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ABSTRACT 
 

The study of seasonal composition and dynamics of wetland ecosystems and wintering bird 
habitat at Poyang Lake, PR China using object-based image analysis and field observations 

by 
 

Iryna Dronova 
 

Doctor of Philosophy in Environmental Science, Policy and Management 
 

University of California, Berkeley 
 

Professor Peng Gong, Chair 
 
 

Wetlands are among the most productive ecosystems in the world which support critical 
ecological services and high biological diversity yet are vulnerable to climate change and human 
activities. Despite their tremendous economic and ecological value, substantial uncertainty still 
exists about wetland ecosystem function, habitats and response to natural and anthropogenic 
stressors worldwide. This uncertainty is further aggravated by constrained field access and surface 
heterogeneity which limit the accuracy of wetland analyses from remote sensing images. In this 
thesis, I investigated the capabilities of satellite remote sensing with medium spatial resolution 
and object-based image analysis (OBIA) methods to elucidate seasonal composition and 
dynamics of wetland ecosystems and indicators of habitat for wintering waterbirds in a large 
conservation hotspot of Poyang Lake, PR China. 

I first examined changes in major wetland cover types during the low water period when 
Poyang Lake provides habitat to large numbers of migratory birds from the East Asian pathway. 
I used OBIA to map and analyze the transitions among water, vegetation, mudflat and sand 
classes from four 32-m Beijing-1 microsatellite images between late fall 2007 and early spring 
2008. This analysis revealed that, while transitions among wetland classes were strongly 
associated with precipitation and flood-driven hydrological variation, the overall dynamics were 
a more complex interplay of vegetation phenology, disturbance and post-flood exposure. Remote 
sensing signals of environmental processes were more effectively captured by changes in fuzzy 
memberships to each class per location than by changes in spatial extents of the best-matching 
classes alone. The highest uncertainty in the image analysis corresponded to transitional wetland 
states at the end of the major flood recession in November and to heterogeneous mudflat areas at 
the land-water interface during the whole study period. Results suggest seasonally exposed 
mudflat features as important targets for future research due to heterogeneity and uncertainty of 
their composition, variable spatial distribution and sensitivity to hydrological dynamics. 

I further explored the potential of OBIA to overcome the limitations of the traditional pixel-
based image classification methods in characterizing Poyang Lake plant functional types (PFTs) 
from the medium-resolution Landsat satellite data. I assessed the sensitivity in PFT classification 
accuracy to image object scale, machine-learning classification method and hierarchical level of 
vegetation classes determined from ecological functional traits of the locally dominant plant 
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species. Both the overall and class-specific accuracy values were higher at coarser object scales 
compared to near-pixel levels, regardless of the machine-learning algorithm, with the overall 
accuracy exceeding 85-90%. However, more narrowly defined PFT classes differed in their 
highest-accuracy object scale values due to their unique patch structure, ecology of the dominant 
species and disturbance agents. To improve classification agreement between different levels of 
vegetation type hierarchy and reduce the uncertainty, future analyses should integrate spectral 
and geometric properties of vegetation patches with species’ functional ecological traits. 

In periodically flooded wetlands such as Poyang Lake, rapid short-term surface dynamics and 
frequent inundation may constrain detection of directional long-term effects of climate change, 
succession or alien species invasions. To address this challenge, I proposed to classify Poyang 
Lake wetlands into “dynamic cover types” (DCTs) representing short-term ecological regimes 
shaped by phenology, disturbance and inundation, instead of static classes. I defined and mapped 
Poyang Lake DCTs for one flood cycle (late summer 2007-late spring 2008) from combined time 
series of medium-resolution multi-spectral and radar imagery. I further assessed sensitivity of 
DCTs to hydrological and climatic variation by comparing results with a hypothetical change 
scenario of a warmer wetter spring simulated by substituting spring 2008 input images with 2007 
ones.  This analysis identified the major steps in seasonal wetland change driven by flooding and 
vegetation phenology and spatial differences in change schedules across the heterogeneous study 
area. Comparison of DCTs from the actual flood season with the hypothetical scenario revealed 
both directional class shifts away from expanding permanent water and more complex location-
specific redistributions of vegetation types and mudflats. These outcomes imply that changes in 
flooding may have non-uniform effects on different ecosystems and habitats and call for a 
thorough investigation of the future change scenarios for this landscape. The possibility to 
disentangle short-term ecological “regimes” from longer-term landscape changes via DCT 
framework suggests a promising research strategy for landscape ecosystem modeling, 
conservation and ecosystem management.   

Following the assessments of Poyang Lake dynamics in the low water season, I further 
examined which landscape characteristics of the permanent sub-lakes and their 500-m 
neighborhoods extracted from 30-m Landsat satellite imagery could explain non-uniform spatial 
distribution of waterbird diversity and abundance in the ground bird survey of December 2006. I 
hypothesized that the indicators of habitat size, spectral greenness, spectral and geometric patch 
heterogeneity would be positively associated with bird diversity and abundance, while the 
proportions of cover types approximating human disturbance would be negatively related to 
response variables. In the best-fit regression models selected using the Akaike Information 
Criterion, on average higher bird diversity and abundance were associated with larger sub-lake 
size, higher spectral greenness of emergent grassland and lower spectral greenness of mudflat as 
well as lower proportion of flooded/aquatic vegetation. At the same time, predictive performance 
of the best-fit models was penalized by large amounts of unexplained variation and 
inconsistencies among bird survey and remote sensing data from another year. Significant spatial 
autocorrelation in linear regression models raised concerns about missing predictor variables and 
the utility of sub-lakes as spatial units for diversity analysis, but it also suggested new hypotheses 
on spatial ecological interactions in bird community variables and habitat characteristics among 
sub-lakes. Research challenges identified in this study suggest that future monitoring programs 
should take more rigorous steps to standardize the protocols of bird surveys and improve spatial 
and temporal frequency of both bird and habitat observations.   
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Rapid short-term surface variation and problematic field access will likely continue to limit 
remote sensing-based analyses of Poyang Lake wetlands and their habitats by traditional, static-
class approaches. Using “dynamic” classes representing characteristic wetland transitions and 
disturbance regimes may provide more ecologically informative targets for management, 
conservation and modeling of ecosystem change. Object-based image analysis is a potentially 
powerful and promising approach to enhance classification accuracy of remote sensing data and 
ecologically informative interpretations of complex, heterogeneous wetland surfaces such as the 
study area. However, this methodology should be developed further to allow for more automated 
optimization of landscape object properties to capture vegetation patch structure and 
quantitatively assess propagation of the uncertainty among different spatial scales of the analysis. 
Finally, future studies should explore new ways of overcoming the limitations of problematic field 
access and frequent cloudiness obstructing the view of remote sensors by more rigorous utilization 
of in situ wireless sensors to record environmental conditions and surface composition and by 
introducing airborne lake-wide imaging programs for periods of prolonged cloudiness.   
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INTRODUCTION 

This dissertation investigated  seasonal composition and dynamics of wetland ecosystems and 
indicators of habitat for wintering waterbirds in Poyang Lake, the largest freshwater lake in PR 
China and a unique biodiversity conservation hotspot under Ramsar Convention since 1992 
(Ramsar 2012). This research was motivated, first of all, by the urgent need to improve the basic 
scientific understanding of Poyang Lake environment to facilitate conservation and management 
in the face of changing climate, numerous anthropogenic pressures and hydrological 
interventions in the region. I was also interested in enhancing the remote sensing-based 
methodology of landscape analysis and ecological inference for areas with heterogeneous and 
dynamic surface, limited field access and scarce records of historical data, such as the study area.  

My specific objectives were to: 1) describe and investigate patterns of seasonal change in 
Poyang Lake wetland cover and assess the uncertainty of their classification from medium-
resolution remote sensing data; 2) assess the benefits of the object-based image analysis (OBIA) 
framework over traditional pixel-based approaches to characterize and map functional diversity 
of Poyang Lake wetland vegetation with remote sensing; and 3) examine the extent to which 
spatial variation in waterbird diversity and abundance could be explained by landscape 
characteristics of their wintering habitat extracted from the satellite imagery. Below I summarize 
the key research needs which inspired my study and the structure of this thesis. 

Research needs for wetland environments and their analyses with remote sensing 

Wetlands are among the most ecologically diverse and productive ecosystems in the world that 
have been severely impacted by human activities. Global losses of wetland areas, increasing 
anthropogenic pressures on remaining sites and the uncertainty of climate change effects create 
an urgent need for sustainable wetland conservation and management strategies (Gibbs 2000, 
Dudgeon et al. 2006, Gong et al. 2010). Yet, scientific understanding of the linkages among 
wetland ecosystem functioning, biodiversity and multi-faceted ecological services is often still 
insufficient for sustainable ecosystem management and reliable projection of future change 
scenarios. Comprehensive field surveys in wetlands may be constrained by difficult on-site 
access due to soft waterlogged soil, dense vegetation, the risk of disturbing vulnerable habitats 
and species, and sometimes – large size and infectious disease agents (Chen and Lin 2004, 
McCarthy et al. 2005, Tuxen and Kelly 2008, Feng et al. 2012). This limitation has stimulated 
the use of remote sensing platforms for the analyses of wetland cover types, ecological habitats 
and biophysical parameters describing ecosystem function. The primary benefits of remote 
sensing for wetland research include the opportunities to capture vast and/or inaccessible areas at 
the same states of vegetation phenology and flooding, regular revisits, spectral sensitivity of 
instruments to surface composition and lower cost of data compared to frequent field visits 
(Johnston and Barson 1993, Ozesmi and Bauer 2002, McCarthy et al. 2005, Gong et al. 2010). 

At the same time, the accuracy of wetland analyses from remote sensing data is frequently 
challenged by spatio-temporal heterogeneity of wetland surface resulting from high species 
diversity and fine-scale variation in topography, hydrology and disturbance (Johnston and 
Barson 1993, Ozesmi and Bauer 2002, Hestir et al. 2008).  This may lead to spectral confusion 
among cover types, unreliable estimates of ecosystem variables and the infamous “salt-and-
pepper” speckle in wetland maps where image pixels from the same cover type become assigned 
to different classes (Yu et al. 2006, Kim et al. 2011). One strategy to address these challenges is 
to revise the design of classification schemes to make the latter more conducive for 
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interpretations based on remotely collected information. For instance, landscape classifications 
of vegetation may be facilitated by incorporating plant functional traits which affect not only 
differences in their ecological performance but also biophysical, structural and spectral contrasts 
(DeFries et al. 1995, Bonan et al. 2002, Ustin and Gamon 2010). In some cases, heterogeneity of 
wetland surface may be caused by periodic inundation and high magnitude of flood-driven short-
term variation of spectral reflectance. Characterizing such areas in terms of their common 
transitions may be a more useful and ecologically informative approach than trying to 
disentangle static land cover classes (Hess et al. 2003, McCleary et al. 2008, Crews 2008). 

Another promising strategy for improving wetland cover interpretation from remote sensing 
data is the object-based image analysis (OBIA) which allows incorporating spatial structure of 
landscape patches into image classification (Blaschke and Strobl 2001, Benz et al. 2004, 
Blaschke 2010). With OBIA, cover type classification is preceded by image segmentation where 
the pixels are grouped into “objects” approximating meaningful landscape entities, patches or 
patch primitives. The primary benefits of this approach include: 1) reduced likelihood of “salt-
and-pepper” speckle in the output due to smoothing of the local noise at the object level; 2) the 
possibility of using object shape, texture and “contextual” relationships with spatial neighbors as 
class discriminating features in addition to spectral values and 3) the possibility of hierarchical 
landscape analyses with nested different-scale object layers to incorporate relationships between 
ecosystem mosaics and broader topographic, hydrological and/or administrative units (Yu et al. 
2008, Blaschke 2010, Liu and Xia 2010, Kim et al. 2011).  

However, despite more than a decade of OBIA applications in environmental studies, the 
strengths of this framework have been relatively under-explored in continuous-cover landscapes, 
including heterogeneous wetlands, and with medium-resolution imagery. An important caveat 
with OBIA applications, particularly with the popular software, is high user flexibility to 
customize algorithms and steps of image analysis. This offers the benefit of achieving close 
match between image processing and ground targets; however, overly subjective rule sets may be 
difficult to generalize and apply among different image dates and locations (Rokitnicki-Wojcik 
et al. 2011). This issue may be addressed by 1) integration of OBIA with advanced machine-
learning algorithms to enhance the quality of automated classifications and 2) developing 
spatially explicit quantitative methods for addressing the uncertainty in image analysis and its 
change with spatial scale of mapping units. Recent studies have started to explore these strategies 
(Yu et al. 2008, Liu and Xia 2010, Richmond 2011, Kim et al. 2011), but to date their utility for 
analyses of large heterogeneous wetland landscapes has not been fully assessed. 

Poyang Lake wetlands and gaps in scientific understanding  

My dissertation research focused on seasonal composition, dynamics and ecological attributes of 
Poyang Lake region in the central Yangtze River basin of PR China. This periodically inundated 
wetland area is a unique biodiversity hotspot hosting hundreds of thousands of wintering 
migratory waterbirds from the East Asian Flyway (Wu and Ji 2002, Ji et al. 2007, Ramsar 2012). 
Multiple concerns have been raised about the future of Poyang Lake ecosystems in the face of 
changing climate, shifting hydrological regimes due to operation of the Three Gorges Dam 
upstream Yangtze River (Guo et al. 2012), controversial projects for local hydrological dams 
(Barzen et al. 2009, Finlayson et al. 2010, Harris and Hao 2011), pollution and other 
anthropogenic pressures (Fang et al. 2006, Fox et al. 2011). While the severity of these threats 
has been increasingly recognized (Li 2009, Fox et al. 2011, Zhao et al. 2012, Guo et al. 2012), 
resolving these problems and optimizing the conflicting objectives among conservation efforts 
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and various users of Poyang Lake ecosystem services is still hampered by the lack of scientific 
understanding of this wetland environment and specific drivers of its dynamics.  

Historically, comprehensive assessments of Poyang Lake ecosystems have been constrained 
by large size of wetland areas and difficult field access, the risk of water-borne infectious disease 
(Chen and Lin 2004) and the lack of high-resolution basin-wide bathymetric and digital elevation 
data. Temporal frequency of high-quality optical remote sensing images is often limited by the 
cloudiness in the region. Many of the previous remote sensing studies at Poyang Lake focused on 
single-date assessments of selected cover types (de Leeuw et al. 2006, Chen et al. 2007, Zeng et 
al. 2007, Michishita et al. 2008, Liu 2009), while multi-temporal basin-wide analyses addressed 
mainly the dynamics of inundation (Andreoli et al. 2007, Hui et al. 2008, Wu 2008, Zhao et al. 
2011, Feng et al. 2012), and rarely vegetation or habitat features (Liu 2009, Wang et al 2012). 
Recent studies have started to discuss ecosystem components controlling Poyang Lake 
biogeochemical cycles and bird habitats (Wu 2008, Wang et al. 2012), but these efforts have not 
yet thoroughly addressed seasonal and inter-annual wetland dynamics. Furthermore, the utility of 
remote sensing to highlight landscape indicators of waterbird abundance and diversity at Poyang 
Lake and provide cost-effective habitat proxies has been largely unexplored, except for a few 
studies focusing on individual bird species or foraging guilds (de Leeuw et al. 2006, Wu 2008, 
Kwaiser 2009). There is an urgent need for a more rigorous assessment of spatio-temporal 
variation in bird community characteristics and suitable habitat features to inform ecosystem 
management and conservation and to reconcile conflicting land and natural resource use goals in 
the area (Burnham 2007, Barzen et al. 2009, Finlayson et al. 2010, de Boer et al. 2011).  

Thesis structure 

This dissertation is organized as follows. Chapter 1 investigated the change among major Poyang 
Lake wetland cover types and their classification uncertainty during the low water season from 
late fall 2007 to early spring 2008. During this period, landscape composition and dynamics 
directly affect wintering habitat of migratory birds, but surface cover types are much more 
heterogeneous than at high flood stages in the summer. I used OBIA to classify the landscape 
into major general cover types (water, mudflat, vegetation and sand) and proposed a new 
approach to allocate training samples despite limited field data using multi-temporal histograms 
of class-specific spectral indices. I further examined class changes among four Beijing-1 
microsatellite images with 32-m spatial resolution. I quantified the changes among 1) spatial 
extents of the highest-likelihood classes assigned by the “hard” classification; and 2) fuzzy 
membership values to each class per location, regardless of the relative class ranks. Finally, I 
proposed a new method for quantifying classification uncertainty and compared it among 
different classes, image dates and fuzzy cutoff thresholds to assess the sensitivity of 
classification outcomes to the timing of available cloud-free imagery.  

Chapter 2 more closely examined potential benefits of OBIA to enhance classification 
accuracy of Poyang Lake vegetation of the low water season relative to pixel-based methods. For 
this analysis, I first developed a classification scheme of plant functional types (PFTs) based on 
the dominant vegetation species traits related to morphology, physiology, seasonality and 
inundation tolerance. I hypothesized that using image objects as minimum mapping units 
approximating primitive patches of PFTs would enhance classification accuracy relative to pixels 
even with medium-resolution 30-m Landsat data. To investigate this hypothesis, I compared 
object-based PFT classification results among several “small” object segmentation scales 
representing different sizes of primitive vegetation patches, six different statistical machine-
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learning algorithms and two levels of PFT ecological hierarchy. The primary objectives of this 
analysis were: 1) to determine whether an “optimal” segmentation scale can be found that would 
maximize classification accuracy for all PFTs and 2) to assess the agreement between ecological 
hierarchy of PFTs and class allocation based on the spectral and geometric properties of class 
objects and mapped patches.  

In Chapter 3, I used the new understanding of the low water season dynamics and spatial 
distribution of PFTs to develop an alternative framework for assessing change in this rapidly 
varying landscape. Traditional change detection approaches may not be effective for Poyang 
Lake, because continuous variation in flooding and phenology often produces transitional states 
and sub-pixel or sub-objects mixtures of different classes. Instead, I proposed using “dynamic 
cover types” (DCTs) to characterize the landscape in terms of its common transitions 
representing short-term ecological regimes shaped by phenology, disturbance and inundation. I 
demonstrated how DCTs could be defined and mapped for one Poyang Lake flood cycle (late 
summer 2007-late spring 2008) from complementary time series of multi-spectral and radar 
images using OBIA and machine-learning classification algorithms. I also assessed potential 
sensitivity of DCTs to hydrological and climatic variation by comparing results with a 
hypothetical quasi-experimental change scenario of a warmer wetter early spring simulated by 
substituting spring 2008 input images with 2007 ones. Finally, I outlined the critical 
considerations for extending DCT framework to long-term change assessments, including 
temporal frequency and spatial resolution of the data, the choice of sensor(s), validation 
requirements and applicability to landscape ecosystem modeling and management.  

Finally, Chapter 4 applied the generated understanding of the Poyang Lake environment and 
OBIA to examine which landscape characteristics were most closely associated with non-
uniform spatial distribution of wintering waterbird diversity and abundance across this 
landscape. Using ground bird survey data from December 2006 and a temporally close Landsat 
TM image, I performed an object-based wetland cover type classification for 500-m 
neighborhoods of the surveyed sub-lakes within the “natural” wetland area. I then applied an 
information-theoretic model selection approach (Burnham and Anderson 2002) to determine the 
strongest and most consistent statistical predictors of several bird diversity and abundance 
metrics among candidate variables representing sub-lake area, proportions of habitat cover types, 
their spectral greenness, heterogeneity of their spectral and shape properties and classes 
associated with human disturbance. I further examined the potential importance of spatial 
autocorrelation in multivariate regression models and whether correcting for it improved model 
predictive strength. This analysis represented the first effort to explain spatio-temporal variation 
in the aggregate waterbird community characteristics at Poyang Lake with remote sensing. I also 
discussed the limitations of the available survey data and model performance and outlined the 
key challenges that need to be addressed by the future monitoring efforts and spatial analyses of 
waterbird diversity and habitat in this wetland. 
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CHAPTER 1. Object-based analysis and change detection of major wetland cover types 
and their classification uncertainty during the low water period at Poyang Lake, China 

 

This article has been published previously and is reproduced here with permission from the 
publisher, Elsevier 

Dronova I, Gong P, Wang L. 2011. Object-based analysis and change detection of major wetland 
cover types and their classification uncertainty during the low water period at Poyang Lake, 
China. Remote Sensing of Environment 115: 3220-3236.  
 

Abstract 

Productive wetland systems at land-water interfaces that provide unique ecosystem services are 
challenging to study because of water dynamics, complex surface cover and constrained field 
access. We applied object-based image analysis and supervised classification to four 32-m 
Beijing-1 microsatellite images to examine broad-scale surface cover composition and its change 
during November 2007-March 2008 low water season at Poyang Lake, the largest freshwater 
lake-wetland system in China (>4000 km2). We proposed a novel method for semi-automated 
selection of training objects in this heterogeneous landscape using extreme values of spectral 
indices (SIs) estimated from satellite data. Dynamics of the major wetland cover types (Water, 
Mudflat, Vegetation and Sand) were investigated both as transitions among primary classes 
based on maximum membership value, and as changes in memberships to all classes even under 
no change in a primary class. Fuzzy classification accuracy was evaluated as match frequencies 
between classification outcome and a) the best reference candidate class (MAX function) and b) 
any acceptable reference class (RIGHT function). MAX-based accuracy was relatively high for 
Vegetation (≥90%), Water (≥82%), Mudflat (≥76%) and the smallest-area Sand (≥75%) in all 
scenes; these scores improved with the RIGHT function to 87-100%. Classification uncertainty 
assessed as the proportion of fuzzy area within a class at a given fuzzy threshold value was the 
highest for all classes in November 2007, and consistently higher for Mudflat than for other 
classes in all scenes. Vegetation was the dominant class in all scenes, occupying 41.2-49.3% of 
the study area. Object memberships to Vegetation mostly declined from November 2007 to 
February 2008 and increased substantially only in February-March 2008, possibly reflecting 
growing season conditions and grazing. Spatial extent of Water both declined and increased 
during the study period, reflecting precipitation and hydrological events. The “fuzziest” Mudflat 
class was involved in major detected transitions among classes and declined in classification 
accuracy by March 2008, representing a key target for finer-scale research. Future work should 
introduce Vegetation sub-classes reflecting differences in phenology and alternative methods to 
discriminate Mudflat from other classes. Results can be used to guide field sampling and top-
down landscape analyses in this wetland. 

Introduction 

Natural interfaces between terrestrial and aquatic environments often host wetland systems 
which support important ecosystem services, high productivity and biodiversity yet may be 
vulnerable to climate change, human activities and alien species invasions (Nicholls et al. 1999, 
Gibbs 2000, Mitch and Gosselink 2000, Zedler and Kercher 2004, Dudgeon et al. 2006, 
Houlahan et al. 2006).  One of the first steps in uncovering the complexity of wetland surface 
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cover and its temporal variation is studying the context in which biotic components of wetland 
ecosystems such as vegetation interact with physical environment including atmosphere, 
hydrology, soil and geomorphology.  At the broad landscape scales these relationships can be 
manifested in spatio-temporal associations between vegetation and non-vegetated cover types at 
a given location following water fluctuations (Gilmore et al. 2008, Wang et al. 2012).  

 In this study we specifically consider freshwater lake-wetland systems characterized by 
seasonal and interannual fluctuations of the water extent due to hydrological and/or climatic 
cycles such as seasonal change in river discharge, precipitation and human regulations of the 
water levels.  Such spatio-temporal variation produces complex changes in surface cover and 
vegetation across seasons and years which are further affected by wildlife grazing (Lodge 1991, 
Mitchell and Perrow 1998).  In wetlands with seasonal flood cycle (such as in subtropical regions 
with monsoonal climate), periods of low water levels are particularly important for establishment 
and productivity of emergent vegetation (Chen et al. 2007, Barzen 2008, Miller and Fujii 2010) 
and thus for seasonal nutrient cycling.  Studying these dynamics is essential for understanding 
wetland productivity, the source-sink distribution for nutrients and greenhouse gases as well as 
associated wildlife habitats and hazard risks (Davidson and Janssens 2006, Dudgeon et al. 2006, 
Jiang et al. 2008, Niu et al. 2009, Barzen et al. 2009, Marie et al. 2010).   

However, comprehensive assessments of such lake-wetland systems may be challenging due 
to limited on-site access to inundated areas, complexity of cover type and ecosystem 
composition, sometimes vast system dimensions and the risk of infectious disease (Marie et al. 
2010).  For these reasons, remote sensing provides useful sensors and methods to investigate 
large wetland systems and monitor their change over time (e.g., Johnston and Barson 1993, 
Baker et al. 2006, Niu et al. 2009, Gong et al. 2010).  Satellite-based remote sensing is especially 
useful due to simultaneous capture of large areas at the same phenology stage and the possibility 
of consistent revisit. In particular, moderate-resolution multispectral sensors such as Landsat, 
SPOT, and ASTER have been successfully used for studying the extent of flooding and affected 
land cover (Johnston and Barson 1993, Jiang et al. 2008, Hui et al. 2008, Qi et al. 2009), 
detecting presence and composition of wetlands in heterogeneous landscapes (Baker et al. 2006, 
Wright and Gallant 2007), extracting vegetation characteristics (Li and Liu 2002, Michishita et 
al. 2008) and monitoring invasive plant species (Laba et al. 2010).  However, 10-30 m spatial 
resolution is sometimes too coarse for accurate discrimination of fine-scale mosaic in 
heterogeneous wetlands (Wright and Gallant 2007, Laba et al. 2010), which may necessitate 
fuzzy analysis and sub-pixel inference (Li et al. 2005, Gilmore et al. 2008).  Novel microsatellite 
sensors combining multispectral capacity, medium spatial resolution, large-area coverage and 
frequent revisit time are promising for assessment of vast wetland areas (Wang et al. 2012).  

Recently, Object-Based Image Analysis (OBIA) has been applied more frequently for image 
classification and change detection in wetland and inundated systems (Gilmore et al. 2008, 
Conchedda 2008, Laba et al. 2010).  In contrast to pixel-based analysis, OBIA methods consider 
landscapes as aggregations of meaningful objects corresponding to ground entities and patches of 
surface cover (Blaschke et al. 2000, Benz et al. 2004, Arbiol et al. 2006).  As a result, some 
OBIA advantages compared to pixel-based methods include: 1) adding object shape and context 
(e.g., neighborhood characteristics) to spectral and textural information in the analysis and 2) 
absence of “salt-and-pepper” pattern of closely located pixels assigned to different classes which 
is common in pixel-based classifications (Yu et al. 2006).  Context is particularly important in 
classifications of wetlands (Wright and Gallant 2007) given their high spatial heterogeneity and 
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gradients of soil moisture and water depth.  These features make OBIA a very useful research 
venue for both single-date and multitemporal wetland studies (Desclee et al. 2006, Conchedda 
2008, Shen et al. 2008, Johansen et al. 2010). 

However, OBIA has not yet been extensively applied in natural landscapes where continuous 
variation in vegetative cover “dilutes” the boundaries between potential “objects” thus creating 
challenges for cover type classifications (Dorren et al. 2003, Yu et al. 2006, Grenier et al. 2007, 
Mallinis et al. 2008, Yu et al. 2008).  Previous studies in vegetated landscapes have reported both 
higher (e.g., Johansen et al. 2010, riparian and forest ecosystems) and lower (Dorren et al. 2003, 
mountainous forests) OBIA classification accuracies compared to pixel-based methods. Among 
wetland studies, Laba et al. (2010) demonstrated how the overall classification accuracy could be 
improved by incorporating texture variables generated via object-based classification. Gilmore et 
al. (2008) reported relatively high object-based classification accuracies for a number of wetland 
vegetation types and discussed sources of error resulting from multiple possible class 
memberships in heterogeneous wetland environment.  

Typically OBIA involves two major steps: 1) segmentation of the image into objects 
representing groups of pixels at desired scale, shape and compactness criteria (Benz et al. 2004, 
Clinton et al. 2010) and 2) classification of the segments into categories of interest.  In 
supervised classifications, training object data for the classes of interest also need to be specified 
prior to step 2.  Previous vegetation analyses derived training objects from tree crowns and 
canopy gaps in woodlands (Bunting and Lucas 2006, de Chant and Kelly 2009), from patches of 
specific plant types traced either with GPS in the field or within fine-resolution images and aerial 
photos (Laliberte et al. 2004, Yu et al. 2006) and from field survey plots with known ground 
characteristics (Dorren et al. 2003, Yu et al. 2008).  In heterogeneous and dynamic wetlands with 
limited ground access, however, such object-level training data may be difficult to obtain.  To 
address this challenge, one solution may be in using very small spectrally homogeneous 
primitive or “prototype” objects in classification, rather than searching for larger objects exactly 
matching ground entities.  “Prototype” objects can be classified analogous to pixels but with 
added shape and context information (Blaschke et al. 2000, Tzotsos 2006, Gilmore et al. 2008, 
Tian et al. 2008), and larger patches can be recovered in classification outcome. Another 
beneficial strategy is to use image spectral information to guide training object selection.  
Gilmore et al. (2008) used field vegetation type spectra and LiDAR canopy height data to 
generate rules guiding object-based wetland classification.  In a forested landscape OBIA study 
(Chubey et al. 2006), IKONOS bands were thresholded according to the signal from different 
cover types to obtain training data for the land cover classification.  Similarly, image-estimated 
spectral indices (SIs) which represent surface moisture, vegetation or soil brightness (Crist and 
Cicone 1984, Baret and Guyot 1991, McFeeters 1996) may provide useful information for 
training data selection but have not yet been extensively utilized in this respect.  

In this study, we applied OBIA to examine broad-scale composition of the general surface 
cover types and their change during the low water season at the large dynamic freshwater lake-
wetland system of Poyang Lake, People’s Republic of China (Figure 1).  Recent wetland 
research in China using  geospatial technology have demonstrated the critical need for 
monitoring wetland systems and assessing their ecological components at multiple spatial scales 
(Niu et al. 2009, Gong et al. 2010).  The evaluation and future decision on a recently proposed 
new dam project at the Poyang Lake outlet (Li 2009) require enhanced understanding of the 
present seasonal ecological variation in this system which is also a unique biodiversity hotspot 
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and a Wetland of International Importance under Ramsar Convention (Barzen et al. 2009, de 
Leeuw et al. 2010, Finlayson et al. 2010).  

Our analysis was intended as the first step in the top-down hierarchical assessment of 
seasonally variable Poyang Lake surface composition.  We explored new approaches to select 
training data for a basic object-based image classification and to investigate classification 
uncertainty both in terms of its spatial distribution and quantitative magnitude.  We pursued the 
following specific objectives: 1) to classify major general surface cover types of Poyang Lake 
using OBIA, 2) to find an approach for selecting training objects for the classes of interest using 
spectral indices (SIs) derived from the satellite imagery, 3) to propose additional quantitative 
criteria for assessment of classification uncertainty and 4) to investigate changes in cover type 
composition and classification uncertainty following dynamics of Poyang Lake water body 
during the 2007-2008 low water period.  

Methods 

Study area  

This study focuses on the main extent of Poyang Lake in the lower Yangtze River basin of China 
(28°25’-29°45’N, 115°48’-116°44’E; Figure 1).  Surface water coverage here varies from >4000 
km2 during summer monsoon rain season to <1000 km2 in winter, when the area becomes a 
system of sub-lakes interspersed with mudflats, sediment beds and vegetation (Shankman et al. 
2006, Andreoli et al. 2007, Jiang et al. 2008).  Water level fluctuations affect local cover types, 
soil moisture and inundation gradients producing a mosaic of aquatic and wetland ecosystems 
(Barzen et al. 2009).  The low water period at Poyang Lake lasts approximately from November 
to late February-early March, although the exact timing may vary across years (Shankman et al. 
2006, Andreoli et al. 2007, Wang et al. 2012).  Generally, during this period the overall reduction 
of the water body area is expected to continue until the next rain season; however, winter 
precipitation events and hydrological variation (Figure 2a, b) may produce more complex 
dynamics.  While water level changes of the low water season are less dramatic than those of the 
rain season, they influence lake-wetland cover types, vegetation and ecosystem productivity 
during the ‘cool’ lower-temperature winter growing season, which, in turn, governs the 
availability of food and habitat to wildlife (Chen et al. 2007, Wang et al. 2012).  

Remote sensing data 

We used November 30, 2007 and  January 01, February 16 and March 02, 2008 images 
(hereafter scenes Nov07, Jan08, Feb08 and Mar08, respectively) of Beijing-1 microsatellite 
sensor (Surrey Satellite Technology Ltd) which has three spectral bands (near-infrared (NIR) 
0.77-0.90 µm, red 0.63-0.69 µm, green 0.52-0.60 µm), five-day revisit time and wide 600-km 
image swath.  Given the large size of the Poyang Lake system and common cloudiness which 
limit frequent acquisition of high-quality scenes, we used Beijing-1 data as the compromise 
between maximizing revisit time and scene size and reducing spatial resolution.  Because this 
sensor does not have a calibration system on board, we used only Digital Numbers (DNs), and 
not ground-level reflectance, in the analysis.  For image classification and change detection, we 
conducted relative radiometric calibration of Nov07, Feb08 and Mar08 scenes to Jan08 image 
using scene-to-scene regression of image DNs from pseudo-invariant targets selected among 
temporally stable features such as bright sand in dunes and dark water in permanent reservoirs in 
ENVI 4.7 (ITT Visual Solutions Inc.).  To delineate the main lake- wetland area for the analysis, 
we used Envisat ASAR WSM image for August 16, 2007 when water extent was near its annual 



 

5 
 

 

maximum. We also delineated and isolated  human residential areas and intensive land uses such 
as agriculture and man-made reservoirs outside wetland using Microsoft Bing Maps image layer 
within ArcGIS 10 (ESRI Inc.) and Google Earth (Google Inc. 2010).   

General procedure and image segmentation 

First, we implemented image segmentation and object classification in eCognition Developer 8 
(Definiens 2009) by building rule sets that were applied to each scene (Figure 3). In 
classification we considered the following major general Poyang Lake cover types: Water, 
Vegetation, Sand, Mudflat (Table 1). Then we conducted post-classification change detection 
and accuracy assessment in ArcGIS 10 (ESRI Inc.) and further evaluated spatial distribution and 
quantitative magnitude of classification uncertainty (Figure 3).  

To segment each scene into small prototype objects we used eCognition multiresolution 
segmentation tool because in a heterogeneous natural landscape “meaningful” spectrally 
homogeneous objects can occur at different spatial scales (Blaschke et al. 2000, Arbiol 2006).  
Because varying soil moisture and water depth could emphasize the variation of spectral 
reflectance in the NIR region, we gave higher weight to NIR band than to others. 

To select the most suitable segmentation, we assessed the output sensitivity to multiple 
combinations of shape, scale and compactness (Benz et al. 2004, eCognition Developer 8 
Reference Book, Clinton et al. 2010) and evaluated the following criteria: 

1) Mean object homogeneity, as scene-average within-object standard deviation (SD);  
2) Mean contrast to neighbors, as scene-average Mean Difference to Neighbors (MDN; 

eCognition Developer Reference Book); 
3) Variation in object shape, as scene-average ratio of object length to width (L/W).  
Criterion 1 was the most important (Borsotti et al. 1998, Blaschke et al. 2000, Chabrier et al. 

2006) because as classification units, prototype objects need to be homogeneous.  Maximizing 
MDN was also important (Levine and Nazif 1985, Borsotti et al. 1998) but not the highest 
priority because similar neighbor objects were expected given potential spatial autocorrelation 
along the wetness gradients in this landscape.  Finally, criterion 3 was considered specifically for 
Poyang Lake low water period when high variation in shapes is expected with objects ranging 
from more compact (pools of water) to narrower long features (stream channels, belt-shaped 
near-shoreline areas). 

We found that scene-average SD for each band increased with both greater scale and greater 
shape parameter values.  Scene-average MDN generally decreased with greater compactness, 
and as segmentation shape increased, the difference in MDN between low and high compactness 
values became greater.  Finally, the highest scene variance of L/W occurred at lower shape and 
lower compactness. Thus, the combination of low shape (0.2), low compactness (0.1) and small 
scale (5) values represented the suitable compromise providing relatively low within-object 
variation, relatively high scene-average MDN and variation in object shape and were chosen for 
the analysis. 

Image classification 

Pre-processing 

Prior to classification of the natural wetland area, we isolated darker-colored areas corresponding 
to patches of dead reeds (Miscanthus and Phragmites spp.) that had been harvested and burned 
by local people.  Burned areas (<4% of the total study area) were isolated using scene-specific 
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rule sets which first detected dark burned patch objects that were best discriminated from other 
classes. We then applied a region-growing procedure to these objects until the mean absolute 
difference of Normalized Difference Vegetation Index (NDVI) to neighbors reached a threshold 
value indicating the end of the burned area and beginning of another cover type.  In classification 
maps and change analysis burned areas were labeled as Vegetation because they were typically 
located next to similar undisturbed reed stands and contained young regrowth. 

Next, we conducted supervised classification of prototype objects in each scene into Water, 
Vegetation, Sand and Mudflat (Table 1) using supervised nearest neighbor classifier within 
eCognition.  This procedure requires a set of class-specific training objects from which the 
distributions of object-level variables (features) are obtained to evaluate membership functions 
of each class; ideally, these features should be selected so as to facilitate the best discrimination 
of classes based on training data.  Resulting membership functions are applied to each non-
training object to evaluate its membership to alternative classes and to assign a class based on the 
maximum membership value.   

At this stage of analysis we identified two major challenges which were addressed in later 
steps.  First, it was necessary to select the appropriate training objects adequately representing 
each class given the lack of “standard” object types in this heterogeneous landscape.  Below in 
section 2.4.1 we present a method for training sample selection using statistical distributions of 
spectral indices.  Second, to identify the locations of potentially heterogeneous Mudflat objects 
(Table 1), we had to classify Vegetation, Water and Sand classes first and then apply additional 
spectral and context criteria to find training samples and classify Mudflat (Figure 3), as discussed 
in section 2.4.2.  

Training sample selection  

We propose a method to select training samples from the initial segmentation result, which to our 
knowledge has not been previously used in supervised object-based wetland classifications.  This 
approach is based on the premise that our chosen classes (Table 1) are distinct cover types, 
appropriate for the given image spatial resolution.  Hence one may assume that the most 
“representative” objects for a class are located close to the extremes of the spectral indexes (SIs) 
or band transformations which highlight that class most effectively.  Specifically, we used NDVI 
to represent Vegetation, where higher object-level NDVI values indicated a higher probability of 
a vegetated object.  Likewise, Normalized Difference Water Index (NDWI; McFeeters 1996) 
represented Water, with higher NDWI suggesting higher chance of a water object.  For Sand the 
eCognition feature Brightness was used (eCognition Developer Reference Book) with the 
highest values corresponding to bright homogeneous sand dunes and beaches.   

Importantly, to determine which objects with the highest values of a respective index should 
be included in the training set, we needed to specify a cutoff threshold value for the index so that 
training objects could be selected from a pool of objects above that threshold value.  The latter 
should be low enough so that the range of index values above the threshold is representative of 
the corresponding class, while also high enough to minimize the risk of including “mixed” 
objects containing other classes.  The additional challenge in our study was to make threshold 
cutoffs consistent among the four radiometrically balanced scenes, so that the classification 
outputs could be compared in post-classification change detection analysis.  Therefore, we used 
multi-temporal statistical distributions of each spectral index from all four radiometrically 
balanced images to determine the appropriate cutoff thresholds.  
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Specifically, from each scene we built the histograms for object-level NDVI, NDWI and 
Brightness at a small bin size (0.01 for NDVI and NDWI, 0.5 for Brightness) with fixed bin 
ranges (from -1 to 1 for NDVI and NDWI; from 30 to 140 for Brightness).  Then for each index, 
we added the number of objects per each bin and investigated the resulting “multi-temporal” 
histogram shape in terms of the pronounced inflection points where the curvature of the 
histogram function changed (Figure 4).  We expected that these inflection points would reflect 
the natural variation in cover classes. For instance, main area of the Water class is relatively 
unchanged during the low water season, hence the most representative water segment values in 
terms of NDWI should add up to a thicker right tail of the cumulative NDWI histogram (Figure 
4a).  Expansion and development of Vegetation, on the other hand, should have produced a more 
gradual build-up of the right tail of the distribution, which was also reflected in a corresponding 
inflection point (Figure 4b).  Due to potential confusion of Sand with dry Mudflat, we were only 
interested in the brightest Sand objects corresponding to predominantly non-vegetated sand 
features as training objects.  These features were expected to occupy a very small fraction of the 
study area given relatively infrequent occurrence of isolated Sand features (Table 1). Therefore, 
for Brightness index we selected the high-value inflection point separating thinner part of the 
right tail from the rest of the multi-temporal histogram (Figure 4c).  The pronounced inflection 
points reflecting these phenomena were chosen as cutoff values.  

To avoid redundant training samples and to ensure representative sampling coverage of the 
whole area, we selected sample objects for Vegetation, Water and Sand as local maxima for 
NDVI, NDWI and Brightness above the chosen cutoff threshold values within a specified search 
distance, respectively, for each scene.  

Classification and change detection 

Next, we performed a two-step classification of the study area (Figure 3).  First, using selected 
training objects for Vegetation, Water and Sand, we classified the area into these three classes.  
Second, we used all unclassified objects (with minimum membership values less than 0.1 for any 
class) to determine training segments for Mudflat.  We considered scene Nov07 to be the most 
suitable for locating representative mudflat areas since the main water recession already 
happened according to local water level observations but the newly exposed mudflats had not yet 
been fully colonized by vegetation. Therefore, we first determined characteristics of Mudflat 
training objects from scene Nov07 and then applied these values to other radiometrically 
balanced images.  

Due to potential fine-scale heterogeneity of Mudflat (Table 1), we used smaller objects for its 
training segment selection than with other classes.  We merged and then re-segmented all the 
candidate objects at smaller segmentation scale of 3 using the same compactness and shape 
parameters as above.  Next, we temporarily isolated objects that were direct neighbors of the 
already classified Vegetation, Water and Sand because those had greater chance to be “mixed” 
objects.  We then investigated the statistics of NDVI, NDWI, Brightness and other features for 
the remaining unclassified objects.  

Analysis of these unclassified objects along with field notes and photos suggested that the 
most representative Mudflat object values had NDVI, NDWI and Brightness values concentrated 
around the unclassified object mean value for each respective index.  Of the three indices, NDWI 
appeared to have the least skewed distribution among the unclassified objects in all scenes. 
Therefore, to select Mudflat training objects, we applied the search for local maxima of the mean 
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NDWI difference to neighbors, within one standard deviation from the unclassified object mean 
November NDWI value.  The same range of NDWI values was then applied to scene-specific 
unclassified object areas for other images to locate their Mudflat samples.  Resulting Mudflat 
training objects were best separated from other classes with NDVI, NDWI, the eCognition 
Maximum Difference function describing variation in brightness measures within an object 
(Max. Diff.; eCognition Developer Reference Book) and object-level mean NIR features, which 
were then used to estimate object membership to Mudflat.  

Finally, we repeated classification of the whole study area into four classes for each scene and 
updated object class membership values (Figure 3).  Applying our eCognition rule sets to each 
scene separately helped to select training samples for different classes in proportion to the class 
areas.  Next, we analyzed the change among the major cover types (Table 1) between successive 
scenes in ArcGIS 10.0. 

Importantly, in this study we intended to test our proposed methods using the ‘major’ general 
cover types (Table 1) and a small number of spectral bands of the chosen sensor.  We did not 
introduce any further subcategories for classes in Table 1 to further account for intrinsic variation 
within each class due to different plant canopy closure, surface wetness etc.  However, future 
steps of top-down analysis of Poyang Lake surface cover should address the intrinsic variation 
within classes in Table 1 and test these methods on class subcategories as well.  

Fuzzy class membership and classification uncertainty 

We also examined how classification uncertainty varied during the study period.  Object class 
membership values in eCognition represent the likelihoods of an object belonging to each class 
according to the membership function derived from training data.  Therefore, classification 
uncertainty may be represented by objects which either 1) have relatively high membership value 
to more than one class or 2) do not have sufficiently high membership to any class (Gong et al. 
1996), which we refer to as “fuzzy objects”.   

The definition of “fuzziness” depends on the membership function cutoff value, i.e. the 
objects assigned to a primary class are considered fuzzy if their membership to at least one 
secondary or alternative class exceeds some cutoff membership value.  In the “ideal” scenario, if 
training data and discriminating features allow perfect separation of classes, such cutoff values 
should be at or very close to zero.  In reality, membership functions may overlap even for well-
defined classes especially when the number of spectral bands and discriminating features is 
limited.  This creates a chance that some objects are assigned non-zero memberships to 
alternative classes when these alternative cover types are absent from these objects in reality.  At 
the same time, objects may also be fuzzy when the boundary between different cover types lies 
within an object or when two or more cover types are “mixed” at finer spatial scales.  

It follows then that classification uncertainty represented by the fuzzy classification outcome 
may be characterized with the following criteria:  

1) the proportion of fuzzy objects in the total area of each class at any given cutoff value; 
2) the cutoff value at which the number of fuzzy objects within each class becomes zero; 
3) the shape of the curve which relates the proportion of fuzzy objects within a class to the 

corresponding membership cutoff value.  
Criteria 1 and 2 can be used to evaluate the overall uncertainty in a given classification 

outcome for a given class.  The higher are the proportion of fuzzy objects within a class and the 
cutoff value at which the class has no more fuzzy objects, the more likely this class is to be 
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confused with others.  Criterion 3 can be used to evaluate sensitivity of class “fuzziness” to 
change in membership cutoff values and to determine at which cutoff value the “fuzziness” starts 
to decline with further increase in cutoff values thus providing an estimate of the minimum fuzzy 
membership values in the output.  We investigated and compared these criteria both among 
classes and among image dates (sections 3.3 and 4.2).  

Fuzzy accuracy assessment 

Field survey and other reference data 

For classification accuracy assessment, from each scene we used 130 reference objects, 
approximately 50-55% of which represented Vegetation as the primary class, ~20% objects - 
primarily Mudflat, 15-20% objects – primarily Water, and ~10% objects – primarily Sand. These 
reference objects were assigned for each segmented image using field data and supplementary 
information as explained below.   

In December 2007, 103 geolocated field stops were surveyed along 600-3200 m field 
transects representing cover types and vegetation of the Poyang Lake natural wetland area.  
Transects were arranged approximately perpendicular to water boundaries and represented 
different vegetation types, stages of bottomland exposure by receding water and soil moisture 
gradients.  Transect starting and end points were selected based on access to the wetland area 
from roads or boat-reachable waterways.  Depending on site access, visibility and mobility 
within the wetland, the size of sampling area surveyed at each field stop varied from 30×30 m to 
>100×100 m.  At each survey location, we recorded presence/absence of vegetation, water, sand 
and/or mud; percent cover of vegetation, dominant vegetation types and species ID, their average 
height, spatial extent of coverage and phenology status; spatial extent and depth of flooding; 
evidence of grazing by livestock and/or waterbirds; evidence of other human activities.  In 
addition, detailed descriptive information and photos were taken for the surrounding areas.  
Changes in vegetation status and phenology, presence of flooding and/or snow coverage were 
further noted for some accessible sites during January and early March 2008 revisits conducted 
without rigorous sampling due to weather and logistical constraints.  In April 2008, 177 
geolocated field stops were again surveyed within approximately 30×30 m plots along twelve 
transects of 300-1800 m length in a part of the study area which included some of December 
2007 sites as well as new areas that became accessible by the end of the low water season. 

Given frequent cloudiness in Poyang Lake area, it was not possible to predict the days of 
high-quality satellite data acquisition in advance.  Therefore, we were not able to match every 
scene in this analysis with the simultaneously obtained field dataset.  Detailed information 
collected in December 2007 visit allowed us to generate testing data for November 2007 and 
January 2008 scenes, while additional revisits in winter and early March 2008 were used to guide 
score assignments for scene Feb08.  These data together with vegetation survey in April 2008 
were also used for Mar08 classification testing.  Importantly, both the beginning and the end of 
the study period were relatively far in time from the periods of rapid major change in water 
levels that occur before and after the rain season.  Field observations from previous and 
subsequent years indicated that a number of areas accessible for field visits were consistently 
free of water during the low water season and had similar grazing agents present (Wang, 
Dronova, unpublished data from 2006-2007, 2008-2009, 2010-2011 low water seasons).  
Therefore, in assigning classes to reference locations, we supplemented our expert evaluation of 
the latter with information from field visits in March 2006, March 2007, early May 2009, 
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November 2010 and January 2011 during which similar information about vegetation and non-
vegetated cover types was collected as in 2007-2008.  

Because objects were used as the minimum-size units in image classification, we assigned 
individual unclassified objects covering field-surveyed locations as reference data “units”, 
instead of using field stops as separate reference points.  When multiple field-surveyed locations 
fell within a single object, we used the information from all covered locations to determine the 
prevalence of classes of interest within that object.  From the field data described above we 
generated 80-85 reference objects from scenes Nov07, Jan08 and Mar08 and Feb08. To include 
cover types which were not directly accessible in the field (non-vegetated Mudflat, high sand 
dunes, open Water and aquatic Vegetation), we further added about 45-50 reference locations for 
each scene using field observations recorded in areas with high visibility (e.g. at the margins of 
water bodies) and visual assessment of fine-resolution images from Google Earth, Microsoft 
Bing and additional data courtesy of State Key Laboratory of Remote Sensing Science, China.   

Fuzzy accuracy estimation 

In order to account for high spatial heterogeneity of the Poyang Lake wetland, we conducted 
fuzzy accuracy assessment (Gopal and Woodcock 1994, Townsend and Walsh 2001, Gilmore et 
al. 2008).  Based on the area characteristics known from field surveys and/or fine-resolution 
reference images, each reference object was assigned a score for each class (Table 1) using 
‘linguistic scale’ from 1 to 5 (1- Absolutely Wrong; 2- Understandable but Wrong; 3 – 
Reasonable or Acceptable Answer; 4 – Good Answer; 5 – Absolutely Right; Gopal and 
Woodcock 1994).  This step was implemented independently of image classification and without 
knowing the classification result (Townsend and Walsh 2001).  Next, we overlaid reference 
locations with each classification output and estimated: a) the frequency of matches and 
mismatches of the MAX function which describes whether the class assigned to a test location 
has the highest score in that location, and b) the frequency of matches and mismatches for 
RIGHT function which describes whether the class assigned to a test location has the score equal 
to or greater than a minimum acceptable score of 3 (Gopal and Woodcock 1994).  The MAX 
criterion resembles the conventional “hard” accuracy assessment since a match counts only when 
the assigned class has the highest reference score for a location.  The RIGHT criterion is less 
restrictive in that it recognizes any class with acceptable score (even if lower than maximum) as 
a match.  The difference in match frequency between RIGHT and MAX outcomes can be thus 
interpreted as the score “improvement” with RIGHT function relative to MAX (Gopal and 
Woodcock 1994).  

Results 

Seasonal cover types and their change 

In all four scenes, Vegetation was consistently the dominant cover type occupying about 49% of 
the wetland area during Nov07-Jan08 and slightly declining to 41-42% in Feb08-Mar08 (Figure 
5).  Overall, spatial distribution of Vegetation class was relatively stable, and during the three 
change periods ~83-90% of this class area was derived from already existing Vegetation (Table 
2).  The most pronounced shifts from Vegetation (10.5-18.5% of previously assigned Vegetation 
class; Table 2) in each change period were to Mudflat, with minor losses to Water (0.5-5.9%; 
Table 2) and Sand (0-0.1 %; Table 2).  In turn, new Vegetation areas in each change period 
emerged also primarily from Mudflat (5.5-17.3%; Table 3), and a small percent – from Water 
(1.2-3.6%; Table 3) and Sand (0-4.2%; Table 3).  
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The area of Water, the second largest class, slightly declined from Nov07 to Jan08, but then 
increased to 33.6% of the area in Feb08 and again declined to 25.8% in Mar08 (Figure 5).  This 
pattern was both interesting and surprising, given that the difference between scenes Feb08 and 
Mar08 was only two weeks.  However, local hydrological measurements confirm a similar 
pattern of rapid increase in water levels by almost 3 meters from mid-January to mid-February 
2008, followed by 2-m reduction by early March (Figure 2a), consistent with our results (Figure 
5; Tables 2, 3).  Except for these fluctuations, spatial distribution of Water class did not change 
considerably: 69-98% of new Water area in scenes Jan08, Feb08 and Mar08 was from the 
previous water body area (Table 3).  Most of the losses from Water class at each change period 
were to Mudflat (3.2-20.4% of previously assigned Water class; Table 2) and then to Vegetation 
(2-4.4%; Table 2), consistent with the overall water body recession in winter.  New Water areas 
were also primarily derived from flooded Mudflat (91.4-22.3%; Table 3) and Vegetation (0.8-
8.5%; Table 3). 

Mudflat class increased its area from 13.8% of the wetland in Nov07 to ~22-24% during Jan-
Feb08 to 30.7% in Mar08 (Figure 3).  Spatial distribution of this class appeared to be more 
“dynamic” compared to Vegetation and Water: about 71.6%, 51.5% and 69.7% of its area were 
preserved as Mudflat (Table 2) during Nov07-Jan08, Jan08-Feb08 and Feb08-Mar08 periods, 
respectively.  New Mudflat areas emerged primarily from Vegetation (21.9-39.8% of the new 
Mudflat area; Table 3) and Water (3.5-22.3%; Table 3) during the study period, and in Nov07-
Jan08 also from Sand (21.4%; Table 3). 

Sand was a relatively static class from Jan08 to Mar08, occupying 1.6-2.2% of the study area 
(Figure 5).  In Nov07, however, Sand was classified as 8.7% of the study area, and various bright 
Sand features at the margins of water bodies were particularly visible in scene Nov07.  Our 
results show that about 18% of these Sand areas remained Sand in scene Jan08, while the rest 
were classified mainly as Mudflat, and some shifted into Vegetation and Water (Table 2).  In 
turn, Mudflat contributed ~22% of the Sand extent during Jan-Feb08 and ~40% of new Sand 
area during Feb-Mar08. 

Change in class membership values 

The change in a particular cover type can be manifested not only in the shift from one dominant 
class to another, but also in the change of class membership value within a particular class.  We 
examined spatial distribution and magnitude of changes in membership values to each class 
across the wetland area between successive pairs of images (Figure 6).  Changes in memberships 
to Vegetation (Figure 6a-c) and Mudflat (Figure 6g-i) were the most extensive, while change 
direction also varied among transition periods.  High incidence of reduction in Vegetation class 
memberships in Nov07-Jan08 and Jan08-Feb08 periods was accompanied by a less pronounced 
increase in Vegetation membership on some exposed mudflats (Figure 6a, b).  During Feb-
Mar08 period, however, Vegetation membership increased in a number of areas, while the 
incidence of reductions considerably decreased (Figure 6c). Interestingly, for some areas in 
northeast portion of the lake mapped as Vegetation in scene Nov07 (Figure 5a)  membership to 
Vegetation decreased in Nov07-Jan08 (Figure 6a), while their membership to Water slightly 
increased at this time and further intensified during Jan-Feb08 (Figure 6d, e). These locations 
were most similar to aquatic vegetation beds that were closest to and potentially overlapping 
with Water class and thus particularly prone to flooding.  
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Changes in membership to Vegetation among scenes were also consistent with the general 
atmospheric temperature trend among corresponding dates (Figure 2c) assessed for Nanchang 
(28°41’N 115°53’E, Jiangxi, China) from National Climatic Data Center (NCDC 2011).  Gradual 
decline in daily mean temperature was observed from November 11, 2007 to January 02, 2008 
(Figure 2c).  The coldest period of the 2007-2008 low water season with some days below 
freezing point was from January 13 to February 01, 2008 (Figure 2c). Both periods corresponded 
to observed decline in Vegetation class membership in many areas (Figure 4a, b).  After 
February 01-12 daily mean temperatures started increasing again (Figure 2c), while for a number 
of areas Vegetation membership increased between scenes Feb08 and Mar 08 (Figure 6c).  

Overall, spatial extent of changes in memberships to Water was much smaller than to Mudflat 
or Vegetation and was primarily associated with existing water bodies.  The highest magnitudes 
of change in Water class memberships were observed as declines in Nov07-Jan08 period for a 
number of smaller shallow lakes (Figure 6d) and as increases in Jan-Feb08 and Feb-Mar08 
within water bodies, likely reflecting flooding events. Membership to Mudflat increased in a 
number of locations, often near water bodies, during Nov07-Jan08 and Jan-Feb08 periods 
(Figure 6a,b), while some declines also occurred, especially around the central water body area. 
These patterns were consistent with various transitions of other classes to and from Mudflat 
(Tables 2 and 3).  A more pronounced decrease in Mudflat membership values during Jan08-
Feb08 (Figure 6h), accompanied by increase in Water membership values (Figure 6e), was 
consistent with the abovementioned increase in water levels in this period.  Interestingly, during 
Feb-Mar08 reduction in Mudflat membership values outweighed the increases in other locations 
(Figure 6i), despite the overall increase in Mudflat area at this time (Figure 5c,d). A number of 
locations decreased their membership value to Sand and shifted to Mudflat and Vegetation 
between scenes Nov07 and Jan08, consistent with our abovementioned findings (Figure 6j, Table 
2). Changes in Sand class among Jan08, Feb08 and Mar08 were small and concentrated around 
large sand dunes in northeast portion of the study area (Figure 6k, l). 

Classification uncertainty 

As expected, the proportion of each class area occupied by fuzzy objects was sensitive to the 
fuzzy membership cutoff value (Figure 7), generally declining as the cutoff threshold value 
increased.  As discussed in section 2.5, three aspects of these curves were of particular interest: 
the overall magnitude of fuzzy area proportions at each cutoff value, the minimum cutoff values 
at which classes had no fuzzy objects and the pattern of decline in fuzzy percentages with the 
increase in cutoff values. 

The highest overall proportions of fuzzy objects within each class were found in scene Nov07 
(Figure 7a), while the lowest – in Feb08 and Mar08 (Figure 7c, d).  Mudflat consistently had the 
highest proportion of fuzzy objects than other classes, with the exception of scene Feb08 (Figure 
7c) where Vegetation class had slightly higher proportion of fuzzy objects at ~0.05-0.12 cutoff 
value range. Prevalence of fuzzy area within Vegetation compared to other classes was the 
second highest across the whole range of cutoff values in Jan08 and Feb08 (Figure 7b, c), the 
third highest in Nov08 (Figure 7a) and the lowest in Mar08 (Figure 7d).  Water had generally 
lower proportion of fuzzy area compared to other classes, and its maximum fuzzy area at zero 
cutoff value did not exceed 40%.  Sand had also relatively low proportion of fuzzy objects 
during Jan08-Mar08 (Figure 7b-d), however, in scene Nov07 this class appeared considerably 
fuzzy (Figure 7a). 
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Notably, Mudflat consistently maintained the highest percentages of fuzzy areas than other 
classes, i.e. the rate of decline in “fuzziness” with greater cutoff values was the slowest for 
Mudflat, and cutoff values at which there were no more fuzzy objects – the highest (Figure 7a-d). 
This finding was consistent with relatively lower accuracy of Mudflat compared to Vegetation 
and Water except Jan08 (Table 4). At the same time, for most Mudflat objects the cutoff values 
at which there were no more fuzzy areas did not exceed 0.4-0.45 even in Nov07 as indicated by 
the curve shapes in Figure 7. Such cutoff values decreased for other classes from Nov07 to Feb-
Mar08, but this pattern was most strongly pronounced for Vegetation (Figure 7a-c). Interestingly 
also, in scene Nov07 the proportion of Mudflat fuzzy objects started declining more rapidly after 
cutoff value of 0.05-0.07 and not zero (Figure 7a) indicating that the minimum membership 
values to other classes within Mudflat were within this range. 

Classification accuracy 

Given problematic field access to most of the seasonal Poyang Lake wetland area and the lack of 
field data perfectly matching each satellite image in time in this study, we suggest that focusing 
on the absolute values of the match and mismatch scores would not yield the most meaningful 
interpretation of accuracy assessment results.  Instead, it is useful to investigate the following 
criteria: 1) the relative differences in accuracy among classes for a given criterion (MAX, 
RIGHT), 2) the improvement of match frequency with RIGHT criterion compared to MAX 
criterion for a given class and among classes and 3) the relative differences in both MAX and 
RIGHT accuracy among the images.  

Fuzzy classification accuracy varied among both image scenes and classes (Table 4). The 
highest accuracy was found for Vegetation class (greater than or equal to 90%; Table 4).  In all 
scenes Vegetation was confused with Water due to presence of either flooded emergent 
vegetation areas or aquatic vegetation in parts of the study landscape. In scenes Nov07, Jan08 
and Feb08 Vegetation was confused with Mudflat which, however, was an acceptable alternative 
candidate class for these Vegetation locations as indicated by 3-10% score improvement with 
RIGHT match frequencies.  The best MAX accuracy for Vegetation (97%) was found in scene 
Mar08 (Table 4), suggesting some reduction of confusion among this class and others with 
progression of the growing season. Importantly, 100% match frequencies between our 
classification results and reference data do not automatically mean that all areas of the particular 
class were classified correctly, especially since more than one class could be good or acceptable 
match for a reference location.   

MAX-based accuracy for Water varied from 82-91% among image scenes, with lower scores 
corresponding to the periods preceding and following the temporary water level increase in 
Feb08 scene as discussed above. The lowest Water MAX accuracy of 82% was found in Jan08 
when water levels were close to the minimum values of the study period. Most of the 
mismatches for Water class were due to confusion with Mudflat, and in scenes Nov07 and 
Mar08 – also with Vegetation (Table 4).  In all scenes there was an “improvement” of match 
frequency with the RIGHT criterion suggesting that for most mismatches Water was also 
suitable, although not the best, candidate class. Mudflat generally had lower MAX-based 
accuracy values than Water and Vegetation in all scenes except Jan08, being confused with these 
two classes and also with Sand in Nov07 and Jan08 (Table 4). Both MAX and RIGHT match 
frequency for Mudflat declined progressively from 86% and 95% respectively in Nov07 to 76% 
and 86% in Mar08, consistent with gradual colonization of Mudflats by emerging vegetation. 
However, using RIGHT criterion in each scene improved Mudflat match frequencies by 8-12% 
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(Table 4), because this class was an acceptable candidate based on the reference data.  The 
accuracy for Sand was relatively high according to reference information, and the confusion 
occurred primarily with Mudflat in Nov07 and Mar08, and with Water and Vegetation in Jan08 
(Table 4).   

Discussion 

Poyang Lake surface during the low water period  

Our findings suggest that spatial distribution of Poyang Lake seasonal cover types in many 
locations could be closely associated with fluctuations of the water level and spatial extent of 
flooded surface.  Previous studies mentioned that these dynamics are driven primarily by 
exogenous factors such as precipitation during the monsoon season, seasonal variation in river 
discharge (especially from Yangtze River) and human water level regulations (Shankman et al. 
2006, Jiang et al. 2008, Qi et al. 2009).  While research efforts to better understand complex 
Poyang Lake hydrology are in progress (Andreoli et al. 2007, Hu et al. 2007, Hui et al. 2008), it 
is evident that seasonal recession and expansion of the water body affect both distribution and 
extent of other cover types, particularly vegetation and mudflats. 

We found that during 2007-2008 low water season Poyang Lake water body did not gradually 
recede from November to March. In contrast, the interaction among precipitation events 
throughout winter and flooding in February 2008 likely produced fluctuations in spatial 
distribution and extent of the flooded areas which, in turn, affected surface properties of the 
adjacent Mudflat and Vegetation patches. Two important consequences followed from these 
findings. First, despite the relatively small magnitude of fluctuations in class areas during the 
study period, various transitions among classes were detected as well as considerable changes in 
class membership values even with no change in the primary assigned class. Therefore, any 
future work involving multiple-season of Poyang Lake surface cover properties should 
incorporate satellite images from more than one stage of the “low water” period to adequately 
represent this season in the analysis. Second, the lack of consistent water recession could be one 
of the factors contributing to waterlogged status of wetland soils in many Poyang Lake sites, 
which significantly limited ground or boat access and collection of in situ reference data. It was 
useful, therefore, to employ the proposed semi-automated methods of selecting training objects 
using image segmentation and statistical distributions of spectral indices highlighting classes of 
interest. The suggested approach incorporated a priori assumptions about class associations with 
spectral characteristics of the study area, and allowed us to obtain reasonable training samples 
for Vegetation, Water, Sand and then Mudflat without ample ancillary and field data. Future 
enhancement of the proposed methods can explore other spectral indices and transforms which 
may better highlight subclasses of general cover types considered here, as well as more advanced 
machine-learning classifiers. 

Change in Water class 

Decrease in the Water class area in Nov07-Jan08 was consistent with recession of the water body 
during this period, while variation in spatial extent and location of both Water and Mudflat from 
Jan08 to Mar08 (Figures 5, 6) closely followed fluctuations in the water levels according to local 
hydrological observations (Figure 2a).  Pronounced changes among Water and Mudflat (Tables 
2, 3) occurred due to temporary winter flooding with the peak in mid-February 2008 closely 
matching the date of scene Feb08 (Figure 2a).  While the mechanisms behind hydrological 
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variation at Poyang Lake are complex and may involve human regulations (Jiang et al. 2008, Qi 
et al. 2009), there was a correspondence between this February 2008 flooding and precipitation 
record (Figure 2b) from Nanchang meteorological station (NCDC 2011).  Specifically, the period 
from January 10 to February 6, 2008 was characterized by frequent precipitation events (Figure 
2b) which preceded the observed water level rise (Figure 2a).  Some of this precipitation was 
snow which covered substantial portions of the Poyang Lake wetland (Lin Wang, personal 
observation) and stayed on the ground until atmospheric temperatures began to increase (Figure 
2c). Thus, even after precipitation events the ongoing snowmelt could contribute to shallow-
water coverage of many wetland areas. Furthermore, winter precipitation and hydrological 
changes in the basin area and upstream Yangtze River could also contribute to rise of the water 
levels and to flooding within our study area (Andreoli et al. 2007b, Hu et al. 2007), particularly 
the central part (Figure 5c). Given presumably strong effect of this hydrological variation on 
Vegetation and Mudflat class memberships (Figure 6), our results suggest that even short-term 
inundation events within the low water season may affect composition of the surface cover and 
discrimination of cover types from satellite images. 

Some of the Water class change could be related to Vegetation class, which contributed 7.7-
8.5% of the Water extent during Nov07-Jan08 and Jan-Feb08 as well as emerged out of some 
Water-dominated areas (Table 3).  The examples of transitions among these two classes include: 
1) spread of inundation-tolerant plant species over flooded surfaces; 2) decrease of the water 
level and eventually extent via transpiration of dense vegetation stands (Wetzel 2001); 3) 
senescence of submerged and floating aquatic vegetation within water bodies.  These transitions 
could contribute to the confusion between Water and Vegetation in Nov07 and Mar08 (Table 4), 
when both aquatic and flooded emergent vegetation were present on a landscape.  However, the 
changes between Water and the areas likely dominated by aquatic vegetation have to be 
interpreted with caution.  Senescence of submerged aquatic plants in clear-water areas may 
intensify the contribution of water signal in spectral reflectance from aquatic plant bed locations, 
which could increase the extent of mapped Water class without producing new flooded areas.  
These findings need to be tested at finer spatial scales but they may suggest the target research 
areas where the key transitions in prevalent vegetation functional types might occur (Wang et al. 
2012) potentially affecting system nutrient and energy fluxes (Ding et al. 2005, Kao-Kniffin et 
al. 2010). 

Vegetation change 

Winter growing season at Poyang Lake is characterized by the expansion of emergent wetland 
vegetation, especially Carex spp., although the magnitude of these dynamics may differ among 
years (Chen et al. 2007, Wang et al. 2012).  While our results show that the overall area of 
Vegetation class did not change considerably during the study period, numerous non-vegetated 
locations of Mudflat, Water and Sand shifted to Vegetation.  These transitions reflect plant 
colonization of exposed bottomland, sand features and shallow-water areas (Chen et al. 2007, 
Wang et al. 2012).  Higher frequencies of increases in Vegetation membership coupled with 
decrease in Mudflat membership values during Feb-Mar08 period (Figure 6c, i) were consistent 
with intensified vegetation development and growth at the onset of spring and warmer 
temperatures, even though the total area of Vegetation class did not change dramatically from 
scene Jan08 to Feb08 and Mar08.  However, pronounced reductions in Vegetation class 
memberships in Nov07-Jan08 and Jan-Feb08 periods (Figure 6a, b) reflected an opposite trend of 
Vegetation decline in a number of locations.  Reduction in Vegetation membership did not 
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always result in shift to another class and could be attributed to a number of factors, some of 
which we discuss below.  

 First, plant phenology affects spectral response and thus membership to Vegetation and fuzzy 
classes at the object level.  Thus, decline in photosynthesis and red light absorption in senescing 
leaves of species that are less tolerant of lower winter temperatures could reduce the values of 
NDVI and membership to Vegetation.  Our field observations showed that after a series of 
sporadic winter snowstorms and cold events, top parts of sedge tussocks typically changed from 
green in November to brown and dry in January. In situ collected spectral reflectance (Dronova, 
unpublished data) indicated that this transition reduced the absorption of the red waveband by 
Carex  leaves leading to lower NDVI and thus lower Vegetation class membership consistent 
with Figure 6a and 6b.  

Second, ecological tolerance to prolonged inundation or periodic flooding determine 
vegetation status in flooded locations (Pezeshki 2001, Liu et al. 2006a) and thus class 
memberships to Vegetation and Water.  Temporary flooding of short emergent vegetation from 
mid-January to mid-February could inhibit certain species, increase the contribution of non-
vegetated background to pixel- and object-level spectral reflectance and thus also reduce class 
memberships to Vegetation.  

Finally, considerable change in Vegetation could be attributed to grazing by livestock and 
numerous wintering waterbirds from October to March (Markkola et al. 1999, Ji et al. 2007).  
Livestock grazing occurs in different parts of the study area depending on the seasonal access to 
wetland by local people and animal herds.  Waterbird grazing preferences and intensity vary 
among avian food guilds and may be more explicitly related to wetland “zones” shaped by 
vegetation and water depth (Barzen et al. 2009).  Either type of grazing is likely to reduce the 
amount of vegetative cover and strength of plant spectral response at the pixel and object level.  
Harvesting and burning of reeds by local people (Wang et al. 2012) may have a similar effect.  
Even though we treated burned areas as Vegetation based on field surveys, the amount of green 
vegetative cover in burned locations was much smaller than in unburned patches, resulting in 
lower Vegetation class membership.  Importantly, removal of plant biomass inevitably exposes 
soil (mudflat) background, and thus, areas affected by grazing and harvesting were likely to 
increase membership to Mudflat.  Thus, grazing and harvesting of vegetation during the low 
water period could contribute to observed shifts from Vegetation to Mudflat, Water and Sand as 
well as to the overall variation in class membership values.  

One of the limitations in our analysis was using a single general class for Vegetation.  We 
acknowledge that differences in canopy closure, density, greenness, moisture status may increase 
variation of spectral reflectance within this class and contribute to classification uncertainty.  
Given our purpose of testing the new proposed methods using broadly defined yet distinctive 
cover types and the small number of satellite image bands, we did not split Vegetation into 
further subcategories.  However, future work should extend this analysis to Vegetation 
subclasses based on plant appearance and phenology (e.g., green versus senescent), density or 
canopy closure (e.g., dense versus sparse) or association with water body (emergent, floating, 
submerged). 

Variation in Mudflat and Sand 

Mudflat appeared to be a particularly “dynamic” class in our study, both in terms of its spatial 
distribution and variation in class memberships.  Despite the reduction in Mudflat membership 
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values coupled with Vegetation membership increases during Feb-Mar08, the overall area of 
Mudflat increased from Nov07 to Mar08 at the expense of both Vegetation and Water (Figure 5, 
Table 3).  However, given typical expansion of Vegetation in winter-spring (Chen et al. 2007), 
one could expect a gradual reduction in Mudflat area due to plant colonization, which is not 
shown by our results.  One reason for this pattern could be attributed to the abovementioned 
February 2008 flooding, which could inhibit plant expansions in areas that otherwise would have 
been colonized by March 2008.  Second, waterbird and livestock grazing could considerably 
increase membership to Mudflat in a number of locations earlier classified as Vegetation.  As 
discussed above, pronounced declines in Vegetation class membership (Figure 6a,b) were 
consistent with this observation.  Progressive decline in Mudflat classification accuracy from 
Nov07 to Mar08 (Table 4) further indicated that compositional heterogeneity of Mudflats and, 
thus, the chance of confusion with other classes, increased during the study period.  Finally, 
greater overall classification uncertainty and lower accuracy of Mudflat compared to Water, 
Vegetation and sometimes Sand (Figure 7, Table 4) suggest that some of the detected Mudflat 
expansion could be due to classification error and noise in the data. 

Additional classification uncertainty for Mudflat results from its similarity to Sand class.  
While our definition of the latter includes mainly bright sand features (Table 1), various mixtures 
of sand with finer-textured lake sediment and debris produces an array of gradations between 
Sand and Mudflat especially at the boundaries between these two classes.  Furthermore, elevated 
water sediment loads and water fluctuations may lead to sand deposition in various locations and 
on top of already exposed mudflats, thus contributing to classification uncertainty and Mudflat-
Sand confusion in these areas.  In particular, greater Sand extent in Nov 07 (Figures 5, 6j) 
resulted from numerous bright features along the shoreline some of which were not found in 
other scenes.  We speculate that some of these features could have been deposited by receding 
water with high sediment content from sand dredging (Wu 2008).  The latter activity had been 
extensively implemented at Poyang Lake until the temporary ban on sand mining in April 2008 
awaiting environmental impact assessment (de Leeuw et al. 2010).  

Additional confusion between Mudflat and Sand penalizing the accuracy of each class could 
arise from drying and thus spectral “brightening” of non-vegetated mudflats, especially in scene 
Nov07 following earlier drought conditions (Zhang et al. 2008).  In our results, the best matches 
between classified Sand and reference data were locations where isolated, spatially extensive 
Sand features with little vegetative cover.  Flooding by water and colonization by vegetation of 
both Mudflat and Sand could further exacerbate the confusion between two classes and affect 
their classification accuracies (Table 4).  Future work on resolving the confusion between 
Mudflat and Sand classes could benefit from collecting their spectral reflectance in situ and 
determining the best discriminating spectral features.  

Classification uncertainty and fuzzy accuracy 

The important sources of OBIA classification uncertainty include landscape characteristics, 
object sample reliability and object features as discussed by Yu et al. (2008).  In our study these 
factors are largely represented by a) the initial “fuzziness” of locations containing more than one 
cover class contributing to spectral signal at a given spatial resolution and b) variation in class-
specific spectral, textural and shape object characteristics contributing to confusion between 
classes in both training and testing data.  Atmospheric effects and noise (which were difficult to 
exclude due to the lack of sensor calibration system and usage of DNs in the analysis) could also 



 

18 
 

 

contribute uncertainty to spectral index cutoff thresholds for training objects and class 
discrimination.   

Our study illustrates the utility of fuzzy classification accuracy assessment which takes into 
account multiple class memberships for a given location (Gopal and Woodcock 1994, Townsend 
and Walsh 2001, Gilmore et al. 2008) in this heterogeneous, seasonally variable landscape.  The 
improvements of most classification mismatches with RIGHT criterion relative to MAX (Table 
4) demonstrated that the assigned classes were acceptable for the vast majority of reference 
locations even if they were not always the best matching classes.  Comparison of the uncertainty 
curves (Figure 7) among images and classes was generally consistent with accuracy assessment 
results; both illustrated potential sensitivity of classification accuracy and uncertainty to Poyang 
Lake water body fluctuations.  For instance, higher proportions of fuzzy areas for all classes in 
scene Nov07 reflected transitional state of the landscape between earlier water level decline and 
subsequent spread of emergent vegetation over exposed mudflats.  The lowest MAX-based 
match frequencies for Water class in scene Jan08 when water levels were relatively low (Table 
4; Figure 2a) may also reflect greater confusion between shallow water and mudflat surfaces.  
The improvement of Water and Mudflat accuracies by 18% and 8%, respectively, with the 
RIGHT criterion (Table 4) in scene Jan08 also supports this argument since shallow flooded 
areas often represent a fine-scale mosaic of both water and exposed mud.  

Vegetation had the highest classification accuracy and generally was the easiest class to 
access in the field.  As cool growing season progressed from Nov07 to Mar08, Vegetation MAX 
accuracy increased further, possibly due to increases in plant biomass and coverage in already 
vegetated locations reducing the effect of mud and sand background on spectral reflectance.  
Some local Vegetation membership declines during Nov07-Jan08 and Jan-Feb08 (Figure 6a, b) 
could be attributed to the uncertainty of submerged aquatic vegetation (SAV) detection due to 
mixing of water column and vegetation signals in SAV bed locations.  Our analysis revealed a 
Nov07-Jan08 “hotspot” of SAV as a large patch of Vegetation in northeast portion of the lake 
which changed into Water by Feb-Mar08 (Figure 5).  Because at Poyang Lake most SAV species 
were expected to be dormant in winter (Wu 2008), this area was not included in previous field 
surveys and should be addressed in future work.  

Greatest proportions of fuzzy areas within Mudflat compared to other classes in all images 
agree with frequently lower MAX-based Mudflat accuracies (Table 4) and its inherent 
compositional heterogeneity (Table 1).  Such heterogeneity is driven primarily by temporal 
variation in spectral reflectance of mudflats due to changing soil wetness following water body 
recession on the one hand, and on the other hand – gradual colonization of exposed sites by 
wetland vegetation.  Our results show that even in scene Mar08 with low proportions of fuzzy 
area within other classes, Mudflat maintained relatively high proportions of fuzzy area at the 
lower range of cutoff values (Figure 7d) and had the lowest classification accuracy (Table 4).  
Importantly also, whenever confusion existed between Mudflat and alternative classes, Mudflat 
was more often “penalized” in terms of lower MAX classification accuracy than were other 
classes (Table 4).  However, 8-12% improvements of Mudflat accuracy with RIGHT criterion 
suggest that in a number of reference locations this class was an important secondary cover type 
and a contributor to background reflectance.  Spatial and compositional heterogeneity make 
Mudflat a unique and special seasonal landscape feature which provides growth substrate for 
emergent wetland vegetation during the growing season and a critical feeding ground for a 
number of wintering waterbird species (Chen et al. 2007, Barzen et al. 2009).  Strong sensitivity 
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of this class to changes in neighbor cover types potentially make associated habitats more prone 
to risks of flooding or drought conditions due to climatic variation and human regulations of the 
wetland water levels.  This vulnerability coupled with classification uncertainty, dynamic 
composition and difficult field accessibility of Mudflat make this class an important research 
target for future analysis at finer spatial scales.  

Our proposed approach to examine classification uncertainty by analyzing spatial variation 
and magnitude of change in class membership values (Figure 6) and sensitivity of class 
uncertainty to fuzzy cutoffs (Figure 7) revealed important aspects of landscape change during the 
study period.  In a number of instances class membership values changed without changing the 
primary assigned class, which could reflect dynamic within-class processes such as growth or 
senescence of plants, change in soil wetness and water table height.  Due to spatial resolution and 
data quality constraints at pixel and object level, it may not be always possible to interpret these 
changes directly from the satellite images.  However, the analysis of fuzzy class membership 
values provided the indication of these processes and highlighted their spatial hotspots such as 
Vegetation-Mudflat interfaces which can be investigated in future work.  

Relevance to other Poyang Lake research 

Our analysis of the dominant Poyang Lake cover types can be applied to various future research 
projects in this system.  The mapped cover types represent useful categories to stratify 
subsequent finer-scale analyses, and, given the access difficulties, to guide selection of priority 
target research sites and field sampling efforts.  The four mapped classes provide important 
contextual information on vegetation patch locations and neighborhoods, which can assist the 
studies of the key plant functional types (Wang et al. 2012) and inference of system productivity 
and nutrient fluxes, including greenhouse gas emissions (e.g., Wang et al. 2012, Kao-Kniffin et 
al. 2010).  

Major food guilds of Poyang Lake waterbirds (including many endangered species) are also 
associated with specific cover types (Burnham 2007, Barzen et al. 2009, Kwaiser 2009) whose 
spatial distribution and dynamics are coupled with seasonal water and wetland surface 
characteristics (Wu 2008, Wang et al. 2012).  Since low water season at Poyang Lake hosts the 
largest abundances of wintering waterbirds (Ji et al. 2007), some of the transitions between cover 
types such as change from Vegetation to Mudflat by late winter may highlight important habitat 
features and the uses of vegetation resource by birds.  Even locations with higher classification 
uncertainty may represent important ecological boundaries (ecotones) at the margins of cover 
types and indicate potential “hotspots” for finer-scale studies (Walker et al. 2003).  Thus, 
mapping and analyzing major general cover types is an important first step in top-down 
investigation of Poyang Lake ecosystem mosaic and its spatio-temporal variation.  

Summary 

This study presents an object-based classification of Poyang Lake natural wetland surface and 
change analysis of its general cover types during the 2007-2008 low water season.  Our mapped 
classes represent spatially dominant components of the study landscape which may nest various 
categories for subsequent hierarchical analyses such as plant functional types, water depth zones, 
belts of different soil moisture and thus can be used to guide future finer-scale studies and in situ 
sampling efforts.  
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Our study has demonstrated the use of spectral indices for generating training objects for a 
supervised object-based classification when available reference data are limited.  Future work 
should explore more advanced classification approaches to discriminate cover types and the 
possibility to develop custom SIs for various cover types.  Given high seasonal and year-to-year 
variability in Poyang Lake flood extents and surface composition (Shankman 2006, Wu 2008), 
developing more automated approaches for extracting basic cover type information and its 
uncertainty should facilitate monitoring the ecological conditions of Poyang Lake. 

Our results suggest that changes in spatial distribution of major cover types largely followed 
the dynamics of the Poyang Lake water body, which decreased through Nov 07-Jan 08 and 
expanded again during Jan-Mar 08.  Vegetation was the most extensive class followed by Water, 
Mudflat and Sand.  Local decreases in the strength of vegetation membership function could be 
attributed to flooding and potentially grazing which remains to be tested in future work.  The 
increases in Vegetation membership values in various locations throughout the study period 
increases highlighted progression of the cool growing season.  Mudflat class posed high 
challenge for classification accuracy due to its compositional heterogeneity and problematic 
ground access.  Given the ecological importance of this class for both vegetation and wildlife 
habitat, future work should explore alternative strategies to enhance discrimination of this cover 
type from others and monitor its compositional variation.   

Our analysis revealed that in a number of locations classification membership values changed 
without changing the dominant class, which in a hard classification would be equivalent to “no 
change”.  We were able to detect these locations and interpret their dynamics by addressing the 
dynamic landscape change both in terms of primary assigned classes and fuzzy membership 
values to all classes.  Substantial spatial and temporal variations in class memberships were 
consistent with both flooding events and changes in atmospheric temperature.  Our change 
detection and uncertainty analyses confirm that low water season at Poyang Lake is 
characterized by considerable dynamics of surface cover type composition, despite much lower 
magnitude of water body change compared to the onset of rain season in later spring-early 
summer and rapid recession in early fall.  Therefore, future studies focusing on the whole-year 
wetland dynamics should choose more than one satellite image to represent the low water winter 
season.  
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Tables 

Table 1. The major general surface cover types of the Poyang Lake natural lake-wetland area. 

Class 
name 

Description 
Typical occurrence in Poyang Lake 

area 

Vegetation Predominantly vegetated areas 
containing wetland and aquatic plants, 
including emergent, floating and 
submerged vegetation.  

Mostly natural wetland and aquatic 
vegetation constrained to lake periphery 
over the rain season and colonizing 
exposed bottomland during the low water 
period, and also dense stands of 
submerged aquatic plants ‘visible’ to 
sensor through the water column 

Water Areas covered by the aboveground 
water layer 

Rivers, sub-lakes, water pools and stream 
channels 

Mudflat Seasonal cover type composed of soft 
waterlogged sediment beds exposed by 
the receding water body or the 
inundated wetland soil and therefore 
difficult to access in situ. Sparse 
vegetative cover and/or a thin water 
layer may be present occasionally 
producing fuzzy areas with Vegetation 
and/or Water classes. 

Flat beds of the exposed lake bottomland 
often located at the edges of the water 
bodies or in places of small pools or sub-
lakes that lost aboveground water 
following water level decline.  

Sand Spectrally bright deposits of 
predominantly sand material formed 
by water action or bank erosion; total 
area expected to be smaller than for 
other classes. 

Dunes, beaches, river sand bars, 
occasional sandy hills, typically located 
immediately next to the water features.  
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Table 2. Change in the major cover types shown as percent of the From class area. (Example: in 
case of 'Nov 2007 - Jan 2008', the first row indicates that  of the area classified as 'Vegetation' 
in scene Nov 2007, 85.1% was still 'Vegetation' in scene Jan 2008, while 4.3% changed to 
'Water', 10.5% to 'Mudflat' and 0.1% to 'Sand'). 

Nov 2007 - Jan 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 85.1 4.3 10.5 0.1 

Water 2.0 85.4 12.4 0.2 
Mudflat 18.9 9.2 71.6 0.3 

Sand 22.4 2.0 57.8 17.8 
Jan 2008 - Feb 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 75.7 5.9 18.3 0.1 

Water 2.1 94.5 3.2 0.2 
Mudflat 15.5 31.4 51.5 1.6 

Sand 1.1 7.5 23.3 68.1 
Feb 2008 - Mar 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 80.9 0.5 18.5 0.0 

Water 4.4 75.0 20.4 0.2 
Mudflat 24.8 1.6 69.7 3.9 

Sand 2.6 3.2 15.0 79.2 
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Table 3. Change in the major cover types shown as percent of the To class area. (Example: in 
case of 'Nov 2007 - Jan 2008', the second column ‘Vegetation’  indicates that  of the area 
classified as 'Vegetation' in scene Jan 2008, 89.2% was 'Vegetation' in scene Nov 2007, while 
1.2% was 'Water', 5.5% was 'Mudflat' and 4.2% was 'Sand' in Nov 2007 classification). 

Nov 2007 - Jan 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 89.2 7.7 21.9 2.8 

Water 1.2 87.1 14.9 3.4 
Mudflat 5.5 4.6 41.8 2.7 

Sand 4.2 0.6 21.4 91.1 
Jan 2008 - Feb 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 89.7 8.5 39.8 2.4 

Water 1.3 68.8 3.5 2.3 
Mudflat 9.0 22.3 54.9 22.7 

Sand 0.0 0.4 1.8 72.6 
Feb 2008 - Mar 2008    
 To class:    
From class: Vegetation Water Mudflat Sand 
Vegetation 82.6 0.8 25.3 0.6 

Water 3.6 97.6 22.3 2.5 
Mudflat 13.7 1.4 51.6 39.7 

Sand 0.1 0.2 0.8 57.2 
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Table 4. Fuzzy accuracy for the major general Poyang Lake cover types. 

Class name 
#Sites classified 

as 
              MAX(M) Right(R) 

  R-M  
Confusion 

%Match %Mismatch %Match %Mismatch classes 

November 2007    

Vegetation 71 90 10 100 0 10 Water, Mudflat 

Water 21 90 10 100 0 10 Vegetation, Mudflat 

Mudflat 22 86 14 95 5 9 Vegetation, Water, Sand 

Sand 16 75 25 94 6 19 Mudflat 

January 2008        

Vegetation 61 93 7 100 0 7 Mudflat, Water, Sand 

Water 17 82 18 100 0 18 Mudflat 

Mudflat 39 87 13 95 5 8 Vegetation, Water, Sand 

Sand 13 77 23 85 15 8 Vegetation, Water 

February 2008        

Vegetation 60 93 7 100 0 7 Water, Mudflat 

Water 23 91 9 100 0 9 Mudflat 

Mudflat 33 82 18 94 6 12 Vegetation, Water 

Sand 14 100 0 100 0 0  

March 2008        

Vegetation 59 97 3 100 0 3 Water, Sand 

Water 15 87 13 100 0 13 Vegetation 

Mudflat 38 76 24 87 13 11 Vegetation, Water 

Sand 18 83 17 89 11 6 Mudflat 
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Figures 

 

Figure 1. Spatial location and extent of the study area of Poyang Lake, Jiangxi Province, 
People’s Republic of China. 
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Figure 2. Hydrological and climatic variation during the study period of November 30, 2007-
March 2, 2008: a) water level at Duchang hydrological station (Duchang, Jiangxi, China) shown 
as deviation from the annual mean water level (data of State Key Laboratory of Remote Sensing 
Science, China); b) daily precipitation at Nanchang meteorological station (Nanchang, Jiangxi, 
China), in millimeters; c) daily atmospheric temperature at Nanchang meteorological station  
(Nanchang, Jiangxi, China), in degrees Celsius (data for (b) and (c) from NOAA/National 
Climatic Data Center, http://www.ncdc.noaa.gov/oa/ncdc.html).  
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Figure 3. The outline of study procedures.  

Image selection and preprocessing
(radiometric referencing)

Segmentation and selecting the optimal 
scale, shape and compactness

Selecting training samples: Water, 
Vegetation, Sand

Statistics of Unclassified objects

Selecting Mudflat training samples 

Classification: 
Water, Vegetation, Sand and Mudflat

Fuzzy accuracy assessment

Change detection for successive pairs of 
scenes and interpretation

Classification: Water, Vegetation, Sand

Analysis of the uncertainty in class 
membership and its change
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Figure 4. Histograms of a) Normalized Difference Water Index (NDWI), b) Normalized 
Difference Vegetation Index (NDVI), and c) eCognition Developer Brightness feature, summed 
per-bin among four Beijing-1 scenes representing 2007-2008 Poyang Lake low water period. Bin 
sizes were 0.01, 0.01 and 0.5 for NDVI, NDWI and Brightness, respectively. Dashed lines are 
placed at inflection points representing index cutoff thresholds for selecting training samples for 
a) Vegetation, b) Water and c) Sand from objects with respective index value above the 
corresponding threshold value. 
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Figure 5. Classification of the four Beijing-1 scenes representing 2007-2008 Poyang Lake low 
water period and relative proportions of the major wetland cover types: a) November 30, 2007; 
b) January 01, 2008; c) February 16, 2008 and d) March 02, 2008. Empty white areas inside the 
study area correspond to major residential and other active human land use areas not included in 
wetland classification. 
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Figure 6. Spatial distribution and value of change in fuzzy membership to Water, Vegetation, 
Mudflat and Sand among successive pairs of Beijing-1 scenes for 2007-2008 Poyang Lake low 
water period, for the main subset of the study area. The maps are arranged horizontally by class: 
Vegetation (a,b,c), Water (d,e,f), Mudflat (g,h,i) and Sand (j,k, l) and vertically by change 
periods: Nov07-Jan08 (a,d,g,j); Jan-Feb08 (b,e,h,k) and Feb-Mar08 (c,f,i,l).  
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Figure 7. Proportions of fuzzy objects within the area of each class and their change with 
increasing fuzzy class membership cutoff value in scenes a) November 30, 2007; b) January 01, 
2008; c) February 16, 2008 and d) March 02, 2008. Here class membership cutoff value for an 
object assigned to a primary class (based on the maximum membership to candidate classes) 
indicates the minimum membership value of secondary classes at which the object is considered 
“fuzzy”. 
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CHAPTER 2. Landscape analysis of wetland plant functional types: the effects of image 
segmentation scale, vegetation classes and classification methods 

 
This article has been published previously and is reproduced here with permission from the 

publisher, Elsevier 

Dronova I, Gong P, Clinton N, Wang L, Fu W, Qi S, Liu Y. 2012. Landscape analysis of wetland 
plant functional types: the effects of image segmentation scale, vegetation classes and 
classification methods. Remote Sensing of Environment 127:357-369.  
 

Abstract 

Remote sensing-based analyses of vegetation function such as photosynthesis and productivity 
are challenging in wetlands with complex cover and difficult field access. Recent advances in 
object-based image analysis (OBIA) and machine-learning algorithms offer new image 
classification tools; however, few comparisons of different approaches have been discussed to 
date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the 
largest freshwater lake in China and Ramsar wetland conservation site, from a spring 2008 
Landsat TM image. We targeted major PFTs that represent dominant vegetation groups along 
wetland inundation gradients and affect ecosystem biogeochemical cycles and ecological 
habitats. Classification results were compared among: a) several “small” object segmentation 
scales (with average object sizes 1350-9000 m2); b) algorithms from six families of statistical 
machine-learning classifiers (Bayesian, Logistic, Neural Network, Decision Trees, K-Nearest 
Neighbors and Support Vector Machines) and c) two hierarchical levels of vegetation 
classification, a generalized 3-class set and a more specific 6-class set. We also examined the 
response of classification accuracy to four basic object-level texture metrics. The highest 
accuracies (>85-90%) and best agreement among algorithms occurred at coarser object scales 
rather than close-to-pixel scales. No single machine-learning algorithm was consistently superior 
at all scales, although support vector machine, k-nearest neighbor and artificial neural network 
most frequently provided the highest overall and PFT-specific accuracies. Including texture 
metrics had both positive and negative low-magnitude effects on classification accuracy that 
were not consistent among scale values, algorithms or PFT classes. Individual PFTs differed in 
scales at which they were best discriminated from others, reflecting their unique landscape 
positions, ecology of dominant species and disturbance agents. There was a 29-35% 
disagreement between mapped areas of generalized PFTs and their respective subclasses, 
suggesting potential mismatches between the ecological classification scheme and PFT 
landscape patch structure, and raising concern on error propagation in multi-scale classifications. 
We conclude that OBIA with machine-learning classifiers is useful for landscape vegetation 
analyses, however, considerations of spatial scale and image segmentation outcomes are critical 
in mapping PFTs and should be more thoroughly investigated in future work.  

Introduction 

Remote sensing is useful for ecosystem analyses at landscape scales due to radiometric 
sensitivity of instruments to biophysical properties of the surface, instantaneous coverage of 
large areas and possibilities of consistent revisit by sensors (Xiao et al. 2008, Hilker et al. 2008, 
Ustin and Gamon 2010). Because vegetation plays a critical role in nutrient cycles and 
productivity of many terrestrial and aquatic systems, accurate classifications of plant cover from 
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remote sensing data are essential for broad-scale assessments of ecosystem structure and 
dynamics. However, the inference of vegetation properties from the images is challenging in 
heterogeneous continuous-cover landscapes with high species diversity and cover type 
complexity (Yu et al. 2006, Dobrowski et al. 2008). Particular difficulties arise in wetlands 
where plant mosaics are driven by fine-scale variation in topography, hydrology and disturbance 
(Johnston and Barson 1993, Ozesmi and Bauer 2002, Hestir et al. 2008), while ground-truthing 
may be limited by field access (McCarthy et al. 2005, Davranche et al. 2010, Dronova et al. 
2011), infectious disease agents (Chen and Lin 2004) or the risk of disrupting fragile habitats 
(Tuxen and Kelly 2008). At the same time, dramatic worldwide losses of wetlands in recent 
decades, ongoing human-induced pressures and alien species invasions in remaining sites (Gibbs 
2000, Dudgeon et al. 2006, Hestir et al. 2008, Gong et al. 2010) create an urgent need to improve 
both the scientific understanding of wetland ecosystems and methods for their assessment and 
monitoring.  

Despite increasing availability of high-resolution (<10m) imagery, moderate-resolution (15-
30 m) data remain popular for studying large wetland systems due to vast area coverage, 
affordable cost, consistent revisit and historical data records (McCarthy et al. 2005, Baker et al. 
2006, Wright and Gallant 2007, Conchedda et al. 2008, Liira et al. 2010, Michishita et al. 2012). 
Extraction of vegetation characteristics from such images may be enhanced by several strategies. 
First, classification schemes may benefit from integrating floristic and taxonomic information 
with structural, physiological or phenological features that contribute to spectral contrasts among 
classes. Previous studies proposed the plant functional type (PFT) framework, where species are 
grouped based on common traits (e.g., life form, photosynthetic pathway, leaf longevity) that 
determine functions of interest such as biomass or the rates of photosynthesis and primary 
productivity (DeFries et al. 1995, Gitay and Noble 1997, Duckworth et al. 2000, Ustin and 
Gamon 2010). Although exact definitions may vary, PFTs are meant to reflect similarity in 
species’ resource utilization and response to environmental controls, but not necessarily 
phylogenetic or synecological relationships within communities (Duckworth et al. 2000). In the 
broader landscape context, PFTs incorporate both ecophysiological and spectral (optical) 
characteristics of the locally dominant vegetation (Ustin and Gamon 2010, Khanna et al. 2011) 
that facilitate their classification from remote sensing imagery and provide the basis for spatial 
extrapolation of the ecological function(s) (Bonan et al. 2002). However, to date PFT 
classifications have been conducted predominantly in terrestrial systems and less often in 
wetland or aquatic environments (Hestir et al. 2008, Khanna et al. 2011, Wang et al. 2012).  

Second, discrimination of plant types in complex wetland landscapes may benefit from using 
object-based image analysis (OBIA) instead of traditional pixel-based methods (e.g., Tuxen and 
Kelly 2008, Tian et al. 2008, Gilmore et al. 2008, Ouyang et al. 2011, Dronova et al. 2011). 
Within OBIA, the images are first segmented into groups of pixels, i.e. objects, which are further 
assigned to classes via statistical and/or rule-based classification (Blaschke et al. 2000, Benz et 
al. 2004). Important OBIA advantages relative to the pixel-based framework include 1) lower 
likelihood of “salt-and-pepper” speckle among different class assignments that is common in 
pixel-based classifications of heterogeneous landscapes and 2) the possibility of using texture, 
shape and contextual object attributes as additional discriminating features (e.g., Blaschke et al. 
2000, Yu et al. 2006, Kim et al. 2011). For landscapes where patches of the same cover type vary 
greatly in size, shape and structure, previous studies have proposed using small primitive objects 
as minimum classification units (Tian et al. 2008, Kim et al. 2011, Dronova et al. 2011). The 
maximum allowed object-level spectral heterogeneity and object size are controlled by the 
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segmentation “scale”1 parameter (eCognition Developer Reference Book) which has been shown 
to affect both the quality of segmentation and image classification accuracy (Dorren et al. 2003, 
Addink et al. 2007, Liu and Xia 2010). Manipulating scale also allows constructing layers of 
nested objects for hierarchical classifications (Burnett and Blaschke 2003, Tuxen and Kelly 
2008, Kim et al. 2011, Ouyang et al. 2011). Overall, OBIA has been useful for wetland detection 
within heterogeneous landscapes (Grenier et al. 2007, Richmond 2011) and for classifications of 
wetland cover types (Kim et al. 2011, Dronova et al. 2011), plant communities (Wang et al. 
2004, Gilmore et al. 2008, Tuxen and Kelly 2008, Laba et al. 2010) and ecological habitats (Tian 
et al. 2008, Rokitnicki-Wojcik et al. 2011). However, OBIA has not been yet extensively applied 
for plant functional classifications in wetlands (Ouyang et al. 2011).  

Finally, separability of vegetation classes may be enhanced with recently proposed supervised 
machine-learning algorithms (Clinton et al. 2010b, Khanna et al. 2011, Richmond 2011, Wang et 
al. 2012). For wetlands, improvements in classification accuracy relative to the maximum 
likelihood method have been reported with, e.g., classification trees (Na et al. 2009, Davranche 
et al. 2010), support vector machines (SVM; Sanchez-Hernandez et al. 2007, Fung et al. 2009, 
Wang et al. 2012), and artificial neural networks (Han et al. 2003, Berberoglu et al. 2004, Zeng et 
al. 2007, Fung et al. 2009). However, little is still known on relative performance of various 
supervised approaches, and very few comprehensive method comparisons have been reported so 
far (Clinton et al. 2010b, Richmond 2011). Furthermore, possibilities of high user customization 
of both OBIA and machine-learning processes in modern software may introduce superfluous 
subjectivity to classifications and limit applicability of the algorithms to other images for 
repeated analysis and monitoring (Khanna et al. 2011, Rokitnicki-Wojcik et al. 2011, Zhao et al. 
2011).   

This study explored the utility of OBIA and several machine-learning classifiers to delineate 
PFTs for Poyang Lake, the largest freshwater lake in China and an important Ramsar waterbird 
conservation site (Figure 1). Climate change together with human-driven pressures, including 
pending dam projects (Barzen et al. 2009), create an urgent need to improve the scientific 
understanding of this wetland environment. However, comprehensive analyses of its composition 
and dynamics have been historically limited by the large lake size and constrained field access 
(Dronova et al. 2011, Wang et al. 2012). Previous vegetation classifications of Poyang Lake used 
mainly floristic and taxonomic groups (Chen et al. 2007, Zeng et al. 2007, Michishita et al. 
2008), while the assessments of plant functional diversity have started only recently (Wang et al. 
2012). 

Our primary objective was to classify Poyang Lake wetland PFTs using OBIA and to 
determine which image segmentation scales and machine-learning algorithms optimize class 
discrimination. We also examined the consistency of segmentation scale and classifier 
performance among two levels of PFT hierarchy suggested by vegetation ecology: a generalized 
3-class set and a more specific 6-class set, and evaluated the agreement in class allocation 
between the highest-accuracy maps of these class levels. Finally, we tested the effects of 
including basic first- and second-order texture metrics on classification accuracy.  

 
                                                            

1 Since popular image segmentation software algorithms call the parameter controlling 
maximum allowed spectral heterogeneity and average object size the “scale” parameter, hereafter 
we will use the term “scale” and “object scale” to denote the scale of image segmentation. 
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Methods 

 Study area and general vegetation characteristics 

Poyang Lake is located in the basin of the lower Yangtze River (28°25’-29°45’N, 115°48’-
116°44’E; Figure 1). Spatial extent of its water body varies between >4000 km2 in summer and 
<1000 km2 in winter following an annual flood cycle driven by monsoonal climate and river 
hydrology (Shankman et al. 2006, Andreoli et al. 2007). The annual dynamics of local vegetation 
have distinct “warm” and “cool” seasons that overlap with monsoonal “wet” and “dry” seasons, 
respectively (Chen et al. 2007, Wang et al. 2012). During the warm “wet” season from late 
April-May until September, large portions of the area are flooded and support aquatic vegetation. 
With flood recession in October, parts of the lake bottomland are exposed as seasonal mudflats 
and then colonized by emergent plants of the “cool” growing season, primarily sedges (Carex 
spp.) with C3-photosynthesis (Pearcy and Ehleringer 1984) and various forbs (Artemisia, 
Potentilla, Lapsana, Polygonum spp. and others). Higher-elevation lake peripheries may also 
sustain less flood-tolerant grasses with C4 photosynthesis: reeds (Miscanthus, Arundinella spp.) 
and “short” C4 grasses (Cynodon, Paspalum spp.) near roads and residential areas (Zeng et al. 
2007). Unlike C3 grasses and forbs, C4 vegetation grows mainly during the warm season, similar 
to other mixed-grassland biomes (Davidson and Csillag 2003), and may often be senescent in 
winter (Dronova, field observation), which facilitates its detection with multi-date remote 
sensing data.  

This study focused on the 22,400 ha Poyang Lake National Nature Reserve (PLNNR) located 
in the northwestern part of the lake (Figure 1). Established in 1983 as a nature protection area, 
PLNNR hosts >150 vascular plant species and >300 bird species, including endangered 
migratory waterbirds (Wu and Ji 2002, Burnham 2007, Barzen et al. 2009). Due to its protected 
status, this area has been less subject to intensive land uses and has been studied in more detail 
than other parts of Poyang Lake (Wu and Ji 2002, Zhao et al. 2011), making it a suitable target 
for our analysis.  

 Remote sensing image data 

This study used a terrain-geocorrected (Level 1T) Landsat 5 TM scene for May 16, 2008 at near-
peak biomass stage of the spring 2008 growing season before the new monsoonal flooding, when 
multiple vegetation types were present and soil background effects were minor due to high plant 
density. The image was geo-referenced and corrected to surface reflectance with the 6S 
algorithm (http://modis-sr.ltdri.org/code.html). Because similar phenology states of green 
vegetation at this time of year could increase spectral confusion among classes, we included 
supplementary phenological information as a Normalized Difference Vegetation Index (NDVI) 
from January 01, 2008 scene of Beijing-1 microsatellite (32-m), georeferenced and resampled to 
30-m Landsat resolution. The latter scene represented the winter stage of the same growing 
season when phenology-driven spectral differences between C3 and C4 grasses were more 
prominent.  

Field vegetation surveys 

The start of flooding in April 2008 restricted access to many wetland areas at the time when the 
May 2008 Landsat scene was acquired. For this reason, we utilized field data collected in two 
surveys earlier that season: late December 2007 (perennial vegetation locations, 103 geolocated 
field stops) and late April 2008 (177 geolocated field stops).  We also referred to the field data 
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from March 2006, March 2007, May 2009 and late March 2011 from locations of either 
perennial vegetation, consistently observed from year to year, or permanent small water bodies 
which supported aquatic vegetation every year. At different visits, field data were collected in 
similar ways along transects representing natural wetland vegetation and stages of bottomland 
exposure, including parts of Poyang Lake wetland outside PLNNR (Figure 1). These transects of 
300-3200 m in length, depending on location and access, were set up approximately 
perpendicular to water edges. At each stop we surveyed an area between 30×30 m and more than 
100×100 m in size and recorded percent cover of vegetation, dominant plant types and species 
names, their average height, phenology status, spatial extent and depth of flooding (if any), 
evidence of grazing or human activities such as reed harvesting. In addition, dominant 
vegetation, other cover types and human activities along with field photos were recorded for the 
areas surrounding survey stops.   

 PFT selection based on the dominant species  

Candidate PFTs were determined by cluster analysis of the key structural, physiological and 
phenological traits of 51 common Poyang Lake wetland species detected as dominants or co-
dominants in springtime surveys in different years (examples are given in Table 1). Trait 
information was obtained from field observations and relevant publications (e.g., Cook 1996; 
Wu et al. 1994-). Life form, habit and height traits were chosen because they influence the 
architecture of individual plants (thus canopy-light interactions) and may also reflect plant 
differences in tolerance to inundation (Lenssen et al. 1999). Photosynthetic pathway was used as 
a physiological trait linked with plant photosynthetic rates, potential productivity, light and water 
use efficiency, leaf nutrient content and competitive performance (Pearcy and Ehleringer 1984). 
Finally, phenology was considered because it could affect plant density at the time of satellite 
image acquisition and thus class-specific effects of soil or water background on vegetation 
reflectance (Hestir et al. 2008). Cluster analysis was conducted using the single linkage method 
with Euclidean distance as a similarity measure in Stata 11 (StataCorp LP 2011).  

Based on the results of cluster analysis, in subsequent classifications we used two 
hierarchically related PFT sets (Table 1): the generalized 3-class set (C3 grasses and forbs; 
mixed C4-dominated grasses; Aquatic macrophytes) and the specific 6-class set (C3 grasses; C3 
forbs; C4 and C3 reeds; C4 short grasses; emergent aquatic macrophytes; floating and 
submerged aquatic macrophytes). While these PFTs largely reflect species’ differences in 
photosynthesis, phenology and tolerance to flooding, they are also related to Poyang Lake 
ecological habitats, ecosystem dynamics and disturbance. For instance, large numbers of 
wintering waterbirds at Poyang Lake are known to utilize food resources from tuber-producing 
submerged aquatic plants or young C3 grasses (Burnham 2007, Barzen et al. 2009). C3 grass and 
forb-dominated areas are often used for livestock grazing in accessible areas, while C4 and C3 
reeds are harvested by local people for domestic purposes and sometimes burned (Wang et al. 
2012). Short C4 grass species (Table 1) include fast-growing weeds with global distribution 
(Guglielmini and Satorre 2004), but the potential effects of their expansion on wetland 
vegetation at Poyang Lake are not well known. 

Object-based image analysis 

Image segmentation and training object selection 

To implement the object-based PFT classification, we first carried out image segmentation 
(Figure 2) in eCognition Developer 8.0 software (Trimble Inc.). We used the multiresolution 
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segmentation tool which allows construction of primitive objects of different sizes and enhances 
the response of object generation to landscape patch structure compared to other approaches 
(Baatz and Shäpe 2000). Based on the field observations, we expected that representation of 
wetland patches in this heterogeneous landscape would vary with object size even at small 
segmentation scales. Therefore, we generated nine small-object segmentations with scale values 
from 2 to 10 resulting in average object sizes of 1350-9000 m2 (see examples in Figure 3) and 
ran separate classifications of 3- and 6-class PFT sets with each of these segmentation outputs. 
We did not implement segmentations beyond scale 10 because for a number of PFTs it was no 
longer possible to find representative homogeneous objects within field-surveyed locations, and 
the chance of class mixture inside the objects increased with object size (Yu et al. 2008, Liu and 
Xia 2010). The other segmentation parameters required by eCognition 8.0, shape and 
compactness, were kept at constant values of 0.9 and 0.1, respectively. These values were chosen 
through pilot investigation to enhance spectral contrast among primitive objects and increase the 
diversity of their shapes (Dronova et al. 2011). The input Landsat bands 1-5 and 7 were given 
equal weights.  

Following segmentation, objects corresponding to water and bright non-vegetated sand were 
isolated using histograms of spectral indices, Normalized Difference Water Index (NDWI; 
McFeeters 1996) and Brightness index calculated by eCognition from spectral values of input 
image layers (eCognition Reference Book; Dronova et al. 2011). Human residential and active 
land use areas were also isolated using fine-resolution images from Microsoft Bing in ArcGIS 10 
(ESRI Inc.) and Google Earth (Google Inc. 2010). The remaining objects representing vegetated 
wetland areas were then used in PFT classification.  

Next, for each segmentation scale we selected training and test objects for classifications from 
field-surveyed areas that were likely to contain 75% or more cover of a given class. Whenever 
possible, objects from smaller-scale segmentations were “nested” within coarser-scale objects 
per same location. As a result, for each scale we generated 124-140 training/test objects with 12-
25 objects per class (depending on the observed class prevalence in the study landscape) for the 
6-class PFT set and 40-50 objects for the 3-class set. Unfortunately, problematic field access and 
lack of fine-resolution imagery at the time of study constrained our capability to allocate more 
objects while minimizing the chance of including mixed objects within a training/test set.  

In PFT classifications we used spectral object attributes, specifically, Landsat TM bands 
3,4,5,7, NDWI and a version of NDVI calculated with the shortwave-infrared TM band 5 instead 
of near-infrared. We tested the response of classification accuracy to four basic object-level 
texture metrics (Johansen et al. 2007, Laliberte and Rango 2009, Kim et al. 2011) for Landsat 
bands 3,4 and 5, specifically: standard deviation, coefficient of variation (the ratio of the object-
level band value standard deviation to its mean) and grey level co-occurrence matrix (GLCM)-
based entropy and homogeneity (Haralick et al. 1973). These texture metrics were added to the 
feature space with object-level spectral band means and indices, and changes in classification 
accuracy with added texture were compared among classes, methods and scales. 

Machine-learning classifiers 

Finally, we selected six machine-learning algorithms from the rich library of the open-source 
data mining software Weka 3.6.5 (http://www.cs.waikato.ac.nz/ml/weka/; Hall et al. 2009). 
Selected classifiers represented different machine-learning principles: a probabilistic Bayes 
method (NaïveBayesSimple in Weka notation), a logistic regression method (SimpleLogistic in 
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Weka), an artificial neural network algorithm (MultilayerPerceptron (MLP)), a support vector 
machine tool with polynomial kernel and complexity parameter value of 10 (SMO in Weka), a 
K-Nearest Neighbors (IBk in Weka) and a tree-based classifier (RandomForest). Detailed 
description of these classifiers can be found in Weka documentation and relevant literature (e.g., 
Witten and Frank 2005, Hall et al. 2009). Our objectives were to compare relative performance 
of these algorithms across different scales and to use the consistently top-performing methods for 
mapping the PFTs of interest. Therefore, we avoided extensive fine-tuning of the algorithms to 
training data and discuss the possibility of more rigorous parameterization in Discussion.  

Classification accuracy assessment and uncertainty analysis 

Due to the limited number of representative objects for training and validation, classification 
accuracy was assessed as 10-fold cross-validation (Witten and Frank 2005), repeated with ten 
different random seeds. From the error matrices of these 10 cross-validation results for each 
classifier and scale combination, we estimated mean values of the overall classification accuracy 
as well as class-specific user’s and producer’s accuracies and their averages. Although such 
averages should be used with caution due to different types of error represented by user’s and 
producer’s accuracies, they were appropriate in our study because a) all PFTs were of equal 
importance, thus, both omission and commission errors had to be minimized for each class; and 
b) the PFT classification procedure was applied to only vegetated areas without using any non-
PFT classes. The calculations of accuracy metrics were based on the number of segments per 
class only, without considering object size.  Classification method performance and pairwise 
class confusions were compared among nine image segmentation scales for 6-class and 3-class 
PFT sets and also for spectral feature sets with and without texture metrics.  

Finally, we converted classification outputs into PFT maps for the PLNNR area. Based on 
classification results, generalized PFTs were mapped at a single segmentation scale using 
predictions from the highest-accuracy method, while the specific PFT map was compiled from 
predictions by the highest-accuracy scale-classifier combinations for each class (section 3.1 
below). Using PFT-specific user’s and producer’s accuracies and the number of object samples, 
we estimated the overall accuracy of the composite map. We then quantified the uncertain areas 
corresponding to either overlaps among specific PFTs or locations where no specific classes 
were assigned with their respective highest-accuracy scale and method. Finally, we compared 
spatial extents and locations of the mapped generalized PFTs with their respective subclasses and 
evaluated the agreement between the assignments of these two hierarchical levels. 

Results 

Responses of classification accuracy to segmentation scale 

The overall classification accuracy was sensitive to changes in image segmentation scale for both 
PFT sets (Figure 4a,b), and several features of this response were notable. First, for all six 
methods overall accuracy increased from scales 2 and 3 to coarser levels, with the peak around 
scale 8. Second, beyond scale 8 the overall accuracy did not continue to increase and even 
declined for some methods (Figure 4). Finally, the magnitudes of the overall accuracy values and 
change were relatively similar among different classifiers. The maximum accuracy for the 3-
class set was 90% with the artificial neural network MLP and for the 6-class set – 88% with the 
support vector machine SMO, but performance of other methods was in most cases comparable. 
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Similar patterns of increasing accuracy from finer to coarser segmentation scales occurred for 
individual classes (Figure 5). For each generalized PFT, the highest average user’s and 
producer’s accuracy was found at scale 8 with the MLP method (Figure 5 a-c), while variation in 
accuracy across scales was the highest for mixed C4 grasses (Figure 5b). Among specific PFTs, 
however, both scales and methods of the highest accuracy varied. For C3 grasses, the maximum 
accuracy occurred at scale 8 with SMO (88%; Figure 5d), for C3-C4 tall reeds – at scales 3 
(79.7%) and 8 (75.7%) both with IBk (Figure 5e); for emergent aquatic – at scale 6 with IBk 
(85%, Figure 5f) and for C4 short grasses – at scale 8 with SMO (91%, Figure 5h). Finally, C3 
forbs (Figure 5g) and submerged and floating aquatic macrophytes (Figure 5i) had the highest 
class-specific accuracies (up to 98%) that were less sensitive to scale and method changes than 
for other PFTs. 

The most common confusions among pairs of PFTs within both 3- and 6-class sets were also 
sensitive to changes in scale (Figure 6). For the 3-class set, misclassification of mixed C4 grasses 
with C3 grasses and forbs was consistently the largest component of error at all scales, but as the 
average of six methods it declined from scales 2-3 to scale 8 and then increased again at scales 9-
10 (Figure 6a). The lower-magnitude confusion between aquatic macrophytes and mixed C4 
grasses followed a similar pattern, also with the minimum value at scale 8. The average 
confusion between aquatic macrophytes and C3 grasses and forbs varied little with scale and 
involved less than 2% of all test objects (Figure 6a). For the 6-class PFT set, the confusions of 
C3 grasses and forbs with reeds, and of emergent aquatic macrophytes with submerged and 
floating involved the largest proportion of test objects at all scales (Figure 6b), with the minima 
at scales 6 and 8.  

The effect of texture metrics on classification accuracy 

Adding object-level texture metrics did not substantially improve overall accuracy for different 
method-scale combinations relative to the results without texture (examples for the highest-
accuracy scale 8 are given in Figure 7). None of the detected improvements with added texture 
were sufficient to exceed maximum accuracy based on “spectral-only” inputs for either class 
hierarchy level. Most of the changes were within 3% of the “spectral-only” scenarios, and their 
magnitude and sign were inconsistent among scale values, methods and class sets. Notably, both 
MLP and IBK classifiers, which often delivered high accuracy with spectral-only inputs, 
performed consistently worse with each of the texture metrics included (Figure 7). In both PFT 
sets, none of the individual classes clearly benefited from adding texture, while occasional 
increases in accuracy for some of the classes were always accompanied with losses in accuracy 
for other classes (data not shown). Changes in class-specific accuracy with added texture inputs 
were predominantly within 0-3% of the “spectral only” values and not consistent among scales, 
algorithms or PFT hierarchy levels. 

Final PFT maps and classification uncertainty 

Both the generalized and specific PFT maps reflected belt-shaped zonation of wetland vegetation 
types around water features (Figure 8a,b), and spatial distributions of PFTs were consistent with 
previous maps of PLNNR vegetation (Zeng et al. 2007, Wang et al. 2012) and wetland annual 
submersion times (Andreoli et al. 2007, Zhao et al. 2011). The highest-accuracy scale values for 
most specific PFTs (Figure 5) were proportional to spatial extents and general degree of 
fragmentation of class patches within the study landscape (Figure 8b). For the specific 6-class 
PFT set, the overall accuracy of the composite map was 91.1%, indicating ~3% improvement 
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relative to the best single-method result (SMO at scale 8). However, the compositing approach 
resulted in two types of uncertainty (Figure 8c): areas where assignments of two or more specific 
PFTs overlapped (~13% study area) and areas where no class was assigned based on its highest-
accuracy scale and method (~7% study area and 6-13% of generalized PFT areas, Figure 8d). 
Comparison of the 3- and 6-class maps also revealed that ~22% area of each generalized PFT 
overlapped with specific PFT subclasses from the other generalized category (Figure 8c,d), 
indicating potential mismatches between class levels. At the same time, 65-72% of each 
generalized PFT were filled with their respective subclasses exclusively (Figure 8d). 

Discussion 

The utility of OBIA for PFT classification in the study area 

Our results demonstrate utility of the object-based approaches for mapping wetland plant 
functional types and confirm the importance of object scale in such analyses (Liu and Xia 2010, 
Kim et al. 2011). The highest overall and class-specific accuracies in most cases occurred not at 
the finest scales close to pixel level, but at coarser scales with 5-8 Landsat 30-m pixels per 
average object. Integration of spectral signal across a larger number of pixels apparently 
accentuated the contrasts among PFTs in both 3- and 6-class sets, leading to higher classification 
accuracy with most methods. These outcomes were consistent with previously discussed 
reduction in within-class spectral variation at coarser segmentation scales which may remove the 
“salt-and-pepper” speckle (Yu et al. 2006, Liu and Xia 2010, Kim et al. 2011, Ouyang et al. 
2011) and enhance the relationships between image object parameters and ground-assessed 
vegetation variables (Addink et al. 2007).  At the same time, accuracy metrics did not continue to 
increase with scale, because class mixtures were more likely to occur in larger objects making 
the latter less representative of their primary classes (Wang et al. 2004, Yu et al. 2008).  

Our results suggest that averaging of spectral signal across larger number of pixels could 
smooth the local variation and enhance class representation by objects, provided that the latter 
match class’ patch primitives (Clinton et al. 2010a). However, to fulfill the latter condition, it is 
important that segmentation outputs approximate patch structure of classes of interest prior to 
classification (Liu and Xia 2010, Clinton et al. 2010a). In our study, generalized PFTs were 
reasonably well represented by a single segmentation scale 8; however, for specific PFTs no 
single scale value could be declared as optimal for all classes. Hence, in the future work, it would 
be essential to rigorously evaluate the correspondence between segmentation outcome and 
landscape patch structure for classes of interest. Given problematic field access at Poyang Lake, 
such a priori patch information may be obtained from the high-resolution imagery.  

 The lack of accuracy improvement with texture 

The lack of improvement in classification accuracy with added texture metrics in our study could 
be attributed to 30-m input image resolution, the small number of pixels per object at the 
considered range of scale values and the lack of pronounced textural differences among grass-
dominated classes (Ouyang et al. 2011). It is possible that class-specific heterogeneity in canopy 
structure and composition was smoothed within 30-m pixels, thus contributing more strongly to 
spectral than to textural contrasts among PFTs. Several object-based studies that benefited from 
using texture in vegetated landscapes used high (≤ 4m) resolution images and class sets with 
more pronounced differences in surface type and structure (e.g., Johansen et al. 2007, Hájek 
2008, Laliberte and Rango 2009, Laba et al. 2010, Kim et al. 2011). In such analyses, textural 
patterns enhancing class contrasts were particularly important at scales where the number of 



 

41 
 

 

pixels per object and levels of allowed spectral heterogeneity were large (e.g. scales 55-70 in 
Laliberte and Rango 2009, scales 20-25 in Kim et al. 2011), and spectral contributions of the 
edge pixels were small (Laliberte and Rango 2009).  

In contrast, Ouyang et al. (2011) did not find texture metrics particularly useful even with 
high-resolution QuickBird data for Yangtze River estuarine wetlands with predominantly 
herbaceous vegetation and high spatial variability among primitive objects, similar to our study 
area.  Furthermore, in our results texture only occasionally enhanced contrast for specific class 
pairs, but not within the whole 3- or 6-class PFT sets. Thus, to further test potential benefits of 
texture for Poyang Lake PFT analysis, future work may use higher-resolution images to examine 
class-specific spatial patterns, add digital texture layers as inputs to segmentation (Johansen et al. 
2007), or apply texture only at specific decision steps in customized rule-based classifications.  

Effects of machine-learning classifiers 

No single algorithm of the six considered approaches was consistently superior across different 
scales and PFT sets. Frequently high performance of the SMO method for most classes and 
scales suggests that non-linear decision boundaries among PFTs in our feature space were 
successfully learned with support vector machines, despite relatively small training sample sizes. 
However, K-Nearest Neighbors IBk, artificial neural network MLP and logistic regression 
SimpleLogistic were also sufficiently flexible to discern the patterns in the data and deliver 
comparably high classification accuracy. While these four methods were often superior to 
RandomForest and NaiveBayesSimple, our results do not distinguish any single “best” algorithm 
among them.  

To date, only few studies have compared multiple machine-learning approaches in wetland or 
vegetated object-based landscape studies. Clinton et al. (2010b) modeled presence/absence and 
infestation levels of an invasive grass in western USA and achieved the best results with SVM 
methods and boosted J48 regression trees, which performed better than MLP and RandomForest. 
Richmond (2011) investigated the effect of topographic features on wetland classification by 
applying Weka classifiers to IKONOS imagery and found that IBk and two decision tree 
methods, including RandomForest, were generally superior to logistic regression, NaïveBayes 
and SMO. These findings together with our results suggest that suitable machine learning 
methods need to be experimentally matched to the problem at hand (Caruana and Niculescu-
Mizil 2006). Obtaining larger training samples, more thorough evaluation of the algorithm 
parameters and testing larger attribute sets would be the important future steps to test and 
improve classifiers’ capacity for mapping Poyang Lake wetland PFTs. 

Classification success among specific PFT groups 

Observed differences in the scale and magnitude of maximum classification accuracy for 
individual PFTs likely arose from class-specific ecology of dominant species, unique phenology 
and disturbance that affected their radiometric characteristics. For instance, the highest 
individual accuracies of submerged and floating macrophytes and their low sensitivity to 
segmentation scale (Figure 5i) could be related to unique permanently flooded status of this type 
and contribution of water in plant tissues and canopy gaps to spectral reflectance. Portions of 
submerged plant beds, however, could be missed due to water turbidity and early growth stage. 
Similarly, relatively high classification accuracy of C3 forbs (Figure 5g) could be attributed to 
distinctively rougher canopy surface and lower albedo compared to grasses, while their small 
highest-accuracy scale value reflected small size and fragmented distribution of the forb patches 
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within the grass matrix (Figure 8b).  

The other four specific classes were all dominated by emergent grasses (Table 1), and more 
frequent confusion among them could result from similarities in canopy structure (Ouyang et al. 
2011), plant and soil moisture status and disturbance agents. The most extensive Poyang Lake 
PFT, C3 grasses, often occurred in vast belts where dominant Carex species contributed to >90% 
cover (Chen et al. 2007; Dronova, field observation; Figure 8a).  However, livestock and 
waterbird grazing, uneven flooding due to variable topography and presence of C3 forbs may 
cause localized heterogeneity and increase similarity to other grassland PFTs. Notably, the 
pronounced confusion of C3 grasses with C4 and C3 reeds at all scales and classification 
methods (Figure 6) was most likely affected by human disturbance. Recurrent reed harvesting by 
local people (Wang et al. 2012) opens the canopy and leads to colonization of harvested areas by 
shorter C3 grasses and forbs. Subsequent reed regrowth from stubble produces gradients of plant 
vigor and patchy areas where dry biomass and live plants are mixed at fine spatial scales. As a 
result, relatively higher accuracy for reeds was observed at either fine segmentation scales 2-3 
where object sizes approximated smaller reed clumps of similar phenology state or at coarser 
scales 5-8 where some of the reed patch heterogeneity was smoothed over larger numbers of 
object pixels (Figure 5e). However, including object-level texture did not substantially enhance 
the contrast among reeds and other PFTs, likely due to large compositional variation within these 
mixed areas and smoothing of their structural heterogeneity within 30-m Landsat pixels. 

In contrast, C4 short grasses were relatively well distinguished from both reeds and C3 
grasses. This result was consistent with ecological capacity of the dominant C4 short grasses to 
form dense monospecific swards (Horowitz 1972, Guglielmini and Satorre 2004), as well as with 
their distinct seasonality from C3 grasses captured in the supplementary winter NDVI input 
layer. At the same time, emergent aquatic macrophytes were frequently confused with both C4 
short grasses and other PFTs by all machine-learning methods. We explain this confusion by the 
landscape position of emergent aquatics between higher-elevation PFTs with shorter annual 
submersion times and floating/submerged vegetation in the adjacent water bodies (Figure 8a,b). 
Overlaps in spatial distributions of emergent aquatic and more upland species likely increased 
the chance of mixed pixels and objects along the edges of class patches (Lenssen et al. 1999, 
Wang et al. 2004). Resolving this confusion in the future work would require higher-resolution 
images and accurate digital elevation models.  

Disagreement between PFT classification levels 

The observed confusions among PFT classes and differences in their individual highest-accuracy 
scale values contributed to spatial variation of the uncertainty in PFT maps and to the 
mismatches between generalized PFTs and their respective subclasses. Most of the uncertainty 
areas were concentrated along class boundaries (Figure 8c), where sub-object class mixtures 
could lead to different predictions among methods, and even small changes in scale could 
strongly affect object-level class memberships. This type of uncertainty may be addressed in the 
future work by combining object- and pixel-based classification approaches (Wang et al. 2004).   

Our results highlight two principal caveats that need to be considered in landscape 
classifications with OBIA at multiple object scales. First, the relationships among spectral object 
attributes at different spatial scales may not necessarily match the proposed hierarchy of PFTs 
based on exclusively ecological information (i.e. plant traits). This issue can be addressed in the 
future by explicitly incorporating intrinsic spatial patterns of PFTs (inferred via high-resolution 
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imagery) and optical variability (Ustin and Gamon 2010) into design of classification schemes. 
Second, hierarchical top-down and bottom-up mapping approaches that use different nested 
scales to represent PFT class levels would likely suffer from error propagation among scale 
levels, which has not been extensively discussed in previous studies. Because the possibility of 
multi-scale object-level analyses is one of the key OBIA strengths (Tuxen and Kelly 2008, Kim 
et al. 2011), developing a methodology for monitoring classification uncertainty across multiple 
object scales would be a powerful enhancement to this research framework.  

Summary and future work 

This study represents the first application of object-based image analysis to classify and map 
wetland plant functional types in the large heterogeneous wetland of Poyang Lake, PR China. 
We focused on major PFTs suggested by ecophysiological, phenological and structural 
characteristics of the dominant wetland plant species. Our objective was to determine which 
image segmentation scales from a range of small values [2-10] and which machine-learning 
classifiers from six popular families could facilitate PFT classification in this area. We found that 
the highest overall and PFT-specific classification accuracies occurred at object scales that were 
markedly coarser than pixel level, although specific PFTs differed in their scales of maximum 
accuracy.  

Results suggest that OBIA may facilitate discrimination of heterogeneous wetland vegetation 
types by smoothing the local variability at the object level, which is important for studying 
complex Poyang Lake landscape with problematic field access. By treating localities as patches, 
the OBIA framework can address at least some of the uncertainty in vegetative cover and 
improve classification accuracy relative to pixel-equivalent scales even with spectral features 
alone. Including basic object-level texture metrics did not enhance the accuracy, likely due to 
smoothing of the class patterns within the 30-m Landsat pixels and small values of the object 
scale for which training and test data could be obtained. Future research should test image 
segmentation outcomes against landscape patches derived from localized high-resolution data 
and couple these analyses with wide-swath medium-resolution imagery for broad-scale PFT 
mapping.  

Comparison of results at two PFT hierarchy levels revealed a 29-35% disagreement between 
the area of each generalized PFT and its respective subclasses, suggesting that future multi-scale 
analyses should more closely match classification schemes with spatial and spectral hierarchy 
among class landscape patches. Results indicate that the effects of grazing and harvesting and 
class mixtures along the inundation and topographic gradients could affect classification error in 
addition to spectral similarity among PFTs. Furthermore, none of the six machine-learning 
classification methods was consistently superior at discriminating among classes and reducing 
major components of error. Future work should conduct a more rigorous pre-classification 
selection of algorithm parameters as well as object attributes that define feature space for 
machine-learning tools (Yu et al. 2008, Clinton et al. 2010a,b, Richmond 2011). 

Our results illuminate spatial characteristics of Poyang Lake wetlands that may be relevant to 
multiple research efforts, including analyses of plant function and biogeochemical fluxes (Wang 
et al. 2012), environmental drivers of habitat for waterbirds (Barzen et al. 2009), infectious 
disease agents (Chen and Lin 2004) and flooding hazards (Jiang et al. 2008, Qi et al. 2009). The 
mapped spatial distributions of PFTs may provide useful inputs to models of climate and land 
use change impacts on Poyang Lake wetland dynamics and habitats. For instance, fringe-like 
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distribution of the C4 short grasses (some of which are distributed globally as opportunistic 
weeds) may reflect the importance of the annual food cycle in controlling their intrusion into wet 
C3 grasslands. The uncertainty of climate change and new local dam structure effects on future 
Poyang Lake hydrological regimes suggests the need to investigate more thoroughly the 
feedbacks among C4 grass spread, flooding and climate variables. Similarly, changes in Poyang 
Lake water levels following closure of the Three Gorges Dam project upstream Yangtze River 
(Guo et al. 2012) may also alter broad-scale hydrological controls on vegetation composition and 
function across this landscape, which should be investigated through landscape-level ecosystem 
models. Extending our research framework to other seasons, years and remote sensing data 
sources will facilitate cost-effective monitoring of Poyang Lake plant functional diversity and 
studies of its response to climatic, hydrological and human-induced change drivers. 
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Tables 

Table 1. Summary of Plant Functional Types (PFTs) determined from cluster analysis of dominant wetland macrophytes. 

Generalized 
Plant 
Functional 
Type 

Specific Plant 
Functional Type 

Examples of dominant species 
(>70% cover) 

Common  life 
form 

Habit 
Photosynthetic 
pathway 

Main growing 
season at 
Poyang Lake 

Typical 
height 
above the 
soil, m 

C3 grasses and 
forbs 

C3 grasses  Carex cinerascens, C. unisexualis, 
C. scabrifolia  Phalaris 
arundinacea, Alopecurus 
japonicus 

Graminoid/grass Erect  C3 October-May 0.1-1.5 

 C3 forbs  Artemisia selengensis, Artemisia 
lavandulaefolia, Potentilla 
limprichtii, Rumex crispus , 
Lapsana apogonoides, Polygonum 
hydropiper, P. minus, P. 
japonicum, Mazus japonicus, 
Gnaphalium affine, Cardamine 
hirsuta  

Forb/herb Erect or 
prostrate 

C3 October-May 0.03 - 1.5 

Mixed C4 tall 
and short 
grasses (also 
incl. C3 reeds) 

C4 and C3 reeds Miscanthus sacchariflorus (C4), 
M. floridulus (C4), M. sinensis 
(C4), Arundinella hirta (C4) , 
Phagmites communis (C3)  

Graminoid/reed Erect C4 or C3 April - October 0.8 – 5 

 C4 short grasses Cynodon dactylon, Paspalum 
distichum, Digitaria spp. 

Graminoid/grass Creeping C4 March-October 0.05-0.5 

Aquatic 
macrophytes 

Emergent aquatic 
macrophytes  

Zizania latifolia, Scirpus 
marqueter, Carex doniana, 
Eleocharis valleculosa, Eleocharis 
tuberosa 

Graminoid/grass Erect C3, C4-C3  March-October 0.5 – 3 

 Floating and 
submerged aquatic 
macrophytes  

Nymphoides peltata, Trapa 
natans, Potamogeton franchetii , 
P. malaianus,  Hydrilla 
verticillata, Vallisneria spiralis, 
Ceratophyllum demersum 

Forb/herb Floating/mat 
and/or 
submerged 

C3, C3-C4, C3-
CAM* 

April - October 0.5– 2.5 
including 
underwater 

*Crassulacean Acid Metabolism (CAM), a type of photosynthetic pathway which may occur also in aquatic plants (Sculthorpe 1967) 
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Figures 

 

Figure 1. Study area of Poyang Lake, Jiangxi Province, People’s Republic of China and Poyang 
Lake National Nature Reserve. White circles indicate locations of field-surveyed sites. 
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Figure 2. Outline of the study procedures. 

PFT selection Image preprocessing

Image segmentation (eCognition 8)

Selection of training objects

Object classification and cross-
validation (Weka 3.6.5)

Comparison of  accuracy among 
different object scales, classification 

methods and feature sets

Final “multi-scale” map based on the 
best classifier & scale combinations 

for PFTs classes (ArcGIS 10)

Comparison of PFT composite maps and 
analysis of uncertainty “hotspots”

Evaluation of the agreement in class 
allocation between generalized and 

specific PFT sets



 

48 
 

 

 

Figure 3. Examples of the multiresolution segmentation output for the Landsat image at scale 
values a) 2; b) 5 and c) 10. 
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Figure 4. Variation in overall classification accuracy for a) 3-class generalized and b) 6-class 
specific Poyang Lake wetland plant functional type sets with image segmentation scale. 
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Figure 5. The average of user’s and producer’s accuracies for the 3-class (a-c) and 6-class (d-i) 
sets of Poyang Lake wetland plant functional types shown for six machine-learning classifiers. 
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Figure 6. The most common pairwise confusions among a) generalized and b) specific plant 
functional types that consistently contributed to image classification uncertainty, shown as 
proportion of the total number of testing objects averaged among six highest-accuracy 
classification methods (error bars indicate standard deviations of confusion estimates). 
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Figure 7. Change in the overall classification accuracy following addition of the object-level 
texture metrics based on Landsat bands 3,4 and 5: a) standard deviation; b) coefficient of 
variation, c) GLCM homogeneity and d) GLCM Entropy; shown for the highest-accuracy 
segmentation scale 8 and six machine-learning classifiers in Weka (NaïveBayesSimple (NBS), 
SimpleLogistic (SL), Multilayer Perceptron (MLP), support vector machine (SMO), K-Nearest 
Neighbors (IBk) and RandomForest (RF)) . 
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Figure 8. Poyang Lake plant functional types and classification uncertainty: a) generalized 
PFTs mapped with the highest-accuracy Multilayer Perceptron method at segmentation scale 8; 
b) specific PFTs mapped with their highest-accuracy classifier and scale combinations; c) 
locations of different types of classification uncertainty and d) proportions of assigned and 
misallocated specific PFTs per each generalized PFT. 
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CHAPTER 3. Object-based “dynamic cover types” – a new framework for monitoring 
landscape-level ecosystem change 

Abstract 

Traditional approaches of monitoring ecosystem change with remote sensing data often focus on 
‘static’ cover types and assess their change per spatial units of interest. However, in dynamic 
landscapes with frequent disturbance long-term surface changes may be obscured by high-
magnitude short-term dynamics. Availability of cloud-free remote sensing data is often 
inconsistent among change periods, which contributes to the uncertainty in change detection 
among ‘static’ classes. Alternatively, I propose Dynamic Cover Types (DCTs) to characterize 
highly variable areas based on their nested change regimes shaped by climate, phenology and 
disturbance. I define DCTs as sequences of surface transformations that have distinct temporal 
trajectories observable across landscapes within a given change period. I combined multispectral 
and microwave satellite imagery to classify DCTs for a large seasonally inundated freshwater 
wetland in China in 2007-2008. Instead of using pixels, I mapped DCTs using object-based 
image analysis and used principal components transformation to enhance their spectral contrast. 
Resulting spatial distributions and extents of mapped DCTs simultaneously reflected several key 
drivers of wetland change, including broad-scale changes in submersion times, vegetation 
phenology and prevalence of plant cover and localized fine-scale disturbance. I further examined 
DCT response to a hypothetical scenario of a warmer wetter early spring by substituting spring 
2008 images with 2007 ones.  In this comparison, the strongest response was detected from 
DCTs that were closely associated with the water body which expanded their extents and 
changed spatial position (permanent water and ephemeral inundated mudflats). Even classes with 
small change in total extent exhibited substantial re-distribution expressed in shifts to higher-
elevation areas in opposite direction from permanent water bodies and localized expansion of 
change classes with green emergent vegetation state.  Overall, results indicate that object-based 
dynamic class boundaries may provide useful spatial units to highlight characteristic types of 
landscape change for environmental research, ecosystem monitoring and management and to 
enhance spatially explicit modeling of terrestrial and wetland biospheric processes. 

Introduction 

Landscape ecosystems are never truly “stable”; they constantly vary due to physical processes, 
biological interactions, phenology and disturbance. The assumption of “change” versus “no 
change” for a given ecosystem property depends on the research subject and on temporal 
frequency, spatial resolution and extent of the landscape data (Crews 2008, Coops et al. 2009b, 
Assendorp 2010, Liu and Cai 2011). In the face of changing climate and growing human 
population, rapid and accurate assessments of environmental change are of critical importance 
for ecological conservation, adaptive management, land use planning and forecasting landscape 
response to scenarios of the future (Foley 2005, Parmesan 2006, Friend et al. 2007, Thuiller et al. 
2008, Grimm et al. 2008, Randerson et al. 2009, Liu and Cai 2011).  Remote sensing platforms 
are particularly useful in these tasks by providing cost-effective opportunities for repeated 
monitoring of change over large areas and locations with difficult ground access (Chambers et al. 
2007, McCleary et al. 2008, Xiao et al. 2008, Rebelo et al. 2009, Gong et al. 2010).  

Traditional landscape analyses from remote sensing data often use “static” classes which 
correspond to single states (cover types) observable for extended periods of time. The “change” 
occurs if a location changes states, i.e. its highest-probability cover types differ among 



 

55 
 

 

successive points in time. A variety of digital change detection techniques have been developed 
to compare classes among different image dates or to infer cover type transitions from processed 
multi-temporal image stacks (Singh 1989, Mas 1999, Lu et al. 2004, Coppin et al. 2004). 
However, most of their applications have focused on the contrast between change and no change 
in landscapes (often bi-temporal) where classes persist in time and shift only as a result of 
disturbance, succession or land use conversion (Liu and Cai 2011). Change detection may be less 
straightforward in rapidly varying areas such as periodically inundated wetlands, where long-
term trends in surface composition may be obscured by shorter-term dynamics of the local 
ecosystems (Crews 2008, McCleary et al. 2008). High-quality remote sensing data are discrete in 
time and may not always match the stages of change periods (e.g. flood stages) or phenology 
precisely, which contributes to error in classification and change detection (Lunetta et al. 2002, 
Hess et al. 2003, McCleary et al. 2008). At the same time, due to their spatial and temporal 
heterogeneity, such “dynamic” landscapes often host high biological diversity and play important 
roles in local and regional climate and biogeochemical fluxes (Gibbs 2000, Dudgeon et al. 2006, 
Ordoyne and Friedl 2008). Thus, alternative approaches are needed to characterize and monitor 
such areas in order to detect their response to climate change and human activities (Ordoyne and 
Friedl 2008, Wang et al. 2012).   

I propose a framework of “dynamic cover types” (DCTs) defined here as sequences of states 
with distinct temporal trajectories observable across the landscape within a given change cycle 
period. This idea is based on the premise that in dynamic landscapes, temporal signature of a 
given location is a product of multiple simultaneous drivers including physical environment, 
climatic variation, vegetation phenology and ecological adaptations as well as natural and 
human-induced disturbance such as flooding, fire, grazing etc. Periodic processes may produce 
“regimes” of change which shape unique ecosystem types and functions, sometimes along the 
gradients of change-inducing factors (e.g., inundation).  Thus, any “snapshot” landscape 
composition observed on a single-date remote sensing image is actually a manifestation of 
multiple change “regimes” at that point in time. Spatial extents and distributions of these change 
units (approximated by DCTs with multi-temporal imagery) may highlight different types of 
ecosystem dynamics for a given change period (e.g. growing season or flood cycle) as well as 
longer-term landscape trends if compared among multiple years. 

The DCT concept builds on multiple previous studies that characterized landscapes in terms 
of transitions rather than static states. For instance, Hess et al. (2003) used “cover-state classes” 
based on physically possible “bi-temporal” transitions among cover states between low and high 
flood stages for inundated wetlands in the central Amazon. A number of studies used “change 
classes” along with static cover types and mapped those from either multi-date composites of the 
original images (e.g., Weismiller et al. 1977, Soares and Hoffer 1994 )or ecologically meaningful 
data-reducing transformations such as principal component analysis (PCA), Kauth-Thomas 
algorithm and other methods (e.g., Ribed and Lopez 1995, Collins and Woodcock 1996, Coppin 
et al. 2001, Seto et al. 2002a). In recognition of the complex landscape processes underlying 
snapshot patterns in temporally discrete data, several studies have analyzed transitions as land-
cover change curves or trajectories extracted from multi-temporal imagery (Lawrence and Ripple 
1999, Mertens and Lambin 2000, Vagen 2006, Liu and Cai 2011). Finally, panel analysis 
approach proposed by Crews (2008) infers continuous change trajectories per pixel location from 
discrete multi-temporal images. Applications of this method demonstrated the importance of 
both inter-annual and intra-annual dynamics in shaping the overall land cover and land use 
change in different landscapes (Crews 2008, McCleary et al. 2008). 
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My framework further extends these ideas in several directions. I define DCTs specifically as 
the types of continuous transitions among cover types that apply to one cycle of change, e.g. the 
interval between two annual inundation events or one growing season of vegetation. In turn, the 
transitions among DCTs between successive change periods should be analyzed as longer-term 
trends in land cover, which could be further compared with trends in change-inducing 
geomorphological, climatic and other factors. Dynamic classes may differ in the number of state 
changes within their spectral-temporal trajectories extracted from discrete multi-date images. 
Furthermore, state-to-state transitions within a class trajectory do not have to be unique to each 
DCT - only their sequences are unique. Finally, I propose mapping and analyzing DCTs per 
spatial units representing small landscape patches rather than individual pixels, to reduce the 
effect of localized heterogeneity on the confusion among different change trajectories. This 
paper presents a pilot illustration of the DCT concept for a large periodically inundated wetland, 
but I also discuss the strategies for generalizing this framework to other dynamic landscapes. 

My study performed the DCT analysis for one flood cycle at Poyang Lake, the largest 
freshwater lake-wetland complex in China (Figure 1). This >4000 km2 landscape undergoes 
continuous surface dynamics due to annual monsoon-driven flooding and inter-annual climatic 
and hydrological fluctuations in the Yangtze River basin (Shankman et al. 2006).  During the 
low water winter season this area hosts large numbers of migratory waterbirds from the East 
Asian Flyway including critically endangered species (Barzen et al. 2009). Available winter 
habitat and food resources are shaped by the year-round change in hydrology and vegetation 
productivity (Barzen et al. 2009). Response of wetland surface to flooding also controls the 
habitat for snail species Oncomelania hupensis, the intermediate host to the parasite Schistosoma 
japonica causing a severe human disease in the region and globally (Seto et al. 2002b, Chen and 
Lin 2004). Hence, it is important to improve the understanding of spatio-temporal linkages 
between ecological habitats and wetland change regimes for management, conservation and 
hazard risk assessments. However, current Poyang Lake dynamics might change in the near 
future due to reported declines in winter water storage, parallel to closure of the Three Gorges 
Dam upstream Yangtze River (Liu 2009, Guo et al. 2012), and new proposed local water control 
structures with uncertain but potentially adverse ecological effects (Barzen et al. 2009, Finlayson 
et al. 2010). Given multiple anthropogenic pressures and high spatio-temporal heterogeneity of 
these wetlands, it is difficult to attribute their landscape trends exclusively to any single factor. 
Furthermore, comprehensive field studies are problematic to implement here due to large size of 
the lake and limited field access to seasonal marshland. Hence I expected that DCTs may provide 
useful spatio-temporal units to categorize Poyang Lake dynamics in a single change period, and 
ultimately to develop more comprehensive approaches to study its long-term change. 

I characterized Poyang Lake DCTs as major sequences of local wetland state changes per 
flood cycle extracted from the combination of passive-sensor multi-spectral and microwave radar 
satellite images. The DCTs were first mapped for the summer 2007-spring 2008 flood cycle and 
then compared with a hypothetical “quasi-experimental” scenario of a warmer wetter spring by 
substituting same-sensor spring 2008 images with those from spring 2007 (Figure 2). To enhance 
class contrasts and to avoid “salt-and-pepper” speckle from local heterogeneity and spectral 
noise, I 1) performed the classification using object-based image analysis (OBIA; Blaschke et al. 
2000, Benz et al. 2004, Blaschke 2010) rather than pixel-based methods and 2) applied PCA 
transformation to the object-level means of input bands prior to the object classification.  I 
further discussed the strategies to enhance the DCT framework and adapt it for long-term 
ecosystem monitoring and landscape environmental modeling in the future work.  
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Methods 

Study area 

I focused on the main Poyang Lake water body south from the channel with the Yangtze River 
(28°25′–29°20′N, 115°48′–116°44′E; Figure 1). During the April-September rain season water 
coverage may exceed 4000 km2; this period is also a “warm” growing season for aquatic 
vegetation and grasses in higher-elevation areas with short submersion times (Wang et al. 2012). 
The “low water” season from October to April is characterized by flood recession with the 
lowest water levels and <1000 km2 water extent in January; at this time the landscape becomes a 
mosaic of smaller permanent water bodies and exposed mudflats that are gradually colonized by 
emergent plants of the “cool” growing season (Chen et al. 2007, Dronova et al. 2011, Wang et al. 
2012). These dynamics govern local ecological processes, however, specific patterns of change 
are still not fully understood (Dronova et al. 2011, Wang et al. 2012), while the field surveys are 
often constrained by vast areas of soft inaccessible mudflat and the risk of infectious disease 
(Dronova et al. 2011, Feng et al. 2012). Hence I expected that analyses of this wetland’s 
composition at any point in space and time would benefit from the broader spatio-temporal 
context (Liu and Cai 2011) provided by the DCTs and multi-temporal remote sensing data. 

Remote sensing data 

I used remote sensing data from April 2007 to May 2008 (Table 1) covering pre-flood conditions 
of spring 2007, summer flood of 2007 and its recession, and the low water season until the new 
spring 2008 flooding. I used nine scenes of Beijing-1 microsatellite with 32-m spatial resolution, 
three multispectral bands (near-infrared (NIR), red and green), 600-km swath and 5-day revisit 
time (Table 1), and eight scenes of the ENVISAT Advanced synthetic Aperture Radar (ASAR) 
with C-band (5.3 GHz) in wide swath mode (WSM, 400-km swath) with single polarization 
(either HH or VV, Table 1), 150-m spatial resolution and 16-43⁰ view angle range. Beijing-1 
sensor was selected due to its frequent revisit time and spectral sensitivity to both hydrological 
and flood-free features on the landscape as well as differences in composition and phenology 
among herbaceous vegetation types (Wang et al. 2012). However, water turbidity at Poyang 
Lake may increase the confusion between water and newly exposed mudflats in multispectral 
data (Dronova et al. 2011). Given the lack of reliable high-or medium-resolution digital elevation 
and bathymetric data, I thus included the microwave sensor due to its sensitivity to changes in 
water extent that are controlled by both the flooding and the local elevation gradients (Figure 3).   

Because Beijing-1 sensor does not have the calibration onboard, I used raw digital numbers 
(DNs) in the image analysis, and not surface reflectance. Beijing-1 images were radiometrically 
calibrated to Jan 01, 2008 scene using empirical linear relationships derived from pseudo-
invariant targets of bright permanent sand on high-elevation dunes and dark permanent water 
reservoirs near cities. The ASAR data were preprocessed by the State Key Laboratory of Remote 
Sensing Science, Beijing, PR China. Raw images were converted to backscatter coefficient σ⁰ 
with the Basic ENVISAT SAR Toolbox software (the European Space Agency) and corrected 
for systematic variation using permanent-scatter urban features for HH and VV polarizations 
(Kwoun and Lu 2009, Wang et al. 2012). Backscattering coefficients at different dates were then 
radiometrically calibrated using a simple linear model and response from pseudo-invariant urban 
areas and water bodies (Wang et al. 2012). For the primary DCT classification I combined geo-
referenced Beijing-1 and ASAR backscattering coefficient images from near-maximum water 
extent in July-August 2007 to April-May 2008 at the onset of new flooding (I refer to this set as 
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summer 2007-spring 2008 flood period). In this image stack, radar bands were resampled to 
Beijing-1 32-m resolution with their original values preserved. I also performed a second 
classification of DCTs for a hypothetical scenario of warmer wetter spring, where February-May 
2008 Beijing-1 and April 2008 ASAR scenes were replaced with April-June 2007 Beijing-1 and 
ASAR data; I will refer to this image set as a hypothetical “quasi-experimental” scenario as 
discussed in 2.6 below.   

Poyang Lake DCTs 

Poyang Lake DCTs were defined as common types of wetland change among its major “static” 
cover types that can be broadly assigned to vegetation, water, sand and seasonal mudflat 
(Dronova et al. 2011). Physically plausible transitions among these types form location-specific 
change sequences which may vary by topographic features, distance to the flood source, time of 
the year, grazing, plant seed or propagule banks and other factors. These sequences can be 
characterized by spectral-temporal trajectories derived from multi-date remote sensing images 
(Wang et al. 2012; Figure 4). Previous studies of Poyang Lake annual inundation patterns 
(Andreoli et al. 2007, Hui et al. 2008, Zhao et al. 2011, Feng et al. 2012) suggested that, despite 
the incremental nature of water expansion and recession, flood-related transitions may form 
relatively extensive “zones” of similar annual submersion times. My DCTs (Table 1) combined 
hydrological transitions with change patterns from vegetation phenology known from previous 
field observations and remote sensing analyses of Poyang Lake cover at different seasons (de 
Leeuw et al. 2006, Zeng et al. 2007, Guan et al. 2008, Chen et al. 2007, Liu 2009, Wang et al. 
2012, Dronova et al. 2011, Dronova et al. 2012).  

I defined seven DCTs for this study (Table 2, Figure 4), five of which were associated with 
complete or partial inundation and presence or absence of vegetation in their schedules. Two 
classes represented seasonally flooded grassland: areas exposed by water in early fall and 
colonized by C3 plants, mainly Carex spp. with the highest biomass in late spring (C3G), and 
mixed C4-C3 grasslands (C4C3G) in higher-elevation lake periphery with Miscanthus, Cynodon, 
Arundinella spp. that are green in the fall and spring but senescent in winter (Zeng et al. 2007, 
Guan et al. 2008, Wang et al. 2012). Two DCTs represented ephemeral mudflats exposed later in 
the fall or winter and flooded again in early spring (EMN and EMV, Table 2, Figure 4). Of those, 
the EMV class included the change from mudflat to ephemeral vegetation before the new flood; 
however, specific plant community composition was not well known due to the isolated location 
and lack of ground or boat access (Liu 2009). Their spectral signatures on remote sensing 
imagery were close to those of C3 grassland in accessible areas (Dronova, personal observation). 
The EMN type represented exposed mudflats that do not have enough time to develop dense 
plant cover due to shorter intervals between flood exposures. Due to spectral confusion between 
mudflat and wet sand (Dronova et al. 2011), I did not separate transitions involving flooded sand 
beds and those on finer-textured mudflats. Of the remaining classes, one DCT represented 
permanent sand features, and two classes – permanent water with different schedules of aquatic 
vegetation (Table 2). The latter included permanently flooded areas that could support aquatic 
vegetation only from late spring to mid-fall (PW; Table 2) and those with aquatic macrophytes 
also from mid-fall to spring (WAM).   

Image segmentation and PCA transformation 

To classify Poyang Lake DCTs, I used OBIA to avoid the salt-and-pepper speckle common in 
pixel classifications of wetlands (Blaschke et al. 2000, Hess et al. 2003) and to enhance class 
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contrast due to smoothing of local noise within objects (Kim et al. 2011, Dronova et al. 2012). 
The first step in the object-based analysis was segmentation of each multi-date two-sensor image 
stack into primitive objects used as minimum mapping units (Dronova et al. 2011). Segmentation 
was carried out in eCognition Developer 8.0 software (Trimble Inc) using multi-resolution 
segmentation tool which allows for diversity of object sizes in the output (Baatz and Schäpe 
2000, Benz et al. 2004). This process requires the parameters of scale (affects object size based 
on maximum allowed heterogeneity), shape (controls the relative importance of shape versus 
spectral-only information in object generation) and compactness (affects the degree of 
compactness of the final objects). Because characteristic shapes of DCT classes were not known 
a priori, I kept both shape and compactness at a low value of 0.1 to allow spectral values to have 
the strongest contribution in object generation. For segmentation scale, it was important to 
capture the boundaries of the minimum-sized patches representing DCTs of interest, which were 
most likely to be observed during the low water stages. Therefore, I used the scale value of 7, 
which with 32-m Beijing-1 resolution was close to the highest-accuracy scale in my study of 
Poyang Lake vegetation from a spring 2008 Landsat TM image (Dronova et al. 2012). Prior to 
classification I isolated several residential and actively managed human land use areas that were 
not expected to follow “natural” wetland dynamics using Microsoft Bing image in ArcGIS 10 
(ESRI Inc.).   

Image classification  

Next, I assigned training and test objects, separately for the 2007-2008 flood period and 
hypothetical scenarios, based on several data sources. Multiple field surveys of wetland cover 
and vegetation were carried out in March-April and December 2007, January and April 2008 
(Dronova et al. 2011, Wang et al. 2012) and later years. Although no continuous observations 
were implemented in situ, these field data allowed me to make an expert judgment on which 
objects overlapping with field-surveyed areas could serve as examples of proposed DCTs. 
Surveyed areas included C3 and mixed C4-C3 grasslands, mudflats, permanent water and sand 
features. For DCTs associated with inaccessible ephemeral mudflats and winter aquatic 
vegetation, representative objects were assigned using visual comparison of multi-date images 
with high-resolution data from DigitalGlobe Worldview-1 and QuickBird sensors for May, 
September, November and December 2007 and January 2008, provided by the National 
Aeronautics and Space Administration (NASA) and The National Geospatial-Intelligence 
Agency (NGA) NextView program (http://cad4nasa.gsfc.nasa.gov). I selected 386 total objects 
with 24-100 objects for each class depending on the expected class dominance; these objects 
were randomly divided in half into training and test samples. I further examined spectral-
temporal signatures of DCTs from training samples with the raw image data (Figure 4) to better 
understand their key aspects of phenology and inundation cycle.  

Prior to classification I performed three principal component transformations on covariance 
matrices of the object-level spectral means from the original input bands: 1) using only ASAR 
WSM bands; 2) using only Beijing-1 NIR bands and 3) using only Beijing-1 red and green bands 
together. This step was taken to account for redundancy in object attributes from large number of 
input bands and to enhance DCT contrasts. From these transforms, three first PCs and two 
second PCs (from ASAR and Beijing-1 NIR only) were used as inputs for the object-based 
image classification instead of the image bands. Note that because training and test objects were 
assigned separately for each scenario, I did not use standardized principal components (Eastman 
and Fulk 1993). However, application of this method to longer-term DCT comparison without 
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reference data for all change periods would require standardization of PCs or other types of 
transformations in addition to relative radiometric image calibration.  

For DCT classification I compared three supervised machine-learning algorithms in Weka 
3.6.5 software (Witten and Frank 2005, Hall et al. 2009): Multilayer Perceptron artificial neural 
network (MLP), a multinomial logistic regression classifier (SimpleLogistic in Weka) and a 
simple k-nearest neighbors (kNN) classifier. These methods from were chosen because they did 
not require extensive parameterization and delivered relatively high accuracy in the previous 
object-based vegetation study at Poyang Lake (Dronova et al. 2012). For Multilayer Perceptron, I 
used an automatic (driven by Weka algorithms) network building option with Weka parameters 
learning rate equal to 0.3 and momentum equal to 0.2 (for more detail on the algorithms see 
Witten and Frank 2005). For kNN I used the number of nearest neighbors equal to 1 and a simple 
linear “brute force” algorithm for nearest neighbor search in the data space with Euclidean 
distance similarity function (Witten and Frank 2005). I compared relative performance of these 
methods and consistency of their errors to better understand the sources of confusion among 
DCTs. The overall and class specific accuracy were estimated with contingency tables.  

Comparison of DCT map with a hypothetical change scenario 

Using the highest-accuracy classification algorithm from the previous step, I further compared 
spatial distribution and extent of DCTs for the summer 2007-spring 2008 period with a 
hypothetical scenario where spring 2008 image data were replaced with spring 2007 scenes 
(Figure 2), while fall 2007-winter 2008 images were preserved. Importantly, spring 2007 
conditions represent the pre-flood stage shaped by the previous 2006-2007 flood cycle, for which 
no other data were available at the time of my study. Therefore, comparison of two scenarios was 
intended only as a hypothetical “experiment” to investigate how the spatial extents and locations 
of DCTs would change if, following January 2008, spring conditions were those of spring 2007 
instead of the actual spring 2008. 

While this exercise could not provide a “true” response of DCTs to a change in atmospheric 
and hydrological conditions, it was used to test the potential sensitivity of classes to landscape 
differences captured in the images. Specifically, the January-March period in 2007 was 
characterized by more warm days and higher amount of precipitation in 2007 than in 2008 
(Figure 5a,b). Furthermore, mean water levels recorded at a local Duchang hydrological station 
(data of the State Key Remote Sensing Lab, Beijing, China; Qi et al. 2009) were by 1-2 m lower 
in December, January, March and April 2008 compared to the same months in 2007, and only 
the February mean water levels were very close due to a short-term flood event in 2008. Thus, in 
comparing two scenarios, I expected the response from DCTs with the strongest sensitivity to 
flooding, such as non-vegetated mudflats, and from emergent C3 grassland which may be 
sensitive to both temperature and precipitation patterns in late winter-early spring (Dronova et al. 
2011). To classify DCTs for the hypothetical scenario, I followed the same procedures as for the 
summer 2007-spring 2008 period (Figure 2): segmentation of the April 2007-Jan 2008 bi-sensor 
image stack, PC transformation of the object-level band means and classification with the 
highest-accuracy method from period 1 classification. At the latter step, however, I used different 
sets of training and test objects for DCTs which were selected using field and high-resolution 
image data from spring 2007, not spring 2008. Differences between the hypothetical scenario 
and summer 2007-spring 2008 period were estimated via simple geospatial overlay of two maps 
in ArcGIS 10 software. 
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Results 

Spectral trajectories and principal component transformation 

Mean DCT-specific spectral values from training sample objects formed unique spectral-
temporal trajectories in the raw image data (Figure 4). Each date emphasized contrast between at 
least three DCTs, but the specific timing of the highest contrast differed among class pairs. 
Hence the overall spectral differences among classes became evident only when multiple image 
dates were considered together, regardless of the sensor. Both microwave and near-infrared 
trajectories (Figure 4) highlighted the contrasts between types that were predominantly “wet” 
over the course of a flood season (PW, WAM, EMN) versus DCTs that were only partially 
inundated in short-term intervals (permanent sand and mixed C4-C3 grassland). Two classes 
with a green emergent C3 vegetation state, EMV and C3G, were similar in the onset of greening 
in mid-late fall but remarkably diverged in May 2008 due to flooding of EMV and near-peak 
green plant biomass state of C3G at that time (Figure 4b).  

These differences in class spectral-temporal trajectories (Figure 4) translated into DCT 
contrasts with the most meaningful principal components (Figure 6). In three separate PCA 
transformations of the object-level means for the near-infrared,  microwave and combined red 
and green image band stacks, the first principal components (PC) explained the largest amount of 
variance (60%, 66% and 46%, respectively) and highlighted different aspects of class contrasts 
(Figure 6). The first PC of the NIR contrasted “wetter” types with long submersion times (PW, 
WAM and EMN) and partially flooded DCTs with higher prevalence of emergent green 
vegetation within their trajectories (Figure 6a), particularly C3 grasses of the cool growing 
season with peak biomass in late spring. The first PC of transformed ASAR backscatter 
coefficients represented differences in annual submersion times and the contrasts among 
permanently inundated areas, low-elevation features and high-elevation features (Figure 6b). The 
first PC of the red and green band transformation represented two important contrasts: 1) 
gradients of wetland inundation and green vegetation density relative to the central water body 
area and 2) varying levels of water turbidity and sediment on wetland surface (Figure 6c).  

The second PCs in each transformation explained 17-26% variance in the data; however, 
those from ASAR and Beijing-1 NIR band transformations provided most of the new unique 
change information. Specifically, they highlighted particularly dynamic areas surrounding the 
central water body that exhibit more frequent fine-scale inundation disturbances and support 
ephemeral vegetation in winter. The second PC in ASAR band transformation reflected the 
gradients of flood exposure and submersion time of these areas (Figure 6d), while the second PC 
in the NIR transformation accentuated spatial variation in persistence of green ephemeral 
emergent vegetation (Figure 6e). 

Classification accuracy and DCT map for summer 2007-spring 2008 period 

Among three supervised machine-learning algorithms used to classify DCTs for summer 2007-
spring 2008 period, kNN had the highest overall accuracy (93.3%) followed by logistic 
regression (90.7%) and Multilayer Perceptron (89.6%; Table 3). Major sources of errors were 
consistent among three methods, with the largest being the confusion of permanent water 
spatially adjacent non-vegetated mudflats and winter aquatic vegetation (Table 3). Additional 
confusions occurred between emergent flooded C3 grassland and mixed C4-C3 grassland and 
between ephemeral vegetated mudflats and non-vegetated mudflats or emergent C3 grassland 
(Table 3).  
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The mapped DCT distributions for the summer 2007-spring 2008 change period (Figure 7a) 
were consistent with both hydrological (Andreoli et al. 2007, Hui et al. 2008) and vegetation-
based wetland analyses of Poyang Lake from previous studies (de Leeuw et al. 2006, Zeng et al. 
2007, Wang et al. 2012, Dronova et al. 2012). Dynamic classes exhibited broad-scale zonation 
around permanent water bodies, ranging from partially flooded higher-elevation mixed C4-C3 
grassland to flooded emergent C3 grassland to low-lying mudflats. These patterns closely 
followed known gradients of submersion time (Andreoli et al. 2007, Hui et al. 2008, Zhao et al. 
2011) and at the same time reflected prevalence of green vegetation within the change period, 
which is governed by local disturbance and plant functional type (Wang et al. 2012, Dronova et 
al. 2012). The most extensive classes were permanent water and emergent flooded C3 
grasslands, followed by vegetated and non-vegetated ephemeral mudflats and mixed C4-C3 
grassland (Figure 7c). Non-vegetated ephemeral mudflats were predicted by the classifier both in 
the central water body area and around some of the small winter sub-lakes (Figure 7a).  

Comparison of the DCT classification with the hypothetical change scenario 

Spatial extent and distribution of DCTs responded to the hypothetical scenario of change with 
two different spring conditions (Figure 7b,d). With spring 2007 data substituted for spring 2008 
images, the estimated total area of permanent water, vegetated ephemeral mudflats, non-
vegetated ephemeral mudflats and mixed partially flooded C3-C4 grassland increased by 12.8%, 
3.0%, 0.9% and 4.1%, respectively (Figure 7d). In contrast, C3 grasses, winter aquatic 
macrophytes and permanent sand extents decreased by 5.5%, 55.2% and 18%, respectively. 
However, even the small-magnitude changes in class extent were accompanied by substantial 
spatial re-distributions. Two mudflat and two grassland classes with belt-shaped zones around 
permanent water bodies (Figure 7) shifted in the hypothetical scenario, losing 9-18% their area to 
lower-elevation neighbors closer to water bodies and taking 8-21% from their higher-elevation 
neighbors. Most of the change, however, occurred for classes associated with the water boundary 
– WAM and EMN, which preserved only 36% and 64% area, respectively, in the hypothetical 
scenario relative to the actual flood season (compared to 74-92% for other DCTs). However, 
decline in the WAM area in the hypothetical scenario could be attributed to the lower actual 
extent of this class in 2006-2007 compared to 2007-2008, which I could not validate due to the 
lack of field data on this class.  

Again, I stress that the differences between the actual and the hypothetical change periods 
should be interpreted only as “potential” shifts in DCTs because it was not possible to verify 
physical plausibility for all detected transitions. The most useful contribution of this exercise to 
my study is not in the absolute values, but in the relative magnitude and spatial pattern of the 
“experimental” responses. Future work should refine this analysis as a multi-year comparison of 
DCTs among actual discrete change periods. 

Discussion  

Poyang Lake wetland characteristics in 2007-2008 DCT classification 

Landscapes that undergo considerable short-term surface dynamics require special approaches 
for assessing their composition and longer-term change. It has been long recognized that multi-
temporal remotely sensed information can facilitate classifications of land cover and vegetation 
both in relatively “stable” landscapes (Lunetta et al. 2002, Seto et al. 2002a) and in rapidly 
changing systems such as inundated wetlands (Hess et al. 2003, Evans et al. 2010). My proposed 
framework of “dynamic cover types” complements existing approaches by explicitly considering 
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spatial units of change shaped by topography, phenology, ecological interactions and disturbance 
together.  In locations such as Poyang Lake, where process-based understanding of landscape 
dynamics is limited by surface complexity and the lack of field and geospatial data, DCTs may 
serve as a first step in “top-down” analyses towards building more complete and spatially 
explicit knowledge of the short- and long-term ecosystem processes.  

My results demonstrate that DCTs may accentuate different “schedules” for compositionally 
similar classes with different phenology and roles in ecosystem processes. For example, post-
flood expansion of C3 grasses at Poyang Lake may occur both within peripheral wetlands (C3G 
class) and near the central water body (EMN class). Both types may be spectrally similar on 
single-date images in winter due to growth of C3 grasses in EMN and grazing pressure on the 
established plants in C3G (Chen et al. 2007, Wang et al. 2012; Figure 4b). However, at the 
seasonal and annual time scales, these DCTs would contribute differently to ecosystem 
biogeochemical fluxes and habitats because of unique schedules of vegetation emergence, peak 
density, suppression by the new flooding and the overall flood-free time. Similarly, contrasting 
phenology of winter aquatic macrophytes and permanent water also suggest their different 
ecological roles in wetland cycles. Permanent water DCT included warm-season aquatic plants 
which proliferate from spring to fall and then senesce, exposing mudflat or open water (Wu 
2008, Wang et al. 2012). Some of their dominant species may overwinter as buried tubers which 
provide critical food for wintering migratory waterbirds (Barzen et al. 2009). In contrast, 
photosynthetically active aquatic macrophytes of the cool growing season (WAM) contribute to 
net primary productivity and canopy-water-atmosphere carbon exchange at this time in addition 
to emergent grasses. 

C3 sedges of the cool growing season also supply food for wintering waterbirds, particularly 
grass-eating foraging guild (de Leeuw et al. 2006, Barzen et al. 2009). Among the DCTs with 
this state, by the time of bird arrival to Poyang Lake in late fall only C3G areas are flood-free 
long enough for emergent C3 grasses to establish. In contrast, EMV develop C3 vegetation later 
in the winter and represent more distant and isolated locations with lower livestock grazing 
pressure compared to C3G. This contrast raises two important questions: 1) do EMV areas 
provide an important secondary bird habitat later in the winter period? and 2) would shrinkage of 
this DCT following higher water levels in winter (e.g. due to dams) considerably affect 
migratory waterbird populations? Some of the aerial bird surveys from late winter already noted 
concentrations of waterbirds in areas that are closer to Poyang Lake center (Figure 1) and further 
from commonly visited peripheral sub-lakes (Qian et al. 2009). It is not well known whether 
these patterns represent the “normal” within-season habitat switching or a more specific response 
to reductions in water levels (Qian et al. 2009, Guo et al. 2012) and human disturbance at 
wetland periphery. In any case, evidence of bird utilization of the EMV and EMN areas in late 
winter calls for particular attention to these habitats as targets for more thorough analysis and 
ecological monitoring, particularly under planned hydrological interventions (Barzen et al. 2009, 
Finlayson et al. 2010).  

Classification of Poyang Lake DCTs likely benefited from the object-based image analysis 
method which allows for smoothing of the local spectral heterogeneity and incorporation of the 
spatial context at the object level (Blaschke et al. 2000, Gilmore et al. 2008, Blaschke 2009). 
While this paper did not explicitly compare OBIA with pixel-based methods, my parallel study 
discussed the case of salt-and-pepper speckle in a multi-temporal pixel-based classification of 
Poyang Lake (Dronova et al. to be submitted). Such speckle may increase variation in class 
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spectral trajectories and obscure ecologically meaningful flood- and phenology-driven 
transitions. In contrast, objects may provide primitive spatial “units of change” which include 
pixel neighbors that are likely to exhibit correlated change patterns based on their multi-temporal 
signatures.  This benefit may be especially important with high and very high resolution data 
with greater levels of within-class spectral heterogeneity (Johansen et al. 2007, Kim et al. 2011).  

Comparison of DCT maps between change scenarios and implications for landscape models 

Differences in spatial extent and position of DCTs between the 2007-2008 flood period and the 
hypothetical scenario highlighted two primary aspects of change that were in agreement with 
“warmer, wetter” experimental conditions. Reallocation of belt-shaped EMN, EMV and C3G 
towards their higher-elevation neighbors and further away from the water bodies could represent 
a “directional” response to the expansion of permanent water. This result is consistent with 
previously raised concerns about potential spatial shifts and ultimate shrinkage of suitable 
wetland habitats under higher water levels under new hydrological control structures (Barzen et 
al. 2009). In turn, more localized multi-directional expansions of “vegetated” DCTs suggest 
potentially strong response of wetland grasses to warmer temperatures and higher precipitation. 
Given high biological diversity of wetland vegetation and buried seed and propagule banks in the 
region (Liu et al. 2006a), these responses are likely to be complex and dependent on site-specific 
plant community composition and disturbance, such as expansion of the mixed C4-C3 grasses 
into emergent C3 grasslands in my hypothetical scenario. During the low water season, the 
C4C3G class at Poyang Lake would be largely dominated by reeds and short grasses with C4-
photosynthesis which are less tolerant of flooding than C3 sedges (Zeng et al. 2007, Guan et al. 
2008, Zheng et al. 2009). Theoretically, based on the eco-physiological differences among C4 
and C3 grasses (Pearcy and Ehleringer 1984), one could expect higher competitive performance 
of C4 species relative to C3 under warmer and more humid growth conditions (Collatz et al. 
1998), consistent with my results. At the same time, higher early spring water levels might also 
constrain livestock grazing to higher-elevation areas thus additionally increasing pressure on C3 
grasses. The response of spatio-temporal interaction among C4- and C3-grass dominated 
vegetation types to climatic and hydrological variability at Poyang Lake should be further 
investigated with multi-year DCT analysis and field studies. 

Although the hypothetical scenario could not be validated, this exercise suggests that DCTs 
may be sensitive to simultaneous change in multiple drivers of surface cover composition and 
ecosystem processes. Thus, DCT framework should be further extended to inform landscape 
modeling of climate change and land use or management effects on ecosystem properties and 
habitats. Projections of broad-scale changes in biogeochemistry and ecosystem function under 
future climate change and land use often require coupling process-based models with geospatial 
land cover and land use information (Melillo et al. 1993, Cao and Woodward 1998, Turner et al. 
2004). A recognized limitation of current terrestrial biosphere models is underrepresentation of 
the intrinsic change events within growing seasons and their year-to-year variation (Keenan et al. 
2012). By using input land cover categories defined by their characteristic dynamics, rather than 
static states, new generations of models may be able to address this challenge and account for 
differences among ecological regimes nested within a landscape in order to reduce the 
uncertainty in model outputs. A useful first step towards this may be coupling DCT 
classifications with existing models that operate at time steps comparable to change periods for 
which  DCTs are defined (e.g., growing seasons). For Poyang Lake specifically, combining DCT 
classifications with models of hydrological change due to both upstream Three Gorges Dam and 
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proposed local water control structures (Barzen et al. 2009, Finlayson et al. 2010) would help to 
assess wetland ecosystem vulnerability under new water regulations. 

 Insights for the future work: data and methods for DCT analysis  

A particularly important issue in the future extension of DCTs to longer time frames is 
separating ‘reference’ class dynamics from directional longer-term trends such as succession. 
Ecosystem processes may be continuous in time and asynchronous, and thus may not be easily 
“discretized” (Vierling et al. 2011). Hence, dynamic classes may be best informed by the 
periodic processes which shape discrete recognizable transition cycles within rapidly changing 
landscapes such as flood cycles at Poyang Lake or plant growing seasons in terrestrial 
landscapes. Because the timing of common transitions (e.g., leaf flushing, mudflat exposure) 
may vary from year to year, multi-year DCT comparisons would require assessments of 
‘reference’ class variation with historical data, continuous field observations or 
biometeorological covariates. Zhong et al. (2011) demonstrated how similar agricultural crops 
could be correctly classified even with different planting dates, using class-specific spectral 
metrics extracted from inter-seasonal and inter-annual time series images. Extending the latter 
approach to natural vegetation and surface types would be a promising strategy to generalize 
DCT framework and facilitate dynamic type comparisons in the long-term change monitoring.    

Future work should also accommodate ways to detect “novel” change types which may occur 
due to short-term disturbance, unprecedented shifts in climate and hydrology, human 
management and restoration activities, or alien species invasions. As a first step, unsupervised 
methods of image classifications may be applied to identify previously unknown transitions as 
unique spatiotemporal clusters (Ribed and Lopez 1995, Hame et al. 1998), while ground-based 
knowledge could be further used to verify and incorporate them into existing DCT sets.    

These considerations raise an important question of how much data are enough to reliably 
characterize change processes and DCTs for a given landscape. My images represented the key 
stages of Poyang Lake’s flood cycle, although class definitions did not incorporate specific time 
of state changes between image dates. On the one hand, this made my approach flexible to 
accommodate some degree of the unknown “reference” within-class variation due to, e.g., plant 
phenology. On the other hand, given 1-2 month difference between scenes, some DCTs could be 
misclassified because part(s) of their temporal trajectory had been missing from spectral 
signatures that determined their principal component values. Precise timing of transitions may be 
very important in the studies of climate change effects on ecosystem processes and phenology. 
However, too frequent data may increase within-class heterogeneity and hence the chance of 
confusion (Zhong et al. 2011). Therefore, future work should investigate the effect of data 
frequency on DCT classification outcomes, as well as their sensitivity to mismatches in the 
availability of cloud-free data for transition stages between discrete change periods.  

Temporal frequency of available data is coupled with other important characteristics of 
sensors. Instruments that acquire data daily (e.g., AVHRR, MODIS Aqua and Terra) have 
medium to coarse spatial resolution which may not be suitable for detecting fine-scale 
incremental changes. Depending on the spatial scale of interest, DCT analysis from these data 
may require subpixel inference such as temporal unmixing or independent component analysis 
(Lobell and Asner 2004, Ozdogan 2010). Novel microsatellites with wide swath and frequent 
revisit (e.g., 5 days for Beijing-1 in my study) can provide more detailed time series at medium 
resolution. However, these instruments have relatively short data collection history, small 
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number of bands and may still be limited by common cloudiness in humid regions such as my 
study area.  Thus, future work should also explore combinations of data by similar sensors 
collected on complementary dates. My analysis also benefited from combining visible and near-
infrared data sensitive to vegetation phenology with microwave imagery sensitive to inundation 
extents, similar to previous studies (Grenier et al. 2007). However, radar data may be time-
consuming to pre-process and costly to acquire at high spatial and temporal resolution. 
Alternatively, passive-sensor optical imagery could be complemented with digital elevation 
models and bathymetric data, which were not available for my study area.  

Finally, it is important to develop a framework for the appropriate validation of remote 
sensing-based DCTs. This task is challenging in general (Liu and Cai 2011) because collecting 
sufficient test data through frequent and comprehensive field surveys of dynamic landscapes may 
be costly and impractical. Alternatively, future research should consider cost-effective 
continuous observation approaches such as wireless sensor networks (Gong 2007, Burgess et al. 
2010) and digital cameras to capture phenology (Richardson et al. 2009, Sonnentag et al. 2012). 
These methods could provide reliable information on the change in situ and illuminate year-to-
year “reference” variation in the timing of within-class transitions.  

Summary  

The proposed classification framework of “dynamic cover types” allowed me to highlight 
important changes in wetland cover driven by seasonal flood dynamics and plant phenology in 
the large and spatially heterogeneous Poyang Lake area. By combining multi-spectral and 
microwave remote sensing images of the critical flood cycle stages, I were able to differentiate 
major wetland DCTs despite constrained field access and the lack of continuous in situ 
observations. Comparison of DCTs from the summer 2007-spring 2008 change period with a 
hypothetical scenario of warmer, wetter spring conditions detected both a directional 
hydrological response as re-distribution of belt-shaped wetland DCTs to higher elevation areas, 
and a more complex localized phenological response from change types with green emergent 
vegetation. Results suggest DCTs defined per Poyang Lake flood cycle could facilitate the 
analyses of wetland ecosystem function and wildlife habitats and provide useful inputs to 
hydrological models in this complex landscape.   

My ongoing and future work will extend this framework to multi-year analyses of Poyang 
Lake ecosystem change to address the possibilities of 1) comparing DCTs across multiple 
change periods and assessing their “reference” variation with temporally frequent data  and 2) 
detecting short-term changes induced by ecologically  important  but localized disturbance such 
as reed harvesting, grazing and aquaculture. Assessment of historical change types in Poyang 
Lake area would facilitate modeling of “dynamic” habitats for wildlife and infectious disease 
agents (Seto et al. 2002b), and their potential response to hydrological alterations following the 
closure of Three Gorges Dam upstream or construction of local water control structures (Barzen 
et al. 2009). Assessing the future of Poyang Lake ecological regimes that currently support its 
unique and biologically rich environment must be a critical step in planning of any hydrological 
structures and flood level management decision-making for this area. DCTs may facilitate such 
assessments with a cost-effective framework that is easy to adapt for specific change types and 
ecological and conservation zones of interest. Finally, future work could extend and test this 
approach in other inundated wetlands globally (e.g., the Pantanal wetlands, Florida Everglades, 
Okavango Delta) and non-wetland dynamic systems such as sand dunes (Assendorp 2010), 
transitioning forests and areas with cover type shifts due to climate change.  
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Tables 

Table 1. Satellite remote sensing images used in DCT classification. 

Satellite Date Flood stage 

Beijing-1  

(32 m; NIR, 
Red, Green) 

 

Apr 19, 2007 Onset of the rain season, emergent vegetation approaching 
peak biomass 

May 6, 2007 Early stage of the rain season, emergent  vegetation near 
peak biomass 

Aug 16, 2007 Water coverage near annual maximum, only high-elevation 
ridges and permanent sand features are exposed 

Oct 17, 2007 Flood recession, C4 grasses at high biomass, C3 grasses 
rapidly emerge on newly exposed mudflats  

Nov 30, 2007 Progression of the cool growing season with C3 grasses as 
dominant green vegetation 

Jan 1, 2008 Progression of the cool growing season with abundant C3 
grasses, C4 grasses mostly senescent and water levels near 
annual minimum with exposed adjacent mudflats 

Feb 16, 2008 Progression of the cool growing season with a short-term 
flooding event due to winter precipitation and snowmelt 

Mar 2, 2008 Emergent vegetation development is boosted by warmer 
temperatures. Water levels very slowly begin to rise. 

May 12, 2008 Early stage of the rain season, emergent vegetation near 
peak biomass 

ASAR WSM 

(150m, C-band), 

polarization is 
given in 
parentheses for 
each image date 

May 25, 2007 (HV) Rain season is progressing, vast portions of the area are 
covered with water, flood-free areas have high green 
vegetation biomass 

June 29, 2007 (HV) Water coverage increases towards the annual maximum 

July 31, 2007 (VV) Water coverage near annual maximum, only high-elevation 
ridges and permanent sand features are exposed 

Sep 4, 2007 (HV)  Early stage of water table recession,  

Oct 28, 2007 (VV) Flood recession, C4 grasses at high biomass, C3 grasses 
rapidly emerge on newly exposed mudflats 

Dec 18, 2007 (HV) Progression of the cool growing season with C3 grasses as 
dominant green vegetation 

Jan 3, 2008 (HV) Progression of the cool growing season with abundant C3 
grasses, C4 grasses mostly senescent and water levels near 
annual minimum with exposed adjacent mudflats 

Apr 4, 2008 (HV) Water levels begin to rise slowly, emergent vegetation 
approaching peak biomass 
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Table 2.  Proposed Dynamic Cover Types (DCTs) for Poyang Lake area for summer 2007-
spring 2008 flooding period. 

Dynamic cover type class Sequence of states per flood cycle Description 

EMN – ephemeral mudflats, 
non-vegetated 

Water→mudflat/ sand →water Portions of lake bottomland that are flood-
free for a brief period near the minimum 
water levels in mid-winter; in the spring 
again become  water or aquatic vegetation 

EMV – ephemeral mudflats, 
vegetated 

Water→mudflat/sand →green 
emergent vegetation→water 

Portions of lake bottomland that are 
exposed from flooding in late fall, become 
colonized by vegetation but then are 
flooded again in early-mid spring due to 
close proximity to flood source 

C3G – emergent C3 
grassland, flooded  

Water→mudflat/sand→green 
emergent vegetation→water 

Portions of lake bottomland in higher-
elevation areas surrounding smaller sub-
lakes that are exposed from flood early 
enough for green C3 vegetation develop 
and persist till the next flooding. Their 
main difference from EMV is in earlier 
exposure in the fall and later inundation in 
spring which leads to higher density and 
longer persistence of green vegetation 

C4C3G – mixed C-C3 
grassland, partially flooded 

Green vegetation →senescent or 
harvested vegetation→green 
emergent vegetation→[water] 

Perennial vegetation on high-elevation lake 
periphery and ridges with short annual 
submersion times.  Depending on location, 
plant composition may include C4 and C3 
reeds or short C4 grasses that are often 
senescent in winter but green from early 
spring till late fall. May be disturbed by 
reed harvesting and burning of the stubble 

WAM – winter aquatic 
macrophytes 

Water →aquatic vegetation→water Permanent water with extensive aquatic 
vegetation beds  primarily during the cool 
winter growing season  

PW – permanent water Water all year round, occasionally 
with aquatic vegetation from late 
spring to mid-fall 

Areas permanently covered with water 
within a given flood season. Water color 
and optical properties may change due to 
varying sediment content, and aquatic 
vegetation may influence its reflectance 
from late spring to early fall 

PS – permanent sand Non-inundated sand features High elevation sand hills and dunes in 
north-central part of the study area that are 
flood-free even at  maximum flood stage 
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Table 3. Contingency matrices for assessment of accuracy for DCT classification in summer 
2007-spring 2008 flooding period with three supervised machine-learning algorithms. 

Assigned  Reference class User’s  

class: 11 12 15 22 131 141 211 accuracy 

Method: K-Nearest Neighbors, overall accuracy 93.3%%   

11 45 2 1     0.94 
12 4 18 1     0.78 
15 1  18     0.95 
22    12    1 

131     30 1  0.97 
141  2    28  0.93 
211      1 29 0.97 

Producer’s 
accuracy 

0.9 0.82 0.9 1 1 0.93 1  

Method: Simple logistic regression, overall accuracy 90.7% 

11 46 6      0.88 

12 2 14   1   0.82 

15 2 1 20     0.87 

22    11    1 

131     28   1 

141     1 27  0.96 

211      3 29 0.85 
Producer’s 

accuracy 
0.92 0.64 1 0.92 0.93 0.9 1 

 

Method: artificial neural network Multilayer Perceptron, overall accuracy  89.6% 

11 42 5      0.89 

12 3 13   2   0.72 

15 3 3 20     0.77 

22    12    1 

131     27   1 

141     1 29  0.97 

211 2     1 29 0.91 
Producer’s 

accuracy 
0.84 0.62 1 1 0.9 0.97 1 
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Figures 

 

Figure 1. Map of the study area in south-central portion of Poyang Lake, Jiangxi Province, 
People’s Republic of China. 
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Figure 2. Conceptual diagram of the major steps in dynamic cover type classification and 
analysis. 

  

Remote sensing images:
Bejing-1 (32m Red, Green, NIR)
+ ASAR WSM (C band, 150m)

2007-2008 flood cycle

Multi-temporal image 
segmentation

eCognition v.8 (Trimble Inc.)
on combined images

3 Principal Component (PC) 
transformations :

only ASAR bands, only NIR 
bands, only Green & Red bands

Dynamic Cover Type
Classification using three 1st

PCs and two 2nd PCs (from 
ASAR and NIR) as inputs

Complementary sensors:

• Radar: sensitive to inundation and topography 
but not to water turbidity or clouds

• Visible/NIR: sensitive to plant greenness, 
phenology, soil brightness, surface wetness

Object-based framework:

• Lower chance of salt-&-pepper speckle (unlike 
pixel-based image classifications)

• Objects as primitive units of change, providing 
spatio-temporal context for localities

Principal Components Transformation:

• Reduce input data dimensions

• Separate meaningful signal from noise

• Highlight DCT contrasts

Hypothetical scenario:

Replacing spring 2008 input with spring 
2007 images (~warmer, wetter spring)

Steps: Purpose:



 

73 
 

 

 

Figure 3. Complementary benefits of Beijing-1 optical (a,c) and multi-spectral and ENVISAT 
ASAR WSM microwave radar (b,d) imagery, illustrated for two cases of confusing cover types 
at Poyang Lake, China: a-b) highly turbid lake water is spectrally similar to adjacent light-
colored mudflat, but the radar sensor clearly highlights the water-mud boundary; c-d) optical 
image highlights beds of aquatic vegetation, however, its submerged status is not clear, while the 
radar image shows spatial extent of submersion at this location. 
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Figure 4. Examples of “spectral-temporal” signatures for DCTs calculated as mean training 
object values of the non-transformed input layers from a) ASAR WSM backscatter coefficient 
and b) Digital Numbers of the near-infrared band in Beijing-1 microsatellite images. 
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Figure 5. Atmospheric temperature and precipitation at the Nanchang meteorological station for 
January1-March 31, 2007 and January 1-March 31, 2008 (NOAA/National Climatic Data Center, 
http://www.ncdc.noaa.gov/oa/ncdc.html): a) daily precipitation at Nanchang meteorological 
station (Nanchang, Jiangxi, China), in millimeters; b) maximum daily atmospheric temperature 
at Nanchang meteorological station  (Nanchang, Jiangxi, China), in degrees Celsius. 
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Figure 6. Landscape-level contrasts highlighted by principal component (PC) transformation of 
multi-date stacks of different band types at the image object level: a) PC1 of Beijing-1 near-
infrared band transformation; b) PC1 of ASAR WSM backscatter coefficient transformation; c) 
PC1 of Beijing-1 combined red and green band transformation; d) PC2 of Beijing-1 near-infrared 
band transformation; e) PC2 of ASAR WSM backscatter coefficient transformation.  
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Figure 7. Poyang Lake dynamic cover types (DCTs) and their response to a hypothetical change 
scenario: a) DCT classification for summer 2007-spring 2008 period; b) DCT classification for a 
hypothetical “experimental” scenario with spring 2008 images replaced by spring 2007 ones; c) 
distribution of the area of DCTs predicted for the hypothetical scenario per each class in the 
summer 2007-spring 2008 period; and d) distribution of the area of DCTs mapped for the 
summer 2007-spring 2008 period per each class in the hypothetical scenario.  
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CHAPTER 4. Landscape-level associations of wintering waterbird diversity and 
abundance with remotely sensed characteristics of seasonal wetlands in a large 

conservation hotspot 

 

Abstract 

Poyang Lake, the largest freshwater lake-wetland system in PR China located in the middle 
Yangtze River basin, provides critical habitat for large numbers of wintering waterbirds from the 
East Asian Flyway. Hydrological regulations, uncertain climate effects and residential 
development impose serious threats to this wetland environment, but landscape drivers of the 
non-uniform distribution of bird diversity and abundance among permanent-water winter sub-
lakes are not well understood. Limited field access and large wetland size create challenges for in 
situ surveys and call for assessments of potential utility of remote sensing-based indicators of 
diversity. Using waterbird survey data from late December 2006 and a Landsat TM satellite 
image from January 6 2007, we examined the relationships among metrics of bird diversity 
(species richness, Shannon index, number of food guilds and number of size groups) and 
abundance (total number of birds and the number of tuber-feeding birds) and landscape 
characteristics of 51 sub-lakes and wetland cover types within 500-m neighborhoods of 
inundated areas. Independent variables represented sub-lake area, proportions and spectral 
greenness of habitat cover types, their spectral and patch shape heterogeneity and proportions of 
cover types associated with human disturbance. Relative importance of individual predictors and 
their sets was assessed using information-theoretic model selection approach and the Akaike 
Information Criterion (AIC). Ordinary least squares regression models were diagnosed and 
corrected for spatial autocorrelation using spatial autoregressive lag and error models. We 
additionally examined predictive performance of the best models using an independent survey 
and matching remote sensing image from January 2008. The strongest and most consistent 
statistical predictors in the best-fit models included Normalized Difference Vegetation Index 
(NDVI) for mudflat (negative effect) and emergent grassland (positive effect), sub-lake area 
(positive effect) and proportion of flooded vegetation (negative effect). Significant spatial 
autocorrelation was detected in linear regression models for most response variables and was 
associated with local clustering of high and low values in both response variables and selected 
predictors. Differences in relative support for spatial lag versus spatial error models suggested 
that spatial dependence in our analysis could result from both model specifications and currently 
unknown spatially structured ecological relationships among sub-lakes. Model predictions for 
2008 survey data had positive and significant (p<0.05) Spearman rank correlation coefficients 
with actual values for total bird abundance, abundance of tuber-feeding birds and Shannon index, 
but could not accurately predict magnitude of these variables or species richness, number of food 
guilds and number of size groups. Unexplained variation in models and the uncertainty of 
predictions were attributed to several key data limitations, including one-time bird survey per 
winter season, differences in spectral data quality between satellite images from different years 
and sensors, and the lack of comprehensive information on ground-based habitat determinants. 
Despite these challenges, results suggest several potential landscape indicators of waterbird 
diversity and abundance and new hypotheses on ecological mechanisms underlying their spatial 
patterns in this landscape.  
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Introduction 

More than 400 waterbird species, including long-distance migrants, critically depend on habitat 
in low-latitude wetlands, large extents of which have been lost to agriculture, residential sprawl 
and water storage in recent decades (Millennium Ecosystem Assessment 2005, Fang et al. 2006, 
Dudgeon et al. 2006, An et al. 2007, Kirby et al. 2008, Gong et al. 2010, Cao et al. 2010, de Boer 
et al. 2011). A number of remaining sites have been designated as critical conservation targets 
and wetlands of international importance under the Ramsar Convention (Ramsar 2012). 
However, understanding of specific factors which underlie non-uniform distributions and 
“hotspots” of bird diversity within these wetland regions is often still limited. Enhancing this 
knowledge is important for allocation of management, conservation and research targets within 
larger wetland complexes and for selection of the meaningful habitat features into predictive 
models of species and diversity response to various change drivers.  

Current uncertainty in understanding the relationships between diversity and wetland habitat 
is partially driven by the challenges of field observations in wetlands such as constrained site 
access, limited mobility in very shallow water and soft sediment, the risk of infectious disease 
and sometimes large site area (Dronova et al. 2011, Feng et al. 2012). However, even in more 
accessible “upland” terrestrial landscapes temporally frequent and spatially comprehensive field 
surveys may be logistically challenging and costly. Recognition of these difficulties has 
stimulated searches for landscape-level indicators of diversity and abundance based on cost-
efficient geospatial data and remote sensing images in different biomes (Lavers et al. 1996, 
Turner et al. 2003, Leyequien et al. 2007, Bergen et al. 2009,  Jones et al. In Press). For instance, 
significant statistical associations of wetland bird species richness and landscape-level variables 
such as wetland area, proportion of emergent wetland vegetation, water depth or the area of 
wetlands within a certain distance from sampling sites have been reported in the Rainwater Basin 
and in the Prairie Pothole Region of the USA (Fairbairn and Dinsmore 2001, Webb et al. 2010). 
A number of terrestrial studies found strong relationships between bird diversity and remote 
sensing indices of vegetation greenness, compositional heterogeneity and structure based on 
active radar and laser remote sensors (e.g., Hurlbert and Haskell 2003, Hawkins 2004, Goetz et 
al. 2007, Bino et al. 2008, Jones et al. In Press.). 

Remote sensing platforms are particularly helpful in landscape-level biodiversity analyses due 
to instantaneous coverage of large areas, repeated site revisit and collection of spectral data 
within ecologically relevant spectral bandwidths (Turner et al. 2003, Leyequien et al. 2007). 
However, to date very few studies have used remote sensing data for analyses of broad-scale 
migratory bird diversity and habitat use in low-latitude wetland regions. Remote sensing 
classifications of wetland areas in general suffer from the “salt-and-pepper” speckle due to 
misallocation of heterogeneous neighbor pixels to very different classes and confusion caused by 
variable surface wetness and sub-pixel class mixtures (Yu et al. 2006, Dronova et al. 2011). 
Novel object-based image analysis approaches in combination with sophisticated machine 
learning algorithms (Jobin et al. 2008, Tian et al. 2008, Blaschke 2009, Pringle et al. 2009, 
Richmond 2011, Dronova et al. 2012) offer powerful opportunities to enhance the quality of 
wetland cover interpretation, which have still been substantially under-utilized. 

Analyses of landscape patterns in diversity also need to consider potential spatial dependence 
(autocorrelation) among sampling sites, which may violate the assumptions of independent and 
identically distributed errors and thus invalidate classical statistical approaches (Tobler 1970, 
Legendre et al. 1993, Anselin et al. 1996, Hoeting et al. 2006). Specific causes and implications 
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of spatial dependence are often not known a priori, and in some cases its presence may elucidate 
ecologically meaningful distance-sensitive processes such as dispersal or species interactions 
(Miller et al. 2007). More often, however, spatial autocorrelation may indicate model 
misspecification, missing variables or inadequacy of sampling units to represent variables of 
interest (Dormann et al. 2007). Although multiple methods have been proposed to diagnose and 
correct for spatial dependence, they are still not applied on a common basis in the analyses of 
diversity and species distributions (Hoeting et al. 2006, Dormann et al. 2007, Bacaro et al. 2011).  

The goal of this study was to explore whether landscape characteristics derived from remote 
sensing data could explain spatial variation in diversity and abundance of migratory waterbirds at 
Poyang Lake, the largest freshwater lake in China (Figure 1) and an internationally important 
wetland conservation site under the Ramsar convention since 1992 (Ramsar 2012). In the winter, 
this area hosts large numbers of migratory waterbirds from the East Asian Flyway, including 11 
endangered and 6 globally threatened species (Qian et al. 2009, IUCN 2012). Of particular 
conservation concern are large-sized tuber-feeding waterbirds (including critically endangered 
Siberian White Crane (Grus leucogeranus)) dependent on specific types of submerged aquatic 
macrophytes (SAM) (Wu and Ji 2002, Burnham 2007) for which recent declines have been 
reported along Central Yangtze River (Fox et al. 2011). Land use change, climatic variation and 
pending hydrological dam projects raise serious concerns about future ecological integrity of 
these wetlands and their long-term capacity to sustain wintering birds (Fang et al. 2006, Wu 
2008, Barzen et al. 2009, Finlayson et al. 2010, Guo et al. 2012, Zhao et al. 2012). However, 
critical gaps still exist in the understanding of habitat determinants for individual species and 
foraging guilds as well as the overall seasonal composition and dynamics of this wetland (Barzen 
et al. 2009, Dronova et al. 2011). Improving the knowledge of Poyang Lake’s environment and 
its multi-faceted functionality supporting both wildlife and human users of ecosystem services is 
of the utmost importance for conservation and management in the face of changing climate and 
water regulations (Wu 2008, Barzen et al. 2009, Guo et al. 2012). 

In particular, little is still known about differences in bird habitat quality among permanent 
water bodies (sub-lakes) that become hydrologically isolated during the low water season and are 
utilized by wintering waterbirds (Qian et al. 2009). Some of these sub-lakes have been famous as 
diversity hotspots over multiple years and thus were included in local nature reserves (Wu and Ji 
2002, Burnham 2007, Ji et al. 2007). While primary food resources and suitable water depths 
have been studied for some individual species and foraging guilds (Markkola et al. 1999, 
Burnham et al. 2007, Barzen et al. 2009), specific reasons behind non-uniform distribution of 
species diversity among sub-lakes have not been examined thoroughly. Because frequent and 
spatially extensive acquisition of field data is very difficult due to the large size of Poyang Lake 
wetlands and limited on-site access, using remote sensing to search for meaningful geospatial 
indicators of bird diversity is a feasible research venue which has not yet been extensively 
explored in this area.  

This study examined the associations between several metrics of waterbird diversity and 
abundance based on the pan-lake ground survey in December 2006 and remotely sensed 
landscape characteristics of the sub-lake neighborhoods extracted from the Landsat TM satellite 
imagery. Because of the limitations associated with the one-time survey event and the lack of 
comprehensive field information on wetland status during the survey, this analysis was intended 
as an exploratory study to provide the first step towards linking Poyang Lake waterbird 
distributions with broad-scale characteristics of their non-breeding habitat. Our primary objective 
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was to identify a set of sub-lake characteristics that highlight potentially important landscape 
indicators of bird diversity and abundance to be tested more thoroughly in future work. Using 
information-theoretic approach for statistical model selection (Burnham and Anderson 2002), we 
investigated which sub-lake features and their combinations were most consistently and strongly 
associated with dependent variables. We additionally examined whether significant spatial 
autocorrelation was present in models and whether it had any effect on model rank and relative 
importance of predictor variables. Finally, we assessed the consistency of model performance in 
application to another Poyang Lake survey from January 2008 and discussed potential challenges 
in multi-year analysis with remote sensing for this study area. 

Methods 

Study area and avian community 

Poyang Lake is located in the middle Yangtze River basin, Jiangxi Province, PR China (28°25’-
29°45’N, 115°48’-116°44’E; Figure 1). Its surface exhibits considerable year-round hydrological 
variation where water coverage at the highest summer flood stage in July-August can exceed 
4000 km2, while in winter it reduces to less than 1000 km2 (Shankman et al. 2006, Qi et al. 2009) 
in rivers, channels and smaller sub-lakes. At these sub-lakes, waterbirds are often observed 
within 500 m or less of the water boundary along the inundation gradient from water 2-5m deep 
to higher-elevation emergent grassland (Ji et al. 2007, Barzen et al. 2009, Dronova, field 
observation). Spatial extent of the waterlogged mudflats and shallow water is often very large, 
restricting ground and boat access for field surveys to vast portions of Poyang Lake. Because of 
this challenge, satellite remote sensing data are an extremely important objective and 
comprehensive source of information on the study area.  

The immediate spatial neighborhoods of winter sub-lakes often have gentle slopes with slow 
change in elevation and belt-shaped zonation of cover types from shallow water to mudflats  to 
emergent grassland dominated by sedges (Carex spp.) and various forbs (Barzen et al. 2009, 
Wang et al. 2012). These emergent plants with C3 photosynthetic pathway (Pearcy and 
Ehleringer 1984) represent dominant wetland vegetation of the “cool” growing season, while 
most of the warm-season C4 grasses and aquatic macrophytes are senescent or dormant at this 
time (Chen et al. 2007, Wang et al. 2012). Some of the submerged aquatic plant species (e.g, 
Vallisneria spp. and Stuckenia pectinata) overwinter as tubers buried in lake sediment. Although 
“invisible” to remote sensors, these tubers provide critical food resources to deep- and shallow-
water bird foragers from the tuber-feeding guild (Burnham 2007, Barzen et al. 2009, Fox et al. 
2011). At the same time, depending on atmospheric and water temperature, hydrological regime 
and local vegetation community, some areas can have green photosynthetically active aquatic 
macrophytes from other taxa even during the cool growing season (Ji et al. 2007, Dronova 
personal observation), but their specific role in bird habitat has not been extensively studied.  

This analysis focused on resident and migratory Poyang Lake waterbirds which in 2003-2008 
included up to 87 species (Ji et al. 2007, Qian et al. 2009) from the orders of Podicipediformes, 
Pelecaniformes, Suliformes, Ciconiformes, Anseriformes, Gruiformes and Chradriiformes. 
Previous research has suggested six major foraging waterbird guilds among them: 1) tuber 
feeding; 2) sedge/grass eating; 3) seed eating/dabbling; 4) benthic insect/larvae eating; 5) fish 
eating and 6) zooplankton eating birds (Barzen et al. 2009). Prevalence of the preferred food 
types varies by wetland “zones” of deep water, shallow water, mudflat and emergent grassland, 
which may often cause concentrations of large and diverse bird groups at the sub-lake water 



 

82 
 

 

boundary. As a result, most of the historical point-count ground and aerial surveys have used on 
sub-lakes as units for sampling and reporting waterbird diversity and abundance.  

Ground survey of waterbirds in 2006 

Our study used the data from the pan-lake ground point-count survey in December 15-25, 2006. 
This effort was jointly organized by the State Key Lab of Remote Sensing Science (the Chinese 
Academy of Sciences, Beijing, PR China) and the State Key Lab of Poyang Lake Ecology and 
Environment at Jiangxi Normal University, Nanchang, China, in collaboration with local nature 
reserves (Ji et al. 2007, Kwaiser 2009).  Identification of bird species and individual counts were 
performed by field technicians using binoculars and telescopes (Kwaiser 2009, Qian et al. 2009). 
Surveyed locations covered permanent sub-lakes, water reservoirs near cities and selected 
vantage points at the shorelines of rivers and channels. We focused on 51 permanent water 
bodies situated in western, southwestern and southern part of the wetland (Figure 1) that 
belonged to predominantly “natural” wetland area and were expected to have similar patterns of 
annual hydrological dynamics and water resource management. In the survey data, bird species 
and individual counts were reported as sub-lake summaries along with one, rarely two, 
geolocated GPS point(s) marking the primary spatial position of observers.  

There are two key limitations of this dataset. First, count summaries did not include 
information on how many total observation spots per lake were surveyed, nor provided any 
record of the ground conditions and vegetation. Thus, given the uncertainty in spatial position of 
observers relative to birds (Kwaiser 2009), we focused on sub-lakes as the units of statistical 
analysis. Because of this, however, we could not address the potential non-uniformity of bird and 
habitat distribution within each sub-lake. Second, each survey location was visited only once, so 
we could not estimate variation in bird counts and observation error. The latter constraint applies 
to most historical basin-wide Poyang Lake surveys conducted either aerially or by coordinated 
ground teams as a one-time effort in a given season (Ji et al. 2007, Qian et al. 2009). 

Dependent variables 

From the bird counts at 51 selected sub-lakes, we quantified several metrics (Table 1) that were 
used as dependent variables in the subsequent models of their relationships with landscape 
characteristics from remote sensing data. These included four alpha-diversity metrics: waterbird 
species richness (the total number of species per sub-lake); Shannon index; number of foraging 
guilds defined after Barzen et al. (2009) with maximum value of 6 and number of size groups 
with the maximum value of 4. We also estimated two abundance variables: total number of 
waterbirds and the number of tuberfeeders. The latter guild was given special attention in our 
study because 1) it includes conservation targets of international importance with four out of five 
species under endangered status (IUCN 2012) and 2) recently reported declines in both the 
abundance of this guild and availability of tuber-producing aquatic vegetation urge for more 
thorough investigations of the habitat indicators at different spatial scales (Fox et al. 2011). Most 
of our diversity and abundance metrics were significantly positively correlated, although the 
magnitude of Pearson’s correlation coefficients varied among their pairs (0.027 – 0.886). To 
improve the normality of statistical distributions, mathematical transformations were applied to 
species richness (natural logarithm), number of birds (natural logarithm) and number of 
tuberfeeders (natural logarithm of the value +1), and from this point on we will refer to 
discussion of these variables in their transformed versions. 
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Independent variables based on remote sensing data 

Remote sensing image and classification 

To generate independent variables as candidate predictors in bird diversity and abundance 
models, we extracted several landscape characteristics of the sub-lakes and their neighborhoods 
from a terrain-geocorrected (Level 1T) Landsat 5 TM satellite image of January 6, 2007. Raw 
digital numbers from six 30-m spatial resolution bands representing visible (bands 1-3), near-
infrared (bands 4 and 5) and shortwave-infrared (band 7) portions of the electromagnetic 
spectrum were corrected for atmospheric noise using 6S algorithm (http://modis-
sr.ltdri.org/code.html). We then isolated wetland area using Microsoft Bing aerial layer in 
ArcGIS 10 (Esri Inc.) and classified it into common cover types that were hypothesized to 
represent suitable and non-suitable waterbird habitat (Table 2): open water, mudflat, sand, 
flooded vegetation, green emergent C3 grasses, senescent grasses and burned vegetation.  

For this classification, we used the object-based image analysis (OBIA) approach (Benz et al. 
2004, Blaschke 2009) where the first step was segmentation of the image into small spectrally 
homogeneous groups of pixels, i.e., objects, followed by their statistical classification into 
wetland cover types (Dronova et al. 2011). OBIA was chosen instead of a “traditional” pixel-
based methods because 1) it may reduce the ”salt-and-pepper” speckle which is common in 
pixel-based maps of heterogeneous areas; 2) objects approximate landscape patches or patch 
primitives that are more ecologically relevant spatial units than pixels (Yu et al. 2006, Richmond 
2011); and 3) OBIA has been shown to deliver higher classification accuracy than pixel-based 
methods due to smoothing of the local noise at the object level both in Poyang Lake wetlands 
(Dronova et al. 2012) and other landscapes (e.g., Johansen et al. 2007, Pringle et al. 2009). 
Segmentation of the Landsat image into small primitive objects was implemented in eCognition 
8.0 software (Trimble Inc.) using a multiresolution segmentation tool which allows flexibility in 
the output object sizes. Due to the lack of prior information on wetland patch structure, our 
choice of segmentation parameters prioritized spectral band values in object generation, while 
parameters controlling object shape and compactness were kept at low values of 0.1 each. For 
the scale parameter which controls maximum level of heterogeneity and object size (eCognition 
8.0 Reference Book), we used a value of 8 which maximized classification accuracy of Poyang 
Lake vegetation from Landsat data in a previous study (Dronova et al. 2012).  

Prior to classification, we labeled objects corresponding to active residential and other human 
land use areas within the lake neighborhoods interpreted from Microsoft Bing high-resolution 
aerial image layer in ArcGIS 10 (Esri Inc.). For the “natural” wetland classes, we assigned 222 
training/testing objects based on their overlap with field surveys of perennial vegetation (in 
March 2006, March 2007, December 2007, April 2008) and visual interpretation of the satellite 
image. Classification was performed with a supervised k-nearest neighbor algorithm in open-
source Weka 3.6.5 software (http://www.cs.waikato.ac.nz/ml/weka/; Hall et al. 2009). Due to 
limited training data and the lack of field habitat assessment close to bird survey, we assessed 
classification accuracy using 10-times 10-fold cross-validation method (Witten and Frank 2005, 
Richmond 2011). Resulting overall accuracy was 97.75%, with the primary confusion between 
turbid shallow water and mudflat, similar to previous studies (Dronova et al. 2011).  

From the image classification results, we selected areas corresponding to open water and 
flooded vegetation which together were expected to approximate the spatial extent of inundated 
areas. We then constructed 500-m buffer neighborhoods around these sub-lake areas in ArcGIS 
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10.0. For each sub-lake with its neighborhood we summarized areas of the cover type classes and 
calculated several metrics that were subsequently used as independent statistical predictor 
variables in diversity and abundance models (Table 3).  

Independent variables as candidates for diversity and abundance indicators 

Independent predictor variables (Table 3) were chosen for diversity and abundance models based 
on two criteria. First, they represented important habitat types and categories of landscape 
predictors that could be linked with ground-based ecological mechanism of habitat choice by 
different species and guilds simultaneously. Their general categories (Table 3) were informed by 
the previous research at Poyang Lake and related studies from other wetlands (e.g., Wu and Ji 
2002, Burnham 2007, Barzen et al. 2009, Kwaiser 2009, Fairbairn and Dinsmore 2001, Webb et 
al. 2010) and terrestrial systems (Leyequien et al. 2007, Bacaro et al. 2011). Spectral indices and 
shape metrics were calculated separately for different cover types to account for potential 
differences in patch properties and their ecological relevance.  

I expected to find a positive relationship of diversity metrics with sub-lake area and 
proportions of cover types which theoretically could support diverse foraging guilds and size 
groups due to their compositional heterogeneity, such as mudflat, flooded vegetation and 
emergent grassland. We also expected to find a positive relationship between diversity and 
measures of local heterogeneity of habitat composition and micro-topography represented by 
spectral and shape diversity of image objects within relevant cover types. In turn, bird abundance 
metrics were expected to positively correlate with lake area and proportion of green emergent 
vegetation which may support large mono-specific or mono-guild flocks of floating and grazing 
waterbirds (Markkola et al. 1999, de Leeuw et al. 2006). Proportions of cover types associated 
with potential human disturbance and resource removal by burning (Table 3) were expected to 
have negative statistical effect on diversity and abundance.  

Second, potential predictors needed to contribute ‘unique’ information in order to minimize 
the conceptual redundancy and statistical multi-collinearity in models. Each category in Table 3 
could be represented by more than one landscape index or geospatial metric, and pilot analysis 
showed that a number of them could be highly correlated even among different categories. For 
our selected variables (Table 3), most pairwise Pearson correlation coefficients were within 0.06-
0.37 and the exceptions did not exceed 0.56. Because these remote sensing-based variables only 
indirectly represented habitat characteristics on the ground, the primary focus of this analysis 
was assessing the strength of associations between diversity or abundance and potential 
“indicators” as either individual variables or their sets.  

Model selection and diagnostics for spatial autocorrelation 

To examine the strength of statistical associations between the response and independent 
variables, we used an information-theoretic model selection approach (Burnham and Anderson 
2002) because it accounts for both goodness-of-fit and parsimony in comparing models with 
different predictor sets. For each response variable (Table 1) we constructed multivariate 
ordinary least squares (OLS) linear regression models with different sets of predictors in 
MATLAB R2012a software (MathWorks Inc.). Statistical transformations were applied to 
several variables to improve the normality of their distributions (see note for Table 4). We then 
ranked these models using the Akaike Information Criterion corrected for the small sample size 
(AICc) following Burnham and Anderson (2002): 
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 where lnL is the model log-likelihood, k is the number of parameters to be estimated and n is the 
number of observations in the model. Because the number of possible predictor combinations 
and hence models was large, the final set of candidate models for each response variable 
included only the models within 2 AICc units from the minimum AICc,  which were likely to 
have equivalent support based on the framework of Burnham and Anderson (2002). 

I also ran several diagnostics for spatial autocorrelation in our variables and models using 
GeoDa spatial analysis software (Anselin et al. 2006) to examine the effect of potential spatial 
autocorrelation on model strength, specification and rank. First, we examined spatial dependence 
in response variables using a global Moran’s I statistic to diagnose the overall spatial dependence 
across the landscape (Anselin et al. 1996) and Anselin’s local indicators for spatial association 
(LISA; Anselin 1995) to search for potential ‘hotspots’ of diversity, abundance and their 
candidate predictors. Next, we investigated whether significant spatial autocorrelation occurred 
in OLS regression models. To implement the diagnostics, a matrix of spatial weights W was 
calculated based on Euclidean distances between sub-lakes (Anselin et al. 2006) and then used to 
perform Lagrange Multiplier (LM) tests for spatial dependence in OLS (Anselin 1988).  
Additionally, the Breusch-Pagan test (Breusch and Pagan 1979) was used to examine 
heteroskedasticity of residuals. When significant spatial autocorrelation was detected with the p-
value of the LM test statistics <0.1, we further applied two maximum-likelihood linear spatial 
autoregressive models in GeoDa (Anselin et al. 2006). The first one was the spatial lag model 
which accounts for a second-order spatial interaction between localities based on their proximity: 

ݕ ൌ Xߚ  Wyߩ  ε ሺ1ሻ, 

where β indicates coefficients for the predictor variables X, ρ is the spatial autoregressive 
coefficient on the matrix of weights W applied to response values from spatial neighbors of each 
data point and ε is the random error term. The second form of spatial regression was the “spatial 
error” model which treats spatial autocorrelation as a ‘nuisance’ and accounts for it in the model 
error structure to improve the estimates of coefficients on X: 

ݕ ൌ Xߚ  Wεߣ  ε ሺ2ሻ, 

where λ is the estimated spatial autoregressive coefficient for the error term. We then compared 
coefficients and significance values for individual predictors, model AICc and diagnostics for 
spatial dependence and heteroskedasticity of residuals among OLS and spatial regression 
outputs. These results were further used to 1) update model ranks for each response variables; 
and 2) generate predictions for a different survey year and compare with the actual data for 
model verification, as described in the next section.  

Model assessment and model averaging 

Ideally, one would like to evaluate the properties of the models using out-of-sample predictions. 
This is a challenging exercise in the context of Poyang Lake since measurements of response 
variables in different years are one-time surveys, sometimes using different methods and 
conventions. Furthermore, cloud-free remote sensing images for a given period during the winter 
season may be available from different satellite sensors in different years, resulting in 
disagreements among classifications even under similar ground conditions. Given the dynamic 
nature of Poyang Lake environment and substantial variation in hydrological conditions from 
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year to year (Shankman et al. 2006, Feng et al. 2012, Dronova et al. under review), similar states 
of vegetation greenness and surface wetness may not always match anniversary dates between 
years and times of bird surveys. Reconciling all these differences would require significant 
efforts to standardize images from different satellites, possibly by a separate calibration study. 
Thus comparing models outcomes and independent variables across year may be difficult. 

With these limitations in mind, we explored how the highest-rank models of diversity and 
abundance would perform when applied to another Poyang Lake bird survey. Specifically for 
this exercise, we used the dataset from the aerial survey of January 3, 2008, organized by Global 
Environmental Facility (GEF), the International Crane Foundation (ICF) and the Siberian Crane 
Wetland Project in coordination with Poyang Lake National Nature Reserve, Jiangxi Province, 
PR China. In this 2008 survey, bird data were also reported by sub-lake, but only 16 sub-lake 
units were consistent with the 2006 dataset and thus were chosen for verification.  

There was no matching cloud-free Landsat TM image for the dates close to 2008 survey, and 
therefore we extracted geospatial characteristics of the sub-lakes from a January 1, 2008 scene of 
Beijing-1 microsatellite with one near-infrared, two visible red and green spectral bands and 32-
m image spatial resolution. Due to the instrument differences between Landsat and Beijing-1 
sensors and the lack of calibration system in the latter (which prevents correction for atmospheric 
effects), we calibrated red, green and near-infrared bands of Beijing-1image to atmospherically 
corrected red, green and near-infrared bands of the 2007 Landsat image. This calibration was 
conducted using band-specific simple linear regression equations estimated from spectral values 
of the pseudo-invariant targets that were not expected to change between two years: bright sand 
on top of the high-elevation dunes and dark water in permanent water reservoirs near cities. 
Beijing-1 image was also segmented into objects in eCognition with segmentation scale value of 
5 (producing comparable object size to segmentation of the 2007 Landsat image) and shape and 
compactness values of 0.1 each, and then classified into wetland cover types (Table 2) using 
supervised k-nearest neighbor algorithm with the cross-validation overall accuracy of 95.2%. 

Model assessment was done as follows. We used regression developed with 2006 survey data 
to generate ‘point’ predictions for 16 sub-lake units using their geospatial characteristics from 
2008 imagery. These predictions were estimated with the best set of models for each dependent 
variable averaged by means of the Akaike weights (Burnham and Anderson 2002). For spatial 
lag model, point predictions were derived using remotely sensed characteristics of all 2008 sub-
lake units corresponding to 51 sub-lakes from 2006 by rearranging equation (2): 

ොݕ ൌ ሺܫ െ  , ߚWሻିଵܺߩ

where I is the identity matrix for the number of sub-lakes used in regression. However, our 
comparison of the univariate relationships between response variables and most important 
predictors in 2006 models detected mismatches in spectral variables despite relative calibration 
of Beijing-1 image. These mismatches are discussed in more detail in Results section 3.3 below, 
but they indicated that predictions from models using spectral variables may differ in magnitude 
from the actual 2008 data. For this reason, we compared final predictions from the weighted 
models between 2006 and 2008 using non-parametric Spearman rank correlation coefficients.  

Results 

Spatial patterns of response and predictor variables. 

Total number of species varied from 2 to 23 among 51 sub-lakes (Table 1), and the proportional 
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species turnover (Tuomisto 2010) was equal to 0.86, suggesting that an average sub-lake 
contained only ~14% of the overall species richness. Preliminary analysis of spatial 
autocorrelation in response variables suggested low-magnitude positive spatial dependence, 
where global Moran’s I statistic ranged between 0.01 for number of size groups and 0.26 for log-
transformed number of tuberfeeders significant with p-value <0.05 only for the latter variable 
and for Shannon index.  

At the same time, LISA statistics showed that spatial autocorrelation in response variables 
was not uniform across the landscape and concentrated in a few statistically significant local 
“hotspots” (Figure 2). Specifically, for species richness, Shannon index, number of food guilds, 
number of size groups and number of birds, there was a cluster of spatially close high values at 
several lakes within Poyang Lake National Nature Reserve (PLNNR; Figure 2a-c,e). For the 
number of tuberfeeders, there were two small clusters of high values (one also in PLNNR) and a 
cluster of low values and also high-low associations in southeastern part the of study area (Figure 
2f). For the number of size groups, there were several low-high and high-low clusters indicating 
negative spatial dependence including PLNNR reserves (Figure 2d). Among predictor variables, 
the proportion of flooded vegetation and mudflat NDVI both had pronounced clusters of high 
values in southeastern portion of study area and clusters of low values in PLNNR (Figure 2g,h). 

Variable selection in OLS models 

Relative importance of independent variables in the univariate OLS models varied among 
diversity and abundance metrics (Table 4). Spectral greenness (NDVI) of mudflat with a 
negative effect was consistently among the strongest predictors, while other important variables 
included total sub-lake area with positive effect and proportion of flooded vegetation with 
negative effect (Table 4). Combinations of 2-3 of these variables were also frequently included 
in the lowest-AICc multivariate models for each response variable (Table 5). However, none of 
the univariate models in Table 4 was within 2 AICc units from the minimum-AICc multivariate 
models in Table 5, except those with proportion of flooded vegetation and mudflat NDVI for the 
number of tuberfeeders. 

Several variables with lower strength of statistical association in univariate models appeared 
in the best-fit multivariate models (Table 5). These included: spectral greenness of emergent 
vegetation with positive effect (multivariate models for all response variables except the number 
of tuberfeeders), object shape heterogeneity of emergent grassland with a negative effect (species 
richness, number of food guilds and two abundance metrics); proportion of burned vegetation 
with a negative effect (number of size groups and two abundance metrics), proportion of 
emergent grassland with negative (number of food guilds and size groups) or positive effect 
(number of tuberfeeders), proportion of human land use areas (number of size groups and  
number of food guilds), but they were frequently not significant at 0.05 level. 

The strongest multivariate models for different response variables often included the same 
sets of predictors. For instance, sub-lake area, proportion of flooded vegetation and NDVI of 
emergent grassland were selected together in models for all dependent variables except the 
number of tuberfeeders and formed the key component of all lowest-AICc models for number of 
food guilds and number of size groups (Table 5). In the models for species richness and two 
abundance metrics, NDVI of mudflat was often included together with heterogeneity of object 
shape index for emergent grasses. Proportion of burned vegetation was always included with 
sub-lake area (but not vice versa). At the same time, the overall goodness-of-fit indicated by R2
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statistic was relatively low in most multivariate models (Table 5), especially for number of 
tuberfeeders with 12 zero values out of 51 sub-lakes, which could reflect both noise in the data 
and potentially important missing variables. We discuss the latter limitation in section 4.3 below. 

 Spatial autocorrelation in regression models 

Significant spatial autocorrelation was detected in most OLS models for all dependent variables, 
except the number of size groups (Table 5). Spatial regression successfully corrected this effect 
in most cases, although it only marginally improved the goodness-of- fit. Most of the changes in 
AICc  with spatial regression were within 2 units from the corresponding OLS model (Table 5), 
in part because both spatial models use one additional parameter relative to OLS (which 
penalized AICc  values relative to OLS).  

For both species richness and Shannon index, spatial error model had stronger support than 
spatial lag model when significant spatial autocorrelation was detected (Table 5). For the former 
response variable, lambda coefficient in spatial error model was significant with p-value<0.01. 
For Shannon index, lambda in the error model was not significant (p-value>0.1), but the model 
no longer had significant spatial dependence in residuals. For the number of food guilds and the 
number of birds, spatial lag model had higher support than spatial error regression (Table 5) in 
case of significant spatial dependence in OLS. Applying the lag model also slightly changed 
model ranks and reduced the number of candidate models within 2 units of AICc from the 
minimum (Table 5).  

For the number of tuberfeeders, spatial lag models had slightly lower AICc than corresponding 
spatial error models. However, the latter models for this response variable no longer had 
significant spatial dependence for weight matrix (p-values >0.1), while in spatial lag models 
there was still unaccounted spatial lag dependence (p-values <0.1). Spatial error model was also 
more effective at alleviating heteroskedasticity with much higher p-values on the Breusch-Pagan 
test statistic than with the lag model in this case. Because the difference in AICc between lag and 
error models was less than 2 units for each predictor set (Table 5), spatial error models were used 
in 2008 predictions for the number of tuberfeeders. 

For the number of size groups, LM tests in GeoDa did not detect significant spatial 
dependence in favor of spatial regression models. All six models here had significant 
heteroskedasticity based on the structure of this response variable, which could not be removed 
by spatial regression.  Hence, for number of size groups OLS was retained for verification as a 
more parsimonious option. 

Assessment of model performance with 2008 survey 

In model assessment, we compared the actual values of response variables for 16 sub-lake units 
in aerial survey of 2008 with those variables in 2006.  Point predictions estimated as Akaike-
weighted averages from the highest-support models for diversity metrics did not strongly 
correlate among the sub-lakes for species richness (Figure 3a), number of food guilds and 
number of size groups. For Shannon index, there was a generally positive relationship between 
the actual and predicted values, but the correlation was not significant because of two extreme 
data points (Figure 3b). With those points excluded, Spearman rank correlation coefficient for 
Shannon index became higher (0.55) and significant (p-value=0.041). For both number of birds 
(Figure 3c) and number of tuberfeeders (Figure 3d), there was a significant positive correlation 
(Spearman rank coefficient values 0.55 and 0.51, p-values 0.027 and 0.044, respectively).  
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However, the general magnitude of predicted values often differed from the actual 2008 
values, and to investigate this issue further, we compared the univariate relationships between 
response and the strongest predictor variables between 2006/2007 and 2008 datasets (examples 
for species richness are shown in Figure 4). This comparison revealed that sub-lake area and 
proportions of cover types were relatively close in magnitude (Figure 4a,b), although some 
differences among them were expected based on variable hydrology and phenology of Poyang 
Lake surface among different years (Dronova et al. under review). However, the magnitude of 
important spectral predictors, specifically, NDVI for mudflat and for emergent grassland, was 
clearly different between two years (Figure 4c,d). On the one hand, this mismatch could result 
from true differences in spatial extent and density of green vegetation between survey dates, 
because winter 2006-2007 was warmer and wetter compared to winter 2007-2008 (Dronova et al. 
under review). On the other hand, differences in data quality between Landsat TM and Beijing-1 
sensors could also play a role because calibration of Beijing-1 data using pseudo-invariant 
targets may not have accounted for all the atmospheric noise effects on spectral signal. This 
result highlights a critical caveat for using “similar” remote sensing data from different 
instruments in multi-temporal analyses of Poyang Lake landscape characteristics. In the future 
work, more rigorous data calibration may be necessary before spectral indices from different 
sensors can be used in models of ground variables.  

Discussion 

Potential indicators of Poyang Lake bird diversity and abundance 

Understanding landscape-level variation in biodiversity at different spatial scales is both an 
important and intriguing challenge in ecology. The degree to which spatial and temporal 
diversity patterns can be interpreted with indirect but cost-effective remote sensing-based and 
geospatial “proxies” remains uncertain. Previous studies of bird diversity in different landscapes 
have identified similar types of indicators related to habitat size, spectral variation representing 
habitat heterogeneity, spectral indices of vegetation structure and greenness, proximity to human 
disturbance and other landscape characteristics (e.g., Nøhr and Jørgensen 1997, Fairbairn and 
Dinsmore 2001, Canepuccia et al. 2007, Bino et al. 2008, Coops et al. 2009a, Webb et al. 2010, 
Cerezo et al. 2011, Bacaro et al. 2011). However, generality and sufficiency of these proxies 
across diverse biomes, taxa and guilds or different time periods is not well known, and their 
performance in statistical models may be limited without including essential ground variables. 

Our analysis highlighted several ecologically relevant correlates of waterbird diversity and 
abundance at Poyang Lake, PR China among landscape characteristics of their wintering habitat 
based on the ground bird survey and remote sensing data from winter 2006-2007. Strong 
negative effect of mudflat NDVI on all response variables indicated that mudflats with lower 
amount of green vegetation (hence more recent post-flood exposure) and/or higher surface 
wetness on average supported higher bird diversity and abundance. These conditions correspond 
to “characteristic” Poyang Lake mudflats that represent exposed lake bottomland directly 
adjacent to water body (Dronova et al. 2011) and may contain large numbers of aquatic 
invertebrates, vegetation seeds, propagules and buried tubers from summer aquatic macrophytes 
(Wu and Ji 2002, Liu et al. 2006b, Burnham 2007). Potential variety of food resources together 
with low depth or lack of surface water on mudflats could make them favorable to birds of 
different size and foraging preferences, although relative size of sub-lake mudflat area was not 
an important predictor in our models. 
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Positive association of vegetation NDVI with bird diversity and total abundance was also 
consistent with previous terrestrial studies (Nøhr and Jørgensen 1997, Hurlbert and Haskell 
2003, Bino et al. 2008, Bacaro et al. 2011). Various plot and ecosystem-level analyses have 
reported strong correlations between NDVI and plant density, biomass, photosynthetic rates and 
productivity, canopy leaf area, foliar nutrient and chlorophyll content (e.g., Yoder and Waring 
1994; Turner et al. 1999; Ollinger 2011). At Poyang Lake, green emergent sedges with relatively 
high NDVI are an important food resource to Anatidae of the grass-eating guild which forage on 
grasses in large numbers (Markkola et al. 1999, de Leeuw et al. 2006, Barzen et al. 2009, Zhao et 
al. 2012) and contribute to both bird diversity and abundance at sub-lakes with this vegetation 
type. Kwaiser (2009) reported the importance of Poyang Lake sparse vegetation corresponding 
to sedges in the transitional zone between mudflat and emergent grassland in species-specific 
habitat models for Tundra Swans (Cygnus columbianus) and White-fronted Geese (Anser 
albifrons) based on these 2006 data.  However, relative size of emergent grassland was not 
among the strongest predictors in univariate or multivariate models, suggesting that greenness 
and uniformity of patch shapes of this cover type was more important than its spatial extent.  

Significant negative correlation of most diversity and abundance metrics with the proportion 
of flooded vegetation poses an interesting question on what features could make the sub-lakes 
less conducive to high diversity and abundance levels. Green aquatic macrophytes occur in 
Poyang Lake area in winter (Ji et al. 2007), but their ecological services to waterbirds or food 
organisms from other trophic levels are less well understood than importance of emergent 
grasses (Markkola et al. 1999, Zhao et al. 2012) or dormant tubers of the warm-season aquatic 
plants (Burnham 2007, Barzen et al. 2009). Similar to our results, Kwaiser (2009) reported 
negative effect of Landsat-based wetland vegetation/water class (which was similar to our 
flooded vegetation) on the abundance and likelihood of presence of tuber-feeding Tundra Swans 
from the same 2006 survey dataset. Multi-temporal remote sensing data indicates that a number 
of sub-lakes have the signal of submerged vegetation nearly year-round, including winter 
(Dronova et al. under review). Based on this phenology pattern, we speculate that plant 
community composition in these sub-lakes may differ from warm-season tuber-producing 
macrophytes. Given recent declines in the latter vegetation type across the region (Fox et al. 
2011), species composition of winter aquatic vegetation and its potential effects on other plants 
and habitat quality for birds and lower trophic levels should be more thoroughly investigated in 
the future.  

Among other predictors, statistical importance of sub-lake area was similar to previous studies 
(e.g., Roshier et al. 2002, Canepuccia et al. 2007, Webb et al. 2010, Cerezo et al. 2011), likely 
representing the effect of lake size on the amount and potential diversity of food resources and 
foraging space. Although proportions of cover types directly associated with potential human 
disturbance within lake neighborhoods were neither frequently nor significantly associated with 
response variables, we cannot rule out the potential role of human disturbance in bird 
distributions and its indirect effect on statistical importance of other variables. For instance, 
larger sub-lake area may provide better opportunities to avoid human presence, while higher 
greenness of some emergent grasslands may be driven by lower grazing pressure by domestic 
livestock due to limited wetland access. A variety of human-driven stressors at Poyang Lake 
such as poaching, fishing, livestock herding (Burnham 2007, Cao et al. 2010, Zhao et al. 2012) 
may not be captured with remote sensing data alone. Hence, future work should incorporate the 
information on roads, elevation, and soil characteristics to more explicitly address wetland 
accessibility to humans in studies of bird spatial distribution and behavior. 
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Our results also suggest that sets of predictors describing complementary habitat features may 
be more useful in models of diversity and abundance than single variables. Consistent inclusion 
of several predictors in the lowest-AICc models (Table 5) suggests that not only their individual 
importance, but also their synergy could illuminate conditions favoring certain diversity levels. 
Collectively, our results indicate that diversity and total abundance were on average higher in 
larger sub-lakes with relatively small but heterogeneous component of flooded vegetation, non-
vegetated mudflat and green emergent grassland with uniform sub-patches. This description 
matches several spatially close lakes that have been important diversity hotspots from year to 
year (Wu and Ji 2002, Burnham 2007, Barzen et al. 2009). In contrast, smaller sub-lakes with 
more aquatic vegetation in winter and the lack of bare mudflat were associated with lower 
diversity and abundance and exhibited spatial clustering with respect to these two characteristics. 
However, the latter conditions should not be immediately interpreted as “non-desirable” for 
wetland management, since theoretically they might be critical for selected bird species or their 
diet components, which should be explored in the future work.  

 Spatial autocorrelation in diversity and abundance models  

Significant spatial autocorrelation detected in most of our models presents an important caveat 
for landscape analyses of bird diversity and abundance in this region, particularly in terms of the 
risk of violating key assumptions of linear regression and model misspecification. However, 
specific reasons behind spatial dependence among sub-lakes should be investigated more 
thoroughly in the future. Differences in support for spatial lag versus spatial error models among 
our response variables suggest that potential causes for spatial dependence could stem from both 
the sampling and modeling design and the unknown distance-sensitive ecological processes.  

Notably, for species richness, Shannon index and number of tuberfeeders as dependent 
variables, spatial error regression was the most effective at correcting for spatial autocorrelation. 
Given large amount of unexplained variation in our models (Table 5), a likely explanation for 
this result is the absence of important but spatially structured variables (Legendre et al. 2002). A 
potential candidate could be availability of tubers from warm-season summer aquatic plants that 
have been previously detected in some of the sub-lakes with high bird abundances and species 
richness (Burnham 2007) but not sampled in the bird survey of 2006. The hypotheses on spatial 
dependence in tuber availability could be based on, e.g., similarity in aquatic vegetation 
communities among proximal sub-lakes belonging to the same hydrological units at higher water 
stages in the warm growing season.  

Alternatively, the importance of spatial error model may question the utility of sub-lakes as 
sampling units to adequately represent spatial patterns in diversity and abundance in models. 
Significant clusters of high or low values in most of the response variables and some predictors 
(Figure 2) suggests some underlying similarity among the corresponding sub-lakes both in avian 
community and environmental features. For instance, closely located sub-lakes may be utilized 
by the same bird flocks more frequently than more distant ones, and hence ‘function’ as a single 
landscape unit in representing the avian community. Future work should test aggregations of 
sub-lakes based on basin geomorphology and hydrological connectivity, which may affect 
similarity among sub-lake resources and cover types.   

At the same time, stronger support for spatial lag regression in models for the number of food 
guilds and the number of birds suggests potential importance of previously unknown second-
order spatial interactions in these variables among sub-lakes. While this form of spatial 
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dependence could not be investigated with available data in our study, future work should 
explore potential mechanisms of spatial “interaction” among sub-lakes. A candidate hypothesis 
could be that moderate intra-specific or intra-guild competition for resources and foraging space 
forces large groups of birds to disperse over spatially close sub-lakes, producing similar avian 
community composition and autocorrelated magnitudes in bird counts among them. 
Alternatively, spatial autocorrelation in food resources caused by, e.g., distance-sensitive 
dispersal of aquatic vegetation, fish and invertebrates could make close sub-lakes attractive to 
similar bird species and foraging guilds. 

Uncertainties in model verification and study limitations 

In application to 2008 aerial observation dataset, models derived with 2006 bird ground survey 
data performed relatively well in representing general differences among lakes, particularly for 
two bird abundance metrics and Shannon index. Inconsistency among predictions and actual 
values of response variables in 2008 illustrates the challenges of using remote sensing variables 
from different data sources and limited availability of cloud-free remote sensing images for this 
region in general. While wetland classifications of Landsat and Beijing-1 images produced 
similar magnitudes of sub-lake area and cover type extents, the differences in NDVI and spectral 
heterogeneity affected the uncertainty in model performance, especially given statistical 
importance of spectral greenness. The differences between ground and aerial survey methods 
(including visibility, coverage of sub-lake area and detectability of different-sized birds) could 
further contribute to error in model predictions for 2008 data in addition to model specification 
and 2006-based coefficient estimates. Failure of the models to adequately predict numbers of 
food guilds and size groups and heteroskedasticity of residuals suggests that OLS and spatial 
regression are not the most optimal methods for these variables. Given their definitions as counts 
of bird groups rather than individuals, future work should test them as categorical variables 
predicted by alternative models such as multinomial logistic regression.  

It is important to discuss the limitations which affected both model assessment and the overall 
strength of our analysis. The primary constraint was the single-date nature of the pan-lake bird 
survey which did not allow to estimate the observation error and to address the uncertainty in 
sub-lake occupancy by different species within the wintering season. One-time surveys also 
make it impossible to verify whether bird distribution reflected their “typical” spatial pattern 
within the winter season or had been affected by a temporary “aggregate shock” e.g., due to prior 
burning of reeds across the wetland in 2006. Unfortunately, most of the basin-wide Poyang Lake 
surveys to date have been conducted as a one-time effort per winter, sometimes with different 
method of observation and timing within the season (Qian et al. 2009). This caveat presents a 
serious concern for reliable analyses of bird community trends in this wetland and highlights the 
urgent need for a permanent basin-wide monitoring program with multiple surveys per winter 
and consistent protocols for different teams and sampling events.   

Another limitation was the lack of information on ground variables such as vegetation status, 
water depth or evidence of human disturbance at the time of bird survey. Large amount of 
unexplained variation in regression models suggests that useful predictors could be missing from 
the model structure. For waterbirds specifically, water level may be a key missing variable which 
determines their spatial location within the study area and access to food resources (Burnham 
2007, Barzen et al. 2009). However, field measurements of habitat characteristics may be 
difficult to perform simultaneously with avian surveys due to both limited access to wetlands and 
the risk of disturbing the birds. To address this challenge, future research and monitoring should 
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consider installing wireless sensors to document habitat conditions continuously throughout the 
low water season (Gong 2007, Burgess et al. 2010).  

Summary and implications for the future research 

Human regulations of water resources, the uncertainty of climate change effects on future 
functioning of Poyang Lake ecosystems and ongoing economic development in the middle and 
central Yangtze region pose serious threats to long-term sustainability of migratory waterbird 
populations that critically depend on their wintering grounds in this area (Barter et al. 2005, Fang 
et al. 2006, An et al. 2007, Fox et al. 2011, Zhao et al. 2012). Specific determinants of suitable 
non-breeding habitats that have historically accommodated large and diverse avian groups are 
still insufficiently understood, and enhancement of this knowledge is severely constrained by 
limited field access and large size of these wetlands.  

Although predictive models of Poyang Lake bird diversity and abundance in our study did not 
fully explain variation in response variables based on remote sensing data alone, they suggested 
several potential landscape predictors and new hypotheses for the future research. In particular, 
significant negative effect of spectral greenness of mudflats on all response variables may have 
important implications for conservation and management of Poyang Lake habitats. Non-
vegetated seasonal mudflat and shallow water interfaces with low spectral greenness may change 
their spatial position throughout the low water winter season due to fluctuations in adjacent water 
bodies and spread of emergent grasses (Dronova et al. 2011, Chapter 3 of this thesis), similar to 
other periodically inundated wetlands globally (Taft et al. 2002, Canepuccia et al. 2007). Hence, 
for mudflat and shallow water-dependent birds, projections of sufficient habitat must pre-allocate 
for potential redistributions of these cover types in the winter season. This may be problematic 
under scenarios of higher water storage following new dam construction, with the risk of both 
reduction in available areas and their shifts towards wetland periphery, closer to sources of 
human disturbance (Barzen 2008, Barzen et al. 2009, Finlayson et al. 2010).  

With the one-time bird survey data in this study, it was not possible to examine whether 
spatial locations of birds had been “tracking” mudflat exposure throughout the winter. However, 
surveys conducted later in winter season in other years noted higher waterbird aggregations close 
to Poyang Lake center (Qian et al. 2009) where mudflats are expected to become flood-free later 
than in peripheral sub-lakes. Sensitivity of waterbird abundance and species richness to 
hydrological fluctuations and reductions in mudflat availability was also reported in other 
regions (e.g., Roshier et al. 2002, Taft et al. 2002, Canepuccia et al. 2007). Being directly 
adjacent to water bodies, mudflat habitats and hence their supported avian guilds may be 
particularly vulnerable to Poyang Lake hydrological changes caused by shifts in climate and new 
water control structures (Barzen et al. 2009, Finlayson et al. 2010) and hence must be carefully 
addressed in management scenarios.  

In turn, positive association of spectral greenness of emergent grassland with diversity and 
abundance metrics reflected the importance of the cool growing season vegetation in habitat 
services to waterbirds and their food organisms (de Leeuw et al. 2006, Barzen et al. 2009). 
Future research should test potential sensitivity of this cover type to changes in climate and 
Poyang Lake hydrological regime, which could affect competitive relationships between C3 
sedges and some of the opportunistic C4 grass species that are currently restricted to higher-
elevation wetland margins (Dronova et al. 2012, Wang et al. 2012).  

Negative correlation between bird diversity and abundance with the proportion of flooded 
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vegetation should be more thoroughly investigated in future work to explore the composition of 
cold-season aquatic macrophyte communities and their relationships with tuber-producing warm-
season vegetation supporting waterbirds in winter. A number of lakes along central Yangtze 
River have recently exhibited marked changes both in diversity and specific composition of 
aquatic macrophyte communities (Fang et al. 2006). These changes include declines in tuber-
producing aquatic macrophytes likely affected by pollution, lake eutrophication and changes in 
water chemistry following economic growth and land use change in the area (Liu et al. 2004, 
Fang et al. 2006, Xing et al. 2006, Fox et al. 2011). However, no studies to our knowledge have 
investigated whether significant shifts in aquatic plant communities have occurred specifically in 
Poyang Lake wetlands in the recent decade (Fang et al. 2006). Such research would be of the 
utmost importance for understanding trends in food resources and wetland carrying capacity for 
both the waterbirds and other users of wetland ecosystem services in the region (Fox et al. 2011).  

Significant spatial autocorrelation in our models raised interesting questions on model 
specification as well as on spatial ecological relationships and connectivity among sub-lakes. 
What are the most ecologically relevant spatial units to sample bird communities and understand 
their sensitivity to changes in habitat? What aspects of spatio-temporal habitat utilization may 
underlie snapshot clusters of diversity and abundance that are detected in one-time surveys? And 
finally, what effective size of protected wetland area is needed to sustain spatial ecological 
relationships among sub-lakes, especially given the dynamics of wetland surface during the 
winter season (Dronova et al. 2011, Chapter 3 of this thesis)? These questions and previous 
studies from other regions (Coops et al. 2009a) suggest that future analyses of spatial and 
temporal patterns in bird diversity and abundance at Poyang Lake should incorporate landscape 
dynamics into habitat assessments, instead of using “snapshot” characteristics from  single-date 
images (Crews 2008, McCleary et al. 2008, Chapter 3 of this thesis). Winter habitat quality and 
availability of food such as tubers and grasses are governed by variation in atmospheric 
temperature, precipitation, disturbance, flood regime and water column chemistry in the 
preceding growing season (Burnham 2007). In a previous study (Chapter 3 of this thesis), 
“dynamic cover types” were used to characterize Poyang Lake wetland zones that exhibit similar 
pattern of change within an annual flood cycle. Investigating the linkages between spatial bird 
distributions and wetland ecological regimes represented by dynamic classes could more 
effectively illuminate habitat preferences and potentially within-season habitat switching, 
especially if multiple surveys per winter become possible in the future. 

In summary, this study provides the first example of linking Poyang Lake waterbird 
community diversity characteristics with landscape properties of their wetland habitat 
approximated by remote sensing-based compositional, geometric and spectral variables. Such 
analyses are urgently needed given recent declines in several important waterbird species along 
the Yangtze River (Zhao et al. 2012) and threats to wetland hydro-ecological regimes from the 
upstream Three Gorges Dam and local water control projects (Barzen et al. 2009, Finlayson et al. 
2010, Guo et al. 2012). Our results should be interpreted with caution because of the uncertainty 
associated with one-time bird survey per season, the lack of ground-based habitat descriptions 
and longer-term data series for multiple years. Nevertheless, our findings highlight the utility of 
remote sensing data to suggest potential landscape indicators of bird diversity and abundance and 
develop new ecological and spatial hypotheses for the future work. Challenging field conditions 
at Poyang Lake and frequent cloudiness will likely remain a constraint for temporal frequency of 
both bird surveys and imagery from popular sensors in the near future. Therefore, to improve 
understanding of within-season variation in bird distribution and habitat dynamics, future 



 

95 
 

 

research should more rigorously utilize wireless sensor technology for continuous in situ 
observations and novel wide-swath microsatellite imaging (Dronova et al. 2011, Wang et al. 
2012) for more detailed medium-resolution landscape imagery. 
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Tables 

Table 1. Dependent (response) variables used in regression models and their basic descriptive 
statistics for 51 sub-lakes from December 2006 Poyang Lake survey. 

Variable Description min mean 

(st.dev.) 

max 

Species richness Number of waterbird species per sub-lake 

 

2 9.1(5.44) 23 

Shannon index Diversity index which accounts for both the number of 
species and evenness of their abundance calculated as 
′ܪ ൌ െ∑ 

ோ
ୀଵ ln  , where pi is the proportion of

individuals from species i in the whole dataset and R is 
the total number of species in the dataset 

 

0.2 1.1(0.44) 2.03 

Number of food 
guilds 

The number of foraging guilds represented per sub-
lake, out of 6 groups after Barzen et al. (2009): tuber-
feeding, sedge/grass-eating, seed eating/dabbling, 
benthic insect/larvae eating, fish eating and 
zooplankton eating birds 

 

1 3.9(1.38) 6 

Number of size 
groups 

The number of bird groups out of 4defined by foraging 
habit (wading versus floating/diving birds) and size 
(average body mass greater or less than 2 kg for 
floating birds, average body length greater or less than 
0.8 m for waders)  

 

1 3.2(0.98) 4 

Total waterbird 
abundance 

 

Total number of waterbirds per sub-lake 17 7201(16262) 94568

Abundance of 
tuber feeding 
birds 

The number of birds from the tuber-feeding foraging 
guild including the species Grus leucogeranus, Grus 
monarcha, Grus vipio, Anser cygnoides and Cygnus 
columbianus 

0 2750(8185) 46395
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Table 2. Poyang Lake wetland cover types used in satellite image classification. 

Cover type name Description 

Water Inundated areas with water coverage above the ground or vegetation 
surface: sub-lakes, channels, pools, rivers etc. 

 

Mudflat  Exposed lake bottomland directly adjacent to the water body with sparse 
(<30%) or no plant cover. 

 

Emergent grassland Green photosynthetically active emergent wetland vegetation dominated 
by C3 grasses and forbs   

 

Flooded vegetation* Green photosynthetically active vegetation with “wet” spectral signal 
(significantly lower near- and short-wave-infrared range than emergent 
grasses); includes inundated emergent, floating and submerged aquatic 
macrophytes and their mixtures   

 

Senescent grasses Perennial vegetation that maintains dry/senescent biomass during the 
winter, typically dominated by mixed warm-season C4-grasses and reeds 
that grow in higher-elevation sub-lake and channel periphery 

 

Burned vegetation Recently burned grassland with distinct dark soil/ash and little or no 
vegetation regrowth 

 

Human land use Areas of active human land use adjacent to Poyang Lake wetlands 
(residential, agriculture, extraction etc.) 

*Due to medium resolution of satellite imagery, lack of vegetation records from the time of the survey 
and constrained field access to aquatic vegetation beds in general, we were not able to successfully 
differentiate more specific functional groups of aquatic macrophytes within this category and treated 
inundated vegetation as a single class. I address this issue in more detail in Discussion section. 
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Table 3. Independent variables used in regression models of Poyang Lake waterbird abundance 
and diversity, summarized for 500-m neighborhoods around sub-lakes within the natural wetland 
area. 

Category Name (model code) Definition 

Area 
 

Total sub-lake unit area 
(area) 
 

Total area of the sub-lake water body and its 500-m buffer 
neighborhood, m2 

Prevalence of habitat 
cover types 
within sub-lake 
neighborhood 

Percent mudflat 
(%mudflat) 
 

Proportion of the area classified as mudflat within the sub-
lake neighborhood 

Percent emergent 
vegetation (%emgrass) 

Proportion of the area classified as emergent grassland within 
the sub-lake neighborhood 

Percent flooded 
vegetation (%floodveg) 

Proportion of the area classified as flooded vegetation within 
the sub-lake neighborhood 

Spectral greenness  Normalized Difference 
Vegetation Index (NDVI) 
of emergent grassland 
(ndvi emgrass) 

Spectral index of vegetation greenness, here calculated as 
mean object-level NDVI  from Landsat TM bands 3 (Red) and 
4 (Near-infrared) within green emergent grass class for each 
sub-lake:  NDVI= (Band 4– Band 3)/(Band 4 + Band 3) 

Normalized Difference 
Vegetation Index (NDVI) 
of mudflat (ndvi mudflat) 

Calculated using the same formula as above as mean of the 
objects within the mudflat class 

Spectral 
heterogeneity 
of habitat cover 
types 

Spectral heterogeneity of 
mudflat 
(stdev Red mud) 
 

Standard deviation of the object-level mean values for Landsat 
TM band 3 (red) among the mudflat class image objects 

Spectral heterogeneity of 
flooded vegetation 
(stdev Red floodveg) 
 

Standard deviation of the object-level mean values for Landsat 
TM band 3 (red) among the flooded vegetation class image 
objects 

Spectral heterogeneity of 
emergent vegetation 
(stdev Red emgrass) 
 

Standard deviation of the object-level mean values for Landsat 
TM band 3 (red) among the emergent C3 grass image objects 

Heterogeneity of 
primitive patch 
shapes within habitat 
cover types 

Heterogeneity of shape 
index for mudflat 
(stdev SI mud) 

Standard deviation of the shape index (the ratio of object with 
area A to perimeter of the square with the same area; 
eCognition 8.0  Reference Book) for primitive image objects 
classified as mudflat class within the  sub-lake neighborhood 
 

Heterogeneity of shape 
index for emergent 
vegetation  
(stdev SI emgrass) 

Standard deviation of the shape index (the ratio of object with 
area A to perimeter of the square with the same area; 
eCognition 8.0  Reference Book) for primitive image objects 
classified as emergent grassland within the  sub-lake 
neighborhood 

Potential 
anthropogenic 
disturbance  
within sub-lake 
neighborhood 

Percent of burned 
vegetation area  
(%burnveg) 

Proportion of the area classified as burnt vegetation within 
sub-lake neighborhood 

Percent of non-wetland 
human land use 
(%human LU)) 

Proportion of the area representing active human land use 
(residential or agriculture) within sub-lake neighborhood 
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Table 4. Relative importance of independent variables in univariate ordinary least squares 
regression models of diversity and abundance response variables, sorted by Akaike Information 
Criterion (AICc) in ascending order. 

Dependent variable: 
Ln(species 
richness) 

 
Shannon index

 
Number of 
food guilds 

Independent variable R2 AICc Independent variable R2 AICc Independent variable R2 AICc 

Mudflat NDVI 0.29 95.1 Mudflat NDVI 0.15 60.5 Mudflat NDVI 0.21 175.0 

Sqrt (%floodveg) 0.18 102.8 Sqrt (%floodveg) 0.12 62.0 Sqrt (%floodveg) 0.12 180.6 

Sqrt (%emgrass) 0.08 109.0 Stdev Red floodveg 0.08 64.4 Ln(area) 0.08 182.6 

Stdev Red mud 0.08 109.1 NDVI emgrass 0.04 66.6 %human LU 0.06 183.6 

Ln(area) 0.05 110.2 Ln(area) 0.04 67.0 NDVI emgrass 0.06 183.9 

%human LU 0.04 111.1 Stdev Red emgrass 0.03 67.4 Sqrt (%emgrass) 0.04 184.6 

NDVI emgrass 0.03 111.2 Stdev SI emgrass 0.02 67.5 Stdev Red mud 0.03 185.7 

Stdev SI emgrass 0.02 111.8 %burnveg 0.02 67.9 Stdev Red floodveg <0.01 186.8 

Stdev Red emgrass <0.01 112.7 %human LU <0.01 68.4 %burnveg <0.01 186.9 

Stdev Red floodveg <0.01 112.8 Stdev Red mud <0.01 68.5 Sqrt(%mudflat) <0.01 186.9 

Stdev SI mud <0.01 112.8 Sqrt (%emgrass) <0.01 68.5 Stdev SI emgrass <0.01 187.0 

%burnveg <0.01 112.9 Stdev SI mud <0.01 68.6 Stdev SI mud <0.01 187.0 

Sqrt(%mudflat) <0.01 112.9 Sqrt(%mudflat) <0.01 68.6 Stdev Red emgrass <0.01 187.0 

Dependent variable: 
Number of 
size groups 

 
Ln(number of 

birds) 

 Ln(number of 
tuber-feeding 

birds + 1) 
Independent variable R2 AICc Independent variable R2 AICc Independent variable R2 AICc 

Mudflat NDVI 0.15 145.7 Ln(area) 0.2 212.5 Mudflat NDVI 0.09 263.7 

NDVI emgrass 0.09 149.0 Mudflat NDVI 0.13 216.8 Sqrt (%floodveg) 0.08 263.9 

Ln(area) 0.08 149.7 %burnveg 0.06 220.8 Stdev SI emgrass 0.05 265.6 

%human LU 0.07 150.0 Stdev SI emgrass 0.05 221.5 Ln(area) 0.04 266.4 

Sqrt (%floodveg) 0.06 150.6 Stdev Red emgrass 0.04 221.7 Stdev Red mud 0.02 267.0 

Stdev Red floodveg 0.02 152.8 NDVI emgrass 0.03 222.3 %burnveg <0.01 267.9 

Sqrt (%emgrass) 0.02 152.8 Stdev Red floodveg 0.02 222.8 Sqrt (%emgrass) <0.01 268.1 

Sqrt(%mudflat) 0.02 153.0 Sqrt (%floodveg) 0.02 223.1 Stdev Red emgrass <0.01 268.1 

%burnveg 0.02 153.1 Stdev Red mud 0.01 223.2 Sqrt(%mudflat) <0.01 268.2 

Stdev Red mud <0.01 153.6 Sqrt (%emgrass) 0.01 223.2 NDVI emgrass <0.01 268.2 

Stdev SI emgrass <0.01 153.9 %human LU <0.01 223.7 Stdev Red floodveg <0.01 268.2 

Stdev Red emgrass <0.01 153.9 Stdev SI mud <0.01 223.8 %human LU <0.01 268.3 

Stdev SI mud <0.01 153.9 Sqrt(%mudflat) <0.01 223.8 Stdev SI mud <0.01 268.3 

 

  



 

100 
 

 

Table 5. Multivariate regression models for waterbird diversity and abundance response 
variables within 2 units of AICc from the lowest-AICc OLS model. Bold font indicates AICc 
values upon which models were ranked for calculation of the Akaike weights for prediction of 
2008 values in model verification. 

Models R2 

OLS 
AICc 
OLS 

AICc 
Error 

AICc 
Lag 

Akaike 
weight 

Dependent variable: species richness      
Area - %floodveg + ndvi emgrass – ndvi mudflat 0.50 90.06 89.47 92.89 0.61 
-%floodveg + ndvi emgrass – ndvi mudflat 0.46 91.27 90.38 93.82 0.39 
      

Dependent variable: Shannon index      
-%floodveg + ndvi emgrass + stdev Red floodveg 0.37 52.75 54.19 55.29 0.36 
Area - %floodveg + ndvi emgrass + stdev Red floodveg 0.40 53.01*   0.64 

     
Dependent variable: number of food guilds      

Area - %floodveg + ndvi emgrass  0.38 169.73 172.23 170.45 0.35 
Area - %floodveg + ndvi emgrass – ndvi mudflat 0.41 170.21*   0.4 
Area - %floodveg + ndvi emgrass -  %emgrass 0.41 170.29 172.96 171.18 0.25 
Area - %floodveg + ndvi emgrass + %human LU 0.39 171.55 174.24 172.72  
Area - %floodveg + ndvi emgrass – stdev SI emgrass 0.39 171.73 174.42 172.54  
      

Dependent variable: number of size groups      
Area - %floodveg + ndvi emgrass 0.33 140.55*   0.25 
Area - %floodveg + ndvi emgrass + %human LU 0.35 141.59*   0.15 
Area - %floodveg + ndvi emgrass – ndvi mudflat 0.35 141.71*   0.14 
Area - %floodveg + ndvi emgrass - %emgrass 0.35 141.72*   0.14 
Area - %floodveg + ndvi emgrass - %burnveg 0.35 141.89*   0.13 
Area - %floodveg + ndvi emgrass - %mudflat 0.34 142.41*   0.10 
Area - %floodveg + ndvi emgrass + stdev Red floodveg 0.34 142.45*   0.10 
      

Dependent variable: total number of birds      
Area + ndvi emgrass – ndvi mudflat – stdev SI emgrass 0.4 207.89 210.56 209.62 0.23 
Area – ndvi mudflat – stdev SI emgrass 0.35 209.19*   0.44 
Area + ndvi emgrass – ndvi mudflat – stdev SI emgrass - 
% burnveg 

0.41 209.26 211.59 211.47  

Area – ndvi mudflat – stdev SI emgrass - % burnveg 0.38 209.83*   0.33 
Area + ndvi emgrass – ndvi mudflat – stdev SI emgrass - 
%floodveg 

0.41 209.84 212.63 211.55  

      
Dependent variable: number of tuber feeding birds      

Area - %floodveg  0.16 264.41 265.17 263.87 0.36 
Area - %floodveg – stdev SI emgrass 0.19 264.79 266.11 264.56 0.22 
-ndvi mudflat – stdev SI emgrass 0.14 265.19 265.61 264.54 0.28 
Area - %floodveg - %burnveg 0.17 266.15 267.45 266.03  
Area – ndvi mudflat – stdev SI emgrass 0.17 266.19 266.97 265.51 0.14 
-ndvi mudflat 0.09 266.25*    
%emgrass – ndvi mudflat – stdev SI emgrass 0.17 266.31*    
-%floodveg 0.08 266.39*    

*Spatial autocorrelation diagnostics not significant with p-value > 0.1.  
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Figures 

 

 

Figure 1. Study area and waterbird survey in December 2006. 
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Figure 2. Sub-lake clusters of significant spatial dependence (p<0.05) determined using Local 
Indicators of Spatial Association (LISA). For positive spatial dependence, “High-High” indicates 
significant clustering of high values in each variable and “Low-Low” – significant clustering of 
low values. Negative spatial dependence is represented by “High-Low” and “Low-High” 
significant associations. 
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Figure 3.Comparison of the actual and predicted values of selected response variables in 2008 
for 16 sub-lake units used in model assessment: a) species richness; b) Shannon index; c) total 
bird abundance; d) abundance of tuber-feeding birds. 
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Figure 4. Comparison of the univariate relationships between log-transformed species richness 
and independent variables for 16 sub-lake units used in model assessment between  2006/2007 
and 2008 datasets using a) log-transformed sub-lake and neighborhood area; b) square root-
transformed proportion of flooded vegetation cover; c) average normalized difference vegetation 
index (NDVI) for mudflat and d) average NDVI for emergent grassland. 
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CHAPTER 5. Conclusions and future research directions 

Summary of the key results from thesis chapters 

In this dissertation, I investigated the capabilities of satellite remote sensing and novel object-
based image analysis (OBIA) methodology to elucidate seasonal composition and dynamics of 
wetland ecosystems and indicators of habitat for wintering waterbirds in a large conservation 
hotspot of Poyang Lake, PR China. My results provide new insights about the role of spatial and 
temporal processes in shaping this unique wetland environment and offer innovative techniques 
applicable for multi-scale analysis of complex and dynamic landscapes across the globe. In this 
concluding section, I summarize the key findings from the four dissertation chapters and discuss 
the important directions for future research. 

My first study (Chapter 1) investigated changes in major wetland cover types (water, 
vegetation, mudflat and sand) and their classification uncertainty during the Poyang Lake low 
water period from late fall 2007 to early spring 2008. I found that, while hydrological variation 
strongly affected transitions among classes, the overall dynamics of wetland surface reflected a 
more complex interplay of vegetation phenology, seasonal turnover of the dominant plant 
species, grazing disturbance and post-flood mudflat exposure. Signals of these different 
processes were more effectively highlighted by changes in fuzzy memberships to each class per 
location, than by changes in spatial extents of the highest-membership classes alone. 
Classification uncertainty varied by both image date and by cover type, generally decreasing 
from transitional post-flooding wetland state in November 2007 to early spring and being 
consistently the highest for dynamic and heterogeneous mudflat in all images. Vulnerability to 
flooding and high classification uncertainty makes mudflat habitats an important target for the 
future work. Tthe accuracy of Poyang Lake analyses in the low water season may be sensitive to 
the timing of available cloud-free remote sensing data. However, for spatially dynamic and 
heterogeneous cover types, classification uncertainty may not be fully resolved even with 
advanced machine-learning methods and customized algorithms. This shortcoming stimulated 
exploration of alternative methods for Poyang Lake change analysis (Chapter 3).  

To more thoroughly investigate the benefits of OBIA for remote sensing-based wetland 
analysis, in Chapter 2 I examined sensitivity of Poyang Lake plant functional type (PFT) 
classification accuracy to the choice of image segmentation scale, machine-learning 
classification method and a more general versus more specific PFT class definition. Results 
suggested that OBIA may improve classification accuracy relative to pixel-based methods even 
for heterogeneous wetland vegetation and with medium-resolution Landsat imagery. Both the 
overall and class-specific accuracy values increased from close-to-pixel object scales to coarser 
levels, regardless of the classification algorithm, likely due to smoothing of the local 
heterogeneity and approximation of the vegetation patches by image objects. In contrast to 
general PFTs, specific classes differed in their highest-accuracy object scale values which calls 
for more research on drivers of their unique patch structure and disturbance agents. The 29-35% 
disagreement between the area of each general PFT and its respective subclasses further 
suggested that ecological classifications based on plant functional traits alone may not 
sufficiently capture spectral and spatial hierarchy among plant types on a landscape. Future 
research should test the benefits of integrating spectral and geometric properties of vegetation 
patches with functional ecological traits, similar to the recently proposed concept of the “optical” 
functional types (Ustin and Gamon 2010).  
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Analysis of change among wetland cover types in Chapter 1 highlighted the challenges on 
resolving classification uncertainty for Poyang lake mudflats and mixed transitional cover types 
regardless of the image date. In Chapter 3, I explored an alternative change analysis approach by 
classifying Poyang Lake wetland into “dynamic cover types” (DCTs) defined as sequences of 
common transitions observable in a given flood period. This analysis identified major steps in 
seasonal wetland change driven by flooding and vegetation phenology and spatial differences in 
change schedules across the large and heterogeneous study area. Comparison of DCTs from the 
actual flood period with a hypothetical quasi-experimental scenario of a warmer, wetter low 
water season revealed both a “hydrological” response with class shifts away from expanding 
permanent water bodies and more complex location-specific redistributions of vegetation types 
and mudflats. These outcomes imply that changes in flooding patterns may have non-uniform 
effects on different ecosystems and habitats and call for a thorough investigation of more specific 
hydrological and climatic change scenarios for this landscape. The possibility to disentangle 
short-term ecological “regimes” from longer-term landscape changes via DCT framework 
suggests a promising research strategy for landscape ecosystem modeling, conservation and 
ecosystem management. Extension of this approach to multi-year change assessments should 
carefully consider the limitations related to temporal frequency of remote sensing data, 
complementary characteristics of different sensors and the benefits of wireless in situ sensors to 
supply continuous reference information for areas with problematic access.  

 The analyses conducted in Chapters 1-3 revealed important characteristics of the Poyang 
Lake low water season which may affect suitability of wetland habitat for wintering birds. In the 
final Chapter 4, I investigated which landscape characteristics of the permanent sub-lakes 
extracted from the Landsat satellite image were most closely associated with spatial variation in 
waterbird diversity and abundance in the ground survey of December 2006. In the best-fit 
models selected using the Akaike Information Criterion, on average higher bird diversity and 
abundance were associated with larger sub-lake size, higher spectral greenness of emergent 
grassland and lower spectral greenness of mudflat as well as lower proportion of flooded/aquatic 
vegetation. At the same time, predictive performance of even the best-fit models was penalized 
by large amounts of unexplained variation and inconsistencies among bird survey and remote 
sensing data from another year. Significant spatial autocorrelation in most linear regression 
models raised concerns about missing predictor variables, the utility of sub-lakes as spatial units 
for sampling and modeling of bird diversity, but it also suggested the new hypotheses on 
potential spatial interactions in distributions of waterbird groups or their foraging resources 
among the sub-lakes. The key limitations of the study included one-time pan-lake bird survey 
event per winter season and the lack of comprehensive field data on important habitat variables 
such as water levels and vegetation composition. These challenges indicate that future bird 
monitoring programs should take more rigorous steps to standardize the protocols of bird surveys 
and collection of field- and remote sensing-based habitat variables in different years.   

Needs for the future research and monitoring at Poyang Lake 

The future of Poyang Lake wetland ecosystems and biodiversity is disturbingly uncertain due to 
the growing complexity of landscape change drivers and anthropogenic pressures in this region 
(Fang et al. 2006, Barzen et al. 2009, Harris and Hao 2010, Fox et al. 2011). The most urgent 
research needs are based on the potential near-future modification of Poyang Lake hydrological 
regimes by now operating Three Gorges dam upstream Yangtze River (Guo et al. 2012), planned 
local water control structures (Finlayson 2010, Harris and Hao 2010) and climate change. 
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Thorough analysis of the future wetland change scenarios would ideally require development of 
reliable and spatially explicit hydrological, ecosystem and habitat models. This, in turn, would 
require filling the important gaps in current data (e.g., construction of a seamless high-resolution 
bathymetry and digital elevation layer), systematic sampling of environmental variables over 
Poyang Lake basin and stronger collaboration among different domestic and international 
research groups. Results of my dissertation suggest several research directions to expand the 
understanding of Poyang Lake ecological environment and its response to change drivers. 

One particularly important research venue concerns the insufficiently understood feedbacks 
between flooding and functional performance of wetland plants. My analysis and previous 
studies suggest that taxonomic and functional composition of Poyang Lake vegetation is strongly 
associated with landscape inundation status as well as with seasonal patterns of submersion per 
location (Wu and Ji 2002, Chen et al. 2007, Wang et al. 2012). Similarly, temporal variation in 
flood regimes may affect the interactions between wet C3 sedges and less flood-tolerant 
opportunistic C4 grasses currently restricted to wetland margins (Dronova et al. 2012). Assessing 
specific timing of phenological changes and flood-driven seasonal turnover of plant functional 
types would be extremely useful in modeling responses of ecosystem productivity, nutrient 
fluxes and greenhouse gas emissions to hydrological and climatic change (Keenan et al. 2012). 
Enhancing the understanding of flooding-vegetation feedbacks is also critical for monitoring and 
modeling bird habitat suitability and temporal variation in winter food resources that are shaped 
by ecosystem dynamics of the preceding growing season (Barzen et al. 2009).  

A related key direction for the future work is the assessment of potential recent shifts in 
species composition of Poyang Lake aquatic and wetland vegetation communities. Considerable 
changes in dominant vegetation have been reported for a number of smaller lakes in the central 
Yangtze region over the last decade, including decline of tuber-producing warm-season aquatic 
macrophytes, replacement of historical dominants by previously less common species and 
eutrophication-induced shifts from macrophytes to algae (Fang et al. 2006, Xing et al. 2006, Fox 
et al. 2011). The known dominant plant types of Poyang Lake has been linked with important 
habitat and food for fish, invertebrates resident and migratory birds and forage for domestic 
livestock in local villages (Wu and Ji 2002, Wang et al. 2012). Changes in wetland plant 
communities may thus have far-reaching consequences not only for ecosystem function directly 
controlled by vegetation, but also for upper trophic levels and valuable ecosystem services to 
humans. Because many sub-lakes are hydrologically isolated for substantial part of the year, 
sampling efforts to assess vegetation shifts may need to be more spatially and temporally 
rigorous than in previous surveys (Zeng et al. 2007, Burnham et al. 2011, Wang et al. 2012). 

In order to better understand habitat requirements and threats for the wintering waterbirds, 
more work is needed on investigating spatio-temporal patterns of habitat use by species and 
foraging guilds as well as on consolidating current bird survey programs and protocols. Limited 
data reporting and the lack of repeated pan-lake surveys per winter season contribute to the 
uncertainty in habitat modeling and constrain applicability of current records to robust 
projections of future bird population and habitat changes. Given persisting challenges of limited 
field access and logistical constraints to frequent surveys, future studies should continue 
exploring remote sensing-based indicators of bird habitat utilization and diversity. One strategy 
to enhance predictive capacity of landscape models would be to combine remote sensing proxies 
with field descriptors of habitat dynamics assessed prior to bird arrival (Burnham et al. 2011). In 
addition, future work should more thoroughly investigate ecological meaning of spatial 
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autocorrelation in distributions of birds and their habitat characteristics to better understand 
landscape connectivity and spatial interactions among hydrological sub-units. Improved 
understanding of the spatial linkages among waterbird communities and their suitable habitats is 
of critical importance for conservation management of the local protected areas, but this 
knowledge may be difficult to obtain by field surveys in this challenging wetland landscape. 

These suggested directions for future work address immediate research needs elucidated by 
this thesis and other recent studies (e.g., Burnham 2007, Wu 2008, Barzen et al. 2009, Wang et 
al. 2012, Guo et al. 2012). On a more general note, comprehensive studies of Poyang Lake 
ecosystem mechanisms and dynamics continue to be hampered by insufficient data availability, 
the lack of consistent monitoring programs and limited coordination among parallel studies by 
different research groups. A potential solution to this problem could be the establishment of a 
unified information repository to facilitate data sharing and collaboration among contributing 
parties. Ideally, this effort should also incorporate a unified monitoring program coordinating 
both the bird surveys and field and remote sampling of ecosystem variables.  

Because high cost and limited feasibility of frequent field surveys at Poyang Lake will remain 
a constraint in the near future, ecological monitoring and research should consider alternative 
strategies for systematic data collection. First, temporal frequency of ground observations may 
be enhanced by an integrated network of wireless sensors (Gong 2007, Burgess et al. 2010). To 
ensure basin-wide representation in these observations, installation and maintenance of wireless 
sensors could be coordinated among >20 current field ecological monitoring stations in this area. 
Second, an extremely useful monitoring effort would be an establishment of the regular airborne 
wetland survey program to maintain the continuity of seasonal remote sensing observations for 
periods of prolonged cloudiness when optical satellite data become useless. It is particularly 
important to provide the aerial survey opportunity for the warm summer growing season of 
aquatic vegetation which produces critical food resources for the migratory waterbirds later in 
the season (Burnham 2007, Barzen et al. 2009, Burnham et al. 2011). Repeated collection of 
airborne remote sensing data over Poyang Lake wetlands would provide invaluable source of 
information for diverse research initiatives in the region and would greatly facilitate continuous 
long-term projects by the local universities and environmental monitoring institutes.  

Research needs for integration of the object-based remote sensing image analysis and 
landscape ecology 

In this section I discuss several research directions for enhancing the utility of remote sensing in 
complex and dynamic landscapes such as the Poyang Lake study area. An especially important 
future task is to formalize the criteria of the “optimal” representation of heterogeneous landscape 
patches by image objects. In particular, more straightforward and flexible approaches are needed 
to determine image segmentation parameters which maximize the accuracy of patch boundary 
delineation and cover type identification across diverse classes simultaneously. Previous studies 
proposed semi-automated algorithms for pre-classification testing of segmentation outputs using 
either known object properties (Clinton et al. 2010a) or measures of local spectral variance 
sensitive to contrasts among patches (Dragut et al. 2010). These techniques have been successful 
for target objects of similar type and size, and future work should advance them to handle higher 
variability in object (patch) parameters among classes and provide greater flexibility for using 
multiple spectral bands and ancillary geospatial datasets in class delineation. For more reliable 
outcomes, it is also important to more closely integrate machine-based segmentation and 
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classification algorithms with ecological and biophysical optical properties of cover types 
derived from field measurements or high-resolution images (Ustin and Gamon 2010).  

Another important future objective is to develop more standardized approaches for assessing 
propagation of classification uncertainty among different levels of hierarchical classifications. 
The OBIA framework is particularly useful for hierarchical landscape analyses where different 
layers of nested objects with matching boundaries can be easily generated to represent levels of 
landscape complexity (Burnett and Blaschke 2003, Tuxen and Kelly 2008, Kim et al. 2011, 
Ouyang et al. 2011). However, the caveats associated with propagation of classification error 
among hierarchical levels (Townsend and Walsh 2001) or mismatches between the MAPPED 
class hierarchy and the actual patch structure have not been yet explicitly discussed in OBIA 
applications. Mismatches among general and specific plant functional type maps in Chapter 2 
suggested that the overall classification error would accumulate if the output class boundaries 
from one hierarchical level were used to constrain class assignment for another level. However, 
nested spatial structure of different-level patches and the uncertainty assessment framework 
developed in Chapter 1 can be useful for spatially explicit quantitative assessments of changes in 
error among class levels. At the same time, it is important to recognize the informative value of 
classification error to suggest follow-up questions and hypotheses for future research and to 
guide the choice of spatial resolution, object scale and quality of training/test samples. 

An interesting and important direction for the future work is extension of the dynamic cover 
type framework to address long-term ecosystem change. The first step towards this goal should 
be a thorough assessment of the intrinsic “reference” variation of dynamic classes (Zhong et al. 
2011) that needs to be disentangled from long-term directional change trajectories. It is also 
necessary to examine what minimum temporal frequency of remote sensing data is required to 
reliably represent transition types for given landscape and research objectives (Lobell and Asner 
2004, Crews 2008, Ozdogan 2010, Zhong et al. 2011). On the one hand, precise timing of 
transitions is important for understanding ecosystem response to climate change (Keenan et al. 
2012), but on the other hand, excessive data frequency may result in noise and class confusion 
(McCleary et al. 2008, Zhong et al. 2011). Given limited availability of cloud-free imagery in 
humid regions such as Poyang Lake study area, future studies should consider novel wide-swath 
microsatellites such as the Surrey constellation (http://www.sstl.co.uk/) and DEIMOS-1 
(http://www.deimos-imaging.com) providing both frequent revisit and medium spatial 
resolution, as well as fusion of multi-spectral imagery with complementary benefits of radar 
instruments. 

Obtaining sufficient representative training and validation DCT samples will be a challenge 
for most landscapes because frequent field surveys are often costly even for accessible sites. 
Alternatively, in situ wireless sensor technology can be used to collect both environmental 
variables (e.g., temperature, water levels) and temporally frequent images of the sample sites 
(Gong 2007, Burgess et al. 2010). Wireless sensor technology has been useful for continuous 
observations of vegetation phenology in diverse biomes and detection of precise timing of 
change events (Richardson et al. 2009, Sonnentag et al. 2012), and hence could greatly facilitate 
DCT analyses across large and inaccessible wetland areas.  

Finally, future work should adapt the DCT framework to identify “novel” change types which 
may occur due to short-term disturbance, unprecedented shifts in climate and hydrology, human 
management and restoration activities, or alien species invasions. Unsupervised image 
classification approaches and multi-temporal independent components analysis (Ozdogan 2010, 
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Zhong et al. 2011) can be applied to detect considerable deviations from known transitions 
suggesting previously unknown dynamics. Developing diagnostics of the novel change types for 
the long-term DCT analysis would be extremely useful for early detection of vulnerable and non-
resilient ecosystem states, signatures of undocumented disturbance, starting points of invasions 
or insect/disease outbreaks and novel types of communities adapting to shifting environment. 
The important benefit of DCTs is the possibility to generalize and compare change signatures 
among different locations, which may offer significant future shortcuts for rapid change 
assessments under shifting climate and cascade effects in ecosystem states across wide regions.    
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