
UC Irvine
ICS Technical Reports

Title
Stacked density estimation

Permalink
https://escholarship.org/uc/item/1sd862tf

Authors
Smyth, Padhraic
Wolpert, David

Publication Date
1997-08-29
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sd862tf
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
^ay be protected
by Copyright Law
(Title 17 U.S.C.)

Stacked Density Estimation

Technical Report No. 97-36,
Information and Computer Science Department,

University of California, Irvine

Padhraic Smyth ^
Information and Computer Science

University of California, Irvine
CA 92697-3425

smythQics.uci.edu

David Wolpert
NASA Ames Research Center

MS 269-2, Mountain View, CA 94035

August 29, 1997

^Also with the Jet Propulsion Laboratory 525-3660, California Institute ofTech
nology, Pasadena, CA 91109

SL- SAR



Abstract

In this paper, the technique of stacking, previously only used for super
vised learning, is applied to unsupervised learning. Specifically, it is used
for non-parametric multivariate density estimation, to combine finite mix
ture model and kernel density estimators. Experimental results on both
simulated data and real world data sets clearly demonstrate that stacked
density estimation outperforms other strategies such as choosing the single
best model based on cross-validation, combining with uniform weights, and
even the single best model chosen by "cheating" by looking at the data used
for independent testing.



1 Introduction

Multivariate probability density estimation is a fundamental problem in ex
ploratory data analysis, statistical pattern recognition and machine learn
ing. One frequently estimates density functions for which there is little prior
knowledge on the shape of the density and for which one wants a flexible
and robust estimator (allowing multimodality if it exists). In this context,
the methods of choice tend to be finite mixture models and kernel density
estimation methods. For mixture modeling, mixtures of Gaussian compo
nents are frequently assumed and model choice reduces to the problem of
choosing the number k of Gaussian components in the model (Titterington,
Smith and Makov, 1986) . For kernel density estimation, kernel shapes are
typically chosen from a selection of simple unimodal densities such as Gaus
sian, triangular, or Cauchy densities, and kernel bandwidths are selected in
a data-driven manner (Silverman 1986; Scott 1994).

As argued by Draper (1996), model uncertainty can contribute signif
icantly to predictive error in estimation. While usually considered in the
context of supervised learning, model uncertainty is also important in un-
supervised learning applications such as density estimation. Even when the
model class under consideration contains the true density, if we are only
given a finite data set, then there is always a chance of selecting the wrong
model. Moreover, even if the correct model is selected, there will typically
be estimation error in the parameters of that model. These difficulties are
summarized by writing

^(/ Î ) =E / deMPi^M \D,M)x P{M ID) X , (1)
M ^

where / is a density, D is the data set. A/ is a model, and $m is a set of
values for the parameters for model M. The posterior probability P{M \ D)
reflects model uncertainty, and the posterior P{Bm \ D, M) reflects uncer
tainty in setting the parameters even once one knows the model. Note that if
one is privy to P{M, Om), then Bayes' theorem allows us to write out both of
our posteriors explicitly, so that we explicitly have P{f \ D) (and therefore
the Bayes-optimal density) given by a weighted average of the (See
also Escobar and West (1995)). However even when we know P{M,Om)^
calculating the combining weights can be difficult. Thus, various approxi
mations and sampling techniques are often used, a process that necessarily
introduces extra error (Chickering and Heckerman 1997).



More generally, consider the case of mis-specified models where the model
class does not include the true model, so our presumption for P[M, 0^)
is erroneous. In this case often one should again average. In particular,
prediction using the single model which is closest to the true density (in
the sense of Kullback-Leibler or cross-entropy distance) can be shown to be
inferior to prediction based onaveraging over multiple models (Madigan and
Raftery, 1994).

Thus, a natural approach to improving density estimators is to consider
empirically-driven combinations of multiple density models. There are sev
eral ways to do this, especially if one exploits previous combining work in
supervised learning. For example, Ormontreit and Tresp (1996) have shown
that "bagging" (uniformly weighting different parametrizations of the same
model trained on different bootstrap samples), originally introduced for su
pervised learning (Breiman 1996a), can improve accuracy for mixtures of
Gaussians with a fixed number of components.

Another supervised learning technique for combining different types of
models is "stacking" (Wolpert 1992), which has been found to be very effec
tive for both regression and classification (e.g., Breiman (1996b), Leblanc
and Tibshirani (1993)). This paper applies stacking to density estimation,
in particular to combinations involving kernel density estimators together
with finite mixture model estimators. In Section 2 we give some background
on those density estimators and present stacked density estimators. Then
in Section 3 we present experimental results demonstrating the utility of
stacked density estimation. Sections 4 and 5 contain a brief discussion of
links to related prior work, future directions, and conclusions.

2 Stacked Density Estimation

2.1 Background on Density Estimation with Mixtures and
Kernels

Consider a set of d real-valued random variables X_ = Upper
case symbols denote variable names (such as X^) and lower-case symbols a
particular value of a variable (such as x^). ^ is a realization of the vector
variable A- /(^) is shorthand for f{X_ = x) and represents the joint proba
bility distribution of A. D = is a training data set where each
sample 1 < i < A isan independently drawn sample from the underlying
density function f{x).



A commonly used model for density estimation is the finite mixture model
with k components, defined as:

k

fU) (2)
3=1

where Ylj=i aj = 1. The component gfis are usually relatively simple uni-
modal densities such as Gaussians. Density estimation with mixtures in
volves finding the locations, shapes, and weights of the component densities
from the data (using for example the Expectation-Maximization (EM) pro
cedure) . Kerneldensity estimationcan be viewed as a special caseofmixture
modeling where a component is centered at each data point, given a weight
of 1/A^, and a common covariance structure (kernel shape) is estimated from
the data.

The quality of a particular probabilistic model can be evaluated by an
appropriate scoring rule on independent out-of-sample data, such as the test
set log-likelihood (also referred to as the log-scoring rule in the Bayesian
literature). Given a test data set D*"*, the test log likelihood is defined as

log/(I>'"'|/(£))= E 'og/'fe) (3)

This quantity can play the role played by classification error in classification
or squared error in regression. For example, cross-validated estimates of it
can be used to find the best number of clusters to fit to a given data set
(Smyth, 1996).

2.2 Background on Stacking

Stacking can be used either to combine models or to improve a single model.
In the former guise it proceeds as follows. First, subsamples of the train
ing set are formed. Next the models are all trained on one subsample and
resultant joint predictive behavior on another subsample is observed, to
gether with information concerning the optimal predictions on the elements
in that other subsample. This is repeated for other pairs of subsamples of
the training set. Then an additional ("stacked") model is trained to learn,
from the subsample-based observations, the relationship between the ob
served joint predictive behavior of the models and the optimal predictions.
Finally, this learned relationship is used in conjunction with the predictions



of the individual models being combined (now trained on the entire data
set) to determine the full system *s predictions.

2.3 Applying Stacking to Density Estimation

Consider a set of M different density models, 1 < rn < M. In this
paper each of these models will be either a finite mixture with a fixed number
of component densities or a kernel density estimate with a fixed kernel and a
singlefixed global bandwidth in each dimension. (In general though no such
restrictions are needed.) The procedure for stacking the M density models
is as follows:

1. Partition the training data set D v times, exactly as in u-fold cross
validation (we use u = 10 throughout this paper), and for each fold:

(a) Fit each of the M models to the training portion of the partition
of D.

(b) Evaluate the likelihood of each data point in the test partition of
D, for each of the M fitted models.

2. After doing this one has M density estimates for each of N data points,
and therefore a matrix of size N x M, where each entry is fmixi), the
out-of-sample likelihood of the mth model on the zth data point.

3. Use that matrix to estimate the combination coefficients {ai,..., oa/}
that maximize the log-likelihood at the points x,- of a stacked density
model of the form:

M

•^stackedt—) ~

Since this is itself a mixture model, but where the /m(£,) are fixed,
the EM algorithm can be used to (easily) estimate the am-

4. Finally, re-estimate the parameters ofeach of the m componentdensity
models using all of the training data D. The stacked density model is
then the linear combination of those density models, with combining
coefficients given by the am-



3 Experimental Results

In our stacking experiments A/ = 6: three triangular kernels with band-
widths of0.1, 0.4, and 1.5 of the standard deviation (of the full data set) in
each dimension, and three Gaussian mixture models with A: = 2,4, and 8
components. This set of models was chosen to provide a reasonably diverse
representational basis for stacking. We follow roughly the same experimental
procedure as described in Breiman (1996b) for stacked regression:

• Each data set is randomly split into training and test partitions 50
times, where the test partition is chosen to be large enough to provide
reasonable estimates of out-of-sample log-likelihood.

• The following techniques are run on each training partition:

1. Stacking: The stacked combination of the six constituent mod
els.

2. Cross-Validation: The single best model as indicated by the
maximum likelihood score of the M = 6 single models in the
N X M cross-validated table of likelihood scores.

3. Uniform Weighting: A uniform average of the six models.

4. "Cheating:" The best single model, i.e., the model having the
largest likelihood on the test data partition,

5. Truth: The true model structure, if the true model is one of the
six generating the data (only valid for simulated data).

• The log-likelihoods of the models resulting from these techniques are
calculated on the test data partition. The log-likelihood of a single
Gaussian model (parameters determined on the training data) is sub
tracted from each model's log-likelihood to provide some normalization
of scale.

Four data sets were chosen for experimental evaluation. The diabetes
data set consists of 145 data points used in Gaussian clustering studies by
Banfield and Raftery (1991) and others. Fisher's iris data set is a classic data
set in 4dimensions with 150 datapoints. Both ofthese datasets are thought
to consist roughly of 3 clusters which can be reasonably approximated by
3 Gaussians. The Barney and Peterson vowel data (2 dimensions, 639 data
points) contains 10 distinct vowel sounds and so is thought to be highly



Table 1: Relative performance of stacking multiple mixture models, for var
ious data sets, measured (relative to the performance of a single Gaussian
model) by mean log-likelihood on test data partitions. The maximum for
each data set is underlined.

Data Set Gaussian Cross-Validation "Cheating" Uniform Stacking
Diabetes -352.9 27.8 30.4 29.2 31.8

Fisher's Iris -52.6 18.3 21.2 18.3 22.5
Vowel 128.9 53.5 54.6 40.2 55.8

Star-Galaxy -257.0 678.9 721.6 789.1 888.9

multi-modal. The star-galaxy data (7 dimensions, 499 data points) contains
fairly non-Gaussian looking structure in various 2d projections.

Table 1 summarizes the results. In all cases stacking had the highest av
erage log-likelihood, even out-performing "cheating" (the single best model
chosen from the test data). (Breiman (1996b) also found for regression that
stacking outperformed the "cheating" method.) We considered two null hy
potheses: stacking has the same predictive accuracy as cross-validation, and
it has the same accuracy as uniform weighting. (Testing the difference be
tween stacking and cheating seems meaningless). Each hypothesis can be
rejected with a chance of less than 0.01% of being incorrect, according to the
Wilcoxon signed-rank test i.e., the observed differences in performance are
extremely strong even given the fact that this particular test is not strictly
applicable in this situation.

On the vowel data set uniform weighting performs much worse than the
other methods: it is closer in performance to stacking on the other 3 data
sets. On three of the data sets, using cross-validation to select a single
model is the worst method. "Cheating" is second-best to stacking except
on the star-galaxy data, where it is worse than uniform weighting also: this
may be because the star-galaxy data probably induces the greatest degree of
mis-specification relative to this 6-model class (based on visual inspection).

Table 2 shows the averages of the stacked weight vectors for each data
set. The mixture components generally gothigher weight than the triangular
kernels. The vowel and star-galaxy data sets have more structure than can
be represented by any of the component models and this is reflected in the



Table 2: Average across 20 runs of the stacked weights found for each con
stituent model. The columns with ft = ... are for the triangular kernels and
the columns with k = ... are for the Gaussian mixtures.

Data Set

Diabetes

Fisher's Iris

Vowel

Star-Galaxy

ft=Q.l I ft=0.4 I ft=1.5 fc = 2

~0l3~
0.26

0.02

0.03

k = 4

faet that for each most weight is placed on the most complex mixture model
with k = S.

3.1 Results on Simulated Data with no Model Mis-Specification

We simulated data from a 2-dimensional 4 Gaussian mixture model with
a reasonable degree of overlap (this is the data set used in Ripley (1994)
with the class labels removed) and compared the same models and combin
ing/selection schemes as before, except that this time we also could include
"truth", i.e., the scheme which always selects the model structure with k = 4
Gaussians. The training sample size was varied from 30 to 200 and the test
results were determined on an independent sample of size 800.

Note that here we are assured of having the true model in the set of
models being considered, something that is presumably never exactly the
case in the real world (and presumably was not the case for the experiments
recounted in Table 1.) Nonetheless, as indicated in (Figure 1), stacking
performed about as well as the "cheating" method and significantly outper
formed the other methods, including "truth." (Results where some of the
methods had log-likelihoods lower than the single Gaussian are not shown
for clarity).

The fact that "truth" performed poorly on the smaller samplesizes is due
to the fact that with smaller samplesizes it was often better to fit a simpler
model with reliable parameter estimates (which iswhat "cheating" typically
would do) than a more complex model which may overfit (even when it is the
true model structure). As the sample size increases, both "truth" and cross-
validation approach the performance of "cheating" and stacking: uniform
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weighting is universally poorer as one would expect when the true model is
within the model class. The stacked weights at the different sample sizes
(not shown) start out with significant weight on the triangular kernel model
and gradually shift to the k = 2 Gaussian mixture model and finally to the
(true) A: = 4 Gaussian model as sample size grows. Thus, stacking is seen
to incur no penalty when the true model is within the model class being
fit. In fact the opposite is true; for small sample sizes stacking outperforms
other density estimation techniques which place full weight on a single (but
poorly parametrized) model.

4 Discussion

4.1 Stacking Kernel Density Estimators

Selecting a global bandwidth for kernel density estimation is still a topic
of debate. Numerous cross-validation schemes and iterative techniques for
finding the "best" bandwidth in a data-driven manner have been proposed.
Stacking allows the possibility of side-stepping the issue of a single band
width by combining kernels with different bandwidths and different kernel
shapes. A stacked combination of such kernel estimators is equivalent to us
ing a single composite kernel that is a convex combination of the underlying
kernels. Thus, for example, kernel estimators based on finite support kernels
can be regularized in a data-driven manner by combining them with infinite
support kernels. The key point is that the shape and width of the resulting
"effective" kernel is driven by the data, thus providing in principle a more
flexible estimator than is provided by using fixed kernel shapes where only
the width is allowed to vary.

As an example of the benefits of this idea consider the combining of a
finite support kernel (such as the triangular kernel) with an infinite support
kernel (such as the Gaussian). Finite support kernels can be very useful for
modeling densities with gaps, holes, and other topological features which
induce discontinuities in the derivatives of the density function. However,
a significant practical problem with setting the bandwidths of these ker
nels is that they assign zero probability (and hence infinitely negative log-
likelihood) to test data points outside the finite support of the estimated
density. Stacking the finite support kernels with infinite support kernels
ameliorates this problem and can improve the robustness and applicability
of finite support kernels in general.



For multivariate kernels, the problem arises of how to combine different
kernel bandwidths in different dimensions. In this paper we restricted atten
tion to a single bandwidth expressed as a fraction of the standard deviation
in each dimension.

4.2 Stacking Gaussian Mixtures

By stacking Gaussian mixture models with different k values one gets a
hierarchical "mixture of mixtures" model.

K

•4tacked(^) ~ (4)
fc=i

where each component model /*= is itself a mixture model of k compo
nents. This hierarchical model can provide a natural multi-scale repre
sentation of the data, which is clearly similar in spirit to wavelet density
estimators, although thefunctional forms and estimation methodologies for
each technique can be quite different. The individual mixture models (with
k = 1,2,..., A) can model different scales, e.g., the models with low k values
will typically be broad in scale, while the higher k components can reflect
more detail.

There is also a representational similarity to Jordan and Jacob's (1994)
"mixture of experts" model where the weights are allowed to depend di
rectly on the inputs. A key feature ofthe "mixture ofexperts" approach is
to allow the component weights to be a function of the inputs, increasing
the representational power substantially over fixed weights. On the other
hand, the key aspects of stacked density estimation are the combining of
potentially disparate (and even non-parametric) functional forms, and the
use of partitions of the data to determine how the models are combined. An
interesting future direction is to extend stacked density estimation to the
case where the combining weights are a function of the inputs (in fact the
original proposal for stacking in its general form allows for this (Wolpert,
1992)).

5 Conclusion

In this paper stacked density estimation was introduced and proposed as a
practical method for generating better density estimators. For mis-specified



models (i.e., most real-world data sets) the method was shown empirically
to provide clearly better density estimates than a single model chosen by
cross-validation, uniform weighting of models, or even the single best model
chosen by looking at the test data set. For well-specified models (simulated
data, where the true model is within the model class being considered),
stacking was seen to provide a regularization effect for small sample sizes
and outperformed even the single true model. An interesting avenue for
further investigation is the role ofstacking as a "regularized" technique for
adding extra degrees of freedom in model-space.
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