Lawrence Berkeley National Laboratory

Recent Work

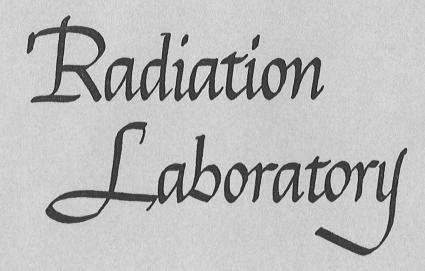
Title

Radioactive Products of High Energy Deuteron Bombardment of Cu

Permalink

https://escholarship.org/uc/item/1sf2w5x6

Authors


Bockhop, D. Helmholz, A.C. Petersen, J.M.

Publication Date 1948-04-19

eScholarship.org

UNIVERSITY OF CALIFORNIA

UCRL 88 Cy 1 a.1

For Reference

Not to be taken from this room

BERKELEY, CALIFORNIA

Special Review of Declassified Reports
Authorized by USDOE JK Bratton
Unclassified TWX P182206Z May 79
UCRL-88 1948
REPORT PROPERLY DECLASSIFIED
ier <u>3-25-80</u> 4 Date

RADIOACTIVE PRODUCTS OF HIGH ENERGY DEUTERON BOMBARDMENT OF Cu By Dorothy Bockhop, A. C. Helmholz, and J. M. Petersen University of California Radiation Laboratory OF THE DECLASSIFICATION COMMITTEE BY THE DECLASSIFICATION COMMITTEE BY THE DECLASSIFICATION COMMITTEE April 19, 1948

Serber⁽¹⁾ has suggested inelastic collisions in which only a fraction of the available energy is lost as the initial step in the formation of nuclei by high energy particle bombardment. The nucleus thus excited subsequently boils off particles and energy. This theory differs from that of the compound nucleus, which holds at low energies, in that the incident particle is not captured. Serber's theory has been applied with success to several cases⁽²⁾. The characteristic feature of the excitation function is the large value of cross-section at high energies (~5 times the threshold) relative to that predicted by the theory of the compound nucleus. The formation of atomic number Z + 1 from target of atomic number Z cannot proceed by this process since it requires the capture of a proton although another possibility would be an exchange collision between incident proton end a neutron.

The excitation functions of a number of radioactive species from the bombardment of Cu with 190 Mev deuterons have been measured. Chemical separation of a number of fractions including Zn, Cu, Co and Ni were performed. The $2n^{63}$ and $2n^{62}$ activities which must be formed as mentioned above show maxima at less than 50 Mev, and steady decreases to the highest energy measured (140 Mev) where the values are less than 1/5 those of the maxima. This is in accord with considerations of the compound nucleus. However, Ni and Co activities show maxima at low energies, minima, and subsequent increases at higher energies, such as are characteristic of Serber's theory.

This work is based on work performed under contract W-7405-eng-48 with the Atomic Energy Commission in connection with the Radiation Laboratory, University of California, Berkeley, California.

- (1) R. Serber, Phys. Rev. 72, 1114, 1947.
- (2) R. L. Thornton, R. W. Senseman. Phys. Rev. 72, 872, 1947.
 W. W. Chupp, E. M. McMillan. Phys. Rev. 72, 873, 1947.

2 me copy w/o cover

RADIOACTIVE PRODUCTS OF HIGH ENERGY DEUTERON BOMBARDMENT OF Cu

UCRL-88

ASSIVICATION CANCILLED BY AUTHORITY OF THE DISTRICT ENGINEER BY THE DECLASSIFICATION CONPORTABLY Bookhop, A. C. Helmholz, and J. M. Petersen University of California Radiation Laboratory Department of Physics Berkeley, California April 19, 1948

Serber⁽¹⁾ has suggested inelastic collisions in which only a fraction of the available energy is lost as the initial step in the formation of nuclei by high energy particle bombardment. The nucleus thus excited subsequently boils off particles and energy. This theory differs from that of the compound nucleus, which holds at low energies, in that the incident particle is not captured. Serber's theory has been applied with success to several cases⁽²⁾. The characteristic feature of the excitation function is the large value of cross-section at high energies (~5 times the threshhold) relative to that predicted by the theory of the compound nucleus. The formation of atomic number Z + 1 from target of atomic number Z cannot proceed by this process since it requires the capture of a proton although another possibility would be an exchange collision between incident proton and a neutron.

The excitation functions of a number of radioactive species from the bombardment of Cu with 190 Mev deuterons have been measured. Chemical separation of a number of fractions including Zn, Cu, Co and Ni were performed. The $2n^{63}$ and $2n^{62}$ activities which must be formed as mentioned above show maxima at less than 50 Mev, and steady decreases to the highest energy measured (140 Mev) where the values are less than 1/5 those of the maxima. This is in accord with considerations of the compound nucleus. However, Ni and Co activities show maxima at low energies, minima , and subsequent increases at higher energies, such as are characteristic of Serber's theory.

This work is based on work performed under contract W-7405-eng-48 with the Atomic Energy Commission in connection with the Radiation Laboratory, University of California, Berkeley, California.

(1) R. Serber. Phys. Rev. 72, 1114, 1947.

(2) R. L. Thornton, R. W. Senseman. Phys. Rev. 72, 872, 1947.
 W. W. Chupp, E. M. McMillan. Phys. Rev. 72, 873, 1947.