same. The distribution of the occupied states and the
slice bounds are included as supplementary material.

5.4. Parallel scalability
We now examine the strong parallel scalability of the SS algorithm and compare it with that

of CheFSI. We use a Si3893H988 silicon nanocrystal for this test. The dimension of the Hamil-
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Figure 11: Convergence history of the simulations of Si29H36. In (a), bandpass filter polynomials of different degrees
are used, and the number of subspace iterations per SCF iteration is one. In (b), we fix the polynomial degree and
vary the number of subspace iterations per SCF iteration. The time to solution in seconds is shown in parentheses.
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Figure 12: Convergence history of the simulations of Si1947H604. The time to solution is shown in parentheses.

tonian is 2, 637, 711. The number of states to be computed is 9, 216. Both the CheFSI and
SS calculation are performed on 2D process grids with nr × nc processes. Our strong scaling
tests use 256, 512, 1,024, 2,048, and 4,096 compute cores. In all tests, nr is set to 32. For
CheFSI, we try nc = 8, 16, 32, 64, and 128. For SS, the spectrum is divided into 2, 4, 8, and 16
slices. The number of column groups for each slice is (1, 15), (1, 9, 13, 9), (1, 9, 6, 9, 8, 14, 10, 7), and
(1, 6, 9, 8, 5, 6, 10, 7, 6, 10, 12, 14, 12, 7, 4, 11), respectively. The degree of the Chebyshev polynomial
is 20, and the degrees of the bandpass filter polynomials are 120.

We can clearly see from Figure 13 that FLTR in both CheFSI and SS has nearly perfect parallel
scalability. The cost of FLTR in SS is ∼ 5 times of that associated with CheFSI owing to the higher
degree of the bandpass filter polynomials. We also note that due to the large number of states to
be included in the SCF calculation, ORTH and RR in CheFSI take more time than FLTR which
consists of mostly sparse matrix vector multiplications.

By dividing the spectrum into more slices, the cost of ORTH and RR can be significantly
reduced through a trivial parallelization at the slice level. Because ORTH and RR are performed
among fewer column groups and uses fewer processes, good scalability can be achieved in these
calculations. This can be seen from the green curve marked by empty circles in Figure 13. The
scalabilty of these types of operations is harder to achieve in CheFSI when many column groups
must be distributed on many processes. The green curve marked by solid circles shows the cost of
ORTH and RR in CheFSI actually increases when nc becomes larger than 16.

As a result, the overall strong scalability of SS is much better than that of CheFSI. When the
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total number of processes reaches 32×64, the computational time of SS is less than that of CheFSI.
We should note that more states are computed in SS and the overall subspace size in SS is

larger than that in CheFSI, because the subspace for each slice is augmented in order to improve
convergence and avoid missing states (see Section 4.2). However, because SS is compute-bound
in comparison with CheFSI which is communication-bound (due to the communication overhead
when performing ORTH and RR among all states), it is likely to outperform CheFSI if the degrees
of bandpass filter polynomials are not too high and the number of subspace iterations is moderate.
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Figure 13: Strong scaling test of Si3893H988. “LOOP” is the sum of all operations. The computational time shown
here is for one subspace iteration.

6. Conclusion

The work described in this paper extends the spectrum slicing framework established in the work
of Schofield et al. [26]. We discussed several practical issues in implementing polynomial filtering
for solving the Kohn–Sham DFT problem in real space. We proposed using a hybrid Chebyshev and
bandpass filter polynomial filtering scheme to compute the invariant subspace required to construct
the electronic charge density. The latter type of polynomial filtering is combined with the spectrum
slicing method [26] designed to reduce the computational overhead involved in solving the projected
eigenvalue problem in the CheFSI method. We showed how to partition the spectrum based on
an estimated density of states that can be obtained from a few Lanczos iterations. We proposed
using subspace iteration (instead of thick-restarted Lanczos iteration) to compute approximate
eigenpairs within each interior spectral slice in the spectrum slicing algorithm. Harmonic Ritz
vectors (instead of Ritz vectors) are used as approximate eigenvectors. To achieve scalable parallel
performance, we used a 2D process grid that allows the multiplication of H with multiple vectors
to be performed efficiently. We discussed how to partition and map column groups within the 2D
process grid to spectrum slices to achieve good load balance in the spectrum slicing procedure.
Numerical examples were presented to show the the performance profiles of both the CheFSI and
SS components of the computation.

We also showed that the use of SS does not affect the convergence of SCF calculation provided
the degree of the filtering polynomial is sufficiently high or a sufficient number of subspace iterations
is taken. We demonstrated that for large problems SS can outperform CheFSI on a large number of
compute cores due to the higher level concurrency of the algorithm and reduced cost for solving the
projected subspace problem, despite the much larger number of Hamiltonian vector multiplications
used by the algorithm. The optimal performance of the SS algorithm depends largely on how
the spectrum is partitioned and how computational resources are allocated to different spectrum
slices. This is currently done in a case by case manner. An efficient procedure can be developed
to automate this process.
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We should also note that a number of techniques such as the use of mixed precision arithmetic to
reduce data movement and memory requirement and overlapping computation and communication
can be used to further improve the performance of both CheFSI and SS for large-scale simulations
performed on next-generation supercomputers that are equipped with accelerators. These tech-
niques have been demonstrated to be effective in [34]. We will adopt some of these techniques in
our future work.
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