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University of Leeds
Oliver Rübel†
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Abstract— Contour trees are a significant tool for data analysis as they capture both local and global variation. However, their utility
has been limited by scalability, in particular for distributed computation and storage. We report a distributed data structure for storing
the contour tree of a data set distributed on a cluster, based on a fan-in hierarchy, and an algorithm for computing it based on the
boundary tree that represents only the superarcs of a contour tree that involve contours that cross boundaries between blocks. This
allows us to limit the communication cost for contour tree computation to the complexity of the block boundaries rather than of the
entire data set.

1 INTRODUCTION

Topological analysis helps comprehend data from numerical simula-
tions. Reeb analysis exploits relationships between isocontours in data,
often using the contour tree. For data analysis and visualization, fea-
tures of a physical phenomenon often map to superarcs in a contour
tree [8], and simplifying the contour tree constructs a semantically
meaningful hierarchy called the branch decomposition [24]. Geometric
properties of the topological zones can to guide the simplification [8],
while individual contours can be extracted using the contour tree [2,27].

The principal limitation of these tools at scale has been scalability, as
only one distributed algorithm has been defined [23] for the contour tree,
but without exploiting on-node parallelism and with the disadvantage of
computing the entire tree on a single machine with insufficient memory
to store it.

We describe a distributed structure, the hierarchical contour tree,
which represents local contours only on the machine where the data
block itself resides, resulting in much lower communication cost and
storage. This works with any local contour tree algorithm, but was
built using the parallel peak pruning algorithm [10], as it exploits
the hyperstructure [6] which supports augmentation, acceleration and
computation in a massively parallel environment.

We contribute an explicit algorithm for distributed computation and
storage of the contour tree, based on the PPP algorithm [10] but adapt-
able to any single-machine contour tree, that minimizes communication
between ranks by retaining as many superarcs as possible on the rank,
thus reducing the size to be stored on the top node of the hierarchy,
and extending the distributed scalability and performance of previous
algorithms. We have implemented this algorithm using vtk-m and DIY,
made the code available in vtk-m, and report on its efficiency, both
theoretical and practical.

2 BACKGROUND

Given a function f : M →R from a manifold M to the real numbers R,
known as a scalar field, we define the level set of an isovalue h ∈ R to
be f−1(h) = x ∈ M : f (x) = h. We then call the connected components
of each level set contours or isocontours.

The quotient space of M by contour contraction gives the Reeb
graph [25], whose vertices or supernodes are critical points of f , and
whose edges are superarcs. Additional nodes represent other points in
the domain, breaking the superarcs up into arcs. A contour tree with
any such nodes and arcs added is called augmented.

An acyclic Reeb graph is a contour tree Tf (M) for the function f
on the manifold M [5]. If M is homeomorphic to a disk, the graph is
always acyclic, but this is not a necessary condition. This observation
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is crucial for the boundary tree and the hierarchical contour tree, and
we will return to it in due course.

We can also map from points in the manifold to the corresponding
point in the contour tree, and use topological zone or zone for the
inverse images under this mapping of superarcs, supernodes, or arbi-
trary subgraphs. Fig. 1 shows a small example of a contour tree, with
color indicating topological zones, which are treated as features for the
purpose of simplification, visualization and data analysis.

Computationally, we usually assume that the manifold is defined to
be a mesh, most simply a simplicial mesh with barycentric interpolation,
although other meshes and interpolants can be supported by using a
topology graph to represent the relationships between contours [7].
For the balance of this paper, we will assume that the manifold is a
simplicial mesh with barycentric interpolation.

For a function f on such a mesh M, critical points are at vertices [3],
and contour tree computation collapses to a graph algorithm. Algorith-
mic analysis then relies on N - the number of nodes in the mesh, and t -
the number of supernodes in the contour tree.

The contour tree can be computed from a topology graph by sweep-
ing through the mesh in sorted order, testing at each vertex for creation,
destruction, merge or separation of contours [27]. A more efficient
approach sweeps through the mesh twice (once in each direction) to
compute merge trees [8], which capture the connectivity of super- or
sub-level sets of f (i.e. sets of the form f (x) ≥ h and f (x) ≤ h), and
which are also of interest in data analysis. A third phase then combines
the merge trees to produce the contour tree, identifying leaf edges
based on the information in the merge trees and transferring them to
the contour tree [8]. While efficient (O(N lgN)+ tα(t)), this algorithm
is inherently serial, and most subsequent work on parallel contour tree
computation has sought to improve its parallel efficiency.

2.1 Parallel Contour Tree Algorithms

Pascucci & Cole-McLaughlin [23] distributed the computation by di-
viding the mesh into blocks on individual ranks, and having each rank
compute the contour tree for its own block. These trees were combined
using a standard fan-in process, where the trees of adjacent blocks
are united to build a topology graph for the combined block, and the
contour tree was then computed for the combined block. The contour
tree for the entire data set was computed recursively, and stored on a
single machine at the top of the hierarchy, with the communication
cost in each stage was linear in the tree size. However, many of the
nodes ended up idle during the fan-in reduction, leading to inefficient
resource utilization, and the top node of hierarchy is prone to run out of
memory and compute resources, as the contour tree for the entire data
set resides on it.

More recently, SMP parallel algorithms have emerged, as CPU
core count increases and GPU processing becomes common. One
approach took a path-following approach [11] and GPU-parallelized
it to find a topology graph, then computed merge and contour trees
on CPU [1]. Another approach breaks the mesh into segments by
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isovalue, computes contour trees for each segment on a thread, then
glues together the segments across the boundaries [13]. Subsequently,
a task-based approach used queued processing to construct the contour
tree a few edges at a time [14]. Another merge tree construction in SMP
is also task-based, in which edges are incrementally added, causing
changes to propagate locally until the entire contour tree has been
computed [26].

Distributed parallel algorithms for merge or contour trees suffer
from two main problems: i) With increasing number of nodes, com-
munication costs become prohibitive and impede scalings; ii) When
computing a global contour (or merge) tree, after each step only half
of the compute nodes continue calculating, until only a final compute
node assembles the result. This approach results in poor compute node
utilization and poor scaling behavior.

To alleviate these problems, Morozov & Weber introduced dis-
tributed merge trees [21]. This approach distributed the merge tree
to multiple compute nodes and used the resulting distributed repre-
sentation for analysis. In this, compute nodes exchange merge trees,
simplifying away regular and critical points that do not belong to a more
persistent path with an extremum on a neighbouring node. Effectively,
each final local tree contains all nodes of the merge tree for the local
domain as well as only those nodes of other domains that are on a path
to an extremum in another domain.

Landge et al. [18] suppressed interior vertices of blocks, computed
the blocks merge trees, and fanned in by gluing together the merge
trees, using a zipping operation towards the root of the tree. Implicitly,
sub- (or super-) level set components interior to a block are discarded.
However, computations internal to a block such as zipping are expressed
in serial forms, since the approach exploits distributed parallelism but
not shared memory parallelism.

Subsequently, Klacansky et al. [17] represented virtual edges bridg-
ing between adjacent blocks, exploiting this to allow shared-memory
parallel computation of merge trees with a similar approach.

Overall, therefore, Pascucci & Cole-McLaughlin defined a dis-
tributed approach for contour tree computation, but one that was ham-
pered by the need to fan-in the entire contour tree to a single node.
Subsequent approaches have primarily built a distributed merge tree,
which is known to be easier than building the contour tree, especially
in the presence of W-structures [9, 15]. And, while subsequent work
enabled some operations that usually require the contour treee [22],
these operations are based on separate merge trees (join- and split-tree)
that are not combined into a contour tree. As such, this representation
does not support operations like persistence based simplification of
contour trees. Finally, most of these methods do not exploit the massive
on-node parallelism typical of modern architectures.

2.2 Parallel Peak Pruning
We introduced the Parallel Peak Pruning (PPP) algorithm [10], in
which monotone paths to extrema are constructed from all vertices
in the mesh. These paths define a topology graph, which is used to
compute the merge trees. All extrema and their nearest saddle by
isovalue are identified simultaneously and transferred to the merge
tree (peak pruning). The topology graph is adjusted to remove these
extrema, and saddles become extrema to be pruned in turn. Once both
merge trees have been constructed, a batched merge phase transfers
groups of edges to the contour tree.

In each iteration, monotone chains of superarcs transfer as hyperarcs
to the contour tree - i.e. a specialised form of branch decomposition [24]
that is related to rake-reduce parallel tree algorithms [16]. In this
way, a hyperstructure is built up that allows logarithmic search in
the contour tree for efficient parallel processing. We later exploited
this hyperstructure to augment the contour tree with regular nodes at
logarithmic overall cost [6].

While search is logarithmic, hyperstructure construction is not, due
to W-structures, which zig-zag horizontally through the tree [9, 15],
causing problems with parallel computation.

In subsequent work [16], we then showed that the hyperstructure
was also related to the Euler Tour [4], which allows computations over
trees to be collapsed into prefix sum operations. By exploiting this,

we demonstrated efficient shared-memory parallel computation of geo-
metric measures, simplification, branch decomposition and isocontour
extraction.

We omit detailed discussion of this algorithm, since the distributed
approach we outline does not depend strongly on it, and can also be built
on top of other algorithms for rank-local computation of the contour
tree.

3 HYBRID PARALLEL CONTOUR TREES

While there are a number of approaches for SMP computation of the
contour tree, distributed computation remains an important step, and it
is this problem that we now approach.

We start with two limitations of distributed computation: commu-
nication cost and memory footprint. Since communication is often a
bottleneck in distributed computation, we want to minimize it by reduc-
ing the amount of data transferred. Moreover, we want a data structure
distributed across all ranks (a rank is an abstraction of an MPI process
to allow load-balancing between machines and permit exploitation of
multiple cores on each machine). This avoids concentrating the entire
data structure (and the associated large memory requirements) on a
single rank. These goals are mutually compatible, since partitioning the
data to be stored on each rank will give rise fairly naturally to reduced
communication cost.

One approach would be to add distributed array read/write primitives
to PPP, but this is potentially expensive. Although many stages are
heavily redundant in memory access patterns, sorting is a recurrent
theme, and memory access is unlikely to be rank-local. Moreover, over-
all communication would require multiple logarithmic depth (O(lgN))
fan-ins with O(N) total communication each.

In comparison, a hybrid SMP-distributed algorithm should communi-
cate only necessary data between ranks. Numerical computations often
communicate data proportional to the size of the boundaries between
the blocks, with communication cost of about O(N2/3) in individual
steps, where N is the number of vertices in the input mesh. For data sets
in the range of 1012 −1018, the potential savings in communication is
of the order of 104 −106, and we therefore elected to build a hybrid
algorithm.

We start by observing that many features are local to a block of
data and do not have to be represented on other blocks (white zones
in Fig. 1). Since a superarc whose topological zone does not intersect
any boundary can be computed correctly on the block, there is no need
to communicate it to any other block. We therefore remove all such
superarcs / topological zones to produce a boundary tree. The algorithm
then combines the boundary trees of individual blocks to compute the
rest of the contour tree for the entire data set, following Pascucci &
Cole-McLaughlin [23].

At each stage, we divide the contour tree into the boundary tree,
which captures all contours intersecting the boundaries with other
blocks, and the interior forest, which captures all contours that do not.
We combine boundary trees pairwise in a fan-in, removing interior
forests at each stage. When the fan-in is complete, we have a single
shared tree for all ranks, plus a different history of removals on each
rank, which we then re-insert to compute a set of hierarchical contour
trees on individual compute ranks.

4 BOUNDARY TREES AND INTERIOR FORESTS

We saw in Sect. 2 that a Reeb graph may be acyclic even if the manifold
M is not homeomorphic to a disk. For example, removing a leaf su-
perarc from a contour tree is equivalent to removing the corresponding
topological zone from the domain of f [8]. Simplifying a contour tree
thus cuts holes in the domain, which is not homeomorphic to a disk, but
the corresponding Reeb graph is still acyclic and therefore a contour
tree. In 2D, this causes the domain to have holes like a sheet of lace,
while in 3D, it causes the block to look like a piece of Swiss cheese.

The gluing boundary G(B) of a block B is the set of points shared
with other blocks of data. We assume that it is simply connected. We
define the boundary tree B f (B) =C−1(G(B)) to be the inverse image
in the contour tree of the gluing boundary. For example, in Fig. 1, the
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Fig. 1: Top: A small data set with topological zones marked, with the correct full contour tree. Bottom: Contour trees for individual blocks
divided into boundary trees and interior forests. Note that a vertex may be a supernode in one block but not another (e.g. 23), and that superarcs
in the blocks do not necessarily correspond to the zones shown. See text for full discussion.

3

https://doi.org/10.1109/LDAV57265.2022.9966394


gluing boundary of Block 0 consists of the heavy black edges between
Block 0 and Blocks 1 and 2.

Since G(B) is connected, the boundary tree of B, B f (B) is a con-
nected subset of the tree Tf (B). The remaining superarcs representing
contours interior to the block then form a forest of zero or more trees,
which we call the interior forest I f (B) = Tf (B)−B f (B). For a barycen-
tric simplicial mesh, the boundary tree is the closure under connectivity
of the set of mesh vertices on the gluing boundary. We can then define
the necessary manifold to be the manifold defined by the boundary tree
– i.e. N f (B) = f (B f (B)), the portion of the domain whose connectivity
is captured in the boundary tree. Trivially, B f (B) is then the contour
tree for N f (B).

We illustrate this for the mesh in Fig. 1. We break this mesh into
four blocks, and show the contour tree for each block augmented by all
boundary points. For example, in Block 0, the maxima are 100, 86 and
79, while the minima are 48 and 23, and there is a saddle point at 50.

Since topological zones for superarcs in the interior forest do not
intersect the boundary, they cannot connect to contours in other blocks.
The invariant then follows that superarcs in the interior forest are guar-
anteed to be in the contour tree of the entire data set, while superarcs in
the boundary tree are not. The supernode where a subtree of the interior
attaches to the boundary tree is called an attachment point, and may or
may not be represented explicitly in the boundary tree. For example, in
Block 3 in Fig. 1, vertex 30 is an attachment point.

5 HIERARCHICAL CONTOUR TREES

Given boundary trees for each block, the union of the necessary mani-
folds is the union of all contours that intersect more than one block. We
construct a topology graph by combining boundary trees, and compute
the shared contour tree across all blocks. The contour tree for the
entire dataset is then the shared contour tree plus the interior forests in
each block. On each block, we compute the hierarchical contour tree,
which represents the interior forest for that block plus the shared con-
tour tree, thus distributing the storage of the contour tree and reducing
communication cost during computation.

We follow Pascucci & Cole-McLaughlin [23] by applying this re-
cursively, taking lgNb iterations to combine Nb blocks, but removing
interior forests at each stage of the fan-in. We note that the term block
can refer to either the portion of M that corresponds to a single com-
pute rank, or to the result of combining blocks hierarchically, and use
Hier(M) for the hierarchy of blocks that make up M.

For a given block B of data, define the block manifold M(B) = B to
be the block. For a higher level block that is the union of smaller blocks,
Bi j = Bi

⋃
B j, the block manifold M(Bi j) = M f (Bi)

⋃
M f (B j) is the

union of the boundary tree manifolds of the smaller blocks, leaving out
the interior forests. The shared contour tree S f (Bi j) = Tf (M(Bi j)) is
then the contour tree for the combined block with all remaining gluing
boundaries represented, and the boundary tree B f (M(Bi j)), interior
forest I f (M(Bi j)) and boundary tree manifold M f (M(Bi j)) for Bi j are
well defined. At the top level, no gluing boundary remains, so the
boundary tree B f (M) = /0, and the interior forest I f (M) = S f (B) is the
shared contour tree.

The hierarchical contour tree for block B is then the union of the
interior forests of all blocks in Hier(M) that contain B, Tf (B) =⋃

I f (B′) : B′ ∈ Hier(M),B ⊆ B′. Neither shared contour tree nor hi-
erarchical contour tree is canonical, as they depend on Hier(M), not
on M. The boundary tree for a given block however is canonical.

Not all contours in a parent block pass through B, but contours in
M that are not represented in H f (B) do not intersect B. Moreover, if
B′ ⊂ B, then H f (B)⊂ H f (B′): the hierarchical contour tree of a parent
block is a subset of that for each of its children.

Finally, since every superarc in the contour tree is represented in the
interior forest for at least one block, the union of all of the hierarchical
contour trees is the contour tree of the entire mesh: Tf (M) =

⋂
{H f (B) :

B ∈ Hier(M)}.
Fig. 2 illustrates this construction for the dataset in Fig. 1. Here,

Blocks 0 and 1 are combined to construct Block 01, and Blocks 01 and
23 to construct the full mesh. The left hand panel shows the fan-in that
combines boundary trees to reach the shared contour tree, and the right

hand panel shows the fan-out that constructs individual hierarchical
contour trees for each block.

In the second row of Fig. 2, we see that combining boundary trees
from Blocks 0 and 1 gives the topology graph shown, and that vertex
50 is correctly identified as the saddle for zone 50−79. This zone is
contained entirely in Block 01 even though it intersects both Blocks
0 and 1, which means it belongs to Block 01’s interior forest, and can
now be preserved for the fan-out phase.

Once the fan-in is complete (the bottom row), we have identified the
only superarc shared between all four blocks, represented by the edge
8−86, and note that the actual zone in the full contour tree, shown as
Zones 7,6,5,4 in Fig. 1 extends from 0−90, but the top and bottom
portions are represented in interior forests.

In the second row of the fan-in (right), superarc 50−79 reattaches to
the shared contour tree for Block 01 on the left, while superarc 8−86
is extended up to 88 for Block 23 on the right.

Finally, in the top row, we reattach 50−100 in Block 0, 79−80 in
Block 1, 71− 81 in Block 2, and both 20− 30 and 0− 8 in Block 3.
We have now determined a unique hierarchical contour tree for each
block, and can see that their union is the combined structure shown in
the lower right of the figure, which is the correct contour tree for the
entire mesh, as predicted.

6 HYBRID PARALLEL ALGORITHM

The distributed algorithm now follows from the definitions above, con-
sisting of a fan-in to compute the shared contour tree, plus a fan-out to
compute the hierarchical contour trees for each block.

To initialize the process, we compute the contour tree for each block.
In each round, we separate the boundary tree and the interior forest for
a block and retain the latter for the fan-out.

Computing a boundary tree in serial is easy: all boundary critical
points are determined locally, and marked as immune to pruning. A
queue is constructed with all leaves, and the tree is pruned until the
boundary points are reached.

For shared-memory parallelism, we observe that the boundary tree
is the closure under connectivity of the boundary points in the contour
tree. For a superarc inside the boundary tree, there is thus at least one
boundary point outside the superarc in each direction. In contrast, for
superarcs in the interior forest, there are no boundary critical points in
the subtree rooted at the superarc.

This summation is a modified subtree size computation, and can
be performed efficiently in parallel with an Euler Tour or a hyper-
sweep [16]. In practice, rather than split superarcs up, we define a
superarc to be necessary for the boundary tree if none of the regular
arcs on it are in the interior forest, and treat the supernodes at both ends
as necessary as well.

The boundary tree is then exchanged with another rank which shares
a boundary with it, and the two boundary trees are combined to get a
topology graph from which the shared contour tree for the union of the
two blocks is computed.

After a logarithmic number of such rounds, there is no remaining
boundary, and the shared contour tree consists only of an interior tree.
We initialise the hierarchical tree to the interior forest and fan back out,
reinserting the interior forests in each round:

1. Compute a contour tree for each data block

2. For each block

(a) For each of O(lgN) levels of fan-in:

i. Split tree into boundary tree and interior forest
ii. Exchange boundary tree with another block

iii. Combine boundary trees into topology graph
iv. Compute shared contour tree from topology graph

(b) Set hierarchical contour tree to last combined tree

(c) At each of O(lgN) levels of fan-out:

i. Graft interior forest into hierarchical tree
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tree (dark) and interior forest (light). During the fan-out (b), the interior forests are inserted back in at each level. The lower right shows that the
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7 IMPLEMENTATION ISSUES

In building the hierarchical contour tree several issues arise: boundary
critical points, data structures, prefix IDs, partial superarcs, attachment
points, augmentation and hierarchical storage.

Boundary Critical Points: While we can use every vertex on the
gluing boundary to compute the contour tree, it is only necessary to
include the critical points of the boundary [21, 23], and we have done
so in the examples above. As we will see below, this has a significant
impact on performance.

Data Structure: The choice of data structure depends on the algo-
rithm for the contour tree: in our case the PPP algorithm [6] and its
associated hyperstructure. Since the hyperstructure gathers superarcs

in monotone chains iteratively, we treat each round of the fan-in as a
separate layer of hyperstructure with its own iterations, preserving the
ability to perform hypersweeps.

Prefix IDs: Since the parent’s hyperstructure of a parent is a proper
subset of a child’s, ID numbers can be shared between blocks. We
append any additional supernodes and superarcs to the arrays for the
parent block, so the parent’s hyperstructure becomes a prefix of every
child’s. This simplifies further computations using the hyperstructure
as the ID numbers are implicitly shared between ranks rather than
requiring explicit exchanges.

Partial Superarcs: Fig. 2 showed the example of superarc 50−80
in the final contour tree, represented by 50−79 and 50−80. We modify
the algorithm so that superarcs in the shared contour tree are preserved
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as a whole rather than broken at boundary points. As a result, we would
preserve 80−48 in Block 0 rather than 79−48.

Attachment Points: Some interior forests reattach at existing su-
pernodes, as for example 50 in Block 0. Others, such as 20− 30 in
Block 3, whose attachment point 30 can be carried forward in the
boundary tree or not. If we carry them forward, we perform unneces-
sary communication between ranks, so we elected to omit them and
reinsert them later by retaining their two adjacent boundary critical
points (here, 18 and 69). On reinsertion, we search the hyperstructure
between these two points as described in [6] to establish which superarc
they insert onto.

Hierarchical Storage: The higher-level hierarchy can either be
stored on a small number of nodes or distributed. We elected to swap
boundary trees between pairs of ranks, and have both ranks compute
the shared contour tree, as otherwise many nodes would lie idle. This
means that, at the end of the fan-in phase, all of the information required
to compute the hierarchical contour trees is already present on each
rank, so no fan-out communication is needed, and all ranks can compute
their own hierarchical contour tree directly.

Augmentation: Since the hierarchical contour tree builds on the
hyperstructure, it is trivial to augment with all regular nodes on each
block by performing the same parallel search as in PPP to locate the
parent superarc for each regular node. Computing geometric measures
is however less trivial, as the sorting order of insertion points along each
parent superarc is not recorded. We defer this to a future discussion, as
the details are complex.

8 COMPUTATIONAL COMPLEXITY

Before we turn to empirical measures of performance, we can perform
the usual asymptotic analysis of computational efficiency.

We test all boundary vertices for criticality, taking O(N2) work and
O(N) time in pathological meshes with N vertices, but O(N) work and
O(1) time in a regular mesh, or as little as O(b) work and O(1) time
if the boundary (of size b) is already known. Counting the number on
each superarc then takes a single prefix sum operation taking O(N lgN)
work and O(lgN) time to perform, or O(t)+O(b) lgb work and O(1)
time if the boundary set is known.

Computing the boundary critical point counts for the end of each
superarc then takes a single Euler Tour (O(t lg t) work, O(lg t) time) or
hypersweep (usually more efficient in practice). Testing them to identify
necessary superarcs and interior forest superarcs takes O(t) work, O(1)
time, followed by a round of pointer-doubling which costs O(N lgN)
work and O(lgN) time (or O((t +b) lg(t +b)) work and O(lg(t +b))
time). For regular meshes (our principal concern at present), we can
therefore compute this in O((t + b) lg(t +b)) < O(N lgN) work and
O(lg(t +b))< O(lgN) time overall.

The relationship between t, the size of the contour tree, b, the size
of the boundary, b′, the number of boundary critical points, and Nb, the
size of the boundary tree, is key. In the absence of W-structures [15],
Nb < 2b′ < 2b, i.e. the complexity of the boundary tree is linear in the
size of the boundary. For a 3D mesh, the contour tree would scale with
the cube of the linear dimension, but the boundary tree with the square.
For W-structures, however, it is possible for Nb = Ω(t), although we
have never see this occur, and have reported typical statistics [15]. We
assume that W-structures do not have a major impact on the size of the
boundary tree.

During fan-in, we compute a contour tree and boundary tree on each
rank, then perform r rounds combining boundary trees, computing new
contour and boundary trees, grafting interior forests during r rounds of
fan-out to produce the hierarchical contour tree.

We know [10] that computing the initial contour tree costs O(N lgN+
t lg t) work and O(lgN +(lg t)2) time. We saw above that the bound-
ary tree can be computed in O((t + b) lg(t +b)) < O(N lgN) work
and O(lg(t +b)) < O(lgN) time - i.e. the O(N lgN) work cost and
O((lg t)2) time cost are still dominant.

Thereafter, the cost in each round depends on Nb, the size of the
boundary tree, which we have argued is bounded by the size b of the
boundary in practice, and by b′, the number of boundary critical points,
except pathologically. For simplicity, we assume that Nb = b.

We exchange boundary trees with another block, generating a topol-
ogy graph of size 2b: this may require sorting operations, so we assume
O(2b lg2b) work and O(lg2b) time. Computing the shared contour
tree then takes O(2b lg2b) work and O((lg2b)2) time, and reduction to
a new boundary tree takes O(2b lg2b) time and O(lg2b) work, with the
block boundary increasing at each stage by a factor of at most 2. After
r rounds of this, the fan-in is complete, at a total cost of O(2rb lgb)
work and O(lgb)2) time

During the fan-out, our search operations will typically be logarith-
mic in the size of the hierarchical contour tree (which we expect to
be approximately rb), but we will have update cost to support search
structures of rb lgb, and r rounds of merge phase computation cost-
ing O(b lgb work and O((lgb)2) time. Since all of our variables are
bounded by N, the number of vertices in the input, we can simplify this
to rN lgN work and r lgN + r(lg t)2 time, but we accept that there is a
lot of looseness in this.

8.1 Predictions
Based on the formal analysis, we expect to see the following:

1. The communication cost should be small relative to data size

2. The proportion should scale with N2/3 for 3D, N1/2 for 2D,

3. Good strong scaling is expected for large data, with local paral-
lelism used effectively in early stages.

4. Strong scaling will fall off once the boundary trees rival the
interior forests in size,

5. Communication costs will grow as larger trees transfer,

6. Weak scaling will be less effective, as boundary trees will get
larger relative to interior forests.

9 RESULTS

The key question we seek to answer now is the practical performance
of our algorithm. We describe our implementation and experiment
design (Sect. 9.1 - 9.2), then discuss strong scaling (Sect. 9.3) and weak
scaling (Sect. 9.4) performance.

9.1 Implementation
The implementation of our algorithm utilizes the parallel peak pruning
(PPP) algorithm [6] in the VTK-m library for on-node computation of
contour trees. Based on PPP we have developed a new ContourTreeDis-
tributed filter and collection of worklets for distributed computation of
the hierarchical contour tree. Using VTK-m enables our algorithms to
run on a broad range of parallel compute architectures, from multi-core
CPUs using TBB or OpenMP to many-core GPUs using CUDA. For
distributed computations we utilize the DIY [20] block-parallel library.
Using DIY enables in-core and out-of-core execution and allows for
improved flexibility with regard to data decomposition so that, e.g.,
one or more data blocks may be placed on each MPI rank. We have
released our implementation as open source through the VTK-m library
available at https://gitlab.kitware.com/vtk/vtk-m.

9.2 Experiment Design
In this evaluation we focus in particular on the distributed strong scaling
(Sect. 9.3) and weak scaling Sect. 9.4) characteristics of our algorithms.
The on-node scaling characteristics of PPP have been described in
detail previously in [6].

Data: We chose a set of large-scale scientific datasets from a range
of applications (Fig. 3). GTOPO30 [12] is a global digital elevation
model with a horizontal grid spacing of 30 arc seconds (≈ 1km) and a
resolution of (21601×43201) pixel. WarpX is a laser-driven, plasma-
based particle accelerator simulation dataset describing the electric
field in the transverse direction (Ex) with a resolution of (6791 ×
371×371). Nyx is an astrophysics simulation dataset of particle mass
density with a resolution of 10243. Finally, MICrONS is a 68003
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Fig. 3: Some Test Data Sets. On the left, GTOPO30 is 922M data points representing terrain altitude. Next, WarpX is a plasma physics simulation
with complex isosurfaces but relatively clean topology. Both Microns (electron microscopy) and Nyx (cosmological simulation) have complex
topology and massive contour trees.

subvolume of the minnie65 Electron Microscopy (EM) image dataset
of a 1.4×0.87×0.84mm3 volume of a neural cortex in a P60 mouse
from the Machine Intelligence from Cortical Networks (MICrONS)
program [19], available via BossDB [28]. In the scaling studies we
select varying subvolumes of 5123 to 2048× 2048× 4096 from the
MICrONS dataset.

Architecture: For evaluation, we use the Haswell partition of the
Cray XC40 Cori compute system at the National Energy Research
Scientific Computing Center, consisting of 2,388 nodes connected via a
high-speed “Dragonfly” interconnect. Each compute node has two 2.3
GHz 16-core Intel Xeon E5-2698 v3 (‘Haswell’) processors and 128
GB DDR4 2133 MHz memory. Each core supports two hyperthreads
and has two 256-bit-wide vector units, supporting 32 physical threads
and 64 hyperthreads.

For parallel scaling with GPUs we use the Summit supercomputer
at the Oak Ridge Leadership Computing Facility, consisting of 4,608
compute nodes—each equipped with 2 IBM POWER9 CPUs and 6
NVIDIA Tesla V100 GPUs with 608 GB of memory (96 GB HBM2 +
512 GB DDR4)—connected in a non-blocking fat-tree using a dual-rail
Mellanox EDR InfiniBand interconnect.

Measuring Runtime: The implementation is divided into three
main phases: 1) local computation of contour trees, 2) fan-in, and 3)
fan-out. At the end of each phase the ranks synchronize in order to
begin the next phase. To determine the overall contribution of each
main algorithm phase to the total time we look at the maximum time
across ranks in each phase. We then examine load imbalances between
ranks by looking at the wait times required for synchronization at the
end of each phase. Communication between ranks occurs only during
fan-in: we estimate communication cost by measuring the compute time
within the individual fan-in steps as well as the total compute time for
the fan-in. The difference between these then provides an estimate of
the time required by DIY for communication and coordination between
ranks.

9.3 Strong Scaling
First, we evaluated distributed scalability for constant problem size
with increasing number of processors for five datasets on Cori (Fig. 4,
a-e). To evaluate our resource usage, we varied the number of ranks
per compute node and show performance for a range of configurations
(inset matrix plots). The available threads on each node are distributed
evenly across the local ranks, e.g., at 256 nodes we are using 16,384
threads across up to 2,048 ranks.

Scaling of the main compute phases: The local contour tree com-
putation phase does not require any coordination between ranks, so this
phase shows close to ideal scaling relative to the reduction in workload
per rank with increasing number of processors (Fig. 4, a-e, blue bars).
In contrast, the runtime for the fan-in phase (green) is similar across
scales in the strong scaling scenario. While the fan-in is a parallel
compute phase, the work we need to complete in this phase increases
proportionately as we add more ranks, requiring more iterations to com-
plete the fan-in as well as increasing the size of the boundary between
data blocks as the data is divided into increasingly smaller blocks.

Fig. 5 shows the sizes of the boundary tree during fan-in for WarpX,
illustrating the increase in workload for the fan-in with increasing num-

ber of ranks. The fan-in, hence, behaves here like a weak-scaling exper-
iment where we double workload as we double number of ranks. The
fact that the fan-in time remains roughly constant, hence, indicates that
the implementation itself indeed scales quite well with growing number
of ranks. The fan-out then behaves similar to the fan-in with the key
difference that the fan-out is a strictly local computation without inter-
process communication. The strong scaling is, hence, characterized by
reductions in workload during the local contour tree computation with
scaling being limited primarily by the time required for fan-in/out.

Speed up: Overall, we observe that the algorithm shows good strong
scaling with speed-ups dropping off eventually due to the workload
on each node becoming too small. Compared to the single-node PPP
algorithm with threading we observe maximum speed-ups of ≈ 70×
for GTOPO and ≈ 21× for WarpX (Fig. 4, f-g) and up to ≈ 700×
and ≈ 280×, respectively compared to serial PPP. For the 2D GTOPO
dataset, the fan-in/out phases contribute significantly less to the overall
compute time than for the 3D datasets. This is likely due to the much
smaller relative boundary-size in 2D compared to 3D, which in turn
leads to improved parallel scaling in 2D. The Nyx and MICrONS
datasets are too large to be processed on a single Cori node so that we
can only evaluate relative speed-up compared to the smallest number
of nodes required to process the given dataset.

Best node configuration: With regard to on-node configurations we
observe that in general 2 ranks per node (i.e., 1 rank per processor) is
a good configuration for Cori. However, for small numbers of nodes
using more ranks per node can help improve performance as at that
scale overall runtime is dominated by the local tree computations so
that runtime gains due to the reduction in workload per ranks outpaces
cost for the fan-in/out.

Impact of Boundary on Scaling: By using only boundary critical
points in the fan-in, we see significant reductions in boundary tree sizes
(Fig. 5) and corresponding speed-ups in particular for larger number
of ranks. This is due to the fact that the size of the boundary relative
to the full data is increasing as we split the data into more blocks. For
WarpX and GTOPO we observe speed-ups of up to ≈ 2.8× when using
only boundary critical points vs. using the full block boundary. Further,
using the full boundary of blocks increases not just the compute time
of all phases but it also exasperates imbalance in wait times during the
fan-in. We completed the same experiment also for GTOPO and with
OpenMP which showed similar overall effects.

Scaling with Different Device Backends: So far we have discussed
scaling using TBB for on-node computation. We repeated all experi-
ments using VTK-m’s OpenMP backend. The overall scaling behavior
for TBB and OpenMP are very similar with TBB being typically be-
tween 1.06× to 1.96× faster compared to OpenMP.

We also performed initial scaling runs on Summit using CUDA
(Fig. 4, a-c, red curves). Consistent with the scaling studies presented
in [6], we observe ≈ 3× speed-ups for the local tree computations
using GPUs compared to using threading on CPUs. However, when
using GPUs, cost for moving data between the device and host are a key
cost factor. As such, we observe significant slowdown at low numbers
of ranks, when individual data blocks are too large to fit the required
data structures into GPU memory. When using large numbers of ranks
with CUDA, the fan-in/out phases then become dominant factors in the
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Fig. 4: Strong scaling on Cori Haswell using TBB. (a-e) The bar charts show the breakdown of runtime into the 3 main compute phases for
runs with 2 ranks per node (i.e., 1 rank per CPU). The inset plot shows the runtimes for all evaluated node/rank configurations. (a-c, red curve)
Runtime on Summit using the same number of ranks as on Cori with 1 GPU per rank and using 4 ranks/GPUs per compute node. (f-g) Speed-up
compared to the single-node, threaded contour tree implementation.

total runtime, with memory movement due to the need for inter-rank
communication being the likely cause. In the future, this suggest that
hybrid models using CUDA for on-node tree computations and using
CPU threading for fan-in/out could help improve scaling when using
larger numbers of ranks.
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using 8, 32, and 256 nodes (2 ranks per node) using the full boundary
(dashed) and using only critical boundary (solid).

9.4 Weak Scaling

For this experiment we begin by selecting a subvolume of 5123 from
the MICrONS dataset. As we increase the number of compute nodes
we simultaneously grow the data selection accordingly so that indepen-
dent of the number of nodes, each compute node is assigned a 5123

subvolume. This dataset is particularly challenging as each new block
adds new topological structures (neurons in the brain) which are in

turn connected with structures in neighboring blocks (via axons and
dendrites). This use-case models the scenario where increase in data
size is driven by expansion of the observable space.

In Fig. 7, the local contour tree compute (blue) remains roughly con-
stant (i.e., perfect weak scaling). This is expected as the computation of
the local contour trees is independent across ranks and the data blocks
exhibit similar topological complexity.

The fan-in phase (green) and to a lesser degree also the fan-out
phase (orange) then become increasingly expensive. While each node
is responsible for a 5123 subvolume, Fig. 8 shows that in addition to
more iterations in the fan-in, we increase the amount of data and work
in subsequent rounds. For the fan-out, the majority of the work is in
round 0 with the work per round growing much slower than for the
fan-in, explaining the more modest growth in compute time for the
fan-out. The growth in compute time we observe in Fig. 7 is, hence, a
reflection of the growth in the amount of work required to assemble the
contour tree for the data, rather than describing a decrease in efficiency
of the algorithm itself.

Using the GTOPO and WarpX datasets, we next modeled the use
case where increase in data size is driven by increasing resolution to
more accurately resolve physical processes and with it topology. We
observed similar increases in compute time during the fan-in/Out due
to increases in workload to resolve the global structures. For WarpX
the local tree computation times remain stable whereas for GTOPO the
local tree computation times grow with increasing data resolution due
to the increased topological complexity within the individual tiles as
more local topographic structures are being resolved.

9.5 Comparison with Other Approaches
Ideally, we would have liked to compare against the parallel contour
tree algorithm of Pascucci and Cole-McLaughlin [23], but we did not
have access to that code. We did however, implement their algorithm
in our own framework and ran some tests against it at an earlier stage
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of our project, as shown in Fig. 6.
As described by Pascucci and Cole-McLaughlin, we subdivide the

data set into blocks, compute the contour tree in each block, and com-
bine the resulting trees. We note that their original implementation used
divide-and-conquer inside each block, but we substituted PPP [10] to
take advantage of the degree of local parallelism available. Like Pas-
cucci and Cole-McLaughlin, we only consider extrema on the boundary
when gluing trees together and eliminate all other vertices, thus reduc-
ing communication cost and computational effort for combining trees.

We also note that our implementation of this algorithm used our
original MPI+OpenMP parallel peak pruning implementation and not
its VTK-m implementation (unlike the other scaling studies in this
paper). Moreover, as with their original paper, we only computed the
unaugmented contour tree, not the fully augmented contour tree in
which every regular node is assigned to a superarc.

We found that their method performed very well on WarpX, which
has a comparatively simple topological structure. However, as contour
tree complexity increased for GTOPO30 and Nyx, the scaling behavior
of this previous algorithm deteriorated badly, confirming the logic
behind our attempt to minimize data transfer between ranks.

Since approaches such as distributed merge trees [21] only com-
pute the merge trees, we did not perform systematic tests against
them, as we compute the full contour tree, which is rather more com-
plex, especially in the presence of W structures. We did however
perform some preliminary tests against the publicly available imple-
mentation (https://github.com/mrzv/reeber), since the original
multi-threaded implementation using skip lists is not available. In these
tests, computing the merge tree alone for the WarpX data set took 6
minutes 48 seconds on 8 MPI ranks, which is significantly slower than
our approach. This is probably because the implementation does not
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Fig. 8: Median (line) and min/max (area) number of supernodes per
round and rank in the (a) fan-in and (b) fan-out.

use on-node parallelism.
We also did not compare against shared memory algorithms, as this

paper is primarily about the distributed computation, and is on principle
compatible with any SMP algorithm on node.

10 CONCLUSIONS & FUTURE WORK

We have introduced and implemented a distributed algorithm for com-
puting a hierarchical contour tree with good scaling efficiency and
significantly improved performance over the existing state of the art.
The task is not yet finished, as effective use of the contour tree for
analytic purposes requires further computations, such as geometric
measures and branch decompositions. We expect to publish further
results on these tasks in future, together with application studies of
contour tree analysis at scale.
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