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5.4 Bond distances in Å from the halogen (X = F, Cl, Br, and I) to the guanine
residues (G2793 and G2794) are reported. . . . . . . . . . . . . . . . . . . . 104

S5.1 Binding energies of lissoclimide derivatives in kcal/mol for RPA(TPSS), TPSS-
D3, and TPSSh-D3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

S5.2 CL model was optimized at different dielectric constants (ϵ). Predicted RPA(TPSS)
binding energies at CBS limit (∆E) in kcal/mol, RMSD in Å relative to the
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ABSTRACT OF THE DISSERTATION
Developing the Theory of Dispersion Interactions for Biological Applications

By

Brian D. Nguyen

Doctor of Philosophy in Chemistry with concentration in Chemical and Materials Physics
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Professor Filipp Furche, Chair

Noncovalent interactions (NIs) are present in the properties and functions of all matter, from

solid state to soft materials. These interactions can range from a few kcal/mol to several

hundreds or even thousands of kcal/mol. Ubiquitous to all molecules is the presence of dis-

persion interactions, which is a force allowing geckos to stick onto walls. However, dispersion

remains challenging to intuitively understand and accurately predict. In this thesis, I inves-

tigate the dissociation of Leishmania major peroxidase using atomistic molecular dynamics

(MD), revisit the current understanding of many-body perturbation theory for NIs, intro-

duce an exact constraint known as the dispersion size-consistency along with its importance

for electronic structure methods, and apply that knowledge to understand the novel face-on

halogen-π interaction between the lissoclimide family and eukaryotic 80S ribosome.

In chapter 2, I investigate the dissociation of Leishmania major peroxidase from MD and

contribute to the understanding of the interactions between heme proteins and its electron-

transferring redox partner. Peroxidases function to catalyze the reduction of peroxide into

water and molecular oxygen. This allows parasites such as Leishmania major to evade re-

active oxygen species (ROS) from the host’s defenses. Leishmania major peroxidase (LmP)

and cytochrome c (Cytc) form a complex that mediates interprotein electron transfer (ET)

and reduces ROS. Such a complex must navigate between fast turnover and tight binding.
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A previous Brownian dynamics study showed that LmCytc associates with the LmP by first

interacting with helix A of LmP and then moving toward the ET site. Critical to this asso-

ciation is the intermolecular Arg-Asp ion pair at the center of the interface. In anticipation,

the dissociation process is the reverse by breaking the Asp-Arg ion pair and follow by the

movement towards LmP helix A. To test this, I performed multiple MD simulations along

with in silico mutation of the LmP Asp211 to Ala211 and observed the dissociation process

consistent with the experiment.

In chapters 3 and 4, I revisit the many-body perturbation (MBPT) for NIs due to alarmingly

large binding energy errors obtained from MBPT. Currently, NIs have traditionally been un-

derstood as “weak” relative to covalent bonds on the order of several magnitudes. Due to this

weakness, MBPT has been expected to accurately model NIs. This was observed with small

complexes from the S22 testset. I reassess the performance of the second-order Møller-Plesset

MBPT (MP2) and compare the results to spin-scaled MP2, dispersion-corrected semilocal

density functional approximations (DFAs), and post-Kohn–Sham random phase approxi-

mation (RPA). These methods is benchmarked against the S66, L7, and S30L testsets for

predicted binding energies. All binding energies are extrapolated to the complete basis set

limit, corrected for basis set superposition errors, and compared to the reference results of

the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better

quality. The results reveal that MP2 significantly overestimates the binding energies. In

some cases, the MP2 relative errors are over 100%. Spin-scaled MP2, while an improvement,

still inherits the limitations of MP2. RPA and dispersion-corrected DFAs have similar per-

formance ranging between 5% to 10% errors. A regression analysis shows that MP2 binding

energy errors grew with the system size by at rate of ∼ 0.1% per valence electron, whereas

RPA and dispersion-corrected DFA errors remain constant.

To understand the errors, I develop an asymptotic adiabatic connection symmetry-adapted

perturbation theory (AC-SAPT). The theory considers a supersystem in terms of the non-

xix



overlapping monomers at full coupling whose ground-state density is constrained to the

ground-state of the supersystem. Using the fluctuation-dissipation theorem, a nonperturba-

tive “screened second-order” expression for the dispersion energy in terms of the monomer

basis is obtained. AC-SAPT expansion of the interaction energy reveals that the source of

binding energy errors come from missing or an incomplete “electrodynamic” screening of

the Coulomb interaction due to induced particle-hole pairs between electrons in different

monomers. MP2 and higher-ordered perturbation theories lack this property leading to a

divergent series within the AC-SAPT framework, whereas RPA converges.

Furthermore, extension of the AC-SAPT framework to the thermodynamic limit estab-

lishes the dispersion size-consistency, which states that the total dispersion energy of an

N -monomer system is independent of any partitioning into subsystems. MBPT is found to

violate this condition and RPA does not. This is due to the additive separability of the

dispersion energy results from multiplicative separability of the generalized screening factor

defined as the inverse generalized dielectric function. Based on the computational and the-

oretical results, MBPT may not be qualitatively and quantitatively adequate for prediction

of NIs. Nonperturbative methods such as RPA or coupled cluster methods should be used.

In chapter 5, I collaborated with the Vanderwall Lab to understand the novel face-on halogen-

π interaction between the lissoclimide family and eukaryotic 80S ribosome. The model is

based on the structure-activity relationship (SAR) of the lissoclimide family inhibition of

protein synthesis obtained from the X-ray co-crystal structure of the 80S ribosome and

chlorolissoclimide. I took advantage of the SAR and instead of modeling the ∼ 400, 000

atoms from the crystal structure, the region where the chlorolissoclimide binds is studied

instead. The system includes the lissoclimide family, two guanine nucleobases, and the

phospahte backbone. This becomes a manageable 122 atoms system for electronic structure

methods. The remaining protein environment is approximated using the implicit conductor-

like solvation model. I verify the model by correlating the experimental half-maximum

xx



inhibitor concentration (IC50) and RPA predicted binding energies between the lissoclimide

derivatives and the eukaryotic 80S ribosome. The relationship reveals a negative correlation

consistent with the anticipation that stronger binding leads to a more potent inhibitor.

Based on these results, I proposed additional inhibitors and contributed to an expanded

SAR knowledge of the lissoclimide family inhibition.
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Chapter 1

Introduction: Noncovalent

Interactions

Noncovalent interactions (NIs) play a role determining the chemical and physical properties

of materials,1–3 biological systems,4,5 and large supramolecular complexes.6–8 Present in all

these systems are dispersion interactions, which have been considered the weakest kind of

NIs. Yet, the dispersion interations allow geckos to stick onto ceilings and walk along walls.9

In a sense, geckos are literally turning on and off dispersion interactions. This brings into

question our current understanding of dispersion interactions.

Johannes Diderik van der Waals was the first to observe these weak attractive forces when he

was establishing the relationship between the pressure, volume, and temperature of gases and

liquids. Shortly after, Fritz London first recognized the importance of quantum mechanics to

capture the correct physics and suggested that dispersion interactions arise from electronic

fluctuation, or random electronic motions, within the molecules.10 These random motions

can cause “instantneous dipoles” that are attractive in nature and follow the 1/R6 power

law. The discovery has been widely accepted in academia and taught in chemistry courses.
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However, in practice, NIs remain a challenge to intuitively understand and accurately predict.

Controlling and manipulating these interactions have been based on an understanding of the

electrostatics and dispersion in small molecules. For instance, the current electronic structure

method of choice is the many-body perturbation theory (MBPT) due to the relative weakness

of NIs compared to covalent bonds. Binding energies of small molecules on the size of tens-

of-atoms were accurately obtained from the second-order Møller-Plesset MBPT (MP2).11–13

Furthermore, numerical results of the high-order MP series were observed to converge for the

He, H2, LiH, H2O, and HF dimers.14 Combined with the MP theory being size-extensive and

size-consistent,15 the MBPT appeared to be appropriate for modeling NIs. Size-consistency

has been suggested by Pople16 and Barlett17 to have a great importance for predicting

chemical properties.

This perception has made it safe to assume that the MBPT should work for modeling NIs

in more complex systems e.g supramolecular complexes and proteins. Unfortunately, in the

early 2000s, MP2 showed inconsistencies and yielded unusually large binding energy errors.

One of the first examples is the coronene dimer in which MP2 significantly overbinds by

100% compared to the the quadratic configuration interaction reference data.18,19

In the thesis, I aim to investigate the source of the MBPT’s inconsistencies for NIs, determine

appropriate electronic structure methods for modeling NIs, and apply the knowledge towards

biological applications. Prior to investigating MP2 binding energy errors, chapter 2 focuses

on the dissociation mechanism of Leishmania major peroxidase using the molecular dynamic

simulation. The mechanism is facilitated with mainly ionic interactions that corroborates

with the association mechanism presented by previous Brownian dynamic simulations.5,20

While molecular dynamics are appropriate for capturing ionic interactions, dispersion inter-

actions remain challenging for force fields. A quantum mechanic approach should be used.

However, not all electronic structure methods are appropriate to model NIs as previously

mentioned.
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Hence, in chapter 3, I revist the MBPT for NIs and determine the source of these errors by

building the adiabatic connection symmetry adapted perturbation theory (AC-SAPT) that

establishes the importance of the electrodynamic screening. With the AC-SAPT framework,

in chapter 4, I explicitly establish the exact constraint coined as dispersion size-consistency,

which has been implied by prior works.14,21–24 I show that this condition is important for

modeling NIs using electronic structure methods. Lastly, in chapter 5, I apply the knowledge

toward expanding the structure activity relationship of the lissoclimide family inhibition of

protein synthesis and take advantage of the novel face-on halogen-π interaction.
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Chapter 2

Insights into the Dynamics and

Dissociation Mechanism of a Protein

Redox Complex Using Molecular

Dynamics

Chapter 2 is reprinted with permission from [Hollingsworth, S.A.*; Nguyen, B.D.*; Chreifi,

G.; Arce, A.P.; Poulos, T.L. Insights into the Dynamics and Dissociation Mechanism of a

Protein Redox Complex Using Molecular Dynamics. J. Chem. Info. Model. 2017, 57(9),

2344–2350]. Copyright 2017 American Chemical Society. (* Indicates authors contributed

equally.)

Contribution Statement: The following are my contributions to the project. I modeled

and performed molecular dynamics simulations for the Leishmania major peroxidase using

both CHARMM and AMBER packages. I created plots using Grace that analyzed the

simulations by looking at bond distances and root mean square deviations. I contributed to
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the writing and prepared the submission into the J. Chem. Info. Model.

2.1 Introduction

Interprotein electron transfer requires formation of protein-protein complexes.25,26 Such com-

plexes often are quite specific, since the electron transfer (ET) rates between redox centers

decreases exponentially with distance, making it necessary to minimize the donor–acceptor

distance and/or provide an appropriate ET path. Nature, however, must balance the require-

ment of specific binding with rapid turnover, so protein redox complexes also are designed to

rapidly dissociate. Therefore, while the association rate often is quite fast, the dissociation

rate also is fast, which often means that neither association or dissociation is rate-limiting.

The resulting moderate stability of protein redox complexes is one reason why there are

very few such complex crystal structures. One of the exceptions is the well-studied yeast

Cytochrome c peroxidase (CCP)–cytochrome c (Cytc) complex that has long served as a

paradigm for interprotein ET studies.27,28

Recently, a second CCP–Cytc complex has been characterized. The human pathogen Leish-

mania major has a peroxidase (LmP) that is mechanistically and structurally similar to

yeast CCP.29–32 Mechanistically, these systems have been shown to be almost identical

(Scheme 2.1).30–32

Scheme 2.1: Interprotein electron transfer
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In step 1, the peroxidase is first oxidized by hydrogen peroxide to produce the ferryl com-

pound I and a Trp radical (FeIV=O; Trp+·).33,34 Through an electron transfer event with the

related Cytochrome c (step 2), the Trp+· radical is reduced to give compound II (FeIV=O;

Trp). An intramolecular proton-coupled electron transfer (PCET, step 3) from the Trp to

FeIV=O gives FeIII–OH; Trp+·,35,36 before a second electron transfer event (step 4) with

Cytochrome c reduces Trp+ to return the peroxidase to its resting state. In addition, the

structure of the LmP–LmCytc complex is strikingly similar to the experimentally determined

yeast complex.31

Despite their mechanistic and structural similarities, however, the LmP–LmCytc redox pair

is kinetically unlike the CCP–Cytc system, which suggests that the association and disso-

ciation of these redox pairs may be different. First, while the LmP system obeys simple

Michaelis–Menten kinetics,31,32 CCP does not.37 Second, the crystal structure of each com-

plex shows that the LmP–LmCytc complex is stabilized by specific intermolecular ion pairs

(Figure 2.1),32 while the CCP/Cytc interface has no intermolecular ion pairs but instead

appears to be stabilized by nonpolar interactions at the interface.27 Further emphasizing

the importance of electrostatic interactions in the LmP system, we recently documented

a secondary binding site for LmCytc on LmP.5 This noncatalytic site is composed of four

nearly consecutive negatively charged residues on helix A, adjacent to but separate from

the active site. A combination of computational and experimental results has shown that

helix A influences complex formation and dissociation for the LmP system, but not for

CCP. (14) In the Brownian dynamics simulation, LmCytc initially docks to LmP helix A

and then migrates toward the ET-active position. For the proper ET complex to form,

the critically important R24LmCytc–D211LmP ion pair must form at the center of the com-

plex. The importance of this ion pair is underscored by the D211N mutant, which exhibits

∼ 8% wild-type activity.5 This decrease is due to the rate-limiting step switching from the

Trp-to-Fe(IV)=O intramolecular ET to the rate of association of the LmP–LmCytc com-

plex itself.30 For the R24LmCytc–D211LmP interaction to form, the intramolecular interaction
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between R24LmCytc and E101LmCytc must be broken, thus freeing R24LmCytc to adopt a new

rotameric conformation in order to interact with D211LmP.32 These computational results

guided the mutagenesis studies, where removing three negative charges on helix A was found

to lower kcat by ∼ 3-fold and the rate of association of the two proteins by ∼ 6-fold.5

Figure 2.1: Schematic of the LmP–LmCytc complex highlighting key interactions. [Legend:
LmP is depicted in faint gray, LmCytc is depicted in faint green, and the respective heme
groups are shown as red sticks.] The catalytically important intermolecular ion pair between
D211 of LmP and R24 of LmCytc defines the ET-active binding site for LmCytc, while
the negatively charged residue of D47, E49, D50, and E54 of LmP helix A constitutes
the secondary binding site. LmP Y134 is positioned directly between the ET-active and
secondary binding sites.

In order to study the dynamics of the LmP–LmCytc redox pair complex and provide a deeper

understanding of a possible dissociation mechanism, we have performed molecular dynamics

(MD) simulations of the experimentally determined complex structure. These simulations

have revealed a clear visualization of the dynamics of the important intermolecular and in-

tramolecular ionic interactions and a point of comparison to other well-studied heme protein

redox partner systems.
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2.2 Methods: Molecular Dynamics Simulations

In order to the study the dynamics of the LmP–LmCytc complex, we conducted an initial

set of three atomistic molecular dynamics (MD) simulations of the experimental co-crystal

structure of LmCytc in complex with LmP (PDB ID: 4GED).32 The preparation of the MD

simulation is similar to our previous study of the LmP–LmCytc system5 and described briefly

here. Hydrogen atoms were added to the crystal structure, using the psfgen plugin of VMD

1.9.1.38 Patches were employed to connect the ferric high-spin heme with the coordinating

His residues in both LmP and LmCytc, while an extra bond parameter was added to describe

the Met-heme coordination in LmCytc, as well as the coordination of the ions present in the

co-crystal structure. The surrounding orthogonal solvent box was constructed with a 20

Å cushion in all directions around the proteins. The resulting complex system contained

73, 815 atoms.

The initial three MD simulations were performed using NAMD,39 version 2.10, on the green-

planet cluster at UC Irvine and the XSEDE Stampede computing cluster. The CHARMM2240

force field was employed for the proteins and co-factor. The TIP3P model41 was used to

model the solvent. Each system underwent 1000 steps of conjugate gradient energy mini-

mization at a constant pressure of 1 atm and 300 K, using a Nosé–Hoover–Langevin piston

for pressure control and a Langevin dynamics for temperature control, respectively.42,43 A

time step of 1 fs was employed for the first 10 ns of each simulation before being increased to

2 fs for the remainder of the trajectory, while a multiple time step algorithm was employed to

integrate the equations for motion, as described previously.44 The electrostatic interactions

were treated using a smooth particle mesh Ewald algorithm45 and the real space part of

the Ewald sum and the Lennard-Jones interactions were switched off between 10Å and 12Å,

while the all of the bonds to H atoms were constrained usingthe SHAKE algorithm.46 Anal-

yses was performed using VMD38 and PyMOL (http://www.pymol.org), as well as locally

developed analysis tools.

8
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Based on the findings from the three NAMD simulations, we performed two additional

simulations, using AMBER. The NAMD runs showed that once the Arg24LmCytc–Asp211LmP

ion pair at the LmP/Cytc interface breaks and Cytc moves toward helix A of LmP. We

therefore generated the in silico D211A LmP mutant, thus eliminating this intermolecular

ion pair, to see if LmCytc will undergo the same dissociation process as that observed in the

NAMD runs. As a control, we also included a simulation with the wild-type complex. The

systems were prepared similarly to the NAMD runs, using a solvent box of the same size.

Ferric high-spin heme parameters were taken from Collins and Loew,47 and, for the protein,

the AMBER ff99SB force field was used. Hydrogen mass repartitioning (HMR) through

parmed was employed to redistribute the mass of the hydrogens, allowing for the use of a 4

fs time step for all AMBER simulations. As part of another study, we compared simulations

of Cytochrome P450 with and without HMR and found little difference in the dynamics. All

AMBER runs were run on the GPU clusters at the San Diego Supercomputer Center.

2.3 Results and Discussion

2.3.1 LmP–LmCytc Complex Dynamics

In order to study the stability of the LmP–LmCytc complex, we performed three 650 ns

CHARMM MD simulations, using the experimentally determined co-crystal structure32 as

a starting point. We also performed an AMBER simulation of the wild-type complex plus

a second simulation, where D211LmP has been converted to an Ala. This mutant mimics

rupturing of the R24LmCytc–D211LmP ion, which is a critical intermolecular ion pair and

the center of the complex (see Figure 2.1). Root-mean-square deviation (RMSD) analysis

(Figure S2.1 in the Supporting Information) showed that both LmP and LmCytc undergo

large backbone deviations, because of variations in surface loops. The deviations are much
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less when confined to regular elements of secondary structure. This, together with visual

inspection of the trajectories, shows that the individual structures are quite stable. However,

visual inspection of the trajectories clearly showed that LmCytc moves away from the ET-

active site toward helix A (see Figure 2.2). From the crystal structure, the distance between

the center of mass of LmCytc and helix A is ∼ 26Å and substantially shortens during the

simulations (Table 2.1) as LmCytc migrates toward LmP helix A. In CHARMM replicate

1, LmCytc first moves toward helix A, dissociates, and then reassociates with helix A. The

main reason for this larger motion in replicate 1 is that the R24LmCytc–D211LmP ion pair

dynamically breaks and reforms throughout the simulation but remains broken after ∼ 550

ns, which frees LmCytc to move further toward LmP helix A. The models in Figure 2.2

show that, toward the end of the simulations, LmCytc has moved closer to helix A in all five

simulations. In the D211A mutant AMBER simulation, LmCytc moves to helix A much more

quickly and remains there for the remainder of the simulation. The AMBER simulation of

the wild-type complex behaves similar to CHARMM replicate 1. The R24LmCytc–D211LmP

ion pair breaks at ∼ 2.2µs and remains broken for the remainder of the simulation (see

Figure 2.3, as well as Figure S2.2 in the Supporting Information). As in CHARMM replicate

1, breaking of the ion pair frees LmCytc to move closer toward helix A. Taken together, these

results show that LmCytc favors moving toward helix A but is restrained by the R24LmCytc–

D211LmP ion pair, which prevents the full motion of LmCytc to transition from the ET-

active conformation to the secondary binding site of LmP helix A. Once this ion pair breaks,

however, as observed in both CHARMM replicate 1 and the AMBER simulations, LmCytc

is free to fully transition to the secondary binding site previously observed in Brownian

dynamics simulations (helix A of LmP) and ultimately dissociates.
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Figure 2.2: Schematic of the LmP–LmCytc complex toward the end of simulation. Snapshots
near the end of each respective MD simulation are displayed, where LmCytc is cyan, LmP
is white (except helix A, which is shown in red). Two views are shown: one viewed down on
the LmCytc docking site and a side view. Images shown represent (A) crystal structure, (B)
CHRAMM replicate 1, (C) CHARMM replicate 2, (D) CHARMM replicate 3, (E) AMBER
wild type, and (F) AMBER D211A mutant. Relative to the crystal structure, LmCytc
moves toward the A helix in all simulations. However, in replicate 1 (panel (B)) and the
Amber simulations (panels (E) and (F)), where the Asp–Arg intermolecular ion pair breaks,
LmCytc now is free to form closer interactions with helix A. The arrow indicates the direction
of motion of LmCytc.

Table 2.1: LmCytc–Helix A Minimum Center of Mass Distance

Distance (Å)
Crystal 26
CHARMM1 20.2
CHARMM2 22.4
CHARMM3 21.0
AMBER WT 20.8
AMBER Mutant 19.7
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Figure 2.3: Plots showing the R24LmCytc–D211LmP and R24LmCytc–Y134LmP distances as a
function of simulation time: (A) CHARMM replicate 1, (B) AMBER wild type, and (C)
AMBER D211A mutant. The arrows indicate where the he R24LmCytc–D211LmP breaks
and the R24LmCytc–Y134LmP interaction forms. In the AMBER mutant (panel (C)), the
R24LmCytc–Y134LmP interaction forms quickly and remains stable for ∼ 50 ns before this
interaction is lost as LmCytc moves closer to helix A.
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2.3.2 LmP–LmCytc Dissociation

We next focus on CHARMM replicate 1, since the R24LmCytc–D211LmP ion pair breaks

relatively early and thus provides the most detailed picture of the dissociation process in

the wild-type complex. Once the R24LmCytc–D211LmP ion breaks and LmCytc begins to

slide further toward helix A, R24LmCytc forms a new interaction with Y134LmP. As shown in

Figure 2.3 for both the CHARMM replicate 1 and AMBER WT simulations, the R24LmCytc–

Y134LmP pair forms as soon as the R24LmCytc–D211LmP ion breaks. In the D211A AMBER

simulation, R24LmCytc also forms an interaction with Y134LmP. Thus, in all three simulations

where the intermolecular ion pair breaks or is not present, because of in silico mutagenesis,

LmCytc begins its “crawl” toward helix A by initially interacting with Y134LmP. Y134LmP

is located between the D211LmP at the ET-active site and helix A (Figure 2.1) and thus

provides both a new hydrogen-bonding partner to R24LmCytc as LmCytc moves toward helix

A, as well as preventing reformation of the ET-active ion pair with D211LmP.

The energetic incentive for LmCytc moving toward helix A during this process are two

surface-exposed Lys residues of LmCytc (K16 and K19) that approach E49, D50, and E54

in helix A of LmP and aid to pull LmCytc away from the ET-active site. Interestingly,

following breakage of this new transient interaction in CHARMM replicate 1, R24LmCytc

again reorients and reforms an intramolecular ion pair with E101LmCytc that is observed in

the LmCytc crystal structure in the absence of LmP (see Figure 2.4 and Figure 2.5, as well

as Figure S2.3 and Figure S2.4 in the Supporting Information). In the wild-type AMBER

simulation, the R24LmCytc–E101LmCytc distance also decreases (Figure S2.3) but is not close

enough to reform the ion pair. Once this change occurs, LmCytc effectively dissociates and

moves away from helix A to a point where the LmCytc center of mass reaches 28 Å from

its starting position in the complex crystal structure. Continuing, LmCytc then returns to

LmP, where R24LmCytc moves back and forth between D211LmP and Y134LmP.
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Figure 2.4: Distance evolution of the LmP–LmCytc complex interactions. The distance
between interacting residues that were found to be important during the dissociation of the
LmP–LmCytc complex over the course of each 650 ns MD simulation CHARMM replicates
are highlighted in panels (A)–(D), where replicate 1 is shown in black, replicate 2 is shown
in red, and replicate 3 is shown in blue. The highlighted interactions are shown as follows:
(A) the electron transfer (ET)-active interprotein ion pair of LmCytc R24(CZ) and LmP
D211(CG), (B) the transient interaction between LmCytc R24(NE) and LmP Y134(OH), (C)
the distances between LmCytc R24(CZ) and D50 of LmP helix A, and (D) the intramolecular
ion pair between LmCytc R24(CZ) and LmCytc E101(CA). In panel (D), the experimentally
observed distance for the intramolecular ion pair in the individual structure (PDB ID: 4DY9)
is shown in pink and the equivalent distance in the co-crystal structure (PDB ID: 4GED) is
shown in orange.
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Figure 2.5: Snapshots of the dissociation process of the LmP–LmCytc complex. Molecular
snapshots of the dissociation of the LmP–LmCytc complex, as observed through the unbiased
MD simulation replicate 1 taken at (A) ∼ 0 ns, (B) ∼ 290 ns, (C) ∼ 340 ns, and (D) ∼ 400
ns.

2.3.3 Kinetics of the LmP Y134F Mutant

Since simulations across not only wild-type and mutant complexes but also CHARMM and

AMBER force fields predict that Y134LmP plays a role in the association/dissociation reac-

tions, we generated the experimental Y134FLmP mutant and determined its kinetic param-

eters. Figure 2.6 shows a comparison of our previously determined wild-type kinetics5 with

that of the Y134FLmP mutant. The Y134FLmP mutant exhibits a simple hyperbolic behavior,

with a 3.6-fold increase in Km, when compared to the wild type (Figure 2.6), suggesting that

the Y134FLmP mutation decreases the affinity of LmCytc for the LmP mutant. Wild-type

rates are restored with saturating amounts of LmCytc, as seen by the measured kcat value

being almost identical to that of the wild type. This indicates that (i) the rate-limiting

step of the reaction at steady state has not changed, but remains the intramolecular proton-

coupled ET PCET from the Trp to FeIV, as previously shown for wild-type LmP,30 but (ii)

the binding of LmCytc to LmP has been weakened. Together, these results suggest that the

association rate constant of the LmPY134F–LmCytc complex, although impaired, remains

greater than the intramolecular PCET rate constant of ∼ 400 s−1. This is consistent with
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the prediction of Y134LmP playing an important, but not vital, role in complex turnover.

Figure 2.6: Experimental steady-state kinetic analysis of Y134FLmP. A plot of V0/e vs
LmCytc concentration for the Y134FLmP–LmCytc complex (shown in red) is superimposed
onto the data from the wild-type LmP–LmCytc complex (shown in green). (Data taken from
ref 5.)

2.3.4 Predicted Electron Transfer Rates in the LmP–LmCytc Com-

plex

These new computational and experimental results, coupled with our previous Brownian

dynamics studies,5 indicate that helix A provides a secondary nonspecific electrostatic surface

to which LmCytc can rapidly bind. However, this also raises the question of whether or not

LmCytc delivers electrons while hovering near helix A, or if LmCytc must move to the

position observed in the crystal structure in order to transfer an electron. Since ET rates

are quite sensitive to the distance between donor and acceptor, comparing ET distances over

the course of a trajectory can provide insights into which complexes are active and inactive

(see Figure 2.7). The various parameters that are required for this application of Marcus

theory48,49 were taken from ref 50: ∆G, which is the difference in redox potential between

the Trp208LmP radical and hemeLmCytc (−0.5 eV), and a reorganization energy of 1.0 eV.50

In the crystal structure, the ET distance is ∼ 15Å, which gives a rate of ∼ 2 × 105 s−1. The
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observed rate of electron transfer from Cytc to the Trp radical, using laser flash photolysis

in the CCP-Cytc complex, is ∼ 2 × 106 s−1.50 Given the close similarity between the CCP-

Cytc and LmP–LmCytc complexes, we can expect the LmP–LmCytc complex to exhibit a

similar rate. It is important to note that this rate cannot be compared to the steady-state

rate of ∼ 460s−1, which is the intramolecular ET from the Trp radical to Fe(IV)=O. The

Cytc-to-Trp radical ET rate also cannot be compared to second-order rates measured by

stopped flow kinetics, since stopped flow mixing experiments measure the rate of association

and not intermolecular ET from the LmCytc heme to the LmP Trp radical. Therefore,

any computed intermolecular ET rate well below 105 − 106s−1 is not compatible with the

observed kinetic behavior of LmP and, thus, does not represent an ET active complex. In

CHARMM replicates 2 and 3 (red and blue, respectively), the ET rate decreases by 3 orders

of magnitude below the experimental values of 2 × 106 s−1 as LmCytc moves toward helix

A. In replicate 1, after LmCytc moves to helix A of LmP, the closest ET distance is ∼ 20Å,

which gives a rate of ∼ 100 s−1. This is well below both the flash photolysis rate50 and even

kcat,30 which provides additional evidence that the helix-A-bound complex is likely inactive,

as predicted by previous BD and experimental results.5

2.4 Conclusions

A longstanding problem in understanding biological ET reactions is the requirement for

balancing specificity with a high rate of turnover. In order to maintain rapid kinetics, the

formation of protein complexes must be relatively weak. On the other hand, rapid inter-

molecular ET requires bringing the donor and acceptor relatively close and, in some cases,

provide the proper intervening medium for rapid ET.26 Since the interface that must align

properly for ET is small, compared to the total surface area available to each protein, the

probability of forming the ET-active complex via random intermolecular collisions is small.
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Figure 2.7: Predicted electron transfer distance and rate evolution for the LmP–LmCytc
complex. (Top) The logarithm of the calculated ET rate, plotted as a function of time, where
CHARMM replicate 1 is black, 2 is red, and 3 is blue, while the Amber WT simulation is
purple and the mutant simulation is shown in light brown. The ET rate was calculated using
Marcus theory as described in the text and the distance between the closest atom in the rings
of Trp208LmP and the LmCytc heme. The dashed lines indicate the ET rate obtained from
laser flash photolysis experiments for the yeast CCP–Cytc system,50 the computed rate using
the Trp208LmP–hemeLmCytc closest distance obtained from the LmP–Cytc structure,32 and
kcat obtained from steady-state kinetics.30 (Bottom) The distance between the center of mass
of LmCytc and the LmP active site residue D211 over the course of each replicate is tracked
using the same color scheme as described above.
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This problem has given rise to the “bind and crawl” or “velcro” model of ET,51 which more

recently has witnessed experimental support for transient redox complexes.52,53 Here, the

redox partners initially interact via nonspecific complementary electrostatic surfaces. Next,

the partners sample each other’s surface in a rapid two-dimensional search until the more

energetically favorable ET-active complex is obtained. However, to ensure rapid dissociation,

the difference in stability between the ET-active and inactive complexes must be small. The

LmP–Cytc system has provided the most detailed molecular level picture on this process.

Our previous Brownian dynamics work indicates that LmCytc initially forms a nonspecific

complex with helix A and remains there until the R24LmCytc–E101LmCytc intramolecular ion

pair breaks, which enables R24LmCytc to form an intermolecular ion pair with D211LmP. In

the present work, we find that exactly the reverse happens in the dissociation reaction.

The intermolecular R24LmCytc–D211LmP ion pair first must break, which then enables Lm-

Cytc to slide toward the helix A prior to full dissociation. In the CHARMM simulations,

we observe the rupture of the R24LmCytc–D211LmP ion pair in only one of the three sim-

ulations, but observe significant movement toward helix A in all three replicates. Further

supporting these findings, using AMBER force fields we observe the same motions toward

helix A, including breakage of the R24LmCytc–D211LmP ion pair, followed by the formation

of R24LmCytc–Y134LmP. The fact that these same specific interactions, as well as the broader

motions toward helix A, occur across different simulation conditions increases confidence that

the dynamic tug of war between the broad electronegative surface of helix A and the ET-

active complex controlled by the R24LmCytc–D211LmP ion pair is an accurate picture of the

binding/dissociation reactions. In summary, this work, coupled with our previous Brownian

dynamics study, presents a consistent picture on the dynamics of both the association and

dissociation reactions and provides further support for the “bind and crawl/velcro” model

of ET protein–protein interactions and more recent advances on transient redox partner

complexes.52,53
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2.5 Supporting Information

Figure S2.1: Root mean square deviation of all backbone atoms (CA, C, N) relative to
the first frame for all 4 wild type MD trajectories. Panels on the left are for the entire
protein while on the right only residues in regular secondary structure (helices and sheets)
are included. Black lines correspond to LmCytc while gray lines correspond to LmP.
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Figure S2.2: The distances between LmP Y134 and LmCytc R24 (cyan) and the electron
transfer (ET) active ion-pair of LmP D211 and LmCytc R24 (red) are displayed for the multi-
microsecond Amber simulation. Breakage of the ET ion-pair is followed by formation of the
intermediate LmP Y134-LmCytc R24 interaction, identical to that observed in CHARMM
replicate 1 and Amber mutant simulations.

Figure S2.3: The distances between LmP D50 and LmCytc R24 (cyan) and LmCytcR24 and
LmCytcE101 (red) for the multi-microsecond Amber simulation replicate.
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Figure S2.4: Interpolations of the normalized distance distributions between interacting
residues are highlighted in A through D where CHARMM replicate 1 is shown in black,
CHARMM replicate 2 in red and CHARMM replicate 3 in blue. The highlighted in-
teractions are as follows; A) The electron transfer active interprotein ion-pair of LmCytc
R24(CZ) and LmP D211(CG), B) the transient interaction between LmCytc R24(NE) and
LmP Y134(OH), C) the distances between LmCytc R24(CZ) and D50 of LmP helix A and,
D) the intramolecular ion pair between LmCytc R24(CZ) and LmCytc E101(CA). In D, the
experimentally observed distance for the intramolecular ion pair in the individual structure
(PDBID 4DY9) is shown in pink and the equivalent distance in the co-crystal structure
(PDBID 4GED) in orange.
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Chapter 3

Divergence of Many-Body

Perturbation Theory for Noncovalent

Interactions of Large Molecules

Chapter 3 is reprinted with permission from [Nguyen, B.D.; Chen, G.P.; Agee, M.M.; Burow,

A.M.; Tang, M.P.; Furche, F. Divergence of Many-Body Perturbation Theory for Noncovalent

Interactions of Large. J. Chem. Theory Comput. 2020, 16(4), 2258–2273]. Copyright 2020

American Chemical Society.

Contribution Statement: The following are my contributions to the project. I revisited

and confirmed the large binding energy errors of the second-order Møller-Plesset many-body

perturbation theory (MP2) by benchmarking against the S66, S30L, and L7 testsets. I then

compared the MP2 results against the random phase approximation (RPA), spin-scaled MP2,

and dispersion corrected density functional approximations (DFAs) ensuring that all results

were at the complete basis limit. In addition, I performed RPA geometry optimization of

the ROT34 testset to assess the performance of RPA for intramolecular interactions. Next, I
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analyzed the results by developing the adiabatic connection symmetry adapted perturbation

theory (AC-SAPT) at the asymptotic limit. To support the theoretical results, I adapted the

Turbomole source code to provide numerical results of the AC-SAPT expansion confirming

my observations. Lastly, I contributed to the writing, created all the plots using R, and

prepared the submission into the J. Chem. Theory Comput.

3.1 Introduction

While covalent bonding is a central paradigm of chemical theory, noncovalent interactions

(NIs)54,55 are often considered secondary due to their “weakness.” For small molecules with

10 or less atoms, NIs are at least one order of magnitude smaller than covalent bonds, and

their low chemical specificity makes them difficult to detect and control. However, it has

long been recognized that NIs are pairwise nonadditive and can grow superlinearly with sys-

tem size.56–58 Indeed, NIs are key factors determining conformation, tertiary structure, and

other properties of molecular aggregates and complexes,8,59,60 materials,2,3 or molecular crys-

tals.61,62 Recent advances in experimental techniques such as molecular beam spectroscopy63

have made NIs readily observable in larger molecular systems, and even areas focused on

covalent bonding such as synthetic chemistry and catalysis increasingly use NIs to fine-tune

reactivity and selectivity.64,65

Perhaps with the exception of density functional theory, most electronic structure methods

have been developed and tested for small molecules. A central assumption underlying this

“bottom-up” approach is that methods performing well for small systems may be scaled up to

larger ones without deterioration in accuracy. Size consistency and size extensivity15,66,67 are

often assumed to be sufficient to ensure that the accuracy of an electronic structure method

for chemical processes is approximately independent of the system size. Møller–Plesset (MP)

many-body perturbation theory (MBPT),68 which is based on the Fock operator as a zeroth-
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order Hamiltonian, has enjoyed much popularity as one of the least expensive yet useful ab-

initio correlated electronic methods; size-extensivity of the energy is an often cited advantage

of MP theory.15 Moreover, unlike semilocal density functional approximations (DFAs), whose

performance for NIs can be erratic,69–71 MBPT has widely been considered a qualitatively

suitable starting point for modeling NIs, particularly in systems too large to be tractable

by more advanced methods.72–74 This view appears to have emerged from the correct 1/R6

behavior of the dispersion energy obtained from MBPT as well as early favorable convergence

for small closed-shell systems.11,14 In a landmark 1993 paper,14 Moszynski, Jeziorski, and

Szalewicz investigated the convergence of the MBPT expansion of the dispersion energy

for several small weakly bound complexes and concluded that convergence of the series is

“very fast.” This may be contrasted with covalent interactions, where MBPT is known to

diverge in many systems of chemical interest.75–77 The assumption that “weak” closed-shell

interactions between distant electron pairs are accurately captured by MBPT is implicit

in many applications as well as theoretical approaches such as local correlation methods.78

Against the backdrop of the qualitative inability of semilocal DFAs to capture long-range

NIs, this assumption has also motivated the development of efficient computational methods

to apply MBPT to systems with 100 and more atoms.79–83

However, with the expanding scope of MBPT applications during the past two decades, an

increasing number of examples were reported that shows substantial overestimation of NI

energies by second-order MP MBPT (MP2).84 In 2010, Pulay and co-workers pointed out

that MP2 overbinds coronene dimer by almost 100% compared to the quadratic configuration

interaction reference data.18,19 Comparing initially to solution phase thermodynamic data85

and later to coupled cluster singles, doubles, and perturbative triples (CCSD(T)) calcula-

tions,86 Grimme noted that the accuracy of MP2 severely deteriorates for supramolecular

systems.87 Initially, these deviations were viewed as the result of a quantitative rather than

qualitative shortcomings of MBPT, which led to the development of empirical correction

schemes such as spin-component-scaled MP2 methods88,89 and MP2.5.73 For large molecular
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complexes, the shortcomings of pairwise additive methods such as MP2 have been ascribed

to missing three- and higher-body dispersion interactions,87 triggering the development of

dispersion corrections including MP2C,23,24,90 MP2D,91,92 as well as empirical three-,87,93 and

many-body94 dispersion corrections for DFAs. Meanwhile, Dobson and co-workers showed

that the simple addition of pairwise 1/R6 interactions yields qualitatively incorrect asymp-

totic power laws for dispersion interactions between macroscopic solids. For example, the

interaction between two large parallel graphene sheets decays as 1/D3 with the distance D

between the sheets, whereas finite-order MBPT yields a 1/D4 behavior.95,96 These troubling

inconsistencies and the sheer magnitude of the errors raise the question whether and to what

extent MBPT is fundamentally adequate for NIs of large but finite molecules.

To address this question, we revisit the performance of MBPT with particular emphasis on

large molecules with 100 and more atoms, and contrast it with the random phase approx-

imation (RPA) to the ground-state correlation energy in a density functional context.97–99

Particle–hole RPA may be viewed as a resummation of ring diagrams100 which correspond to

direct Coulomb interactions between particle–hole pairs and constitute the most long-ranged

correlation contribution to the interaction energy between closed-shell systems.55,101 Indeed,

the accuracy of RPA for NIs in small molecules,102,103 rare-gas solids,104 and layered materi-

als96 is well documented, but few results for intra- and intermolecular NIs in large systems

are available.105,106 Building on efficient RPA implementations for energy107 and analytic

derivatives,108 we investigate the size-dependence of MBPT and RPA interaction energies

using the S66,13,109 L7,110 and S30L111 benchmarks in Section 3.3. These benchmarks con-

tain systems ranging from 6 to 204 atoms, with binding energies between 1 kcal/mol and

136 kcal/mol. To evaluate whether our observations for energetics also hold for structures,

we also compare rotational constants from MP2, RPA, and Grimme’s dispersion corrected

DFA-D387 structure optimizations to gas-phase spectroscopy data using organic molecules

with 18–35 atoms from the ROT34 benchmark set.112,113
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In Section 3.4, these results are analyzed in detail using a symmetry-adapted perturbation

theory (SAPT) type114,115 asymptotic theory of NIs between closed-shell fragments whose

ground-state density is constrained to the supersystem ground-state density using a local

one-body potential in the spirit of the adiabatic connection (AC)97,98,116,117 in density func-

tional theory (DFT). This leads to a compact, non-perturbative expression for the dispersion

energy, as well as explicit estimates for the convergence radius of the AC-SAPT expansion.

We investigate how the estimated convergence radii correlate with errors of MP2 and RPA

calculations of NIs and the system size. A numerical model for the divergence of the AC-

SAPT expansion for moderately large and polarizable systems is obtained by re-expansion

of the RPA correlation energy into powers of the interaction. Conclusions for electronic

structure theory and computational practice are presented in Sec. 3.5.

3.2 Methods

3.2.1 Computational Details

MP2 energies were evaluated using on self-consistent Hartree–Fock (HF) orbitals. Variants of

MP2 such as spin-component-scaled MP2 (SCS-MP2)88 and scaled opposite-spin MP2 (SOS-

MP2)89 were also assessed. All MP2 calculations were performed with the RI approximation

(RI-MP2) using the ricc2 module118 of Turbomole.119

RPA energies and analytic derivatives were obtained in a post-Kohn–Sham (KS) fashion,

i.e., a KS calculation using a semilocal DFA was first performed to obtain the KS orbitals,

and subsequently the exact exchange energy and the RPA correlation energy were evaluated

non-self-consistently. The Perdew–Burke–Ernzerhof (PBE)120 and Tao–Perdew–Staroverov–

Scuseria (TPSS)121 DFAs were used for the KS calculations; the ensuing RPA calculations,

dubbed RPA(PBE) and RPA(TPSS), respectively, employed the resolution-of-the-identity
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(RI) approximation and the imaginary frequency integration technique as implemented in

the rirpa module107 of Turbomole.119 Perturbative order-by-order analysis of the RPA

correlation energies was carried out using a modified version of Turbomole 7.3.

Tight convergence criteria of 10−9 Hartrees for the energy and 10−7 atomic units (a.u.) for

the root mean square change of the one-particle density matrix were used for the KS and

HF self-consistent field iterations. DFA quadrature grids of m5 quality122 were used for the

KS reference calculations. Imaginary frequency grids of 100 points were employed for the

RPA energy calculations. Interaction energies were computed based on the supermolecular

approach and extrapolated to the complete basis set (CBS) limit, as detailed in the next

subsection. RPA structural optimizations108 of molecules in the ROT34 benchmark set were

converged to a maximum Cartesian gradient norm ≤ 10−4 a.u. and 10−7 a.u. in the energy

change. Fine imaginary frequency grids of 200 points were used for RPA gradient calculations

and structure optimizations.

The interaction energies were benchmarked against CCSD(T) values for the S66 benchmark

set13,109 and against the domain-based local pair-natural orbital (DLPNO) based CCSD(T)

calculations for the L7 and S30L benchmark sets.123,124 DLPNO-CCSD(T) results can vary

significantly for weakly bound complexes depending on the truncation of the PNO basis and

domain size.125,126 Moreover, even with tight truncation thresholds, the results may differ

by up to ∼2 kcal/mol based on the choice of basis set and basis-set extrapolation scheme as

seen by Refs. 124 and 126. For the present study, the DLPNO-CCSD(T) reference values

were taken from Brandenburg et al 124 employing the “TightPNO” truncation thresholds125

and the basis-set extrapolation scheme from Ref. 127 for both the L7 and S30L bench-

marks. Throughout the paper, signed errors are defined as differences between calculated

and reference values; for example, a positive error in binding energies signifies underbinding.
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3.2.2 Basis Set Convergence

The RPA total energy is the sum of the energy expectation value of the KS determinant,

i.e., the sum of the zeroth- and first-order energies, and the RPA correlation energy. These

two parts of the energy exhibit qualitatively different basis set convergence.128 The en-

ergy expectation value of the KS determinant was evaluated within the RI-JK algorithm

with the corresponding optimized auxiliary basis sets.129 Karlsruhe segmented-contracted

polarized quadruple-ζ (def2-QZVP) basis sets130,131 were chosen for the KS reference calcu-

lations because they were found to yield significantly faster convergence of the KS energy

expectation value than the corresponding correlation-consistent basis sets using generalized

contractions.132–134

RPA correlation energies were evaluated using Dunning’s correlation-consistent polarized va-

lence basis sets132,133 in conjunction with the corresponding auxiliary correlation-consistent

basis sets optimized for RI-MP2.134,135 Small core relativistic effective core potentials136,137

were used for the halogen atoms in the S30L111 benchmark set. The frozen core approxi-

mation was employed for the RPA correlation energy calculations. Basis set superposition

error was estimated by 50% counterpoise (CP) correction as recommended by Risthaus and

coworkers;138 the CP correction was only applied to the RPA correlation energy.

The CBS limit of the RPA correlation energy was estimated using the two-point 1/X3 extrap-

olation, where X = 3 (triple-ζ), 4 (quadruple-ζ), etc.128,139 Dunning’s correlation-consistent

polarized triple- (cc-pVTZ) and quadruple-ζ (cc-pVQZ) valence basis sets132,133 were em-

ployed for the 3-4 extrapolation. The basis set dependence of the S30L interaction energies

is displayed in Figure 3.1. To assess the residual basis set error, exploratory calculations were

performed using Dunning’s cc-pV5Z basis sets134 for the pincer complex with 2,4,7-trinitro-

9-fluorenone as the guest molecule (TNF@tweezer2, compound 5).111 The 4-5 extrapolation

was found to be within 0.20 kcal/mol compared to the 3-4 extrapolation, see Figure S3.1 in
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the Supporting Information.

Similarly, correlation energies from MP2 and its variants were obtained using the frozen core

approximation, 50% CP correction, and the 3-4 extrapolation using cc-pVTZ and cc-pVQZ

basis sets.132,133 HF energies were computed using def2-QZVP basis set.130,131
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Figure 3.1: S30L interaction energy errors (∆ERPA) computed using RPA(PBE) with
correlation-consistent triple-ζ and quadruple-ζ basis sets, as well as using triple-quadruple
(3-4) extrapolation with 50% and without counterpoise (CP) correction. DLPNO-CCSD(T)
reference values are from Caldeweyher et al.123

For the ROT34 benchmark,112,113 def2-QZVP basis sets were used for both the KS expec-

tation value and the RPA correlation; core electrons were treated explicitly. This approach

is expected to yield RPA structures of near basis-set limit quality.108 Indeed, changing the

basis sets from def2-TZVP to def2-QZVP only yields a small but systematic decrease in the

error in the RPA rotational constants, see Supporting Information.
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Table 3.1: Mean absolute errors (MAE), mean errors (ME), and absolute minimum-
maximum error range (MinMax) in kcal/mol of various methods at complete basis set limit
for the S66, L7, and S30L test sets. Positive ME corresponds to underbinding.

S66 L7 S30L
Methods MAE ME MinMax MAE ME MinMax MAE ME MinMax

RPA(PBE) 0.61 0.61 1.00 1.72 1.47 3.53 2.03 0.82 6.44
RPA(TPSS) 0.63 0.63 1.02 1.92 1.73 3.75 2.05 1.33 8.64

MP2 0.35 −0.54 2.30 8.77 −8.77 17.51 18.74 −18.74 66.07
MP3a 0.47 0.47 1.93 6.71 6.26 13.13 −− −− −−

SCS-MP2 0.32 0.64 1.92 2.49 −1.41 5.77 7.43 −4.68 33.47
SOS-MP2 0.65 1.23 2.57 2.28 2.27 5.83 6.26 2.35 16.26
PBE-D3b 0.34 −0.24 1.93 1.91 0.92 4.39 3.06 1.83 9.80
PBE-D4b 0.34 −0.30 1.66 1.71 0.16 2.44 2.94 −0.77 9.30

PW6B95-D3b −− −− −− 1.39 1.19 2.20 1.82 0.32 4.70
PW6B95-D4b −− −− −− 1.80 1.40 3.30 2.02 0.96 4.10

a MP3 values from Refs. 109 and 110.
b Dispersion corrected DFA values for L7 and S30L from Ref. 123.

3.3 Results

3.3.1 S66, L7, and S30L Interaction Energy Benchmarks

The S66 benchmark consists of binding energies of 66 complexes ranging from 6 to 34 atoms;

the average binding energy is 5.50 kcal/mol.13,109 This benchmark set is divided into groups

featuring hydrogen bonding, π–π stacking, aliphatic–aliphatic interactions, π–aliphatic in-

teractions, and other nonspecific interactions, respectively. For the binding energies of these

complexes, MBPT is accurate: MP2 and third-order MP MBPT (MP3) yield mean absolute

errors (MAEs) of 0.35 kcal/mol and 0.47 kcal/mol, respectively. The errors of dispersion-

corrected DFT and MP2 variants are comparable. The good performance of dispersion

corrected DFAs is hardly surprising here since S66 is part of commonly used training sets

for parameter estimation.93

The L7 benchmark contains binding energies of seven complexes: Octadecane dimer, guanine

trimer, circumcoronene–adenine dimer, coronene dimer, guanine–cytosine dimer, circumcoronene–
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guanine–cytosine dimer, and an amyloid fragment trimer containing phenylalanine residues;

the average binding energy is 16.7 kcal/mol.110,124 As shown in Table Table 3.1, MP2 per-

forms poorly with an MAE of 8.10 kcal/mol, which is an order of magnitude more larger for

S66. Aside from the dependence of errors on system size discussed in Section 3.4.6, MP2 is

known to systematically overestimate π–π stacking interactions even in smaller systems.109

The inclusion of higher orders does not systematically improve the MBPT results. For both,

the S66 and L7 benchmark sets, MP2 and MP3 mean errors are on the same orders of

magnitude but of opposite sign. Empirically, one observes that odd MBPT orders tend to

produce underbinding, whereas even orders produce overbinding.76,77 The poor performance

of MBPT for L7 and especially S30L is in sharp contrast to the one observed for RPA, dis-

persion corrected PBE-D3, and the recently developed PBE-D4,93 which all yield MAEs in

the range of 2 kcal/mol. The RPA L7 results reported here are ∼ 50% more accurate than

the ones previously obtained using def2-TZVP basis sets,140 underlining the importance of

basis set extrapolation for RPA interaction energy benchmarks.128

S30L Complexes
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Figure 3.2: S30L interaction energy errors (∆E) for MP2 variants, RPA(PBE), and disper-
sion corrected PBE-D3. MP2 and RPA(PBE) results are 3-4 extrapolated, and PBE-D3
results use def2-QZVP basis sets. DLPNO-CCSD(T) reference values are from Caldeweyher
et al.123

The S30L benchmark set contains binding energies of 30 large supramolecular complexes

including π stacking and CH–π interactions, hydrogen and halogen bonding, and charged
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species; the average binding energy is 37.5 kcal/mol.111,124 MP2 exhibits severe overbinding

for most species, producing spectacular errors > 60 kcal/mol for the π stacked complexes 11

and 12, see Figure 3.2 and Table Table 3.1. With MAEs of 7.43 and 6.26 kcal/mol, SCS-MP2

and the SOS-MP2 inherit the shortcomings of MP2 to a significant degree. RPA yields MAEs

close to 2 kcal/mol regardless of the KS reference, consistent with its performance observed

for L7. Dispersion corrected DFAs show comparable MAEs, but behave less systematically

than RPA, as evidenced by somewhat larger absolute minimum-maximum error ranges. The

present S30L results for RPA are more than twice as accurate as the ones reported by

Heßelmann for the S12L subset;105 this is likely a consequence of the improved CCSD(T)

reference values123 used here as well as better controlled basis set errors.

3.3.2 ROT34: Intramolecular Interactions

To investigate whether the strong performance of RPA for intermolecular binding energies

translates to other properties such as molecular structures of larger flexible molecules, the

equilibrium structures of 34 organic molecules contained in the ROT34 benchmark112,113 were

optimized using RPA with def2-QZVP basis sets; rotational constants were calculated in the

rigid rotor approximation. Rotational constants are a sensitive measure of intramolecular

mid- and long-range interactions, and accurate experimental values are available from gas-

phase rotational spectroscopy.112,113

As displayed in Figure 3.3, the PBE DFA produces a MAE of 18.2 MHz, even with D3

dispersion correction; the Minnesota DFA M06L141 and the strongly constrained and ap-

propriately normed (SCAN)142 DFA perform significantly better:143 For SCAN, SCAN-D3,

and M06L MAEs of 3.7 MHz, 3.3 MHz, and 4.0 MHz were reported.143 The MAEs of MP2

and SCS-MP2, on the other hand, are 5.5 MHz and 5.4 MHz,113 respectively, comparing

unfavorably with the RPA(PBE) result of 3.1 MHz; using the TPSS instead of the PBE
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DFA to generate the KS reference yields an almost identical MAE of 3.0 MHz. Thus, even

for the moderately sized systems contained in ROT34, the sub-par performance of MP2 is

notable.
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Figure 3.3: Errors in ROT34 computed rotational constants compared to experiment.113

Mean absolute errors (MAE) and mean errors (ME) are in MHz, and relative minimum-
maximum error ranges (rMinMax) are in %. MP2 and SCS-MP2 results are from Ref. 113;
and SCAN, SCAN-D3, PBE-D3, and M06L results are from Ref. 143.

3.4 AC-SAPT Analysis

3.4.1 Statement of the Problem

In the following, the results of the previous sections are analyzed in two steps: First, we

derive asymptotically exact expressions for the dispersion energy at large separation. We

rely on the general SAPT partitioning of the Hamiltonian,115 but unlike prior DFT-SAPT

methods144,145 or van-der-Waals inclusive frozen density embedding,146,147 the present AC-

SAPT approach uses density functional theory only for the inter-fragment interaction and

constrains the density of the monomers, leading to compact closed-form expressions for the

interaction energy and a separation of dispersion and induction effects. We derive an upper

bound for the convergence radius of the resulting AC-SAPT expansion. Second, we show that
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the RPA dispersion energy corresponds to a partial resummation of the AC-SAPT expansion,

whereas the MBPT dispersion energy corresponds to a finite-order approximation. When the

monomers are treated within RPA, the AC-SAPT converges for nondegenerate monomers,

whereas it is found to be susceptible to spurious divergence for MBPT treatments of the

monomers.

We consider a molecular supersystem or complex A–B consisting of two non-overlapping

subsystems or fragments A and B, i.e., the inter-fragment distance R is assumed to be so

large that the overlap between the two ground states is exponentially small. Since there is

vanishing charge transfer in this limit, the fragments have integer electron numbers NA, NB

with ground states resembling the lowest-energy separated fragment (dissociation) limit of

A–B. The Born–Oppenheimer Hamiltonian of the supersystem at coupling strength α is

Ĥα = ĤA + ĤB + αV̂ee int + V̂ α
s int[ρ], (3.1)

where ĤA and ĤB denote the NA- and NB-electron Hamiltonians of the isolated subsystems,

and V̂ee int is the operator of the electron-electron Coulomb interaction between A and B.

The supersystem eigenstates |Ψα
n⟩, which are constrained to be antisymmetric under any

permutations of electrons in the supersystem as in conventional SAPT, and their energies

Eα
n are defined by

Ĥα |Ψα
n⟩ = Eα

n |Ψα
n⟩ . (3.2)

V̂ α
s int[ρ] represents a local one-electron potential which constrains the density of the supersys-

tem ground state |Ψα
0 ⟩ to the physical ground-state density ρ = ρ1 = ρα|α=1. Since V̂ α

s int[ρ]

is a unique functional of ρ,148 so are |Ψα
n⟩ and the corresponding energies Eα

n . Throughout

this paper, the ground state |Ψα
0 ⟩ is assumed to be nondegenerate for finite R, a mild condi-

tion typically satisfied for interacting closed-shell fragments. The use of symmetry adaption
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implies that the present approach is valid only at large R as in conventional SAPT,149 but

this is sufficient for asymptotic analysis.

In analogy with the conventional KS potential,

V̂ α
s int[ρ] = V̂ne int + Vnn int + V̂ HXC

int [ρ] − V̂ αHXC
int [ρ] (3.3)

may be defined as a sum of the “external” one-electron nucleus-electron potential V̂ne int and

the constant nucleus-nucleus attraction Vnn int between the fragments plus a remainder ac-

counting for Hartree-, exchange-, and correlation (HXC) effects. At full coupling (α = 1),

the HXC part of V̂ α
s int[ρ] vanishes, whereas at α = 0, V̂ α

s int[ρ] equals the KS potential aris-

ing from the interaction between the fragments. Since the KS potential is spatially local,

it additively separates into A and B parts for large R, giving rise to a unique partitioning

of the supersystem density into a sum of subsystem densities, i.e., ρ(x) = ρA(x) + ρB(x).

Thus, the present approach is closely related to partition DFT (PDFT).150,151 However,

PDFTs144,145 and related embedding schemes146,147 typically start from a KS-DFT calcula-

tion of the supersystem, whereas here the fragment ground states corresponding to α = 0

include the full intra-fragment electron-electron interaction and therefore are generally not

Slater determinants.

3.4.2 Interaction Energy

We define the A–B interaction energy as the difference in the ground state energies at full

and zero coupling,

Eint[ρ] = E1
0 [ρ] − E0

0 [ρ]. (3.4)
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Using the Hellman–Feynman theorem, the interaction energy may be expressed as a coupling

strength average of the potential energy of interaction,151

Eint[ρ] =
∫ 1

0
dα W α[ρ], (3.5)

where W α[ρ] = dEα
0 /dα = ⟨Ψα

0 |V̂ee int|Ψα
0 ⟩; one-electron contributions vanish upon coupling

strength integration due to the density constraint. The AC-SAPT expansion of the interac-

tion energy is obtained by expansion of the interacting ground state and the corresponding

energy into powers of α, analogous to Görling–Levy perturbation theory.152,153 Equivalently,

the coupling strength integrand W α may be expanded around α = 0, yielding the AC-SAPT

series expansion of the interaction energy,

Eint[ρ] =
∫ 1

0
dα

∞∑
k=0

αkW (k)[ρ] =
∞∑

k=0

1
k + 1W (k)[ρ]. (3.6)

The first-order interaction energy results from evaluating the integrand at α = 0,

E
(1)
int [ρ] = ⟨Ψ0

0|V̂ee int|Ψ0
0⟩ = EHX

int [ρ] =
∫

dx1dx2
ρA(x1)ρB(x2) − γA(x1, x2)γB(x2, x1)

|r1 − r2|
, (3.7)

where |Ψ0
0⟩ is the antisymmetrized product of the two fragment density-constrained ground-

state wavefunctions with one-particle density matrices γA, γB. As in standard SAPT, the

first-order interaction energy is electrostatic and corresponds to the sum of the Hartree and

exchange (HX) interactions between the two fragments; unlike in standard SAPT, and as

discussed in detail below, the interaction arises from the electrons only. The exchange term

is exponentially small for non-degenerate ground states in the large R limit.

The remaining correlation part of the interaction energy,

EC
int[ρ] =

∫ 1

0
dα

(
⟨Ψα

0 |V̂ee int|Ψα
0 ⟩ − ⟨Ψ0

0|V̂ee int|Ψ0
0⟩

)
(3.8)
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is due to dispersion and does not contain any terms describing changes in the fragment

densities as the interaction is turned on. The purely dispersive character of the interaction

becomes apparent from a factorization of V̂ee int in a fashion analogous to Eqs. (6)-(13) of

Ref. 154 and neglecting exponentially small exchange terms, yielding

EC
int[ρ] =

∫ 1

0
dα

∫
dx1dx2

⟨Ψα
0 |∆ρ̂A(x1)∆ρ̂B(x2)|Ψα

0 ⟩ − ⟨Ψ0
0|∆ρ̂A(x1)∆ρ̂B(x2)|Ψ0

0⟩
|r1 − r2|

, (3.9)

where ∆ρ̂A(x) = ρ̂A(x) − ρA(x) is the density fluctuation operator associated with fragment

A, ρ̂A(x) is the corresponding density operator, and ∆ρ̂B(x) is defined analogously. As

opposed to standard SAPT (including DFT-SAPT), which is based on a partitioning of

the Hamiltonian that includes induction effects to all orders, the interaction energy in the

present approach does not contain any induction terms and is exclusively due to electrostatic

(Hartree plus exchange) and dispersion. Factorization of the density operator product in

Eq. (3.9) using the completeness of the eigenstates of Ĥα yields a spectral sum over Hartree

interactions between the A and B parts of ground-to-n-th excited state transition densities

ρα
0n(x) = ρα∗

n0(x),

EC
int[ρ] =

∑
n ̸=0

∫ 1

0
dα

∫
dx1dx2

ρα
0n A(x1)ρα

n0 B(x2) − ρ0
0n A(x1)ρ0

n0 B(x2)
|r1 − r2|

. (3.10)

The α = 0 term vanishes for large R since excitations of the non-interacting monomers

are localized on either monomer, but is included here to emphasize the analogy to general

RPA theory.155 In this sense, the A–B dispersion energy is given exactly by the Hartree

interaction between “electrodynamic” density fluctuations of the monomers. While similar

ideas are implicit, e.g., in molecular quantum electrodynamics,156 the present approach yields

a compact, exact expression valid beyond perturbation theory. The induction energy, on the

other hand, appears as the difference between the non-interacting (α = 0) monomer ground
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state energies with and without density constraint,

Eind = E0[ρ] − EA − EB. (3.11)

The total dissociation energy of the complex A–B is thus

DA–B = Eint[ρ] + Eind. (3.12)

Induction effects are comparatively small for large R;157 hence, we will focus on Eint[ρ] in

the following.

If the zero-point fluctuation–dissipation theorem (FDT) is invoked55,97,98,116,117 to factorize

the products of fluctuation operators in Eq. (3.9), the dispersion energy may be expressed

as

EC
int[ρ] = −1

2

∫ 1

0
dα

∫ ∞

−∞

dz

2πi

〈(
Πα(z) − Π0(z)

)
Vint

〉
. (3.13)

Here, Πα(z) is the time-ordered supersystem polarization propagator at coupling strength

α and imaginary frequency z = iω ∈ iR defined as158

Πα(z) = −
∑
n̸=0

{
γα

0n ⊗ γα†
0n

z − Ωα
n + i0+ − γα†

0n ⊗ γα
0n

z + Ωα
n − i0+

}
. (3.14)

Ωα
n = Eα

n − Eα
0 is the energy of an excitation from |Ψα

0 ⟩ to |Ψα
n⟩, and γα

0n denotes the corre-

sponding one-particle transition density matrix. Eq. (3.14) shows that, for non-degenerate

monomer ground states, Πα(z) is a self-adjoint and negative semidefinite operator on the

tensor-product space of one-particle operators. Vint represents the bare inter-fragment

electron-electron Coulomb interaction or the Hartree kernel on the same space.

Eqs. (3.9)-(3.10) could also be used to define the dispersion energy in conjunction with MP-
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style partitioning of the Hamiltonian, using the analogous, albeit approximate, HF-based

AC framework.154 Formally, this corresponds to replacing the local exchange-correlation

potential in Eq. (3.3) with the non-local HF exchange potential. The α = 0 reference of this

approach is equivalent to monomers with full intra-fragment electron-electron interaction

whose inter-fragment interaction is treated at the Hartree plus exchange level. In the HF-

based AC framework, the interaction energy obtained from coupling strength integration

contains additional induction effects resulting from changes in the fragment densities due to

inter-fragment correlation which are not captured by the FDT, but the present conclusions

for the dispersive part of the interaction energy remain valid.

3.4.3 Dispersion Energy

Expression (3.13) for the dispersion energy can be further re-cast by noting that any con-

tributions from charge transfer excitations between the fragments vanish exponentially due

to exponentially vanishing overlap at large R; it therefore suffices to consider Πα(z) on the

domain of fragment-centered excitations only. Thus, Πα(z) may be partitioned as

Πα(z) =

Πα
AA(z) Πα

AB(z)

Πα
BA(z) Πα

BB(z)

 , (3.15)

where indices AA refer to the 4-index tensor space spanned by products of transition density

matrices centered on fragment A, etc. In the non-interacting (α = 0) case, all excitations

are either excitations of A or B only, hence Π0
AB(z) = Π0

BA(z) = 0, and the diagonal parts

reduce to the fragment polarization propagators (at full intra-fragment coupling). The inter-

fragment Coulomb interaction may be partitioned as

Vint =

 0 VAB

VBA 0

 , (3.16)
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where the diagonal blocks must vanish to recover the correct monomer limit at large R.

It is instructive to introduce the dielectric operator ϵα(z) (also called generalized dielectric

function or matrix159,160) via

Πα(z) = ϵα(z)−1Π0(z). (3.17)

In the spirit of the Bethe–Salpeter equation,158 ϵα(z) may be expressed as

ϵα(z) = 1 − Π0(z)KαHXC
int (z), (3.18)

where KαHXC
int (z) denotes the imaginary-frequency-dependent HXC kernel at coupling strength

α for the intersystem interaction. Similar to the Hartree kernel, the elements in the diagonal

blocks of KαHXC
int (z) vanish, because Π0(z) contains the full intra-fragment interaction.

Since Vint and KαHXC
int have vanishing diagonal blocks, these can be used to further sim-

plify the dispersion energy: Noting that the diagonal blocks of Π0(z)Vint vanish, and using

Eq. (3.17), the FDT (3.13) takes the form

EC
int[ρ] = −1

2

∫ 1

0
dα

∫ ∞

−∞

dz

2πi

〈
ϵα(z)−1Π0(z)Vint

〉
. (3.19)

For similar reasons, all even orders in the geometric series expansion of ϵα(z)−1 with respect

to Π0(z)KαHXC
int (z) do not contribute to the dispersion energy. It is hence convenient to

define the second-order generalized dielectric function

κα(z) = ϵα(z) (2 − ϵα(z)) = 1 −
(
Π0(z)KαHXC

int (z)
)2

, (3.20)

which is block diagonal with exponentially vanishing off-diagonal blocks. Substituting Eq. (3.20)

into Eq. (3.19) and using the vanishing trace of κα(z)−1Π0(z)Vint, we arrive at a central
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theoretical result of this paper,

EC
int[ρ] = −1

2

∫ 1

0
dα

∫ ∞

−∞

dz

2πi

〈
κα(z)−1Π0(z)KαHXC

int (z)Π0(z)Vint
〉

. (3.21)

Eq. (3.21) “exactifies” the well-known Longuet-Higgins Zaremba-Kohn161,162 expression for

the second-order dispersion energy, denoted LHZK(2) in the following. Eq. (3.21) goes

beyond LHZK(2) by including (i) exchange and correlation effects in the AB interaction

through KαHXC
int , and (ii) screening of the bare Coulomb interaction Vint by κα(iω). Indeed,

the replacements KαHXC
int → αVint and κα(z) → 1 recover LHZK(2). Figure 3.4 displays a

diagrammatic representation of Eq. (3.21).

Figure 3.4: Diagrammatic representation of the A–B dispersion energy Eq. (3.21).
Blue-shaded rings with upward–downward arrows denote particle–hole propagators of the
monomers containing the full intra-monomer interaction, whereas horizontal wavy lines rep-
resent interactions between the monomers. Coupling strength and frequency integration are
implied.
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3.4.4 Convergence Radius of the AC-SAPT Series

The convergence of the AC-SAPT series, Eq. (3.6), is governed by the analyticity of the

coupling strength integrand W α[ρ] in the complex α plane: To guarantee convergence, the

coupling strength integrand must be analytic for |α| ≤ 1. Using Eq. (3.19), this implies that

ϵα(z)−1 must give rise to an analytic coupling strength integrand for |α| ≤ 1. A necessary

condition for the latter is that ϵα(z)−1 is free of poles, i.e., by Eq. (3.17),

∥∥∥Π0(z)KαHXC
int (z)

∥∥∥
2

= ∥1 − ϵα(z)∥2 < 1. (3.22)

Here, the spectral norm ∥·∥2 equals the largest singular value of an operator; ∥·∥2 is induced

by the scalar product on the tensor product space and thus a natural choice. An upper bound

for the convergence radius of the AC-SAPT series is thus

αc = min
α

{
|α| :

∥∥∥Π0(z)KαHXC
int (z)

∥∥∥
2

= 1
}

. (3.23)

αc is generally an upper bound for the convergence radius, since ϵα(z)−1 could exhibit addi-

tional, non-algebraic singularities inside the complex α unit circle.

The convergence criterion (3.22) also implies that the geometric series

κα(z)−1 = 1 +
(
Π0(z)KαHXC

int (z)
)2

+
(
Π0(z)KαHXC

int (z)
)4

+ . . . (3.24)

converges, since, by the definition of the spectral norm and the negative definiteness of Π0(z),

∥1 − κα(z)∥2 =
∥∥∥∥(

Π0(z)KαHXC
int (z)

)2
∥∥∥∥

2
=

∥∥∥Π0(z)KαHXC
int (z)

∥∥∥2

2
< 1. (3.25)

Necessary conditions equivalent to Eq. (3.22) are thus that κα(z) be positive definite or
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ϵα(z)−1 have eigenvalues < 2.

3.4.5 Approximations within AC-SAPT

In the following, we determine the asymptotic expressions for the dispersion energy corre-

sponding to supermolecular RPA and MBPT calculations, and analyze the consequences for

the AC-SAPT expansion.

Random Phase Approximation

The RPA polarization propagator at zero intermonomer interaction,

ΠRPA(z) =
(
1 − Π0

0(z)V0
)−1

Π0
0(z), (3.26)

is defined in terms of the bare KS polarization propagator of the supersystem Π0
0, which

does not include any electron-electron interactions, and the intramonomer interaction V0

with the matrix representation

V0 =

VAA 0

0 VBB

 (3.27)

in the large R limit. A supermolecular RPA calculation corresponds to the replacements

KαHXC
int (z) → αVint and Π0(z) → ΠRPA(z) (3.28)

in Eqs. (3.13)-(3.23). In other words, the intramolecular electron correlation and the screen-

ing factor κα(z)−1 in Eq. (3.21) are treated non-perturbatively, whereas the intermolecular

HXC kernel is replaced by its first-order approximation.
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Condition (3.22) implies that, within RPA, the AC-SAPT series will converge if

|α|
∥∥∥ΠRPA(z)Vint

∥∥∥
2

< 1. (3.29)

This condition is necessary and sufficient for RPA, because the only singularities of the RPA

coupling strength integrand in the complex α plane result from zeros of

καRPA(z) = 1 − α2
(
ΠRPA(z)Vint

)2
. (3.30)

The convergence radius thus has the lower bound

αRPA
c =

∥∥∥ΠRPA(z)Vint

∥∥∥−1

2
≥

∥∥∥ΠRPA(z)V0

∥∥∥−1

2

∥∥∥V−1
0 Vint

∥∥∥−1

2
, (3.31)

where the inequality follows from the submultiplicativity of the spectral norm. Since Π0(z)V0

is negative definite,

∥∥∥ΠRPA(z)V0

∥∥∥
2

≤ 1 (3.32)

by Eq. (3.26). Moreover,
∥∥∥V−1

0 Vint

∥∥∥
2

≤ 1 follows163 from the fact that both V0 and V0+Vint,

corresponding to the monomer-only and supersystem Hartree kernels, are positive definite.

Consequently,

αRPA
c ≥ 1, (3.33)

where the inequality holds as long as
∥∥∥Π0

0(z)V0

∥∥∥
2

< ∞. This condition is satisfied for

monomers with finite KS gap, where Π0
0(z) is bounded, but may be violated, e.g., for infinite

one-dimensional metals, see below. Hence, the AC-SAPT series always converges within

RPA for nondegenerate monomers.

45



RPA permits analytic integration over coupling strength in Eq. (3.21), yielding a compact

expression for the dispersion energy within RPA,

EC RPA
int [ρ] = 1

4

∫ ∞

−∞

dω

2π
⟨ln κRPA(z)⟩. (3.34)

Eq. (3.34) illustrates how the analytic structure of ln κRPA(z) governs the convergence of the

AC-SAPT expansion at full coupling within RPA. For nondegenerate monomers, κRPA(z) is

positive definite with eigenvalues between 0 and 1, and thus the Taylor expansion around

κRPA(z) = 1, which generates the AC-SAPT series, converges. However, if κRPA(z) has zero

eigenvalues, the series diverges due to the essential singularity of the natural logarithm at

zero.

Dobson and Gould (DG) obtained Eq. (3.34) by a coupling strength integration argument

without density constraint, and showed that it reduces to the non-retarded Lifshitz formula

for macroscopic slab systems, which is accurate for dispersion interactions between macro-

scopic objects.55 DG also identified conditions for which Eq. (3.34) predicts unconventional

power laws of dispersion interactions that cannot be obtained from AC-SAPT: Systems must

be macroscopic in at least one dimension, allowing for infinite-wavelength density fluctua-

tions, finite in at least one other dimension, and exhibit zero electronic gap. This is precisely

when κRPA(z) can have zero eigenvalues, causing AC-SAPT to diverge. The unconventional

power laws observed95 for these systems cannot be obtained from a Taylor series with respect

to α and thus are examples of physical systems exhibiting divergence of AC-SAPT.

Many-Body Perturbation Theory

In the present framework, supersystem MBPT calculations correspond to perturbatively

expanding the coupling strength integrand W α[ρ] with respect to both, the inter- and intra-

monomer interaction, such that the resulting total interaction energy is consistent to a given
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finite order. In the following, we consider supersystem MBPT(2) theory, which is by far

the most commonly used MBPT approach for NIs in large molecular systems. Supersystem

MBPT(2) corresponds to the replacements

KαHXC
int (z) → αVint and Π0(z) → Π0

0(z) and κα(z) → 1 (3.35)

in Eqs. (3.13)-(3.23). These replacements are sufficient to make the coupling strength

integrand correct to first order, corresponding to MBPT(2) for the (coupling strength inte-

grated) correlation energy. In the present constant-density AC approach, this is equivalent

to second-order Görling–Levy perturbation theory treatment of the supersystem; analogous

considerations apply to MP2. The replacements (3.35) amount to the LHZK(2) limit. This

implies that the geometric series (3.24) is truncated after the first term, which is likely to

result in large errors unless the series converges very rapidly.

Within the MBPT(2) approximation to monomer correlation, the convergence radius of the

AC-SAPT series is, according to Eq. (3.23),

αPT2
c =

∥∥∥Π0
0(z)Vint

∥∥∥−1

2
. (3.36)

However, unlike the RPA propagator, Π0
0Vint is generally not bounded by 1, which may

cause unphysical divergence of the series.

Since exchange effects vanish exponentially for large R, MBPT(2) coincides with the second-

order perturbative limit of RPA, enabling us to alternatively consider the behavior of the

coupling-strength integrated AC-SAPT expansion within MBPT(2) via Eqs. (3.30) and

(3.34). Clearly, this argument can only be used as long as RPA itself is reasonably accurate,

a conclusion supported by our results. MBPT(2) corresponds to replacing κRPA(z), the
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generalized second-order RPA dielectric function at full intra-monomer coupling with

κPT2(z) = 1 −
(
Π0

0(z)V
)2

, (3.37)

and truncating the Taylor expansion of ln κPT2(z) after the first order. However, since

Π0
0(z) is unbounded, κPT2(z) may exhibit eigenvalues ≤ 0 even for finite, nondegenerate

monomers, corresponding to nonanalytic behavior of ln κPT2(z). In this scenario, the Taylor

expansion of the natural logarithm around κPT2(z) = 1 spuriously diverges, and the first-

order approximation may be expected to yield a poor approximation to the RPA dispersion

energy.

MP2C: Partial Resummation of MBPT

Heßelmann’s MP2C method23,24,90 replaces the (uncoupled) LHZK(2) part of the MP2 inter-

action energy with its (coupled) time-dependent DFT counterpart. In the large-R asymptotic

limit, time-dependent DFT reduces to RPA, and hence MP2C corresponds to the replace-

ments

KαHXC
int (z) → αVint and Π0(z) → ΠRPA(z) and κα(z) → 1 (3.38)

in Eqs. (3.13)-(3.23). Equivalently, MP2C may be understood as a low-order approximation

to the RPA dispersion energy resulting from first-order truncation of the Taylor expansion

of ln κRPA(z) in Eq. (3.34) around κRPA(z) = 1,

EC PT2C
int [ρ] = 1

4

∫ ∞

−∞

dω

2π
⟨κRPA(z) − 1⟩. (3.39)

In other words, MP2C includes intramonomer screening effects to infinite order, but the

intermonomer interaction is second order only. The convergence of this partially resummed
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MBPT series is more benign compared to standard MBPT, because, for non-degenerate

monomers, the eigenvalues of κRPA(z) are between 0 and 1, and hence the Taylor expansion

of ln κRPA(z) converges. Also, since ln x ≤ x − 1 for 0 < x ≤ 1, the MP2C dispersion energy

is an upper bound for the RPA dispersion energy. However, with decreasing eigenvalues of

κRPA(z), i.e., for large and polarizable monomers, this Taylor series converges increasingly

slowly (and eventually diverges under DG conditions), and hence this bound deteriorates

rapidly. This is consistent with the observation that MP2C underestimates binding energies

of larger complexes contained in the L7 benchmark.110 Unlike the previously discussed RPA

and MBPT approximations, the MP2C method does not possess a “seamless” supermolecular

equivalent, i.e., it requires an SAPT-style partitioning into monomers, because the inter- and

intramonomer interactions are treated at different levels. From a computational viewpoint,

truncation of the Taylor expansion of ln κRPA(z) offers little advantage compared to full RPA

using Eq. (3.34).

Fig. Figure 3.5 summarizes the approximations to the AC-SAPT dispersion energy discussed

in this section in diagrammatic form.

Figure 3.5: Diagrammatic representations of the A–B dispersion energy within RPA, MP2C,
and MP2. Blue-shaded and empty rings with upward–downward arrows denote particle–
hole propagators of the monomers containing the full and zero intra-monomer interaction,
respectively, whereas horizontal wavy lines represent interactions between the monomers.
Coupling strength and frequency integration are implied.

49



3.4.6 Numerical Validation

Convergence Estimates

The previous sections suggest that the AC-SAPT convergence radius αc depends critically

on the level of theory used to describe the monomers (through Π0). Here we numerically

evaluate the upper bounds for αPT2
c and investigate whether these asymptotic bounds can

serve as meaningful convergence estimates for large but finite R.

Starting from Eq. (3.36) and using the same inequalities as in Sec. 3.4.5, we obtain

αPT2
c (z) ≥

∥∥∥Π0
0(z)V0

∥∥∥−1

2
. (3.40)

Since the spectral norm is invariant under similarity transformations,

∥∥∥Π0
0(z)V0

∥∥∥
2

= ∥Q(z)∥2, (3.41)

where Q(z) = −LT Π0(z)L and L is the Cholesky factor of V0. Q(z) is routinely computed in

efficient RPA and beyond-RPA implementations.107,108,164 For purely imaginary z, ∥Q(z)∥2

has a maximum at z = 0 and is otherwise monotonous, as may be demonstrated, e.g., using

the spectral representation of Π0(z). Thus,

αPT2
c (z) ≥ αPT2

c = ∥Q(0)∥−1
2 . (3.42)

Figure 3.6 shows the correlation between absolute errors in MP2 interaction energies and the

inverse convergence radius 1/αPT2
c , evaluated using a PBE KS reference. As long as 1/αPT2

c

is close to 1, the MP2 errors are small, but they increase rapidly once 1/αPT2
c increases above

∼ 3. The correlation is quite convincing since (i) divergence at α values close to 1 may not
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Figure 3.6: Absolute MP2 and RPA interaction energy errors |∆E| for the S66,13,109 L7,110

and S30L111 benchmarks as well as helium dimer as functions of the inverse convergence
radius 1/αPT2

c . αPT2
c was evaluated using a PBE KS reference and cc-pVTZ basis sets.

translate into large MP2 errors, (ii) a KS reference yields 1/αPT2
c values 2-3 times larger

than a HF reference, see Fig Figure 3.6. With decreasing convergence radius, MP2 and the

LHZK(2) dispersion energy become increasingly incorrect estimates of the exact dispersion

energy (3.8). Figure 3.6 also shows that the RPA interaction energies are uncorrelated with

αPT2
c , as expected from the estimate (3.33).

The convergence behavior of the AC-SAPT expansion in relation to αPT2
c is further illustrated

by re-expansion of the RPA interaction energy in powers of α, see Figure 3.7. Only for helium

dimer (αPT2
c = 1.59 with a PBE reference), the series converges with respect to the spectral

norm. For all other cases, increasingly large oscillations are observed at higher orders.

This behavior is characteristic of asymptotic series and has been observed for MBPT ground

state energies.75,165,166 With decreasing αPT2
c , the oscillations become more pronounced lower

orders, causing significant error even at n = 2. While the convergence radii for some of the

smaller systems are closer to 1 with a HF reference compared to a PBE reference, their

AC-SAPT series eventually diverge as well.
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Figure 3.8: Errors (kcal/mol) of MBPT(n) interaction energies within the ring approximation
(i.e. RPA) using a HF reference and cc-pVTZ basis sets for the dimers taken from Ref. 14.

In their 1993 work,14 Moszynski, Jeziorski, and Szalewicz considered the convergence of

MBPT supermolecular dispersion energies using a HF reference for He2, (H2)2, (LiH)2,

(H2O)2, and (HF)2 within the ring approximation, which is equivalent to RPA. Based on

numerical results up to order n = 10, they concluded that the convergence of the MBPT

expansion for these systems is “very fast.” While we confirm this conclusion for He2, the

present results suggest that the MBPT expansion of the dispersion energy indeed diverges

for modestly larger systems. For example, our results for (H2O)2 agree well with those of

Moszynski, Jeziorski, and Szalewicz up to n = 10, but the αPT2
c value of 0.773 suggests that
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the series is divergent. Indeed, oscillations of increasing magnitude are observed when orders

up to n = 20 are considered, see Figure 3.8.

Size Dependence of Errors

The dependence of the convergence radius estimate αPT2
c on the size of the complex is dis-

played in Figure 3.9. Only for the helium dimer, αPT2
c > 1, whereas αPT2

c is significantly

smaller than 1 for all systems in the S66,13,109 L7,110 and S30L111 benchmarks. Clearly, as

opposed to ΠRPA
0 (0), Π0(0) is not necessarily bounded. Whether ∥Π0(0)Vint∥2 saturates

or becomes infinite in the thermodynamic limit is system-dependent; nevertheless, the con-

vergence criterion Eq. (3.22) suggests that perturbative calculations of NIs start to diverge

already for fairly small system sizes with few tens of atoms and comparatively large HOMO–

LUMO gap. Indeed, the HOMO–LUMO gap is a fairly poor estimator of the interaction

energy error, see Supporting Information.

VEs

1
α

cP
T

2

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7
PBE

HF

Figure 3.9: Inverse of the convergence radius (1/αPT2
c ) for MBPT(2) with PBE and HF

references vs. number of valence electrons (VEs) for the S66,13,109 L7,110 and S30L111 bench-
marks, and helium dimer. αPT2

c values were computed using cc-pVTZ basis sets. A 1/αPT2
c

value ≥ 1 indicates divergence of the AC-SAPT series.

Relative errors in NIs as a function of system size are shown in Figure 3.10. While the

correlation of the errors with the number of valence electrons (VEs) is less strong than the

one observed for the convergence estimates, there are clearly discernible trends: Whereas
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percentage errors in binding energies are virtually constant within RPA, they increase linearly

for MP2, at a rate of approximately 0.1%, per VE on average. For slightly over 700 valence

electrons, the MP2 relative error regression fit reaches 100% for the systems tested here.

SCS-MP2 has an approximately 5 times lower slope of 0.025%, per VE (but notably higher

y-intercept), and PBE-D3 relative errors grow at a rate of slightly less than 0.01%, for the

present benchmarks, see Table Table 3.2. The largest MP2 errors occur for systems with

strong π–π stacking interactions such as complexes 3 to 12 from the S30L test set.111
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Figure 3.10: Relative errors (∆E) of MP2, SCS-MP2, RPA(PBE), and PBE-D3 interaction
energies in the S66,13,109 L7,110 and S30L111 benchmarks vs. number of valence electrons
(VEs).

Table 3.2: Parameters of the linear regression fits displayed in Figure 3.10. The slope
corresponds to the average relative interaction energy error (%) per valence electron (VE),
and the y-intercept corresponds to the average relative interaction energy error (%) in the
limit of zero VEs.

Method Slope (%/VE) y-intercept (%)
MP2 0.1219 7.30
SCS-MP2 0.0251 14.10
RPA(PBE) 0.0030 6.24
PBE-D3 0.0083 6.79
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3.4.7 Physical Interpretation

The present analytical and numerical results show that the convergence of the AC-SAPT

series for NIs is strongly dependent on the level of theory used for computing the monomer

polarization propagator Π0(z). Thus, it is helpful to consider the generalized dielectric

function

ϵ0(z) = 1 − Π0(z)V0, (3.43)

which characterizes the response of the monomers at frequency z. Within RPA, Eq. (3.32)

implies that the eigenvalues of ϵ0 are bounded from above by 2, reflecting the fact that the

RPA response to external fields is reduced (“screened”) by the creation of induced electron-

pairs. As a result, the effective interaction “seen” by an electron of subsystem A due to

electrons in subsystem B decays rapidly within B. This effective interaction is indeed “weak”

in the sense that it affords a convergent AC-SAPT expansion for nondegenerate monomers.

For systems satisfying the DG conditions, there is no screening in the monomers in at least

one dimension, and the largest eigenvalue of ϵ0(z) may equal 2, even within RPA, causing

divergence of the AC-SAPT expansion and unconventional power laws of the dispersion

interaction. Since the HXC kernel is dominated by the Hartree kernel for large R, this

behavior of the RPA is expected to be correct, at least qualitatively.

As opposed to these physical divergences of the AC-SAPT expansion, unphysical divergences

may result if the intra-monomer electron interaction is treated perturbatively. In this case,

ϵ0 is not bounded, with largest eigenvalues around 5 (KS reference) or 2 (HF reference) for

typical systems studied here, see Figure 3.6 and Figure 3.9. This reflects a much stronger

perturbation of the monomers by the intersystem interaction due to incomplete screening

resulting primarily from the neglect of higher-order particle–hole ring diagrams. Hence, the

MBPT effective interaction is too strong for intermolecular perturbation theory, causing
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spurious divergence of the AC-SAPT expansion. This effect is not seen in the smallest and

least polarizable monomers such as He atoms, but it becomes noticeable for even moderately

large monomers with a few atoms, where the neglect of screening due to multiple induced

particle–hole pairs by finite-order MBPT produces significant over- or underestimations of

NIs. For the large π systems in the S30L, the lack of screening produces maximum eigenvalues

of ϵ0 around 7 (KS reference) or 3 (HF reference), which suggests rapid divergence of the AC-

SAPT expansion, providing a plausible rationale for the spectacular errors in MP2 binding

energies observed for these systems.

3.5 Conclusions

Figure 3.11: An illustration of the electrodynamic screening present between dimers.

A key result of this study is that dispersion interactions cannot be considered “weak” unless

intra-monomer screening effects are taken into account at least at the level of RPA. Similar

to electrostatic screening, electrodynamic screening due to induced density fluctuations is

inadequately captured by finite-order MBPT-type approaches, except for the smallest and

least polarizable systems, see Figure 3.11. As a result, unscreened perturbation theories

produce exaggerated responses of the monomers to external perturbation and divergent es-

timates for NIs even in moderately large systems. The conventional wisdom that MBPT is

useful for accurate calculations of NIs in even moderately large systems is incorrect: Numer-
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ically small interaction energies compared to covalent interactions do not imply “weakness”

in the sense of a bounded response or convergent intermolecular perturbation theory. Con-

sequently, finite-order MBPT results tend to worsen systematically with system size, as was

demonstrated by the basis-set extrapolated MP2 results for complexes with up to 600 VEs.

Given the computational efficiency and popularity of MBPT implementations, this is a sober-

ing result: Size-extensivity and (conventional) size-consistency are insufficient conditions for

accurate predictions of NIs. While there may be a place for MBPT calculations of NIs in

complexes of small, hard monomers, MBPT estimates of NIs cannot be considered reliable

for most systems of chemical interest, much less for nanomaterials, metallic systems, or soft

matter. In light of the current results, empirically scaled MP2 methods, and particularly

MP2.5, appear as simple regularizations of an asymptotic series; while this strategy is clearly

successful for some systems, it does not address the underlying physical problem, limiting

predictive power and robustness.

The MP2C method can be viewed as a partial MBPT resummation which includes intra-

monomer screening and exhibits better analytical properties than bare MBPT, but truncates

intermonomer interactions at second order, and has no obvious supermolecular equivalent.

For increasingly large and polarizable monomers, MP2C underestimates the magnitude of

dispersion interactions progressively due to missing many-body dispersion.

A qualitatively correct treatment of intra-monomer screening to all orders is possible with

RPA at little extra cost compared to MBPT approaches. Indeed, RPA produces constant

relative errors in NIs that are virtually independent of the system size and type, consistent

with its qualitatively correct treatment of electrodynamic polarization; this may be viewed

as a manifestation of “Casimir-Polder size consistency.”21 Similar conclusions may hold for

more elaborate non-perturbative coupled cluster methods, which include the ring diagrams

corresponding to RPA.167 In particular, the accuracy of ring-coupled-cluster methods for

NIs168 supports the view that ring diagrams dominate in the long-range limit of NIs. It is
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remarkable that ring diagrams also constitute the main part of the correlation energy for the

uniform electron gas at high density,100 a similarity first noted by Dzyaloshinskii, Lifshitz,

and Pitaevskii.169 Both, dispersion interactions in finite systems and electron correlation

in the high-density electron gas emerge from collective density fluctuations170,171 caused by

the long-range Coulomb interaction. In this sense, the expectation that RPA energy differ-

ences should be universally accurate172,173 appears to hold as long as long-range correlation

dominates.

The present results raise the question whether the perturbative triples correction of CCSD(T)

inherits any of the limitations of MBPT, even though it includes some screening at the level

of the amplitudes. Whereas CCSD(T) errors for interaction energies of small molecular

complexes were determined to be on the order of 1%,110 and typical deviations between

RPA and CCSD(T) binding energies are on the order of 5-10% for the benchmarks studied

here, the linear scaling domain-based pair natural orbital CCSD(T) binding energies for

water on small graphene flakes are significantly larger than the corresponding RPA and

diffusion Monte Carlo ones,174 and the CCSD(T) perturbative triples correction diverges for

the correlation energy of the uniform electron gas.175

The AC-SAPT formalism developed here affords separate, non-perturbative definitions of

dispersion and induction effects in NIs. While it has mainly been used to rationalize the

results of supermolecular calculations here, the analytical expressions obtained from AC-

SAPT could be evaluated using monomer calculations given suitable approximations to

the intermolecular KS potential V̂s int[ρ]. Beyond-RPA perturbation methods known from

supermolecular calculations such as second-order screened exchange (SOSEX)106,176–178 or

approximate exchange kernel (AXK)164,179 may prove useful for this purpose. Our conclu-

sions regarding the divergence of MBPT for NIs rely in part on the assumption that the

RPA dispersion energy is qualitatively accurate, which is supported by the close agreement

between the RPA and the benchmark results. This agreement is remarkable given that RPA
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is parameter-free aside from using a KS reference from a semilocal DFA. Moreover, the esti-

mated AC-SAPT convergence radii are upper bounds only, but they show strong correlation

to the NI errors of MBPT methods for the benchmarks studied here.

Our results show that the convergence of the AC-SAPT expansion for dimers consisting of

large monomers depends critically on the accuracy of intra-monomer correlation. Specifically,

electrodynamic screening should be included in the monomer correlation treatment at least at

the time-dependent HF level. Apart from unphysical divergences, AC-SAPT does converge

more slowly for large and polarizable monomers, and exhibits physical divergence for systems

satisfying the DG conditions such as one-dimensional metals. Under these circumstances,

the traditional LHZK(2) picture of dispersion breaks down and must replaced by the RPA

one embodied in Eq. (3.34). Importantly, Eq. (3.34) correctly recovers both, the small, hard

monomer LHZK(2) limit where MBPT can converge, and the macroscopic Lifshitz limit.

Eq. (3.34) is largely scale invariant and therefore a far better starting point for computing

and conceptualizing dispersion interactions than LHZK(2).

The breakdown of MBPT for NIs also has important implications for the development of

approximations such as van-der-Waals density functionals or force fields. The present results

cast further doubt on the validity of empirical 1/R6 corrections for very large and polarizable

monomers – even though some dispersion-corrected DFAs admittedly perform remarkably

well for large systems. An accurate description of NIs for such systems may require methods

including Lifshitz-type physics and electrodynamic polarization effects. Quantum Drude

models180 or many-body dispersion methods94,181 may be considered coarse-grained RPA

approaches suitable for this purpose.

Modern RPA implementations are insignificantly more expensive than the most advanced

MP2 approaches from a computational viewpoint, and RPA calculations for molecules with

hundreds of atoms on workstation clusters are now routine107,140,182–188 — although the

present results also show that accurate RPA binding energies for NIs require triple- to
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quadruple-ζ basis set extrapolation, making some of the proposed low-scaling methods less

effective. Taken together with the superior accuracy of RPA for large and polarizable sys-

tems without empirical adjustments, MP2 can be safely and efficiently replaced by RPA for

calculations of NIs in most systems of chemical interest. If MP2 results are nevertheless de-

sired, diagnostic αPT2
c values should be used to gauge their reliability. Similarly, the present

results support the use of RPA calculations to calibrate dispersion-corrected DFA results.

RPA calculations of NIs benefit from variational optimization of the reference,189 but the

improvement appears to be most pronounced for small systems such as rare gas dimers and

diminish with increasing monomer size. With average interaction energy errors consistently

in the 5–10% range, RPA is accurate enough for a wide range of applications, irrespective

of system size, gap size, or empirical training sets. The accuracy of RPA for NIs may also

contribute to its recent successful application to activation energies of sterically crowded

transition states.65,190

3.6 Supporting Information

3.6.1 RPA Basis Set Convergence Study

To investigate the effect of the basis set incompleteness on RPA interaction energies, a basis

set convergence study for the correlation contribution to the interaction energy was carried

out for the pincer complex with 2,4,7-trinitro-9-fluorenone as the guest from S30L (compound

number 5),111 see Figure S3.1. The 50% counterpoise corrected 3-4 and 4-5 extrapolated

results agreed within 0.20 kcal/mol, validating the use of 3-4 extrapolated RPA correlation

energies with 50% counterpoise correction.
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Figure S3.1: Basis set convergence of the RPA interaction energy using a PBE KS reference
for compound number 5 of S30L111 is reported. The energy expectation value of the KS
determinant was computed using def2-QZVP131 basis sets. X denotes the cardinal number
of Dunning’s correlation consistent polarized cc-pVXZ (X=T,Q,5) basis sets.132,133 All RPA
correlation energies were computed within the frozen core approximation.

3.6.2 S30L-CI: Charged Species with Counterions

S30L−CI Complexes

∆
E

R
P

A
 (

k
c
a
l/
m

o
l)

23 24 25 26 27 28 29 30

−100

−75

−50

−25

0

triple−ζ
quadruple−ζ

3−4 Ext

50 % CP 3−4 Ext

Figure S3.2: RPA(PBE) interaction energy errors (∆ERPA) for S30L complexes with coun-
terions.111
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Figure S3.3: MP2 interaction energy errors (∆EMP2) for S30L complexes with counterions.111

Within the S30L testset, counterions were investigated for the MP2 and RPA calculations.

These complexes were denoted the S30L-CI, see Figure S3.2 and Figure S3.3. The poor basis

set convergence observed for complexes 29 and 30 is due to large BSSE, which is ascribed to

the fact that the sodium basis sets are optimized for neutral atoms. Due to these basis set

artifacts, counterions were excluded from the benchmark calculations.

3.6.3 HOMO-LUMO Gap Effect on Interaction Energies

HOMO−LUMO Gap (eV)

∆
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Figure S3.4: Percentage errors of interaction energy (∆E) for the S66,13,109 L7,110 and
S30L111 benchmark vs. the HF HOMO-LUMO gap.
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A potential source of binding energy error is the small HOMO-LUMO gap. For the complexes

in this study, the HOMO-LUMO gaps were observed to be at least 6 eV and binding errors

do not strongly correlate with the HOMO-LUMO gaps, see Figure S3.4.
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Chapter 4

Dispersion Size-Consistency

Chapter 4 is reprinted with permission from [Nguyen, B.D.*; Hernandez, D.J.*; Flores, E.;

Furche, F. Dispersion Size-Consistency. Electron. Struct. 2021, (4), 040902]. © IOP Pub-

lishing. Reproduced with permission. All rights reserved. (* Indicates authors contributed

equally.)

Contribution Statement: The following are my contributions to the project. I contributed

toward developing the multivariate adiabatic connection symmetry adapted perturbation

theory (MAC-SAPT) and established the exact constraint dispersion size-consistency. Next,

I analyzed and determined whether the many-body perturbation theory, random phase ap-

proximation, and SAPT satisfy the dispersion size-consistency. Lastly, I contributed to the

writing and prepared the submission into the Electron. Struct.

4.1 Introduction

Noncovalent interactions (NIs) play an important role determining the physical and chemical

properties of supramolecular chemistry,8,191 molecular crystals,61,62,192 and materials.2,3,193
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Perturbation theory has a long history of applications to NIs, and may appear to be a

logical choice based on the relative “weakness” of NIs compared to covalent bonding, and

successful applications to relatively small molecular systems78,115 seemed to support this

notion. In particular, Møller–Plesset (MP)68 many-body perturbation theory (MBPT) has

been popular to use due to its relative inexpensive cost and size extensivity.15

However, during the last 1-2 decades, a number of theoretical55,194 and computational18,19,87

results have cast doubt on the suitability of perturbative approaches for NIs. Recently,

Nguyen and co-workers195 showed that, contrary to previous assumptions, supermolecular

MBPT diverges for the vast majority of weakly bound dimers. Moreover, relative errors

of supermolecular MP2 binding energies were found to increase with system size at a rate

of approximately 0.1% per valence electron, leading to relative errors ¿100% for dimers

containing a few hundred atoms.

Here, we extend the dimer adiabatic connection (AC) approach developed in reference195

to supermolecular systems consisting of N nonoverlapping monomers. To this end, we in-

troduce a multivariate adiabatic connection (MAC) which enables “turning on” electronic

interactions between individual monomers. As in the dimer case, the MAC provides a com-

plete separation of dispersion from induction and electrostatic interactions. This leads to a

concise definition of dispersion size-consistency, a term recently proposed by Ángyán, Dob-

son, and Gould196 as an “infinite-order” generalization of Casimir-Polder size-consistency;197

the idea of dispersion size-consistency has been implicit in earlier work for some time14,21–24

but does not appear to have been explicitly defined or shown to be an exact constraint.

In view of its fundamental importance for electronic structure theory, it is surprising that

several different definitions of size-consistency are being used in the literature, some of them

conflicting with each other.15,66,67,198 In this work, we consider a method to be size-extensive if

and only if it yields an energy per (electrostatically neutral) monomer that has a well-defined
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thermodynamic limit, i.e., the energy asymptotically behaves as

E(N) = emN + O(N2/3) (4.1)

for large N with finite energy per monomer em. On the other hand, a method will be called

size-consistent if and only if the error of E(N)/N is approximately independent of N . This

relatively strict definition of size-consistency implies size-extensivity, but it also guarantees

that relative errors in energies of finite systems be approximately constant, which is critical

for applications to molecular systems.

Table 4.1: Key symbols and terms

Symbol Definition
N Number of monomers
I, J, . . . Fragments or monomers
α Intermonomer coupling constant
Ĥα Born–Oppenheimer Hamiltonian at coupling strength α

T̂ Kinetic energy
ρ Ground-state density
V̂ α

s [ρ] Local one-electron potential
V̂ee Electron–electron Coulomb interaction
V̂ ext External potential
V̂ ne External nucleus–electron potential
V nn Nucleus–nucleus potential
V̂ αHXC[ρ] Hartree-, exchange-, and correlation potential
J Matrix of ones
|Ψα

m⟩ Supersystem eigenstate
Eα

m Supersystem energy eigenvalue
Wα Coupling strength integrand
EHXC Ground-state Hartree-, exchange-, and correlation energy
CJ

0 Interaction path
EC

int Dispersion energy
∆ρ̂ Density fluctuation operator
Πα(z) Interacting polarization propagator
γ(x1, x2) one-particle density matrix
ϵα(z) Generalized dielectric function
KαHXC(z) Hartree-, exchange-, and correlation kernel
Vα α-scaled bare electron–electron Coulomb interaction
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4.2 Multivariate Adiabatic Connection Approach to Dis-

persion

4.2.1 Statement of the Problem

We consider a molecular supersystem consisting of N non–overlapping, electrostatically neu-

tral subsystems (also called fragments or monomers) at large but finite interfragment sepa-

rations RIJ , each of which is assumed to be in their non-degenerate ground state at infinite

separation. All distances RIJ are assumed to be so large that exchange effects are exponen-

tially small such that the fragments are distinguishable. We will use capital indices I, J, . . .

to label fragments.

Since the non-relativistic many-electron Hamiltonian only contains at most pairwise interac-

tions and there are N(N −1)/2 pairs of monomers, it is expedient to introduce real coupling

constants 0 ≤ αIJ ≤ 1 which scales the strength of the electron-electron interaction between

each pair. In the present framework, it is straightforward to include intramonomer inter-

actions as non-zero diagonal elements αII , whereas previous work on dimers used a scalar

coupling constant for the intermonomer interaction only.195 The matrix α is symmetric due

to the symmetry of the electron-electron interaction; we will refer to α as “coupling strength”

for brevity in the following, even though α contains N(N + 1)/2 independent elements. The

Born–Oppenheimer Hamiltonian of the supersystem at coupling strength α is

Ĥα =
N∑

I=1

(
T̂I + V̂ α

sI [ρ]
)

+ 1
2

N∑
I,J=1

V̂αee
IJ , (4.2)

where T̂I denotes the kinetic energy operator for electrons belonging to fragment I, V̂ α
sI [ρ]

is a local coupling-strength dependent potential for electrons belonging to fragment I, and

V̂ αee
IJ = αIJ V̂IJ is the operator of the α-scaled electron–electron Coulomb interaction for
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electrons on fragments I and J . In analogy to the scalar version of the AC,98,116,117 the

potentials V̂ α
sI [ρ] constrain the ground-state density of the supersystem at coupling strength

α, ρα, to the physical ground-state density at full coupling,

ρ(x) = ρJ(x), (4.3)

where J denotes the N × N matrix of ones and x = (r, σ) stands for space-spin coordinates.

In the following, full coupling (α = J) will be implied for all coupling-strength dependent

quantities unless explicitly labeled. ∑
I V̂ α

sI is a unique functional of ρ by the Hohenberg-Kohn

theorem.148 Because the total density is uniquely decomposable into N fragment densities ρI

at large separation, the partitioning of the sum into the fragment parts V̂ α
sI [ρ] is also unique.

As in the scalar AC, each fragment potential

V̂ α
sI [ρ] = V̂ ext

I + V̂ HXC
I [ρ] − V̂ αHXC

I [ρ] (4.4)

may be decomposed into an “external” part V̂ ext
I and a coupling-strength dependent Hartree-

, exchange-, and correlation (HXC) part. In the present context, the external potential

contains the Coulomb attraction between the electrons belonging to fragment I and the

nuclei at all J , V̂ ne
IJ , as well as the corresponding part of the nucleus-nucleus repulsion

energy V nn,

V̂ ext
I =

N∑
J=1

(
V̂ ne

IJ + V nn
IJ

)
. (4.5)

The HXC part of V̂ α
sI [ρ] vanishes at full coupling, while V̂ αHXC

I [ρ] vanishes at α = 0, re-

covering the Kohn–Sham (KS) potential199 for electrons belonging to fragment I. In the

following, the functional dependence of the Hamiltonian and all derived quantities on the

ground-state density ρ will be implied for notational clarity.
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4.2.2 Multivariate Adiabatic Connection

The eigenstates and energy eigenvalues of the Hamiltonian Ĥα satisfy the coupling-strength

dependent electronic Schrödinger equation for the supersystem,

Ĥα |Ψα
m⟩ = Eα

m |Ψα
m⟩ , m = 0, 1, . . . . (4.6)

where the supersystem eigenstates |Ψα
m⟩ is required to be antisymmetric for all electron

permutations within each monomer. Alternatively, the |Ψα
m⟩ could be required to be anti-

symmetric with respect to any electron permutations in the spirit of symmetry-adapted per-

turbation theory (SAPT),200–202 but the resulting exchange effects are exponentially small

in the nonoverlapping limit. The physical ground state |ΨJ
0⟩ = |Ψ0⟩ includes all monomer

interactions, and its energy is EJ
0 = E0, whereas the KS ground-state |Ψ0

0⟩ is a single Slater

determinant with energy eigenvalue E0
0 . Invoking the Hellman-Feynman theorem, we define

the MAC coupling-strength integrand in analogy to the scalar case,

Wα = ⟨Ψα
0 |V̂ee|Ψα

0 ⟩ = d

dα

(
Eα

0 +
∫

dx V αHXC(x)ρ(x)
)

. (4.7)

Wα is the gradient of a scalar function of α, and ⟨Wαdα⟩ is a total differential of the

ground-state HXC energy of the supersystem, since

∫
CJ

0

⟨Wαdα⟩ =
(

Eα
0 +

∫
dx V αHXC(x)ρ(x)

)∣∣∣∣α=J

α=0
= EJ

0 +
∫

dx V HXC(x)ρ(x)−E0
0 = EHXC.

(4.8)

In the last step, it was used that V JHXC(x) = V JHXC(x), whereas V 0HXC(x) = 0. Single

brackets ⟨·⟩ are used to denote traces over monomer indices, whereas double brackets ⟨⟨·⟩⟩

denote traces over all electronic degrees of freedom. CJ
0 is any piece-wise smooth curve

on the N(N + 1)-dimensional domain of α starting at 0 (zero coupling) and ending at J
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(full coupling). This arbitrariness of CJ
0 will allow us to choose MAC integration paths

particularly suited for studying molecular interactions and for discussing size-consistency.

4.2.3 MAC Interaction Path

Figure 4.1: The full interaction between two monomers is illustrated by the decomposition
of the MAC interaction path into the intermonomer interaction (α12) and the intramonomer
interactions (α11 and α22).

To define the dispersion energy, we decompose the interaction path as

CJ
0 = C1

0 ∪ CJ
1 , (4.9)

where C1
0 turns on the intramonomer interaction (corresponding to the diagonal elements of

α) only, and CJ
1 subsequently turns on the intermonomer interaction, see Figure 4.1. Hence,

EHXC
diag =

∫
C1

0

⟨Wαdα⟩ (4.10)
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corresponds to the HXC energy associated with the intramonomer electron-electron interac-

tion, whereas

EHXC
int =

∫
CJ

1

⟨Wαdα⟩ (4.11)

is the HXC energy associated with the intermonomer interaction, starting from the monomers

at full coupling. The total supersystem ground-state energy is thus

E0 = E0
0 −

∫
dx V HXC(x)ρ(x) + EHXC

diag + EHXC
int , (4.12)

where EHXC
diag contains all intramonomer (I = J) parts of the total energy due to electron

interaction, whereas the HXC interaction energy EHXC
int accounts for all contributions due

to interactions of different monomers (I ̸= J). In analogy to the dimer case,195 EHXC
int

contains no induction effects, because the ground-state density is kept fixed at the ground-

state density of the supersystem. The induction energy can be obtained by considering the

isolated monomers without density constraint. Moreover, the entire one-electron part of the

interaction energy is contained in E0
0 . The Hartree and exchange part of EHXC

int is first order

in α and amounts to the electrostatic part of the electron-electron interaction,

EHX
int =

∫
CJ

1

⟨W1dα⟩ = ⟨W1(J − 1)⟩ = 1
2

∑
I ̸=J

⟨Ψ1
0 |V̂ ee

IJ |Ψ1
0⟩ = 1

2
∑
I ̸=J

∫
dx1dx2

ρI(x1)ρJ(x2)
|r1 − r2|

;

(4.13)

the exchange part vanishes exponentially with the intermonomer distance and therefore has

been omitted. |Ψ1
0⟩ is the ground state of the supersystem with full intramonomer interaction,

but zero intermonomer electron interaction. The remainder,

EC
int =

∫
CJ

1

〈(
Wα − W1

)
dα

〉
, (4.14)
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is the correlation part of the electron-electron interaction and hence the dispersion energy.

4.2.4 Fluctuation-Dissipation Theorem

Following the argument in the dimer case,195 the dispersion energy, equation (4.14), may

be expressed as the difference between correlated and uncorrelated intermonomer density

fluctuations by factorizing the coupling strength integrand,

EC
int = 1

2

N∑
IJ=1

∫
CJ

1

dαIJ

∫ dx1dx2

|r1 − r2|
(⟨Ψα

0 |∆ρ̂I(x1)∆ρ̂J(x2)|Ψα
0 ⟩

− ⟨Ψ1
0 |∆ρ̂I(x1)∆ρ̂J(x2)|Ψ1

0⟩).
(4.15)

(Since dαII = 0 along CJ
1 , the intramonomer correlations are excluded.) Here, ∆ρ̂I =

ρ̂I(x) − ρI(x) is the density fluctuation operator associated with fragment I, and ρ̂I(x)

is the corresponding density operator. As in the dimer case, using the completeness of the

eigenstates {|Ψα
m⟩} yields the analog of the fluctuation-dissipation theorem for the dispersion

energy,

EC
int = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈 (
Πα(z) − Π1(z)

)
dVα

〉〉
. (4.16)

Πα(z) is the time-ordered supersystem polarization propagator at coupling strength α and

imaginary frequency z = iω ∈ iR. Using the Lehmann representation, Πα(z) may be

expressed in terms of the eigenpairs {|Ψα
m⟩ , Eα

m},

Πα
IJ(z) =

∑
m ̸=0

{
γα

0mI ⊗ γα†
0mJ

z − Ωα
m + i0+ − γα†

0mJ ⊗ γα
0mI

z + Ωα
m − i0+

}
. (4.17)

Ωα
m = Eα

m − Eα
0 is the energy of an excitation from |Ψα

0 ⟩ to |Ψα
m⟩, and γα

0mI denotes the diag-

onal block of the corresponding one-particle transition density matrix – off-diagonal blocks

corresponding to intermonomer charge-transfer excitations may be neglected, because their
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contribution to the energy decays exponentially with the overlap between the monomers. As

in the dimer case, Πα(z) is a self-adjoint and negative semidefinite operator on the tensor-

product space of one-particle operators, but it now has N(N + 1)/2 blocks, one for each

monomer pair. Vα is the α-scaled bare electron–electron Coulomb interaction (or Hartree

kernel) on the same space; because the Hartree kernel is spatially local, Vα consists of

N(N + 1)/2 blocks V α
IJ = αIJVIJ corresponding to intra- and intermonomer parts of the

interaction. The differential applies to the coupling constant, i.e., [dVα]IJ = VIJdαIJ .

4.2.5 Generalized Dielectric Function

It is impractical to obtain Πα from equation (4.17) because knowledge of the supersystem

eigenpairs {|Ψα
m⟩ , Eα

m} at finite α would be required. Instead, it is desirable to connect Πα

to its noninteracting KS counterpart, Π0, according to

Πα(z) = [ϵα(z)]−1Π0(z). (4.18)

ϵα(z), the generalized dielectric function at coupling strength α, is further related to Π0

according to185,203

ϵα(z) = 1 − Π0(z)KαHXC(z), (4.19)

where KαHXC(z) denotes the HXC kernel at coupling strength α and imaginary frequency

z. (In the following, the frequency argument will be implied for clarity where possible.)

KαHXC is spatially local and has the same block structure as V. The inverse [ϵα]−1 may be

interpreted as generalized dielectric screening factor and will be just referred to as “screening

factor” in the following. Existence of the inverse is guaranteed as long as the ground state

|Ψα
0 ⟩ is stable and nondegenerate.
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KαHXC may be decomposed into a diagonal (intramonomer) part at full coupling, K1HXC,

and a remainder KαHXC
int , which accounts for the intermonomer interaction,

KαHXC = K1HXC + KαHXC
int . (4.20)

It follows that

ϵα = 1 − Π0K1HXC − Π0KαHXC
int = ϵ1ϵα

int, α ∈ CJ
1 , (4.21)

where ϵ1 = 1 − Π0K1HXC is the generalized dielectric function accounting for intramonomer

interaction, and

ϵα
int = 1 − Π1KαHXC

int , (4.22)

the generalized dielectric function for the intermonomer interaction, contains the monomer-

screened polarization propagator

Π1 = [ϵ1]−1Π0 (4.23)

at full intramonomer interaction.

4.2.6 Dispersion Energy

Insertion of equation (4.18) into the fluctuation-dissipation theorem for the dispersion energy

(4.16) yields

EC
int = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈 (
[ϵα

int(z)]−1 − 1
)

Π1(z)dVα
〉〉

. (4.24)
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This equation may be further transformed in two different ways: First, by exploiting the

zero trace of Π1dVα for α ∈ CJ
1 , we arrive at a screened-exchange like expression for the

dispersion energy,

EC
int = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈
[ϵα

int(z)]−1Π1(z)dVα
〉〉

. (4.25)

Second, by noting that

[ϵα
int]−1 − 1 = [ϵα

int]−1 (1 − ϵα
int) = [ϵα

int]−1Π1KαHXC
int , (4.26)

we arrive at the screened second-order-like expression

EC
int = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈
[ϵα

int(z)]−1Π1(z)KαHXC
int (z)Π1(z)dVα

〉〉
. (4.27)

While equation (4.27) might be further simplified in the dimer case by exploiting the fact

that only odd orders in the coupling constant have nonzero trace, this simplification is no

longer possible in the N -monomer case, where even orders can be nonzero.

4.3 Partitioning of the Dispersion Energy

4.3.1 Subsystem Partitioning of the Interaction Path

To investigate the behavior of the dispersion energy as a function of N , we partition the

MAC interaction path CJ
1 into N − 1 segments C2, C3, . . . , CN , such that

CJ
1 =

N⋃
K=2

CK . (4.28)
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Each segment CK turns on the interaction between the K-th monomer and a K − 1-mer

consisting of already interacting monomers. This may be formalized by introducing the

N × N matrices JK , K = 1, . . . , N , defined by recursion J1 = 1,

JK − JK−1 = ∆JK =
K−1∑
L=1

(eL ⊗ eK + eK ⊗ eL) , (4.29)

where {eI , I = 1, . . . , N} are unit vectors. It follows that

JK = 1 +
K∑

K=2
∆JK (4.30)

and JN = J. Along each segment CK , the coupling constant changes from JK−1 to JK , i.e.,

CK = CJK
JK−1

. (4.31)

Using the MAC interaction path partitioning (4.28), the dispersion energy, equation (4.27),

decomposes into a sum of N − 1 terms,

EC
int =

N∑
K=2

∆EC
intK , (4.32)

where

∆EC
intK = −1

2

∫
CK

∫ ∞

−∞

dz

2πi

〈〈
[ϵα

int(z)]−1Π1(z)dVα
〉〉

. (4.33)

Intuitively, each increment ∆EC
intK should amount to the dispersion energy gained when the

K-th monomer is allowed to interact with an existing K − 1-mer.

The interaction path (4.28) is by no means unique – any (non-identity) permutation of the

N monomers may give rise to a different path, but the final interaction energy is path-

independent and therefore invariant under such permutations. The following results are
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nevertheless general in that they do not depend on a specific ordering of monomers.

4.3.2 Partitioning of the HXC Kernel

Along the MAC interaction path (4.28), the HXC interaction kernel KαHXC
int changes from 0

to its value at full coupling. This suggests a partitioning into N − 1 increments

KαHXC
int =

N∑
K=2

∆KαHXC
intK , (4.34)

where each increment accounts for the change of KαHXC
int along CK ,

∆KαHXC
intK =


0; α ∈ C

JK−1
1

KαHXC
int − KJK−1HXC

int ; α ∈ CK

KJKHXC
int − KJK−1HXC

int ; α ∈ CJ
JK

. (4.35)

The thus defined ∆KαHXC
intK exhibit α dependence only for α ∈ CK , and become either zero

or assume their value at full coupling elsewhere. Again, this partitioning is not unique, but

it produces the correct behavior in the large separation limit, as shown below.

4.3.3 Partitioning of the Generalized Dielectric Function

In Sec. 4.2.5, we observed that additive separability of the HXC kernel leads to multiplicative

separability of the generalized dielectric function. Given the additive separation of the HXC

interaction kernel from equation (4.34), we separate ϵα
int as

ϵα
int = ϵα

intN =
N∏

K=1
∆ϵα

intK , (4.36)

77



where ∆ϵα
int1 = 1 and

∆ϵα
intK = 1 − [ϵα

intN−1]−1Π1∆KαHXC
intK . (4.37)

Equation (4.36) implies that the screening factor is multiplicatively separable as well,

[ϵα
int]−1 = [ϵα

intN ]−1 =
1∏

K=N

[∆ϵα
intK ]−1. (4.38)

Existence of the inverses is again guaranteed as long as the ground state remains stable and

nondegenerate along the interaction path. The multiplicative increments ∆ϵα
intK exhibit α

dependence only for α ∈ CK , and either equal the identity (no screening) or assume their

value at full coupling elsewhere: Using the definition of ∆KαHXC
intK (4.35), one finds

∆ϵα
intK =


1; α ∈ C

JK−1
1

1 − [ϵJ
intN−1]−1Π1∆KαHXC

intK ; α ∈ CK

1 − [ϵJ
intN−1]−1Π1∆KJHXC

intK ; α ∈ CJ
JK

. (4.39)

In particular, for α ∈ CK , the generalized dielectric constant takes the intuitive form

ϵα
int = ϵJ

intK−1∆ϵα
intK , α ∈ CK . (4.40)

Insertion into equation (4.33) yields

∆EC
intK = −1

2

∫
CK

∫ ∞

−∞

dz

2πi

〈〈
[∆ϵα

intK(z)]−1[ϵJ
intK−1(z)]−1Π1(z)dVα

〉〉
. (4.41)

This suggests that [ϵJ
intK−1]−1Π1 is the equivalent of the K − 1-mer polarization propagator,

whereas [∆ϵα
intK ]−1 accounts for screening due to interaction between the K-th monomer and

the K − 1-mer.
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4.3.4 Proof that ∆EC
intK is a Dimer Dispersion Energy

To prove that our intuitive interpretation of equation (4.41) is correct, we need to show that

∆EC
intK indeed equals the dispersion interaction between the (fully interacting) K − 1-mer

and the K-th monomer, and hence ∆EC
intK reduces to the expression for the dimer interaction

energy obtained by Nguyen and co-workers,195 with one monomer corresponding to monomer

K and the other monomer corresponding to the compound K − 1-mer.

We start by observing that, at long range, the I, J-block of KαHXC
int depends on αIJ only,

KαHXC
intIJ = KαIJ HXC

intIJ . (4.42)

Although we will try to weaken this assumption later, it is obviously true because KαHXC
int

reduces to Vα
int in this limit. For the following, it is convenient to partition the underlying N -

dimensional vector space into a direct sum of a K − 1-dimensional space associated with the

K −1-mer, a one-dimensional space associated with monomer K, and an N −K dimensional

subspace (which may be zero) associated with the remaining monomers. We further adopt

a short-hand bracket notation for (sub)vectors and (sub)matrices, e.g., α[K]L stands for a

column vector containing the first K elements of the L-th row of α, etc. The HXC kernel

increment thus takes the simple form

∆KαHXC
intK =


0 KαHXC

int[K−1]K 0

KαHXC
intK[K−1] 0 0

0 0 0

 . (4.43)

As expected, ∆KαHXC
intK only changes for α ∈ CK , which turns on all αKL, L = 1, . . . K −1. As

a result, only the first K × K sub-block of KαHXC
int is nonzero for α ∈ Ck, and hence only the

first K ×K sub-block of ϵα
int is different from 1 under these conditions. The (block-diagonal)
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monomer polarization propagator may be partitioned as

Π1 =


Π1

[K−1][K−1] 0 0

0 Π1
KK 0

0 0 Π1
[N−K][N−K]

 , (4.44)

where Π1
[K−1][K−1] is the polarization propagator of the K−1-mer including all intramonomer

but no intermonomer interaction, and Π1
KK is the polarization propagator of the K-th

monomer at full coupling. Moreover, for α ∈ Ck,

ϵJ
intK−1 =


ϵJ

int[K−1][K−1] 0 0

0 1 0

0 0 1

 , (4.45)

and therefore [ϵJ
intK−1]−1Π1 contains

ΠJ
[K−1][K−1] = [ϵJ

int[K−1][K−1]]−1Π1
[K−1][K−1], (4.46)

the K − 1-mer polarization propagator at full (intra- and intermonomer) interaction in its

first (K − 1) × (K − 1) block. The incremental dielectric function thus can be written as

∆ϵα
intK =


1 ΠJ

[K−1][K−1]KαHXC
[K−1]K 0

Π1
KKKαHXC

K[K−1] 1 0

0 0 1

 . (4.47)

Finally, for α ∈ Ck,

dVα =


0 dVα

[K−1]K 0

dVα
K[K−1] 0 0

0 0 0

 . (4.48)
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Inserting equations (4.44)-(4.48) into the expression for the incremental dispersion energy

(4.41), we observe that there is zero contribution to the trace from monomers K + 1, . . . N ,

and therefore

∆EC
intK = −1

2

∫
CK

∫ ∞

−∞

dz

2πi

×
〈〈  1 ΠJ

[K−1][K−1]KαHXC
[K−1]K

Π1
KKKαHXC

K[K−1] 1


−1 ΠJ

[K−1][K−1] 0

0 Π1
KK



×

 0 dVα
[K−1]K

dVα
K[K−1] 0


〉〉

.

(4.49)

If the integration path CK is chosen such that dα[K−1]K = dα, where α is a scalar integration

variable, equation (4.49) recovers the expression by Nguyen and co-workers195 for the dis-

persion interaction of a dimer consisting of a compound K − 1-mer and the K-th monomer,

which completes this proof.

It might be possible to further generalize this result by not assuming a pairwise block struc-

ture of KαHXC
int . This would lead to a more general expression for the dimer interaction

including changes to the intra-monomer correlation energies due to the interaction. The

only hard requirements for proving that ∆EC
intK is an interaction energy are (i) additivity

of the HXC kernel increments along the MAC interaction path and (ii) invertibility of the

resulting generalized dielectric functions.

4.4 Dispersion Size-Consistency

The results in the previous section afford a succinct and general statement of dispersion size-

consistency, which apply to any physical N -monomer system at large but finite distance:

The dispersion energy of a K-monomer subsystem equals the dispersion energy
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of a composite K − 1-mer plus the interaction energy of the K − 1-mer and the

K-th monomer.

An equally useful formulation is:

The total dispersion energy of a N -monomer system is independent of any par-

titioning into subsystems.

The latter statement can be understood as a direct consequence of the independence of

the interaction energy on the interaction path. While these statement may appear trivial,

they impose stringent conditions violated by many common approximate electronic structure

methods, as shown below. Unlike other size-consistency definitions,67 the above conditions

neither apply at infinite separation or in the thermodynamic limit only, but hold for finite

systems interacting at finite but large separations.

4.5 Approximate Electronic Structure Methods

4.5.1 Random Phase Approximation

Within the random phase approximation (RPA), KαHXC is replaced by its first-order ap-

proximation Vα, the bare Hartree kernel at coupling strength α. Since this approximation

preserves all properties we have used to derive dispersion size-consistency, it follows immedi-

ately that RPA is dispersion size-consistent. This means that it does not matter whether the

dispersion energy of an N -monomer system is obtained from a supermolecular calculation

or by calculating interaction energies from its constituent fragments as long as the RPA is

used in all steps.

The relatively simple structure of the RPA makes it possible to verify this result explicitly.
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By parameterizing the interaction path CJ
1 using a scalar coupling constant α, i.e., dαIJ =

dα, I ̸= J , the coupling strength integral within RPA may be performed analytically, yielding

EC RPA
int = 1

2

∫ ∞

−∞

dz

2πi

〈〈
ln[ϵint RPA(z)]−1

〉〉
, (4.50)

in complete analogy to the dimer case.195 The interaction part of the generalized dielectric

function within RPA is, according to equation (4.22),

ϵα
int RPA = 1 − Π1

RPAVα
int, (4.51)

where Vα
int = Vα − V1, and Π1

RPA is the polarization propagator including the full intra-

monomer screening within RPA caused by V1. Next, we observe that the multiplicative

separability of the generalized dielectric function according to equation (4.36) carries over

to RPA; in particular, at full coupling (α = J),

ϵint RPA = ϵint RPAN =
N∏

K=1
∆ϵint RPAK , (4.52)

where the increments ∆ϵint RPAK are defined as before with KαHXC
int replaced by Vα

int. Inserting

the factorization (4.52) in equation (4.50), we obtain an additive decomposition of the RPA

dispersion energy,

EC RPA
int =

N∑
K=1

∆EC RPA
intK , (4.53)

where

∆EC RPA
intK = 1

2

∫ ∞

−∞

dz

2πi

〈〈
ln[∆ϵint RPAK(z)]−1

〉〉
; (4.54)

in the last step, it was used that ⟨ln(AB)⟩ = ⟨ln A⟩ + ⟨ln B⟩ holds even for non-commuting
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operators A, B.

Equation (4.53) explicitly verifies the dispersion size-consistency of RPA: The first (K = 1)

term in the sum is zero, the second (K = 2) equals the RPA dispersion energy between

monomers 1 and 2, the third (K = 3) equals the RPA dispersion energy between the com-

pound 2-mer consisting of 1 and 2 and monomer 3, etc.

4.5.2 Supermolecular MBPT

In supermolecular MBPT, the total energy of the N -monomer system (and any fragments)

are evaluated using a power series approximation of the coupling strength integrand Wα

around α = 0. In the following, we will consider MBPT(2) for illustration, which amounts to

a special case of second-order Görling-Levy perturbation theory152,153 in the present context.

Since the coupling strength dependence enters the coupling strength integrand through the

screening factor only, the latter is expanded to first order in α (corresponding to a second-

order energy after coupling strength integration). A particularly useful way to perform this

expansion is to start from the factorization

[ϵα]−1 = [ϵα
int]−1[ϵα

diag]−1 (4.55)

and apply the product rule, which yields

[ϵα]−1(1) = [ϵα
int]−1(0)[ϵα

diag]−1(1) + [ϵα
int]−1(1)[ϵα

diag]−1(0), (4.56)

where orders in α are indicated by superscript (0), (1), . . .. To order zero in α (no in-

teraction), all screening factors are unity. Hence the MBPT(2) screening factor for the

supermolecule is a sum, rather than a product, of the first-order screening factors for the

intramolecular and the intermolecular interaction. The first term of the sum in equation
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(4.56) gives rise to the intramonomer MBPT(2) energy, whereas the second term leads to

the supermolecular MBPT(2) dispersion energy,

EC PT2
int = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈
[ϵα

int(z)]−1(1)Π0(z)dVα
〉〉

. (4.57)

However, because the intra-monomer screening factor enters to order zero only, the non-

interacting (bare, uncoupled) KS polarization propagator appears in the supermolecular

MBPT(2) expression for the dispersion energy rather than the first-order polarization prop-

agator at full coupling, which would be expected in a dispersion size-consistent method.

Whereas the intermonomer interaction is correctly included to first order in equation (4.57),

the intra-monomer interaction is not, and therefore supermolecular MBPT(2) is not dis-

persion size-consistent. Indeed, the screening factor that would give rise to dispersion size-

consistency,

[ϵα
int]−1(1)[ϵα

diag]−1(1), (4.58)

is second order in α and thus be obtained from supermolecular MBPT(2), which admits only

first-order screening factors. The missing intra-monomer screening explains the dramatic

overestimation of dispersion interactions observed in supermolecular MBPT(2) calculations

in an intuitive way.

4.5.3 SAPT

As opposed to supermolecular MBPT, SAPT uses perturbation theory for the intermolec-

ular part of the interaction only, whereas the — presumably stronger — intramolecular

interaction is previously addressed, e.g., using correlated wavefunction methods, RPA, or

DFT.14,115,145,204–206 AC-SAPT corresponds to using a correlated polarization propagator

Π1 in equation (4.25), followed by Taylor expansion of α around 1 (full monomer coupling),
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as opposed to a Taylor expansion around the coupling-strength origin in supermolecular

MBPT.

In the dimer (N = 2) case, AC-SAPT exhibits fairly benign convergence behavior in conjunc-

tion with approximations to Π1 that accurately account for intra-monomer correlation,195

in keeping with the generally high accuracy of dimer interaction energies obtained from

SAPT.207–210 However, this desirable behavior of SAPT does not necessarily carry over to

the many-monomer case, because many-monomer SAPT lacks dispersion size-consistency:

Writing the generalized dielectric function for the interaction of a composite K − 1-mer with

monomer K as

ϵα
intK = ϵα

intK−1∆ϵα
intK , (4.59)

SAPT(2) requires first-order expansion of the corresponding screening factor around α = 1,

[ϵα
intK ]−1(1) = [∆ϵ1

intK ]−1[ϵα
intK−1]−1(1) + [∆ϵα

intK ]−1(1)[ϵ1
intK−1]−1

= [ϵα
intK−1]−1(1) + [∆ϵα

intK ]−1(1),

(4.60)

where it was used that ∆ϵ1
intK = ϵ1

intK−1 = 1 (no intermolecular screening). Analogous

to the supermolecular MBPT case, the multiplicative separability of the screening factor is

lost, but only for the intermolecular part: The first term in the above sum accounts for the

intramolecular dispersion interaction of the K − 1-mer, whereas the second term gives rise

to the dispersion interaction between the compound K − 1-mer and the K-th monomer,

EC SAPT2
intK = −1

2

∫
CJ

1

∫ ∞

−∞

dz

2πi

〈〈
[∆ϵα

intK(z)]−1(1)Π1(z)dVα.
〉〉

. (4.61)

Comparing to the exact result, equation (4.41), it is obvious that SAPT(2) misses the screen-

ing factor accounting for intra-K − 1-mer interaction altogether. Therefore, while again the
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interaction between the K − 1-mer and the K-th monomer is treated consistently to first or-

der order, the intra-K −1-mer interaction is not, as reflected by the appearance of Π1. While

this is perfectly fine in the dimer case, with increasing K > 2 SAPT(2) will miss increasingly

more intra-K − 1-mer screening, leading to increasing overestimation of interaction energies.

This also applies to SAPT-derived perturbative schemes such as MP2C.23,24

The lack of dispersion size-consistency of SAPT becomes obvious when one considers the

(more costly) alternative of treating the K − 1-mer as a compound monomer treated at the

same high level as the monomers. In this case the K − 1-mer polarization propagator would

be properly screened, and the resulting interaction energy would indeed be of comparable

accuracy as a dimer interaction energy. Thus, the accuracy of the dispersion energy of the

K-monomer system depends on how the system is partitioned into subsystems, in violation

of dispersion size-consistency.

4.6 Conclusions

The MAC provides a convenient framework to analyze the behavior of intermolecular inter-

actions in many-monomer systems. Dispersion size-consistency is a strong constraint which

applies to finite and infinite interacting systems of nonoverlapping monomers. A critical re-

quirement for dispersion size-consistency is multiplicative separability of the total screening

factor of an N -monomer system into increments [∆ϵα
K ]−1 corresponding to additional screen-

ing as the K-th monomer is added. With increasing system size, the incremental dispersion

energy EC
intK will converge to the cohesive energy of the bulk many-monomer system, which

could be realized in, e.g., a van-der-Waals (nano)crystal or a weakly interacting fluid.

Finite-order many-body perturbation theory is not dispersion size-consistent because it can-

not produce multiplicatively separable screening factors. In particular, MBPT(2) grossly
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overestimates dispersion energies of large polarizable many-monomer systems, because the

incremental dispersion energy EC PT2
intK is simply the sum of the MBPT(2) interaction ener-

gies of the K-th monomer with monomer K − 1, . . . , 1 in the absence of screening by all

other monomers. The bulk limit of EC PT2
intK can be infinite, but even if it is finite and there-

fore the MBPT(2) correlation energy is size-extensive, EC PT2
intK may become less and less

accurate with increasing K. This illustrates why size-extensivity alone is too weak a crite-

rion to guarantee uniform accuracy of electronic structure methods independent of system

size: Size-extensivity merely requires a finite limit of EC PT2
intK for K → ∞, whereas size-

consistency would require that the error of EC PT2
intK is independent of K. In particular, the

good accuracy of low-order MBPT observed in relatively small molecular systems may not

carry over to larger systems and the thermodynamic limit. This might explain why MBPT

is still relatively popular in applications to small molecules but produces large errors, e.g.,

in cohesion energies of molecular crystals with moderately polarizable monomers.211 SAPT

methods can be very accurate for dimers, but may eventually suffer from loss of accuracy

for large N . The relatively uniform accuracy of RPA dispersion energies independent of

system size,102,195,212,213 on the other hand, may be viewed as a consequence of dispersion

size-consistency. Recent algorithmic improvements have made RPA calculations possible at

only marginally higher computational cost than low-order MBPT, making RPA preferable

for computing dispersion energies in most applications.102,182,184,186,214–216

The violation of dispersion size-consistency by MBPT is connected to the physical origin of its

divergence for NIs in large molecules: The lack of screening in the MBPT dispersion energy

leads to divergence of the geometric series expansion of the generalized screening factor which

generates the intermolecular interaction energy expansion.195 Nevertheless, the concept of

dispersion size-consistency developed here does not rely on perturbative arguments (except,

perhaps, for the strong assumption of the HXC kernel reducing to a pairwise interaction at

large separation) and applies to any electronic structure method.
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The limitations of MBPT in the large N limit also have implications for methods derived from

it, such as long-range van-der-Waals corrections.85,217–223 The present results suggest that

methods including “dispersion polarization” such as many-body dispersion94,224 or quantum

Drude models180,225,226 are distinctly preferable to conventional dispersion corrections for

applications to large and polarizable systems, including nanocrystals, metallic nanoparticle

or nanowire arrays, or large polarizable biomolecules.
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Chapter 5

Modeling the Interactions between

the Lissoclimide Family and

Eukaryotic 80S Ribosome

Contribution Statement: The following are my contributions to the project. I designed

and verified the computational model to understand the interactions between the lissoclimide

family and eukaryotic 80S ribosome. I discussed with experimentalists from the Vanderwall

Lab at the University of California, Irvine, and applied the structure-activity relationship

(SAR) of the lissoclimide family inhibtion of protein synthesis to develop the model. Next,

I performed geometry optimization of the lissoclimide model, computed binding energies,

and performed a correlation analysis between the predicted binding energies and half of

the maximum inhibitory concentration (IC50). Based on the SAR and correlation plot, I

proposed potential candidates for inhibiting protein synthesis. Furthermore, I structurally

analyzed the lissoclimide models such as bond distances, dihedral angles, and root mean

square deviation using visual molecular dynamics. Lastly, I contributed to the writing,

created all plots with R, and am currently preparing a manuscript for submission.
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5.1 Introduction

Natural products have been important sources for developing new potential cancer thera-

peutics.227,228 They have also been used to provide insight into the biological functions and

mechanisms of proteins.229–232 In the early 1990s, chlorolissoclimide (CL) and dichlorolisso-

climide (DCL) were extracted from an ascidian Lissoclinum voeltzkowi.233 These are powerful

cytotoxic bicyclic diterpene alkaloids that inhibit eukaryotic translation by preventing the

transfer ribonucleic acid (tRNA) from exiting the ribosome and interfering with the elon-

gation step of protein synthesis.234 The interference leads to polysomal accumulation and

eventual cell death.

Until recently, Könst and coworkers235 expanded the understanding of the structure-activity

relationship (SAR) for the lissoclimide family inhibition of protein synthesis. An X-ray

co-crystal structure of CL with the eukaryotic 80S ribosome showed a novel halogen–π in-

teraction with the guanine residues (G2793 and G2794) in a face–on geometry.235,236

A simplified computational model of the interactions between the chlorine from CL and

guanine nucleotides was set up by removing the phosphate backbone between the nucleobases

and replacing the CL with chloromethane.235 This simplification revealed a dispersion-based

stabilization by up to 1.1 kcal/mol based on the gas phase dispersion corrected semilocal

Perdew–Burke–Ernzerhof (PBE) functional.235 However, the face–on halogen–π interaction

with a nucleobase is not well understood. This understanding may be valuable for rationale

drug design based on structure and function.

In previous studies, halogen substituents have been recognized to influence intermolecular

interactions and contribute to the stability between the ligand and target.235,237–240 These

interactions have been difficult to computationally predict using force fields.241

With expanded knowledge of the SAR for the lissocimide family, an improved model is pro-
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posed to better capture the interactions between the lissoclimide analogues and ribosome.

The simplified model by Könst and co-workers235 was adapted to include the phosphate back-

bone and the drug along with representing the remaining protein environment by an implicit

solvation model. One potential model is the conductor-like screening model (COSMO),242

which has been a valuable tool for drug discovery.243–246 Altogether, the improved lisso-

climide model has laid the foundation for rationalizing SAR and provided an approach to

expand potential cancer drug candidates within the lissoclimide family. Benchmark results

of the X40 testset247 are also presented to confirm electronic structure methods for modeling

the halogen–π interaction. These results can provide a better understanding of the unique

halogen–π interaction.

5.2 Computational Details

5.2.1 Modeling the Lissoclimide-Ribosome Interaction

The co-crystal structure of the CL and ribosome determined by Könst and coworkers235 was

used to understand the halogen–π interaction. Since the interaction is localized in the E-site

of the ribosome, only the CL, the guanine nucleotides (residues G2794 and G2793) of the

ribonucleic acid (RNA), and the phosphate backbone were included in the calculation. The

surrounding was approximated using the COSMO.242 Previous studies have estimated the

average dielectric constant inside a protein to be about 6 − 7 and can reach up to about

20 − 30 at the protein’s surface.248 Based on visual inspection of the model protein site, a

dielectric constant of 10 was used. All calculations were performed on version Turbomole

7.5.

The lissoclimide model was geometry optimized using the Tao–Perdew–Staroverov–Scuseria

hybrid functional (TPSSh)121,249 and dispersion corrections with the D3 method, denoted
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as TPSSh-D3.86,250 The Karlsruhe segmented-contracted polarized split valence (def2-SVP)

basis sets130 and resolution-of-the-identity (RI) approximation251 were chosen to explore the

interactions between the lissoclimide inhibitors and guanine nucleotides. Various inhibitors

were included with a similar structure as the CL, see Figure 5.1. These include the DCL,

haterumaimide family, and substitution of the chlorine in CL with the halogen, cyano, tri-

fluoromethyl, nitro, and methyl functional groups.

Tight convergences were applied for the geometry optimization. These include energy con-

vergence criterion of 10−7 Hartree, 10−7 atomic units (au) for the root mean square change of

the one-particle density matrix, the exchange-correlation employing gridsize 4,122 and weight

derivatives. All geometries were verified to be a minima on the potential energy surface by

harmonic vibrational analysis.

Structural analysis was performed by looking at the bond distances between the halogen

functional group and guanine nucleotides as well as comparing the dihedral angles and root

mean square deviation (RMSD) between the geometry optimized model and co-crystal struc-

ture. Dihedral angles were measured along the N9 and C3′ of G2393 to C5′ and N9 of G2394.

These were chosen to capture the relative orientations of the guanine bases, see Figure 5.2.

Bond distances were included for the interaction between the halogens and guanine bases.

RMSD values were taken between the RNAs of the optimized model and co-crystal structure.

5.2.2 X40 Benchmark

To verify appropriate electronic structure methods for predicting the halogen–π interaction,

the random phase approximation (RPA) and the semilocal PBE120 were benchmarked against

the X40 testset.247 Dispersion corrections to PBE were included known as D386,250 and

D4.93,123 This testset includes 40 halogen complexes ranging from 6−24 atoms and reference

values are based on the coupled cluster singles, doubles, and perturbative triples (CCSD(T))
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Dichlorolissoclimide (DCL, 1) Cl Cl H
Haterumaimide A (HatA, 2) Cl Cl Ac
Haterumaimide N (HatN, 3) H Cl Ac
Haterumaimide Q (HatQ, 4) H H H
Fluorolissoclimide (FL, 5) H F H
Chlorolissoclimide (CL, 6) H Cl H
Bromolissoclimide (BL, 7) H Br H
Iodolissoclimide (IL, 8) H I H
Cyanolissoclimide (CNL, 9) H CN H
Trifluoromethyllissoclimide (TFL, 10) H CF3 H
Nitrolissoclimide (NOL, 11) H NO2 H
Methyllissoclimide (CHL, 12) H CH3 H
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H
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Compound X
Haterumaimide E (HatE, 13) Cl
Haterumaimide F (HatF, 14) H

Compound R
Haterumaimide J (HatJ, 15) H
Haterumaimide K (HatK, 16) Ac

Figure 5.1: Various natural and proposed inhibitors were computationally modeled in this
computational study.
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a) CL Model b) Co-crystal Structure

Figure 5.2: a) Proposed lissoclimide model to study the SAR. Color scheme: H - white, Cl
- green, C - gray, P - brown, N - blue, and O - red. b) Region of interest is shown in green.

ranging from 0.5 − 15 kcal/mol.

Interaction energies (∆E) were computed using the supramolecular approach defined as,

∆E = EA + EB − EAB (5.1)

where EAB is the total energy of the complex while EA and EB are the total energies of

the fragments. The choice of basis sets for RPA is based on previous work by Nguyen

and coworkers195 and summarized here. RPA energies are obtained in a post-Kohn–Sham

(KS) fashion. The PBE reference orbitals120 were chosen for RPA calculations, denoted as

RPA(PBE). The reference orbitals were computed with quadrature grids of m5 quality122

and converged at 10−7 Hartree and 10−7 au for the root mean square change of the one-

particle density matrix. For the RPA energy calculations, imaginary frequency grids of 100

points were employed.107

The Karlsruhe segmented-contracted polarized quadruple-ζ (def2-QZVP) basis sets130 were

chosen for the expectation value of the KS determinant evaluated within the RI algorithm.

The RPA correlation energies were evaluated using the Dunning’s correlation-consistent po-
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larized valence basis sets132,133 and frozen core approximation. Basis set superposition er-

ror was estimated by 50% counterpoise (CP) correction as recommended by Risthaus and

Grimme.138 The complete basis set (CBS) limit of the RPA correlation energy was estimated

using the two-point 1/X3 extrapolation, where X = 3 (triple-ζ), X = 4 (quadruple-ζ), etc.

Based on the convergences, it is recommended to include (n − 1)d subvalence whenever

appropriate. This is consistent with a previous studying showing that the (n−1)d subvalence

shell can contribute up to 0.9 kcal/mol.252 As for PBE dispersion corrected methods, the

CBS limit is determined using 50% CP correction and def2-QZVP basis sets130 based on

Risthaus and Grimme’s recommendation.138

5.2.3 Correlation and Potency Analysis of the Lissoclimide Model

The potency of the inhibitors were assessed based on the computed interaction energies

between the inhibitor and guanine nucleotides. RPA, dispersion corrected semilocal Tao–

Perdew–Staroverov–Scuseria (TPSS) and TPSSh were used to assess the drug’s potency.

RPA binding energies were computed with TPSS reference orbitals121 and extrapolated to

the CBS limit based on Section 5.2.2. The subvalence (n − 1)d basis functions to the

Dunning’s correlation consistent basis sets were included whenever applicable, see Section

5.5.1. Moreover, dispersion corrected TPSS and TPSSh, denoted as TPSS-D3 and TPSSh-

D3, binding energies were computed at def2-QZVP basis set130 with 50% CP corrections.138

A correlation plot is created between the predicted interaction energies and the reported

half-maximum inhibitory concentration (IC50) values.253–258
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5.3 Results

5.3.1 X40 Interaction Energy Benchmark

X40 Complexes

∆
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Figure 5.3: Reported binding energy errors (kcal/mol) for RPA(PBE), PBE, PBE-D3, and
PBE-D4 against the X40 testset. All calculations are at the CBS limit. Positive values
indicate overbinding.

To begin modeling these interactions, the X40 testset was chosen to analyze the performance

of RPA(PBE) and dispersion-corrected semilocal PBE functional. The benchmark contains

40 halogenated complexes that include London dispersion (complexes 1−4), induction (com-

plexes 5−8), dipole-dipole interaction (complexes 9−10), π−π stacking (complexes 11−12),

halogen bonds (complexes 13−26), halogen-π interactions (complexes 27−30), and hydrogen

bonds (complexes 31 − 40).247

For the binding energies of these complexes, RPA(PBE) underbinds in all cases, see Fig-

ure 5.3. The underbinding behavior has been observed in S66, L7, and S30L benchmarks.195

The mean error (ME) and mean absolute error (MAE) are both 0.60 kcal/mol, see Table 5.1.

Since the halogen-π interaction is of interest, the MAE of RPA(PBE) for complexes 27 − 30

is 0.23 kcal/mol. The agreement between RPA(PBE) and the reference value is remarkable

that supports the use of RPA(PBE) for computing the binding energies of the lissoclimide

model.
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Table 5.1: Mean errors (ME), mean absolute errors (MAE), absolute minimum-maximum
error range (MinMax) and standard deviation (STDDEV) in kcal/mol of various methods
at CBS limit. Positive ME corresponds to overbinding.

RPA(PBE) PBE PBE-D3 PBE-D4
ME 0.60 1.04 0.34 0.21
MAE 0.60 1.17 0.43 0.34
MinMax 1.56 7.48 3.42 2.74
STDDEV 0.35 1.32 0.60 0.50

In comparison, semilocal PBE functional overbinds for nearly all complexes and performs

the worst with MAE of 1.17 kcal/mol. Dispersion corrections PBE-D3 and PBE-D4 improve

upon PBE with MAEs of 0.43 and 0.34 kcal/mol, respectively. While the improvements are

expected with dispersion corrections, the absolute minimum-maximum error ranges (Min-

Max) for PBE, PBE-D3, and PBE-D4 are significantly larger than RPA(PBE). Furthermore,

for halogen-π complexes, the MAEs of PBE-D3, and PBE-D4 are 0.08 kcal/mol and 0.23

kcal/mol, respectively. The results may suggest that the dispersion corrections are not sys-

tematic in the treatment of NIs since the X40 testset was not part of the training sets for

parameter estimation.87,93 There is some variability in the accuracy of the dispersion cor-

rected semilocal density functional approximations (DFAs). This observation is consistent

with a previous study by Kouzuch and Martin showing that dispersion corrected density func-

tional approximations do not sufficiently predict the geometries and dissociation energies of

halogen bonds.259 In comparison, the smaller MinMax and standard deviation (STDDEV)

from RPA(PBE) suggest that RPA(PBE) is robust and can confidently be used to predict

reliable binding energies of halogenated complexes.

Moreover, complex 1 stood out for RPA(PBE), PBE, PBE-D3, and PBE-D4, see Figure 5.4.

This complex contains methane interacting with fluorine and the CCSD(T) binding energy

reference is 0.49 kcal/mol. PBE yielded the most accurate binding energy for this system

within 5.5% error. Meanwhile, dispersion corrected PBE-D3 and PBE-D4 have percent

errors of 58.9% and 48.7%, respectively. RPA(PBE) predicted that complex 1 does not bind
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Figure 5.4: Reported binding energy percentage errors (%) for RPA(PBE), PBE, PBE-D3,
and PBE-D4 against the X40 testset. All calculations are at the CBS limit.

and has an 107.0% error.

One potential reason for the large errors is that the complexes from the X40 testset were

geometry optimized with the CP corrected second-order Møller–Plesset many-body per-

turbation theory (MP2) and triple-ζ basis sets.247 Based on this geometry, the CCSD(T)

binding energies are interpolated along an intermolecular axis and a new minimum distance

was determined. MP2 geometries may be the source of the error since the halogen group is

highly polarizable which cannot be accurately modeled with MP2.195,260 This consideration

may need to be taken into account and to date, there are few testsets that involve NIs of

halogenated compounds.111,247,259

5.3.2 Lissoclimide Analogues

Table 5.2: Parameters of the linear regression lines displayed in Figure 5.5

Method Slope y-int R2

RPA(TPSS) −0.796 29.8 0.627
TPSS-D3 −0.683 29.2 0.581
TPSSh-D3 −0.697 30.0 0.577

Evaluation of the lissoclimide model against the experimentally reported IC50 of the DCL,
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Figure 5.5: Correlation plot between the predicted RPA(TPSS), TPSS-D3, and TPSSh-D3
binding energies at CBS limit (∆E) in kcal/mol and experimental IC50 in nM.253–258

CL, and haterumaimide family revealed a consistent agreement with the predicted binding

energies. A correlation plot revealed a moderately negative correlation (R2 = 0.627) between

the predicted RPA(TPSS) binding energies and the IC50 of P388 murine leukaemia cells, see

Figure 5.5 and Table 5.2. Furthermore, TPSS-D3 and TPSSh-D3 yielded similar trends

where the binding energies are within ∼ 4 kcal/mol of the RPA(TPSS) results, see Section

5.5.2. Knowledge of the CL binding site from the X-ray co-crystal structure combined with

these predicted binding energies has made it possible to expand the understanding of SAR

in the lissoclimide family of translation-inhibition cytotoxins.

To further confirm the model, binding energies of DCL and CL suggest that DCL is the more

potent cytotoxin consistent with the IC50, see Table 5.3. While the correlation is promising,

there are a few inconsistencies. The first is that haterumaimide J (HatJ) does not have

the highest predicted binding energy contradicting the subnanomolar IC50. Haterumaimide

K (HatK) has the largest binding energy of 32.2 kcal/mol but marginally higher IC50 than

HatJ by 0.5 nM. Upon visualization of the optimized HatJ and HatK models, it revealed that

HatK forms two hydrogen bonds with G2793 and G2794 as compared to HatJ only forming
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a hydrogen bond with G2794. The acetyl group of HatK seems to play a role providing the

additional stabilization.

a) HatJ b) HatK

Figure 5.6: Visualization of the optimized HatJ and HatK model showing the presence of
hydrogen bonds (cyan). The cutoff for hydrogen bonds is within 4 Å. (Color scheme: H -
white, Cl - green, C - gray, P - brown, N - blue, and O - red)

Another notable discrepancy is the haterumaimide Q (HatQ) yielding a similar binding

energy as compared to haterumaimide A (HatA) and haterumaimide N (HatN), see Table 5.3.

Yet, HatQ has an IC50 of 120 nM compared to HatA and HatN with both having IC50 of 7

nM. Another indicator for potency is to look at the RMSD value for HatQ. It is observed to

have the largest RMSD of 5.08 Å. This coarse correlation between predicted binding energies

and IC50 showed that structural data may need to be considered.

Excluding the discrepancies, structural analysis for this set remains fairly consistent. For

instance, RMSD values of the DCL, CL, and the haterumaimide family range between ∼ 4−5

Å, see Table 5.3. Dihedral angle was chosen to observe the relative orientations of the guanine

nucleotides. This included the N9 and C3′ of G2793 to C5′ and N9 of G2794. Based on

the geometry optimized structures, the dihedral angles deviate up to ∼ 30◦ relative to the

crystal structure. Given these results, the lissoclimide model provides confidence that this

is an appropriate model to explore the face-on geometry of the halogen-π interaction and

propose potential candidates for cancer therapeutics.
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Table 5.3: Calculated RPA(TPSS) binding energies at CBS limit (∆E) in kcal/mol and root
means square deviation (RMSD) in Å relative to the guanine nucleotides with the phosphate
backbone from the co-crystal structure. Cytotoxicity towards P388 murine leukaemia cells
(IC50) are compiled from Malochet-Grivois et al., Uddin et al., and Fu et al..253–258 Dihedral
angles (τ) in degrees are measured along N9 and C3′ of G2793 to C5′ and N9 of G2794.

Compound ∆E (kcal/mol) RMSD (Å) τ (◦) P388 IC50 (nM)
Crystal – – 50.1 –
DCL 30.0 4.67 65.8 2
FL 15.0 4.14 64.2 –
CL 26.4 4.40 70.5 4
BL 24.1 4.33 70.6 –
IL 26.3 4.15 75.9 –
CNL 22.6 3.36 73.4 –
TFL 23.2 4.43 73.3 –
NOL 17.5 4.38 55.9 –
CHL 25.9 4.32 77.5 –
HatA 24.8 4.35 64.4 7
HatN 24.1 3.94 66.2 7
HatQ 20.8 5.08 69.7 120
HatE 21.1 4.48 65.8 8
HatF 21.9 4.53 63.4 11
HatJ 25.2 4.09 69.6 0.5
HatK 32.2 4.24 80.5 1
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The face-on halogen-π interaction has been documented for protein-ligand interactions.

These included aromatic side chains of Phe, Tyr, Trp, and His.236 Most recently, Könst

and coworkers discovered one of the first face-on interactions between the halogen and nu-

cleotide base.235 Little is known about this interaction. With the model, the chlorine from

the CL was substituted with fluorine, bromine, and iodine to predict potential trends. The

fluorolissoclimide (FL) appears to be the least potent out of the four halogens and has a

predicted binding energy of 15.0 kcal/mol, see Table 5.3.

A potential reason for the small binding energy from FL may be due to fluorine being the

least polarizable out of the halogen group. It has been known in the past that the chemical

and electronic environment can make the fluorine polarizable.261–264 One route is to have ad-

ditional electron withdrawing groups that could affect the intermolecular contacts involving

fluorine. To improve the binding energy, the trifluoromethyllissoclimide (TFL) was proposed

and yielded a significantly stronger binding energy of 23.2 kcal/mol, see Table 5.3. The dihe-

dral angle of TFL increased to 73.3◦ which is within the range of the CL, bromolissoclimide

(BL), and iodolissoclimide (IL). In addition, the bond distances between the fluorines and

guanine nucleobases are within the range as the FL.

In comparison, the binding energies of CL, BL, and IL were 26.4 kcal/mol, 24.1 kcal/mol,

and 26.3 kcal/mol, respectively. Bond distances between the halogens and the guanine

residues increased with increasing radii. Comparison to the crystal structure, the CL model

bond distances are smaller up to 0.5 Å, see Table 5.4. Here, the chemical environment

could affect these structural differences and adjusting the dielectric constant parameters can

achieve bond distances qualitatively closer to the crystal structure, see Section 5.5.3. This is

a limitation of the model since the dielectric constant of the protein can fluctuate depending

on the environment.248,265,266

Based on the expanded knowledge of the SAR in the lissoclimide family, cyanolissoclimide

(CNL), nitrolissoclimide (NOL) and the methyllissoclimide (CHL) are potential drug candi-
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Table 5.4: Bond distances in Å from the halogen (X = F, Cl, Br, and I) to the guanine
residues (G2793 and G2794) are reported.

Compound X–G2793 (Å) X–G2794 (Å)
Crystal 3.44 3.66
FL 2.91 2.91
CL 3.06 3.20
BL 3.38 3.38
IL 3.53 3.62
TFL 3.09, 2.97 2.86
DCL 3.12, 3.39 3.33, 5.34

dates for translation inhibition. Cyano, nitro, and methyl functional groups have a diverse

set of biological functions. These can help to polarize the chemical environment267 and in

other cases, they can be a key component for molecular recognition.268–271 The motivation

to choose the cyano and nitro functional groups is the known π − π interactions capabil-

ities.272–274 For methyl, CH-π have been detected in proteins275 and is dominated by dis-

persion.270,276,277 The predicted binding energies of CNL, NOL, and CHL are 22.6 kcal/mol,

17.5 kcal/mol, and 25.9 kcal/mol, respectively. Out of the three, NOL is most likely the

least potent. CNL and CHL present themselves as potential drug inhibitors with binding

energies that are within the range of other potent lissoclimide analogs.

5.4 Conclusions

With the expanded understanding of SAR in the lissoclimide family of translation-inhibition

cytostatic agents, a computational approach is developed that provides an approach and

tool for rational drug design. Rather than modeling the complete X-ray co-crystal structure

(∼ 410, 000 atoms), the isolation of the region of interest may be adequate to build on top

of the SAR knowledge. Here, an improved model totaling 122 atoms has been introduced

that includes the lissoclimide analogs, guanine nucleotides, and the phosphate backbone.

Approximating the protein environment with COSMO allow greater understanding of SAR
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in the lissoclimide family.

While the correlation between the predicted binding energy and the IC50 was moderate, the

model did allow greater understanding of the structural effects from these functional groups.

For instance, Konst and coworkers anticipated a synthesized compound featuring both DCL

and HatJ to have a greater potency but did not.235 From the model, HatJ and HatK have

close IC50 values of 0.5 nM and 1 nM, respectively. However, HatK has a significantly stronger

binding energy and this is potentially attributed to being able to form two hydrogen bonds

with G2793 and G2974. This suggests that the new compound should combine features from

DCL and HatK. It may be worth exploring this possiblity. Keep in mind, the model does not

include all amino acids surrounding the lissoclimide derivatives which allows greater freedom

for molecules to move.

Furthermore, TFL, CHL, and CNL have presented themselves as potential inhibitors. This

is based on understanding the dispersion interactions with the conjugated-π of the guanine

nucleobases. These interactions cannot easily be modeled with force fields. Electronic struc-

ture methods are required in this instance. RPA provides adequate confidence to capture

the trends between the IC50 and the binding energies. The sensitivity to differentiate the

potency of DCL and CL is observed where semilocal TPSS-D3 and TPSSh-D3 are unable

to, see Section 5.5.2.

Moreover, RPA(PBE), PBE, PBE-D3, and PBE-D4 were benchmarked against the X40

testset showing that RPA has a smaller MinMax and STDDEV. Whereas, PBE and disper-

sion corrected PBE do not systematically lead to greater accuracy with larger MinMax and

STDDEV. This is remarkable for RPA, which is relatively parameter-free aside from using

a KS reference from a semilocal DFA. Most modern RPA implementations are comparable

to the second order Møller–Plessett many-body perturbation theory (MP2). In addition,

MP2 is not adequate for polarizable molecules. This is indicated by the X40 testset which

is geometry optimized with MP2. For instance, RPA, PBE-D3, and PBE-D4 yielded an
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unusually large error for compound 1. It may be worth developing additional halogen bond

benchmarks since halogens are prominent in drug design.

Altogether, the combination of the lissoclimide model and electronic structure methods have

permitted the study of the SAR and expanded the understanding of the structural basis

for binding energies in the lissoclimide family. The computational study has shown the

possibility of using RPA to model dispersion interactions and provides an approach that

focuses on the region of interest without needing to completely model the co-crystal structure

of the lissoclimide family and 80S ribosome.

5.5 Supporting Information

5.5.1 Basis Set Convergence of X40 Testset and DCL Model
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Figure S5.1: Basis set convergence of the RPA interaction energy using a TPSS KS reference
for the DCL model. Dunning’s correlation consistent basis sets are compared with and
without (n − 1)d orbital contribution in part a) and b), respectively. X denotes the cardinal
number of Dunning’s correlation consistent polarized cc-pVXZ (X=T,Q) basis sets.132,133

The importance of the (n − 1)d subvalence basis functions is confirmed for studying the

halogen-π interactions of moderately sized systems. The binding energies of the DCL model

were computed using the TPSS KS reference where the expectation value of the KS deter-
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minant is evaluated with the def2-QZVP basis sets.130 The RPA correlation energies are

computed using the frozen core approximation and the Dunning’s basis sets with and with-

out the (n − 1)d subvalence basis functions. In Figure S5.1, the CBS limit shows that the

(n − 1)d orbitals contribute ∼ 1 kcal/mol to the binding energy. This has been noted by

Kesharwani et al 252 for the binding energies of halogenated complexes.

5.5.2 Binding Energies of Lissoclimide Analog from Dispersion

Corrected DFAs

Table S5.1: Binding energies of lissoclimide derivatives in kcal/mol for RPA(TPSS), TPSS-
D3, and TPSSh-D3.

Drug RPA(TPSS) TPSS-D3 TPSSh-D3
DCL 30.0 26.6 27.1
FL 15.0 15.5 16.1
CL (ϵ = 7) 19.0 19.7 20.3
CL (ϵ = 10) 26.4 26.2 27.1
BL 24.1 24.9 25.7
IL 26.3 26.4 27.3
CN 22.6 22.7 23.4
TFL 23.2 21.7 22.5
NL 17.5 15.7 16.3
CHL 25.9 27.1 27.8
HatA 24.8 25.5 26.2
HatE 21.1 21.8 22.5
HatF 21.9 22.2 22.8
HatJ 25.2 26.0 26.8
HatN 24.1 25.0 25.7
HatQ 20.8 22.0 22.6
HatK 32.2 32.8 33.7

Comparison of the correlation between the IC50 and binding energies for the dispersion

corrected TPSS and TPSSh,86,250 denoted as TPSS-D3 and TPSSh-D3, suggests that the

model is adequate to predict the drug’s potency. The TPSS-D3 and TPSSh-D3 binding

energies of the lissoclimide analogs were computed with def2-QZVP basis sets,130 energy

convergence criterion of 10−7 Hartree, 10−7 atomic units (au) for the root mean square
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change of the one-particle density matrix, and the exchange-correlation employing gridsize

4.122 Basis sets superposition error is corrected using 50% CP as recommended by Risthaus

and Grimme.138

RPA(TPSS), TPSS-D3, and TPSSh-D3 show close agreement up to ∼ 4 kcal/mol, see Ta-

ble S5.1. Furthermore, binding energies of CL model at different dielectric constants are

consistent between the methods. Moreover, a closer inspection of binding energies between

CL and DCL reveals that RPA(TPSS) is able to differentiate the potency between CL and

CL. Meanwhile, TPSS-D3 and TPSSh-D3 showed near identical binding energies between CL

and DCL. Taking these results together, the lissoclimide model along with using RPA(TPSS)

suggests that this is an appropriate approach and predictor for expanding the lissoclimide

family for protein synthesis inhibition.

5.5.3 Effect of Dielectric Constant on the Geometry Optimization

of CL

Table S5.2: CL model was optimized at different dielectric constants (ϵ). Predicted
RPA(TPSS) binding energies at CBS limit (∆E) in kcal/mol, RMSD in Å relative to the
crystal structure guanine nucleotides and phosphate backbone, and bond distances in Å from
the chlorine (Cl) to the guanine residues (G2793 and G2794) are reported. Dihedral angles
(τ) in degrees are measured along N9 and C3′ of G2793 to C5′ and N9 of G2794.

ϵ ∆E (kcal/mol) RMSD (Å) Cl–G2793 (Å) Cl–G2794 (Å) τ (◦)
7 19.0 4.40 3.28 3.28 62.52
10 26.4 4.40 3.06 3.20 70.47

The optimal choice of dielectric constant for proteins has been an outstanding problem.278

The values can vary depending on the protein environment. Here, the dielectric constants

for the geometry optimization of the CL model were explored for the values of 7 and 10.

The binding energies differ up to 7.4 kcal/mol and are significantly be influenced by the

dielectric constant, see Table S5.2. The closer Cl-guanine bond distances with dielectric
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constant of 10 may contribute to the larger binding energy. RMSD relative to the RNA

backbone of the crystal yields exactly the same value. An overlay of the optimized CL

models at dielectric constants 7 and 10 have visually similar orientation relative to the

crystal structure, see Figure S5.2. Noting some of thsee differences may suggest that there

is a dependence on polarization effects in the local environment of the halogen.241,279 Based

on these observations, all geometry optimizations were performed with dielectric constant of

10 for consistency.

Figure S5.2: The RNAs from the crystal structure (cyan) and optimized CL models at
dielectric constants 7 (orange) and 10 (blue) are superimposed. RMSD values of the CL
models relative to the crystal structure are both 4.40 Å.
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[22] Dobson, J. F.; Ángyán, J. G.; Gould, T. Does the exchange–correlation kernel fxc have
a very long-ranged dependence on the groundstate electron density? Theor. Chem. Acc.
2018, 137, 167.

111



[23] Heßelmann, A. Improved supermolecular second order Møller–Plesset intermolecular
interaction energies using time-dependent density functional response theory. J. Chem.
Phys. 2008, 128, 144112.
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Hybrid functionals including random phase approximation correlation and second-
order screened exchange. J. Chem. Phys. 2010, 132, 094103.

122



[178] Paier, J.; Janesko, B. G.; Henderson, T. M.; Scuseria, G. E.; Grüneis, A.; Kresse, G.
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[242] Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents
with explicit expressions for the screening energy and its gradient. J. Chem. Soc.,
Perkin Trans. 2 1993, 799–805.

[243] Kem, W. R.; Mahnir, V. M.; Prokai, L.; Papke, R. L.; Cao, X.; LeFrancois, S.;
Wildeboer, K.; Prokai-Tatrai, K.; Porter-Papke, J.; Soti, F. Hydroxy Metabolites
of the Alzheimer’s Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihy-
drochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic
Receptors, and Brain Penetration. Mol. Pharmacol. 2004, 65, 56–67.

127



[244] Cavasotto, C. N.; Di Filippo, J. I. In silico Drug Repurposing for COVID-19: Targeting
SARS-CoV-2 Proteins through Docking and Consensus Ranking. Mol. Inform. 40,
2000115.

[245] Margiotta, N.; Marzano, C.; Gandin, V.; Osella, D.; Ravera, M.; Gabano, E.;
Platts, J. A.; Petruzzella, E.; Hoeschele, J. D.; Natile, G. Revisiting [PtCl2(cis-1,4-
DACH)]: An Underestimated Antitumor Drug with Potential Application to the Treat-
ment of Oxaliplatin-Refractory Colorectal Cancer. J. Med. Chem. 2012, 55, 7182–7192.

[246] Barone, G.; Guerra, C. F.; Gambino, N.; Silvestri, A.; Lauria, A.; Almerico, A. M.;
Bickelhaupt, F. M. Intercalation of Daunomycin into Stacked DNA Base Pairs. DFT
Study of an Anticancer Drug. J. Biomol. Struct. Dyn. 2008, 26, 115–129.
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