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REVIEW

Can a Micronutrient Mixture Delay the Onset and Progression of Symptoms of
Single-Point Mutation Diseases?

Kedar N. Prasada and Stephen C. Bondyb

aEngage Global, San Rafael, California, USA; bDepartment of Occupational and Environmental Medicine and Department of Medicine,
University of California Irvine, Irvine, California, USA

ABSTRACT
Single-point mutation diseases in which substitution of one nucleotide with another in a gene
occurs include familial Alzheimer’s disease (fAD), familial Parkinson’s disease (fPD), and familial
Creutzfeldt-Jacob disease (fCJD) as well as Huntington’s disease (HD), sickle cell anemia, and
hemophilia. Inevitability of occurrence of these diseases is certain. However, the time of appear-
ance of symptoms could be influenced by the diet, environment, and possibly other genetic fac-
tors. There are no effective approaches to delay the onset or progression of symptoms of these
diseases. The fact that increased oxidative stress and inflammation significantly contribute to the
initiation and progression of these point mutation diseases shows that antioxidants could be use-
ful. The major objectives are (a) to present evidence that increased oxidative stress and chronic
inflammation are associated with selected single-point mutation diseases, such as fAD, fPD, and
fCJD, HD, sickle cell anemia, and hemophilia; (b) to describe limited studies on the role of individ-
ual antioxidants in experimental models of some of these diseases; and (c) to discuss a rationale
for utilizing a comprehensive mixture of micronutrients, which may delay the development and
progression of symptoms of above diseases by simultaneously reducing oxidative and inflamma-
tory damages.

KEY TEACHING POINTS

� Selected single-point mutation diseases and their pattern of inheritance
� Characteristics of each selected single-point mutation disease
� Evidence for increased oxidative stress and inflammation in each disease
� Potential reasons for failure of single antioxidants in human studies
� Rationale for using a comprehensive mixture of micronutrients in delaying the onset and pro-
gression of single-point mutation diseases
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Introduction

A single-point mutation includes substitution of one nucleo-
tide with another, deletion of one nucleotide, or insertion of
one nucleotide. Inheritance of genetic diseases with a single-
point mutation exhibits autosomal dominant, autosomal
recessive, X-linked dominant, X-linked recessive. The
appearance of the symptoms of such single-point mutation
diseases is inevitable; however, the time of detectable symp-
toms could be influenced by environmental, dietary, and
genetic factors. Since these factors do not determine the
inevitability of the appearance of the symptoms, single-point
mutation disease should not be considered multifactorial.

A single-point mutation leading to the production of
mutated protein has two possible harmful consequences.
First, the mutated protein completely or partially loses its
protective function. Second, the mutated protein may gain
toxic function by producing harmful metabolites. The latter
is demonstrated in familial Alzheimer’s disease (fAD), in
which toxicity of mutated amyloid precursor (APP) is

mediated by its metabolite Ab42, while the former is shown
in familial Parkinson’s disease (fPD), familial Creutzfeldt-
Jacob disease (fCJD), Huntington’s disease (HD),
hemophilia, and sickle cell anemia. The above single-point
mutation diseases involve primarily substitution of one
nucleotide with another.

There are no effective strategies to delay the onset or pro-
gression of the symptoms of the above diseases. At this
time, treatment of the such diseases starts as soon as one or
more symptoms appear. It is not possible to correct the
defect at the nucleotide level. Since increased oxidative stress
and chronic inflammation are present before the onset and
during progression of single-point mutation diseases, it is
not certain whether these two biochemical defects cause the
development and progression of these diseases or simply are
consequences of the diseases or not related to the disease at
all. Because antioxidants are known to reduce oxidative and
inflammatory damage, they could be useful in delaying the
initiation and progression of these diseases. This possibility
was demonstrated in female Drosophila melanogaster in
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which a dominant single-point mutated Hopscotch (HOP)
gene HOP (TUM-1) in which glycine is substituted with
glutamic acid. This mutation increases the risk of leukemia-
like tumor in female D melanogaster (1). The female flies
carrying the mutated HOP (TUM-1) gene can be considered
an excellent model of a single-point mutation disease, such
as cancer. Irradiation of these flies with proton radiation
markedly enhanced the incidence of cancer. Dietary supple-
mentation with a mixture of antioxidants 7 days before and
7 days after irradiation markedly reduced cancer incidence
in these female fruit flies (2). Thus, a mixture of antioxi-
dants can prevent consequences of single-point mutation
disease, such as cancer, in flies.

Another example of the utility of antioxidant N-acetylcys-
teine or vitamin E in addressing single-point mutation dis-
ease was demonstrated in Caenorhabditis elegans
(nematodes). Administration of these agents fully prevented
the life-shortening effect of gas-1(fc21) mitochondrial com-
plex I mutation in which arginine is replaced by lysine,
while coenzyme Q10, alpha-lipoic acid, and vitamin C only
partially prevented the reduction in the life-span of these
mutant nematodes (3).

Since increased oxidative stress and chronic inflammation
are associated with single-point mutation diseases, such as
fAD, fPD, fCJD, HD, sickle cell anemia, and hemophilia,
supplementation with antioxidants may be useful in delaying
the onset and progression of these diseases. However, very
few investigations on this issue are available.

A few studies have demonstrated that individual antioxi-
dants commonly used in clinical trials produced consistent
benefits in experimental models of sporadic or single-point
mutation diseases; however, such antioxidant approaches
have yielded inconsistent results in humans varying from no
effect to minimal beneficial effects to harmful effects. The
references for these reports are listed later under appropri-
ate sections.

The major objective of this review is to present evidence
that increased oxidative stress and chronic inflammation are
associated with selected single-point mutation diseases, such
as fAD, fPD, fCJD, HD, sickle cell anemia, and hemophilia.
This review presents the results of limited studies on the
effects of individual antioxidants primarily in the experi-
mental models of the above diseases. This review also dis-
cusses a rationale for utilizing a comprehensive mixture of
micronutrients, which may delay the onset and progression
of the symptoms of the above single-point mutation diseases
by simultaneously reducing oxidative and inflamma-
tory damages.

Patterns of inheritance of single-point
mutation diseases

Autosomal dominant single-point mutation involves only
one copy of a gene and is expressed in the first generation
of offspring. Each affected individual has one affected parent
carrying a single-point mutated gene. Some examples
include fAD, fPD, fCJD, and HD. Autosomal recessive dis-
ease consists of single-point mutations in both copies of a

gene and are expressed in the first generation. Some exam-
ples include sickle cell anemia. Each affected individual has
both affected parents. X-linked single-point mutation can be
dominant or recessive and expresses equally in both men
and women. A characteristic of X-linked inheritance is that
a father cannot pass an X-linked mutation to his son. Some
examples of X-linked dominant single-point mutations are
hypophosphatemic rickets and ornithine transcarbamylase
deficiency, whereas X-linked recessive diseases include
hemophilia A, hemophilia B, and Duchenne muscu-
lar dystrophy.

Characteristic of selected single-point mutation diseases

fAD
Approximately 5% to 10% of Alzheimer’s disease (AD) cases
are due to an autosomal dominant single-point mutation in
the genes of APP, presenilin-1 (PS-1), and presenilin-2 (PS-
2). About 5% of AD cases are due to single-point mutations
in PS-1 and PS-2 genes (4). These mutations increase the
production of Ab42 peptides that play an important role in
neuronal death (5). Individuals carrying these types of muta-
tion show an early onset of AD symptoms.

fPD
Approximately 10% of Parkinson’s disease (PD) cases have
single-point mutations that cause an early onset of the dis-
ease (6). fPD shows both dominant and recessive modes of
inheritance. For example, a single-point mutation in synu-
clein alpha (SNCA) or leucine-rich repeat kinase 2 (LRRK-
2) is autosomal dominant, while a single-point mutation in
the Parkin, Pink-1, or DJ-1 gene is autosomal recessive
(7–9). Individuals carrying mutations in these genes show
an early onset of PD symptoms.

fCJD
fCJD is an autosomal dominant single-point mutation dis-
ease in which lysine is substituted with glutamic acid in the
mutated prion protein (PrPc) (10). Misfolding of normal
PrPc into PrPsc causes disease phenotype. This disease is
characterized by rapid mental deterioration, leading to
dementia and death within a few months (11). The median
age at the onset of the disease is 52 years.

HD
HD is a progressive, fatal, incurable disease. In the United
States, incidence of HD is about 1599 new cases per year
(12). A dominant single-point mutation in the wild-type
huntingtin gene causes an increase in the number of trinu-
cleotide cytosine-adenine-guanosine (CAG) coding for glu-
tamine from 35 to over 140. The resulting polyglutamine
tract is toxic to nerve cells in the brain (13). The higher the
number of CAG, the sooner the HD symptoms would
appear (14–16). The median age at onset of the disease is
usually about 30 to 50 years.
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Sickle cell anemia
This genetic disease affects approximately 100,000 people in
the United States, out of which 70% of cases occur among
African Americans. It is caused by a single-point mutation
in which a single nucleotide changes from adenine to thy-
mine, which leads to substitution of amino acid valine with
glutamic acid in the beta-chain of the hemoglobin protein.
The mutated hemoglobin is referred to as hemoglobin-S
(Hb-S). The mutated Hb-S is devoid of oxygen-carrying
capacity and easily polymerizes to assume “sickle” configur-
ation. The red blood cells carrying Hb-S have reduced life-
span, leading to blood vessel occlusion, tissue ischemia,
infarction, and premature hemolysis (17). This disease
appears around 5months of age.

Hemophilia
This is a single-point mutation disease in which blood does
not clot properly due to inadequate amounts of coagulation
factors VIII and IV. This disease is caused by a single-point
mutation in the gene located on the X chromosome, which
produces abnormal coagulation factors VIII and IV and
interferes with blood clotting (18). The median age at the
onset of symptoms varies depending upon the severity of
the disease. It is 1month for severe symptoms, 8months for
moderate symptoms, and 36months for mild symptoms.

Oxidative stress and chronic inflammation associated
with single-point mutation diseases

Limited investigations on the role of oxidative stress and
chronic inflammation in single-point mutation diseases,
which have been conducted, are described here.

Oxidative stress in fAD
The wild-type APP, PS-1, and PS-2 genes exhibit several cel-
lular functions for protection and survival. One of these pro-
tective mechanisms involves protection against oxidative
damage. A single-point mutation in APP, PS-1, or PS-2
genes increases oxidative stress (19) by enhancing the cleav-
age of mutated APP into Ab42 (20, 21). Ab42, which plays
a major role in the pathogenesis of AD (22, 23), causes
neuronal death by generating free radicals (24, 25). This is
further supported by the fact that treatment of neuronal
cells in culture with alpha-tocopherol (26) or coenzyme Q10
(27, 28) prevented Ab42-induced toxicity. This is an
example of gain in toxic function of a mutated protein
though its metabolite. The fact that the markers of oxidative
damage and inflammation were elevated in fAD before the
appearance of neurological impairments such as cognitive
dysfunction further suggests that these biochemical defects
play a significant role in the initiation of this genetic dis-
ease (29).

Oxidative stress in fPD
The wild-type SNCA, LRRK-2, Parkin, Pink-1, and DJ-1
genes and their respective proteins have more than one

function, but they all share a common function in protecting
nerve cells against oxidative damage. A single-point muta-
tion in the SNCA or Parkin gene enhanced the levels of
markers of oxidative damage, such as malondialdehyde, 4-
hydroxynonenal, 3-nitrotyrosine, and accelerated neuronal
death induced by MPPþ (1-methyl-4-phenylpyridinium), a
neurotoxin used to induce in experimental models of fPD
(30, 31). A single-point mutation in the LRRK-2 gene
increased the levels of markers of oxidative stress in the
cerebrospinal fluid (32). A single-point mutation in Pink-1
or DJ-1 increased oxidative stress in experimental models of
fPD (33, 34). This an example of loss of protective function
of a mutated protein. Animal models of fPD show that
increased oxidative stress could also be associated with
asymptomatic individuals carrying a mutated gene in
fPD (35).

Oxidative stress in fCJD
The wild-type prion gene PRNP codes for PrPc, which is a
copper-binding protein exhibiting superoxide dismutase
activity that protects against oxidative damage (36). Loss of
this function in mutated PrPsc protein causes increased lev-
els of markers of oxidative stress in fCJD (37–40). Increased
levels of lipid peroxidation were found in the brain of
infected with PrPsc (41). Elevated levels of lipid peroxidation
were also present in the cerebrospinal fluid and plasma in
patients with Creutzfeldt-Jacob disease (42). This an example
of loss of protective function of a mutated protein.

Oxidative stress in HD
The wild-type huntingtin protein plays an important role in
the neurogenesis, development, and survival of neurons of
the cortex and midbrain, which are most affected in HD.
Mutated huntingtin protein causes mitochondrial DNA
(mtDNA) damage as well as depletion of mtDNA leading to
increased oxidative stress (43). This an example of loss of
protective function of a mutated protein. However, the fact
that the higher the number of trinucleotides CAG, the
sooner the HD symptoms would appear (14–16) suggests
gain in toxic function of a mutated protein. Thus, mutated
huntingtin protein exhibits both loss of protective function
and gain of toxic function. Increased levels of oxidative
stress are also found in asymptomatic individuals carrying
mutated Huntington gene (44) as well as in patients with
established HD (45, 46).

Oxidative stress in sickle cell anemia
Increased levels of oxidative stress also are found in patients
with sickle cell anemia, which is due to auto-oxidation of
hemoglobin-S, ischemic reperfusion injury, activation of
xanthin oxidase system, and the presence of excessive
amounts of free hemoglobin that catalyzes the Fenton reac-
tion in the presence of iron (47–51). This demonstrates a
loss of protective function by mutated hemoglobin protein.
These changes indicate a loss of protective function of a
mutated protein.
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Oxidative stress in hemophilia
Deficiency in coagulation factor VIII leads to hemophilia A,
while deficiency of coagulation factor IX causes hemophilia
B. Hemophilia A is more common than hemophilia B.
Accumulation of misfolded coagulation factor VIII protein
in the lumen of endoplasmic reticulum activates the
unfolded protein to become misfolded, which causes
increased oxidative stress and apoptosis in vitro and in vivo
(52). Treatment with an antioxidant reduced misfolded
coagulation factor VIII–induced oxidative stress and
enhanced its secretion in vitro and in mice (52) (Table 1).

Increased chronic inflammation in single-point
mutation diseases

There are no significant data on the changes in the levels of
markers of inflammation in most diseases mentioned in this
report. Oxidative stress and inflammation are closely linked.
Acute inflammatory responses involving cells of innate and
adaptive immunity and anti-inflammatory cytokines play an
important role in the healing of oxidative damaged cells. As
soon as the restorative processes are complete, acute inflamma-
tory events are turned off. However, if oxidative damage of cells
is not remedied, chronic inflammation responses occur. Such
inflammatory responses release reactive oxygen species (ROS),
pro-inflammatory cytokines, adhesion molecules, and comple-
ment proteins, all of which contribute to the degeneration and
death of cells. Increased levels of markers of inflammation
together with synaptic loss are found in asymptomatic individ-
uals carrying mutated APP or PS-1 gene (53, 54).

Role of antioxidants in delaying the onset and
progression of single-point mutation diseases

There is some evidence that the action of certain mutated
proteins can be prevented by antioxidants. For example,
mutation in the APP gene causes increased cleavage of
mutated APP into more Ab42 peptides (also called beta-
amyloid peptides), which contribute to the pathogenesis of
AD (22, 23). Beta-amyloid peptides cause neuronal death by
generating free radicals (24, 25). This is supported by the
fact that treatment of neuronal cells in culture with alpha-
tocopherol (26) or coenzyme Q10 prevented Ab42-induced
toxicity (27, 28). In fAD, increased markers of oxidative
damage and inflammation were elevated before the

appearance of neurological impairments such as cognitive
dysfunction (29). Therefore, it is likely that treatment with
antioxidants may delay the onset and progression of the
symptom of fAD.

In fCJD, treatment with resveratrol (55), Mn-SD/catalase
mimetic, EUK-189 (56), pomegranate (57), or epigallocate-
chin gallate (58) protected neurons from the toxic effects of
mutated prion protein PrPsc.

Patients with sickle cell anemia experience deficiency in
several micronutrients (59, 60). Administration of a single
antioxidant such as vitamin C or alpha-tocopherol has been
useful in improving some of the symptoms of sickle cell
anemia (61–63). In another clinical study, administration of
high doses of vitamin C and alpha-tocopherol increased the
markers of hemolysis but did not improve anemia (64). Thus,
the use of a single antioxidant in this disease produced incon-
sistent results. In addition, such an approach may not correct
other micronutrient deficiency in this disease.

Using mouse model of hemophilia, treatment with an
antioxidant reduced misfolded coagulation factor
VIII–induced oxidative stress and apoptosis and enhanced
the secretion of coagulation factor VIII in vitro (52).

Basis for advocating administration of a mixture of
micronutrients in concert

Failure of antioxidants in human diseases
Although the use of a single antioxidant produced impres-
sive results in cell culture and animal models of sporadic
AD (65), it was ineffective in treating patients with AD (66,
67) and sporadic PD (68, 69) as well as HD (70).
Supplementation with a single antioxidant produced min-
imal benefits in early phase of sporadic AD (66, 71).
Administration of beta-carotene alone in male heavy tobacco
smokers increased the risk of lung cancer (72). These studies
suggest that administration of a single antioxidant is unlikely
to provide any significant protection against increased oxi-
dative and inflammatory damages in single-point mutation
diseases and may in fact be harmful.

Potential causes of failure of single antioxidants
Some possible reasons for the failure of a single antioxidant
to yield expected benefits that were observed in animal
models are described here.

Table 1. Loss and gain function of mutated proteins leading to increased oxidative stress in single-gene mutation diseases.

Type of disease Mutated gene site Consequences Gain/loss of function Oxidative stress

Familial PD Parkin and Pink-1 Dopaminergic death Loss Increased
Familial PD DJ-1 Dopaminergic death Loss Increased
Familial PD SNCA Dopaminergic death Loss Increased
Familial PD LRKK-2 Dopaminergic death Loss Increased
Familial AD APP, PS-1, PS-2 More Ab42, neuronal death Gain Increased
Familial CJD PRNP Neurological damage Loss Increased
HD Huntingtin Mitochondrial damage Loss/gain Increased
SCA Hemoglobin Auto-oxidation Loss Increased
Hemophilia A VIII factor Blood coagulability fails Loss Increased
Hemophilia B IX factor Blood coagulability fails Loss Increased

PD¼ Parkinson’s disease; AD¼Alzheimer’s disease; SNCA¼ synuclein alpha; LRRK-2 ¼ leucine-rich repeat kinase 2; PINK-1, PTEN-induced
kinase-1; APP, amyloid precursor protein; PS-1, presenilin-1; PS-2, presenilin-2; CJD, Creutzfeldt-Jacob disease; HD, Huntington’s disease;
SCA, sickle cell anemia; Ab42, beta amyloid 42; PRNP, prion gene; PrPsc, mutated prion protein; mtDNA, mitochondrial DNA.
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a. The selected single-point mutation diseases describe in
this report are associated with high levels of markers of
oxidative damage. Administered single antioxidants in a
high oxidative environment of such patients would be
oxidized, which then would act as a pro-oxidant rather
than as an antioxidant.

b. Different antioxidants are distributed in varying
amounts in various organs. Even within the cell, they
are distributed in different amounts in the subcellular
compartments. Administration of a single antioxidant
cannot accumulate equally in all organs and all parts of
the cell in sufficient amounts to provide adequate pro-
tection against oxidative stress.

c. Alpha-tocopherol is a more effective scavenger of free
radicals in reduced oxygen pressure, whereas beta-caro-
tene and vitamin A are more effective in higher oxygen
pressure (73). Therefore, administration of one antioxi-
dant may not provide adequate protection again oxida-
tive damage in the whole body.

d. Elevation of both the levels of antioxidant enzymes and
dietary and endogenous antioxidant compounds are essen-
tial for optimally reducing oxidative stress. This is due to
the fact that antioxidant enzymes and antioxidant com-
pounds reduce oxidative damage by different mechanisms.
For example, antioxidant compounds neutralize free radi-
cals by donating electrons to those molecules with
unpaired electrons, whereas antioxidant enzymes destroy
H202 by catalysis, converting them to harmless molecules
such as water and oxygen. Administration of a single anti-
oxidant cannot achieve this goal.

e. Administration of a single antioxidant cannot protect
both the aqueous and lipid compartments of the cell
against enhanced oxidative stress.

f. Different antioxidants increase the production of different
protective proteins in the cells by altering the expression
of different microRNAs (74). For example, some antioxi-
dants can activate nuclear factor erythroid 2-related factor
2 (Nrf2) by upregulating miR-200a which inhibits its tar-
get protein Keap1, whereas others can activate Nrf2 by
downregulating miR-21 which binds with 3’-UTR Nrf2
mRNA (75). Thus, different antioxidants activate Nrf2 by
different mechanisms. The utilization of a single antioxi-
dant cannot accomplish this goal.

There are no studies on the effectiveness of individual or
multiple antioxidants in either fAD or fPD. As discussed in
the above paragraphs, administration of a single antioxidant
has been ineffective in patients with HD, produced incon-
sistent results in patients with sickle cell anemia, and yielded
some beneficial effects in experimental models of fCJD and
hemophilia. A systematic study to evaluate the role of mul-
tiple antioxidants should be conducted in animal models of
fAD, fPD, fCJD, HD, sickle cell anemia, and hemophilia as
well as patients with these diseases.

Necessity for utilizing multiple antioxidants
The failure of individual antioxidants to yield expected bene-
fits in human diseases led us to propose that in order to

simultaneously reduce oxidative stress and inflammation, the
levels of antioxidant enzymes and dietary and endogenous
antioxidant compounds should be elevated at the same time
(76). Oral supplementation with a mixture of antioxidant
compounds can enhance their levels in the body; however,
increasing the levels of antioxidant enzymes requires an acti-
vation of a nuclear transcriptional factor Nrf2. A brief
description of steps needed to activate Nrf2 is presented here.

Activation of Nrf2

Under normal physiological conditions, ROS is required to
activate Nrf2. Activated Nrf2 dissociates itself from the
Keap1-CuI-Rbx1 complex in the cytoplasm and migrates to
the nucleus, where it heterodimerizes with a small Maf pro-
tein and binds with antioxidant response element (ARE),
leading to increased transcription of cytoprotective enzymes
including antioxidant enzymes (77–81).

During the prolonged oxidative stress commonly observed
in human chronic diseases, activation of Nrf2 becomes resistant
to ROS (82–84). This is evidenced by the fact that increased
oxidative stress continues to occur in chronic diseases despite
the presence of Nrf2. However, some antioxidants such as
alpha-tocopherol and genistein (85), alpha-lipoic acid (86), cur-
cumin (87), resveratrol (88, 89), omega-3-fatty acids, (90, 91),
glutathione (92), n-acetylcysteine (93), and coenzyme Q10 (94)
can activate this ROS-resistant Nrf2.

Activation of Nrf2 alone is not adequate to enhance the levels
of antioxidant enzymes. Activated Nrf2 must then bind to ARE
in order to promote the transcription of antioxidant enzymes.
The binding ability of Nrf2 to ARE is impaired in old rats, and
treatment with alpha-lipoic acid reverses this defect (86).

Attenuation of chronic inflammation by activated Nrf2
and antioxidants

It has been reported that activation of Nrf2 decreases oxida-
tive stress as well as inflammation (95, 96). Many antioxi-
dant compounds also attenuate inflammation (97–102).

Figure 1 illustrates some major pathways by which anti-
oxidant and anti-inflammatory agents can be protective.
Such compounds can do the following:

a. Activate ROS-resistant Nrf2, leading to increased levels
of antioxidant enzymes that would protect cell by
reducing oxidative damage.

b. Regulate the expression of pro-inflammatory cytokines
by inhibition of transcriptional factor NF-kB (103).

c. Activate SIRT1 (silent information regulator 1), a mem-
ber of the sirtuin family (104).

d. Inhibit mammalian target of rapamycin (105).

Proposed mixture of micronutrients for delaying the
onset and progression of symptoms of single-point
mutation diseases

A comprehensive mixture of micronutrients containing vita-
min A, mixed carotenoids, vitamin C, alpha-tocopheryl
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acetate, alpha-tocopheryl succinate, vitamin D3, alpha-lipoic
acid, N-acetylcysteine, coenzyme Q10, curcumin, resveratrol,
all B-vitamins, and minerals selenomethionine, and zinc for
reducing the risk of sporadic AD and sporadic PD has been
proposed (65, 76). This micronutrient mixture may increase
the levels of antioxidant enzymes by activating the ROS-
resistant Nrf2 and enhancing the levels of dietary and
endogenous antioxidant compounds at the same time. It is
suggested that such a micronutrient mixture may delay the
onset of symptoms of single-point mutation diseases by sim-
ultaneously addressing the reduction of oxidative stress and
chronic inflammation. Such a micronutrient mixture may
improve the efficacy of standard therapy in reducing the
rate of progression of eye diseases.

The issue of whether a mixture of micronutrients has
produced beneficial effects in any human diseases has been
verified in two clinical studies. For example, administration
of a commercial preparation of multiple micronutrients
reduced the risk of cancer in men by about 10% (103) and
delayed the progression of HIV disease, thus delaying the
time period for initiating antiviral therapy (104). Therefore,
it is likely that the proposed micronutrient mixture may
delay the onset and progression of the symptoms of single-
point mutation diseases. Preclinical and clinical studies on
the efficacy of the proposed micronutrient mixture alone or
in combination with standard therapy should be tested in
each of the single-point mutation diseases.

Conclusions

At this time, there are no effective strategies to delay the
onset of the symptoms of a single-gene mutation disease.
Increased oxidative stress has been reported in single-point
mutation diseases, such as fAD, fPD, and fCJD disease as

well as in HD, sickle cell anemia, and hemophilia. Although
environmental, dietary, and genetic factors may influence
the time of onset of the symptoms, increased oxidative and
inflammatory damage significantly contributes to the devel-
opment and progression of the disease symptoms.
Therefore, antioxidant treatment may be useful in delaying
the onset and progression of these diseases. In order to
maximize antioxidant utility and avoid problems incurred
by solely using one antioxidant, use of a comprehensive
mixture of micronutrients containing dietary and endogen-
ous antioxidant compounds is suggested. Such a micronu-
trient mixture can increase the levels of antioxidant enzymes
by activating the ROS-resistant Nrf2 and the levels of dietary
and endogenous antioxidant compounds and thereby may
delay the onset and progression of the symptoms of single-
point mutation diseases by simultaneously improving redox
status and curtailing chronic inflammation.
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