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Abstract

Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the 

world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease 

processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared 

risk factors that predispose individuals to both cardiovascular disease and cancer, as well the 

possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in 

understanding the fundamental biological mechanisms that are central to the relationship between 

cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate 

utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular 

and organismal survival. In this Review, we explore the emerging data identifying metabolic 

dysregulation as an important theme in cardio-oncology. We discuss the growing recognition 

of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of 

cardio-oncology through the lens of metabolism.

The new field of cardio-oncology has blossomed because of the rapid growth in novel 

therapies for cancer. These treatments have revolutionized the overall prognosis and 

survival of patients with cancer, but cardiovascular and metabolic toxicities can occur1. 

Moreover, the intersection between cancer and cardiovascular disease (CVD) extends 

beyond toxicology2. Indeed, emerging data suggest that CVDs might potentiate cancer (a 

concept referred to as reverse cardio-oncology)3. One emerging aspect of this interaction is 

the metabolic milieu and metabolic switches that occur in both CVD and cancer. Tumours 

develop metabolic phenotypes that are distinct from those of adjacent, non-malignant 
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tissue and, while providing cell-autonomous benefits for tumour growth, can also have 

cardiovascular and metabolic sequelae4–6. In addition, shared risk factors such as diabetes 

mellitus and obesity can predispose individuals to both CVD and cancer7,8. This concept 

has important public health implications and is especially relevant to a growing number 

of survivors of cancer, who are at high risk of developing CVD9–13. Indeed, several lines 

of evidence indicate that metabolism is a central mechanism in both CVD and cancer. 

Cross-disciplinary and cooperative research studies between cardiology and oncology are 

needed to translate findings from animal models to clinical applications, to improve patient 

care, and to use patient-derived samples for risk stratification and mechanistic studies.

In this Review, we highlight emerging themes in the field of cardio-oncology. We 

specifically look at these issues from the standpoint of metabolism, focusing on conceptual 

advances and the latest discoveries in the development of CVDs during tumour progression, 

with particular attention to how evolving metabolic and immunometabolic dependencies 

provide opportunities for therapeutic intervention to improve the care of patients with cancer 

and survivors of cancer14–16.

Metabolism in cardiac and cancer cells

Metabolism is a defining feature of every living cell, providing energy, biosynthetic 

intermediates and defence mechanisms against reactive by-products of oxidative 

metabolism. The variations in metabolic profile between tissues or cells are defined 

by the metabolic pathways that are being used and the flux rates through these 

pathways. Cardiomyocytes and cancer cells share a unique capacity to maintain crucial 

cellular functions during periods of stress17. One governing factor is the demand for 

ATP and macromolecule synthesis in the form of proteins, lipids or complex sugars. 

The heart achieves a continuous supply of ATP for contractile activities through tight 

coupling between substrate uptake and oxidation, while maintaining the synthesis of 

structural proteins and lipids. The primary catabolic demands of cardiomyocytes are met 

predominantly by using fatty acids, which are preferred over carbohydrates (such as glucose) 

and amino acids under normal physiological conditions18–20.

Various forms of stress, including increased physical activity, alterations in the blood 

composition of nutrients or reduced supply of oxygen, can challenge cardiac metabolism 

and cause a mismatch between ATP demand and oxidative processes (FIG. 1a). For example, 

in the failing heart, cardiac metabolism shifts from oxidative phosphorylation to glycolytic 

ATP provision, which allows cardiac contractile function to be maintained and creates a 

metabolic profile that is similar to that of tumour cells4,21. During heart failure progression, 

the utilization of amino acids and ketone bodies increases relative to that of fatty acids and 

carbohydrates22,23 (FIG. 1b). The degradation of glutamine and ketone bodies leads to the 

incorporation of carbons into the Krebs cycle via acetyl-CoA.

Switches in metabolism not only have consequences for energy expenditure, but specific 

substrates can also function as signalling factors. For example, ketone bodies can act as a 

metabolic fuel, can function as an external signal by binding to cell-surface proteins and 

can promote epigenetic modifications by increasing the post-translational modification of 
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histones via lysine acetylation24,25 (FIG. 1c). Likewise, glucose is a primary source of 

energy, but in excess amounts can be shuttled to the hexosamine pathway, resulting in O-

linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoprotective peptides26,27. The 

contribution of glutamine or other amino acids to cardiac energy substrate metabolism under 

normal physiological conditions is negligible but increases substantially during pathological 

remodelling and in the failing heart28,29. Studies indicate that glutamine-derived carbons 

are used to maintain ATP provision, whereas glutamine-derived nitrogen is donated for 

macromolecule synthesis30. Branched-chain amino acid catabolism is disrupted during 

heart failure, in which the oxidation of branched-chain amino acids (valine, leucine 

and isoleucine) is substantially downregulated, causing the accumulation of catabolic by-

products31,32. The notion that energy substrates are only a fuel is, therefore, incorrect 

because it neglects the pleiotropic roles of metabolic factors in the internal milieu.

In the heart, metabolic changes are directly linked to organ dysfunction or preservation, 

whereas in tumours, metabolic remodelling supports the acquisition and maintenance of 

malignancy. Cancer cells alter metabolic pathways by balancing catabolic and anabolic 

requirements to meet cellular homeostatic, bioenergetic and biosynthetic requirements 

(FIG. 1b). These findings have led to the perception that cancer cells have a defined 

metabolic profile, but in vivo studies of cancer metabolism have challenged this view33,34. 

The Warburg effect, characterized by a preference for glycolysis and increased secretion 

of lactate, even in the presence of oxygen, is an example of oncogenic remodelling in 

many proliferating cancer cells35,36. Although the initial interpretation was that oxidative 

metabolism is deficient in tumours, subsequent studies demonstrated that cancer cells retain 

their capacity for mitochondrial respiration with increased glycolysis, suggesting that the 

regulation of glycolysis is impaired37.

Studies indicate that the metabolic phenotype of tumours is heterogeneous, dynamic and 

flexible, and this view is supported by insights from advanced technologies, including mass 

spectrometry-based metabolomics and proteomics, functional genomics and computational 

metabolic flux analyses in mouse models of cancer and patients with cancer33,38–41. 

Furthermore, metabolic phenotypes in tumours evolve as the tumour progresses from 

premalignant lesions to locally invasive and eventually metastatic cancer. Oncogene-driven 

expression of nutrient transporters42,43, autophagic degradation of proteins and organelles44 

and environmental factors through the tumour microenvironment influence metabolic 

differences between tumours, and can also give rise to regional heterogeneity within a single 

tumour34,38–41.

Tumorigenic variants in KRAS, TP53 and MYC (encoding GTPase KRas, cellular tumour 

antigen p53 and MYC proto-oncogene protein, respectively) drive metabolic remodelling 

in cancer cells by accommodating the increased demand for nutrients to support cell 

proliferation42,43,45,46. Variants in KRAS can increase the expression of amino acid 

transporter SLC7A5 and autophagic flux, thereby supporting the higher demand for protein 

synthesis in proliferating cancer cells42. Likewise, p53 and MYC control various metabolic 

pathways and transporter activities for nutrients. p53 is a central component of cellular 

stress response pathways, and various forms of stress (including nutrient deprivation) can 

lead to p53 activation via the AKT–mTOR signalling pathway and AMP-activated protein 
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kinase47,48. Nucleocytoplasmic malate dehydrogenase 1 has been shown to bind to and 

activate p53 in response to glucose deprivation, leading to increased oxidative metabolism49. 

Oncoproteins of the MYC family are crucial drivers of malignancy and are deregul ated 

in up to 70% of human cancers through several mechan isms, including genetic variants, 

super-enhancer activation, aberrant upstream signalling and altered protein turnover45,46,50. 

Studies have demonstrated that increased MYC expression drives metabolic regulation of 

macromolecule synthesis and building blocks (such as lipids, nucleic acids and proteins) 

to sustain increased cancer cell proliferation51. KRAS, p53 and MYC directly affect the 

transcription of glycolytic enzymes52,53. In particular, MYC modulates the expression of 

glucose transporter SLC2A1, lactate exchange via monocarboxylate transporter 1 (MCT1) 

and MCT2, and several glycolytic enzymes21,54. Together, these studies indicate the tight 

link between metabolism and gene expression regulation to control the adaptation of cancer 

cells to stress.

Shared risk factors for CVD and cancer

CVD and cancer share several risk factors, including diabetes, dyslipidaemia, cachexia and 

an impaired immune response14,15,55. In patients with obesity and diabetes, the plasma 

availability of glucose is increased, the abundance and composition of plasma lipids 

are altered, insulin regulation is disrupted and the levels of inflammatory cytokines are 

upregulated56–58. Likewise, cancer is a systemic disease that affects the cardiovascular 

system through several factors, including the release of small molecules, modulation of 

immune cell activity and metastatic lesions.

CVD and cancer frequently coincide in the same patient and often complicate each other. 

To date, much of the focus in cardio-oncology has been on the cardiovascular complications 

developed during cancer progression and as a result of cancer treatment59,60. However, the 

reverse can also be true, and patients with CVD have been shown to be at increased risk of 

developing cancer (reverse cardio-oncology3), as reviewed previously61,62.

Multiple pathways and mechanisms have been proposed for the comorbidity of CVD and 

cancer2,3,62–66. First, CVD and cancer share environmental risk factors, including obesity, 

smoking and a sedentary lifestyle7,67,68. Furthermore, traditional cardiovascular risk factors, 

such as dyslipidaemia and hypertension, can also be associated with the development of 

cancer — commonly used 10-year risk scores for atherosclerotic CVD are also predictive of 

incident cancer8. This finding emphasizes that the risk factors for CVD and cancer overlap.

Second, shared genetic variants might explain the connection between CVD and cancer. 

Specific inherited genetic variants (for example, in genes encoding components of the WNT 

signalling pathway, the DYRK protein kinase family and the methionine pathway) have been 

associated with both incident cancer and incident CVD, such as coronary artery disease and 

heart failure69,70. Moreover, clonal haematopoiesis of indeterminate potential (CHIP), which 

is caused by certain somatic mutations in haematopoietic stem cells, has been identified 

as a shared risk factor for the onset and development of both CVD and cancer71–73. 

CHIP increases the risk of blood cancers, cardiometabolic diseases and microvascular 

dysfunction74,75. Remarkably, the risk of cardiovascular events is doubled in patients 
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with CHIP76. Approximately 80% of the mutations occur in genes encoding epigenetic 

regulators, such as DNMT3A and TET2 (REFS77–79). Somatic mutations in DNMT3A 
and TET2 contribute to the development of atherosclerosis through increased endothelial 

inflammation driven by molecular interactions between circulating clonal monocytes and 

macrophages and the endothelium80. TET2-deficient macrophages have increased IL-1β 
secretion, which modulates endothelial cell adhesion and vascular permeability81. Heritable 

and acquired risk factors, including age, unhealthy lifestyle behaviours (for example, 

smoking and obesity), inflammatory conditions and exposure to anticancer therapies, are 

associated with an increased prevalence of CHIP82. For example, the incidence of CHIP 

among patients treated with stem cell transplantation for lymphoma was nearly 30%71. 

Although CHIP greatly increases the risk of haematological malignancies, the main cause of 

death in individuals with CHIP is atherosclerotic CVD6,74,76. Whether CHIP is a causal risk 

factor for CVD or simply reflects the accumulation of somatic mutations during biological 

ageing has been debated. However, it has been established that the presence of CHIP alters 

the function of immune cells, such as macrophages, which at least partly explains the 

increased propensity to develop coronary artery disease and its complications, as well as 

adverse myocardial remodelling76,77,79. Furthermore, DNMT3A mutations increase platelet 

production, which can be accompanied by increased platelet functionality, leading to a 

higher risk of cardiovascular events83.

Third, inflammation is a central driver in both CVD and cancer. The CANTOS trial84 

evaluated the use of canakinumab, a human monoclonal antibody to IL-1β, in >10,000 

patients with previous myocardial infarction and a blood level of high-sensitivity C-reactive 

protein of ≥2 mg/dl. Compared with placebo, canakinumab treatment was associated with a 

significantly lower rate of recurrent cardiovascular events, independent of LDL-cholesterol 

levels84. Strikingly, canakinumab treatment also reduced the incidence of lung cancer, 

although this outcome was a secondary end point of the trial85. Prospective studies 

evaluating the efficacy of canakinumab are ongoing, but the results from the CANTOS 

trial suggest that targeting inflammation can both reduce the risk of CVD and limit tumour 

growth. The use of other compounds that interfere with IL-1 signalling, such as anakinra (a 

recombinant and slightly modified version of the human protein IL-1 receptor antagonist), 

has also been associated with reductions in both cardiovascular events86 and cancer events87. 

In addition, the use of generic anti-inflammatory drugs, such as colchicine, is effective 

in reducing CVD events88,89, although the efficacy in patients with cancer is uncertain. 

Clearly, inflammation itself is heterogeneous, but the emerging data that inflammation has 

a central role in both CVD and cancer calls for a greater understanding of the underlying 

mechanisms.

Cancer metabolism and cardiovascular remodelling

Metabolic dysregulation of cancer cells can extend beyond the tumour microenvironment 

and lead to both systemic and cardiac-specific consequences (FIG. 2). The best evidence 

for tumour-intrinsic factors causing cardiov ascular dysregulation comes from variants 

in genes encoding metabolic enzymes that can lead to cancer but which can also have 

systemic repercussions (FIG. 3). For example, somatic mutations in IDH1 and IDH2 
(encoding cytosolic isocitrate dehydrogenase [NADP] (IDH1) and mitochondrial isocitrate 
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dehydrogenase [NADP](IDH2), respectively) have been identified in gliomas (82%), acute 

myeloid leukaemia (15%), colorectal cancer (10%) and prostate cancer (1–3%)90,91. 

Variants in IDH1 and IDH2 lead to excessive accumulation of the oncometabolite D-2-

hydroxyglutarate (D2-HG) in cancer cells and subsequent release into the bloodstream. 

D2-HG promotes epigenetic modifications via inhibition of α-ketoglutarate-dependent 

dioxygenases, which in turn provides a benefit to tumours for growth and proliferation92–94 

(FIG. 4). In addition, multiple preclinical studies have shown that D2-HG affects the 

cellular functions of non-malignant cells. Increased production and release of D2-HG by 

cancer cells with IDH1 or IDH2 variants impairs oxidative metabolism via inhib ition 

of the α-ketoglutarate dehydrogenase and inhibits ATP provision and cardiac contractile 

function4,95. Additionally, D2-HG contributes to an immunosuppressive milieu by impairing 

the immune cell response via inhibition of T cell activation and proliferation96,97. Together, 

these systemic effects might explain observations that show an association between the 

presence of IDH1 or IDH2 variants in patients with leukaemia and reduced left ventricular 

function, especially after chemotherapy with anthracyclines, which has cardiotoxic effects98. 

The effects of D2-HG are enantiomer-specific and can be reversible, offering the potential 

for compounds that block variants of IDH1 or IDH2 to have antitumour activity.

The overall effect of cancer on the cardiovascular system depends on the size of the tumour, 

its vascularization, the shielding of the tumour from the invaded organ(s) (for example, by 

the presence of a capsule) and several other factors. This concept has been most studied for 

the oncometabolite D2-HG. The production and release of D2-HG has been directly linked 

to the development of cardiomyopathy and neurological disorders4,5. 2-Hydroxyglutaric 

acidurias are a heterogeneous group of genetic diseases that are characterized by the 

accumulation of D2-HG or l-2-hydroxyglutarate (L2-HG) in bodily fluids and which 

are caused by variants in D2HGDH (encoding mitochondrial D2-HG dehydrogenase), 

L2HGDH (encoding mitochondrial L2-HG dehydrogenase), IDH2 or SLC25A1 (encoding 

the mitochondrial tricarboxylate transport protein). The mitochondrial D2-HG and L2-

HG dehydrogenases catalyse the conversion of D2-HG and L2-HG, respectively, to α-

ketoglutarate. Loss-of-function variants in D2HGDH or L2HGDH cause an accumulation 

of D2-HG or L2-HG, respectively, and impairment of endogenous enzymatic systems99. 

Children with these variants have a wide range of neurological disorders as well as dilated 

or hypertrophic cardiomyopathy100. Interestingly, adult patients with 2-hydroxyglutaric 

aciduria syndrome often harbour heterozygous germline variants in IDH2 in addition to 

variants in D2HGDH or L2HGDH, resulting in even higher levels of D2-HG and L2-HG and 

a substantially increased risk of cardiomyopathy101,102. In adult mice, global induction of 

variant Idh2 expression (and the subsequent increase in plasma D2-HG and L2-HG levels) 

resulted in dilated cardiomyopathy, muscular dystrophy and white matter abnormalities 

throughout the central nervous system5. Hearts from these mice accumulated glycogen and 

had smaller and fewer mitochondria than hearts from healthy control mice5. Remarkably, 

implantation of tumour xenografts harbouring an IDH2 variant also resulted in cardiac 

abnormalities5, suggesting that D2-HG and L2-HG can act in a paracrine fashion to cause 

cardiotoxicity.

In individuals with somatic mutations in IDH1 or IDH2, paracrine or endocrine effects 

can be the cause of cardiac remodelling, but in other situations, inherited genetic variants 
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can directly cause metabolic dysregulation. Biallelic loss-of-function variants in VHL 
(encoding von Hippel–Lindau disease tumour suppressor), which are typical in renal cell 

carcinoma and haemangioblastoma, are an example of how metabolic reprogramming 

facilitates the development of cancer and can lead to cardiac sequelae103,104 (FIG. 4). 

von Hippel–Lindau syndrome, characterized by germline variants in VHL, predisposes 

patients to a multitude of vascular tumours, including retinal angiomas and cerebellar 

haemangioblastomas103. Furthermore, patients with specific homozygous variants in VHL 
can have polycythaemia and cardiopulmonary abnormalities, including increased basal 

ventilation, pulmonary vascular tone and heart rate responses at baseline, and these 

abnormalities are accentuated by hypoxia105,106. During exercise, these patients have early 

and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation 

of lactate in the blood and reduced maximum exercise capacity107. Transgenic mice with 

the same Vhl variants have increased glycolysis and a decreased phosphocreatine to ATP 

ratio in the heart, consistent with impaired oxidative metabolism108. A case study described 

a patient with a point mutation in VHL that was associated with reduced growth rate, 

persistent hypoglycaemia and limited exercise capacity, with gene expression changes 

that reprogrammed carbohydrate and lipid metabolism, impaired mitochondrial respiratory 

function in skeletal muscle and uncoupled oxygen consumption from ATP production109. 

Finally, cardiac-specific deletion of Vhl in mice can lead to progressive heart failure and 

premature death, with a subset of mice developing malignant cardiac tumours with features 

of rhabdomyosarcoma and the capacity to metastasize110.

The protein product of VHL functions as an E3 ubiquitin ligase of hypoxia-inducible 

factor 1α (HIF1α), which promotes proteasome-mediated degradation of HIF1α (and of 

the related protein, HIF2α) during normoxia. In hypoxia, HIF1α and HIF2α are stable 

and heterodimerize with HIF1β (also known as ARNT protein) to function as a master 

transcription factor for the induction of hundreds of genes that are crucial for the cellular 

and systemic response to hypoxia. Tumours with VHL variants have aberrant activation 

of HIF2α and, therefore, show many of the hallmarks of hypoxia111. HIF2α (the HIF 

isoform specifically implicated in renal cell carcinoma) activates the transcription of genes 

encoding angiogenic growth factors (such as members of the vascular endothelial growth 

factor (VEGF) and platelet-derived growth factor (PDGF) families) as well as genes 

encoding metabolism-related protein (such as the glucose transporter type 1), thereby 

changing the metabolic phenotype of affected tumours112,113. Belzutifan, a small-molecule 

inhibitor of HIF2α, has been approved for the treatment of patients with von Hippel–Lindau 

syndrome114. In a mouse xenograft model of renal cell carcinoma, inhibitors of HIF2α 
blocked the angiogenic and metabolic targets of HIF2α, demonstrating on-target antitumour 

activity112,115. Interestingly, in mouse models with the specific variants in Vhl that result in 

polycythaemia, treatment with a HIF2α inhibitor reversed the cardiopulmonary phenotypes 

associated with the genetic variant116. The spectrum of cardiopulmonary abnormalities that 

are associated with VHL variants is a demonstration of the genotype–phenotype correlations 

that occur between cancer-associated variants and cardiovascular metabolism.

The systemic and cardiac effects of the presence in tumours of other inherited or somatic 

variants in genes encoding metabolic enzymes are less clear. Biallelic (germline or somatic) 

loss-of-function variants in genes encoding subunits of succinate dehydrogenase (SDH) 
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can cause rare conditions that comprise 2% of mitochondrial respiratory chain disorders117 

(FIG. 4). SDH forms complex II of the mitochondrial electron transport chain and couples 

the oxidation of succinate to fumarate in the Krebs cycle to the transfer of electrons to 

the terminal acceptor ubiquinone in the electron transport chain. The four subunits of the 

SDH complex are encoded by SDHA, SDHB, SDHC and SDHD in the nucleus. Genetic 

variants in one or more subunits predispose individuals to a variety of tumours, including 

phaeochromocytoma, paraganglioma, gastrointestinal stromal tumours, haemangioblastoma 

and papillary renal cell carcinoma117–122. Germline variants in SDH-encoding genes are 

associated with the complete loss of enzymatic function and mitochondrial accumulation 

of succinate123. The cardiac phenotypes of patients who have tumours with variants in 

SDH-encoding genes are yet to be defined in a large population, but case reports suggest that 

these variants are associated with severe myopathy, most notably dilated cardiomyopathy 

with impaired left ventricular function124–128.

Like D2-HG, succinate is considered to be an oncometabolite, and drives genome-wide 

hypermethylation and transcription factor activation via inhibition of α-ketoglutarate-

dependent dioxygenases and HIF1α prolyl hydroxylases122,123. However, whether succinate 

drives tumorigenesis and acts as a metabolic signal during malignancy remains to be 

determined. Increased plasma succinate levels are associated with CVDs and increased 

inflammation, as well as ischaemia–reperfusion injury129,130. Preclinical studies suggest that 

succinate release from cancer cells activates an immune response and cellular signalling 

via succinate receptor 1 (REFS131,132). Despite these promising preclinical studies, further 

research is needed to explain the cardiometabolic phenotype associated with variants in 

SDH-encoding genes.

A more general effect of cancer on the cardiovascular system is cancer-associated cachexia, 

a debilitating condition characterized by skeletal muscle wasting and loss of adipose tissue, 

which substantially contributes to morbidity and mortality133,134. Many factors contribute 

to cancer-induced muscle wasting, including altered protein and energy metabolism and 

chronic inflammation134–136. Pro-inflammatory cytokines, including tumour necrosis factor, 

IL-1β and IL-6, which are produced either by cancer cells or by immune cells in response 

to the tumour, interfere with appetite signals in the anterior hypothalamus and increase 

the metabolic rate137. Increased net protein breakdown and increased oxidation of branched-

chain amino acids are characteristic features of solid tumours, and result in decreased 

plasma amino acid concentrations42,138. Accordingly, monitoring of plasma amino acid 

levels (for example, glutamine) has emerged as a pretreatment risk stratification tool138, and 

controlling amino acid availability is a promising therapeutic intervention139,140.

Metabolic effects of anticancer therapies

Anticancer therapies can induce CVD via several mechanisms, including direct 

cardiotoxicity, effects on the vasculature, and perturbations to cardiovascular and 

immune homeostasis141–144. In addition, a subset of anticancer therapies can have 

substantial metabolic effects, which can either manifest systemically or cause organ-

specific perturbations (for example, in the heart). Traditional anticancer therapies, 

such as anthracyclines and radiation, have long been known to be associated with 
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cardiovascular sequelae, including cardiomyopathy and cardiac ischaemia145. Because 

of the non-specific mechanisms of action of these therapies, the cardiotoxicities can 

involve direct cell death and also metabolic sequelae. For example, preclinical models 

suggest multiple mechanisms of anthracycline-mediated cardiotoxicity, with several studies 

indicating metabolic perturbations, such as impairment of mitochondrial biogenesis and 

iron metabolism and effects on transcription factors that regulate metabolism, including 

HIF60,146,147. Cardiotoxicity can also occur with therapy with antimetabolites, such 

as 5-fluorouracil, a synthetic analogue of uracil that inhibits thymidylate synthase, 

thereby limiting the availability of thymidine nucleotides for DNA synthesis. Although 

5-fluorouracil is an effective anticancer treatment, cardiotoxicity can result from vascular 

spasms148. Androgen deprivation therapy (with the use of drugs such as leuprolide), which 

is a mainstay of treatment for prostate cancer, can cause systemic metabolic sequelae, 

including hyperglycaemia, hypertriglyceridaemia, increased adiposity and decreased lean 

body mass149.

An improved understanding of the specific pathways that are dysregulated in cancer has 

led to the development of more targeted therapies, but these therapies have been associated 

with more diverse metabolic dysregulation. For example, given that specific kinases become 

aberrantly activated in different types of malignancy, kinase inhibitors have emerged over 

the past two decades as important forms of anticancer treatment59. Kinase inhibitors can 

generally be divided into antibodies and small molecules. Small-molecule inhibitors bind 

to receptor kinases intracellularly, inhibiting the catalytic activity of tyrosine kinases by 

allosteric inhibition or by directly interfering with the binding of ATP to a structurally 

unique pocket. However, because the ATP-binding pocket can be similar on more than one 

kinase receptor, small-molecule inhibitors can target more than one kinase. For this reason, 

whereas biologic agents (such as antibodies) are often fairly specific, small molecules can be 

promiscuous and result in off-target inhibition of kinases other than the intended target150. 

Depending on the kinases affected, metabolic dysregulation can arise.

For example, small-molecule inhibitors targeting VEGF and PDGF receptors have been 

rapidly developed for the treatment of many forms of cancer, including kidney cancer143,151. 

These therapies are often associated with hypertension and are associated with mild 

cardiomyopathy152–154. VEGF is widely expressed in cardiac tissue, and inhibition of 

VEGF signalling can impair the growth, development and repair of cardiac tissue155,156. 

In addition, therapy with VEGF inhibitors can be associated with relative hypoglycaemia, 

although isolated cases of severe hypoglycaemia have been reported157. In experimental 

models, sunitinib (a small-molecule, multi-targeted receptor tyrosine kinase inhibitor) 

prevented and reversed diabetes in mice as a result of ‘on-target’ inhibition of both PDGF 

and VEGF signalling158,159. Interestingly, therapy with imatinib, which is primarily used to 

inhibit tyrosine protein kinase ABL1, which is activated in certain forms of leukaemia, is 

also associated with hypoglycaemia in experimental models and in patients160–163. Imatinib 

does not target VEGF receptors but was initially developed as a PDGF receptor inhibitor, 

which contributes to the changes in blood glucose levels, although the specific mechanisms 

are uncertain158,164. VEGF inhibitor therapy can lead to mild cardiomyopathy, which 

is often reversible after drug discontinuation152,165. Mechanistically, this cardiomyopathy 

arises owing to direct inhibition of VEGF and PDGF, resulting in microvascular dysfunction 
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and stabilization of HIF and downstream targets166,167. In accordance with this mechanism, 

mice in which HIF is genetically stabilized also develop cardiomyopathy, which is reversible 

when the transgene is turned off168,169. Similarly, phosphoinositide 3-kinase (PI3K) 

inhibitors are associated with hyperglycaemia143. This adverse effect is expected, because 

PI3K is an important modulator of insulin signalling and lipid homeostasis162. Although the 

metabolic complications associated with VEGF or PI3K inhibitor therapies are often ‘on-

target’ (that is, caused by the direct inhibition of the intended kinase target), the mechanisms 

of toxicity associated with other kinase inhibitors are less clear. Nilotinib, an ABL1 kinase 

inhibitor that is used in the treatment of some forms of leukaemia, is associated with 

hyperglycaemia and subsequent vascular disease162. The association between nilotinib and 

hyperglycaemia is presumably an off-target effect, because other ABL1 kinase inhibitors are 

not associated with hyperglycaemia, and imatinib is even associated with hypoglycaemia163.

In the past decade, intense efforts have been made to target the metabolism of the tumour 

or the tumour microenvironment in the treatment of cancer. Many of these efforts have been 

precision-based. For example, ivosidenib (an IDH1 inhibitor previously known as AG-120) 

and enasidenib (an IDH2 inhibitor previously known as AG-221) have been approved by 

the FDA for the treatment of patients with relapsed or refractory acute myeloid leukaemia 

and variants in IDH1 or IDH2, respectively170,171. These drugs are currently being tested 

in patients with other types of cancer with variants in IDH1 or IDH2, including glioma, 

cholangiocarcinoma and chondrosarcoma170–173. Any adverse sequelae of these therapies 

are currently uncertain because of their recent approval, although given that ivosidenib 

and enasidenib target only mutant IDH1 and IDH2, respectively, any effect on wild-type 

IDH enzymes in normal organs, including the heart, should be minimal. Interestingly, 

prolongation of the corrected QT interval (QTc) on the surface electrocardiogram, which 

increases the risk of ventricular arrhythmia, was a serious and unexpected adverse effect 

associated with ivosidenib in both preclinical and clinical testing174. Indeed, >25% of 

patients who were treated with ivosidenib had QTc prolongation, although only 8% required 

treatment interruption or dose reduction174.

Finally, immunotherapies have revolutionized anticancer treatment in the past decade175. 

Immunotherapies include a broad range of novel drugs, from antibodies and other biologic 

agents, including immune checkpoint inhibitors and bispecific T cell engagers, to cell-based 

therapies, such as chimeric antigen receptor T cell therapies. Immune checkpoint inhibitors 

can cause inflammatory toxicities, including myocarditis176; however, adverse effects can 

also include metabolic toxicities, including diabetes177. Cellular therapies can result in 

cytokine release syndrome, which can manifest with mild to life-threatening symptoms, 

including severe hypotension and vascular leak175,178–180. Although the mechanisms of 

these cardiovascular toxicities are not clear, metabolic perturbations resulting from cytokine 

release syndrome could contribute to systemic toxicities.

Targeting metabolism in CVD and cancer

Given that metabolic pathways are altered in both CVD and cancer, specific treatments 

that target metabolic features might be beneficial in both conditions. Genetically defined 

metabolic phenotypes contribute mechanistically to tumour transformation and are potential 
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therapeutic targets. Targeting these metabolic signatures by inhibiting enzymatic functions 

or through dietary interventions holds the promise to alter tumour metabolite availability and 

influence cancer cell growth. Incorporating pharmacological and interventional treatments 

targeting metabolism might improve the efficacy of existing anticancer treatments and might 

also reduce the overall risks associated with cancer-associated CVD. Given the various 

possibilities, we restrict the following discussion to some specific examples.

First, variants in genes that encode metabolic enzymes are important drivers of tumour 

initiation and growth and can be targeted therapeutically. This paradigm has been 

successfully applied to tumours with variants in IDH-encoding genes. The clinical efficacy 

of inhibitors of mutant IDH1 and IDH2 has been demonstrated in patients with acute 

myeloid leukaemia151, and clinical trials in patients with advanced cholangiocarcinoma or 

chondrosarcoma have shown increased progression-free survival with the IDH1 inhibitor 

ivosidenib compared with placebo181,182 (FIG. 5). IDH1 inhibitors provide new options for 

patients with unresectable, metastatic and/or refractory cancer who have no other treatment 

options. Another benefit of IDH1 inhibitors is the significant reduction in plasma D2-HG 

concentrations, which might improve the D2-HG-mediated metabolic alterations observed in 

these patients181.

Second, obesity, diabetes and dyslipidaemia have established systemic manifestations, such 

as increased inflammation, which might explain their widespread and profound effects on 

the organism. Interventions that reverse the deleterious effects of these metabolic stressors 

might have beneficial effects on the risk of CVD and cancer. Dietary interventions have been 

proposed as another effective strategy to target cancer cells and reduce the risk of CVD 

(FIG. 5). Fasting is the most extreme approach to reset an organism’s metabolism and has 

been shown to have positive effects in cancer prevention and treatment in mice183. Just 1 

day of fasting per week delays spontaneous tumorigenesis in p53-deficient mice184. Fasting 

is associated with decreases in plasma glucose, insulin and insulin-like growth factor 1 

levels, which might partly explain the salutary effects of fasting185–187. Furthermore, fasting 

is followed by a period of abnormally high cellular proliferation, which is characterized 

by the activation of cellular repair pathways and is driven by the replenishment of growth 

factors during refeeding to reverse atrophic cellular remodelling183,184. No clinical data 

are currently available to advocate intermittent fasting in patients with cancer, but several 

trials are underway. Low glycaemic diets have been shown to reduce lipid metabolism and 

tumour growth188. Bariatric surgery, another drastic intervention to reduce obesity, has been 

shown to have long-term preventive effects on incident CVD and cancer189. Other examples 

of therapies that modify metabolism are drugs to reduce serum cholesterol levels, such as 

statins, which are extremely effective in preventing coronary and cerebrovascular events190. 

However, the effects of statins on the incidence of cancer are uncertain, but are likely to be 

neutral according to a meta-analysis190.

Combining metabolic inhibitors with anticancer therapies holds the promise to improve 

the efficacy and durability of existing treatments for patients with cancer, while also 

protecting the heart. Several approved metabolic therapies target lipid synthesis, but 

their clinical applications have been limited. Some tumours rely on glucose metabolism 

during the early stages of the disease. The use of PI3K inhibitors targeting glucose 
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homeostasis and metabolism has been successful in the treatment of a subset of cancers, 

including breast cancers191,192 (FIG. 5). Inhibition of PI3K can lead to both decreased 

cancer cell proliferation and increased cellular death191. However, the use of PI3K 

inhibitors has been limited in some patients owing to fulminant hypoglycaemia and therapy 

resistance. Depending on the tumour profile, compensatory signalling mechanisms result in 

hyperinsulinaemia, causing increased tumour growth and treatment failure191,192.

Some types of tumour, such as breast cancer, rely on fatty acid synthesis in the advanced 

stages of the disease193. Targeting de novo fatty acid synthesis by inhibition of fatty acid 

synthase has been proposed as a promising therapeutic strategy in HER2+ breast cancer 

with brain metastasis193. Likewise, inhibitors of stearoyl-CoA desaturase and ATP–citrate 

synthase in tumours with increased lipid synthesis (such as colorectal cancers and pancreatic 

cancer) have shown promising results in preclinical studies194–196. The cardiovascular risk 

associated with these therapies is uncertain, but evidence from previous clinical trials 

suggests that these therapies are likely to be associated with increased risks of adverse 

cardiovascular events, perhaps owing to metabolic dysregulation149. Risk stratification of 

patients on the basis of existing metabolic risk factors, the tumour profile, cell-specific drug 

delivery and cardiac remodelling is necessary.

Conclusions

Metabolic adaptation in CVD and cancer is complex and dynamic. The causes of these 

metabolic changes are multifactorial, including intrinsic and extrinsic factors to both normal 

and diseased tissue. These complexities introduce challenges to elucidating how cancer cells 

affect other organs and potentially impair their function. Additional studies are necessary to 

predict metabolic signatures that can be therapeutically targeted and the potential systemic 

effects of these therapies. CVDs have emerged as a leading cause of death in survivors 

of cancer, prompting questions about how tumours alter cellular states beyond their own 

direct environment. The metabolism of cancer cells and cardiomyocytes seems to be 

different at first glance, but closer examination of the cellular processes shows that similar 

stress-response pathways exist in cardiomyocytes and certain types of tumour. Furthermore, 

tumours impose metabolic stress on the heart, which causes distinct metabolic phenotypes. 

Understanding the processes by which metabolic processes remodel is likely to provide new 

avenues of therapeutic interventions and to improve our understanding of cardiac adaptation. 

To move the field forwards, we need to harness new technologies in metabolic imaging 

and stable isotope tracer analysis, and to develop models that provide a bridge between 

preclinical discoveries and clinical translation.
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Key points

• metabolic remodelling is a defining feature of both cardiovascular diseases 

and tumours.

• metabolic dysregulation of cancer cells extends beyond the tumour 

microenvironment and can lead to both systemic and cardiac-specific 

consequences.

• Cardiovascular disease and cancer share several risk factors, including 

diabetes mellitus, dyslipidaemia, cachexia and an impaired immune response.

• Anticancer therapies can result in adverse cardiac events, including acute 

myocardial infarction and heart failure.

• Targeting metabolic features of cancer cells might limit tumour growth and 

also protect the heart against adverse remodelling.
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Fig. 1 |. The central role of metabolic remodelling in cardiovascular disease and cancer.
a | An overview of the metabolic consequences of stressors to the heart, which initially 

might be compensated for, but in the long term lead to dysfunction of the heart. b | In 

adult cardiomyocytes (left), the main source of fuel under normal physiological conditions 

is fatty acids. Stress initiates a shift in nutrient utilization away from fatty acid oxidation 

(dashed line) and towards glucose, ketone bodies or amino acids (such as glutamine) as 

sources of energy. These dynamic changes ensure continued ATP provision and maintenance 

of cardiac contractile function. In cancer cells (right), metabolic reprogramming supports 

successful adaptation to acquired mutations during tumorigenesis. Both catabolic and 

anabolic processes are maintained to ensure ATP provision and macromolecule synthesis 

during tumour growth. c | Post-translational modifications of proteins are linked to energy 

substrate metabolism and have a key role in the regulation of signalling, gene expression, 

protein stability and interactions, and enzyme kinetics. Ac, acetyl; α-KG, α-ketoglutarate; 

Me, methyl; O-GlcNAc, O-linked β-N-acetylglucosamine; P, phosphate.
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Fig. 2 |. Metabolism bridges cancer and cardiovascular disease.
Several metabolic stressors and perturbations, including obesity and cachexia, prompt the 

production and release of metabolic and inflammatory signal peptides and molecules. These 

systemic effects are accompanied by distinct differences as well as shared features in cardiac 

tissue and in cancer cells.
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Fig. 3 |. Putative mechanisms of cardio-onco-metabolic remodelling.
The presence of cancer and/or the use of anticancer therapies can provoke changes in 

the organism, such as remodelling of immune cells, that affect the heart. Furthermore, 

specific oncometa bolites, such D-2-hydroxyglutarate and succinate, can affect the heart 

tissue directly. Metabolic risk factors can cause cardiovascular disease as well as exacerbate 

tumour proliferation and cancer progression.
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Fig. 4 |. Accumulation of somatic mutations changes the metabolic profile of tumours and 
influences the cardiovascular system.
Variants (indicated by red stars) in IDH1 or IDH2, encoding cytosolic isocitrate 

dehydrogenase [NADP] (IDH1) and mitochondrial isocitrate dehydrogenase [NADP] 

(IDH2), cause increased production and release of the oncometabolite D-2-hydroxyglutarate 

(D2-HG). D2-HG promotes epigenetic modifications and tumorigenesis. Variants in VHL, 

encoding von Hippel–Lindau disease tumour suppressor (VHL), are associated with vascular 

tumours by interference with the hypoxia-inducible factor 1α (HIF1α)–vascular endothelial 

growth factor (VEGF) pathway. Likewise, variants in succinate dehydrogenase (SDH)-
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encoding genes increase malignant remodelling and affect transcriptional regulation. α-KG, 

α-ketoglutarate; AKT, RACα serine/threonine-protein kinase; FH, mitochondrial fumarate 

hydratase; GLUT1, glucose transporter type 1; KRAS, GTPase KRas; mTOR, mechanistic 

target of rapamycin; MYC, MYC proto-oncogene protein; p53, cellular tumour antigen p53; 

PDH, pyruvate dehydrogenase; PI3K, phosphoinositide 3-kinase.

Karlstaedt et al. Page 27

Nat Rev Cardiol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. Metabolic targets and interventions in cardiovascular disease and cancer.
a | Inhibitors targeting variant forms of cytosolic isocitrate dehydrogenase [NADP] (IDH1) 

or mitochondrial isocitrate dehydrogenase [NADP] (IDH2) are efficacious in patients with 

acute myeloid leukaemia. b | Inhibitors of the phosphoinositide 3-kinase (PI3K) pathway or 

of fatty acid synthase (FASN), ATP–citrate synthase (ACLY) or stearoyl-CoA desaturase 1 

(SCD1) lower plasma levels of glucose or fatty acids and might have beneficial effects in 

patients with cardiovascular disease or cancer. c | Caloric restriction has beneficial effects in 

patients with cardiovascular disease or cancer via its pleiotropic effects on various metabolic 

and inflammatory components. CCL2, C-C motif chemokine 2; IGF1, insulin-like growth 

factor 1; TNF, tumour necrosis factor.
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