
UC Riverside
2017 Publications

Title
Prediction of real time particulate matter concentrations on highways using traffic 
information and emission model

Permalink
https://escholarship.org/uc/item/1sd8s7qj

Authors
Wu, Guoyuan
Hao, Peng
Pham, Liem
et al.

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sd8s7qj
https://escholarship.org/uc/item/1sd8s7qj#author
https://escholarship.org
http://www.cdlib.org/


See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/317499556

Prediction	of	real	time	particulate	matter
concentrations	on	highways	using	traffic
information	and	emission...

Conference	Paper	·	November	2016

CITATIONS

0

READS

21

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Eco-routing	Navigation	for	Electric	Vehicles	View	project

V2X	Connected	Vehicle	Early	Deployment	Application	Analysis	View	project

Guoyuan	Wu

University	of	California,	Riverside

90	PUBLICATIONS			349	CITATIONS			

SEE	PROFILE

Kanok	Boriboonsomsin

University	of	California,	Riverside

114	PUBLICATIONS			1,371	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Guoyuan	Wu	on	10	June	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/317499556_Prediction_of_real_time_particulate_matter_concentrations_on_highways_using_traffic_information_and_emission_model?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/project/Eco-routing-Navigation-for-Electric-Vehicles?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/V2X-Connected-Vehicle-Early-Deployment-Application-Analysis?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kanok_Boriboonsomsin?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kanok_Boriboonsomsin?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kanok_Boriboonsomsin?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-e8ca4e499e9a6371279cfc7d8c87dff7-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQ5OTU1NjtBUzo1MDM3NDQzODk2ODExNTJAMTQ5NzExMzQyOTE5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Wu/Pham/Hao/Jung/Boriboonsomsin 1 

Prediction of real time particulate matter concentrations on 1 

highways using traffic information and emission model 2 

 3 

 4 

Guoyuan Wu, Ph. D 5 
Center for Environmental Research and Technology 6 

University of California at Riverside 7 

1084 Columbia Ave, Riverside, CA 92507, USA 8 

Phone: (951) 781-5630, Fax: (951) 781-5790 9 

E-mail: gywu@cert.ucr.edu 10 

 11 

Liem Pham, Ph. D Candidate 12 
Center for Environmental Research and Technology 13 

University of California at Riverside 14 

1084 Columbia Ave, Riverside, CA 92507, USA 15 

E-mail: lpham@ucr.edu, Fax: (951) 781-5790 16 

 17 

Peng Hao, Ph. D 18 
Center for Environmental Research and Technology 19 

University of California at Riverside 20 

1084 Columbia Ave, Riverside, CA 92507, USA 21 

Phone: (951) 781-5777, Fax: (951) 781-5790 22 

E-mail: haop@cert.ucr.edu 23 

 24 

Heejung Jung, Ph. D 25 
Center for Environmental Research and Technology 26 

University of California at Riverside 27 

1084 Columbia Ave, Riverside, CA 92507, USA 28 

Phone: (951) 781-5742, Fax: (951) 781-5790 29 

E-mail: heejung@cert.ucr.edu 30 

 31 

Kanok Boriboonsomsin, Ph.D 32 
Center for Environmental Research and Technology 33 

University of California, Riverside 34 

1084 Columbia Avenue, Riverside, CA 92507, USA 35 

Phone: (951) 781-5792, Fax: (951) 781-5790 36 

Email: kanok@cert.ucr.edu 37 

 38 

[4 Tables and 6 Figures: 2,500 words] 39 

[Text 4,936 words] 40 

 41 

Word count: 7,436 words 42 

 43 

Paper for the 96th Annual Meeting of 44 

Transportation Research Board 45 

Washington, D.C. January 2017 46 

mailto:gywu@cert.ucr.edu
mailto:kanok@cert.ucr.edu
mailto:haop@cert.ucr.edu
mailto:barth@ee.ucr.edu
mailto:kanok@cert.ucr.edu


Wu/Pham/Hao/Jung/Boriboonsomsin 2 

ABSTRACT 1 
 2 

The public raises concerns about the exposure to particulate matter (PM) which has been strongly 3 

associated with illness and mortality. However, most of the studies rely on the measurements from 4 

stationary monitoring sites which cannot capture the actual PM exposure for those people in or 5 

near the source. In this study, we first set up a comprehensive mobile monitoring platform to 6 

measure both PM concentration and traffic conditions on some major highways in Southern 7 

California. Then, we developed an integrated database to fuse different data sources and to 8 

facilitate the investigation of relationship between traffic conditions and highway PM 9 

concentration. Using the fused datasets and combining with Emission FACtor (EMFAC) model, 10 

contour plots based on estimated PM emissions were generated with the overlay of particle 11 

concentration measurements. Analyses of the results indicate that there are numerous particle 12 

concentration peaks cause by traffic congestions and vehicle acceleration. PM concentrations may 13 

be affected by traffic conditions on the other side of the highway as shown in both measurement 14 

and emission models. In view of the complicated physical nature of PM concentration on 15 

highways, we applied the Multivariate Adaptive Regression Splines (MARS) model to the 16 

integrated database, and identified the eleven traffic-related variables that have the most impacts 17 

on in-source PM concentration prediction. The high coefficient of determination (i.e., R2 = 0.72) 18 

indicates the capability of the model to address the variance in PM concentration.  19 

 20 

Keywords: 21 

Particulate matter (PM); PM concentration; mobile monitoring; emission model; pollutant 22 

emissions 23 
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1. INTRODUCTION 1 
Traffic congestion has been the daily norm in many metropolitan areas. The associated socio-2 

economic issues, such as the waste in energy consumption and air pollution, have received 3 

increasingattentions from the public. The major pollutants emitted by vehicles include carbon 4 

monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), particulate matter 5 

(PM), and polycyclic aromatic hydrocarbons (PAHs) (1). It is estimated by the U.S. Environmental 6 

Protection Agency (USEPA) that the nationwide CO, NOx, PM (including PM2.5 and PM10), and 7 

sulfur dioxide (SO2) emissions due to transportation activities were about 36.30, 7.16, 0.49, 0.34 8 

and 0.10 million metric tons, respectively, in Year 2014 (2). Of all these commonly-seen air 9 

pollutants, PM has been strongly associated with illness and mortality, such as respiratory 10 

inflammation, allergy, and asthma attacks, as indicated in many studies (3, 4, 5, 6). For example, 11 

California Air Resources Board (CARB) estimated that annually about 9,200 people in California 12 

die prematurely as a result of exposure to PM2.5 (7). Other detrimental health effects caused by the 13 

exposure to PM may include respiratory and cardiovascular morbidity (8, 9). In addition, the 14 

ultrafine particles (less than 100 nanometers in diameter) whose dominant sources are diesel 15 

engine powered vehicles (10), have been considered to be more toxic by many researchers due to 16 

their unique physical properties, interactions with tissues and cells, and the potential for 17 

translocation beyond the lung (11). The National Ambient Air Quality Standards (NAAQS) set by 18 

USEPA suggest that the annual mean for primary PM2.5 should not exceed 12 μg/m3 and the 19 

temporal average of PM10 within any 24-hour period should not exceed 150 μg/m3 (12). 20 

Although a substantial body of research has been focused on assessment of public exposure 21 

to PM and the associated health effects, most of the measurement data were obtained from 22 

stationary monitoring sites which are not close enough to the sources, such as highways. This may 23 

lead to discrepancy from the actual PM exposure for those people who are in or near the sources, 24 

e.g., travelers in the traffic flow. It was reported that the average time an American spent traveling 25 

in car is nearly 1 hour everyday (13). Furthermore, previous studies estimated that in-cabin 26 

exposures to ultrafine particles (UFPs) might be 10 times higher than ambient levels and were 27 

responsible for 10 – 50% of total daily UFP exposure for Los Angeles commuters (14). In 28 

consideration of all these concerns, USEPA’s new air pollution rules require near-road monitoring 29 

starting from January 2014. South Coast Air Quality Management District (SCAQMD) has also 30 

set up 4 air pollution surveillance stations in the proximity of major highways in South Coast Air 31 

Basin to monitor NOx, fine particulate matter (e.g., soot) and CO (cite). Such effort significantly 32 

improves the accuracy in measuring the PM concentration near the mobile sources. However, the 33 

measurements are highly restricted by the locations and sparsity of surveillance stations, resulting 34 

in difficulty to capture spatial variations of in-/near-source PM concentration. 35 

To address the aforementioned issues, there are two promising approaches: 1) 36 

measurement-based approach; and 2) model-based approach. For the measurement-based 37 

approach, mobile PM monitoring or Lagrangian PM monitoring has become an attractive strategy, 38 

which is able to cover long spatial range with high temporal resolution and to conduct real-time 39 

assessment on people’s exposure to in-/near-source PM concentration. For example, Fruin et al. 40 

(15) used a mobile monitoring platform including a scanning mobility particle sizer (SMPS), to 41 

measure particle counts and size distributions. There are other commercially available instruments 42 

for ambient particle monitoring in real time. A condensational particle counter (CPC) can 43 

effectively measure number-based particle concentration but not detailed information on particle 44 

size. An electrical aerosol detector (EAD) can measure aerosol diameter concentration and can 45 

implicitly estimate the effective surface area of particles. Most of these studies have been only 46 
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focused on very limit-scale measurements of PM characteristics due to the significant cost for real-1 

world experimentation. Very few studies have investigated the relationship between traffic 2 

conditions and in-/near-source PM concentration (e.g., on highways).  3 

On the other hand, the model-based approach heavily relies on detailed traffic conditions 4 

and emissions models (16). Based on the resolution of available traffic information, microscopic, 5 

mesoscopic or macroscopic motor emission models such as MOVES (17), EMFAC (18) and 6 

PHEM (19), can be applied to estimate the tailpipe PM emissions. For example, Reynolds et al. 7 

applied a self-developed emission model for mobile sources to the traffic data at a test intersection 8 

to assess the traffic related PM emissions (20). Abou-Senna et al. used VISSIM to simulate real-9 

world traffic condition and predict the mobile source emissions using MOVES model (21). In Hao 10 

et al. 2015, the authors developed a statistical model to estimate the vehicle speed trajectory based 11 

on sparse mobile sensor data from the probe vehicle, and estimated the PM emissions by applying 12 

a microscopic emission model (22). Compared to the measurement-based approach, the model-13 

based one can be applied to the in-/near-source PM emissions assessment at a much larger scale 14 

in a much more economical manner. However, the model accuracy and reliability for on-road 15 

traffic is still questionable, since most models were developed using dynamometer tests from 16 

standard drive cycles, which may not necessarily apply well to real-world driving due to the effects 17 

of road grades, driving behavior, fleet composition, and traffic conditions (23). 18 

The objective of this study is 1) to explore the connection between the measurement-based 19 

approach for in-/near-source PM concentration assessment and model-based approach for on-road 20 

PM emissions assessment; and 2) to identify the key traffic-related factors and their impacts on in-21 

/near-source PM concentrations. In this work, we built a mobile monitoring platform (on a probe 22 

vehicle) to collect on-road PM concentration data, and developed a comprehensive database to 23 

fuse information from various sources (including probe vehicle activity, traffic conditions, PM 24 

concentration measurement and PM emissions inventory) for modeling and analysis purpose. The 25 

rest of this paper is organized as follows: Section 2 describes the data collection effort in detail, 26 

followed by the presentation of methodologies for data processing and database construction in 27 

Section 3. Based on the database, statistical models are developed to predict on-road PM 28 

concentration with traffic information and the analysis results are presented in Section 4. The last 29 

section concludes this paper with further discussion on potential research topics. 30 

 31 

 32 

2. DATA COLLECTION AND DESCRIPTION 33 
 34 

2.1. Experiment Setup 35 
As aforementioned, we set up a mobile monitoring platform on a testing vehicle to measure the in-36 

/near-source PM concentration along highways. In this section, we will detail the experiment setup 37 

for data collection.  38 

The testing vehicle was a 2011 NISSAN Infinity M37 (powered by gasoline only), 39 

equipped with the specifically designed data acquisition system for NISSAN vehicles – 40 

CONSULT III plus kit (including a PC, called Toughbook and a vehicle interface), and a Trimble 41 

R8 GPS receiver with RTK (real-time kinetic) positioning under the synchronized mode. The 42 

CONSULT III plus kit was capable of accessing high-resolution (every 0.01 second) on-board 43 

diagnostics (OBD) data from the testing vehicle, such as engine speed, vehicle speed and radar 44 

detection information (e.g., relative distance and relative speed with respect to the preceding 45 

vehicle along the same lane). The Trimble GPS receiver could report the vehicle’s location (in 46 
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terms of latitude, longitude and altitude) at the centimeter-accuracy level (24). A forward-facing 1 

camera was also installed on the front panel to capture the preceding traffic conditions (e.g., vehicle 2 

type, congestion level) for the verification purpose, which was also done in other studies (25). 3 

The sampling port was facing toward the front of the vehicle through the front passenger 4 

window (see Figure 1). A CPC (TSI, 3022A) was used to measure particle number concentration 5 

with a cut-off diameter of 7 nm. An EAD (TSI, 3070A) was also equipped to measure particle 6 

surface area. Both CPC and EAD can measure down to per second time resolution, which is 7 

important to capture transient emissions during traffic congestion. 8 

Besides, a NanoScan SMPS (TSI, NanoScan SMPS 3910) was used for particle size 9 

distribution measurement with a sizing range from 10 nm to 420 nm. CO2 concentrations were 10 

measured by using PP Systems CIRAS-SC. All instruments in the trunk were powered by two 11 

deep cycle marine batteries (U.S. Battery, US 2200 XC2) with a 12 VDC to 120 VAC inverter. 12 

Figure 1 presents a detailed layout of the mobile monitoring platform. 13 

 14 

 15 
Figure 1. Layout of the mobile monitoring platform. 16 

 17 

2.2. Study Routes and Dates 18 
In this study, we chose two major routes in Southern California (see Figure 2) for testing:  19 

1) California State Route 91 (SR-91): a segment between California State Route 55 (SR-55) 20 

and California State Route (SR-60) which includes a major recurrent bottleneck (in Yorba 21 

Linda, CA). The typical traffic mix along this route is dominated by light duty vehicles 22 

(LDVs). 23 

2) Interstate 710 (I-710): a segment between SR-60 and the Port of Long Beach where heavy-24 

duty trucks (HDTs) account for a significant portion of highway traffic. Since the majority 25 
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of these HDTs are diesel engine powered, it is expected to observe distinctive particle size 1 

distributions from diesel engines’ emissions.  2 

 3 

 4 
Figure 2. Illustration of study routes in Google Earth: SR-91 – blue; I-710 – red. 5 

 6 

Table 1 summarizes the dates and time periods for field data collection. It is noteworthy that some 7 

of the testing periods were selected in order to capture the peak hours of traffic along the designated 8 

route and direction. In addition, the testing vehicle was consistently driven along the second left-9 

most lane by following the typical speed of mainline traffic except upon exiting the highway. 10 

 11 
Table 1. Summary of study routes and period 12 

Date Time Route Direction 

03/26/2015 
 6 ~ 7 p.m. 

SR-91 

West 

7 ~ 8 p.m.* East 

03/27/2015 
7 ~ 8 a.m.* West 

8 ~ 9 a.m. East 

03/30/2015 
11 a.m. ~ 12 p.m. 

I-710 
South 

11 a.m. ~ 12 p.m. North 

* indicate the peak hour for the specified route and direction 13 

 14 

2.3. Other Data Sources 15 
Traffic Data 16 

Since the measurement is the PM concentration in/near the source (i.e., the mainline traffic flows 17 

along highways), it is critical to obtain the traffic conditions (of both directions) around the probe. 18 

In this study, the major traffic data source was the California Performance Measurement System 19 

or PeMS (26) which receives real-time 30-second raw measurements of traffic count and lane 20 

occupancy from each inductive loop detector throughout the California freeway system, detects 21 

the invalid or missing data, and rectifies them or fills the “holes”. Based on the rectified traffic 22 

flow and lane occupancy data for each lane, aggregate traffic speed at each single loop detector 23 

can be estimated using the g-factor algorithm (27). PeMS also estimates the truck volume based 24 

on the algorithm proposed by Kwon et al. (28). In addition, all these raw data have been aggregated 25 

at various temporal levels, e.g., 5 minutes, for different purposes of analyses. It is noted that PeMS 26 
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also archives some geographic information, such as the latitude and longitude of each vehicle 1 

detection station (VDS) and the associated post-mile. With such information, we can identify the 2 

closest VDS with respect to the testing vehicle’s location at each time step. The data association 3 

effort will be detailed in the next section. 4 

 5 

Meteorological Data 6 

It is well understood that the meteorology conditions (e.g., wind direction and speed) may affect 7 

the PM data collection and results interpretation. Therefore, we also acquired the meteorological 8 

data from the California Air Resources Board (CARB) database (29). It turns out that during the 9 

testing period listed in Table 1, the observed magnitudes of wind from all the nearby stations were 10 

no more than 5 mph. Therefore, we ignore the wind effects in this study. But in a general situation, 11 

the concept of apparent wind which considers information (e.g., direction. velocity) from both true 12 

wind and traffic, should be used to account for the wind impacts.  13 

 14 

 15 

3. DATA FUSION 16 
 17 

As mentioned in the Section 2, there are multiple data sources. To facilitate our data analyses and 18 

statistical modeling of the relationship between traffic conditions and highway PM concentration, 19 

we fused all data sources, developed an integrated database and conducted more in-depth data 20 

processing/cleaning and. Nevertheless, before any data fusion or data processing effort, we 21 

conducted data cleaning by detecting and removing the outliers. Missing data were also imputed 22 

using the linear interpolation technique. 23 

 24 

3.1. Time Synchronization 25 
One of the key steps in data fusion is to synchronize the time of all data sources. For PM 26 

measurements, all the instruments were connected to a PC whose clock had been already 27 

synchronized with an internet time server right before the experiment. The Trimble GPS receiver 28 

had also synchronized itself to the highly accurate atomic clocks. However, time stamps in the 29 

output files from CONSULT III plus kit do not include the computer clock time. One possible way 30 

is to estimate the starting time based on the file modification time if the clock of Toughbook is 31 

synchronized. But in this study, we applied the cross-correlation technique to the vehicle speed 32 

data to synchronize the output from CONSULT III plus kit with that from the Trimble GPS 33 

receiver. Compared with the instantaneous speed estimated from the Trimble GPS receiver, the 34 

information reported by CONSULT III plus kit is more reliable because it is directly accessed 35 

through the CAN bus of the vehicle. Therefore, in the final database, we used the outputs from 36 

CONSULT III plus kit as the ground truth of vehicle dynamics. 37 

 38 

3.2. Ambient Traffic State Association 39 
In this study, we followed a 3-step procedure to associate the mobile platform data with PeMS 40 

database in order to identify the surrogate ambient traffic conditions (for both bounds): 41 

Step 1 Map-matching. For each GPS data point (with latitude and longitude), we projected it to 42 

the specified study route and determined the location (or route distance) with respect to 43 

a referenced starting point, based on a list of survey nodes – “Postmile to Latitude & 44 

Longitude” in PeMS – that maps node (along the route) coordinates onto postmile 45 

highway location markers with a separation of 0.1 mile. 46 
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Step 2 Vehicle Detection Station (VDS) association. With the identified route location (in terms 1 

of postmile) for each GPS record, we searched for the PeMS “Station Metadata” 2 

database, found the nearest upstream and downstream VDSs along both directions and 3 

extracted the associated 5-min traffic data, including traffic flow, speed and truck flow. 4 

Step 3 Ambient traffic state estimation. Based on the time t and location x of the probe vehicle, 5 

the ambient traffic state (e.g., speed) along the traveling direction was estimated by 6 

applying a 2-D interpolation technique (29) as illustrated in Figure 4: 7 

𝑣(𝑥, 𝑡) =
𝐴11 ∙ 𝑣11 + 𝐴12 ∙ 𝑣12 + 𝐴21 ∙ 𝑣21 + 𝐴22 ∙ 𝑣22

𝐴11 + 𝐴12 + 𝐴21 + 𝐴22
 8 

∀𝑥 ∈ (𝑥1, 𝑥2) and 𝑡 ∈ (𝑡1, 𝑡2) (1) 9 

where 𝑣𝑖𝑗  denotes the measurement from VDS located at 𝑥𝑖  during the time interval 10 

between [𝑡𝑗−1, 𝑡𝑗]. 𝐴𝑖𝑗 represents the “area” (or weight) in the time-space diagram (see 11 

Figure 3) associated with the measurement at (𝑥𝑖, 𝑡𝑗) for the calculation purpose. 12 

 13 

 14 
Figure 3. Illustration of ambient traffic state (e.g., speed) estimation using 2-D interpolation method. 15 

 16 

3.3. Traffic Related PM Emissions Estimation 17 
With the associated traffic data as described in Section 3.2, we used the Emission FACtors 18 

(EMFAC) 2014 model (30) developed by CARB to estimate the tailpipe PM emissions from 19 

traffic. Basically speaking, EMFAC is a speed bin based emission factor model with 20 

correction/adjustment customized for all motor vehicles operating in California. According to the 21 

vehicle category description by CARB, we chose gasoline “LDA” (i.e., passenger cars) of 22 

“aggregated model year” to represent general traffic, while diesel “T7 POLA” (i.e., Heavy-Heavy 23 

Duty Diesel Truck near South Coast) of “aggregated model year” for truck traffic. Since the model 24 

only provides emission factor at each discrete speed level (usually ranging from 5 mph to 70 mph 25 

with 5 mph interval), linear interpolation was applied to the emission factors of bracketed speed 26 

levels to estimate the emission factor of certain speed in between. 27 

 28 
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3.4. Integrated Database Development 1 
To summarize the data fusion effort, Figure 4 illustrates the flow chart for integrated database 2 

development. In case more experiments will be conducted in the future and/or other pollutants are 3 

of interest, the database can be easily expanded by following the similar procedures as in this flow 4 

diagram. 5 

The data sources include: 1) dynamics of testing vehicle and its preceding traffic (from 6 

CONSULT III, Trimble unit, Map database, and on-board radar); 2) in-/near-source PM 7 

concentration measurements (from CPC, EAD, NanoScan SMPS, and CO2/H2O Gas Analyzer); 8 

3) traffic data (from PeMS); 4) meteorological data (from CARB website); 5) mobile source PM 9 

emissions (from EMFAC 2014). Table 2 provides more detailed description of information stored 10 

in the integrated database. With such database, we conducted our analysis as presented in the 11 

following section. 12 

  13 
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Figure 4. Flow Diagram for Integrated Database Development. 15 

 16 

 17 

 18 

4. RESULTS AND ANALYSES 19 
 20 

As can be expected, it is quite challenging to link the traffic-related factors with PM measurements 21 

(both concentration and size distribution). In the following, we explore this relationship from four 22 

perspectives: 1) to analyze basic statistics for PM measurements across different routes; 2) to 23 

correlate probe vehicle speed with PM measurements; 3) to investigate the estimated tailpipe PM 24 

emissions from EMFAC 2014; and 4) to develop a non-parametric model to address the influential 25 

factors for highway PM concentration.  26 



Wu/Pham/Hao/Jung/Boriboonsomsin 10 

 1 
Table 2. List of variables in the database 2 

Category Data Entry 

General information Time Stamp 

Test route name, direction 

Probe vehicle information Location (latitude, longitude, altitude and postmile with respect to the test route) 

 Road grade  

 Instantaneous speed and acceleration 

 Preceding vehicle information (gap, relative speed)  

VDS information Features of downstream VDS on the same direction (postmile, number of lanes)  

 Features of upstream VDS on the same direction (postmile, number of lanes) 

 Features of downstream VDS on the other direction (postmile, number of lanes)  

 Features of upstream VDS on the other direction (postmile, number of lanes) 

Traffic information Traffic and truck volume, speed (from downstream VDS on the same direction) 

 Traffic and truck volume, speed (from upstream VDS on the same direction) 

 Traffic and truck volume, speed (from downstream VDS on the other direction) 

 Traffic and truck volume, speed (from upstream VDS on the other direction) 

 Traffic and truck volume, speed (surrounding of the probe on the same direction)a 

 Traffic and truck volume, speed (surrounding of the probe on the other direction)a 

Pollutant information PM measurements (concentration, size distribution) 

 Tailpipe PM estimation (mass rate) 
a Estimated traffic conditions based on field measurements from the nearest upstream/downstream VDS  3 
 4 

4.1. Basic Statistics for PM Measurements 5 
In terms of health effects, the PM measurements captured the exposure of both people driving on 6 

the highway and living in the nearby communities. For comparison purpose, we measured the 7 

ambient (outdoor) PM concentration before entering the study route on each testing day. The 8 

measurements were approximately 8100, 11000, and 12400 particles/cm3, respectively, for SR-91 9 

(on 03/26/15), SR-91 (on 03/27/15) and I-710 (on 03/30/15). These values were much (4 ~ 15 10 

times) smaller than the average PM concentration (i.e., 31600, 55000, and 164000 particles/cm3, 11 

respectively.) measured in the traffic flow (see Table 3). As can be observed from the table, PM 12 

concentrations have peaks that are greater than 350000 particles/cm3 in some events. An 13 

interesting finding is that the PM concentration (both average and peak value) in I-710 outnumbers 14 

that in SR-91 (either day), which may be contributed by the much higher flow and density of 15 

heavy-duty trucks (diesel engine powered) along I-710.   16 

 17 
Table 3. Basic statistics for PM Concentration along the study routes 18 

Route 

Particle Concentration 

(particles/cm3) 
Active Surface Area Concentration (mm/cm3) 

Average Peak Average Peak 

SR-91 

(03/26) 
31600 392500 1.00 15.7 

SR-91 

(03/27) 
55000 371500 2.24 33.5 

I-710 

(03/30) 
164000 2065000 4.60 38.1 

4.2. Probe Vehicle Speed vs. PM Measurements 19 
In this subsection, we investigate the relationship between the probe vehicle speed and en-route 20 

PM measurements. By intuition, the probe vehicle speed may provide indication of the immediate 21 
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surrounding traffic conditions. For example, if the speed is high, then a light traffic condition 1 

around may be inferred with certain confidence. It is noteworthy to mention that in the analysis of 2 

PM concentration, the peak pattern (representing the particle burst) is of our major interest. In the 3 

following, we use SR-91 test (peak periods indicated in Table 1) as an example. 4 

 5 

 6 
(a) Results on 03/26/15 7 

 8 
(b) Results on 03/27/15 9 

Figure 5. Particle concentration versus speed measurements with respect to traveled distance along SR-91 10 
 11 

Figure 5(a) presents the particle concentration for SR-91 test in the afternoon on 03/26/15 12 

when the eastbound traffic experienced much more severe congestions (as indicated by the 13 
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significant drop of the orange line in the figure), especially within the major recurrent bottleneck 1 

in Yorba Linda area (traveled distance between 64 and 70 km). In the same location, there was a 2 

prominent peak in PM concentration which may result from the heavy traffic congestion. Besides 3 

this major peak, there were many other concentration spikes that were correlated with a change in 4 

vehicle speed, which were caused by the engine loads during acceleration. The diameter 5 

concentration which is more related to the effective surface areas of particles, followed the similar 6 

pattern with particle (in number) concentration. 7 

Results for SR-91 test in the morning (peak period for westbound traffic) on 03/27/15 are 8 

illustrated in Figure 5(b). Similar to Figure 5(a), there are also many concentration spikes that are 9 

correlated with the speed change. However, some major peaks (traveled distance at about 1 and 10 

102 km) do not occur at the place where the speed drops significantly (e.g., traveled distance at 11 

around 30 km). Further investigation reveals that these interesting locations are exactly where two 12 

or more major freeways intersect. For example, at traveled distances of 1 and 102 km (symmetric 13 

due to round trip), is the interchange of SR-91, SR-60 and I-215 near UC Riverside. The 14 

interchange of SR-91 and I-15 is located at the traveled distance of 30 km. Therefore, it is very 15 

likely the correlation between the PM concentration and vehicle speed at the interchange was 16 

distorted by the traffic conditions on I-15. Another interesting finding is that there seems to be a 17 

mirror-symmetric pattern (to some degree) in concentration spike along the traveled distance. A 18 

hypothesis is that PM emissions from the traffic in other direction of the same highway segment 19 

would considerably affect the PM concentration measurements along the traveling direction. 20 

 21 

4.3. Estimated PM Emissions Contour Plot vs. PM Concentration Measurements 22 
In the integrated database, we applied the EMFAC 2014 model to the traffic data to estimate the 23 

“background” traffic-related PM (e.g., PM2.5) emissions from tailpipe. For the visualization 24 

purpose, we developed a so-called PM Emissions Contour plot in this study which may be used to 25 

understand the evolution of pollutant emissions from mobile sources over time and space domain. 26 

Figure 6 gives an example of such contour plots for PM2.5 emissions along SR-91E within the 27 

range of interest on March 26th, 2015, and the PM concentration measurements (width of the line 28 

is proportional to the value of PM concentration) by the mobile platform is overlaid as red line for 29 

reference. As can be observed from the figure, the estimated contour plot matches the peak of the 30 

measured PM concentration well. For example, this can be seen at postmile 40, 42, 43, 46, and 54. 31 

However, note that the contour plot only indicates for one direction rather than total emissions 32 

estimation from both directions. Therefore, the particle measurements may not be perfectly aligned 33 

with the color of the contour. 34 

 35 

4.4. Statistical Analysis on Influential Factors for PM Concentration  36 
Preliminary analysis indicates that the relationship between in-source PM concentration and 37 

traffic-related parameters is very complicated and could be highly nonlinear. In this study, we 38 

applied a nonparametric regression technique, called Multivariate Adaptive Regression Splines 39 

(MARS) model (31) to the integrated database for further exploring the influential factors for 40 

highway PM concentration. Although the statistical properties of the resulting estimators are more 41 

difficult to determine, non-parametric regression techniques require fewer assumptions and 42 

provide better fit than parametric techniques (32). In addition, the MARS model can be regarded 43 

as an extension of the linear models that automatically captures nonlinearities and interactions 44 

using the form 45 

 46 
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 1 
Figure 6. An example contour plot for estimated PM2.5 emissions (overlaid with PM concentration 2 

measurements) for SR-91E on March 26th, 2015 3 
 4 

𝑓(𝑥) = ∑ 𝑐𝑖 ∙ 𝐵𝑖(𝑥)𝑖      (2) 5 

 6 

where 𝑓(𝑥) is the estimated model output;  𝐵𝑖(𝑥) is the i-th basis function which can be a constant 7 

1, a hinge function, or a product of two or more hinge functions. The hinge functions can take the 8 

form 9 

 10 

𝑚𝑎𝑥(0, 𝑥 − 𝑐𝑜𝑛𝑠𝑡. )      (3) 11 

 12 

or, 13 

𝑚𝑎𝑥(0, 𝑐𝑜𝑛𝑠𝑡. −𝑥)      (4) 14 

 15 

and automatically partition the input data, so the effect of outliers can be attenuated. The MARS 16 

model can handle both numeric and categorical data and tends to have a good bias-variance 17 

tradeoff due to its flexible but sufficiently constrained form of basis functions to model 18 

nonlinearity with fairly low bias and fairly low variance. 19 

In this work, the state-of-the-art statistical software, R (33), is applied to the entire database 20 

(i.e., all the “cleaned” data for SR-91 and I-710) whose sample size is 6848 and the number of 21 

predictor is 23 (including the intercept). The basis functions and associated coefficients (totally 32 22 

terms) of the MARS model (see Eq. (2)) for PM concentration (count/cm3) are listed in Table 4. 23 

 24 
Table 4. List of Basis functions and the associated coefficients of for MARS model for PM Concentration 25 
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𝒊 𝒄𝒊 𝑩𝒊(∙) 𝒊 𝒄𝒊 𝑩𝒊(∙) 𝒊 𝒄𝒊 𝑩𝒊(∙) 
1 508477 Intercept 12 17584 𝑚𝑎𝑥(0, 𝑥4 − 19.9) 23 -30935 𝑚𝑎𝑥(0, 9.9 − 𝑥8) 
2 4804 𝑚𝑎𝑥(0, 𝑥1 − 25.7) 13 615 𝑚𝑎𝑥(0, 70.1 − 𝑥5) 24 -261318 𝑚𝑎𝑥(0, 𝑥8 − 9.9) 
3 -189 𝑚𝑎𝑥(0, 87.3 − 𝑥2) 14 153880 𝑚𝑎𝑥(0, 𝑥5 − 70.1) 25 269294 𝑚𝑎𝑥(0, 𝑥8 − 11.9) 
4 -458 𝑚𝑎𝑥(0, 𝑥2 − 87.3) 15 -33 𝑚𝑎𝑥(0, 876 − 𝑥6) 26 560 𝑚𝑎𝑥(0, 67.4 − 𝑥8) 
5 -72170 𝑚𝑎𝑥(0, 𝑥3 − 3.9) 16 25421 𝑚𝑎𝑥(0, 𝑥6 − 876) 27 -9814 𝑚𝑎𝑥(0, 𝑥9 − 67.4) 
6 275269 𝑚𝑎𝑥(0, 𝑥3 − 9.8) 17 -190085 𝑚𝑎𝑥(0, 𝑥6 − 881) 28 -18749 𝑚𝑎𝑥(0, 19.9 − 𝑥10) 
7 2868073 𝑚𝑎𝑥(0, 𝑥3 − 11.2) 18 -511226 𝑚𝑎𝑥(0, 𝑥7 − 53.3) 29 -13347 𝑚𝑎𝑥(0, 𝑥10 − 19.9) 
8 -28511 𝑚𝑎𝑥(0, 11.5 − 𝑥3) 19 681 𝑚𝑎𝑥(0, 53.7 − 𝑥7) 30 3350 𝑚𝑎𝑥(0, 𝑥11 − 33.5) 
9 -4131297 𝑚𝑎𝑥(0, 𝑥3 − 11.5) 20 678568 𝑚𝑎𝑥(0, 𝑥7 − 53.7) 31 -7088 𝑚𝑎𝑥(0, 𝑥11 − 52.6) 
10 1044194 𝑚𝑎𝑥(0, 𝑥3 − 12) 21 -157765 𝑚𝑎𝑥(0, 𝑥7 − 55) 32 4076 𝑚𝑎𝑥(0, 𝑥11 − 61.8) 
11 21989 𝑚𝑎𝑥(0, 19.9 − 𝑥4) 22 -11336 𝑚𝑎𝑥(0, 𝑥7 − 60.8)    

 1 

where 2 

𝑥1 = probe vehicle’s speed, m/s; 3 

𝑥2 = gap with preceding vehicle, m; 4 

𝑥3 = probe vehicle’s route location, mile; 5 

𝑥4 = upstream VDS (same direction as probe vehicle) route location, mile; 6 

𝑥5 = traffic speed measured by upstream VDS (same direction as probe vehicle), mph; 7 

𝑥6 = traffic volume measured by downstream VDS (same direction as probe vehicle), 8 

veh/5-min; 9 

𝑥7 = traffic speed measured by downstream VDS (same direction as probe vehicle), mph; 10 

𝑥8 = upstream VDS (other direction as probe vehicle) route location, mile; 11 

𝑥9 = traffic speed measured by upstream VDS (other direction as probe vehicle), mph; 12 

𝑥10 = downstream VDS (other direction as probe vehicle) route location, mile; and 13 

𝑥11 = traffic speed measured by downstream VDS (other direction as probe vehicle), 14 

mph; 15 

 16 

According to Table 4, the variables of importance (i.e., the ones used in the MARS models) are 𝑥1 17 

through 𝑥11  as listed above, and the values in those basis functions represents the associated 18 

“knots” for different predictors which are critical to the range partitioning for a certain set of 19 

numerical explanatory variables. For example, 25.7 (m/s) is a critical partitioning point for the 20 

probe vehicle’s speed (a surrogate of surrounding traffic speed as mentioned in Section 4.2) Please 21 

note that the traffic speeds of both downstream and upstream (with respect to the location of probe 22 

vehicle) for both directions play a statistically significant role in estimating/predicting highway 23 

PM concentration (count/cm3). The 𝑅2 values for the MARS model is 0.72, which is satisfactory 24 

considering the highly complicated process to model from traffic condition to highway PM 25 

concentration. 26 

 27 

 28 

5. CONCLUSION AND FUTURE WORK 29 
 30 

In this study, we took non-trivial effort to set up the mobile monitoring platform for real-time PM 31 

concentration measurement and traffic data collection along some major highways in Southern 32 

California. We developed an integrated database by fusing a variety of data sources. Based on the 33 

archived data, we investigated the relationship between traffic conditions and highway PM 34 

concentration. We proposed an innovative tool, so-called PM Emissions Contour plot which can 35 

provide more in-depth insight for assessing in-source PM emissions (e.g., on highways). In 36 
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addition, we applied MARS model to the integrated database to evaluate the impacts of traffic-1 

related parameters on PM concentration. Some major findings include: 2 

 The measured PM concentration along highways is significantly higher than the ambient 3 

outdoor measurement, which indicates people driving on the highway and living in the 4 

nearby communities have much higher exposure to PM. 5 

 Many prominent peaks in PM concentration and surface area measurements were due to 6 

the heavy traffic congestion and the change in vehicle speed from vehicle acceleration and 7 

deceleration.  8 

 The estimated PM Emissions Contour plot shows good agreement with PM number 9 

concentration.   10 

 In spite of the highly complex physical nature of the emission source on highways, the 11 

MARS model can provide a satisfactory prediction results where R2 value is as high as 12 

0.72.   13 

 14 

As one of the major future work, the integrated database will be improved by: 1) feeding more 15 

experiment data, 2) incorporating other potential data sources (e.g., NanoScan SMPS data for 16 

particle mass estimation); 3) enhancing the surrogate ambient traffic condition estimation; and 4) 17 

adding an appropriate dispersion model. 18 

 19 

 20 

ACKNOWLEDGMENTS 21 
 22 

This research is jointly supported by the National Center for Sustainable Transportation (NCST) 23 

and National Science Foundation. We would like to thank TSI for lending us NanoScan SMPS for 24 

the test. We are also grateful to Mike Todd and Daniel Sandez for their kind support in setting up 25 

the mobile monitoring platform. 26 

 27 

The contents of this paper reflect the views of the authors who are responsible for the facts and the 28 

accuracy of the data presented herein. The contents do not necessarily reflect the official views of 29 

or policy of the sponsor. This paper does not constitute a standard, specification or regulation. 30 

 31 

 32 

REFERENCES 33 
 34 

1. California Air Resources Board (CARB). The California Almanac of Emissions and Air 35 

Quality – 2013 Edition. http://www.arb.ca.gov/aqd/almanac/almanac.htm. Accessed on July 36 

6th, 2016 37 

2. U.S. Environmental Protection Agency. National Emissions Inventory (NEI) Air Pollutant 38 

Emissions Trends Data. http://www.epa.gov/ttn/chief/trends/index.html. Accessed on July 6th, 39 

2016 40 

3. Health Effects Institute (HEI). Traffic-Related Air Pollution: A Critical Review of the 41 

Literature on Emissions, Exposure, and Health Effects. January 2010 42 

4. Atkinson, R.; Mills, I.; Walton, H.; Anderson, H. R. Fine particle components and health-a 43 

systematic review and meta-analysis of epidemiological time series studies of daily mortality 44 

and hospital admission. J. of Exposure Science and Env. Epidemiology. 2014, 1-7 45 

http://www.arb.ca.gov/aqd/almanac/almanac.htm
http://www.epa.gov/ttn/chief/trends/index.html


Wu/Pham/Hao/Jung/Boriboonsomsin 16 

5. Li, N.; Hao,M.Q.; Phalen, R. F.; Hinds,W.C.; Nel, A. E. Particulate air pollutants and 1 

asthmasA paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. 2 

Immunol. 2003, 109, 250-265. 3 

6. McCormack, M. C.; Breysse, P. N.; Matsui, E. C.; Hansel, N. N.; Peng, R. D.; Curtin-Brosnan, 4 

J.; Williams, D. L.; Wills-Karp, M.; Diette, G. B. Indoor particulate matter increases asthma 5 

morbidity in children with non-atopic and atopic asthma. Ann Allergy Asthma Immunol. 6 

2011;106:308-315. 7 

7. California Air Resources Board (CARB). Estimate of Premature Deaths Associated with Fine 8 

Particle Pollution (PM2.5) in California Using a U.S. Environmental Protection Agency 9 

Methodology. August 2010 10 

8. Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, Jr. and 11 

F. E. Speizer. An Association between Air Pollution and Mortality in Six US Cities. New 12 

England Journal of Medication,1993, 329: 1753 – 1759 13 

9. World Health Organization (WHO). Health Effects of Particulate Matter. 2013, Final Report, 14 

20 pages 15 

10. Health Effects Institute (HEI). Understanding the Health Effects of Ambient Ultrafine 16 

Particles. January 2013 17 

11. Shah, A. P. et al.. Effect of Inhaled Carbon Ultrafine Particles on Reactive Hyperemia in 18 

Healthy Human Subjects. Environmental Health Perspectives, 2008, 116: 375 – 380 19 

12. U.S. Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS): 20 

http://www.epa.gov/air/criteria.html. Accessed on July 20th, 2015 21 

13. U. S. Department of Transportation. Summary of Travel Trends – 2009 National Household 22 

Travel Survey. Final Report FHWA-PL-ll-022, June 2011, 83 pages 23 

14. Zhu, Y., A. Eiguren-Fernandez, W. C. Hinds, and A. H. Miguel. In-cabin commuter exposure 24 

to ultrafine particles on Los Angeles freeways. Environmental Science Technology, 2007, 41:  25 

2138 – 2145 26 

15. Fruin, S., D. Westerdahl, T. Sax, C. Sioutas, P. M. Fine. Measurements and Predictors of On-27 

Road Ultrafine Particle Concentrations and Associated Pollutants in Los Angeles. 28 

Atmospheric Environment, 2008, 42: 207 – 219 29 

16. Pallavi Pant, Roy M. Harrison, (2013) “Estimation of the contribution of road traffic emissions 30 

to particulate matter concentrations from field measurements: A review”, Atmospheric 31 

Environment, 77, pp. 78 – 97  32 

17. Reynolds, A.W., B. M. Broderick.  Development of an emissions inventory model for mobile 33 

sources. Transportation Research Part D, 5 (2000) 77-101 34 

18. Environmental Protection Agency, MOVES 2014a User Guide, 201, EPA-420-B-15-095  35 

19. California Air Resources Board.  EMFAC2014 User's Guide. 2014, v1.0.7 36 

20. Hausberger, S., M. Rexeis, M. Zallinger, R. Luz.  Emission Factors from the Model PHEM for 37 

the HBEFA Version 3. Graz University of Technology. Institute for Internal Combustion 38 

Engines and Thermodynamic (2009) Report Nr. I-20a/2009 Haus-Em 33a/08/679 39 

21. Abou-Senna, H., Essam Radwan, Kurt Westerlund, C. David Cooper.  Using a traffic 40 

simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from 41 

vehicles on a limited-access highway. Journal of the Air & Waste Management Association, 42 

63(7):819-831, 2013 43 

22. P. Hao, G. Wu, K. Boriboonsomsin, and M. Barth. Modal Activity-Based Vehicle 44 

Energy/Emissions Estimation Using Sparse Mobile Sensor Data. Transportation Research 45 

Board Annual Meeting, Washington D.C., January 10-14, 2016Jamriska, L., L. Morawska. A 46 

http://www.epa.gov/air/criteria.html


Wu/Pham/Hao/Jung/Boriboonsomsin 17 

model for determination of motor vehicle emission factors from on-road measurements with a 1 

focus on submicrometer particles. The Science of the Total Environment, 264 (2001, 241-255 2 

23. Trimble. Trimble® R7/R8 GPS Receiver User Guide. Version 1.00, September 2003 3 

24. Westerdahl, D., S. Fruin, T. Sax, F. Philip, C. Sioutas. Mobile platform measurements of 4 

ultrafine particles and associated pollutant concentrations on freeways and residential streets 5 

in Los Angeles. Atmospheric Environment, 2005, 39: 3597-3610. 6 

25. California Performance Measurement System (PeMS). Accessed on July 10th, 2016 7 

http://pems.dot.ca.gov/ 8 

26. Jia, Z., C. Chen, B. Coifman, P. Varaiya. The PeMS Algorithms for Accurate, Real-time 9 

Estimates of g-factors and Speeds from Single-loop Detectors. Proceedings of IEEE Intelligent 10 

Transportation Systems Conference, Oakland, CA, August, 2001, pp. 536 – 541 11 

27. Kwon, J., P. Varaiya, A. Skabardonis. Estimation of Truck Traffic Volume from Single-loop 12 

Detectors with Lane-to-lane Speed Correlation. Transportation Research Record, No. 1856, 13 

2003, pp. 106 – 117 14 

28. California Air Resource Board (CARB). Meteorology data query tool. Updated in July 2016 15 

29. Wu, G., K. Boriboonsomsin, M. Barth. Development and Evaluation of an Intelligent Energy-16 

Management Strategy for Plug-in Hybrid Electric Vehicles. IEEE Transactions on Intelligent 17 

Transportation Systems, 15(3), pp. 1091 – 1100 18 

30. California Air Resource Board (CARB). EMFAC2014 Web Database. 19 

http://www.arb.ca.gov/emfac/2014/ Accessed on July 8th, 2016 20 

31. Friedman, J. H. (1991) Multivariate adaptive regression splines. The Annals of Statistics, Vol. 21 

19, No. 1, pp. 1 – 141 22 

32. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984) Classification and regression 23 

trees. Chapman & Hall, USA 24 

33. R Development Core Team (2016) R: a language and environment for statistical computing. 25 

Available from: <http://www.R-project.org accessed November, 2016> 26 

View publication statsView publication stats

http://pems.dot.ca.gov/
http://www.arb.ca.gov/emfac/2014/
http://www.r-project.org/
https://www.researchgate.net/publication/317499556



