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R E V I EW A R T I C L E

Role of oxidized lipids in pulmonary arterial hypertension

Salil Sharma,1 Grégoire Ruffenach,1 Soban Umar,1 Negar Motayagheni,1 Srinivasa T. Reddy,2 Mansoureh Eghbali1

1Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; 2Division of
Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Abstract: Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and
genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and
extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction
and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right
ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development
of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids
in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism,
peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic
peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH.
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Pulmonary arterial hypertension (PAH) is a rare but fatal disease,
characterized by persistent elevation in pulmonary artery pressures.1,2

PAH is also a serious complication of several connective-tissue dis-
eases, including systemic lupus erythematosus, progressive systemic
sclerosis, and rheumatoid arthritis.3,4 PAH could also be associated
with pulmonary thromboembolism, portal hypertension, HIV infec-
tion, hepatitis C infection, intravenous drug abuse, and various other
pulmonary disorders.5-9 Many cellular and genetic events are in-
volved in the pathogenesis of PAH. PAH is associated with marked
vascular injury caused by endothelial dysfunction of small pulmo-
nary arteries, promoting vasoconstriction. In addition, structural ab-
normalities, excessive hypertrophy of smooth muscle cells lining the
arterioles, endothelial cell proliferation resulting in plexiform lesions,
extracellular matrix remodeling leading to fibrosis, and activation of
inflammatory cells vastly contribute to the pathogenesis of the dis-
ease. All these vascular changes increase the afterload on the right
ventricle, leading to right ventricular (RV) hypertrophy, decompen-
sation, and failure.1 There are many complex processes and events
that culminate in the development and progression of PAH. This has
resulted in the advancement of many therapies targeting the endo-
thelin 1, phosphodiesterase, nitric oxide, and prostacyclin pathways
to slow the progression of the disease.10-14 This review specifically
focuses on the role of oxidative stress, lipid oxidation, and peroxi-
dation as contributing factors in PAH. Finally, this review discusses
the emerging potential of high-density lipoprotein (HDL) mimetic
peptides, which bind to oxidized lipids with high affinity, as well as
microRNA-193, which targets oxidized lipids, as novel therapeutics.

LIPID AND LIPOPROTEIN METABOLISM IN PAH

PAH is associated with an increase in oxidative stress participating
in the oxidation of lipids. Oxidized lipids participate in many path-
ophysiological hallmarks of PAH, including smooth muscle cell
(SMC) proliferation, endothelial cell (EC) apoptosis, and inflamma-
tion (Table 1).53-55

Role of oxidized fatty acids produced from arachidonic
acid via the lipoxygenase pathway in PAH
In this section, we focus on oxidized lipids in PAH generated from
linoleic acid (LA) and arachidonic acid (AA). LA can be oxidized by
5-lipoxygenase (5-LOX) and 15-LOX to form 9-hydroxyoctadecadienoic
acid (9-HODE) and 13-HODE, respectively (Fig. 1A). Involvement
of these oxidized products as contributing factors in oxidative stress
in PAH has recently been demonstrated.16,28,29,56,57 LA is also the
precursor of AA, which by enzymatic oxidation gives rise to different
oxidized lipids, including 5-hydroxyeicosatetraenoic acid (5-HETE),
12-HETE, and 15-HETE (Fig. 1A). These three oxidized metabolites
are found to be elevated in the lung tissue samples obtained from
patients with primary pulmonary hypertension (PH).58 The 12-HETE
levels are increased in the lung SMCs cultured from hypoxia-treated
rats, and exogenous 12-HETE treatment stimulated proliferation of
SMCs.17 Similarly, 15-HETE plays an important role in hypoxic
PAH.59 Increased activity of 15-LOX in pulmonary arteries upon ex-
posure to hypoxia catalyzes and enhances 15-HETE production.57 Vas-
cular remodeling in hypoxic PAH is in part mediated by a positive
feedback regulatory loop between 15-HETE and hypoxia-inducible
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factor 1α (HIF-1α), a critical oxygen-sensing transcription factor
in PAH.60 Increased levels of 15-HETE stimulate proliferation of
pulmonary artery SMCs (PASMCs);18 pulmonary arterial vasocon-
striction via K+ channels and the protein kinase C (PKC) signal
transduction pathway;23-26 the Rho/Rho-associated protein kinase
(Rho/ROCK) signaling pathway;27 inhibition of apoptosis in PASMCs
mediated via several signaling pathways, such as ERK1/2 (extracel-
lular signal–regulated kinases),19 PI3K (phosphatidylinositol 3-kinase)/
Akt,20 the ROCK pathway,21 and the nitric oxide synthase (iNOS)
pathway;22 and pulmonary vascular remodeling mediated via platelet-
derived growth factor.15 In addition, 15-LOX/15-HETE induces
the p38 MAPK (mitogen-activated protein kinase)–dependent trans-
forming growth factor (TGF) β1/Smad2/3 intracellular signaling
pathways to mediate vascular fibrosis in the adventitia of the pul-
monary arterial wall, resulting in pulmonary artery remodeling.28

Also, 15-HETE has been shown to mediate vascular medial hyper-

trophy and EC migration and angiogenesis contributing to hypoxic
PH.16 A mutual positive regulatory mechanism exists between telo-
merase reverse transcriptase and the 15-LOX/15-HETE pathway that
could mediate migration, proliferation, and cell cycle distribution of
PASMCs in hypoxia-induced pulmonary vascular remodeling.61 In-
hibition of 5-LOX by diethlycarbamazine, an enzyme responsible for
5-HETE and leukotriene synthesis (Fig 1B), has been demonstrated
to improve PAH in the Sugen/hypoxia rat model.62 Indeed, inhibition
of 5-LOX improves RV function by decreasing RV systolic pressure
(RVSP) and hypertrophy. Al-Husseini et al.62 demonstrated that this
improvement is mediated by a decrease in inflammation and pulmo-
nary vascular wall thickness. Furthermore, we recently demonstrated
that PH is associated with elevated plasma levels of 5-HETE,
12-HETE, 15-HETE, 9-HODE, and 13-HODE in the monocrotaline
(MCT)-induced PH model in rodents.56 We also reported signifi-
cantly higher levels of plasma HETEs and HODEs in PAH patients

Table 1. Role of oxidized lipids and lipid metabolism in pulmonary hypertension

PAH hallmarks Effect References

HETEs and HODEs

Vascular remodeling Activation of PDGF/15-LOX/15-HETE axis 15, 16

PASMC proliferation 12-LOX/12-HETE and 15-LOX/15-HETE axis
activates ERK1/2 pathway

17, 18

Resistance to apoptosis 15-HETE activates ERK1/2, PI3K/Akt, and
ROCK/iNOS pathways

19–22

Vasoconstriction 15-HETE inhibits expression of Kv1.5, Kv2.1, and
Kv3.4 and activates Rho/ROCK signaling

23–27

Angiogenesis 15-HETE activates ROCK pathways
promoting angiogenesis

16

Fibrosis 15-HETE activates TGF-β/Smad2/3 axis 28

Inflammation Increased LDL/HDL inflammatory index 29

Leukotrienes

PASMC proliferation LTB4 activates BLT1 receptor 30

Inflammation Macrophages LTB activates LOX enzyme 31, 32

Epoxyeicosatrienoic acid (EET) 8,9-, 11,12-, 14,15-EET promote JNK1/2
activation in PAECs

33

Resistance to apoptosis

Endothelial dysfunction

Plexiform lesions

Lipids metabolism

Vascular remodeling Impaired PPARγ signaling 34–38

Mitochondrial dysfunction Inhibition of fatty acid oxidation promotes
mitochondria hyperpolarization

39–46

Vasoconstriction 16, 47–51

Endothelial dysfunction Oxidized LDL activates NF-κB pathways 52

Note: ERK: extracellular signal–regulated kinase; HDL: high-density lipoprotein; HETE: hydroxyeico-
satetraenoic acid; HODE: hydroxyoctadecadienoic acid; iNOS: nitric oxide synthase; JNK: c-Jun N-terminal
kinase; LDL: low-density lipoprotein; LOX: lipoxygenase; LTB: leukotriene B; PAECs: pulmonary artery endo-
thelial cells; PAH: pulmonary arterial hypertension; PASMC: pulmonary artery smooth muscle cell; PDGF:
platelet-derived growth factor; PI3K: phosphoinositide 3-kinase; PPARγ: peroxisome proliferator–activated re-
ceptor γ; ROCK: Rho-associated protein kinase; TGF: transforming growth factor.
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(idiopathic and associated PAH secondary to connective-tissue dis-
ease).29 Conversely, we showed that increasing oxidized lipids in vivo
by feeding mice with 15-HETE leads to PH, establishing a strong
connection between the levels of oxidized lipids and the pathophysi-
ology of PH.56 Collectively, these studies reinforce a major role of
oxidized lipids in the development of PH (Fig. 2).

Role of other metabolites of AA in PAH
Many by-products of AA play an important role as mediators in
PAH. For instance, epoxyeicosatrienoic acid (EET), which is de-
rived from AA by cytochrome p450 epoxygenase (Fig. 1A), plays
an essential role in vasoconstriction and the modulation of prolifer-
ative and angiogenic properties in pulmonary artery ECs (PAECs)
in PH and other diseases.63,64 It has been shown that the EET and
JNK/c-Jun pathways are involved in pulmonary vascular remod-
eling caused by proliferation of ECs, inhibition of apoptosis, and
stimulation of angiogenesis, culminating in pulmonary artery en-
dothelial plexiform lesions (Fig. 2B).33 Kandhi et al.65 demonstrated

that jugular administration of EET led to an increase in RVSP in a
dose-dependent manner. Thus, the effect of EET on RVSP seems
synergic with hypoxia. Wang et al.66 have clearly demonstrated that
hypoxic pulmonary vasoconstriction response, which is impaired in
PH, is modulated by endothelium calcium signaling via activation
of EETs, further supporting the essential role of EETs in PH.

Leukotrienes (LTs) are another class of lipid mediators derived
from the 5-LOX pathway of AA metabolism (Fig. 1B).67,68 They
trigger immune response by recruitment and activation of leuko-
cytes and play an essential role as mediators in pulmonary inflam-
mation.31,32 Several studies have shown that leukotriene B4 (LTB4)
is involved in PAH pathogenesis.69-71 Rodent models of PH, in-
cluding MCT- and SU5416 (a VEGFR2 [vascular endothelial growth
factor receptor 2] inhibitor)-treated rat models, have shown elevated
levels of LTB4.

30,72 LTB4 induces apoptosis of PAECs, proliferation of
PASMCs, and fibroblast activation, three major pathologic events
leading to PAH.30,73 We have recently demonstrated that plasma
levels of LTB4, but not those of LTC4 and LTE4, are increased in the
rat model of MCT-induced PH (Fig. 2B).56 Taken together, these
data strengthen a critical role of oxidized lipids in the pathophysio-
logical mechanism of PH (Table 1).

Plasma HDL and PAH
HDL cholesterol (HDL-C) is protective in coronary artery disease
because of its antioxidant and anti-inflammatory properties.74,75 Apo-
lipoprotein A-I (ApoA-I), the major protein component of HDL-C,
is present at lower levels in PAH, which correlates with increased en-
dothelial dysfunction.76 Metabolic syndrome and insulin resistance
are associated with low circulating HDL-C levels and may predispose
to the development of pulmonary vascular disease.77,78 Indeed, insu-
lin resistance and RV hypertrophy with pulmonary vascular remod-
eling are observed in an apolipoprotein E–deficient mouse model.79

In addition, depressed circulating levels of HDL-C are associated
with worse clinical outcomes in PAH patients and are independent
of other cardiovascular risk factors.80 This observation is further sup-
ported by another independent study showing that circulating HDL
cholesterol levels are depressed in a cohort of patients with idiopathic
PAH (IPAH) and are associated with worse clinical outcomes.81 On
the whole, these data suggest a potential role of circulating HDL in
metabolic syndrome and PH and are supported by the prevalence of
subclinical PH in patients with metabolic syndrome.82

Role of lysophosphatidic acid
Studies have investigated the effects of lysophosphatidic acid (LPA)
signaling and metabolism on vascular SMCs and ECs, indicating
that LPA may also have implications for the remodeling of pulmo-
nary vasculature.83,84 LPA is a bioactive lipid molecule produced by
the plasma lysophospholipase D enzyme autotoxin.85,86 LPA has
been shown to stimulate migration and proliferation of SMCs and
to alter EC function; consequently, it plays a critical role in vascular
development.87-89 Mouse models with loss-of-function mutations in
genes required for LPA production and signaling have been used to
investigate the pathophysiological role of LPA metabolism and sig-
naling in diverse settings, including pulmonary inflammation and
hypoxia-induced vascular remodeling.90,91

Figure 1. Pathways involved in linoleic and arachidonic acid metab-
olism. A, Linoleic acid is metabolized by 5- and 15-lipoxygenase
(LOX) to form 9-hydroxyoctadecadienoic acid (9-HODE) and 13-
HODE, respectively. Linoleic acid can also be metabolized to arachi-
donic acid. In turn, arachidonic acid is used to form prostaglandins
(by cyclooxygenases) and epoxides (by the cytochrome p450 epoxy-
genase pathway). B, Arachidonic acid can also be metabolized to 5-
hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE by
LOXs and to leukotrienes (LTs) such as LTA4 (by LTA4-synthase),
LTB4 (by LTA4-hydrolase), LTC4 (by LTC4-synthase), LTD4 (by γ-
glutamyl-transferase), and LTE4 (by peptidase).
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PAH is associated with oxidative stress
and lipid peroxidation
PAH is associated with increased oxidative stress. This leads to
tissue damage by oxidation of many important biological mole-
cules, including DNA damage and lipid peroxidation.58 Increased
reactive oxygen species (ROS) production is involved in the patho-

genesis of PH in various animal models. Chronic hypoxia–induced
PH in mice is associated with increased intrapulmonary superoxide
levels and other pathophysiological changes, which are abolished
by the antioxidant xanthine oxidase inhibitor allopurinol.92,93 Ele-
vated RV superoxide levels are also observed in the MCT rat model
of PH. Antioxidant therapies with intratracheal administration of

Figure 2. Role of oxidized lipids, oxidative stress, and lipid metabolism in promoting pulmonary arterial hypertension (PAH). A, Many
altered pathways and abnormalities are involved in the progression and development of PAH. PASMC: pulmonary artery smooth muscle
cell. B, Oxidized lipids (hydroxyeicosatetraenoic acids [HETE]s and hydroxyoctadecadienoic acids [HODEs]), leukotrienes (LTs), epoxy-
eicosatrienoic acids (EETs), and lipid metabolism contribute only to a selective subset of pathways (highlighted); pathways that are not
involved in the pathogenesis of PAH are shaded (See Table 1 for references).
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antioxidant superoxide dismutase or resveratrol suppressed the pro-
gression of PH.94-97 Tissue hypoxia and an increase of inflam-
matory cytokines in the lungs of animal models of PH lead to
elevated levels of ROSs.58,97 PAH is associated with oxidative stress
arising from the accumulation of ROSs, including superoxide and
peroxide. Reaction of these highly reactive molecules with func-
tional groups in membrane lipids and proteins can produce harm-
ful oxidative-breakdown products.98 One such class of metabolites
is the chemically stable bioactive lipid peroxidation product of AA
known as “isoprostanes.” Levels of isoprostanes are elevated in
many pulmonary vascular diseases, including PAH.99-104 Isopros-
tanes not only serve as biomarkers of the disease but also act as
signal transduction molecules exerting multiple biological effects
through prostanoid receptors and other signaling pathways.47,105-107

They can exert their effects on pulmonary vasculature in many
ways, including pulmonary vasoconstriction,48,108,109 induction of
pulmonary endothelium to release endothelin 1, vasoconstriction in
general,49,110 and nonspecific effects on smooth muscle, such as
hyperresponsiveness and hypertrophy,50,51 thereby serving as im-
portant mediators in many lung pathologies including PAH.

Lipid peroxidation products of AA, including isoprostanes as
well as other end products, such as malondialdehyde, are increased
in patients with PAH.103,111,112 Lungs of transgenic mice with bone
morphogenetic protein receptor II (BMPR2) mutation showed an
increase in isoprostanes, indicative of a rise in oxidative stress that
was of mitochondrial origin and specific to vasculature.113 Chronic
hypoxic exposure of rats results in the production of ROSs, includ-
ing phosphatidylcholine hydroperoxide, a primary peroxidation
product of phosphatidylcholine, and serves as a contributing fac-
tor for pulmonary vascular thickening and development of PH.93 A
reduction in the levels of antioxidants, including β-carotene and α-
tocopherol, is observed in patients with IPAH compared to control
subjects.114 Studies have evaluated the role of NADPH oxidase in
the development of PH. In a lamb model of PH of the newborn, it
has been shown that the NADPH oxidase enzyme complex may
contribute to proliferation of SMCs by producing increasing super-
oxide levels.115,116 Moreover, the proliferative effect of endothelin 1
on fetal PASMCs is a consequence of increased generation of ROSs.117

Regulation of the growth of PASMCs by the transcription factor
GATA4 is inhibited by antioxidant serotonin via suppression of
NADPH oxidase or monoamine oxidase A, further reinforcing the
critical role of ROSs in altering signaling pathways involved in
PH.118,119 Several other studies have suggested that antioxidant
therapy can suppress the progression of PH. Many compounds
with antioxidant properties, including the superoxide dismutase
mimetic tempol and resveratrol, are effective in preventing the de-
velopment of PH in various animal models.97,120 In addition, cell
culture studies, transgenic mouse models, and human samples con-
firm that the heritable form of PAH caused by mutations in the
BMPR2 pathway is also associated with increased oxidative stress
that is very vascular specific and most likely of mitochondrial ori-
gin. Lectin-like oxidized low-density lipoprotein (oxLDLs) is in-
volved in endothelial dysfunction and injury upon stimulation by
many factors, including inflammation and shear stress;52 oxLDL

plays an important role in cardiovascular diseases such as myocar-
dial infarction and atherosclerosis.121,122 Overexpression of lectin-
like oxidized low-density lipoprotein receptor 1 (LOX-1), an endo-
thelial receptor of oxLDL in the lungs of transgenic mice, promotes
oxidative stress by ROS generation and induces PH in chronic
hypoxia.123 Thus, oxidative stress and lipid peroxidation could
make a major contribution to the pathogenesis of PAH (Fig. 2;
Table 1).

OXIDATIVE STRESS AND IMPAIRED

MITOCHONDRIAL FUNCTION IN THE

PATHOGENESIS OF PAH AND ASSOCIATED

RV FAILURE

There is a growing interest in the potential involvement of abnor-
mal cellular metabolism and impaired mitochondrial function in
the pathogenesis of PAH and associated RV failure. These changes
may participate in the factors involved in the resistance to apoptosis
and increased vascular cell proliferation, which are characteristics of
PAH.39 RV failure is associated with many metabolic transfor-
mations at the cellular and molecular levels affecting glucose and
fatty acid metabolism. Glycolytic shift is observed in the right ven-
tricles (RVs) of both humans with PAH40 and rat models of PH
induced by MCT or RV pressure overload by pulmonary artery
banding.41 Previous studies have suggested that limitation of the
energy supply due to a mitochondrial metabolic switch from the
energy-rich oxidative metabolism of glucose to glycolysis, arising
from pathological pyruvate dehydrogenase kinase (PDK) activation,
leads to RV failure.41,42 Involvement of dysregulated fat metabo-
lism in the failing RV during the progression of PAH has also been
highlighted. In a transgenic rodent model of BMPR2 mutation, dys-
functional BMPR2 signaling in the RV results in triglyceride and
ceramide deposition and potential fat toxicity.43,44 Indeed, muta-
tions in the gene for BMPR2 were identified to cause familial pri-
mary PH.113,124,125 Fessel et al.126 have provided an extensive analysis
of widespread metabolomic and transcriptomic changes affected by
BMPR2 mutations in the pathogenesis of PH. The role of fatty acid
oxidation in PAH is further emphasized in a study showing that
mice lacking the gene for the metabolic enzyme malonyl-coenzyme
A decarboxylase (MCD), an enzyme involved in fatty acid oxida-
tion, do not develop PAH during chronic hypoxia.45 Studies have
shown that serum levels of secreted glycoproteins involved in lipid
metabolism and angiogenesis, such as angiopoietin-like protein 3
(ANGPTL3), are positively correlated with RVSPs and could con-
tribute to PAH in systemic sclerosis.46 In summary, abnormal cellu-
lar metabolism and impaired mitochondrial function could play an
important role in the pathogenesis of PAH (Fig. 2).

VENTRICULAR DYSFUNCTION ASSOCIATED WITH

PULMONARY ARTERY ATHEROSCLEROSIS

It has been observed that patients with obstructive sleep apnea, which
is characterized by episodes of hypoxia and hypercapnia during
sleep, are susceptible to atherosclerotic disease in the pulmonary vas-
culature. This was demonstrated in LDL receptor–deficient mice by
exposing them to intermittent hypoxia/hypercapnia for periods of
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8 or 16 weeks. Intermittent hypoxia/hypercapnia resulted in marked
increase in atherosclerotic lesions in the pulmonary artery, accompa-
nied by RV and left ventricular dysfunction.127 In addition, pulmo-
nary artery atheroscelerosis is accelerated in patients with hypertensive
pulmonary disease and shows significant correlation with RV dila-
tion and hypertrophy.128 It has been reported that pulmonary artery
atherosclerosis is also characterized by increased lipid peroxidation
in pulmonary artery lesions.129

ROLE OF OXIDIZED LIPIDS IN PAH INFLAMMATION

Recruitment of inflammatory cells and an increase in inflammatory
mediators are hallmarks of PAH.130 The pathogenesis of PH
includes an inflammatory response, resulting in a higher circulating
levels of monocyte chemoattractant protein 1 (MCP-1), interleukin
(IL) 6, IL-8, and tumor necrosis factor α (TNF-α) in patients with
IPAH and chronic thromboembolic PH than in healthy
controls.131-134 Oxidized lipids are known to promote inflamma-
tory processes in many diseases such as atherosclerosis.135 For ex-
ample, oxidized LDL has been demonstrated to promote MCP-1
expression (Fig. 3).136 Growing evidence demonstrates the impli-
cation of oxidized lipids derived from LA and AA in the inflam-
matory mechanism in PAH. Indeed, 5-HETE promotes neutrophil
recruitment.137 Interestingly, 9-HODE and 13-HODE are capable
of exerting both pro- and anti-inflammatory reactions by regula-
tion of monocyte/macrophage activation.138 Enzymatic synthesis of
9-HODE and 13-HODE leads to the production of 9-(S)-HODE
and 13-(S)-HODE. On the one hand, these two enantiomers are
known to have anti-inflammatory properties by virtue of binding
and activating peroxisome proliferator–activated receptor γ (PPARγ),
leading to downregulation of inflammatory mediators such as IL-12,
interferon α, and TNF-α and thus inhibiting inflammatory cell
activation.138-140 On the other hand, nonenzymatic production of
HODEs in the case of oxidative stress, as observed in PAH, leads
to the synthesis of 9-/13-(S)-HODEs and 9-/13-(R)-HODEs in the
same proportion.141 Recently, it was demonstrated that the produc-
tion of 9-/13-HODEs by nonenzymatic pathways leads to monocyte/
macrophage activation and inflammation in atherosclerosis dis-
ease.141 In addition to an enhancement of inflammation arising from
oxidative stress in PAH, downregulation of PPARγ in PAH impairs
the anti-inflammatory effect of oxidized lipids. Nonetheless, more
studies are required to fully understand the precise role of HODEs in
PAH pathophysiology with respect to inflammation. Furthermore,
oxidative stress can also promote inflammation by leading to the
synthesis of compounds, such as isoprostanes, known to promote
inflammatory cell recruitment.142 Finally, LTs produced from AA
also exert a proinflammatory effect. Among these, LTB4 has been
demonstrated to be a chemoattractive compound for neutrophil
and to promote expression of the ICAM-1 protein by ECs, lead-
ing to leukocyte recruitment.69 Moreover, LTC4 and LTE4 could
also promote inflammation by activating the expression of TGF-
β1.143-145 Taken together, these data give evidence of major in-
volvement of oxidized lipids in inflammation observed in PAH
and make them attractive pharmacological targets to counteract
PAH pathology.

NOVEL THERAPEUTIC STRATEGIES IN PAH

Role of HDL (ApoA-I) mimetic peptides
HDL is a major lipid carrier in the bloodstream and plays a critical
role in vascular disease. It is known that HDL protects against ath-
erosclerosis through several mechanisms, including the ability to
extract cholesterol and phospholipids from peripheral cells and
transfer them to the liver for excretion. Moreover, HDL also pro-
tects against lipid oxidation and inflammation. However, under cer-
tain pathological conditions, as in PAH, these antioxidant and anti-
inflammatory properties of HDL decrease, accompanied by a drastic
increase in the levels of oxidized lipids. Therefore, HDL can act
as both an anti- and a proinflammatory molecule, depending on
the context and environment. Indeed, we have determined the “in-
flammatory indices” of HDL and LDL in IPAH and associated
PAH (APAH) patients.29 We found that LDL inflammatory indices
were significantly higher in IPAH and APAH patients than in con-
trols. Furthermore, HDL was proinflammatory in both IPAH and
APAH.29

The major component of HDL in plasma is ApoA-I, which
possesses anti-atherosclerotic, anti-inflammatory, and antioxidant
properties.146 The mechanistic relationship between ApoA-I and
pulmonary function was highlighted by genetic deletion of ApoA-I
in mice. ApoA-I-null (ApoA-I−/−) mice show an increase in proin-
flammatory HDL, indicative of high oxidative stress and increased
airway hyperresponsiveness as well as impaired pulmonary vascu-
lar function.147 PH in patients with sickle cell disease is associated
with altered expression of ApoA-I, contributing to sickle cell disease–
associated vasculopathy.148 ApoA-I concentrations were decreased in
the lungs of idiopathic pulmonary fibrosis patients and in an experi-
mental bleomycin-induced fibrosis model.149 The local treatment
with ApoA-I has been shown to be very effective against the develop-
ment of experimental lung injury and fibrosis.149 ApoA-I appears to
be a promising therapeutic molecule, considering its therapeutic po-
tential in reducing inflammation and fibrosis in the animal model
of bleomycin-induced pulmonary fibrosis.150

Several HDL mimetic peptides, which mimic the lipid-binding
properties of ApoA-I, have been engineered to mimic the anti-
inflammatory and antioxidant properties of HDL. Among these, the
4F peptide (18 amino acids with 4 phenylalanines, at positions 3, 6,
14, and 18) has received the most attention over the past decade.
The 4F peptide is highly effective in improving vascular dysfunction
implicated in the pathogenesis of many diseases and disorders, in-
cluding atherosclerosis, diabetes, hypercholesterolemia, and sickle
cell disease.151-153 In the context of lung disease, 4F decreases airway
hyperresponsiveness, inflammation, and oxidative stress in a murine
model of asthma.154 We have recently demonstrated that the levels
of oxidized lipids are elevated in the plasma of PH rats,56 as well as
in PAH patients,29 and may contribute to the inflammatory re-
sponse and vascular changes involved in the progression of PH.
Therapy with 4F has been shown to be very effective in restoring the
levels of oxidized lipids and rescue of preexisting PH in animal
models.56 We have examined the effect of 4F on HDL and LDL
inflammatory indices in an arterial wall model and a monocyte
migration assay in IPAH and APAH patients.29 HDL, as well as
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LDL, inflammatory indices were decreased significantly after ex vivo
treatment with 4F to levels comparable to healthy controls.29

Role of the microRNA 193–oxidized lipids axis in PH
MicroRNAs (miRNAs) are small, regulatory, noncoding, single-
stranded RNA molecules involved in the regulation of several phys-

iological pathways, including apoptosis, cell migration, vascular de-
velopment, and cell proliferation, via modulation of target genes.155,156

Altered expression of miRNAs could result in a dysregulated expres-
sion of their target genes, consequently causing or exacerbating sev-
eral pathological conditions, including cardiovascular diseases and
PH.157,158 Several miRNAs, including miR-21, miR-204, and miR-328,

Figure 3. Hypothetical scheme of production and effects of oxidized fatty acids. In the oxidized fatty acid pathway (purple arrows) linoleic
acid (LA) and arachidonic acid (AA) in the cytoplasm (shown with an asterisk to indicate the starting point) are enzymatically cleaved
through lipoxygenases (LOXs) into hydroperoxyeicosatetraenoid acids (HPETEs) and hydroperoxyoctadecadienoic acids (HPODEs) that
are further oxidized into hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecadienoic acids (HODEs). The apolipoprotein A-I
mimetic peptide 4F inhibits production of HETEs and HODEs. HETEs and HODEs in the blood bind to G protein–coupled receptors
(GPCRs) and induce intracellular pathways, leading to the activation of transcription repressor retinoid X receptor alpha (RXR-α), which
inhibits microRNA-193 (miR193) expression. Inhibition of miR193 increases HETE and HODE production by targeting the LOX pathway;
miR193 is also secreted in the blood. In the inflammation pathway (red arrows), HPETEs and HPODEs, the reactive intermediates of
HETEs and HODEs, oxidize LDL, which initiates the inflammatory response, including initiating the transcription of monocyte chemoat-
tractant protein 1 (MCP-1), monocyte migration, and aggravation of pulmonary arterial hypertension (PAH) symptoms. EC: endothelial
cells; PASMC: pulmonary artery smooth muscle cells.
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have been reported to regulate pathogenic signaling in the develop-
ment and progression of PH.159-161 We have recently demonstrated
that PH is associated with increased plasma levels of oxidized lip-
ids in rodents as well as in IPAH patients.29 Therapy with 4F was
very effective in restoring their levels and led to rescue of preexist-
ing PH in models of both hypoxia and MCT. Mechanistically, we
identified the miRNA miR-193-3p (miR193) as a downstream effec-
tor molecule whose expression was significantly downregulated in
the lungs in two experimental animal models of PH. The 4F ther-
apy fully restored expression of miR193 to its level in the control
group.56 Overexpression of miR193 in the lungs rescued preexisting
PH induced by either MCT or hypoxia in animal models.56 We also
found that overexpression of miR193 in SMCs isolated from small
pulmonary arteries of PAH patients (confirmed by right catheteriza-
tion) reduces proliferation, whereas knockdown of miR193 in SMCs
isolated from small pulmonary arteries of control subjects with no
PAH (discarded nondonor lungs) increases proliferation.56 Our data
highlight the therapeutic role of miR193 in reversing pulmonary
vascular remodeling.

We further showed that oxidized lipids regulate expression of
miR193 through the transcriptional factor retinoid X receptor alpha
(RXR-α).56 Oxidized lipids induce the expression of RXR-α in
PASMCs. This induction results in an increased binding of RXR-α
on the promoter of miR193, thus causing its subsequent down-
regulation and a net increase in the expression of lipoxygenases, the
enzymes responsible for the production of oxidized lipids (Fig. 3).
However, 4F can decrease the overall content and binding of RXR-α
to an miR193 promoter by sequestering oxidized lipids, ultimately
leading to miR193 induction.56 This study explored an essential
aspect of oxidized lipid–induced pathology of PH, wherein miRNA
(i.e., miR193) modulation is involved in the molecular and functional
outcome. Future studies on the role of miRNAs in the oxidized lipid–
mediated induction of PH with insight into novel targets are war-
ranted to develop a multiple-miRNA therapeutic approach to tackle
the disease effectively.

OXIDIZED LIPIDS AND miR193 AS POTENTIAL

BIOMARKERS OF PH

Several tests are currently used in clinical practice for evaluation of
PAH, including 6-minute walk distance (6MWD); hemodynamic
parameters, such as pulmonary artery pressure and cardiac output/
cardiac index; B-type natriuretic peptide (BNP) and N-terminal-
pro-BNP (NT-proBNP); and New York Heart Association func-
tional class. Unfortunately, all of these parameters have significant
limitations, since they are either invasive (pulmonary artery pres-
sure using direct catheterization) or not very specific, as BNP/NT-
proBNP can be influenced by left heart dysfunction and/or renal
impairment and 6MWD by arthritis or myositis. Hence, there is an
urgent need for discovering new, reliable, specific biomarkers that
can predict disease progression and survival in PAH. Our recent
work shows that oxidized lipids are significantly elevated in the
plasma of rodents with PH. In the same setting, miR193 expression
is significantly downregulated. Similarly, downregulation of miR193
was also observed in plasma samples obtained from PAH patients.56

These data raise the possibility that a combination approach using
both oxidized lipids and miR193 expression may be exploited as a
potential biomarker panel in PAH to assess the disease severity or
response to therapy in PAH patients (Fig. 3). Analysis of a large co-
hort of human samples is needed to affirm the reliability and devel-
opment of oxidized lipids and miR193 as a biomarker panel for
PAH.

SUMMARY

PAH is a multifactorial and heterogeneous disease associated with
dysregulation of many molecular mechanisms contributing to the
pathogenesis of the disease. The underlying causes of PAH include
structural changes such as vascular remodeling, induction of pro-
proliferative pathways, increased inflammation and oxidative stress,
altered metabolic signaling, and genetic mutations. In this review,
we have mainly focused on the involvement of oxidized lipids, lipid
peroxidation, and impaired cellular mechanisms, including metab-
olism and oxidative stress, in the pathophysiology of PAH (Fig. 2).
We have also elucidated the emerging role of HDL in the context of
PH and the downstream mechanisms, including miR193, involved
in the therapeutic potential of the ApoA-I mimetic peptide 4F in
PH (Fig. 3). Given the heterogeneity of PAH, it is important to
explore in depth the molecular mechanisms involved in the cause
and consequence of the disease. Understanding the involvement of
oxidized lipids in the pathophysiology of PAH may help in the
development of more effective therapeutics and would increase the
existing repertoire of potential therapeutics for this rare disease.
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