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Distributed Receding Horizon Control of Dynamically
Coupled Nonlinear Systems

William B. Dunbar, Member, IEEE

Abstract—This paper considers the problem of distributed con-
trol of dynamically coupled nonlinear systems that are subject to
decoupled constraints. Examples of such systems include certain
large scale process control systems, chains of coupled oscillators
and supply chain management systems. Receding horizon control
(RHC) is a method of choice in these venues as constraints can
be explicitly accommodated. In addition, a distributed control ap-
proach is sought to enable the autonomy of the individual sub-
systems and reduce the computational burden of centralized im-
plementations. In this paper, a distributed RHC algorithm is pre-
sented for dynamically coupled nonlinear systems that are subject
to decoupled input constraints. By this algorithm, each subsystem
computes its own control locally. Provided an initially feasible so-
lution can be found, subsequent feasibility of the algorithm is guar-
anteed at every update, and asymptotic stabilization is established.
The theoretical conditions for feasibility and stability are shown to
be satisfied for a set of coupled Van der Pol oscillators that model
a walking robot experiment. In simulations, distributed and cen-
tralized receding horizon controllers are employed for stabiliza-
tion of the oscillators. The numerical experiments show that the
controllers perform comparably, while the computational savings
of the distributed implementation over the centralized implemen-
tation is clearly demonstrated.

Index Terms—Coupled nonlinear oscillators, distributed con-
trol, receding horizon control (RHC), supply chain management.

I. INTRODUCTION

THE problem of interest is to design a distributed controller
for a set of dynamically coupled nonlinear subsystems that

are required to perform stabilization in a cooperative way. Ex-
amples of such situations where distributed control is desir-
able include certain large scale process control systems [1] and
supply chain management systems [2]. The control approach
advocated here is receding horizon control (RHC). In RHC, the
current control action is determined by solving a finite horizon
optimal control problem online at every update. In continuous
time formulations, each optimization yields an open-loop con-
trol trajectory and the initial portion of the trajectory is applied
to the system until the next update. A survey of RHC, also
known as model predictive control, is given by Mayne et al.
[3]. Advantages of RHC are that a large class of performance
objectives, dynamic models, and constraints can in principle be
accommodated.
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The work presented here is a continuation of a recent work
[4], wherein a distributed implementation of RHC is presented
in which neighbors are coupled solely through cost functions.
The coupled cost problem formulation is relevant particularly
for certain multiple autonomous vehicle missions. While
communication network issues (such as limited bandwidth
and communication delay) are paramount in multivehicle
scenarios, such issues are not addressed here. The reason is
that these issues are not dominant factors in the applications
of interest, such as supply chain systems, or in the coupled
oscillators example considered at the end of the paper. In this
paper, subsystems that are dynamically coupled are referred
to as neighbors. As in [4], each subsystem is assigned its own
optimal control problem, optimizes only for its own control
at each update, and exchanges information with neighboring
subsystems. The primary motivations for pursuing such a
distributed implementation are to enable the autonomy of the
individual subsystems and reduce the computational burden of
centralized implementations. Additionally, distributed control
policies are often necessary for supply chain problems, since
stages or echelons within a chain do not in general operate
under centralized decision making [5]–[7].

Previous work on distributed RHC of dynamically coupled
systems include Jia and Krogh [8], Motee and Sayyar-Rodsaru
[9], and Acar [10]. All of these papers address coupled liner
time-invariant subsystem dynamics with quadratic separable
cost functions. State and input constraints are not included,
aside from a stability constraint in [8] that permits state infor-
mation exchanged between the subsystems to be delayed by
one update period. In another work, Jia and Krogh [11] solve
a min-max problem for each subsystem, where again coupling
comes in the dynamics and the neighboring subsystem states
are treated as bounded disturbances. Stability is obtained by
contracting each subsystems state at every sample period,
until the objective set is reached. As such, stability does not
depend on information updates between neighbors, although
such updates may improve performance. More recently, Venkat
et al. [12], [13] have designed a distributed model predictive
control (MPC) algorithm for coupled LTI subsystems and
compared it to centralized and decentralized alternatives. In
their formulation, subsystems are coupled solely through the
control inputs. Consequently, feasibility and stability analysis
is leveraged by the diagonally decoupled and linear form of the
state dynamics, for which the state solution can be carried out
analytically given the set of all control trajectories.

In Section II, the nonlinear coupled dynamics and con-
trol objective are defined. In Section III, distributed optimal
control problems are defined for each subsystem, and the
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distributed RHC algorithm is stated. Feasibility and stability
results are then given in Section IV. Key requirements are
that the receding horizon updates happen at a sufficient rate,
the amount of dynamic coupling remain below a quantitative
threshold, and each distributed optimal state trajectory satisfy
a consistency constraint. The consistency constraint ensures
that each subsystem’s computed state trajectory is not too far
from the trajectory that neighbors assume for that subsystem,
at each RHC update. In Section V, the theory is applied to the
problem of regulating a set of coupled Van der Pol oscillators
that capture the thigh and knee dynamics of a walking robot
experiment [14]. Finally, Section VI provides conclusions.

II. SYSTEM DESCRIPTION AND OBJECTIVE

In this section, the system dynamics and control objective are
defined. We make use of the following notation. The symbol
is the Euclidean norm in , and dimension follows from the
context. For any vector , denotes the -weighted
norm, defined by , and is any positive-definite
real symmetric matrix. Also, and denote the
largest and smallest eigenvalues of , respectively. Often, the
notation is understood to mean at some instant of
time .

Our objective is to stabilize a group of dynamically
coupled agents toward the origin in a cooperative and distributed
way using RHC. For each agent , the state and
control vectors are denoted and , respec-
tively, at any time . The dimension of every agents
state (control) are assumed to be the same, for notational sim-
plicity and without loss of generality.

The dynamic coupling between the agents is topolog-
ically identified by a directed graph , where

is the set of nodes (agents) and
is the set of all directed edges between nodes in the graph. The
set is defined in the following way. First, it is assumed that

appears in the dynamic equation for , for every . Next,
if any components of appear in the dynamic equation for ,
for some , then is referred to as an upstream neighbor
of agent , and denotes the set of upstream neighbors
of any agent . The set of all directed edges is defined as

.
Note that does not necessarily imply . For

each , it will also be useful to reference the set of agents
, , for which any of the components of arises in the

dynamic equation for . This set is referred to as the downstream
neighbors of agent , and is denoted . Note that if
and only if , for any . Consider the example
system and corresponding directed graph given in Fig. 1, which
corresponds to the coupled oscillator system examined in Sec-
tion V.

It is assumed that the graph is connected, so that every
agent is dynamically coupled to at least one other agent. This
is not a strong assumption, since, if were not connected, the
distributed RHC algorithm and analysis presented here would
apply to each connected subgraph. It is also assumed that agents
can receive information directly from each and every upstream
neighbor, and agents can transmit information directly to each
and every downstream neighbor, as needed. For the applications

Fig. 1. Example of (a) a set of coupled dynamic equations and (b)
the corresponding directed graph G = (V ; E) associated with the di-
rected information flow. In this example, V = f1; 2; 3g and E =
f(1;1); (2;2); (2;1); (2; 3); (3;3); (3;1); (3;2)g. The upstream neighbor
sets are N = ;, N = f1;2; 3g and N = f1;2g, and the downstream
neighbor sets are N = f2;3g, N = f3g and N = f2g. By this
convention, arrows in the graph point upstream. The example corresponds to
the coupled oscillator system examined in Section V.

of interest, such as supply chain systems, this too is not a strong
assumption. The coupled time-invariant nonlinear dynamics for
each agent are

(1)

where , , denotes the concate-
nated vector of the states of the upstream neighbors of , with

. For the system in Fig. 1, for example,
and . Each agent is also sub-

ject to the decoupled input constraints . The
set is the -times Cartesian product . In con-
catenated vector form, the system dynamics are

(2)

given initial condition , where
, and

.
Assumption 1: (a) The function

is twice continuously differentiable, and satisfies ;
(b) the system (2) has a unique, absolutely continuous solution
for any initial condition and any piecewise right-contin-
uous control ; (c) the set is a compact
subset of containing the origin in its interior.

Consider now the linearization of (1) around the origin, de-
noted as

where and . As in
many RHC formulations [3], [15], [16], a feedback controller
that stabilizes the closed-loop system inside a neighborhood of
the origin will be utilized. To design a linear controller based on
the linearization while respecting the decentralized information
constraints, one can define the output variables for each agent

as . There exist methods for
constructing dynamic and static feedback controllers, as done
by Corfmat and Morse in [17], to achieve stabilization while re-
specting the decentralized information constraints. The analysis
here is greatly facilitated if, for every , stabilization is pos-
sible with the decoupled static feedback , instead of
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a feedback that relies on components of . To that
end, the following assumption is made.

Assumption 2: For every agent , there exists a decou-
pled static feedback such that is
Hurwitz, and the closed-loop linear system is asymp-
totically stable, where and

.
The decoupled linear feedbacks above are referred to

as terminal controllers. Associated with the closed-loop
linearization, denote the block-diagonal Hurwitz matrix

and the off-diagonal matrix
. Assumption 2 inherently presumes decou-

pled stabilizability, and that the coupling between subsystems
in the linearization is sufficiently weak as quantified in the
survey paper [18]. While the terminal controllers rely on
the linearization of the dynamics, the distributed receding
horizon controllers, employed before switching to the terminal
controllers, stabilize the nonlinear dynamics. Additionally,
while the terminal controllers require weak linear coupling,
the amount of nonlinear coupling that is permissible, such that
the distributed receding horizon controllers are stabilizing, is
quantified in Section IV.

III. DISTRIBUTED RHC

In this section, separate optimal control problems and the
distributed RHC algorithm are defined. In every distributed op-
timal control problem, the same constant prediction horizon

and constant update period are used. In prac-
tice, the update period is typically the sample interval. By the
distributed implementation presented here, an additional condi-
tion on the size of is also required, as quantified in the next
section. The receding horizon update times are ,
where . In the following implementation,
every distributed RHC law is updated globally synchronously,
i.e., at the same instant of time for the -update.

At each update, every agent optimizes only for its own pre-
dicted open-loop control, given its current state. As stated, it is
assumed that is connected, and so for each

. If for any , then has nontrivial dimension.
In this case, requires a trajectory for in order to calculate
a solution to (1). This is the case for agents 2 and 3 in coupled
oscillator system examined in Section V (see Fig. 1). On the
other hand, if , needs no information from neighbors
to calculate a solution to (1), which is the case for agent 1 in the
coupled oscillator system. The case is simpler to ana-
lyze since, in the absence of model error or disturbances, there
is no discrepancy between the computed predicted state trajec-
tory and the actual state trajectory, over each window .
Rather than considering both cases simultaneously, for
some and for others, the algorithm and analysis pre-
sume that for all , which is the more complicated
case. With slight modification, the same algorithm and analysis
apply if for some , as discussed at the end of Sec-
tion IV-B.

Since the dynamics (1) depend upon upstream neighboring
states , each agent must presume some trajectories for

over each prediction horizon. To that end, prior to each up-
date, each agent receives an assumed state trajectory, denoted

, from each upstream neighbor . Likewise, agent
transmits an assumed state trajectory to every downstream
neighbor , prior to each update. Since the models are
used with assumed state trajectories for upstream neighbors,
there will be a discrepancy, over each optimization time window

, between the predicted open-loop state trajectory and
the actual state trajectory that results from every agent applying
their locally predicted control. This discrepancy is made explicit
in this section by introducing notation for each of the different
trajectories. First, recall that is the actual state for each
agent at any time . Associated with update time ,
for any , the trajectories for each agent are denoted

the predicted state trajectory

the assumed state trajectory

the predicted control trajectory

where . Consistent with the ordering of ,
let be the assumed open-loop state trajectories of the
upstream neighbors of , corresponding to update time . The
predicted state trajectory satisfies

(3)

for , given . The assumed
state trajectory for each agent is given by

(4)

where is the solution to with initial con-
dition . By construction,
each assumed state trajectory is the remainder of the pre-
viously predicted trajectory, concatenated with the closed-loop
linearization response that ignores coupling. The collective ac-
tual state trajectories for the agents over any update window

are given by

(5)

given . While the actual and predicted state trajectories
do have the same initial condition for each , they
typically diverge over each update window , and

in general. The reason is that, while the
predicted state trajectories in (3) are based on the assumption
that neighbors continue along their previous trajectory, neigh-
bors in fact compute and employ their own updated predicted
control trajectory. Therefore, the actual state evolves according
to (5). The challenge then is to generate a distributed RHC
algorithm that has feasibility and stability properties in the
presence of the discrepancy between predicted and actual state
trajectories.

A desirable property of any RHC algorithm is to have feasible
state and control trajectories at any update, as the trajectories
can be used to preempt the optimization algorithm used to solve
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the optimal control problem. In many formulations, the feasible
state trajectory is the remainder of the previous trajectory con-
catenated with the response under a terminal controller [3], [15],
[16]. While is such a trajectory, it cannot be used since

. Still, a feasible control trajectory exists.
Indeed, a primary contribution of this paper is to show that a
feasible control is the remainder of the previous control trajec-
tory concatenated with the terminal controller, with the corre-
sponding feasible state trajectory starting from the true state at
each update time. The feasible state and control trajectories at
any update are denoted and , respectively.
The feasible state trajectory satisfies

(6)

for , given , and the feasible
control is given by

(7)

The feasible control trajectory is the remainder of the previ-
ously predicted control trajectory, concatenated with the linear
control applied to the nonlinear model and based on the decou-
pled linear responses for each upstream neighbor. In the next
section, feasibility and stability will be proven. Note that sta-
bility is to be guaranteed for the closed-loop system, represented
by (5), which is defined for all time . In the remainder
of this section, each local optimal control problem and the dis-
tributed RHC algorithm are defined.

In each local optimal control problem, a cost function will be
utilized. For any agent at update time , the cost function

is given by

where , , and . The
matrix is chosen to satisfy the Lyapunov equation

(8)

where . Denoting
and , it follows that

and . Decoupled terminal state constraints will be
included in each local optimal control problem. A lemma used
to define the terminal state constraint sets and to guarantee that
the terminal controllers are stabilizing inside the sets is now
presented. The proof of the lemma utilizes an assumption that
limits the amount of coupling between neighboring subsystems
in the linearization.

Assumption 3: .
Lemma 1: Suppose that Assumptions 1–3 hold. There exists

a positive constant such that the set

is a positively invariant region of attraction for both the closed-
loop linearization and the closed-loop nonlinear
system . Additionally, for all

.
Proof: This proof follows closely along the lines of the

logic given [15, Section II], but is provided here as some of
the steps will be reused in later proofs. Consider the function

. Computing the time derivative of along a
solution of yields

which holds for all . Now, let
, which satisfies and as

. Computing the time derivative of along a
solution of yields

Since as , there exists
a constant such that

whenever . As a
result, implies

Let be such that for all . Then,
any state trajectory of the closed-loop linearization or nonlinear
system starting in remains in and converges to the origin,
and the control constraints are satisfied everywhere on such tra-
jectories, concluding the proof.

The parameter that satisfies the conditions of
the lemma can be found numerically by solving a semi-infinite
feasibility problem [15]. In the numerical experiments in Sec-
tion V, the parameter is calculated by iteratively solving the
following problem in Matlab

(9)

The largest value of such that the minimum cost is positive
is chosen. From the details of the proof above, this value of
satisfies the conditions of Lemma 1.

In each local optimal control problem, the terminal state con-
straint set for each is

(10)
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By construction, if , then the decou-
pled controllers can stabilize the system to the origin, since

with the expression on the right being equivalent to .
Suppose then that at some time , for
every . Then, from Lemma 1, stabilization is achieved if
every agent employs their decoupled static feedback controller

for all time . Thus, the objective of the RHC law
is to drive each agent to the set . Once all agents have
reached these sets, they switch to their decoupled controllers for
stabilization. Switching from RHC to a terminal controller once
the state reaches a suitable neighborhood of the origin is referred
to as dual-mode RHC [15]. For this reason, the implementation
here is considered a dual-mode distributed RHC algorithm. The
collection of local optimal control problems is now defined.

1) Problem 1: Let satisfy the conditions in
Lemma 1, and let be any positive integer. For
each agent and at any update time , :

Given: , , and for all
;

Find: the control trajectory that
minimizes , subject to the constraints

(11)

(12)

for all , with , and
satisfies the dynamics (3) and the terminal constraint

, with defined in (10).
Equation (11) is utilized to prove that the distributed RHC al-

gorithm is stabilizing. While many centralized RHC algorithms
rely on the (typically local) optimality of the solution
at each update [3], the stability results in the next section do
not. Instead, the constraint (11) is utilized to guarantee stability.
The minimization of the cost function is strictly for performance
purposes in the distributed RHC algorithm.

Equation (12) is referred to as the consistency constraint,
which requires that each predicted trajectory remain close to
the assumed trajectory (that neighbors assume for that agent).
In particular, the predicted trajectory must remain nearly as
close to the assumed trajectory as the feasible trajectory ,
with an added margin of freedom parameterized by . In the
analysis that follows, the consistency constraint (12) is a key
equation in proving that is a feasible state trajectory at each
update. The constant is a design parameter,
and the choice for will be motivated in Section IV-A.

Note that the terminal constraint in each optimal control
problem is , although Lemma 1 ensures that the larger
terminal set suffices as a collective region of attraction
for the terminal controllers. In the analysis presented in the
next section, it is shown that tightening the terminal set in this

way is required to guarantee the feasibility properties. Before
stating the distributed RHC algorithm, an assumption is made
to facilitate the initialization phase.

Assumption 4: Given at initial time , there exists
a feasible control , , for each
agent , such that the solution to the full system

, denoted , satisfies
and results in a bounded cost

for every . Moreover, each agent has access to
.

Assumption 4 bypasses the difficult task of actually con-
structing an initially feasible solution in a distributed way. In
fact, finding an initially feasible solution for many optimization
problems is often a primary obstacle, whether or not such
problems are used in a control setting. As such, many central-
ized implementations of RHC likewise assume that an initially
feasible solution is available [3], [15], [16]. Recent methods
for quantifying sets of initial feasibility are presented in [19].
Adapting these methods to incorporate a distributed structure
might be one way to quantify sets over which feasible and
distributed controllers could be used to initialize the distributed
implementation presented here. Let denote the
set of initial states for which there exists a control satisfying
the conditions in Assumption 4. The control algorithm is now
stated.

Algorithm 1: The dual-modedistributed RHC law for any
agent is as follows.

Data: , satisfying Assumption 4, ,
, .

Initialization: At time , if , then apply the terminal
controller , for all . Else:

Controller:

1) Over any interval , :

a) At any time , if , then apply the
terminal controller , for all . Else:

b) Apply , .

c) Compute according to (4) and transmit it to
every downstream neighbor .

d) Receive from every upstream neighbor
and assemble .

2) At any time , :

a) Measure .

b) Compute according to (6).

c) Solve Problem 1 for .

Part 1(a) of Algorithm 1 presumes that the every agent can
obtain the full state . This requirement results solely from
the use of dual-mode control, such that switching occurs syn-
chronously only when the conditions of Lemma 1 are satisfied.
In the next section, it is shown that the distributed RHC policy
drives the state to after a finite number of updates , and
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the state remains in for all future time. If is sufficiently
small for stability purposes, then agents do not need access to
the full state at any update, since RHC can be employed for all
time without switching to a terminal controller. This is the case
for the coupled oscillator problem presented in Section V, for
example. The next section provides the analysis showing that
the distributed RHC algorithm is feasible at every update and
stabilizing.

IV. ANALYSIS

In this section, feasibility is analyzed first in Section IV-A,
followed by stability in Section IV-B. Interpretation of the re-
sults is then provided in Section IV-C.

A. Feasibility

A desirable property of the implementation is that the exis-
tence of a feasible solution to Problem 1 at update im-
plies the existence of a feasible solution for any subsequent up-
date . The main result of this section is that, provided an
initially feasible solution is available and Assumption 4 holds
true, a feasible control solution to Problem 1 for any and
at any time , , is , with defined by
(7). The corresponding feasible state trajectory defined by (6) is

. Before presenting the technical details, it
is useful to sketch some of the requirements and challenges in
guaranteeing this feasibility result.

For any and at any update , the control and
state pair is a feasible solution to Problem
1 if , (3), (11) and (12) are satis-
fied, and the terminal state constraint
is satisfied. Consider the schematic of the different trajectories
involved in the problem in Fig. 2. The figure shows how the
assumed trajectory and the feasible trajectory must re-
late to one another, and to the terminal sets , and

where and . As spec-
ified in the following lemmas, the positive integer is a design
parameter. Note that for any choice of .

In this section, Lemma 2 identifies sufficient conditions to
ensure that over the interval

, and , as shown in Fig. 2.
Then, Lemma 3 identifies sufficient conditions to ensure that for
every , for
all , also shown in Fig. 2. Using these lemmas,
control constraint feasibility is proven in Lemma 4 . Finally,
Lemmas 2–4 are combined in Theorem 1 to give the main result,
which proves that the control and state pair
is a feasible solution to Problem 1 for any and at any
update .

Lemma 2: Suppose that Assumptions 1–4 hold and
. For any , if Problem 1 has a solution at update time ,

then

Fig. 2. Schematic of the different trajectories involved in applying the dis-
tributed RHC algorithm, for agent i 2 V and for update times t and t .
The ellipsoids represent level sets of the function kz k , with " = "=

p
N

and " = " q=(q+1) for a given positive integer q. The dashed line represents
z (�; t ), with z (t ; t ) equal to the true initial condition z (t ),
and z (t + T ; t ) reaching the level set 
 ("=2) as required in the op-
timal control problem. The control u (t; t ) is applied for t 2 [t ; t ),
and the true state z (t) follows the solid (red) line, arriving at z (t ). The
predicted state z (t ; t ), represented by the blue diamond, is generally
not equal to z (t ), since z (�; t ) is computed assuming neighbors follow
ẑ (�; t ), when in fact each neighbor is likewise computing and applying
an updated predicted control. The assumed trajectory ẑ (�; t ) shown is con-
structed according to (4), comprised of the remainder of z (�; t ) concate-
nated with the decoupled linear controlled response. The feasible trajectory
�z (�; t ) shown is constructed according to (6). To meet certain feasibility re-
quirements (refer to Lemmas 2 and 3), parametric conditions are established to
ensure that ẑ (t; t ) and �z (t; t ) are within the indicated ellipsoids over the
end interval t 2 [t + T; t + T ], and that ẑ (t; t ) and �z (t; t ) are suf-
ficiently close, k�z (t; t ) � ẑ (t; t )k � " =(2q), over the entire interval
t 2 [t ; t + T ].

for every , where and ,
provided the update parameter satisfies

(13)

Proof: The following reasoning applies for any
agent . Since Problem 1 has a solution at up-
date time , is well-defined from (4). By
construction, it follows from the terminal constraint that

.
With the Lyapunov function for

, it follows that

Therefore, implies
for all , completing the first

part of the proof. From the Comparison Lemma [20],

To ensure , a
sufficient condition is that
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To ensure the bound holds for every , a sufficient condition
on is

concluding the proof.
Condition (13) suggests a minimum amount of time required

to steer each from to , using
the decoupled terminal controllers. The larger the chosen value
of , the smaller becomes and the smaller the
required lower bound on the update parameter. Likewise, ap-
proaches as increases, so it should require less time to drive

from to for larger values of .
The analysis in Lemmas 3 will require a local Lipschitz prop-
erty on the collective dynamics. In vector form, the collective
set of differential equations for the predicted trajectories (using
(3) for each ) is denoted

where ,
, and .

By definition, the function satisfies
whenever .

Assumption 5: There exist positive constants and such
that the Lipschitz bound

holds for all , and .
More generally, the Lipschitz bound would take the form

for some positive
constants . Thus, Assumption 5 presumes that one can
identify the Lipschitz constants , and that the differen-
tial equation (or ) is already normalized so that
and . The local Lipschitz constant represents a nor-
malized measure of the amount of coupling in the collective
dynamic model. The following lemma makes use of the Lip-
schitz parameters stated above, as well as a design parameter

in addition to the design parameter intro-
duced in Lemma 2.

Lemma 3: Suppose that Assumptions 1–5 hold and
. For any , if Problem 1 has a solution at every update

time , , then,

for all , provided the following parametric
conditions hold:

(14)

(15)

where ,
and

.
Proof: Define the functions

for all . By assuming the existence of a solution
to Problem 1 at each update , the functions
and are all well defined for . Addition-
ally, and are well defined. The proof
follows by making use of the local Lipschitz bounds stated in
Assumption 5, and recursive use of the triangle and Gronwall-
Bellman inequalities. To begin, for each and for
all , the consistency constraint (12) for all
implies

Next, a bound on the deviation of the predicted state from the
actual state over any update period is quantified. Define
the function for all

, where is the actual closed-loop
response, satisfying for all

(same as (5)). Observe that for
all . Also, for all
by Assumption 4, and so . Using the notation

from Assumption 5, the model for the actual response can
also be written as . A bound on

for is given as shown in (i) at the
bottom of the page, using the triangle inequality and the Lips-
chitz bounds from Assumption 5. Using the Gronwall-Bellman
inequality yields

Next, a bound on is derived. On the time interval
, as shown in (ii) at the bottom of the page.

(i)
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Using the Gronwall-Bellman inequality on the time interval
yields , where

The bound on over the time domain
is given by (iii) shown at the bottom

of the page, where
. From the proof of Lemma 1,

, since
for all by construction. From Lemma

2, for all , and so
. With defined in the statement of the

lemma, then

for all . Using the bound on
and applying the Gronwall-Bellman inequality over

the time domain yields

(16)

Observe that this bound holds over the entire time interval
. From the previous bound on for all

, the bound above can be rewritten as

(17)

By induction on , the result of the lemma is now proven. For
the base case ( ), since , (16) and (14) imply that

for any and for all . Now,
assuming , it must be shown that
the same bound holds for . From (17), the inductive
hypothesis (14) and (15), it follows that:

By the Principle of Mathematical Induction,
holds for all and any

, concluding the proof.
The purpose of the design parameters

is now clarified. Equation (14) places an upper bound on the
update period , which can be rewritten and combined with the
lower bound (13) to give

The larger the chosen value of , the smaller the lower and upper
bounds on . The ability to shift the feasible range for is useful
for design purposes, as will be demonstrated in the example of

(ii)

(iii)
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coupled oscillators considered in Section V. Also, larger values
of reduce the margin in the consistency constraint (12) that
bounds how much the predicted state can deviate from the as-
sumed state. Equation (15) places an upper bound on the Lips-
chitz coupling constant , which can be rewritten as

By increasing the design parameter , one can increase the upper
bound on at the price of requiring a tighter bound on . It is in-
tuitive that a larger allowable control update period would re-
quire a smaller amount of dynamic coupling to preserve feasi-
bility. The utility of being able to choose will be demonstrated
in Section V as well.

Lemma 3 identifies sufficient conditions to ensure that
for all

. This bound is in turn a (conservative)
sufficient condition for to satisfy
the same bound, for any , a result that is now used to show
that satisfies the control constraints.

Lemma 4: Suppose that Assumptions 1–5 hold,
and (13)–(15) are satisfied. For any , if Problem 1 has a so-
lution at every update time , , then,

for all and for every .
Proof: Since Problem 1 has a feasible solution at ,

is well defined. Since Lemma 3 will be invoked,
a feasible solution to Problem 1 must be assume at each
update . Now, since for all

, it need only be shown that the remainder of
is in . A sufficient condition for this is if

for all , since is chosen to satisfy the con-
ditions of Lemma 1 and, consequently, for all
when . From Lemma 3,

for all . From Lemma
2, for all .
Using the triangle inequality gives

since . Therefore, for all
for every , concluding the proof.

The first main theorem of the paper is now stated.
Theorem 1: Suppose that Assumptions 1–4 hold,

and (13)–(15) are satisfied. Then, for every agent , the
control and state pair , defined by (6) and (7),
is a feasible solution to Problem 1 at every update .

Proof: The proof follows by strong induction. First, the
case. The state trajectory trivially

satisfies the dynamic equation, from (6), the stability constraint
(11), and the consistency constraint (12). Now, observe that

for every .
Additionally, for all , and
so . By the invariance properties of
the terminal controller and the conditions in Lemma 1, it fol-
lows that the terminal state and control constraints are also sat-
isfied, concluding the case. Now, the induction step. By

assumption, suppose is a feasible solution
for . It must be shown that is a feasible
solution at update . As before, the constraint (11) and the
consistency constraint (12) are trivially satisfied, and
is the corresponding state trajectory that satisfies the dynamic
equation. Since there is a solution for Problem 1 at updates

, Lemmas 2–4 can be invoked. Lemma 4 guarantees
control constraint feasibility. The terminal constraint requires

, for each . From Lemma 3,
, and

Lemma 2 guarantees that
. Combining these two bounds and using the triangle

inequality implies for each
, showing terminal state constraint feasibility and con-

cluding the proof.

B. Stability

The stability of the closed-loop system (5) is now analyzed.
Theorem 2: Suppose that Assumptions 1–5 hold, ,

(13)–(15) are satisfied, and the following parametric conditions
hold

(18)

Then, by application of Algorithm 1, the closed-loop system (5)
is asymptotically stabilized to the origin.

Proof: From part 1(a) of Algorithm 1 and Lemma 1, if
for any , the terminal controllers take over

and stabilize the system to the origin. Therefore, it remains to
show that if , then by application of Algorithm 1,
the closed-loop system (5) is driven to the set in finite time.
Define the non-negative function

In the following, it is shown that for any , if
for all , then there exists a constant
such that . The constraint (11) for all is a
sufficient condition for

Therefore

Subtracting from , and using
for , gives
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The actual closed-loop state response for
can be bounded as

Assuming for all , then, yields

From the proof of Lemma 3, with

Therefore, using (15), (18), and that

From the proof of Lemma 4

From the proof of Lemma 3 and the triangle inequality
. Now, with (15),

on the interval

Combining terms and integrating yields

From (18), , and which
implies . Combining these bounds
yields

Thus, for any , if , then there
exists a constant such that . From
this inequality, it follows by contradiction that there exists a fi-
nite time such that . If this were not the case, the
inequality implies as . However, ;
therefore, there exists a finite time such that , con-
cluding the proof.

The feasibility and stability results in this paper are closely re-
lated to those of Michalska and Mayne [15], who demonstrated
robust feasibility and stability in the presence of model error by

placing parametric bounds on (combinations of) the update pe-
riod and a Lipschitz constant. While there is no model error here,
bounds are likewise derived to ensure robustness to the bounded
discrepancy between what agents do, and what their neighbors
believe they will do.

As stated at the beginning of Section III, if for any
agent , that agent needs no information from neighbors
to calculate a solution to (1). Although the algorithm and
theory developed in this paper assume for every

, Algorithm 1 can still be implemented and all of the
theoretical results still apply if for any . The
only modification is to remove step 1(d) from Algorithm 1
for each with . For the numerical experiments
presented in Section V, agent 1 satisfies , and the
modified algorithm is implemented for agent 1. Note that
in the case, and are identical,
except over the interval where is a
linearized response and is a nonlinear response. As a result,
the consistency constraint (12) simplifies over most of the
time interval, reducing to a constant bound on the deviation

. This form of consistency constraint is in fact
employed in the distributed RHC approach presented in [4].
Also, when , could be redefined to incorporate
the nonlinear closed-loop terminal controller response over

. Since in this case, there is no need
to compute separately and Algorithm 1 simplifies even
more for that agent [by removing step 2(b)]. The analysis
would have to be modified in this case to ensure feasibility
and stability.

C. Comparison of Complexity Bounds

In this section, the computation and communication com-
plexity bounds are compared between the distributed RHC al-
gorithm and a centralized RHC implementation. In the central-
ized implementation, a single node is presumed to do all com-
putations and communicate directly with all agents. For both
implementations, complexity bounds are compared for a single
RHC update period. It is also assumed for both implementations
that the optimization problem is discretized and transcribed into
a nonlinear programming problem (NLP). In general, an NLP
with variables has computational complexity . If the op-
timization problem is quadratic, the exponent on the variables
changes from 3 to 2. Let the time domain for any
RHC update be discretized into intervals, and so there
are discretization points in time. For simplicity, it is assumed
that the optimization problem is formulated to have the control
as the free variable, and the state is assumed to be determined
uniquely from the differential equation1.

For computational complexity bounds, consider the cost
of solving an optimal control problem at any RHC update.
In a single centralized optimal control problem, the total

1Instead, if the state is parameterized as a free variable (as in collocation
methods), and the control is not parameterized but determined through differen-
tial flatness, as in the numerical experiments presented in the next section, the
same computation complexity bounds derived still hold, replacing the control
dimension m with the state dimension n.
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TABLE I
COMPARISON OF COMPLEXITY BOUNDS FOR CENTRALIZED AND DISTRIBUTED

RHC FOR A SINGLE UPDATE PERIOD

Variables are the number of agentsN , the dimension of each agents control
vector m, and the number of time discretization points N common to each
optimization problem.

Variables are the dimension of each agents state vector n, and the number
of upstream jN j and downstream jN j neighbors of any agent i 2 V .

number of variables at each update is , since there are
variables per agent ( dimensional vector of control

variables at each time discretization point) and there are
total agents. Consequently, the computational complexity is

. In contrast, from step 2(c) of Algorithm 1,
the computational complexity bound for any single agent
is . The distributed implementation clearly offers
a substantial savings in computational cost, particularly if
is large.

The communication complexity is defined as being the total
number of variables being transmitted and received during any
single RHC update period . For example, if a node
sends variables and receives variables, the bound for that
node is . For a dual-mode implementation of RHC, be it
centralized or distributed, the full state must be monitored
continuously (in theory) to determine if the state has entered ,
at which time the control switches from RHC to the terminal
controllers. Since the cost of monitoring is mutual, it is left
out of the communication cost comparison.

The centralized implementation requires that every agent
send its initial condition (dimension ) to the computing node.
However, this cost is being ignored, as we are ignoring the
cost of communicating . The centralized RHC update is
complete once the computing node transmits the RHC law to
every agent. Since the update period is typically much smaller
than the planning horizon, one could assume . In this
case, the cost of transmitting the RHC law to each agent is
proportional to , the dimension of the control vector. Since
the centralized computing node must send variables to every
agent, the communication complexity at the centralized node
is . To compute the communication complexity bound for
the distributed implementation for any agent , refer to
Algorithm 1. Between RHC update times, must transmit a
trajectory to neighbors and receive a trajectory from
neighbors, where any such trajectory is proportional to .
Thus, the communication complexity at distributed node is

.
In comparing the bounds, since it is typical that , the

stated communication cost of the distributed implementation is
typically higher than the stated communication cost of the cen-
tralized node implementation. However, if is large and the
graph is sparse such that is small for any ,
then the cost of the distributed implementation could be com-
parable to that of the centralized implementation. The compu-
tation and communication complexity bound comparisons are
summarized in Table I.

Fig. 3. Open-loop stable limit cycle, showing the angular positions starting
from (40, 3, �3) degrees with zero initial angular velocity.

V. COUPLED OSCILLATORS

In this section, the example of three coupled Van der Pol oscil-
lators is considered for application of the distributed RHC algo-
rithm. The three oscillators model the thigh and knee dynamics
of a walking robot experiment [14]. In the following, is the
relative angle between the two thighs, is the right knee angle
(relative to the right thigh), is the left knee angle (relative to
left thigh), and , 1, 2, 3. The controlled
equations of motion in units of ( ) are

Two-phase biped locomotion is generated by
these equations with zero control (open-loop)
and time-varying parameter values, given by

for
, and equal to ( 0.559, 0.226 , 226, 5240) for
. Fig. 3 shows the resulting open-loop stable limit

cycle response, starting from the initial position (40, 3, )
degrees, with for 1, 2, 3. While the robot has
6 total degrees of freedom when walking in accordance with
the limit cycle response, the remaining degrees of freedom
(including two ankles and one free foot) can be derived from
the three primary degrees of freedom, , , and [14]. With
zero control, there are two equilibrium conditions. One is the
locally stable limit cycle, and the other is the unstable fixed
point with for
1, 2, 3. A reasonable control objective is to command torque
motors (controls ) to drive the three angles from the stable
limit cycle response to the fixed point; that is, to stably bring
the robot to a stop. To do so within seconds means that one
set of parameter values need be considered in
the model. As such, for control purposes, these parameters are
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Fig. 4. The centralized RHC response, showing the angular position trajectories � (left plot) and the control trajectories u (right plot), for each i = 1, 2, 3.

assumed to take on the values ( 0.227, 0.559, 6070, 192). In
this way, discontinuous dynamic equations are also avoided.
Now, through a change of variables, the dynamics and input
constraints satisfy the conditions of Assumption 1.

Denoting , the dynamics are linearized
around . The matrix has unstable eigen-
values , and the matrices and are unstable with
eigenvalues . For all three oscillators, the dynamics
are linearly controllable around the origin. In accordance with
Assumption 2, the following gain matrices are used to stabi-
lize the linearized dynamics: ,

. The resulting closed-loop matrix has eigenvalues
. For the cost function , the

chosen weights are and , ,
2, 3. Then, each is calculated according to the Lyapunov (8).
Since the maximum eigenvalue of is ,
Assumption 3 is satisfied. The constraint parameter sat-
isfies the conditions of Lemma 1, as calculated by solving (9)
for the coupled oscillator system. In accordance with Assump-
tion 4, a centralized optimal control problem is solved at initial
time . In this problem, and in the centralized RHC imple-
mentation, the sum of the three cost functions is
minimized, enforcing terminal state and input constraints with
a horizon time of . The initial condition is kept
the same as that shown in Fig. 3.

To solve the centralized optimal control problem, and each
of the distributed optimal control problems, the same approach
is used. The computer with Matlab 7.0 software has a 2.4 GHz
Intel Pentium(R) 4 CPU, with 512 MB of RAM. In the spirit
of the Nonlinear Trajectory Generation package developed by
Milam et al. [21], a collocation technique is employed within
Matlab. First, each angular position trajectory is parame-
terized as a 6-th order B-spline polynomial. The
constraints and cost functions are evaluated at 121 breakpoints
over each 6 second time window. The resulting nonlinear pro-
gramming problem is solved using the fmincon function, gener-
ating the 27 B-spline coefficients for each position . Using
the concept of differential flatness [22], the control inputs
are not parameterized as polynomials for which the coefficients
must also be calculated. Instead, each control input is defined in

terms of the parameterized positions and their derivatives
through the dynamics (see [22] for details of this procedure).
With an update period of , the centralized
RHC state and control response is shown in Fig. 4. The position
and control trajectories are denoted and . Note that the
positions are brought suitably close to their fixed point values
(shown by dashed lines) within the limit cycle half-period of
seconds, validating the assumption that the model parameters

are constant over the time horizon of 6 s.
With an initially feasible solution available, the distributed

RHC algorithm can be employed. Before presenting the results,
the theoretical conditions are evaluated. In total, the parametric
equations that must be satisfied are (13)–(15) and (18). In
accordance with Assumption 5, the Lipschitz parameters for

must first be identified. Through simulation and applica-
tion of the triangle inequality, the oscillator dynamics satisfy

. To facilitate
calculation of an update period that satisfies the parametric
conditions, time scaling is introduced to normalize the horizon
time from 6 to 1 second. For the dynamics , let

such that
for all . Now, the scaled dynamics satisfy

. To
get into the normalized form, the dynamics are scaled as

. Then, the normalized Lipschitz bounds
become , where

and . The design parameter
, the lower bound on from (13) is ,

and so the update period (for the time-scaled dynamics) is
chosen to be . To satisfy the conditions
of Lemma 3 [(14) and (15)], the parameter is calculated
and choosing the design parameter , the left-hand side
(LHS) of (14) is 0.998 and the LHS of (15) is 0.997. Since both
numbers are less than one, both conditions (14) and (15) are sat-
isfied. Last, equation (18) is a sufficient condition for stability,
and it is satisfied for the values , and .
Therefore, the parametric conditions of the theory guaranteeing
feasibility and stability of the distributed RHC algorithm are
satisfied. Scaling time back to a planning horizon of 6 seconds
corresponds to an update period of , and this
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Fig. 5. The distributed RHC response, showing the angular position trajectories � (left plot) and the control trajectories u (right plot), for each i = 1, 2, 3.
The response is quite close to the centralized RHC response shown in Fig. 4.

Fig. 6. Deviation between the centralized RHC trajectories shown in Fig. 4 and the distributed RHC trajectories shown in Fig. 5. The left plot shows the angular
position deviation (�� = � � � ), and the right plot shows the control deviation (�u = u � u ).

is the update period used in the centralized and distributed RHC
implementations.

Distributed RHC is implemented precisely according to Al-
gorithm 1, with one modification to Problem 1. In the optimiza-
tion code, the constants on the right-hand side (RHS) of con-
straints (11) and (12) are set to 0.1. The actual constants in (11)
and (12) are small enough ( ) to cause feasibility prob-
lems in each distributed optimization code. The value of 0.1,
on the other hand, worked quite well. Of course, the constants
defined in constraints (11) and (12) are derived based on the
sufficient conditions of the theory, and can be conservative. The
closed-loop position and control trajectories generated by ap-
plying the distributed RHC algorithm are shown in Fig. 5. The
position and control trajectories for this closed-loop solution are
denoted and . While the algorithm and theory suggest
switching to the terminal controllers once , the dis-
tributed receding horizon controllers are employed for all time
in these results. To compute the actual closed-loop response be-
tween RHC updates requires numerical integration of the dy-
namic equations (see (5)). Also, to calculate each , as required
in part 2(b) of Algorithm 1, requires numerical integration of
equation (6). In all cases, numerical integration was performed
using the ode23 function in Matlab.

The centralized and distributed RHC responses are quite close,
with the distributed position responses showing slightly more
overshoot than the centralized counterparts, particularly for an-
gles and .Tomoreexplicitly showthedifferencebetween the
centralized and distributed RHC responses, Fig. 6 shows a plot of
the angular position deviation and the control
deviation , for each 1, 2, 3. The closeness
in the two responses can be attributed in part to the weak cou-
pling in the dynamics as quantified by the coefficient .
For weakly coupled dynamics, the error introduced by relying
on for neighbors has less of an impact on the closed-loop re-
sponse, thanforsystemswithdynamicsthatarestronglyinfluence
by neighboring responses. Application of the theory to systems
with stronger dynamic coupling would be useful in identifying
difference between centralized RHC and the distributed RHC al-
gorithm presented here. A hypothesis worth testing is that, even
in the stronger coupling case, if the update period is sufficiently
small, the distributed RHC response is likely to be close to the
centralized RHC response. The intuition behind this hypothesis
is that the error introduced by relying on for neighbors is likely
smaller for smaller update periods.

To compare the computational burden of the centralized
problem and the distributed problems, the cputime function is
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Fig. 7. Comparison of computation times, at each receding horizon update,
to solve the centralized optimal control problem (top plot), and the distributed
optimal control problems in parallel (bottom plot). The computation times cor-
respond to the responses shown in Figs. 4 and 5.

used in Matlab. The centralized optimal control problem has 81
variables to solve for at each RHC update. The computational
time for each RHC update, corresponding to the response shown
in Fig. 4, is shown in the top plot in Fig. 7. Each distributed
optimal control problem has 27 variables to solve for, where
each problem is solved in parallel. The computational time for
each RHC update per agent, corresponding to the responses
shown in Fig. 5, is shown in the bottom plot in Fig. 7 From the
figure, the distributed optimal control problems were solved
between 43 and 58 times faster than the centralized optimal
control problem, over all updates. On average, each distributed
problem was solved 50 times faster, than the single centralized
problem. Clearly, for this example, there is substantial savings
in being able to solve the distributed problems in parallel. The
savings are also consistent with the computational complexity
comparison given in Table I, which suggests savings on the
order of .

VI. CONCLUSION

Inthispaper,adistributedimplementationofRHCisdeveloped
for the case of dynamically coupled nonlinear systems subject to
decoupled input constraints. A central element to the feasibility
and stability analysis is that the actual and assumed responses
of each agent are not too far from one another, as quantified by
a consistency constraint. Parametric bounds on the receding
horizon update period are identified. Also, conditions that bound
the amount of dynamic coupling, parameterized by a Lipschitz
constant, are also identified. While the theoretical results are
sufficient, the proposed algorithm with minor relaxations is
shown to be applicable to the problem of distributed control
of coupled nonlinear oscillators. In the numerical results, the
time it takes to solve the distributed optimal control problems
in parallel is, on average, fifty times faster than the time it takes
to solve a corresponding centralized optimal control problem,
underlining the computational savings incurred by employing
the distributed algorithm. Moreover, the closed-loop response
generated by the distributed algorithm is quite close to a
centralized receding horizon implementation. In addition to

the oscillator example considered here, relaxations of the theory
have been employed in the venue of supply chain management
[23].A theorymore specific to thesupplychainmanagementcase
(coupled nonlinear discrete-time dynamics with time delays) is
currently under development. Finally, while it makes sense to
compare centralized RHC with the distributed implementation
for the academic coupled oscillator example considered here,
centralized RHC is not a viable option in other venues (such as
supply chain management) where the distributed RHC algorithm
may prove relevant. Moreover, even in the absence of a specific
application venue that warrants a distributed approach over a
centralized approach, there is practical justification for designing
hierarchical/distributed control methods in a world in which
centralized optimal control is usually unavailable [24].
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