
UNIVERSITY OF CALIFORNIA,

IRVINE

Machine Learning Assisted Single Cell Mechanotyping with Deformability Cytometry

DISSERTATION

submitted in partial satisfaction of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by

Daniel D. Seith

Dissertation Committee:
Professor Zuzanna S. Siwy, Chair

Professor James S. Nowick
Professor Andrej Lupták

2022

Chapter 3 © 2022 AIP Publishing

All other materials © 2022 Daniel D. Seith

DEDICATION

To my parents, family members, friends, and all others who made this work possible.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES xi

ACKNOWLEDGMENTS xii

VITA xiii

ABSTRACT OF THE DISSERTATION xv

1 Introduction to Machine Learning 1

1.1 Traditional Machine Learning for Classification 1

1.1.1 K-Nearest Neighbors . 2

1.1.2 Support Vector Machine (SVM) . 2

1.1.3 Random Forest . 3

1.2 Traditional Machine Learning for Clustering 3

1.2.1 K-Means Clustering . 3

1.2.2 Gaussian Mixture Model (GMM) . 4

1.2.3 Spectral Clustering . 4

1.3 Deep Learning . 5

1.3.1 Multi-Layer Perceptron (MLP) . 5

1.3.2 Recurrent Neural Networks (RNN) 7

1.3.3 Convolutional Neural Network (CNN) 7

1.3.4 Variational Autoencoder (VAE) . 9

1.4 Model Interpretability . 10

iii

1.4.1 Shapley Values . 11

2 Introduction to Cytometry 12

2.1 Impedance . 12

2.2 Optical . 13

2.3 Imaging . 13

2.4 Deformability . 13

3 Deep Learning Assisted Mechanotyping of Individual Cells Through Repeated

Deformations and Relaxations in Undulating Channels 16

3.1 Introduction . 16

3.2 Methods . 19

3.2.1 Cell Culture . 19

3.2.2 Channel Preparation and Imaging Setup 20

3.2.3 Calculation of Features . 22

3.2.4 Comsol Simulation . 22

3.2.5 Machine Learning Model Training . 22

3.2.6 CNN Prefilter Training Architecture 24

3.2.7 GRU Network Architecture . 25

3.2.8 CNN-GRU Training and Architecture 25

3.2.9 Data Preprocessing for Sequential Models 26

3.2.10 Code Availability . 26

3.3 Results and Discussion . 27

3.3.1 Channel Design and Data Acquisition 27

3.3.2 Custom Tracking Algorithm . 30

3.3.3 Application of the Undulating Channel to Probe Perturbation of Actin

and Microtubule Networks . 34

3.3.4 Feature Extraction and Machine Learning Model Comparison 37

iv

3.3.5 Deep Learning for Enhanced Classification 42

3.3.6 Traditional ML with Added Morphological Features VS. Deep Learning 45

3.3.7 Calculation of Enrichment . 50

3.3.8 Increased Accuracy Leads to Greater Enrichment 53

3.4 Conclusions . 55

4 Deformability Cytometry Clustering with Variational Autoencoders 56

4.1 Introduction . 56

4.2 Methods . 57

4.2.1 Dataset . 57

4.2.2 VAE Architecture . 59

4.2.3 Implementation of Semantic Clustering by Adopting Nearest Neighbors

(SCAN) . 61

4.2.4 Code Availability . 61

4.3 Unsupervised Clustering Using Manually Extracted Features 61

4.4 Unsupervised Clustering Using Deep Learning 65

4.4.1 VAE with Traditional Clustering . 66

4.4.2 Initialization Sensitivity Tests . 70

4.4.3 Augmentations and Selecting Confident Samples 73

4.5 Conclusions . 75

Bibliography 78

v

LIST OF FIGURES

Page

1.1 The multi-layer perceptron (MLP) architecture is shown with fully connected

layers. Data flows from the input layer to the output layer. 6

1.2 RNN architecture where ‘A’ represents an RNN cell and timesteps of the input

are ‘unrolled’ and shown with Tn on the lower right. 8

2.1 Channel architectures for two deformability cytometry devices are shown.

Dynamic real-time deformability cytometry (dRT-DC) is shown on the left.

Extensional deformability cytometry (xDC) shown on the right. 15

3.1 Microfluidic chip layout. Cells enter through the core and are focused by two

sheath flows. Cells are imaged in the channel region and then collected from

outlet. 21

3.2 Principles of repeated mechanotyping. a) Channel design utilizing sheath flow,

a high-powered LED and a microscope. The microfluidic channel that enables

characterization and classification contains a cavity placed between two narrow

zones. b) Data is captured by a high-speed camera, creating videos at 11k fps.

Cell borders are detected and fit using Mask-RCNN. c) The cell deformation,

AR, was quantified as the ratio of two axes of an ellipse that approximates

the cell’s shape. (d) (Top) The aspect ratio versus position relative to channel

entrance of a single cell as it passes through the channel. (Bottom) COMSOL

simulation showing the derivative of velocity vs.channel position, which is

proportional to the shear stress. Region 1 (R1) and Region 3 (R3), denoted

by red and yellow regions, are where the cells undergo deformation. Region

2 (R2) and Region 4 (R2), denoted by green and blue regions, are where the

cells undergo relaxation. 28

vi

3.3 Single cell deformation traces. Deformation dynamics are shown for single cells

translocating through the channel. The aspect ratio is determined by the best

fit ellipse to the cell mask. Deformation is calculated by the difference between

the aspect ratio at a given point and the minimum aspect ratio in the cavity.

The x-position along the channel axis is determined by the centroid of the mask.

Cells experience a smaller maximum deformation in the second narrow region,

as compared to the first narrow zone. Channel inlets and outlets are marked by

red dotted line. Deformation and relaxation occur twice within the channel. a)

Full population of single cell traces of aspect ratio versus position for untreated

HL60 cells. b) Single cell example of parameters that are determined: relative

maximum deformations (rD1 and rD2) in the two narrow zones as well as

relaxation and deformation slopes (R2 slope and R3 slope). 29

3.4 Training curves for Mask-RCNN. a) Total loss per epoch. b) Bounding box

loss per epoch. c) Mask loss per epoch. 31

3.5 Comparison of measured deformability features between untreated and treated

HL60 cells. a) Contour plot of maximum rD in first narrow zone (R1) for

untreated, CytoD treated, and HL60n cells. The outer contour represent 50%

density and center contour represents 90% density. Mean of each population

is reported where the reported error is standard error of the mean. b) Contour

plots of maximum rD in second narrow region (R3). c) Linear fit slope from

maximum deformation in first narrow region (R1) to relaxation to minimum

deformation in cavity (R2). d) Linear fit slope from relaxed state in cavity

(R2) until maximum deformation in second narrow region (R3). 35

3.6 HL60 radii comparison. Distribution of radii for three cell populations. . . . 38

vii

3.7 Prediction results of random forest using derived mechanotyping features. a)

Confusion matrix of trained random forest predicting HL60 vs. HL60d. The

values are normalized by the true label count. Accuracy is equal to the average

of diagonal. b) SHAP feature importance plot obtained using trained RF model

for the HL60 vs. HL60d classification. c) Confusion matrix for random forest

trained on HL60 vs. HL60n prediction. d) SHAP feature importance for HL60

vs. HL60n. 40

3.8 Confusion matrix for SVM. Accuracy equals average of diagonal elements. . 41

3.9 Time-series neural networks applied to mechanotyping features. a) Outline

of recurrent neural network. Time-series deformation data is used as input

into GRUs. The output of the network predicts cell phenotype. b) Confusion

matrix for RNN trained on HL60 vs. HL60d. c) Confusion matrix for RNN

trained on HL60 vs. HL60n. 43

3.10 Confusion matrix for LSTM. Accuracy equals average of diagonal elements. a)

Confusion matrix for HL60 vs. HL60d. b) Confusion matrix for HL60 vs.HL60n 44

3.11 Classification comparison using sequence of cell masks. a) General flow of

CNN-GRU. Sequences of masks are padded and used as inputs. CNN and

GRU layers use identical weights for each time step. b) Confusion matrix for

HL60 vs. HL60d. c) Confusion matrix for HL60 vs. HL60n. 46

3.12 Training curve and validation set accuracy for CNN to detect morphology

differences. a) HL60 vs. HL60d binary cross-entropy loss. b) HL60 vs. HL60d

accuracy metric as a function of training. Final accuracy was measured using

a held out test set. c) HL60 vs. HL60n loss. d) HL60 vs. HL60n accuracy. . 47

3.13 Performance for optimized SVM on set of full mechanical and morphologically

derived features. a) Confusion matrix for HL60 vs. HL60d. b) Corresponding

SHAP plot for HL60 vs. HL60d. c) Confusion matrix for HL60 vs. HL60n. d)

Corresponding SHAP plot for HL60 vs. HL60n 48

viii

3.14 Maximum enrichment.

Top: Enrichment as a function of both true positive rate (TPR) and false

positive rate (FPR) for target cell rarity r = 1/1000.

Bottom left: Maximum enrichment as a function of TPR shown for FPR fixed

at .5 and a range of target cell rarities, r.

Bottom right: Maximum enrichment as a function of FPR shown for TPR

fixed at 0.5 and a range of target cell rarities, r.

Enrichment shown on a log scale in all three subfigures. 52

3.15 Evaluation of best enrichment.

Left: Receiver operating curves (ROCs) for several of the models presented in

the text.

Right: Max enrichment evaluated for each point along the ROC. Data is

excluded for points where true positive rate (TPR) or false positive rate (FPR)

were 0. Shown for rarity r=1/1000. 54

4.1 Two potential routes to clustering deformability cytometry data exist. 58

4.2 Total training loss curves are shown for HL60 vs. HL60d. Each line represents

a different random seed. At 140 epochs the model is trained using the SCAN

loss. 62

4.3 Total average homogeneity of each point’s nearest 5 neighbors is plotted during

VAE training. 62

4.4 KL loss curves are shown for HL60 vs. HL60d. Each line represents a different

random seed. 63

4.5 Entropy component of SCAN loss vs. epoch. 63

4.6 Consistency component of SCAN loss vs. epoch. 64

4.7 First two principal axes from PCA, ground truth labels are shown. 64

4.8 The VAE architecture is used for reconstructing the sequence of binary masks.

The encoder network is colored orange, and the decoder network is colored blue. 67

ix

4.9 Accuracy of GMM and spectral clustering on trained VAE latent space. Five

different random seeds are tested. 68

4.10 The encoder model is first trained in conjunction with a decoder using standard

VAE losses. The encoder weights are then frozen and a projection layer is

appended. This projection layer is then trained using the SCAN loss. 69

4.11 Two sweeps over the same number of random seeds are shown. 71

4.12 Classification accuracy plotted against entropy and consistency losses. 72

4.13 Each of the encoder models from Figure 4.12 is used to initialize the clustering

model. For a single encoder, three different random seeds were used in an effort

to find an optimal clustering. 72

4.14 Five different augmentation styles are illustrated. The first image on the left

shows a sample image before augmentation. Style one shows a randomly placed

box of zeros of size 30×30. Style two shows the complete subtraction of a given

image. Style three shows 33% of the pixels zeroed out. Style four shows 33%

of pixels set to one. Style five shows the shuffling of a given image with the

next two images in the sequence. 74

4.15 The fraction of augmented samples plotted against the classification accuracy.

If a given sample is chosen to be augmented, on average 30% of the time steps

will be augmented. Each of the five augmentations is selected at random for

each timestep. 74

4.16 Class balance was averaged over five random seeds. A model output of zero

indicates a confident prediction of HL60 while a prediction of one indicates a

confident prediction of HL60d. A prediction of 0.5 indicates complete uncertainty,

which is illustrated with a dotted black line. 76

4.17 Predictions with a confidence over 0.495 are selected for both the GMM and

DeepDeform. The dark green bar and red bars reflect the selection of confident

samples for the GMM and DeepDeform, respectively. 77

x

LIST OF TABLES

Page

3.1 Parameter table . 23

3.2 Expanded Parameter Table . 23

xi

ACKNOWLEDGMENTS

First, I want to express my deepest appreciation to my faculty advisor, Prof. Zuzanna

Siwy, for her continued guidance and support in completing the projects described herein. I

also acknowledge my committee members, Prof. James Nowick and Prof. Andrej Luptak, for

their input, conversations, and ongoing support throughout my graduate studies. Furthermore,

I would like to thank everyone in the administrative office for their help in navigating the

administrative aspects of graduate school and obtaining this degree. I also want to give a

special thank you to all of my coworkers, notably my group members, including Cody Combs,

who I have had the privilege to work with during my time at UC Irvine and who have helped

make my projects successful. Moreover, I want to acknowledge AIP Publishing for permission

to include previously published material from my manuscript in Chapter 3. The research

in Chapter 3 was supported by UC Cancer Research Coordinating Committee, C21CR2129.

Chapter 3 was based upon work supported by the National Science Foundation under grant

number 1633631. This work was supported by an opportunity award from the UCI Center

for Complex Biological Systems, through NIH-NCI U54-CA217378.

xii

VITA

DANIEL D. SEITH

EDUCATION:

• Doctor of Philosophy in Chemistry, University of California, Irvine (June 2022)

• Bachelor of Science in Chemistry, Pennsylvania State University (May 2017)

POSITIONS:

• Graduate Student Researcher, Department of Chemistry, University of California, Irvine.
Research Advisor: Zuzanna S. Siwy (November 2019-June 2022)

• Graduate Student Teaching Assistant, Department of Chemistry, University of California,
Irvine. (September 2017-June 2022)

• Undergraduate Student Researcher, Department of Chemistry, Pennsylvania State
University.
Research Advisor: Philip C. Bevilacqua (August 2013-August 2017)

RESEARCH PUBLICATIONS:

• C. T. Combs, Daniel D. Seith, M. J. Boyvn, S. P. Gross, X. Xie, Z. S. Siwy, Deep
Learning Assisted Mechanotyping of Individual Cells Through Repeated Deformations
and Relaxations in Undulating Channels. Biomicrofluidics (2022)

• William J. Howitz and 12 others including Daniel D. Seith; Online in No Time: Design
and Implementation of a Remote Learning First Quarter General Chemistry Laboratory
and Second Quarter Organic Chemistry Laboratory, J. Chem. Educ., (2020).

• Daniel D. Seith Jamie L. Bingaman, Andrew J. Veenis, Aileen C. Button, Philip C.
Bevilacqua; Elucidation of Catalytic Strategies of Small Nucleolytic Ribozymes from
Comparative Analysis of Active Sites; ACS Catalysis (2017).

xiii

FELLOWSHIPS AND AWARDS:

• Graduate Dissertation Fellowship, University of California, Irvine (Spring 2022)

• Machine Learning in Physical Sciences Fellowship, National Science Foundation (Fall
2020)

• Division of Teaching Excellence and Innovation Fellowship, University of California,
Irvine (Summer 2020)

• Research Experience for Undergraduates Fellowship, National Science Foundation (Summer
2015)

LICENSES:

• FAA Certified Private Pilot (Winter 2022)

xiv

ABSTRACT OF THE DISSERTATION

Machine Learning Assisted Single Cell Mechanotyping with Deformability Cytometry

by

Daniel D. Seith

Doctor of Philosophy in Chemistry

University of California, Irvine, 2022

Professor Zuzanna S. Siwy, Chair

In this dissertation, methods for characterizing cells based on their mechanical phenotypes

are described. A novel microfluidic channel design is presented and data are gathered as cells

pass through undulations in the channel. Deep learning methods are applied to the data in

a new approach for classifying cells solely based on their mechanical properties. First, in a

supervised deep learning approach, a highly interpretable random forest was created and

trained to extract the most influential features for cell classification. Feature attributions

of the random forest were uncovered using Shapley values. Analysis of the most influential

features revealed by the Shapley values highlighted the importance of temporal features, such

as the change in aspect ratio over time, in classifying cells. This led to the development of a

powerful convolutional recurrent neural network, which dramatically improved classification

accuracy to more than 90% when using five-fold cross-validation. Next, an unsupervised deep

learning approach for cell classification was explored for problems where classes of cells are

unknown a priori. Unsupervised clustering was first tested using manually extracted features

and traditional clustering algorithms. However, performance was significantly improved with

the development of a variational autoencoder (VAE), which extracted higher-dimensional

features. The encoder for the VAE was turned into a classifier using a clustering loss function.

This trained network exhibited an accuracy of up to 80% when thresholding the top ∼10%

of the predictions.

xv

Chapter 1

Introduction to Machine Learning

Machine learning has gained attention over the past several decades due to its potential

to recognize patterns in a variety of fields and aid in tasks inaccessible to conventional

computer programs. There are two very broad subtypes of machine learning: supervised and

unsupervised learning. In supervised learning, a model is trained to predict known quantities

given the input data. An example of a supervised learning task is training a model to identify

handwritten digits using the MNIST dataset,1 which contains a large number of handwritten

digits and associated labels. In unsupervised learning, the model learns patterns in the data

without supervision (i.e., without ground-truth labels). Therefore, in an unsupervised learning

approach, a model can be trained to group handwritten digits into clusters using only the

images of the handwritten digits in the MNIST dataset, not the corresponding numbers.

Both learning approaches require optimizing the model parameters and hyperparameters.

The parameters of a model are internal and directly define how the model handles the data.

Additionally, the parameters are learned from the training data. Hyperparameters, however,

refer to how a model is structured (e.g., shallow vs. deep neural network) and how it is trained

(e.g., high learning rate). Both supervised and unsupervised learning require parameter and

hyperparameter optimization since the values are task-dependent. The parameters of a model

are optimized by a computer, while the hyperparameters of a model are chosen by a human.

This chapter describes the various machine learning methods employed throughout this

dissertation.

1.1 Traditional Machine Learning for Classification

Traditional machine learning algorithms, defined as learning algorithms other than deep

learning, generally rely on manually curated features to form decision boundaries for use in

1

classification tasks. Commonly used algorithms include K-nearest neighbors (KNNs), support

vector machines (SVMs), and random forests (RF). While traditional machine learning

methods generally do not offer state-of-the-art (SOTA) performance, they are simple to

implement, lightweight and are often interpretable. Traditional machine learning algorithms

are generally used where interpretability is required. These algorithms are also often used in

unsupervised clustering and are utilized in Chapters 3 and 4.

1.1.1 K-Nearest Neighbors

K-nearest neighbors (KNN) is one of the simplest clustering algorithms, and while it does

not contain any parameters, it does have a single hyperparameter: a value for the ‘k’-nearest

neighbors. KNN is generally used for simple supervised classification. At inference time, a

given point of an unknown class is compared to its k-nearest neighbors in the training set

with known classes, and the algorithm assigns the class of the new point to be the mean of its

surroundings. This allows the algorithm to form very complex decision boundaries. However,

this does not scale well for large datasets, since the entire dataset need to be held in memory

to form the decision boundary.

1.1.2 Support Vector Machine (SVM)

The support vector machine (SVM) is quite powerful and can be used for classification,

regression, and clustering. Given its broad capabilities, the SVM has been applied to a

variety of classification tasks, such as image classification,2 protein classification,3 and speech

recognition.4 Unlike a KNN algorithm, the SVM is not parameter-free. The SVM finds the

largest margin between the training examples and the decision boundary. To achieve this,

Boser et al.5 created a technique where input data are non-linearly mapped to a higher-

dimensional space. In this higher-dimensional space, a linear decision boundary is drawn.

Critical to the success of the SVM is the kernel trick described by Boser et. al., which allows

for an efficient mapping of inputs to a new space. In this new higher dimension, a decision

2

boundary is more easily formed.

1.1.3 Random Forest

The random forest model was first conceived in 1995.6 Although random forests may

not offer SOTA on many benchmarks, they are simple to interpret and are used where

transparency is required. To build a random forest model, an ensemble of individual decision

trees is constructed. The output of the random forest model is defined as an average of the

predictions of the individual decision trees. In order for the ensemble to form a diverse group

of models with diverse predictions, the trees must be uncorrelated. A technique known as

bootstrap aggregation or bagging is used to ensure that the trees are not correlated.7 In this

technique, each decision tree will randomly sample the dataset with replacement. Since the

dataset is sampled with replacement, some features will be overrepresented, encouraging each

decision tree to form different models.

1.2 Traditional Machine Learning for Clustering

Clustering is the process of discovering homogeneous groups in a dataset. This is one of

the most important tasks in unsupervised learning, since it can be used to uncover previously

unknown groups and structure in the data. For example, types of blood cells may be classified

without existing knowledge of cell types using unsupervised learning. There are a wide variety

of clustering algorithms that have been developed, each of which builds clusters through a

different process. Similar to classification, choosing a model is largely dependent on the

dataset. These algorithms are used in Chapter 4.

1.2.1 K-Means Clustering

K-means clustering is a simple clustering algorithm that belongs to the broad family

of expectation-maximization algorithms. K-means clustering is generally a baseline method

because of its simplicity. To implement, the first step is to create centroids of clusters defined

3

by n at random locations. Then the classes of the points are assigned based on their proximity

to the closest centroid, which is known as the ‘M step’. After this step, the positions of the

centroids are updated based on the positions of their associated points, known as the ‘E step’.

The E and M steps are then completed until a predetermined endpoint (e.g., max steps).

1.2.2 Gaussian Mixture Model (GMM)

GMMs also utilize the expectation-maximization framework, although they employ a

more general form of the framework. GMMs have found many practical uses including aiding

speech recognition,8 and bioinformatic clustering.9 Similar to K-means optimization, the

in the E step points are assigned to classes. However, in this algorithm points are given

probabilitistic assignments to each cluster instead of an assignment to exactly one cluster, as

is done with K-means. This soft assignment is done by calculating the expectation of the class

given the parameters φ, µ, and σ. Next, the M step is performed, in which the expectations

calculated in the E step are maximized. Here, the values φ, µ, and σ are updated. Similarly

to K-means clustering, the algorithm continues until it reaches a predetermined endpoint.

1.2.3 Spectral Clustering

Spectral clustering follows a different methodology compared to the previous clustering

techniques. Although spectral clustering is quite costly, it is very powerful and has been

used in understanding HIV mutations10 and flow cytometry clustering.11 Spectral clustering

begins with the creation of a graph of the data, also known as an adjacency matrix. The

edges of the graph are then constructed by calculating a similarity matrix through a KNN

approach. Nodes are connected if they fall within each other’s k-nearest neighbors. With

the graph constructed, the data can now be projected to a lower dimension using the graph

Laplacian. This allows the calculation of eigenvalues, which are then used to create clusters.

For binary classification, nodes are assigned to clusters based on the sign of their eigenvalues:

positive eigenvalues designate the node to belong to one class, and negative values designate

4

the other.

1.3 Deep Learning

Deep learning methods have become increasingly popular over the past decade. Although

the timing of this popularity was largely spurred from hardware improvements, deep learning

is advantageous due to its unique ability to 1) extract features, 2) form decision boundaries

on its own, and 3) process vast amounts of data. This ability provides novel information that

would likely be overlooked by a traditional machine learning algorithm or even a human.

Deep learning has now expanded to dominate nearly all tasks in machine learning, such as

computer vision, natural language processing, and drug discovery.12

1.3.1 Multi-Layer Perceptron (MLP)

Multi-layer perceptrons (MLPs) are a simple type of dense neural network. They were

first theorized in 1943.13 The MLP was originally developed for image recognition14 but has

since been generalized to function in a range of tasks when used in concert with more complex

networks. The MLP comprises a single input layer, a hidden layer, and an output layer. They

are termed ‘dense’ networks, since all nodes of a given layer are fully connected to all nodes

of the next layer. An exemplary MLP is provided in Figure 1.1. Each layer contains nodes

which employ non-linear activation functions that take all outputs from the previous layer

as inputs. The network is trained using gradient-based optimization. The gradients of the

loss function flow from the output nodes of the network to the input nodes according to the

chain rule. Data can be grouped into batches that can be processed simultaneously. Here,

the loss calculated is the average loss over the batch. Batching has been shown to increase

training stability and decrease training time.15

5

Figure 1.1: The multi-layer perceptron (MLP) architecture is shown with fully connected
layers. Data flows from the input layer to the output layer.

6

1.3.2 Recurrent Neural Networks (RNN)

Deep learning methods are often incompatible with variably sized data. This can be an

issue when dealing with data such as natural languages, which rarely have a uniform size. To

address this, recurrent neural networks (RNNs) were first proposed in 1986.16 RNNs are able

to overcome this with a recurrent processing unit also known as a ‘cell’. RNNs have been

applied to sequential datasets, such as language translation17 and speech recognition.18

RNNs sequentially process inputs and maintain an internal memory to extract temporal

features from an input (Figure 1.2). Each successive input can change the internal memory

and influence the output of the network. While the RNN in its most basic form is rarely

used due to problems with vanishing/exploding gradients,19 two variants: long short-term

memory (LSTM)20 and gated recurrent unit (GRU)17 have gained popularity.

LSTMs and GRUs contain gates that help control how internal memory is maintained,

as well as how gradients are propagated backward. In both variants, there is a pathway for

uninterrupted gradient flow. The first variant, the LSTM, proposes the use of two states: the

cell state and the hidden state. The cell state is essentially the internal memory, whereas

the hidden state is the working memory. The transfer of information into and out of these

states is controlled by gates. Distinct from the LSTM, the GRU employs a simpler design and

contains only a hidden state but utilizes similar techniques for updating its memory. Both

the LSTM and the GRU are used for similar tasks, although the GRU is generally preferred

for shorter time-series.

1.3.3 Convolutional Neural Network (CNN)

While neural networks were originally developed largely for tasks in image recognition,

the MLP is not translation invariant. This means that a feature in an image could be shifted

or translated, and dramatically influence the network prediction despite the ground-truth

label remaining unchanged. As an answer to this flaw in the MLP, convolutional neural

networks (CNNs) were proposed in 198921 and later refined in 1998 for the recognition of

7

Figure 1.2: RNN architecture where ‘A’ represents an RNN cell and timesteps of the input
are ‘unrolled’ and shown with Tn on the lower right.

8

handwritten digits.22 The convolution drew inspiration from a finding in neuroscience that

showed that two types of cells are critical for pattern recognition in cats.23 The first cell type

was responsible for extracting patterns and the second cell type was responsible for distilling

information from the first. These two operations were translated into the convolution and

max-pooling operations, respectively.

Since their conception, CNNs have found widespread use in image classification,24 image

segmentation,25 medical image analysis26 and even natural language processing.27 CNNs

work by making use of the hierarchical structure in the input data and extracting progressively

finer patterns in the data as the depth of convolutional layers increases. A key highlight of

convolutions is that they are translation invariant, meaning a given pattern can be translated

anywhere in the image and a convolutional filter will recognize the pattern equally well. This

property makes CNNs uniquely suited for image recognition tasks, where patterns can appear

at various locations in an image.28 A convolutional filter, also known as a kernel, is used to

extract patterns from the image. At each position on the image, the filter (generally a 3×3

array) and corresponding patch of the image are multiplied element-wise. The maximum

value of this result is then stored as a point in the output matrix. This operation is known

as max-pooling.

1.3.4 Variational Autoencoder (VAE)

The variational autoencoder (VAE) is a type of generative neural network architecture that

was introduced in 2013.29 VAEs have expanded the power of neural networks to unsupervised

problems and have been very successful in molecular design,30 multi-omics analysis,31 and

medical image analysis.32 The VAE consists of an encoder and a decoder that are connected

via a latent space that has a significantly lower dimension than the input. They are trained

with a two-part loss function (e.g., Equation 1.3). The VAE takes an input matrix x and

compresses it down to a lower-dimensional latent space as a vector z using the encoder, which

can be a neural network. This latent space is then sampled, and the decoder, which can be

9

another neural network, attempts to reconstruct the original input. A reconstruction loss is

calculated by comparing the original input and the reconstruction (Eqφ(z|x) in Equation 1.3).

Gradients of this loss function flow from the decoder to the encoder. This encourages the

two networks to work together. The encoder learns more salient latent representations, and

the decoder learns how to best utilize these representations. The reconstruction loss can take

the form of a binary cross-entropy loss (Equation 1.1) if the outputs are binary valued or a

mean squared error (Equation 1.2) if the outputs are continuously valued. For example, if

the input is an image in which pixel values range from 0 to 255, the mean squared error loss

would be the most appropriate.

Binary cross-entropy = − 1

m

m∑
i=1

ŷilog (yi) + (1− ŷi)log (1− yi) (1.1)

Mean Squared Error = − 1

m

m∑
i=1

||ŷi − yi||2 (1.2)

VAE loss = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)) (1.3)

The second part of the two-part loss is the Kullback-Leibler (KL) divergence (DKL in

Equation 1.3). The KL divergence is a way to quantify the difference between two probability

distributions. Here we use it to measure the difference between the distribution created by the

encoder and the normal Gaussian distribution. This ensures that similar inputs are encoded

to similar latent spaces. For example, if a VAE is trained on pictures of dogs, two dogs of the

same breed would be encoded in similar spaces.

1.4 Model Interpretability

Model interpretability is nearly as critical to a task as the model itself. Explainable

machine learning models are often sought after because many applications require a clear

10

reasoning of the prediction. For example, tumor cells from a biopsy may be passed through a

cytometer and a model may recommend no treatment since it confidently classified the cells as

benign. However, we may not weight its recommendation significantly or at all unless we can

determine how the model came to this conclusion. There are many different interpretability

methods. They can be model-specific and give either local or global interpretability. Therefore,

choosing a technique depends on the desired information about the model’s predictions.

1.4.1 Shapley Values

One popular method for interpreting machine learning models is the calculation of Shapley

values. Shapley values were originally described in the context of cooperative game theory.33

In this game-theoretic approach, one could determine the individual contributions of players

in a theoretical cooperative game upon receiving a reward, such as scoring a point. In the

context of machine learning, the players of a game are substituted with a given feature and

the reward is substituted with the prediction. To determine the contribution that each feature

has on the prediction, different feature values are sampled from the dataset, and the effects

on the prediction are measured. This technique has previously been applied to understand

single cell classification,34 prediction of peptide properties,34 and even particle physics.35

11

Chapter 2

Introduction to Cytometry

Cytometry has existed in different forms since the late nineteenth century with numerous

devices and data acquisition types. The term is most commonly associated with the flow

cytometer, which was developed only recently in 1953.36 Cell separation techniques in

flow cytometry are non-destructive and high-throughput in nature. Most often cells are

characterized by electrical or optical signals. However, image characterization has recently

gained popularity and is approaching mainstream adoption.

2.1 Impedance

Impedance cytometry, also known as the Coulter counter, was developed based on the

Coulter principle and measures the change in impedance as cells pass through a small

orifice.36 Devices in impedance cytometry work on the simple idea that since the cells are

less conductive than the electrolyte solution in which they are found, as they pass through

the orifice and displace the electrolyte solution, the channel will become momentarily less

conductive. If a current is passed through the channel, its amplitude will decrease in response

to the passage of a cell, creating a ‘pulse’ in the recorded current. The amplitude and duration

of the pulse can inform one about the volume of particles and the surface characteristics.37,38

These measurements allow for the detection and quantification of particles of a wide range of

sizes, from blood cells to particles as small as viruses39 and single molecules. This additionally

allows for the sequencing of nucleic acids40 and proteins41 since the diameter of the orifice

can be altered with great precision.

12

2.2 Optical

The second method of characterization uses the absorption, fluorescence, or both of

laser light to analyze cells. The scattering of laser light allows for the determination of

a cell’s size and shape. Cell fluorescence is generally achieved through endogenous production

of fluorescent labels (e.g., green fluorescent protein (GFP)) or through the binding of a

fluorescent antibody tag. Antibody tags require antigens on the surface of cells for binding.

A common type of antibody tags are known as ‘clusters of differentiation’ and are used for

phenotyping. Although up to 28 different tags can be used at once, generally only 12-15 are

used simultaneously.42

2.3 Imaging

While imaging flow cytometry (IFC) might sound similar to optical cytometry, in practical

application it is quite different. The devices in IFC utilize photomicroscopes and can be used

with or without fluorescent labels. Despite this similarity, IFC is rich in data and can contain

information largely inaccessible with other techniques.43–46 Imaging flow cytometry generates

multiple images of cells with high resolution. Common features extracted are area, shape,

morphology, texture, granularity and intensity. The power of the generated data is largely

dictated by the analysis techniques employed, and there is often a content gap between the

data provided and the features extracted.46 Despite this, much progress has been made in

the application of IFC and it has shown potential in the diagnosis of acute leukemia.47

2.4 Deformability

Mechanical properties have long been probed by atomic force microscopy,48,49 optical

tweezers,50 or micropipette aspiration.51 These techniques all offer different perspectives on

the mechanical properties of a cell via different forces and readouts for the cell’s response.

Deformability cytometry (DC), unlike the methods mentioned above, was only recently

13

developed in 2015.52 Since then, this technique has evolved into different forms that are

a variant of either impedance or imaging flow cytometry.

Both characterization methods using impedance or imaging flow cytometry have been

shown to probe deformation induced by hydrodynamic forces or narrow channel widths. To

probe a cell’s deformability, impedance-based methods calculate the change in current induced

by a cell’s passage.53–56 Impedance measurements also allow for the determination of other

biophysical parameters, such as membrane capacitance, that are unavailable to image-based

techniques. Imaging-based platforms rely on a high-speed camera to capture one or more

images of the cell’s deformation. Similar to IFC, imaging-based deformability cytometry uses

high-speed cameras and captures a large volume of information. This form of deformability

cytometry has been demonstrated with single images52 as well as a time-series of images

(Figure 2.1).57,58

Two key deformability cytometry methods are dynamic real-time deformability cytometry

(dRT-DC)57 and extensional deformability cytometry (xDC).59 The dRT-DC method deforms

cells with a constant shear rate and the physical constants of the cells can be extracted by

observing their steady-state deformation. Conversely, xDC rapidly deforms cells using a

cross-channel design and ultra-fast flow rates that enable high-throughput characterization.

Overall deformability cytometry has been shown to be sensitive to viscosity,60 as well as

actin and microtubule networks.61,62 These capabilities have allowed deformability cytometry

to find many applications, including the study of anticancer drug assays,63 as well as the

classification of pluripotent and differentiated cells.64

14

Figure 2.1: Channel architectures for two deformability cytometry devices are shown. Dynamic
real-time deformability cytometry (dRT-DC) is shown on the left. Extensional deformability
cytometry (xDC) shown on the right.

15

Chapter 3

Deep Learning Assisted Mechanotyping of Individual

Cells Through Repeated Deformations and Relaxations

in Undulating Channels

3.1 Introduction

Mechanical properties of cells, such as the ability to deform when an external force

is applied, are directly linked to the structure of a cell’s cytoskeleton. Changes in the

cytoskeleton have been correlated with cell differentiation,65 malignant transformation,66

biofilm formation67 and COVID-19 pathology.68 Therefore, probing mechanical properties

offers a label-free method to learn about a cell’s state, such as its homeostasis or pathological

conditions. This information could be useful in clinical settings such as chimeric antigen

receptor therapy where the potency of the treatment might be linked to a cell’s mechanical

properties.

A multitude of techniques have been reported to probe the mechanical properties of

cells. Conventional methods include atomic force microscopy,48,49 optical tweezers50 and

micropipette aspiration.51 While these approaches are capable of measuring the mechanical

properties of individual cells with high resolution, their throughput of roughly 1-10 cell(s)

per minute is significantly slower than the ∼10,000 cells per second achieved by most flow

cytometers, which is required for characterization of cell populations that can easily reach

millions of cells.

In recent years, several microfluidic methods have been developed with significantly

improved throughput. In one class of methods, cells are squeezed through constrictions

smaller than the cell’s diameter.53–56 The passage time of these strongly deformed cells has

been shown to depend on the cells’ mechanical properties, with a faster passage corresponding

16

to a more deformable cell. This approach was applied to different cell lines, including cancer

cells, stem cells, and red blood cells.55,69–77 The transit time through the channel is measured

by recording electrical impedance or optical signals that correlate with deformability, and

in certain cases measure rheological parameters such as Young’s modulus.78 However, the

surface friction between the walls and the cell can make it challenging to extract deformability

without including other phenomena.

In a different class of microfluidic approaches, the channels are wider than the cells to be

analyzed and the passing cells are subjected to hydrodynamic forces. Again, in these methods

deformations can be probed electrically or optically. Two notable approaches are extensional

deformability cytometry (xDC)59 and real-time deformability cytometry (RT-DC).52 In xDC,

a cross-channel design is used to deform cells at ultra-fast flow rates reaching ∼1000 µL min-1.

xDC has been used to classify malignant pleural effusions, discriminate stem cells, and identify

transitions in the cell cycle. The authors showed that the deformation kinetics are important

in the classification of induced pluripotent stem cells (iPSCs).58,64 Using both rheological

and morphological features, Masaeli et al. demonstrated the ability to classify between iPSCs

and differentiated iPSCs using support vector machines (SVM).64 The ultra fast flow rates

of xDC come at the cost of being unable to probe more sensitive cytoskeletal structures like

actin networks. RT-DC, which is based on a straight narrow microfluidic channel, operates

at significantly lower flow rates than xDC (∼1 µL min-1), and induces constant shear stresses

allowing cells to reach steady state deformation. RT-DC quantifies deformability using steady-

state images of deformed cells captured at the end of the microfluidic constriction and is

linked to a physical model to calculate Young’s modulus.79 RT-DC has also been recently

extended to probe the cell deformation kinetics as they approach steady state.57 RT-DC has

also been shown to classify reticulocytes from mature red blood cells with an unsupervised

approach.80

While these approaches have shown great promise and success for a variety of problems,

the classifications rely heavily on the size and morphology of cellular populations. While

17

these features are useful in practical applications, existing techniques such as imaging flow

cytometry are also able to discriminate based on size and morphology. The discriminative

power of DC on cell populations which differ solely in mechanical properties alone has

therefore not been fully explored. Additionally, the use of deep learning models, particularly

convolutional and sequence-based models, may provide higher classification potential than

the traditional machine learning models that many works employ.81,82 In this manuscript,

we propose to improve classification accuracy by maximizing mechanotyping information

by subjecting cells to repeated deformations and relaxations with hydrodynamic forces. In

addition, we will show the application and potential of deep learning methods. Given that the

videos are recorded with the time resolution of 11,000 frames per second, we can probe the

deformation kinetics with high precision. These observations provide quantitative insights into

the deformation/relaxation processes and provide a comprehensive mechanical fingerprint of

each cell. Our channel contains a cavity flanked by two narrower regions,83 with widths that at

any position are wider than the cells to be analyzed. Our technique operates at a throughput

comparable to the throughput of RT-DC that enables observations of hundreds of cells per

minute and yet probe the cells sufficiently slowly to observe cytoskeletal changes.60 Inducing

repeated deformations and relaxations by hydrodynamic forces is the natural progression

towards improving cellular characterization and classification based solely on mechanical

features.84,85

A model dataset was constructed with human leukemia 60 (HL60) cells before and after

treatment with either Cytochalasin D (CytoD) or Nocodazole (Noco) to test the classification

potential of our method. Both chemicals were found to perturb HL60 cell deformability such

that CytoD-treated HL60 cells (HL60d) were more and Noco-treated HL60 cells (HL60n)

were less deformable than untreated HL60. Most importantly, cells belonging to the three

subpopulations, HL60, HL60d, and HL60n, have the same average size, thus enabling us to test

our classification strategy based on mechanical properties alone. Using these sub-populations

subjected our method to a very challenging test, since classification is often aided by cells’

18

size.58,86

The analysis of the recordings was supported by machine learning approaches with

gradually increased levels of expressive power. We show that the dynamic mechanotyping

features our method provides enable a significant increase in the classification accuracy of the

sub-populations when compared to using any single feature alone. Additionally a Random

Forest (RF) model was trained using hand-picked features. This enabled the use of Shapley

values application, a technique known from economic game theory, to investigate which

deformability parameters contributed the most to classification accuracy.33,87 A significant

improvement in classification accuracy was observed when the time-series of deformations

was used as an input into deep learning models such as recurrent neural networks (RNNs).

Furthermore, we found the combination of convolutional and recurrent layers utilizing the

sequence of masks showed an increase in classification accuracy to 90%, up from the 75%

accuracy we observed with the RF model. This increase in accuracy translates to an order

of magnitude increase in the potential ability to enrich a sample for a rare population of

cells (Supplementary Material Note 1). We discuss the trade-off between the interpretability

achieved with more traditional machine learning approaches and the high accuracy often

associated with deep learning.

3.2 Methods

3.2.1 Cell Culture

HL60 (ATCC CCL-240) cells were cultured in suspension with Iscove’s Modified Dulbecco’s

Medium (IMDM) supplemented with 10%(v/v) FBS (Fisher brand) and 1% (v/v) penicillin-

streptomycin and maintained in an incubator at 37°C with 5% CO2. Cells were passaged

through dilution every 2-3 days to maintain a density between 105 and 106 cells mL-1.

Before the experiments, cells were centrifuged at 112 relative centrifugal force (RCF) for

5 minutes and resuspended to concentrations of 2-3x106 cells mL-1 in PBS with 1% (w/v)

methylcellulose (Spectrum 4,000 CP).

19

To create subpopulations of HL60 cells with perturbed actin and microtubule networks,

cells were incubated for 10 minutes in 1 µM CytoD (Sigma) or for 1 hour in 10 µM Noco

which had been diluted 10x from the stock solution with dimethylsulfoxide (DMSO).88 Cells

were spun at 112 RCF for 5 minutes and resuspended in 1% (w/v) methylcellulose solution.

3.2.2 Channel Preparation and Imaging Setup

Microfluidic channels were prepared with a master mold using standard photolithography

with negative SU-8 photoresist (Kayaku Advanced Materials Inc.). The channel used in the

experiments was 150 µm long, with three equal length sub-regions (50 µm) with widths of

25 µm, 50 µm, and 25 µm. The height of the device was 20 µm along the whole length. The

full geometry of the chip is shown in Figure 3.1. 184-Sylgard polydimethyl siloxane (PDMS)

was pipetted over the SU-8 master and baked for ∼4 hours at 75◦C. The channel inlets and

outlets were created with a 1.5 mm biopsy punch. PDMS channels were cleaned and dried

with isopropyl alcohol, methanol and water before being bonded to a glass cover slip using

a corona discharge wand (ETP). Methanol was used last before drying because of its low

boiling point to ensure that no residual alcohol remained in the device. Bonded PDMS/glass

samples were heated for an additional hour at 90 ◦C to promote further adhesion.

The cells were suspended in a methylcellulose solution to prevent the suspension to

settle at the bottom of the container. The solution was then pumped through a microfluidic

channel using a Genie-plus syringe pump (Kent Scientific) at a rate of 1 µL min-1. The cells

were laterally focused in the channel using a sheath flow geometry with a flow rate of 2 µL

min-1. The sheath and core flows were allowed to equilibrate for 10 minutes before data was

taken. Cells were illuminated using a high-powered Red Amber (613 nm) 36 watt LED array

(PT-121-RAX Luminus, Inc.) and imaged at 10x magnification in brightfield on an inverted

microscope. A Chronos 1.4 high-speed camera (Krontech) imaged passing cells at a frame

rate of ∼11,000 frames per second (fps) with 1 µs exposure time and a resolution of 880x140

to encapsulate the full channel length. The size of each pixel is 0.26 µm/pixel. The maximum

20

Cells in

Filter
Sheath flow

Channel

Outlet

Cell flow
Cells in

Filter
Sheath flow

Channel

Outlet

Cell flow

Figure 3.1: Microfluidic chip layout. Cells enter through the core and are focused by two
sheath flows. Cells are imaged in the channel region and then collected from outlet.

21

blurring induced by cell movement is ∼ 0.1 µm. 8 second videos were recorded and saved which

require ∼15 minutes to offload from camera memory. To ensure the generalizability of the

model, in total,∼ 3,500 cell trajectories were recorded and analyzed. The data presented were

collected over 10 technical replicates of HL60 (4 biological replicates), 8 technical replicates

of HL60d (4 biological replicates), and 6 technical replicas of HL60n (2 biological replicates).

3.2.3 Calculation of Features

Detected events with impossible trajectories (i.e., no event will begin in the middle of

the channel) were discarded. To ensure the fits are accurate, a convex hull was fit to the cell

mask and events were filtered out where a single frame had a ratio >1.1 between the original

and convex hull fit. Detected particles with radii equal to three standard deviations from the

mean were not included in the analysis, as they often contained cell/channel debris or clumps

of multiple cells. Ellipses were fit to the detected masks and the aspect ratio of the ellipse

was used to describe the cell deformation, AR. A full description of deformation parameters

can be found in Table 3.1.

3.2.4 Comsol Simulation

A finite element simulation was conducted using Comsol Multiphysics 5.3 to simulate

the velocities and stresses experienced in the undulating channel. A simplified 3-D model of

the channel was modeled in the laminar flow module using the Navier-Stokes equation with

creep flow in steady state. An extra fine meshing was chosen for the area near the narrow

section of the channel and normal meshing was chosen for the reservoir.

3.2.5 Machine Learning Model Training

Of all the cell trajectories recorded, 3,552 were suitable for classification. They were

distributed as 1114 HL60 trajectories, 1122 HL60d trajectories, and 1316 HL60n trajectories.

The RF model and SVM were created and trained using python 3.6 and scikit-learn.

22

Table 3.1: Parameter table

Feature Description Hl60n HL60d

Radius

Radius of cell in cavity where deformation
is minimal. Average radius of circle of
equivalent perimeter and circle of equivalent
area.

59% 56%

rD1
Maximum relative aspect ratio of fitted ellipse
measured in first narrow constriction.

57% 72%

rD2
Maximum aspect ratio of fitted ellipse
measured in second narrow constriction

55% 71%

R2
Slope

Slope of linear fit between position of
maximum deformation in first narrow
constriction and position of least deformation
in cavity. Represents cell relaxation.

58% 68%

R3
Slope

Slope of linear fit between position of
least deformation in cavity and position
of maximum deformation in second narrow
constriction. Represents cell compression.

52% 70%

R1-R3
AR

Difference between AR1 and AR2 58% 59%

R1 Per
Average perimeter of mask in first narrow
constriction.

53% 55%

R3 Per
Average perimeter of mask in second narrow
constriction

51% 54%

R1
Area

Average area of mask in first narrow
constriction

55% 57%

R3
Area

Average area of mask in second narrow
constriction

54% 56%

Table 3.2: Expanded Parameter Table

Feature
Description (Calculated at R1 max deformation, R2 minimum
deformation, and R3 max deformation.)

Ixx Central moment of inertia along channel in direction of fluid flow.
Iyy Central moment of inertia perpendicular to direction of fluid flow.
Ixx/Iyy Ratio of diagonal elements of central inertia tensor.
H[0],H[1],...
H[6]

Hu’s set of image moments

23

The data were standardized, shuffled, and split according to the following ratio: 70:15:15

for train, validation, and test, respectively. Unless specified otherwise, all convolutional and

dense activation functions are ReLU. Unless otherwise specified, RMSProp was used with a

base learning rate of 1e-3.

The GRU and CNN-GRU models were created and trained in Python 3.6 using the Keras

and Tensorflow 2.3.1 libraries. The hyperparameters were optimized over 175 epochs using

the validation set. Model performance was assessed using a hold-out test set, in addition to

5-fold cross-validation.

3.2.6 CNN Prefilter Training Architecture

The CNN prefilter was trained with a number of random augmentations. The following

augmentations from Tensorflow image were used: per image standardization, random brightness,

random flip up-down, random flip left-right, random contrast. Model weights were chosen

based on validation set performance.

1. Conv2D - Filters: 16 - Kernel: 3×3

2. MaxPooling2D

3. Conv2D - Filters: 16 - Kernel: 3×3

4. MaxPooling2D

5. Conv2D - Filters: 16 - Kernel: 3×3

6. MaxPooling2D

7. Flatten

8. Dense - Dimension 1 - Activation: sigmoid

9. Loss Function: Binary Cross-Entropy

24

3.2.7 GRU Network Architecture

1. Masking

2. GRU - Dimension 50

3. GRU - Dimension 50

4. Dense - Dimension 24

5. Dense - Dimension 1 - Activation: sigmoid

6. Loss Function: Binary cross-entropy

3.2.8 CNN-GRU Training and Architecture

Data were filtered, aligned, and partitioned using the same methods described above for

the GRU. The masks were cropped from the frame and padded to a size of 96x96. An ellipse

was fitted to the cell, and the two channels were concatenated.

1. Conv2D - Filters: 8 - Kernel: 3×3

2. MaxPooling2D

3. Conv2D - Filters: 16 - Kernel: 3×3

4. MaxPooling2D

5. Conv2D - Filters: 16 - Kernel: 3×3

6. MaxPooling2D

7. Flatten

8. GRU - Hidden Dimension: 50

9. GRU - Hidden Dimension: 50

25

10. Dense - Dimension 1 - Activation: sigmoid

11. Loss Function: Binary cross-entropy

5-Fold Cross-Validation Results HL60 v HL60d

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

0.917 0.922 0.908 0.906 0.917 0.914 ± 0.006

5-Fold Cross-Validation Results HL60 v HL60n

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

0.833 0.821 0.840 0.848 0.842 0.837 ± 0.009

3.2.9 Data Preprocessing for Sequential Models

Sequences of aspect ratio, perimeter, deformability, and area were selected as inputs for

the GRU model. Data previously filtered were first aligned so that all sequences started

and ended at a true x-position of -30 µm and 170 µm respectively. Data were then padded

to length 50 and were shuffled and split according to the following ratio: 70:15:15 for train,

validation, and test, respectively.

For sequential models using image data, CNN-GRU, masks were first cropped to 96x96.

An ellipse fitted to the mask shape was created using scikit-image and added to the second

image channel. Each sequence of these two-channel images were padded to length 50. The

data were shuffled and split according to the following ratio: 70:15:15 for train, validation,

and test, respectively.

3.2.10 Code Availability

The python scripts implemented for data processing and training machine learning models

are available at: https://github.com/siwylab/time-series-dc.

26

3.3 Results and Discussion

3.3.1 Channel Design and Data Acquisition

We designed a microfluidic channel that subjects individual cells to repeated compressions

and relaxations. The multiple deformations of the cells are induced by the channel shape,

specifically the presence of a cavity and two narrow zones. Literature suggests that the varying

channel width will create non-homogeneous velocity profiles leading to temporal changes in

the cells’ shapes.89 To test this channel design for mechanotyping, we first selected HL60

cells for study, which have been previously shown to be resistant to changes in radius and

morphology in response to cytoskeletal-altering drugs.90 We then pumped a suspension of

HL60 cells (ATCC-240) in methylcellulose (1% w/v) solution through a channel of consecutive

constrictions of length equal to 50 µm (total length of 150 µm) and widths of 25 µm, 50 µm,

and 25 µm at a flow rate of 1 µL min-1. The viscous methylcellulose solution induces larger

deformations than the lower viscosity buffer solution and prevents cell sedimentation. Sheath

flow was used to focus and ensure that all cells passed through the channel along its center

axis and experienced the same forces. The microfluidic chip was placed on a 10x magnification

inverted microscope. To enable probing dynamics of cells’ shape at this high flow rate, we

customized the microscope to allow high-speed imaging by replacing the stock light source

with a high-powered LED array and accompanying 3D printed mount (Figure 3.2a). A high-

speed camera was modified to fit the microscope, and videos of translocating cells were

recorded at 11,000 frames per second, resulting in ∼ 30 data points on the 150 µm channel

and revealing the shape dynamics exhibited by a cell as it moves along the channel axis.

Upon successful capture of video data, a python pipeline was used to process the data.

The first step in the pipeline encompasses a lightweight CNN that filters out empty frames

without cells, and reduces the amount of data for the next step by ∼80%. This 4-layer CNN

was created with each Conv2D layer containing a ReLU activation function, 3x3 kernel,

and 16 filters. The final layer was a single dense node with the sigmoid activation function.

27

3 41 2

0 25 50 75 100 125 150

0 25 50 75 100 125 150

1.6

1.4

1.2

1.0As
pe

ct
 R

at
io

dv
/d

x
(1

/s
) 200

100

0

-100

-200

X position (µm)

d)

AR = a
b

c)

Image Segmentation

Sheath

Microscope

High-speed
camera

a) b) Mask RCNN
LE
D

Figure 3.2: Principles of repeated mechanotyping. a) Channel design utilizing sheath flow, a
high-powered LED and a microscope. The microfluidic channel that enables characterization
and classification contains a cavity placed between two narrow zones. b) Data is captured
by a high-speed camera, creating videos at 11k fps. Cell borders are detected and fit using
Mask-RCNN. c) The cell deformation, AR, was quantified as the ratio of two axes of an
ellipse that approximates the cell’s shape. (d) (Top) The aspect ratio versus position relative
to channel entrance of a single cell as it passes through the channel. (Bottom) COMSOL
simulation showing the derivative of velocity vs.channel position, which is proportional to
the shear stress. Region 1 (R1) and Region 3 (R3), denoted by red and yellow regions, are
where the cells undergo deformation. Region 2 (R2) and Region 4 (R2), denoted by green
and blue regions, are where the cells undergo relaxation.

28

25 0 25 50 75 100 125 150 175
X position (m)

0.8

1.0

1.2

1.4

1.6

1.8

AR

a) HL60

0 25 50 75 100 125 150
X position (m)

1.0

1.2

1.4

1.6

AR rD1
rD2

b)
R2 Slope
R3 Slope

Figure 3.3: Single cell deformation traces. Deformation dynamics are shown for single cells
translocating through the channel. The aspect ratio is determined by the best fit ellipse to
the cell mask. Deformation is calculated by the difference between the aspect ratio at a given
point and the minimum aspect ratio in the cavity. The x-position along the channel axis is
determined by the centroid of the mask. Cells experience a smaller maximum deformation in
the second narrow region, as compared to the first narrow zone. Channel inlets and outlets
are marked by red dotted line. Deformation and relaxation occur twice within the channel. a)
Full population of single cell traces of aspect ratio versus position for untreated HL60 cells.
b) Single cell example of parameters that are determined: relative maximum deformations
(rD1 and rD2) in the two narrow zones as well as relaxation and deformation slopes (R2
slope and R3 slope).

29

RMSprop was used to optimize the binary cross-entropy loss with a base learning rate of

0.0001. Roughly 9000 total images were used as inputs with 4000 background images and

5000 cell images. The input images were resized with padding down to 256x256. Pixel values

were scaled down from 16 bits to 8 bits using the formula below.

new frame = 255 × (frame - min(frame))/range(frame)

Frames labeled as containing cells were then passed to a Mask-RCNN network that was

used to segment cells from images and fit masks. Mask-RCNN can learn to accurately segment

cells with differing focusing conditions and is able to segment multiple cells in a single frame.

The Matterport implementation91 was used with Tensorflow 2.2 due to its code availability

and its depth of support in the forums. The network was trained using a NVIDIA 1070TI on

a hand-labeled dataset of ∼300 images of HL60 cells across multiple independent experiments

and cell populations using VGG Image annotator 1.0. The network was initialized with weights

pretrained on the COCO dataset. The COCO dataset is a large-scale object detection and

segmentation dataset with images of common items such as people, bicycles, and airplanes.

The architecture was modified in order to increase the output resolution of the predicted

masks since all downstream tasks depend on them. Our fine-tuned Mask-RCNN network is

able to accurately fit masks under various focusing and lighting conditions with mean mean

average precision (mAP) and mean intersection over union (mIOU) > 0.9, reducing bias in

the overall mask fitting between experiments. The training schedule consisted of training

head layers for 20 epochs at a learning rate (LR) of 10−3, 50 epochs training 4+ layers at

LR/10, and 50 epochs training all layers at LR/10. Training curves and additional details

can be found in Figure 3.4.

3.3.2 Custom Tracking Algorithm

After images are processed by Mask-RCNN, the custom tracking algorithm begins by

iterating over the list of positive frames output by the CNN prefilter. The frames are then

loaded from the raw video, and the frames are normalized. The trained Mask-RCNN is run

30

a) b) c)

Figure 3.4: Training curves for Mask-RCNN. a) Total loss per epoch. b) Bounding box loss
per epoch. c) Mask loss per epoch.

31

in inference mode and the normalized frames are passed through the network. The resulting

list of binary masks is then iterated over. If the area is erroneously small or large (less than

600 pixels or greater than 2500 pixels), the cell is skipped. Since Mask-RCNN has a tendency

to hallucinate cells that do not exist, the algorithm also checks to see if the cell is outside

the channel. Assuming the cell passes these tests, the mask is then added to a list along

with the coordinates of the center of the cell. The algorithm then checks to see if there are

any cells with overlapping x-axis positions. If there are overlapping positions, the algorithm

selects the cell closest to the center of the channel. The newly identified masks are then sorted

from right to left based on their x-axis position. The algorithm then determines whether

we have a new ’event’ based on the number of incoming frames. If there are more frames

than currently tracked events, there is a new event, and the model expands the dictionary

of currently tracked events. The dictionary of currently tracked events is then screened for

inactive events (current time in video and last observed frame are greater than two frames).

Next, a distance matrix is computed between all the positions on the x-axis of the incoming

cells and the last observed position of the current events. The incoming events are then

assigned to the entries of the current events according to the smallest distance on a given

vector of the distance matrix. The current events are then iterated over and the matched

frames are checked to ensure the matched cell is within the minimum and maximum distance

to the assigned cell. This ensures that events do not have stationary points nor do they have

jumps to later points in the channel.

Figure 3.2b shows subsequent snapshots of one cell as it passes through the channel.

Mask-RCNN enables us to track multiple cells in the same frame, allowing a high density

of cells (5x106 cells mL -1) to be used in the experiments. We found that the undulating

channel design results in complex dynamics of the cells’ shapes, and led to regions of differing

deformation. Specifically, the cells deformed strongly at the entrance of the channel and in

the first narrow constriction; the cells then relaxed to a spherical shape in the cavity, and

started to deform again when approaching the second narrow constriction. As seen in Figure

32

3.2d, we define the regions in which cells undergo deformation as region 1 (R1) and region

3 (R3). The regions where the cell undergoes relaxation are denoted as region 2 (R2) and

region 4 (R4).

We find that the shape of the deformed cells is best approximated as an ellipse where the

deformation (D) is defined as the aspect ratio (AR) of the two axes of the ellipse: the axes

parallel and perpendicular to the channel axis (Figure 3.2c). We define relative deformability

(rD) as the difference between D at a given point in the trajectory and D in the cavity, where

the cells undergo no deformation. An rD of zero corresponds to lack of deformation relative

to unperturbed cell shape, whereas rD>0 corresponds to an extension along the channel

axis. This is important since cells may be elliptical before forces are applied. Figure 3.2d

shows how the AR evolves as the cell passes through the channel. In order to gain insight

into the deformation trace, we performed a computational fluid dynamics simulation with

COMSOL multiphysics. In a cell-free undulating channel, we simulated fluid flow with the

Navier-Stokes equations and creep flow at experimental flow rates. Shear stress in different

parts of the channel can be analyzed by taking the derivative of velocity in the center of the

channel with respect to the axial position (Figure 3.2d). We find that cells experience a large

velocity gradient at the entrance of the channel, leading to large stresses and deformations.

In the example cell trace shown in Figure 3.2d, we observe a peak deformation of AR =

1.49 in the first region (R1), marked in red. The velocity gradient then reaches a steady state

value within the first narrow constriction, (10 µm - 50 µm) and the cell deformation decreases.

Before the cell’s shape can reach equilibrium, it enters the cavity where the velocity gradient

begins to decrease and then again rapidly increases. The cell returns to a spherical shape, AR

= 1, where dv/dx = 0, which occurs at ∼75 µm. The cell then begins to deform again due to

the velocity gradient at the entrance of the second narrow constriction, reaching a second peak

deformation of AR = 1.30 in region three (R3). The maximum deformation observed in the

second constriction is lower than the maximum deformation measured in the first constriction.

We believe this is because the cell is subjected to positive shear stresses over a relatively

33

short time and distance when transitioning from the cavity to the second narrow region,

as compared to the transition from the bulk channel to first narrow constriction entrance.

The distance from the middle cavity, where the shear stress is zero, to the position of peak

deformation (and maximum positive shear stress) in the second narrow region is only 25 µm,

whereas at the initial inlet the cell begins deforming from positive shear stresses ∼50 µm

away from the entrance. Figure 3.3a shows values of AR for ∼1200 HL60 cells examined

in the same conditions. The same trend for all cells has been observed: the cells reached

the maximum deformations in the first narrow zone, relaxed to a sphere in the cavity, and

underwent another deformation in the second constriction.

Taking advantage of the time-series of cells’ positions and shapes, we also quantified the

dynamics of deformation and relaxation. To this end, we used a linear model to fit the trace

from the peak deformation in the first narrow zone to the position where the cell relaxes to

a spherical shape in the cavity (R2), resulting in a slope of −8.71× 10−3 µm-1. This slope

describes relaxation dynamics, and we refer to it as the R2 slope. A similar analysis can be

performed for the cell entering the second narrow zone by fitting a line between the spherical

shape in the cavity and the maximum deformation in the second narrow zone, obtaining a

value of 9.75× 10−3 µm-1. This slope, called the R3 slope, describes the deformation dynamics.

Figure 3.3b shows example fits of rD, R2, and R3 slopes to a trace of AR evolution for a

single cell.

3.3.3 Application of the Undulating Channel to Probe Perturbation of Actin

and Microtubule Networks

In order to evaluate the sensitivity of our method to detect cytoskeletal perturbations, we

continued the experiments with HL60 cells and treated them with CytoD and Noco. These two

chemicals have previously been used to create model populations of HL60 cells that allowed

researchers to evaluate the performance of different mechanotyping techniques.52,59 CytoD

disrupts actin polymerization,92 and has been shown to increase deformability of HL60.52,78,88

34

0.00

0.15

0.30

0.45

0.60
rD

1

a) HL60d
HL60 (no.=1114)
HL60d (no.=1122)

0.00

0.15

0.30

0.45

0.60

HL60n
HL60 (no.=1114)
HL60n (no.=1316)

HL60 HL60d HL60n

3.20

3.60

4.00

4.40
1e 1

0.00

0.15

0.30

0.45

0.60

rD
2

b)
HL60 (no.=1114)
HL60d (no.=1122)

0.00

0.15

0.30

0.45

0.60
HL60 (no.=1114)
HL60n (no.=1316)

HL60 HL60d HL60n

2.40

2.60

2.80

3.00

1e 1

1.5

1.2

0.9

0.6

0.3

0.0

Sl
op

e
R

2

1e 2c)

HL60 (no.=1114)
HL60d (no.=1122)

1.5

1.2

0.9

0.6

0.3

0.0
1e 2

HL60 (no.=1114)
HL60n (no.=1316)

HL60 HL60d HL60n

7.20

6.40

5.60

4.80
1e 3

5 6 7
Radius (m)

0.0

0.6

1.2

1.8

2.4

Sl
op

e
R

3

1e 2d)
HL60 (no.=1114)
HL60d (no.=1122)

5 6 7
Radius (m)

0.0

0.6

1.2

1.8

2.4
1e 2

HL60 (no.=1114)
HL60n (no.=1316)

HL60 HL60d HL60n
4.80

5.40

6.00

6.60

7.20

1e 3

Figure 3.5: Comparison of measured deformability features between untreated and treated
HL60 cells. a) Contour plot of maximum rD in first narrow zone (R1) for untreated, CytoD
treated, and HL60n cells. The outer contour represent 50% density and center contour
represents 90% density. Mean of each population is reported where the reported error is
standard error of the mean. b) Contour plots of maximum rD in second narrow region (R3).
c) Linear fit slope from maximum deformation in first narrow region (R1) to relaxation to
minimum deformation in cavity (R2). d) Linear fit slope from relaxed state in cavity (R2)
until maximum deformation in second narrow region (R3).

35

Noco targets microtubules causing rapid filament decomposition. For HL60 cells, Noco has

previously been found to decrease the ability to deform.88 Perturbing different components of

the cytoskeleton allowed us to test whether the deformation and relaxation processes from our

channels and the chosen flow rate are capable of measuring changes in whole cell deformation

after actin and microtubule disturbance.60 The three populations of HL60 cells, untreated,

CytoD treated, and Noco treated, were suspended in methylcellulose solution, and separately

passed through our microfluidic channel. After post-processing, passages of more than 1000

cells of each sub-population were captured. The repeated experiments and the amount of

cells measured show consistent trends and enable statistical analysis of the various measured

parameters across the populations.

Figure 3.5a,b shows the rD in the two narrow zones and the two slopes for the three

populations (Figure 3.5c,d) of HL60 cells. The magnitudes of rD are consistently the highest

for the population treated with CytoD, which confirms that the method is sensitive to actin

network perturbations. The Noco-treated populations exhibit the lowest mean rD, although

with a larger variability than the other two populations. These findings are in agreement

with previous reports using the same cell line which also observed increased (decreased)

deformability of the CytoD (Noco) treated HL60 populations.88

Interestingly, the R2 and R3 slopes that respectively represent relaxation and deformation

dynamics, are also the greatest for the CytoD-treated cells, suggesting that these cells are

most responsive to external forces. In contrast, the slopes for the less deformable, Noco

treated populations are characterized by significantly smaller magnitudes of both slopes than

CytoD treated and untreated HL60 cells. Though the HL60n had a slower response to the

shear stress, they relaxed to a spherical shape in the cavity, and deformed again in the second

narrow region. One important area to control was the radii of cells entering the channel since

It is important to note that the mean radius of the three populations is nearly identical

(Figure 3.6), confirming that the cells experienced similar forces. We measure the radii of

cells by measuring the area and perimeter of cell masks where the shear stress is zero, which

36

occurs at 75 µm. The radii is the average of fitting a circle with equivalent area and perimeter

respectively. We find a small discrepancy between the mean radii of HL60 cells and HL60

cells treated with CytoD, while HL60 cells treated with Noco have a slightly larger variation

in size. Cells with radii larger than 3σ from the mean were removed from analysis, as they

were often small cell or PDMS debris, or clumps of two or more cells.

Although the mean values of deformation are significantly different (Figure 3.5, third

column), there is significant overlap between the control HL60 cells and the treated cell

distributions (Figure 3.5, contour plots). This overlap makes it difficult to accurately classify

a given cell. We find that no single feature alone can provide an accuracy significantly higher

than 70% for single cell classification (Table 3.1). For example, rD1 alone is able to classify

between HL60 and HL60d populations at 72% accuracy using a logistic regression model,

while the same parameter classifies HL60n with only 57% accuracy. The radius alone can be

used to classify up to 56% and 59% for HL60d and HL60n, respectively, as expected from

the nearly identical size of the populations. In the following sections we will show that in

order to achieve discrimination between the two populations on a single cells basis, multiple

features describing the cell deformation (Figure 3.5) must be considered simultaneously.

3.3.4 Feature Extraction and Machine Learning Model Comparison

Our next goal was to utilize the complete mechanotyping fingerprint our method provides

to maximize classification accuracy. As mentioned above, the three populations chosen were

nearly identical in size thus the differences in mechanical properties provide the only basis

for classification. We first investigated the ability of traditional machine learning models

to distinguish the two pairs of sub-populations, HL60 vs. HL60d, and HL60 vs. HL60n. To

provide a baseline for classification potential, features were first manually extracted from the

individual raw time-series data as seen in Figure 3.3. These derived features were used to

train a random forest classification model93–95 (RF), which has been previously employed

for classifying cytometry data.96 The random forest models were implemented using scikit-

37

3 4 5 6 7 8
Radius (m)

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

cell
hl60
hl60d
hl60n

Figure 3.6: HL60 radii comparison. Distribution of radii for three cell populations.

38

learn and all relevant hyperparameters were optimized. Other models such as support vector

machines (SVM) were tested and showed similar or less performance compared to RF (Figure

3.8). All models were trained across a mixture of multiple biological and technical replicates,

and accuracy results were reported on a held on test set, in order to minimize bias.

We found that the trained RF model resulted in 75% accuracy for HL60 vs. HL60d, and

71% accuracy for HL60 vs. HL60n classification (Figure 3.7a,c). The lower accuracy of the

model trained on HL60n can be attributed to the high rD1 overlap between the two classes.

In the next step, we wanted to understand how the RF model weighted each of the different

mechanotyping features in making its predictions. To this end, we utilized Shapley values,

which were developed for coalitional game theory to inform one how to fairly attribute success

to the constituent parts.33 Thus, Shapley values can help us understand which features are

most informative for a single cell classification. In order to make use of this method, the

SHAP python library97 was employed in conjunction with the trained RF model to attribute

overall model performance to individual features (Figure 3.7b). The values reported in Figure

4b and 4d represent the mean impact for an individual feature in determining cell type. From

the Shapley values we find that the R2 slope and rD1 have the most weight in deciding

classification between HL60 vs. HL60d. For the HL60 vs. HL60n task, we find the R2 slope to

have the highest impact, followed by the radius. The introduction of Shapley values provides

interpretability of the mechanotyping data and demonstrates that the region from peak AR to

the relaxed state contains the most information for classification. The analysis also revealed

the importance of another temporal feature, the R2 slope, in the classification (Figure 3.3b).

Based on these observations, we hypothesized that classification could be further improved

by incorporating the sequential nature of a cell’s deformation into the model design. We

then decided to explore deep learning approaches to create a model that can extract shape

dynamics.

39

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.77 0.23

0.26 0.74

a)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.66 0.34

0.24 0.76

c)

0.00 0.02 0.04 0.06 0.08
Average impact on model output magnitude

R3 Per

Radius

R3 Area

R1-R3 AR

R1 Per

R3 Slope

R1 Area

rD2

R2 Slope

rD1

b)

0.00 0.02 0.04 0.06 0.08
Average impact on model output magnitude

R1 Area

R1 Per

R3 Slope

R3 Area

R3 Per

rD2

R1-R3 AR

rD1

Radius

R2 Slope

d)

Figure 3.7: Prediction results of random forest using derived mechanotyping features. a)
Confusion matrix of trained random forest predicting HL60 vs. HL60d. The values are
normalized by the true label count. Accuracy is equal to the average of diagonal. b) SHAP
feature importance plot obtained using trained RF model for the HL60 vs. HL60d classification.
c) Confusion matrix for random forest trained on HL60 vs. HL60n prediction. d) SHAP feature
importance for HL60 vs. HL60n.

40

SVM Performance

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.76 0.24

0.27 0.73

a)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.69 0.31

0.26 0.74

b)

Figure 3.8: Confusion matrix for SVM. Accuracy equals average of diagonal elements.

41

3.3.5 Deep Learning for Enhanced Classification

RNNs are considered the optimal tools for handling sequential data98 and are often used

for translation and sequential prediction tasks. We chose RNNs since they can utilize the

temporal nature of the shape dynamics, which in our case is complex due to the repeated

deformations and relaxations caused by the non-linear shear force (Figure 3.2c). In short,

RNNs function by receiving a single input from the full sequence, processing it and feeding

the output into a copy of itself along with the next time step. We implemented a variant of

RNNs called the gated recurrent unit (GRU) and used the sequential time-series features such

as aspect ratio, perimeter, and area as inputs to these models. The trained GRU displayed a

moderate increase in classification performance, as seen in the confusion matrices in Figure

3.9b,c, resulting in a 4% accuracy increase for HL60 vs. HL60d, and an 8% increase for HL60

vs. HL60n. Another RNN variant, the Long Short-Term Memory (LSTM) network, was tested

but did not perform as well (Figure 3.10).

Since the application of RNNs yielded improved performance (Figure 3.9) compared to

the RF models with manually derived features (Figure 3.7), we hypothesized that further

improvement would require an approach that is not based on hand-selected features (or

their combination). We therefore sought to improve accuracy by using binary masks as

inputs, obtained using our video processing algorithm described above (see the sequence

of blue-shaded regions in Figure 1). Note that the sequence of the masks are the only

inputs; the derived deformation values from the masks are not used here. To utilize the time-

series of masks, we added a number of convolutional layers to the GRU model (CNN-GRU).

Convolutional neural networks are known to be very well suited for image based classification

tasks. A schematic diagram of the model is shown in Figure 3.11a.

While CNN-RNNs traditionally use raw frames as inputs, here our input complexity

is drastically reduced since segmentation had already been performed. Consequently, the

network only learned the shapes of the deformed cells as opposed to differences in internal

morphology or brightness contained in the raw images. Our CNN-GRU architecture was

42

a)

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.82 0.18

0.23 0.77

b)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.71 0.29

0.12 0.88

c)

Figure 3.9: Time-series neural networks applied to mechanotyping features. a) Outline of
recurrent neural network. Time-series deformation data is used as input into GRUs. The
output of the network predicts cell phenotype. b) Confusion matrix for RNN trained on HL60
vs. HL60d. c) Confusion matrix for RNN trained on HL60 vs. HL60n.

43

LSTM Performance

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.81 0.19

0.3 0.7

a)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.71 0.29

0.15 0.85

b)

Figure 3.10: Confusion matrix for LSTM. Accuracy equals average of diagonal elements. a)
Confusion matrix for HL60 vs. HL60d. b) Confusion matrix for HL60 vs.HL60n

44

refined by searching different filter sizes for the CNN layers, changing the number of dense

and GRU layers, as well as adjusting the dropout rates. The optimized model architecture

(Section 3.2.8) shows superior performance of the CNN-GRU to both the RF and GRU

models (Figure 3.11b,c). Namely, the CNN-GRU enabled an increase of accuracy by 11% to

HL60 vs. HL60d, and an increase of 6% to HL60 vs. HL60n, resulting in final classification

accuracies of 90% and 85%, respectively. To investigate the potential of over-fitting, 5-fold

cross-validation was performed in addition to the use of a train, validation, and test split.

The 5-fold cross-validation resulted in accuracies of 91.4±0.6% and 83.7±0.9%, with similar

results obtained for each training regime. The high validation set performance shows the

richness of the deformability dynamics and their potential to aid in classification.

Finally, the importance of mechanotyping in classification of HL60 sub-populations was

investigated. More specifically, whether these cells could be distinguished only through their

morphological features, such as shape, prior to deformations was probed. To this end, a CNN

was trained to classify HL60 vs. HL60d and HL60 vs. HL60n sub-populations using masks

from the channel cavity, where no induced deformations are present. The best test accuracy

attainable was 65% for HL60 vs. HL60d, indicating the poor classification potential of the

undeformed shape (Figure 3.12b). However, when the same analysis was performed for HL60

and HL60n (Figure 3.12), a classification accuracy of 70% was observed, indicating that the

Noco treatment affected the cells’ undeformed shape, relative to the control HL60 population.

The modified morphology of HL60n could have also contributed to the large increase in

accuracy when using the CNN-GRU. Combining mechanotyping and deformation dynamics

with morphology of cells could lead to improved accuracy of cells classification in cases where

the initial morphology differs.

3.3.6 Traditional ML with Added Morphological Features VS. Deep Learning

To investigate the gain in performance obtained by deep learning over traditional machine

learning methods, we extended the feature set of the manually derived features to include

45

a)

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.93 0.074

0.13 0.87

b)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.86 0.14

0.15 0.85

c)

Figure 3.11: Classification comparison using sequence of cell masks. a) General flow of CNN-
GRU. Sequences of masks are padded and used as inputs. CNN and GRU layers use identical
weights for each time step. b) Confusion matrix for HL60 vs. HL60d. c) Confusion matrix
for HL60 vs. HL60n.

46

Untreated Morphology vs. Treated Morphology

Figure 3.12: Training curve and validation set accuracy for CNN to detect morphology
differences. a) HL60 vs. HL60d binary cross-entropy loss. b) HL60 vs. HL60d accuracy metric
as a function of training. Final accuracy was measured using a held out test set. c) HL60 vs.
HL60n loss. d) HL60 vs. HL60n accuracy.

47

HL60 HL60d
Predicted label

H
L6

0
H

L6
0d

Tr
ue

 la
be

l

0.79 0.21

0.27 0.73

a)

HL60 HL60n
Predicted label

H
L6

0
H

L6
0n

Tr
ue

 la
be

l

0.79 0.21

0.16 0.84

c)

0.00 0.02 0.04 0.06 0.08
Average impact on model output magnitude

R3 Iyy
R3 hu3
R3 hu2
R3 hu1
R2 Ixx

R1-R3 AR
R1 hu2
R2 hu0
R3 Ixx

R3 Slope
R3 hu0

R2 Slope
R1 Ixx

R3 Per
Radius

R3 Area
R2 Iyy
R1 Iyy

R1 Area
R1 Per

b)

0.00 0.02 0.04 0.06 0.08
Average impact on model output magnitude

R1 Ixx/Iyy
R1 Ixx
R2 Ixx

R1 hu0
R1 Iyy

R3 Slope
R3 Area
Radius
R3 Iyy

R1 Per
R1-R3 AR

R3 hu1
rD2

R1 hu2
R1 Area

R2 Slope
R3 hu0

rD1
R2 hu1
R2 hu0

d)

Figure 3.13: Performance for optimized SVM on set of full mechanical and morphologically
derived features. a) Confusion matrix for HL60 vs. HL60d. b) Corresponding SHAP plot for
HL60 vs. HL60d. c) Confusion matrix for HL60 vs. HL60n. d) Corresponding SHAP plot for
HL60 vs. HL60n

48

more descriptors of morphology. The added features were calculated in regions R1, R2, and

R3 (Figure 3.2) and included the central moments of inertia along with Hu moments,99

which are a set of seven two-dimensional moments that are invariant to rotations, scaling,

and translation (Figure 3.13). Using these new morphological descriptors, along with the

previous derived features (Table 3.1), a new SVM was trained and optimized through a

grid search of relevant parameters. The resulting confusion matrix on a held-out test set

and SHAP plots were calculated to understand the importance of these added features for

classification (Figure 3.13). The classification accuracy between HL60 and HL60d showed a

marginal increase in performance (1%) compared to the SVM trained without the additional

feature set. This, along with the poor classification of the undeformed shapes (65%) (Figure

3.12), suggest that the HL60 and HL60d cells are very similar morphologically, and that

deformation-based features are the most informative for classification. The classification of

HL60 versus HL60n was moderately improved by the newly added morphological features

(∼10%). The corresponding SHAP plot (Figure 3.13d) shows that the Hu moments in R2,

where the cells are most relaxed, had the highest average impact on classification. The increase

in classification accuracy, along with the importance of features in R2, suggests that both

morphological and deformation-based features contributed to the classification of HL60 and

HL60n.

While the addition of 30 new morphological features demonstrated an increase in SVM

classification accuracy, it is impossible to ensure that our set of derived features forms a

complete basis to describe all possible shapes the cells assume throughout their deformation

and relaxation. Furthermore, we argue that features like the Hu moments, although useful

for increasing classification, offer little interpretability and cannot be used to inform future

physical models. In cases where one is most concerned with classification accuracy over

interpretability, we found that deep learning, in particular a network with both convolutional

and recurrent layers, outperforms traditional methods such as an SVM. The classification

accuracy of the CNN-GRU was ∼15% higher for HL60 vs. HL60d, and ∼4% for HL60 vs.

49

HL60n. We assert this increase in performance is due to the ability of convolutional layers to

generate a more complete feature set, along with the recurrent layers to learn the temporal

dependence of the same features. It is important to highlight that the use of the deep learning

models, like the CNN-GRU described here, currently presents almost no interpretability.

However, this comes with a trade-off of improved classification accuracy. The significance of

classification is for the eventual sorting of cells.

3.3.7 Calculation of Enrichment

To understand how classification accuracy is mathematically related to sorting efficiency

we imagine a use case in which we have a mixed sample of several cell populations and seek

to characterize one rare population of cells within. We begin with nsample cells from the

biological sample of interest, perhaps from culture or dissociated tissue. The optimal strategy

to analyze the most rare cells would be to characterize all cells in the sample, from which

one would recover r nsample rare cells, where r is the fraction of target cells in the sample.

However, characterizing every cell to find the rare ones could be prohibitive or even untenable.

For example, if one sought a rare population with a frequency of 1/1000, a typical single

cell RNA sequencing run of 10,000 cells would yield data on only 10 of the rare cells. If the

initial population of cells only numbered 10,000, this would be the best one could do without

more information. However, if one started with millions of cells but only had the resources

to sequence 10,000 of them, many more of the target rare cells could be characterized if the

sample were first sorted for the rare cells.

We imagine a future version of our device which could enrich a sample by mechanically

characterizing the cells, then sorting the output into positives and negatives for a defined

profile of the mechanical characteristics of the rare cells. The positive subsample would be

composed of true positives (TP) and false positives (FP), where true positives correspond to

correct model predictions of the rare cell population to be enriched. False positives would

therefore correspond to incorrect predictions of the rare cell population. TP and FP are

50

characterized by the true positive rate (TPR) and the false positive rate (FPR) respectively.

The resource limitations dictate that the subsequent analysis can accept a limited number

of cells, ndownstream < nsample. We seek an enriched sample of size ndownstream that contains

the maximum possible number of true positives. To do so, we mechanically characterize

nRDRUC cells. Therefore, we maximize the number of true positives, nRDRUC r TPR, subject

to the constraint nRDRUC ≤ nsample. We find the number of true positives recovered.

nenriched =


nsamplerTPR, 0 < nsample ≤

ndownstream
FPR−rFPR+rTPR

ndownstreamrTPR
FPR−rFPR+rTPR , nsample >

ndownstream
FPR−rFPR+rTPR

. (3.1)

The number of true positives recovered increases with the sample size, up to the maximum

value given by the second case. If an experimenter knows the number of cells possible to analyze

downstream and can estimate both the rarity of the cells they seek and the classification

performance, the sample size threshold could be useful in designing experiments.

Using this result, we now seek to quantify the impact of the classification performance

on the quality of the sample passed on from mechanical characterization. We define the

maximum enrichment,

enrichment =
nenriched

ndownstreamr
=

TPR

FPR− rFPR + rTPR
. (3.2)

We find that the maximum enrichment increases faster than linearly with decreasing FPR,

as shown in figure 3.14. Therefore, seemingly small increases in classification performance

can have large effects on the usefulness of a sorter.

Each machine learning model is capable of a range of true positive and false positive rates,

visualized as a receiver operating curve (ROC) in Figure 3.15, left. Because the enrichment is

much more sensitive to false positive rate than true positive rate, the maximum enrichment

does not necessarily occur at the same point along this curve as the maximum accuracy,

where the model is evaluated for the confusion matrices in the main text. To find the best

51

r=1/10

r=1/100

r=1/1000

0.5 0.6 0.7 0.8 0.9 1.0

1.0

1.5

2.0

2.5

3.0

TPR

E
nr
ic
hm
en
t

r=1/10

r=1/100

r=1/1000

00.10.20.30.40.5

1

5

10

50

FPR

E
nr
ic
hm
en
t

Figure 3.14: Maximum enrichment.
Top: Enrichment as a function of both true positive rate (TPR) and false positive rate (FPR)
for target cell rarity r = 1/1000.
Bottom left: Maximum enrichment as a function of TPR shown for FPR fixed at .5 and a
range of target cell rarities, r.
Bottom right: Maximum enrichment as a function of FPR shown for TPR fixed at 0.5 and a
range of target cell rarities, r.
Enrichment shown on a log scale in all three subfigures.

52

possible max enrichment for a given model, we evaluate max enrichment at each point along

the ROC, as shown in Figure 3.15, right. The greatest enrichment occurs near the edge of the

ROC, where the number of samples tends to be lower than further along the curve because

of high rejection rates. Therefore, we evaluate the best enrichment for a given model by

averaging the three highest max enrichment values generated along the ROC curve.

We find that for a sorter with the performance of the random forest classifier, the maximum

enrichment is 17 for HL60d cells (Figure 3.7), while a sorter with the accuracy of the

CNN-GRU classifier for the same cells (Figure 3.11) has a best maximum enrichment of

63 (r=1/1000). This corresponds to an increase from 166 rare cells found to 635 rare cells

found for a case where nsample = 1, 000, 000, ndownstream = 10, 000, and r = 1/1000. Note

that only ndownstream r = 10 rare cells would be found without sorting.

3.3.8 Increased Accuracy Leads to Greater Enrichment

To explore the implications of an increased classification accuracy, we considered a

hypothetical case in which a researcher has a heterogeneous sample of cells with many

mechanical phenotypes and desires to characterize a sub-population within the sample.

The sub-population is at most a few percent of the total sample, making conventional

analyses, such as single cell RNA sequencing, microscopy, etc., difficult. We envision our

method being implemented to identify the population of interest by combining deformability

characterization, classification, and in the future sorting. In this case, the classification

accuracy determines how effectively rare cells can be sorted out of the mixed sample. We

define enrichment as the increase in the concentration of target cells in the sorted sample.

We find that enrichment depends on classifier performance, which increases exponentially as

the false positive rate decreases below 0.5, then super-exponentially for false positive rate

less than ∼ 0.2, as shown in Figure 3.14. This dependence gives context to the importance of

the increased classification performance we achieve. Using only morphological features, the

classifier performance would allow enrichment of ∼9 times. Using the mechanotyping data

53

Morphology only, HL-60d

Morphology only, HL-60n

Random Forest, HL-60d

Random Forest, HL-60n

CNN-GRU, HL-60d

CNN-GRU, HL-60n

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FPR

T
P
R

Morphology only, HL-60d

Morphology only, HL-60n

Random Forest, HL-60d

Random Forest, HL-60n

CNN-GRU, HL-60d

CNN-GRU, HL-60n

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

Distance along ROC

E
nr
ic
hm
en
t

Figure 3.15: Evaluation of best enrichment.
Left: Receiver operating curves (ROCs) for several of the models presented in the text.
Right: Max enrichment evaluated for each point along the ROC. Data is excluded for points
where true positive rate (TPR) or false positive rate (FPR) were 0. Shown for rarity r=1/1000.

54

but with the inferior random forest classifier would allow an enrichment of ∼12 times. Finally,

using the CNN-GRU model would allow an enrichment of ∼58 times (each averaging over

prediction performance numbers for HL60d and HL60n, and assuming a rarity of 1/1000).

Thus, the CNN-GRU classifier has about five times the potential effectiveness of the random

forest classifier for future sorting applications.

3.4 Conclusions

Here we show the application of a channel with an undulating width that induces

nonlinear forces to cells at a high throughput. The cells undergo multiple deformations

and relaxations which reveal a multitude of information on cellular mechanics. We explore

how much information is revealed from this dynamic and non-linear deformation process by

comparing the classification accuracy of traditional machine learning models, with derived

features, to deep learning models with automatic feature extraction. For the traditional

machine learning models, the use of SHAP values revealed the mechanotyping parameters

that contributed the most to classification, which can be useful in gaining insight on how

cell populations differ mechanically. At the cost of interpretability, the deep learning models

showed an appreciable increase in classification accuracy, particularly in the case where the

two cell populations were very similar morphologically.

While deep learning characterization and classification are currently performed post

hoc, similar deep learning models with proper hardware can currently process ∼2,000 fps,

leading to the possibility of real-time sorting. We envision this work being incorporated into

existing technologies, such as imaging flow cytometry, and to be especially important for the

segregation of rare cells, including circulating tumor cells100 and even cancer stem cells.101

Future work will include optimizing channel designs with different widths, lengths, and

shapes, as well as extending the deep learning models to include unsupervised clustering.

55

Chapter 4

Deformability Cytometry Clustering with Variational

Autoencoders

4.1 Introduction

In this chapter, deep learning models for unsupervised cell classification are investigated.

The dataset for this study was HL60 cells before and after treatment with CytoD,102 as

described in Chapter 3. Unsupervised cell classification can be investigated using two routes

(Figure 4.1). In a first approach, features, such as region deformation, relaxation rate, and

peak deformation, can be extracted manually or by a feature extraction algorithm, and

subsequently utilized by a clustering algorithm. In a second approach, deep learning methods

can be used to better access the high dimensional latent space for clustering.

Unsupervised clustering is first investigated using traditional clustering algorithms: a

Gaussian mixture model (GMM) and spectral clustering algorithm, with principle component

analysis (PCA) extracted features. However, these scalar features contained too much class

overlap and the clustering task was too challenging for the clustering algorithms to accurately

separate the two populations of cells. This provided motivation to look to deep learning models

for clustering, namely a variational autoencoder (VAE), which has shown success in clustering

cell data.103,104

Here, a novel unsupervised clustering algorithm using a VAE for deformability cytometry

was developed, which is referred to as DeepDeform. A VAE alone was tested first as a

benchmark of clustering performance. However, the VAE was limited in its ability to cluster

cell populations, since it is only capable of compressing data and is not inherently a classifier.

The performance of the VAE was then assessed in tandem with the previously mentioned

traditional clustering algorithms, which showed poor clustering performance likely due to

56

improperly balanced clusters.105 In DeepDeform, a semantic clustering by adopting nearest

neighbors (SCAN) loss is integrated to abrogate the deficiencies of traditional VAEs. The

implementation of SCAN enabled better access to the high dimensional latent space for

clustering cell populations, since it did not require compression of the latent space. Using

DeepDeform, the clustering accuracy of the two cell populations rivaled that of several

supervised methods.106 Additionally, the accuracy approached that of supervised models

when selecting confident samples.

This chapter is organized as follows. Section 4.2 provides an overview of the methods,

such as the dataset and training procedures, similar to that described in Chapter 3. Section

4.3 describes initial efforts to investigate cell populations using conventional clustering and

dimensionality reduction techniques, such as principal component analysis (PCA). Section

4.4 presents the development, optimization, and performance of unsupervised clustering using

DeepDeform on the HL60 model system.

4.2 Methods

Channel Design

The dataset for unsupervised clustering was obtained using the same microfluidic channel

design as described in Section 3.2.2.

4.2.1 Dataset

The dataset for unsupervised clustering included 2239 human leukemia 60 (HL60) cells.

The two classes are comprised of untreated (HL60) and cytochalasin D (CytoD) treated HL60

cells (HL60d). There is a roughly even split (51% - 49%) between the two classes: HL60

and HL60d. CytoD, a fungal toxin, disrupts actin polymerization, resulting in a decrease

in cell stiffness, while leaving morphology and radius relatively unaffected. This means that

any clustering algorithm needs to rely heavily on mechanical properties to separate the

populations rather than more accessible information such as a cell’s morphology or radius.

57

Figure 4.1: Two potential routes to clustering deformability cytometry data exist.

58

Since the class labels are known, an unsupervised model’s ability to extract these known

labels can be evaluated without the model training on them directly. There are 4 different

biological replicates of HL60 cells and 4 biological replicates of HL60d cells. Multiple technical

replicates were also gathered with the same density of cells being used for each session. The

data gathered consist of spatially synchronized 35 frame sequences of 96×96 binary masks of

cells passing through the channel. The video data can be represented in fewer dimensions by

identifying important features such as peak deformation, change in deformation in the first

and second regions, as described previously.102

Features

The features (Table 3.1) for the unsupervised clustering were extracted from the raw

binary masks as explained in Section 3.2.3.

4.2.2 VAE Architecture

Provided below is the VAE architecture of DeepDeform. Raw binary mask data were used

from the previous work (Section 3.3.2). Adam was used as an optimizer with a learning rate

of 1e-3. Gradients were clipped at a norm of 3.0. Experiments were tracked using wandb.107

The loss function was the sum of the reconstruction (Figure 4.2) loss and the KL divergence

(Figure 4.4). Both training and validation losses were monitored during training in addition

to the average class of the five nearest neighbors (Figure 4.3). The batch sizes were 32. Data

were shuffled each iteration. Unless specified, all dense and convolutional activation functions

were the leaky rectified linear activation unit.

Encoder Network:

1. Conv2D - Filters: 8 - Kernel: 3×3

2. MaxPooling2D

3. Conv2D - Filters: 16 - Kernel: 3×3

59

4. MaxPooling2D

5. Conv2D - Filters: 32 - Kernel: 3×3

6. MaxPooling2D

7. Flatten

8. GRU - Dimension 32

µ Network

1. Dense - Dimension 8

σ Network

1. Dense - Dimension 8

Decoder Network:

1. Repeat Vector - Number of repeats: Number of input timesteps

2. GRU - Dimension 32

3. Dense - Dimension 24×24×64

4. Reshape - 24×24×64

5. Conv2D Transpose - Filters: 64 - Kernel: 3×3

6. Conv2D Transpose - Filters: 32 - Kernel: 3×3

7. Conv2D Transpose - Filters: 16 - Kernel: 3×3

60

4.2.3 Implementation of Semantic Clustering by Adopting Nearest Neighbors

(SCAN)

Once encoder training was completed, the model weights were frozen and a single two

dimensional, softmax-activated, dense projection layer was added. The SCAN loss was

implemented according to the work of Gansbeke et al.108 with two separate Adam optimizers

for the consistency (Figure 4.6) and entropy (Figure 4.5) components respectively. Both

optimizers had a beta1 of 0.9, a beta2 of 0.999 and an epsilon of 1e-7. The learning rate of

the consistency optimizer was set to 1e-3 while the entropy optimizer was 5e-3.

Φ′η
c =

1

m

∑
X∈D

Φ′η
c(X) (4.1)

entropy component =
∑
c∈C

Φ′η
clog Φ′η

c (4.2)

consistency component =
1

m

∑
X∈D

∑
k∈Nx

log (Φη(X) · Φη(k)) (4.3)

SCAN loss = λ ∗ entropy component + consistency component (4.4)

4.2.4 Code Availability

The python scripts implemented for data processing and training machine learning models

are available at: https://github.com/siwylab/vae dc

4.3 Unsupervised Clustering Using Manually Extracted Features

In previous work, we observed that for a supervised task, machine learning was required

to extract the most useful information out of the data (Section 3.3.4). Given that many

problems in science are open-ended and do not have known labels, it is necessary to extend

61

Figure 4.2: Total training loss curves are shown for HL60 vs. HL60d. Each line represents a
different random seed. At 140 epochs the model is trained using the SCAN loss.

Figure 4.3: Total average homogeneity of each point’s nearest 5 neighbors is plotted during
VAE training.

62

Figure 4.4: KL loss curves are shown for HL60 vs. HL60d. Each line represents a different
random seed.

Figure 4.5: Entropy component of SCAN loss vs. epoch.

63

Figure 4.6: Consistency component of SCAN loss vs. epoch.

Figure 4.7: First two principal axes from PCA, ground truth labels are shown.

64

our deformability platform to unsupervised problems. It is not, however, clear what the ideal

route towards creating a clustering algorithm is (Figure 4.1). One route, utilizing manually

extracted features, could offer a simple and interpretable model for classification. Meanwhile, a

deep learning could utilize the raw binary masks and could offer improved clustering accuracy.

To investigate the first route, the ten manually extracted features (Table 3.1) previously

found useful for supervised classification were first considered. These data were a good

starting point since they have a much lower dimensionality than the sequence of raw masks

(10 vs. 35×96×96). However, the data were first condensed further since most clustering

algorithms work best with two or three dimensions. The dimensionality was further reduced

down to two dimensions with PCA, which is a lightweight and accessible technique for

dimensionality reduction. With a two-dimensional input space, the practicality of existing

clustering algorithms: the Gaussian mixture model (GMM) and the spectral clustering

model were assessed with the data. Both algorithms are easily implemented and have been

previously used for clustering biological data.11,109 The desired task for these models was

to learn patterns inherent to the data that would allow them to correctly assign class labels

(HL60/HL60d) without training with the labels directly. The compressed features are shown

in Figure 4.7. Both the GMM and the spectral clustering model showed poor performance

with a clustering accuracy of 55.4 % and 50.0 %, respectively. This poor performance was

due to the large overlap between the two classes in the lower dimensional space created by

PCA. Additionally, a large amount of class overlap exists in the hand-picked features even

before compression by PCA.

4.4 Unsupervised Clustering Using Deep Learning

It was hypothesized that a more powerful dimensionality reduction technique would

compress the input data more effectively than manually extracting features. This would

enable the use of richer data, such as the raw binary masks. A variational autoencoder

(VAE) was therefore used as an algorithm to access the rich latent space created by efficient

65

compression of binary masks. VAEs reduces the dimensionality of input data to arbitrary

dimensions29 and has been previously used for clustering cell data.103,104

4.4.1 VAE with Traditional Clustering

To maximize the potential of the model, the raw sequence of binary masks are used as

inputs, which contained more data than the manually extracted features. The VAE was created

using a convolutional recurrent encoder and a corresponding decoder. The decoder network

also contained a recurrent layer, like the encoder, though it used convolutional transpose

layers, in order to scale up the decoder input data to create an output size equal to the raw

binary masks. The full VAE architecture is provided in Figure 4.8. The VAE was trained on

the sum of the reconstruction loss and the Kullback-Leibler divergence (Equation 1.3) with

an encoder output size of 32 dimensions. This size was chosen through a hyperparameter

sweep that optimized the loss of the VAE.

The GMM and spectral clustering models were implemented in order to utilize this latent

space created by the encoder. The results are provided in Figure 4.9. Since the latent space

created by the encoder was still too high-dimensional (32-dimensional) for the clustering

algorithms to be used on their own, PCA was used to further reduce the dimensionality

to two. Both clustering algorithms tested showed an improved mean accuracy but noisy

performance (±3.5%). The unstable performance could be caused by an insufficient balance

of class assignments.

To seek improvements, the data were carefully studied. Interestingly, each point was

observed to contain a high nearest-neighbor homogeneity, meaning that a point was likely to

be surrounded by other points belonging to the same class. We then looked to the literature

to see how this structure in the latent space can be harnessed to improve clustering accuracy.

A technique designed by Gansbeke et al.108 takes advantage of such a structure, but in the

context of unsupervised image clustering. Their method, among other things, uses a loss

function (Equation 1.3) that encourages balanced and confident class predictions. It was

66

Figure 4.8: The VAE architecture is used for reconstructing the sequence of binary masks.
The encoder network is colored orange, and the decoder network is colored blue.

67

Figure 4.9: Accuracy of GMM and spectral clustering on trained VAE latent space. Five
different random seeds are tested.

68

Figure 4.10: The encoder model is first trained in conjunction with a decoder using standard
VAE losses. The encoder weights are then frozen and a projection layer is appended. This
projection layer is then trained using the SCAN loss.

69

hypothesized that this could allow the encoder to cluster the data with greater accuracy.

The VAE model was then trained and the encoder weights were frozen. A projection layer

was then appended to the encoder and the network was trained on the SCAN loss function

(Figure 4.10). The balance between the two components of the SCAN loss (entropy and

consistency) was then optimized.

4.4.2 Initialization Sensitivity Tests

The next step was to characterize the performance of this trained clustering algorithm.

In many previous works, deep unsupervised clustering techniques have been observed to

be sensitive to initialization.110,111 Therefore, initialization was the first component of the

performance to be tested. The model’s sensitivity to initialization was tested with five random

seeds. The sweep over the five random initializations for the total training, VAE loss and

then SCAN loss, resulted in an average accuracy of 61.9%±4.2%. As shown in Figure 4.11,

the model was still quite sensitive to initialization.

It was hypothesized that the poor performance could be due to a global structure rather

than a local. Specifically, while the five nearest neighbors generally belonged the same class,

the global structure may not be conducive to clustering which may not be reflected in the

average nearest neighbor homogeneity. It was observed that increasing the VAE training time

from 30 to 140 epochs was very beneficial. This decreased both the standard deviation in

accuracy from 4.2% to 1.3% (Figure 4.11) and increased the mean accuracy from 61.9% to

67.2%.

To attempt to further mitigate noise and improve training stability, we probed a correlation

between each of the losses (entropy, consistency loss) and clustering accuracy. If it was observed

that one of the losses (whose value does not require knowledge of the ground truth label)

could be used as a proxy for clustering accuracy, multiple random seeds could be tested and

a high-performing model could be selected, thus improving performance. To investigate a

possible correlation, the encoder was trained with five different random seeds (Figure 4.12).

70

Figure 4.11: Two sweeps over the same number of random seeds are shown.

71

Figure 4.12: Classification accuracy plotted against entropy and consistency losses.

Figure 4.13: Each of the encoder models from Figure 4.12 is used to initialize the clustering
model. For a single encoder, three different random seeds were used in an effort to find an
optimal clustering.

72

Although no clear correlation was observed, it was hypothesized that clustering losses should

be compared within a given encoder model, not necessarily between them. Next, for each

encoder model, 3 different random seeds were used to train on the SCAN loss. None of the

loss functions substantially correlated with the accuracy of the clustering, which prevented

the selection of a performant model (Figure 4.13).

4.4.3 Augmentations and Selecting Confident Samples

In an effort to improve the model’s clustering accuracy and encourage the encoder to

extract semantically relevant features, the strategy of augmenting data was considered.

This strategy seeks to modify the data while leaving the underlying class of the data

easily discernible, forcing the model to rely on higher level features. Since the choice of

augmentations is generally task-dependent112 augmentations were chosen that destroyed

low-level information while preserving high-level information, such as the overall order of

timesteps. To test the potential of this approach, we used several augmentations during

training (Figure 4.14). The four augmentations provided in Figure 4.14 include a randomly

placed box of zeros of size 30×30 (style 1), complete subtraction of a given image (style

2), zeroing out 33% of the pixels (style 3), setting 33% of pixels set to one (style 4), and

shuffling of a given image with the next two images in the sequence (style 5). Samples were

chosen at random to be augmented by any one of the listed styles. If a sample was chosen for

augmentation, 10% of the timesteps were augmented with the randomly chosen augmentation

style. It was observed that the augmentations actually decreased the performance significantly

(Figure 4.4.2).

confidence = |Φ′η(X(i))− 0.5| (4.5)

After inspecting model performance more closely, it was observed that confidently clustered

samples were often accurate (prediction confidence defined in equation 4.5). Although one

generally needs to work with the whole dataset, it can be valuable to select representative

73

Figure 4.14: Five different augmentation styles are illustrated. The first image on the left
shows a sample image before augmentation. Style one shows a randomly placed box of zeros
of size 30×30. Style two shows the complete subtraction of a given image. Style three shows
33% of the pixels zeroed out. Style four shows 33% of pixels set to one. Style five shows the
shuffling of a given image with the next two images in the sequence.

Figure 4.15: The fraction of augmented samples plotted against the classification accuracy. If
a given sample is chosen to be augmented, on average 30% of the time steps will be augmented.
Each of the five augmentations is selected at random for each timestep.

74

examples with a high likelihood of being a true positive. For example, in enriching a cell

population for downstream processing, a low false-positive rate is the most important metric.

Therefore, we sought to identify examples to represent each cluster by selecting only confident

samples (> 0.495). The top predictions made up ∼10% of all predictions with an even class

distribution (Figure 4.16). Setting a threshold for classified samples improved the accuracy

to ∼ 80% (Figure 4.17). For comparison, the accuracy of a supervised deep learning model

trained on binary masks is 91% (Section 3.2.8) and the accuracy is 74.5% (Figure 3.8) for a

supervised SVM trained on hand-picked features.

4.5 Conclusions

This work illustrates that deep learning is required for efficient clustering in deformability

cytometry, and provides a new technique for unsupervised clustering. Although simple

dimensionality reduction techniques work well in a variety of areas, the work here shows

that they are insufficient for the compression of complex data obtained from deformability

cytometry. In addition, this work highlights the need for extensive VAE training for the

purpose of feature learning. The potential of the SCAN loss in optimizing an encoder to

classify unknown populations of cells is also explored using a novel unsupervised algorithm,

DeepDeform. These improvements resulted in a model with moderate unsupervised clustering

accuracy. Furthermore, when the predictions are thresholded, the accuracy of this model

increases to 80%. A similar model could find applications in selecting rare, unknown groups

of cells for further scrutiny, such as single cell RNA sequencing. Future work will entail the

improvement of the interpretability of the DeepDeform model.

75

Figure 4.16: Class balance was averaged over five random seeds. A model output of zero
indicates a confident prediction of HL60 while a prediction of one indicates a confident
prediction of HL60d. A prediction of 0.5 indicates complete uncertainty, which is illustrated
with a dotted black line.

76

Figure 4.17: Predictions with a confidence over 0.495 are selected for both the GMM and
DeepDeform. The dark green bar and red bars reflect the selection of confident samples for
the GMM and DeepDeform, respectively.

77

Bibliography

(1) Deng, L. IEEE Signal Proc. Mag. 2012, 29, 141–142.

(2) Chapelle, O.; Haffner, P.; Vapnik, V. N. IEEE Trans. on Neural Netw. 1999, 10,

1055–1064.

(3) Leslie, C.; Eskin, E.; Noble, W. S. In Biocomputing 2002 ; World Scientific: 2001,

pp 564–575.

(4) Smith, N.; Gales, M. Adv. Neural Inf. Process. Syst. 2001, 14.

(5) Boser, B. E.; Guyon, I. M.; Vapnik, V. N. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Association for Computing Machinery:

Pittsburgh, Pennsylvania, USA, 1992, pp 144–152.

(6) Kam, H. T. et al. In Proceedings of the 3rd international conference on document

analysis and recognition, 1995; Vol. 1416, p 278282.

(7) Breiman, L. Mach. Learn. 1996, 24, 123–140.

(8) Zhang, Y.; Alder, M.; Togneri, R. In Proc. - ICASSP IEEE EEE Int. Conf. Acoust.

Speech Signal Process. 1994; Vol. 1, pp I–613.

(9) Rau, A.; Maugis-Rabusseau, C. Brief. Bioinform. 2018, 19, 425–436.

(10) Liu, Y.; Eyal, E.; Bahar, I. Bioinform. 2008, 24, 1243–1250.

(11) Zare, H.; Shooshtari, P.; Gupta, A.; Brinkman, R. R. BMC Bioinform. 2010, 11,

1–16.

(12) LeCun, Y.; Bengio, Y.; Hinton, G. Nature 2015, 521, 436–444.

(13) McCulloch, W. S.; Pitts, W. Bull. Math. Biol. 1943, 5, 115–133.

(14) Wasserman, P.; Schwartz, T. IEEE Expert 1988, 3, 10–15.

(15) Bengio, Y. In Neural networks: Tricks of the trade; Springer: 2012, pp 437–478.

78

(16) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Nature 1986, 323, 533–536.

(17) Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. arXiv preprint arXiv:1409.1259

2014.

(18) Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y. In Proc. - ICASSP IEEE Int.

Conf. Acoust. Speech Signal Process. 2017, pp 4880–4884.

(19) Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J., et al. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies, 2001.

(20) Hochreiter, S.; Schmidhuber, J. Neural Comput. 1997, 9, 1735–1780.

(21) LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.;

Jackel, L. D. Neural Comput. 1989, 1, 541–551.

(22) LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Proc. of the IEEE 1998, 86, 2278–

2324.

(23) Hubel, D. H.; Wiesel, T. N. J. Physiol. 1962, 160, 106.

(24) Rawat, W.; Wang, Z. Neural Comput. 2017, 29, 2352–2449.

(25) Aloysius, N.; Geetha, M. In Proc. ICCSP IEEE Int. Conf. Commun. Signal Process.

2017, pp 0588–0592.

(26) Ker, J.; Wang, L.; Rao, J.; Lim, T. IEEE Access 2018, 6, 9375–9389.

(27) Collins, M.; Duffy, N. Adv. Neural Inf. Process. Syst. 2001, 14.

(28) Goodfellow, I.; Lee, H.; Le, Q.; Saxe, A.; Ng, A. Adv. Neural Inf. Process. Syst. 2009,

22.

(29) Kingma, D. P.; Welling, M. arXiv preprint arXiv:1312.6114 2013.

(30) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-

Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.;

Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 268–276.

79

(31) Simidjievski, N.; Bodnar, C.; Tariq, I.; Scherer, P.; Andres Terre, H.; Shams, Z.;

Jamnik, M.; Liò, P. Frontiers Genet. 2019, 10, 1205.

(32) Berenguer, A. D.; Sahli, H.; Joukovsky, B.; Kvasnytsia, M.; Dirks, I.; Alioscha-Perez,

M.; Deligiannis, N.; Gonidakis, P.; Sánchez, S. A.; Brahimetaj, R., et al. arXiv preprint

arXiv:2011.11719 2020.

(33) Shapley, L. S. A value for n-person games, Contributions to the Theory of Games, 2,

307–317, 1953.

(34) Xie, Y. R.; Castro, D. C.; Bell, S. E.; Rubakhin, S. S.; Sweedler, J. V. Anal. Chem.

2020, 92, 9338–9347.

(35) Grojean, C.; Paul, A.; Qian, Z.; Strümke, I. Nature Reviews Physics 2022, 1–3.

(36) Coulter, W. H. Means for counting particles suspended in a fluid, U.S. Patent 2656508,

1953.

(37) Anderson, J. L.; Quinn, J. A. Rev. Sci. Instrum. 1971, 42, 1257–1258.

(38) Yee, J. P.; Mel, H. C. Biorheology 1978, 15, 321–339.

(39) Yang, L.; Yamamoto, T. Front. Microbiol. 2016, 7, 1500.

(40) Wanunu, M. Phys. Life Rev. 2012, 9, 125–158.

(41) Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends,

J. C.; Aksimentiev, A.; Oukhaled, A. Nat. Biotechnol. 2020, 38, 176–181.

(42) McKinnon, K. M. Curr. Protoc. Immunol. 2018, 120, 5–1.

(43) Lugli, E.; Roederer, M.; Cossarizza, A. Cytom. A 2010, 77, 705–713.

(44) Aghaeepour, N.; Finak, G.; Hoos, H.; Mosmann, T. R.; Brinkman, R.; Gottardo, R.;

Scheuermann, R. H. Nat. Methods 2013, 10, 228–238.

(45) Pedreira, C. E.; Costa, E. S.; Lecrevisse, Q.; van Dongen, J. J.; Orfao, A.; Consortium,

E., et al. Trends in Biotechnol. 2013, 31, 415–425.

80

(46) Doan, M.; Vorobjev, I.; Rees, P.; Filby, A.; Wolkenhauer, O.; Goldfeld, A. E.;

Lieberman, J.; Barteneva, N.; Carpenter, A. E.; Hennig, H. Trends in Biotechnol.

2018, 36, 649–652.

(47) Grimwade, L. F.; Fuller, K. A.; Erber, W. N. Methods 2017, 112, 39–45.

(48) Weisenhorn, A. L.; Khorsandi, M.; Kasas, S.; Gotzos, V.; Butt, H.-J. Nanotechnology

1993, 4, 106.

(49) Radmacher, M.; Fritz, M.; Kacher, C. M.; Cleveland, J. P.; Hansma, P. K. Biophys.

J. 1996.

(50) Dai, J.; Sheetz, M. P. Biophys. J. 1995, 68, 988–996.

(51) Evans, E. Biophys. J. 1973, 13, 941–954.

(52) Otto, O.; Rosendahl, P.; Mietke, A.; Golfier, S.; Herold, C.; Klaue, D.; Girardo, S.;

Pagliara, S.; Ekpenyong, A.; Jacobi, A., et al. Nat. Methods 2015, 12, 199–202.

(53) Asghar, W.; Wan, Y.; Ilyas, A.; Bachoo, R.; Kim, Y.-t.; Iqbal, S. M. Lab Chip 2012,

12, 2345–2352.

(54) Kim, J.; Han, S.; Lei, A.; Miyano, M.; Bloom, J.; Srivastava, V.; Stampfer, M. R.;

Gartner, Z. J.; LaBarge, M. A.; Sohn, L. L. Microsyst. & Nanoeng. 2018, 4, 1–12.

(55) Byun, S.; Son, S.; Amodei, D.; Cermak, N.; Shaw, J.; Kang, J. H.; Hecht, V. C.;

Winslow, M. M.; Jacks, T.; Mallick, P., et al. Proc. Natl. Acad. Sci. U.S.A. 2013,

110, 7580–7585.

(56) Zhou, Y.; Yang, D.; Zhou, Y.; Khoo, B. L.; Han, J.; Ai, Y. Anal. Chem. 2018, 90,

912–919.

(57) Fregin, B.; Czerwinski, F.; Biedenweg, D.; Girardo, S.; Gross, S.; Aurich, K.; Otto, O.

Nat. Commun. 2019, 10, 1–11.

(58) Lin, J.; Kim, D.; Henry, T. T.; Tseng, P.; Peng, L.; Dhar, M.; Karumbayaram, S.;

Di Carlo, D. Microsyst. & Nanoeng. 2017, 3, 1–7.

81

(59) Gossett, D. R.; Henry, T.; Lee, S. A.; Ying, Y.; Lindgren, A. G.; Yang, O. O.; Rao, J.;

Clark, A. T.; Di Carlo, D. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7630–7635.

(60) Urbanska, M.; Muñoz, H. E.; Bagnall, J. S.; Otto, O.; Manalis, S. R.; Di Carlo, D.;

Guck, J. Nat. Methods 2020, 17, 587–593.

(61) Ahmmed, S. M.; Bithi, S. S.; Pore, A. A.; Mubtasim, N.; Schuster, C.; Gollahon, L. S.;

Vanapalli, S. A. APL Bioeng. 2018, 2, 032002.

(62) Pires, R. H.; Shree, N.; Manu, E.; Guzniczak, E.; Otto, O. Philos. Trans. R. Soc. B

2019, 374, 20190081.

(63) Kobayashi, H.; Lei, C.; Wu, Y.; Mao, A.; Jiang, Y.; Guo, B.; Ozeki, Y.; Goda, K. Sci.

Rep. 2017, 7, 1–9.

(64) Masaeli, M.; Gupta, D.; O’Byrne, S.; Tse, H. T.; Gossett, D. R.; Tseng, P.; Utada,

A. S.; Jung, H.-J.; Young, S.; Clark, A. T., et al. Sci. Rep. 2016, 6, 1–11.

(65) Guzniczak, E.; Zadeh, M. M.; Dempsey, F.; Jimenez, M.; Bock, H.; Whyte, G.;

Willoughby, N.; Bridle, H. Sci. Rep. 2017, 7, 1–11.

(66) Guck, J.; Schinkinger, S.; Lincoln, B.; Wottawah, F.; Ebert, S.; Romeyke, M.; Lenz,

D.; Erickson, H. M.; Ananthakrishnan, R.; Mitchell, D., et al. Biophys. J. 2005, 88,

3689–3698.

(67) Mosier, A. P.; Kaloyeros, A. E.; Cady, N. C. J. Microbiol. Methods 2012, 91, 198–204.

(68) Kubánková, M.; Hohberger, B.; Hoffmanns, J.; Fürst, J.; Hermann, M.; Guck, J.;

Krater, M. bioRxiv 2021.

(69) Hodgson, A. C.; Verstreken, C. M.; Fisher, C. L.; Keyser, U. F.; Pagliara, S.; Chalut,

K. J. Lab Chip 2017, 17, 805–813.

(70) Chen, J.; Zheng, Y.; Tan, Q.; Shojaei-Baghini, E.; Zhang, Y. L.; Li, J.; Prasad, P.;

You, L.; Wu, X. Y.; Sun, Y. Lab Chip 2011, 11, 3174–3181.

82

(71) Hou, H. W.; Li, Q.; Lee, G.; Kumar, A.; Ong, C.; Lim, C. T. Biomed. Microdevices

2009, 11, 557–564.

(72) Yang, X.; Chen, Z.; Miao, J.; Cui, L.; Guan, W. Biosens. 2017, 98, 408–414.

(73) Adamo, A.; Sharei, A.; Adamo, L.; Lee, B.; Mao, S.; Jensen, K. F. Anal. Chem. 2012,

84, 6438–6443.

(74) Ren, X.; Ghassemi, P.; Babahosseini, H.; Strobl, J. S.; Agah, M. ACS Sens. 2017, 2,

290–299.

(75) Zheng, Y.; Nguyen, J.; Wang, C.; Sun, Y. Lab Chip 2013, 13, 3275–3283.

(76) Tsai, C.-H. D.; Sakuma, S.; Arai, F.; Kaneko, M. IEEE. Trans. Biomed. Eng. 2014,

61, 1187–1195.

(77) Nyberg, K. D.; Bruce, S. L.; Nguyen, A. V.; Chan, C. K.; Gill, N. K.; Kim, T.-H.;

Sloan, E. K.; Rowat, A. C. Integr. Biol. 2018, 10, 218–231.

(78) Nyberg, K. D.; Hu, K. H.; Kleinman, S. H.; Khismatullin, D. B.; Butte, M. J.; Rowat,

A. C. Biophys. J. 2017, 113, 1574–1584.

(79) Mietke, A.; Otto, O.; Girardo, S.; Rosendahl, P.; Taubenberger, A.; Golfier, S.;

Ulbricht, E.; Aland, S.; Guck, J.; Fischer-Friedrich, E. Biophys. J. 2015, 109, 2023–

2036.

(80) Ge, Y.; Rosendahl, P.; Durán, C.; Töpfner, N.; Ciucci, S.; Guck, J.; Cannistraci, C. V.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2019.

(81) Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E. W. Trends in Biotechnol.

2019, 37, 310–324.

(82) Luo, S.; Shi, Y.; Chin, L. K.; Hutchinson, P. E.; Zhang, Y.; Chierchia, G.; Talbot, H.;

Jiang, X.; Bourouina, T.; Liu, A.-Q. Adv. Intell. Syst. 2021, 3, 2100073.

(83) Hinkle, P.; Westerhof, T. M.; Qiu, Y.; Mallin, D. J.; Wallace, M. L.; Nelson, E. L.;

Taborek, P.; Siwy, Z. S. Sci. Rep. 2017, 7, 1–14.

83

(84) Yang, D.; Zhou, Y.; Zhou, Y.; Han, J.; Ai, Y. Biosens. 2019, 133, 16–23.

(85) Choi, G.; Tang, Z.; Guan, W. Nanotechnol. Precis. Eng. 2021, 4, 045002.

(86) Nawaz, A. A.; Urbanska, M.; Herbig, M.; Nötzel, M.; Kräter, M.; Rosendahl, P.;

Herold, C.; Toepfner, N.; Kubánková, M.; Goswami, R., et al. Nat. Methods 2020,

17, 595–599.

(87) Lundberg, S. M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J. M.; Nair, B.; Katz,

R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. Nat. Mach. Intell. 2020, 2, 2522–5839.

(88) Golfier, S.; Rosendahl, P.; Mietke, A.; Herbig, M.; Guck, J.; Otto, O. Cytoskeleton

2017, 74, 283–296.

(89) Piergiovanni, M.; Galli, V.; Holzner, G.; Stavrakis, S.; DeMello, A.; Dubini, G. Lab

Chip 2020, 20, 2539–2548.

(90) Liu, Y.; Wang, K.; Sun, X.; Chen, D.; Wang, J.; Chen, J. Cytometry A 2022, 101,

434–447.

(91) Abdulla, W. Mask R-CNN for object detection and instance segmentation on Keras

and TensorFlow, https://github.com/matterport/Mask_RCNN, 2017.

(92) Cooper, J. A. J. Cell Biol. 1987, 105, 1473–1478.

(93) Bashashati, A.; Lo, K.; Gottardo, R.; Gascoyne, R. D.; Weng, A.; Brinkman, R. In

Annu. Int. Conf. IEEE Eng. 2009, pp 4945–4948.

(94) Scholtens, T. M.; Schreuder, F.; Ligthart, S. T.; Swennenhuis, J. F.; Greve, J.;

Terstappen, L. W. Cytom. A. 2012, 81, 138–148.

(95) Valkonen, M.; Kartasalo, K.; Liimatainen, K.; Nykter, M.; Latonen, L.; Ruusuvuori,

P. Cytom. A. 2017, 91, 555–565.

(96) Duetz, C.; Van Gassen, S.; Westers, T. M.; van Spronsen, M. F.; Bachas, C.; Saeys,

Y.; van de Loosdrecht, A. A. Cytom. A 2021.

84

https://github.com/matterport/Mask_RCNN

(97) Lundberg, S. M.; Lee, S.-I. In Adv. Neural Inf. Process. Syst. Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran

Associates, Inc.: 2017, pp 4765–4774.

(98) Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Preprint at https://arxiv.org/abs/1412.3555

2014.

(99) Hu, M.-K. IEEE Trans. Inf. Theory 1962, 8, 179–187.

(100) Keller, L.; Pantel, K. Nat. Rev. Cancer 2019, 19, 553–567.

(101) Batlle, E.; Clevers, H. Nat. Med. 2017, 23, 1124.

(102) Combs, C.; Seith, D. D.; Bovyn, M. J.; Gross, S. P.; Xie, X.; Siwy, Z. S. Biomicrofluidics

2022, 16, 014104.

(103) Kopf, A.; Fortuin, V.; Somnath, V. R.; Claassen, M. PLoS Comput. Biol. 2021, 17,

e1009086.

(104) Ternes, L.; Dane, M.; Gross, S.; Labrie, M.; Mills, G.; Gray, J.; Heiser, L.; Chang,

Y. H. Commun. Biol. 2022, 5, 1–10.

(105) Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. In ECCV, 2018, pp 132–149.

(106) Liu, Y.; Wang, K.; Sun, X.; Chen, D.; Wang, J.; Chen, J. Microfluid. Nanofluid.

2020, 24, 1–11.

(107) Biewald, L. Experiment Tracking with Weights and Biases, Software available from

wandb.com, 2020.

(108) Van Gansbeke, W.; Vandenhende, S.; Georgoulis, S.; Proesmans, M.; Van Gool, L.

In ECCV, 2020, pp 268–285.

(109) Liu, Z.; Song, Y.-q.; Xie, C.-h.; Tang, Z. Signal Image Video Process. 2016, 10, 359–

368.

(110) Chang, J.; Wang, L.; Meng, G.; Xiang, S.; Pan, C. In ICCV, 2017.

(111) Xie, J.; Girshick, R.; Farhadi, A. In ICML, 2016, pp 478–487.

85

(112) Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; Isola, P. Adv. Neural Inf.

Process. Syst. 2020, 33, 6827–6839.

86

	List of Figures
	List of Tables
	Acknowledgments
	VITA
	Abstract of the Dissertation
	Introduction to Machine Learning
	Traditional Machine Learning for Classification
	K-Nearest Neighbors
	Support Vector Machine (SVM)
	Random Forest

	Traditional Machine Learning for Clustering
	K-Means Clustering
	Gaussian Mixture Model (GMM)
	Spectral Clustering

	Deep Learning
	Multi-Layer Perceptron (MLP)
	Recurrent Neural Networks (RNN)
	Convolutional Neural Network (CNN)
	Variational Autoencoder (VAE)

	Model Interpretability
	Shapley Values

	Introduction to Cytometry
	Impedance
	Optical
	Imaging
	Deformability

	Deep Learning Assisted Mechanotyping of Individual Cells Through Repeated Deformations and Relaxations in Undulating Channels
	Introduction
	Methods
	Cell Culture
	Channel Preparation and Imaging Setup
	Calculation of Features
	Comsol Simulation
	Machine Learning Model Training
	CNN Prefilter Training Architecture
	GRU Network Architecture
	CNN-GRU Training and Architecture
	Data Preprocessing for Sequential Models
	Code Availability

	Results and Discussion
	Channel Design and Data Acquisition
	Custom Tracking Algorithm
	Application of the Undulating Channel to Probe Perturbation of Actin and Microtubule Networks
	Feature Extraction and Machine Learning Model Comparison
	Deep Learning for Enhanced Classification
	Traditional ML with Added Morphological Features VS. Deep Learning
	Calculation of Enrichment
	Increased Accuracy Leads to Greater Enrichment

	Conclusions

	Deformability Cytometry Clustering with Variational Autoencoders
	Introduction
	Methods
	Dataset
	VAE Architecture
	Implementation of Semantic Clustering by Adopting Nearest Neighbors (SCAN)
	Code Availability

	Unsupervised Clustering Using Manually Extracted Features
	Unsupervised Clustering Using Deep Learning
	VAE with Traditional Clustering
	Initialization Sensitivity Tests
	Augmentations and Selecting Confident Samples

	Conclusions

	Bibliography

