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Cosmological implications of the KOTO excess

Wolfgang Altmannshofer,1, ∗ Benjamin V. Lehmann,1, † and Stefano Profumo1, ‡

1Department of Physics, University of California Santa Cruz,

1156 High St., Santa Cruz, CA 95064, USA and

Santa Cruz Institute for Particle Physics,

1156 High St., Santa Cruz, CA 95064, USA

The KOTO experiment has reported an excess of KL → π0νν̄ events above the

standard model prediction, in tension with the Grossman–Nir bound. The GN bound

heavily constrains new physics interpretations of an excess in this channel, but an-

other possibility is that the observed events originate from a different process entirely:

a decay of the form KL → π0X, where X denotes one or more new invisible species.

We introduce a class of models to study this scenario with two light scalars play-

ing the role of X, and we examine the possibility that the lighter of the two new

states may also account for cosmological dark matter. We show that this species can

be produced thermally in the presence of additional interactions apart from those

needed to account for the KOTO excess. Conversely, in the minimal version of the

model, dark matter must be produced non-thermally. In this case, avoiding over-

production imposes constraints on the structure of the low-energy theory. Moreover,

this requirement carries significant implications for the scale of reheating in the early

universe, generically preferring a low but observationally-permitted reheating tem-

perature of O(10 MeV). We discuss astrophysical and terrestrial signatures that will

allow further tests of this paradigm in the coming years.
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I. INTRODUCTION

The rare kaon decays K+ → π+νν̄ and KL → π0νν̄ are widely recognized as very sensitive

probes of new physics (NP). In the Standard Model (SM), the branching ratios of these

decays are strongly suppressed, and can be precisely predicted [12, 14] to be

BR(K+ → π+νν̄)SM = (8.4± 1.0)× 10−11 , (1)

BR(KL → π0νν̄)SM = (3.4± 0.6)× 10−11 . (2)

On the experimental side, several K+ → π+νν̄ candidate events have been observed by the

E787/E949 experiment [2, 5, 6] and the NA62 experiment [18], but a discovery of K+ →

π+νν̄ has still to be established. The current best limit on the branching ratio is from a

preliminary analysis of NA62 data and reads [47]

BR(K+ → π+νν̄)exp < 2.44× 10−10 (95% C.L.), (3)

not far above the SM prediction. The NA62 experiment aims to measure the SM branching

ratio with O(10%) uncertainty. In the case of KL → π0νν̄, the current most stringent

bound on the branching ratio comes from the KOTO experiment [3], and is still two orders

of magnitude above the SM prediction:

BR(KL → π0νν̄)exp < 3.0× 10−9 (90% C.L.). (4)

Interestingly, in the latest status update by KOTO [49], 4 events are seen in the signal box,

with an expected number of 0.05± 0.01 SM KL → π0νν̄ events and 0.05± 0.02 background

events. One of the events has been identified as likely background. If the remaining events

are interpreted as signal, one finds a branching ratio of BR(KL → π0νν̄) ∼ 2 × 10−9 [40].

A branching ratio of this size would be a spectacular discovery. Not only does it imply NP,

it also violates the Grossman-Nir (GN) bound [31], BR(KL → π0νν̄) . 4.3 × BR(K+ →

π+νν̄) . 10−9, when combined with the NA62 constraint in eq. (3). The GN bound is very

robust in models where the K → πνν̄ decays are modified by heavy new physics well above

the kaon mass. However, in the presence of light new physics, the GN bound can be violated

and the observed events at KOTO may find an explanation [19, 21, 23, 25, 30, 36–38, 40–

42, 52].

Here we focus on a new physics scenario first discussed in [45]. Two new light scalars

S and P , neutral under the SM gauge interactions, are introduced such that KL can decay
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FIG. 1. Decay chain accounting for the KOTO signal in our scenario.

into a pair of the new particles, KL → SP . If the decay S → π0P is allowed and P is stable

on the relevant experimental scales, then the decay chain KL → SP → π0PP can mimic

the KL → π0νν̄ signature (see fig. 1). The corresponding chain of two-body decays does

not exist for the charged kaon. A possible decay K+ → π+SP is suppressed by three-body

phase space or may be forbidden entirely by kinematics.

If P is absolutely stable, it is also a candidate for cosmological dark matter. In the

minimal setup that can provide a NP explanation of the KOTO events, P couples to the

SM very weakly, implying that annihilation cross sections into SM states are too small for

production by freeze-out. We therefore investigate alternative scenarios for cosmological

production, and interpret overproduction of P as a cosmological constraint on the structure

of the low-energy theory. We show that P is readily produced non-thermally if the scale of

reheating is low, close to but safely above the current observational bound. We also show

that this class of models can account for the KOTO excess without requiring a low reheating

temperature, but only in the presence of additional interactions. We investigate prospects

for testing this model with future experiments and with additional data from KOTO, and

show that much of the parameter space will be probed in the near future.

This paper is organized as follows: in section II, we present the model and discuss how

it can explain the KOTO events. In section III, we evaluate astrophysical and terrestrial

constraints on the parameter space of our model. In section IV, we consider cosmological

production of P , and relate the production of P to the scale of reheating. We discuss the

implications of our results in section V and conclude in section VI.
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II. MODEL

We start with very simple kinematical considerations concerning the masses of the two

scalars S and P . Figure 2 shows the plane of the two scalar masses mS and mP . As

described in the introduction, we are interested in regions of parameter space where the

decay KL → π0PP , which mimics KL → π0νν̄, can be realized as a sequence of the two-

body decay KL → SP followed by S → π0P . For mS too large, the decay KL → SP is

kinematically forbidden, while for mS too small, the S → π0P decay is not open, excluding

the dark gray regions in the plot. In the light gray region one faces potential constraints from

the charged kaon decay K+ → π+SP that is generically expected in the models discussed

below. In the white region, however, this decay is kinematically forbidden, while KL → π0νν̄

remains open.

The plot also indicates two other interesting kinematical boundaries. If mP < mπ0/2, the

exotic pion decay π0 → PP is possible which, as we will discuss in section IV, can impact

cosmological production considerably. If mS > 3mP , the decay S → 3P can be allowed,

thus modifying the lifetime of S, which is a crucial parameter for beam dump constraints.

Note that low P masses may be subject to constraints from supernova cooling, which we

will discuss further in section III A. A weaker lower bound on the P mass also follows from

assuming a particular thermal history, a point to which we shall return in section V.

In the following sections, we will discuss four benchmark parameter points covering the

most interesting regimes:

BM1: mS = 400 MeV, mP = 10 MeV,

BM2: mS = 350 MeV, mP = 100 MeV,

BM3: mS = 300 MeV, mP = 125 MeV,

BM4: mS = 200 MeV, mP = 10 MeV.

(5)

Next we discuss in detail the interactions of S and P with SM quarks. We first focus on

non-renormalizable effective couplings and identify viable regions of parameter space. Then

we comment on simplified UV models that map onto the effective couplings.
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FIG. 2. The plane of the scalar masses mS vs. mP . In the dark gray region the KL → π0PP

decay cannot be realized as a sequence of 2-body decays. In the light gray region the K+ → π+SP

decay is open. The black dots indicate four benchmark scenarios that we consider later (eq. (5)).

A. Effective interactions of the scalars and meson decay rates

We assume that the scalars S and P interact with SM particles via the effective couplings

Lint ⊃ iSP

(
gSPdd
ΛNP

(d̄d) +
g̃SPdd
ΛNP

(d̄iγ5d) +
gSPss
ΛNP

(s̄s) +
g̃SPss
ΛNP

(s̄iγ5s)

)
+ iSP

(
gSPsd
ΛNP

(s̄d) +
g̃SPsd
ΛNP

(s̄iγ5d) + h.c.

)
. (6)

The factors of i in the above Lagrangian are reminiscent of considering S to be a CP-even

scalar and P to be a CP-odd pseudoscalar, a notational pattern that we will retain when

matching onto low-energy QCD later on. The coefficients gSPdd , gSPss , g̃SPdd , and g̃SPss are purely

imaginary (by hermiticity of the Lagrangian) while the gSPsd and g̃SPsd coefficients can have an

arbitrary complex phase. There could also be interactions involving b quarks, but as long

as they are not considerably larger than the interactions with the light quarks, their impact

on phenomenology will be negligible.

In the following, we will also entertain the possibility of additional interactions involving
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P 2 and S2, of the form

Lint ⊃ P 2

(
gP

2

dd

ΛNP

(d̄d) +
g̃P

2

dd

ΛNP

(d̄iγ5d) +
gP

2

ss

ΛNP

(s̄s) +
g̃P

2

ss

ΛNP

(s̄iγ5s)

)

+ P 2

(
gP

2

sd

ΛNP

(s̄d) +
g̃P

2

sd

ΛNP

(s̄iγ5d) + h.c.

)
. (7)

While the interactions in eq. (7) are not directly relevant for the KOTO signal, they do

have important implications for other meson decays and in particular for the dark matter

phenomenology as we will discuss in section IV below.

The decays relevant for an enhanced KOTO signal, KL → SP and S → π0P are induced

by the couplings Re(g̃SPsd ) and Im(g̃SPdd ), respectively. For the corresponding decay rates we

find

Γ(KL → SP ) =
1

8π

f 2
Km

3
KL

m2
s

(
Re(g̃SPsd )

ΛNP

)2

ηQCD

√
λ
(
1,m2

S/m
2
KL
,m2

P/m
2
KL

)
, (8)

Γ(S → π0P ) =
1

128π

f 2
πm

4
π0

mSm2
d

(
Im(g̃SPdd )

ΛNP

)2

ηQCD

√
λ
(
1,m2

π0/m2
S,m

2
P/m

2
S

)
, (9)

with the phase space function λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc). The down and

strange quark masses in the above expressions should be interpreted as the MS masses at

a renormalization scale of µ = 2 GeV. Leading-log QCD corrections are then taken into

account through the factor ηQCD

ηQCD =

(
αs(mt)

αs(M)

)8/7(
αs(mb)

αs(mt)

)24/23(
αs(2 GeV)

αs(mb)

)24/25

, (10)

where M is the scale of new physics that is responsible for the effective interactions of S

and P with the SM quarks. Because of SU(2)L invariance we expect M ∼
√

ΛNPv, where

v = 246 GeV is the vacuum expectation value of the SM Higgs. Note that including the

ηQCD factor is equivalent to evaluating the down and strange masses in eqs. (8) and (9) at

the scale M .

The coupling |gSPsd | can lead to the decay K+ → π+SP , if kinematically allowed. The

differential 3-body decay rate of K+ → π+SP is given by

dΓ(K+ → π+SP )

dq2
=

1

256π3

m3
K+

m2
s

(
|gSPsd |
ΛNP

)2

ηQCD

(
1−

m2
π+

m2
K+

)2

×
√
λ (1,m2

S/q
2,m2

P/q
2)
√
λ
(
1,m2

π+/m2
K+ , q2/m2

K+

)
, (11)
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where we estimated the relevant scalar form factor as 〈π+|s̄d|K+〉 ' (m2
K+ −m2

π+)/ms and

q2 is the invariant mass of the SP system, with (mP +mS)2 < q2 < (mK+ −mπ+)2.

Similarly to the KL → SP decay, the interactions in eq. (6) also lead to the exotic eta

decay η → SP , which has been identified as a possible source of the scalar S at beam dump

experiments [37]. Neglecting η–η′ mixing, we find

Γ(η → SP ) =
3

512π

f 2
ηm

3
η

m2
s

(
2 Im(g̃SPss )− Im(g̃SPdd )

ΛNP

)2

ηQCD

√
λ
(
1,m2

S/m
2
η,m

2
P/m

2
η

)
. (12)

For completeness, we also provide the expression for the decay KS → SP :

Γ(KS → SP ) =
1

32π

f 2
Km

3
KS

m2
s

(
Im(g̃SPsd )

ΛNP

)2

ηQCD

√
λ
(
1,m2

S/m
2
KS
,m2

P/m
2
KS

)
. (13)

In the presence of the P 2 interactions in eq. (7), there are additional exotic meson decays,

π0 → PP , η → PP , KL/S → PP , and K+ → π+PP , with the following decay rates:

Γ(π0 → PP ) =
1

64π

f 2
πm

3
π0

m2
d

(
Re(g̃P

2

dd )

ΛNP

)2

ηQCD

√
1− 4m2

P

m2
π0

, (14)

Γ(η → PP ) =
3

256π

f 2
ηm

3
η

m2
s

(
2 Re(g̃P

2

ss )− Re(g̃P
2

dd )

ΛNP

)2

ηQCD

√
1− 4m2

P

m2
η

, (15)

Γ(KL → PP ) =
1

4π

f 2
Km

3
KL

m2
s

(
Im(g̃P

2

sd )

ΛNP

)2

ηQCD

√
1− 4m2

P

m2
KL

, (16)

Γ(KS → PP ) =
1

4π

f 2
Km

3
KS

m2
s

(
Re(g̃P

2

sd )

ΛNP

)2

ηQCD

√
1− 4m2

P

m2
KS

, (17)

dΓ(K+ → π+PP )

dq2
=

1

128π3

m3
K+

m2
s

(
|gP 2

sd |
ΛNP

)2

ηQCD

(
1−

m2
π+

m2
K+

)2

×

√
1− 4m2

P

q2

√
λ
(
1,m2

π+/m2
K+ , q2/m2

K+

)
, (18)

In the K+ → π+PP decay width, q2 denotes the PP invariant mass, which lies in the range

4m2
P < q2 < (mK+ −mπ+)2.

The interactions of S and P with quarks that we have introduced preserve a Z2 symmetry

under which S and P are odd, while all SM particles are even. We assume that the Z2

symmetry is also respected by the scalar potential, such that P is an absolutely stable dark

matter candidate. Among the allowed Z2 symmetric terms in the scalar potential, the SP 3

interaction

Lint ⊃ λSP 3SP 3 , (19)
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will turn out to be relevant. When kinematically allowed, this interaction leads to the decay

S → 3P with rate

Γ(S → 3P ) =
3

256π3
λ2
SP 3mS f(mP/mS), (20)

where f is the three-body phase space integral,

f(y) = 2

∫ (1−y)2

4y2
dx
√
λ (1, x, y2)λ (1, y2/x, y2/x), (21)

which is normalized to 1 in the limit y → 0. The S → 3P rate will modify the lifetime

of S and can therefore have a crucial impact on possible constraints from beam dump

experiments.

B. Events at the KOTO experiment

The model introduced in the previous section will lead to KL → π0PP events at the

KOTO experiment. We now identify the regions of parameter space in which this decay can

mimic the KOTO signal.

The number of events that can be expected to be detected at KOTO can be written as

N =
BR(KL → SP )× BR(S → π0P )

BR(KL → π0νν̄)SM

×R×NSM, (22)

where BR(KL → π0νν̄)SM = (3.4 ± 0.6) × 10−11 is the SM prediction for the KL → π0νν̄

branching ratio [12, 14], NSM = 0.05 ± 0.01 is the expected number of SM signal events at

KOTO [49], and

R =
A(KL → SP → π0PP )

A(KL → π0νν̄)
(23)

is the ratio of acceptances of the considered model signal and the SM signal at the KOTO

detector. As has been pointed out before [30, 37, 40], an exotic contribution to the KOTO

signal (in our case KL → SP → π0PP ) can have a considerably different acceptance.

We determine the acceptance ratio R using a Monte Carlo simulation. Details are pro-

vided in appendix A. The result is given in fig. 3, which shows R as a function of the

S lifetime for our four benchmark points (eq. (5)). For prompt decays, τS → 0, we find

{RBM1, RBM2, RBM3, RBM4} ' {102%, 51%, 10%, 73%}. Once the lifetime of S becomes com-

parable to the size of the KOTO detector, τS ∼ 1 m, R starts to decrease as more and more

S leave the detector before decaying.
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FIG. 3. The acceptance ratio R of the KL → SP → π0PP signal over the SM KL → π0νν̄ signal

at KOTO as a function of the S lifetime τS for the four benchmark scenarios.

In our setup, the lifetime of S is determined by the S → π0P and S → 3P decays. In

the four benchmark cases for the scalar masses defined above we find

{
Γ(S → π0P )BM1,Γ(S → π0P )BM2,Γ(S → π0P )BM3,Γ(S → π0P )BM4

}
'{

1

3.3 cm
,

1

3.4 cm
,

1

4.4 cm
,

1

2.7 cm

}
×
(

106 GeV

Λdd

)2(
αs(104 GeV)

αs(M)

)8/7

, (24)

{
Γ(S → 3P )BM1,Γ(S → 3P )BM2,Γ(S → 3P )BM4

}
'{

1

2.0 cm
,

1

49 cm
,

1

4.3 cm

}
×
(
λSP 3

10−5

)2

, (25)

where in the S → π0P decay width we have defined Λdd = ΛNP/ Im(g̃SPdd ). Note that S → 3P

is not kinematically allowed in benchmark BM3. The S → π0P branching ratio is given by

BR(S → π0P ) = Γ(S → π0P )/[Γ(S → π0P ) + Γ(S → 3P )].

Finally, we find the following KL → SP branching ratios

{
BR(KL → SP )BM1,BR(KL → SP )BM2,BR(KL → SP )BM3,BR(KL → SP )BM4

}
'{

1.7, 1.8, 2.3, 4.0
}
× 10−9 ×

(
1012 GeV

Λsd

)2(
αs(104 GeV)

αs(M)

)8/7

, (26)
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where we have defined Λsd = ΛNP/Re(g̃SPsd ).

Figures 4 and 5 show the number of expected events in the Λsd–Λdd plane for our bench-

mark cases in the absence of the S → 3P decay (fig. 4) and in the presence of the S → 3P

decay induced by a coupling λSP 3 = 10−5 (fig. 5). Along the solid green lines one expects

3 events, in the dark green regions one expects 2–4 events, and in the light green regions

one expects 1–5 events. In the gray regions labeled “KL → π0 inv.”, the number of pre-

dicted events exceeds the limit from KOTO (see eq. (4)). The right vertical axis shows

the lifetime of S corresponding to Λdd. In fig. 5, the lifetime is approximately constant for

Λdd > 107 GeV, as in this region of parameter space, the lifetime is set by the S → 3P decay

width.

For S lifetimes of τS & 1 m, existing beam dump constraints apply (see section III) as

indicated in fig. 4 by the dashed contours. A proposed upgrade of the SeaQuest experiment

might probe S lifetimes as low as τS & 5 cm. In the scenarios shown in fig. 5 with λSP 3 =

10−5, the S lifetimes are short enough throughout the parameter space that existing beam

dump constraints are avoided.

In fig. 5 we also show additional constraints from other meson decays. The known KL

branching fractions add up to a value compatible with 1 with very high precision. Any

additional KL branching ratio, in particular KL → SP , is thus bounded above as BR(KL →

SP ) < 6.3 × 10−4 [28]. In fig. 5 the gray regions left of the dashed vertical lines denoted

“KL → inv.” are excluded by this constraint. Note that this gives an absolute lower bound

Λsd & few× 109 GeV.

The other meson decay constraints shown in fig. 5 are less robust as they depend on

couplings that are in principle unrelated. If we assume that the coupling gP
2

sd (corresponding

to (s̄d)P 2) is of the same order as the coupling g̃SPsd (corresponding to (s̄iγ5d)SP ), we find

relevant constraints from the searches for K+ → π+νν̄. To evaluate the constraints we

compare the predicted K+ → π+PP branching ratio with the bound from NA62 given

in eq. (3). We correct for the different signal acceptances of K+ → π+PP compared

to K+ → π+νν̄ that arise due to kinematical cuts on the missing mass and the charged

pion momentum. For the three P masses relevant to our benchmarks, we find the bounds

BR(K+ → π+PP ) < 2.7 × 10−10 for mP = 10 MeV, BR(K+ → π+PP ) < 3.5 × 10−10

for mP = 100 MeV, and BR(K+ → π+PP ) < 2.4 × 10−9 for mP = 125 MeV. Setting

ΛNP/|gP
2

sd | = ΛNP/Re(g̃SPsd ) = Λsd, we find that in fig. 5, the regions left of the dotted
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FIG. 4. Number of expected KL → SP → πPP events at KOTO in the Λsd–Λdd plane for four

benchmark points of the S and P masses. The SP 3 coupling is set to zero. The right vertical axis

indicates the S lifetime. One expects 3 events along the solid dark green line, 2–4 events in the dark

green region, and 1–5 events in the light green region. In the gray regions labeled “KL → π0 inv.”,

the number of predicted events exceeds the limit from KOTO. The dashed lines show constraints

from existing beam dump experiments and the potential reach of the SeaQuest upgrade.

vertical lines are excluded.

If we assume that the coupling g̃P
2

dd (corresponding to (d̄iγ5d)P 2) is of the same order

as the coupling g̃SPdd (corresponding to (d̄iγ5d)SP ), we find relevant constraints from the

invisible branching fraction of the neutral pion, BR(π0 → inv.) < 4.4 × 10−9 [47]. Setting
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FIG. 5. Number of expected KL → SP → πPP events at KOTO in the Λsd–Λdd plane for three

benchmark points of the S and P masses. The SP 3 coupling is set to λSP 3 = 10−5. The right

vertical axis indicates the S lifetime, which is approximately constant for Λdd > 107 GeV. One

expects 3 events along the solid dark green line, 2–4 events in the dark green region, and 1–5 events

in the light green region. The gray regions are excluded by the KOTO limit on KL → π0 inv. or

the bound on the invisible KL branching ratio. The dotted lines show the generic location of other

constraints that depend on additional model parameters. Benchmark BM3 is not shown, as the

S → 3P decay is kinematically forbidden.
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ΛNP/Re(g̃P
2

dd ) = ΛNP/ Im(g̃SPdd ) = Λdd in the benchmarks BM1 and BM4, the regions below

the dotted horizontal lines are excluded. For benchmarks BM2 and BM3, the P mass is too

large for the π0 → PP decay, so the couplings are therefore completely unconstrained by

BR(π0 → inv.).

C. Simplified UV models

The higher dimensional interactions in eq. (6) that lead to the exotic meson decays can

be UV completed by simplified models in various ways. In this section, we discuss briefly

two possibilities: (1) vector-like quarks and (2) an inert Higgs doublet.

1. Vector-like quark model

We introduce two sets of heavy vector-like quarks D and Q which have quantum numbers

of the right-handed down quark singlets, D = (3,1)− 1
3
, and of the left-handed quark doublets

Q = (3,2) 1
6
, respectively. These quantum number assignments admit the following terms in

the Lagrangian:

L ⊃ mQQ̄LQR +mDD̄LDR + YQD(Q̄LDR)h+ YDQ(D̄LQR)hc + h.c.

+XDd(D̄LdR)S +XDs(D̄LsR)S + ZQd(Q̄RdL)iP + ZDs(Q̄RsL)iP + h.c. . (27)

The first line contains the masses mQ and mD for the vector-like quarks, as well as inter-

actions with the SM Higgs doublet h. The masses mQ, mD and the couplings YQD, YDQ

are in general complex parameters. However, not all of their phases are observable. Using

the freedom to re-phase the vector-like quark fields, we will choose real mQ, mD and YQD

without loss of generality. The second line in eq. (27) contains couplings of the SM down

and strange quarks with S and the vector-like quark D as well as with P and the vectorlike

quark Q. The couplings XDd, XDs, ZQd, and ZQs contain physical phases.

Note that the above Lagrangian is invariant under a Z2 symmetry under which all SM

particles are even, while the vector-like quarks as well as S and P are odd. Thus P remains

an absolutely stable dark matter candidate. In addition to the couplings shown, the model

could also contain Z2 invariant couplings involving S and Q or P and D. However, such



15

D

Q

sL, dL

sR, dR

P

S

〈h〉
H

sL, dL

sR, dR

P

S

〈h〉

FIG. 6. Feynman diagrams that show the matching of the vector-like quark model (left) and the

inert Higgs model (right) onto the effective SPqq′ interactions in eq. (6).

couplings are not required to generate the desired low energy interactions and we will neglect

them in the following.

Integrating out the vector-like quarks at tree level (see fig. 6, left diagram), and matching

onto the effective Lagrangian of eq. (6), we find

gSPdd
ΛNP

=
−iYQDv√
2mQmD

Im(XDdZ
∗
Qd) ,

g̃SPdd
ΛNP

=
iYQDv√
2mQmD

Re(XDdZ
∗
Qd) , (28)

gSPss
ΛNP

=
−iYQDv√
2mQmD

Im(XDsZ
∗
Qs) ,

g̃SPss
ΛNP

=
iYQDv√
2mQmD

Re(XDsZ
∗
Qs) ,

gSPsd
ΛNP

=
YQDv√
2mQmD

1

2
(ZQsX

∗
Dd −XDsZ

∗
Qd) ,

g̃SPsd
ΛNP

=
YQDv√
2mQmD

i

2
(ZQsX

∗
Dd +XDsZ

∗
Qd) .

As required by SU(2)L invariance, the effective interactions gSPij /ΛNP and g̃SPij /ΛNP are

proportional to the SM Higgs vev v ' 246 GeV. If all couplings Xij, Yij, Zij are of O(1), we

can expect vector-like quark masses mQ,D ∼
√

ΛNPv ∼ 106 GeV. The couplings above are

not all independent but obey the relation

|g̃SPsd |2 − |gSPsd |2 + 2iRe(gSPsd g̃
SP∗
sd ) = g̃SPdd g̃

SP∗
ss − gSPdd gSP∗ss + i(g̃SPdd g

SP∗
ss + g̃SP∗ss gSPdd ) . (29)

One therefore expects that the flavor changing couplings are of the order of the geometric

mean of the flavor conserving couplings.

The vector-like quarks also give 1-loop contributions to kaon mixing. We checked explic-

itly that those contributions scale as v2/(m2
Qm

2
D) and are completely negligible.

2. Inert Higgs doublet model

In a second scenario, we introduce an inert Higgs doublet H with mass mH , which couples

to down and strange quarks, the SM Higgs, and the scalars S and P through the following
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interactions:

L ⊃ m2
HH

†H + λSP (H†h+ h†H)SP

+ Ydd(d̄LdR)H + Yds(d̄LsR)H + Ysd(s̄LdR)H + h.c. . (30)

As in the vector-like quark scenario, this inert Higgs Lagrangian is invariant under a Z2

symmetry: S and P are odd, while all other particles are even. Additional Z2 symmetric

quartic couplings of the inert Higgs involving e.g. S2 or P 2 are also possible but are not

required to generate the low energy interactions in eq. (6), and we neglect them in the

following.

Integrating out the inert Higgs at tree level (see fig. 6, right diagram), and matching onto

the effective Lagrangian of eq. (6), we find

gSPdd
ΛNP

=
iλSPv√

2m2
H

Re(Ydd) ,
g̃SPdd
ΛNP

=
iλSPv√

2m2
H

Im(Ydd) , (31)

gSPds
ΛNP

=
λSPv√
2m2

H

i

2
(Yds + Y ∗sd) ,

g̃SPds
ΛNP

=
λSPv√
2m2

H

1

2
(Yds − Y ∗sd) . (32)

In addition, integrating out the inert Higgs gives 4-fermion contact interactions of the type

(d̄LsR)(d̄RsL) that modify kaon oscillations. We find the following contributions to the kaon

mixing matrix element:

M12 =
m3
K0f 2

K

4m2
sm

2
H

ηQCDB4YsdY
∗
ds , (33)

where B4 ' 0.78 [15] (see also [17, 26]) and ηQCD is the QCD correction factor given in

eq. (10), with M = mH . Modifications to the mixing matrix alter the neutral kaon oscillation

frequency ∆MK and the observable εK that measures CP violation in kaon mixing. The

above contribution to M12 modifies these two quantities as

∆MK = ∆MSM
K + 2 Re(M12) , εK = εSM

K +
Im(M12)√

2∆MK

. (34)

Taking into account the SM predictions ∆MSM
K and εSM

K from [11, 13], and the corresponding

experimental values from [50], we find the bounds

Re(YsdY
∗
ds) < 7.3× 10−9 ×

( mH

1 TeV

)2
(

αs(mH)

αs(1 TeV)

)8/7

, (35)

Im(YsdY
∗
ds) < 4.5× 10−12 ×

( mH

1 TeV

)2
(

αs(mH)

αs(1 TeV)

)8/7

. (36)

Assuming |Yds| ' |Ysd| andO(1) CP violating phases, the kaon mixing bounds are compatible

with Λsd & 3× 109 GeV. Also, note that the bounds are entirely avoided if either of Ysd or

Yds is set to zero.
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III. ASTROPHYSICAL AND TERRESTRIAL CONSTRAINTS

We now consider extant astrophysical and terrestrial constraints that may apply to our

model.

First, anticipating our treatment of P as a dark matter candidate, we note that direct

detection, indirect detection, and self-interaction constraints are not relevant for our model

in its minimal configuration (see eq. (6)). If our P is the cosmological dark matter, but the

SM is only coupled to the current SP , then direct detection is only sensitive to the inelastic

scattering process P + SM → S + SM, which is kinematically forbidden unless the dark

matter is boosted. Similarly, indirect detection and self-interaction processes require two

vertices, and thus the cross sections are suppressed by Λ4
NP.

Extensions of our minimal model containing couplings to P 2 (see eq. (7)) may be subject

to these constraints due to the presence of additional interactions. However, we first treat

constraints from supernova cooling and beam dump experiments, which apply directly to

the minimal model.

A. Supernova constraints

Supernova cooling provides powerful constraints on new weakly-coupled light particles.

Evaluating these bounds properly requires a detailed analysis that lies beyond the scope of

this work, but we can perform an order-of-magnitude estimate to determine the regions of

our parameter space that are likely to be subject to such constraints.

In the case of axions, the cross section for axion production NN → NNa is constrained

by SN1987A to lie in the range [46]

3× 10−20 .
σ

GeV−2 . 10−13. (37)

Below the lower limit, axions are not produced in sufficient numbers to affect the cooling

process. Above the upper limit, the produced axions are trapped within the supernova

environment, and are unable to cool the system more effectively than neutrinos. Many

details of the calculation for axions should be modified in our case, but we will make a crude

estimate of the constraints by requiring our production cross section to lie in the same range.

Since P is stabilized by a Z2 symmetry, it can only be produced in pairs, or in association

with S. The process NN → NNPP is mediated at the loop level in the minimal model,
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involving two insertions of the effective interaction vertex. Since TSN ' 30 MeV [46], we

estimate the cross section as

σNN→NNPP ∼
1

16π2

T 2
SN

Λ4
dd

' 6× 10−34 GeV−2

(
TSN

30 MeV

)2(
107 GeV

Λdd

)4

, (38)

lying below the constrained range of cross sections, even neglecting exponential suppression

when mP & TSN. In the case of SP production, NN → NNSP , since mS � TSN, we

estimate the cross section as

σNN→NNSP ∼
1

4πΛ2
dd

e−(mS+mP )/TSN

' 7× 10−21 GeV−2 exp

[
35

3

(
1− mS +mP

350 MeV

30 MeV

TSN

)](
107 GeV

Λdd

)2

. (39)

While parts of our parameter space are thus expected to be unconstrained by supernova

limits, it is important to note that if mP is small, or if Λdd . 106 GeV, the estimated

production cross section enters the prohibited range. In particular, if Λdd = 106 GeV, then

avoiding the bound requires mS + mP & 450 MeV, favoring the larger P masses in fig. 2.

However, in this naive projection of supernova constraints, our model remains viable in a

wide region of the parameter space.

B. Beam dump constraints

In minimal form, our model of the KOTO excess is potentially subject to constraints

from long-lived particle searches: the partial decay width of S → π0P is bounded from

below by the observed KOTO event rate, so in the absence of additional interactions, the

S lifetime can be O(m) or larger. Such lifetimes are probed very effectively by beam-dump

experiments with O(100 m) baseline lengths. In such an experiment, a proton beam is

directed at a target, potentially producing a large number of S particles. The S particles

travel unimpeded through shielding and earth over a distance LB, reaching an instrumented

decay volume with length LD. The S → π0P events within the decay volume can be

typically detected with an O(1) efficiency E . Thus, the strength of the constraints is mainly

determined by two factors: (1) how many S particles are produced, and (2) what fraction

of these undergo S → π0P within the decay volume.

First we estimate the number of S particles produced. There are at least two channels

to consider: direct production from nucleon-nucleon scattering, and secondary production
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from kaon and other meson decays. Observe, however, that the fraction of proton-proton

collisions that produce an SP pair is of order (s/ΛNP)2/α2
S, which is much smaller than the

branching ratios BR(KL → SP ) and BR(KS → SP ) implied by our interpretation of the

KOTO excess. We also checked that the number of S from eta decays η → SP is small

compared to those coming from the kaon decays in our scenarios.

Given Np protons on target, we expect that of order NK ∼ 10−2Np kaons are produced

[30], and this is sufficient for kaon decays to dominate production. However, of these kaons,

most will be stopped or scattered away from the axis of the beam before they decay. The

dynamics of kaon energy loss and deflection in materials are complicated, but the nuclear

interaction length for relativistic kaons in most materials is Lnuc ∼ O(10 cm) [50], so we

will assume that any kaons traveling this far before decaying are sufficiently slowed down

or deflected such that only a negligible fraction of the S particles are directed towards the

detector. Thus, the number of S particles produced and directed towards the detector is of

order

NS ∼
1

2

∑
X=L,S

10−2Np
Γ(KX → SP )

ΓKX

[
1− exp

(
−ΓKX

Lnuc

γKX

)]
, (40)

where γ is the boost factor. Now, accounting for the fraction of S particles which decay in

the decay volume, and accounting for the efficiency of the detector, the number of events is

given by

NE ∼
1

2

∑
X=L,S

10−2Np BR(KX → SP ) BR(S → π0P )E

×
[
1− exp

(
−ΓKX

Lnuc

γKX

)]
︸ ︷︷ ︸

avoid kaon deflection

exp

(
−ΓSLB

γS

)
︸ ︷︷ ︸
reach decay volume

[
1− exp

(
−ΓSLD

γS

)]
︸ ︷︷ ︸

decay in decay volume

. (41)

In the minimal scenario, with no additional interactions, BR(S → π0P ) = 1.

We now estimate the event counts in the CHARM [7] and NuCal [10] experiments.

CHARM conducted a search for decays of axion-like particles with 2.4 × 1018 protons in-

cident on a copper target at 400 GeV, a baseline length of 480 m, and a 35 m-long decay

volume. The detector efficiency is approximately 0.5. No candidate events were observed.

NuCal conducted a similar search, with 1.7 × 1018 protons incident on an iron target at

70 GeV, a baseline length of 64 m, and a 23 m-long decay volume. One candidate event was

observed with an expected standard model background of 0.3. To estimate the event counts
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that would be produced by our model, we set γKX
= γS = 10 for CHARM and reduce these

proportionally for NuCal’s lower beam energy.

Assuming BR(S → π0P ) = 1, the resulting event count is shown as a function of the S

lifetime in fig. 7. The minimum expected number of events at long S lifetime is large unless

τS & 105 m, and lifetimes as large as 109 m may be excluded. This potentially rules out a

significant portion of our parameter space, as indicated in fig. 4. On the other hand, the

event rate cuts off sharply for τS . 1 m, and there is indeed a region of our parameter space

where τS ∼ 1 cm. These constraints can be relaxed if the coupling of the SP 3 interaction

in our model is non-zero, which can shorten the S lifetime significantly if mP is small (see

fig. 5). The presence of this additional interaction greatly extends the parameter space

consistent with the null results at CHARM and NuCal.

Looking towards future prospects, most proposed beam-dump experiments are competi-

tive in the same regime of S lifetimes. However, it has been suggested [8] that the SeaQuest

experiment [4] may be modified to serve as a short-baseline beam dump experiment, with

the instrumented area starting only ∼ 5 m from the beam target. Such an experiment would

have sensitivity to lifetimes as short as 5 cm, and could probe most of the parameter space in

which the minimal model can account for the KOTO excess. However, if the SP 3 coupling

is unconstrained, the S lifetime can be shortened by many orders of magnitude, potentially

evading even these experiments.

C. Direct dark matter detection

Direct detection of P can occur in the extended model via the interactions in eq. (7).

While the interaction terms containing (q̄iγ5q)P
2 give rise to suppressed velocity-dependent

cross sections off of nucleons, the operators (q̄q)P 2 with q = d, s produce potentially de-

tectable scattering off of nucleons. We define the integrated nucleon form factors

BN
q ≡ 〈N |q̄q|N〉 =

mN

mq

fNq , (42)

where fNq are the form factors for nucleon N of quark q [39]. The direct detection cross

section can be cast as

σ =
∑
q=d,s

(
2mN

mP +mN

gP
2

qq

ΛNP

BN
q

)2

≈ 4

Λ2
NP

[
(BN

d )2(gP
2

dd )2 + (BN
s )2(gP

2

ss )2
]
. (43)
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FIG. 7. Estimated event counts at CHARM and NuCal and prospective event counts at SeaQuest

as a function of the S lifetime. The top curve fixes Γ(KL → SP ) to saturate the experimental

bound on the invisible KL width. The bottom curve fixes Γ(KL → SP ) such that BR(KL → SP ) is

equal to the ratio inferred from the KOTO excess, i.e., Γ(KL → SP ) is the smallest width for which

this model can account for the excess. Both curves assume that Γ(KL → SP ) = Γ(KS → SP ) and

that BR(S → π0P ) = 1. Under these conditions, 1 m . τS . 105 m is ruled out. SeaQuest may

eventually probe lifetimes as short as τS ∼ 5 cm.

Using the central values Bp
d ≈ 6.77 and Bp

s ≈ 0.50, it is clear that the dominant effect is

scattering off of d quarks if gP
2

ss ' gP
2

dd . The scattering cross section off of protons is then

σp ≈ 7× 10−38 cm2(gP
2

dd )2

(
106 GeV

ΛNP

)2

, (44)

i.e., close to 0.1 pb. Cross sections of this order are above the expected neutrino background,

and are within reach of future planned experimental sensitivity [22]. We will return to direct

detection prospects in section V.

IV. COSMOLOGICAL PRODUCTION

We now turn to the question of cosmological production of the dark matter candidate P :

which scenarios allow P to be produced with the observed dark matter density?

The standard thermal freeze-out paradigm is not viable in our minimal scenario. Esti-
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mating the freeze-out temperature by nPσ(PP → SM) ∼ H(T ), we have

TFO ∼
4πΛ2

NP

mPl

∼
(

ΛNP

1012 MeV

)2

103 MeV, (45)

where ΛNP is the scale of new physics in question—for practical purposes, the lesser of Λsd

and Λdd. For typical values of ΛNP consistent with the KOTO excess, TFO � mP , so P

freezes out as a hot relic, with relic abundance

ΩPh
2 ∼ mP

keV

(
g?|TFO

100

)
∼ 0.1

( mP

80 eV

)
. (46)

Thus, for the masses and couplings considered in this work, P is generically overproduced

in the freeze-out scenario. If the P mass were small enough to be produced with the right

relic abundance, then P would be ruled out as a dark matter candidate because of structure

formation constraints on relativistic relics.

Departing from the minimal scenario outlined above opens up the possibility that an

additional effective interaction with SM species keeps P in thermal equilibrium, and that

the P relic abundance is set by thermal decoupling (freeze-out). Since generally thermal

decoupling happens at temperatures T ∼ mP/25, in order to avoid possible constraints from

BBN, one can assume that the effective interaction only involves SM neutrinos:

L ⊃ 1

Λνν

ν̄νPP. (47)

For the effective dimension five operator in the equation above, we find that the zero-velocity

thermally averaged product of the pair-annihilation cross section and relative velocity is

lim
v→0
〈σv〉 =

1

4π

1

Λ2
νν

. (48)

A standard treatment of the relic abundance for the pair-annihilation cross section above

indicates that P would be produced in the right amount if Λνν ' 7 TeV. This is several

orders of magnitude above current limits for dark matter interactions with SM neutrinos,

independent of flavor [9]. Thus, if P were in equilibrium at high temperatures, an effective

interaction with SM neutrinos—which, incidentally, can be quite naturally embedded in the

UV completions described above—could suppress the P abundance to an acceptable relic

density in agreement with observations.

In the absence of the additional neutrino portal described in the paragraph above, the

only alternative is production via freeze-in [32]. Here the dark species is produced out of
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equilibrium by some standard model species, and the abundance increases until cosmological

expansion halts production. It is thus possible to avoid overproduction of dark matter with

extremely small couplings. Note that while other mechanisms might allow for additional

production of P , the freeze-in contribution is unavoidable in the range of temperatures

where our effective theory is valid.

Typically, freeze-in is applied to a UV-complete theory, where the dark matter production

rate can be computed starting at very high temperatures. In the context of a renormalizable

model, it can be shown that dark matter is produced primarily at lower temperatures, so

the details of the UV physics are unimportant. Thus, freeze-in can be used to consistently

calculate the non-thermal relic abundance, even though a formal dependence on initial con-

ditions remains. Note that this is in contrast to the freeze-out paradigm, where equilibrium

with the standard model bath erases any non-trivial initial conditions in the dark sector.

However, in our scenario, the dark matter is produced through non-renormalizable in-

teractions, and the standard freeze-in mechanism cannot be directly applied: our effective

theory cannot be applied at scales above some O(ΛNP) cutoff. At first, this does not seem

to be a problem: in standard freeze-in, production is IR-dominated, and we can apply our

effective theory in this regime. But for higher-dimension operators, production is no longer

IR-dominated, and it is no longer possible to self-consistently estimate the relic abundance

unless an initial condition is fixed at a temperature where the effective theory is valid.

Naively, one can place a lower bound on the relic abundance by fixing the dark matter

abundance to zero at T ∼ ΛNP and computing the amount of dark matter produced at lower

temperatures, where the effective theory is valid. However, as we shall see in the following

section, this still leads to overproduction of P . Thus, in our model, it would seem that

dark matter is overproduced in the freeze-in scenario, even with the most favorable initial

conditions.

There is, however, a significant loophole in this argument: setting the dark matter abun-

dance to zero at T ∼ ΛNP is in fact not the most favorable initial condition. If reheating

occurs at a temperature Trh � ΛNP, then the dark matter abundance should be set to zero

at this lower temperature, allowing for a much lower relic abundance. There is nothing

particularly unnatural about this scenario: in general, freeze-in production of dark matter

depends on the reheating temperature. This dependence is weak if the reheating scale hap-

pens to be much higher than any scale in the theory, but the convenience of this arrangement
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does not constitute evidence for it. Moreover, if Trh � ΛNP, then our effective theory can

be used to self-consistently compute the dark matter relic abundance independently of any

UV completion. This paradigm is known as UV freeze-in [24].

A. Computing the yield

First, we briefly review the computation of the dark matter relic abundance in the stan-

dard freeze-in paradigm. The basic technology of UV freeze-in is identical to that of standard

freeze-in, but the initial condition is fixed at the reheating temperature Trh, which becomes

an important free parameter of the theory. In certain scenarios, the dark matter yield is

quite sensitive to temperatures near Trh, and decreasing Trh can significantly reduce the relic

abundance.

The starting point is the Boltzmann equation,

ṅχ + 3Hnχ =
∑
I,F

[Nχ(F )−Nχ(I)]

∫
dnIΠI dnF ΠF (2π)4δ4 (pI − pF ) |MI→F |2

∏
i∈I

fi. (49)

Here nχ denotes the number density of a dark species χ, I and F index initial and final states,

Nχ(S) denotes the number of χ particles in the state S, dΠi = gi d
3pi/(2π)32Ei, |MI→F |2 is

the spin-averaged squared matrix element, and fk is the phase space density of the species k.

We assume Maxwell-Boltzmann statistics, and by conservation of comoving entropy density,

we rewrite the left-hand side of eq. (49) as ṅχ + 3Hnχ = SẎχ, where S = (2π2/45)g?ST
3 is

the entropy density and Yχ ≡ nχ/S. In turn, since Ṫ ≈ −HT , we have SẎχ ≈ xHSY ′χ(x),

where x = µ/T for any fixed mass µ.

In freeze-in, one assumes that the phase space density of the dark species is always small,

so that any initial state with Nχ(I) > 0 makes a negligible contribution in eq. (49). If all of

the initial-state species are now in equilibrium, the phase space densities fi can be replaced

with equilibrium distributions e−Ei/T . Now eq. (49) reads

Y ′χ(x) =
1

xHS

∑
I 63χ,F

Nχ(F )

∫
dnIΠI dnF ΠF (2π)4δ4 (pI − pF ) |MI→F |2 exp (−xEI/µ) . (50)

We will be interested in two types of processes: 1 → 2 decays and 2 → 2 scattering. In

the 1 → 2 case, with a process i → χf , we set µ = mi, i.e., x = mi/T . We recognize the

decay width Γi→χf in eq. (50), which becomes

Y ′χ(x) =
1

2π2

gim
3
i

x2HS
Nχ(F )Γi→χfK1 (x) , (51)
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where K1 is a modified Bessel function of the second kind, and now Nχ(F ) is either 1 or 2,

depending on whether f = χ. Substituting H = 1.66g
1/2
? x−2m2

im
−1
Pl , the total yield can now

be computed by performing a 1-dimensional integration of eq. (51), as

Yχ(∞) =
45Nχ(F )gimPlΓi→χf

1.66× 4π4m2
i

∫ ∞
xmin

dx
x3K1 (x)

g
1/2
? g?S

. (52)

In particular, suppose that f = χ, mχ � mi, and |Mi→χχ|2 = λ2. If production mainly

takes place during an epoch when g? and g?S are not changing rapidly, then we can estimate

the yield as

Yχ(∞) ' 135Nχ(F )gimPlλ
2

1.66× 8(2π)4g
1/2
? g?Sm3

i

1 xmin � 1

1
3

√
2
π
x

5/2
min exp (−xmin) xmin � 1.

(53)

Similarly, if the abundance of χ is set by 2 → 2 processes of the form ij → χf , then the

integrals over the final-state phase space produce the cross section σij→χf , and eq. (50)

becomes

Y ′χ(x) =
Nχ(F )gigj
xHS

∫
d3pi
(2π)3

d3pj
(2π)3

σv exp (−xEi/µ) exp (−xEj/µ) . (54)

This remaining integrals can be reduced to a single 1d integral, following e.g. [29]. Integrat-

ing in x, the yield is then

Yχ(∞) =
µNχ(F )gigj

2(2π)4

∫ ∞
xmin

dx

x2HS

∫ ∞
smin

ds σ(s) r−r+×

×
{m+m−

s

(µ
x

+
√
s
)

exp
(
−x
√
s/µ
)

+
r−r+√
s
K1

(
x
√
s/µ
)}
, (55)

where m± = |mi ±mj|, r± =
(
s−m2

±
)1/2

, and smin = min(mi + mj, mχ + mf )
2. As in the

1 → 2 case, we can estimate the yield analytically for a process ii → χχ when mi � mχ

and the evolution of g? and g?S is negligible. If |Mii→χχ|2 = λ2, then the result is

Yχ(∞) ' 45Nχ(F )g2
imPlλ

2

1.66× 512π5g
1/2
? g?Smi

(3π/8)mi/mχ xmin � 1

xmin exp (−2xminmχ/mi) xmin � 1,
(56)

where xmin = mi/Tmax. The analogous expression for mχ � mi is obtained by interchanging

mi and mχ and taking µ = mχ (i.e. xmin = mχ/Tmax). However, in our model, 2 → 2

processes are driven by effective 4-point vertices suppressed by a scale ΛNP, so we should
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instead set |Mii→χχ|2 = s/Λ2
NP. In this case, the result is

Yχ(∞) '
45Nχ(F )g2

imPlm
2
χ

1.66× 128π4g
1/2
? g?SmiΛ2

NP


8
π

(mχ/mi)
−2 x−1

min xmin � 1

xmin exp (−2xminmχ/mi) xmin � 1.
(57)

This demonstrates a key difference between standard freeze-in and UV freeze-in: a naive

extrapolation of the production rate to arbitrarily high temperatures (small xmin) diverges.

Of course, one should not expect to accurately compute the production rate in the effective

theory at T � ΛNP. But even so, if ΛNP � Tmax � max{mχ,mi}, then production can

dominated by 2→ 2 processes, whereas 1→ 2 decays typically dominate in standard freeze-

in. In our case, mχ and mi are MeV-scale, while ΛNP & 106 GeV. Thus, production by

2→ 2 processes at high temperatures is potentially very significant.

Using the approximate forms of the yield derived above together with the dark matter

abundance today, Yχ(∞) ≈ 2 × 10−6(mχ/MeV), we can estimate the ranges of parameters

which account for all of dark matter—or, at least, those which do not overclose the universe.

If dark matter in our model is produced dominantly by quark annihilation via an interaction

of the form Λ−1
dd d(iγ5)d̄SP , then the only important parameters are Λdd and xmin. Note that

if this is the only interaction at work, there is no contribution from decays.

First, suppose that xmin � 1. Then the scale Λdd must satisfy

Λdd &

(
g?|Trh
100

)−3/4(
Trh

GeV

)1/2

3× 1010 GeV. (58)

Per the analysis in section II B, this is too large to account for the KOTO excess—and this

estimate accounts for only one production channel! In particular, if Trh > Λdd, dark matter

is dramatically overproduced. At the very least, one requires Trh . 100 MeV, where the

approximations made for this estimate are no longer trustworthy. However, suppose instead

that reheating indeed takes place near the MeV scale, so that xmin � 1. Then the situation

is quite different: neglecting the difference between mS and mP , we have

Λdd &

(
g?|Trh

10

)−3/4(
Trh

10 MeV

)
exp

[
−
(
mS

Trh

− 30

)]
300 GeV. (59)

This bound poses no obstacle to accounting for the KOTO excess. When combined, these

two estimates naively suggest that our model can account for all of dark matter if reheating

takes place between 100 MeV and 10 MeV. While the scale of reheating is often assumed to

be much higher, the strongest observational lower bound on the reheating temperature is in
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fact only Trh & 5 MeV [20, 33]. There is no particularly strong motivation for a very high

reheating temperature, and certainly nothing inconsistent about reheating taking place at

10 MeV.

However, production at such low temperatures introduces a new complication: our sim-

plistic estimates above have presumed not only that production is dominated by 2 → 2

processes, but also that the initial state consists of free quarks. If Trh < 100 MeV, then

quarks are confined into hadrons during the entire production period. One must then mod-

ify the effective couplings to account for hadronic scattering, and since the initial and final

states are all (pseudo)scalars, the matrix elements no longer carry any s-dependence. Addi-

tionally, since single hadrons can now decay to S and P , hadronic decays can dominate the

relic abundance, and must be included in the calculation of the yield.

In the following section, we treat these issues in detail and calculate the relic density

numerically.

B. Determining the reheating temperature

Our estimates in the previous section suggest that P can be produced non-thermally,

and can account for all of dark matter, if the initial temperature of the SM bath is between

100 MeV and 10 MeV. We now refine our estimate of the yield to account for confinement

and hadronic decays, and then numerically compute the yield to establish the required

reheating temperature in our model.

At T . 200 MeV, quarks are confined into hadrons, and the effective interactions of

the hadrons with S and P are well described by chiral perturbation theory (chiPT). The

effective couplings of hadrons to S and P are built from a combination of the new physics

scales and QCD parameters. Since the couplings in the quark-level effective Lagrangian

are proportional to Λ−1
NP, and the hadron-level 1 → 2 coupling must have mass dimension

1, the latter must be of order Λ2
chiPT/ΛNP, where ΛchiPT is some scale associated with low-

energy QCD. Similarly, in the 2 → 2 case, the hadron-level coupling should have the form

Λ′chiPT/ΛNP. As we will see momentarily, Λ
(′)
chiPT is a combination of two constants, fπ ≈

92 MeV and B0 ≈ 2666 MeV. To determine the couplings explicitly, we match our effective

quark-level Lagrangian onto the chiPT Lagrangian following [27, 44]. Our application of

this method to light scalars is also similar to the treatment in section 3.1 of [52].
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The interactions of QCD degrees of freedom with our light scalars can be written as the

couplings of quarks to external currents s and p, respectively a scalar and pseudoscalar.

These take the form

LQCD[s, p] = −q̄ (s(x)− iγ5p(x))q. (60)

Interactions of hadrons with these currents enter the chiPT Lagrangian via the current

χ = 2B0(s+ ip). At lowest order, we have

L2 ⊃
f 2
π

4
tr
(
χU † + Uχ†

)
, U = exp

(
i
√

2

fπ
Φ

)
, (61)

where Φ is the PNGB matrix [see e.g. 44]. Now consider a quark-level interaction of the

form

L ⊃ 1

2
q̄i
(
gOS
ij − ig̃

OS
ij γ5

)
qjOS +

i

2
q̄i
(
gOP
ij − ig̃

OP
ij γ5

)
qjOP + h.c. (62)

where OS is a scalar (CP-even) and OP is a pseudoscalar (CP-odd). We can then identify

sij = −1

2

(
gOS
ij + gOS∗

ji

)
OS −

1

2

(
gOP
ij − g

OP ∗
ji

)
OP , (63)

pij = − i
2

(
g̃OS
ij − g̃

OS∗
ji

)
OS −

i

2

(
g̃OP
ij + g̃OP ∗

ji

)
OP . (64)

Substituting these expressions into eq. (61) with OS = S2, P 2, and OP = SP gives the

interactions of S and P with the PNGBs. For instance, the interactions of S and P with π0

are specified by

L2 ⊃ B0fππ
0
(
SP Im gSPdd − S2 Im g̃S

2

dd − P 2 Im g̃P
2

dd

)
− 1

2
B0(π0)2

(
SP Re g̃SPdd − S2 Re g̃S

2

dd − P 2 Re g̃P
2

dd

)
+ · · · , (65)

where the ellipsis denotes a series of higher-dimensional operators. We include all terms

up to second order in the PNGB fields in our analysis, and the form of the hadron-level

Lagrangian is as expected from dimensional analysis. Note that it is essential to consider

complex-valued gij and g̃ij, without which some interactions will vanish.

We can now determine the reheating temperature required to produce the observed dark

matter density as a function of our model parameters. First, using the normalization factors

as they appear in eq. (65), we can now estimate the relative significance of decays and

scattering, starting with eqs. (54) and (56). Assuming that all dimensionless couplings are

O(1), we set the coupling λ for 3-point vertices equal to B0fπ/ΛNP, and we set the coupling
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for 4-point vertices to B0/ΛNP. In this regime, we typically have mi � max{mP , Trh}, and

in this limit,

Y 1→2
P (∞)

Y 2→2
P (∞)

' 32

(
fπ
mi

)2

1 mP � Trh � mi

3π
8

(Trh/mi) exp (2mi/Trh) Trh � mP � mi.
(66)

Our parameter space includes 1 MeV . mP . 200 MeV, so the ratio above can be large

or O(1) depending on the choice of the P mass, but it is never small. Note, however,

that increasing mP can also close certain decay channels. In particular, if there exist in-

teractions allowing the decay π0 → PP , this channel naively dominates production at low

temperatures, but is closed for 2mP > mπ0 .

Since decays dominate in most of the parameter space, we can make a first estimate of

the yield by considering only production via KL → SP , the same decay process which is

necessary to account for the KOTO excess. Neglecting the distinction between mS and mP ,

the yield is

Y KL→SP
P (∞) ' 45

1.66× 4(2π)9/2g
1/2
? g?S

(
Bfπ
mKΛsd

)2
mPl

Trh

exp (−2mS/Trh) , (67)

and the resulting upper bound on Λsd is

Λsd &

(
g?|Trh

10

)−3/4(
Trh

15 MeV

)1/2

exp

[
−
(
mS

Trh

− 20

)]
5× 106 GeV. (68)

For the typical parameter values selected above, this upper bound is towards the lower edge

of our parameter space of interest for the KOTO excess. Thus, although hadronic decays

significantly enhance production relative to the prediction of eq. (59), this channel on its

own does not pose an obstacle to accounting for the KOTO excess.

However, in general, it is necessary to numerically evaluate the yield to determine the ex-

tent of the viable parameter space—and, in particular, to identify the reheating temperature

that produces the observed relic density at each parameter point. The resulting reheating

temperatures are shown in fig. 8, and are of order 10 MeV throughout the parameter space

of interest. The required reheating temperature is mainly controlled by the smaller of Λsd

and Λdd, with a slight bias towards Λsd, since production by η decays is suppressed compared

to production by K0 decays due to their relative masses. Note that all couplings except for

gSPsd and gSPdd are neglected in fig. 8, so, in particular, π0 → PP does not contribute to the
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relic density even when 2mP < mπ0 . If we suppose that all of the couplings in the effective

theory are of similar order, the viable parameter space can change significantly.

We can estimate this effect by taking gS
2

q1q2
= gSPq1q2 = gP

2

q1q2
and setting gOsd =

(
gOssg

O
dd

)1/2
to

fix gOss. The resulting reheating temperatures are shown in fig. 9. With these choices for the

couplings, our two benchmark points with mP = 10 MeV are incompatible with freeze-in as

a production mechanism, since the required reheating temperature is below observational

bounds throughout the relevant parameter space. This is due to the open π0 → PP decay,

which is kinematically closed for the other two benchmark points with mP = 100 MeV and

mP = 125 MeV. For these points, the required reheating temperature is again of order

10 MeV throughout the relevant parameter space. At the top-left of the corresponding

panel of fig. 9, the required reheating temperature decreases with increasing Λdd. This is

just because of our assumption that gOsd is the geometric mean of gOdd and gOss: increasing Λdd

corresponds to decreasing gOdd, so if gOsd is held fixed, then gOss must increase to compensate.

This increases the relic density, forcing a lower reheating temperature.

Finally, we note that the reheating temperatures shown in figs. 8 and 9 are potentially

imprecise, and should be viewed as lower bounds. Our calculation of the yield assumes that

all of the initial-state species are thermalized, but the mesons freeze out at temperatures of

the same order considered here. In particular, π0, K0, and η freeze out at 3 MeV, 10.5 MeV,

and 11.6 MeV, respectively. In a scenario with a high reheating temperature, this concern

would be less significant: the mesons would have a thermal distribution at early times, so as

long as dark matter production is not dominated by temperatures well below the mesons’

freeze-out temperatures, the effect should be small. However, we are speculating that the

reheating temperature itself is lower than e.g. the kaon freeze-out temperature in parts

of our parameter space, in which case the kaons may never be populated with anything

resembling a thermal distribution. It is thus possible that eq. (50) overestimates the dark

matter relic abundance.

This does not have a significant effect on our qualitative results: we can safely pre-

dict that DM is overproduced if Trh & 15 MeV, in which case all of the relevant mesons

are thermalized, so this is an upper bound on Trh. Likewise, we can see that DM would

be underproduced for Trh below a particular value even if the mesons have their equilib-

rium number densities.1 This lower threshold is O(7 MeV) if π0 → PP is forbidden, and

1 Since production is dominated by decays, the dark matter relic abundance is mainly determined only
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FIG. 8. Reheating temperature in MeV to produce the observed DM relic density, including all

production channels with no DM in the initial state. The couplings gSPsd and gSPdd are taken to be

purely imaginary, while all other couplings are set to zero, corresponding to the minimal scenario

to account for the KOTO excess. In the leftmost panel (BM1), all decay channels are open. In the

middle panel (BM2), S → 3P is kinematically closed, so there are no number-changing interactions

in the dark sector: S decays via S → π0P . In the rightmost panel (BM3), S → 3P and π0 → PP

are both closed, so there is no contribution to the relic density from π0 decays.

O(2 MeV) if it is not. The only qualitative importance of out-of-equilibrium effects is that

it may be possible to construct a cosmologically-viable model in which dark matter is not

overproduced even if π0 → PP is open. However, such a model would depend on the details

of reheating, and this analysis lies beyond the scope of this work.

V. DISCUSSION

In the foregoing sections, we have introduced a model to account for the KOTO excess

and explored the cosmological effects. We now discuss the implications of our results and

future experimental prospects.

If the KOTO excess is interpreted at face value, this suggests apparent violation of the

GN bound. As has been discussed by several authors [19, 21, 23, 25, 30, 36–38, 40–42, 52],

such a signal at KOTO can be mimicked by a decay of the form KL → π0X, where X

denotes one or more invisible species. In contrast to most studies, we focus on a new physics

by the number density of the parent mesons, and is fairly insensitive to other details of the phase space

distribution.
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FIG. 9. Reheating temperature (in MeV) to produce the observed DM relic density, including all

production channels with no DM in the initial state, as in fig. 8. Here it is assumed that S2, P 2,

and SP couple equally to light quark bilinears, and that gOsd is the geometric mean of gOss and gOdd.

The real and imaginary parts of all couplings are taken to be equal. In the first panel (BM1), all

decay channels are open, and production is dominated by π0 decays. In the middle panel (BM2),

π0 → PP is closed, but S → 3P is still open. In the rightmost panel (BM3), both π0 → PP

and S → 3P are closed, so S decays only via S → π0P . In the leftmost panel, since production

is dominated by π0 → PP , the relic abundance is controlled exclusively by Λdd. In this case, the

required reheating temperatures are observationally inviable throughout the parameter space. In

the other two panels, production is dominated by K0 and η decays, and their relative importance

depends on Λsd and Λdd.

scenario where the decay KL → π0 inv. is realized through a sequence of two-body decays

KL → SP → π0PP , where S and P are light neutral scalar particles. Similar scenarios were

also studied in [37] where the light particles interact with the SM through a vector or scalar

portal. Here we instead analyze a setup where S and P are coupled to the SM through

effective operators at a characteristic new physics scale of ΛNP ∼ 106–109 GeV. We have

stabilized P with a Z2 symmetry under which SM species are even and our new species are

odd, and we have entertained the possibility of other interactions consistent with such Z2

invariance, including an SP 3 term that could mediate the decay of S → 3P . Our effective

theory is readily UV-completed by e.g. very heavy vector-like quarks or a TeV-scale inert

Higgs doublet. Such UV completions can realize a minimal case in which only interactions

between SM quarks and SP are present at low energies, as well as more generic cases that
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include interactions with S2 and P 2.

If the KOTO excess persists, the GN bound heavily constrains new physics interpreta-

tions. A model of the type we consider, with new light scalars, is one of the simplest and

most elegant solutions. Since the scale ΛNP ∼ 106–109 GeV indicated by the KOTO excess

is so large, most other experiments are not substantially constraining (with the notable ex-

ception of beam dump experiments, to which we will return shortly). In particular, in our

scenario, there is a large region of parameter space which can account for the KOTO excess

while still unconstrained by other rare meson decays. However, it is important to consider

astrophysical constraints. Supernova cooling limits can potentially rule out lower P masses:

as discussed in section III A, supernova temperatures are high enough, at tens of MeV, to

probe the lightest S and P masses that we consider in fig. 2. These constraints are most

significant for Λdd . 106 GeV, and it is important to note that establishing firm constraints

from supernova cooling requires a much more detailed analysis beyond the scope of this

work. However, the simplistic expectation is that P masses of O(10 MeV) and below are

disfavored, making our scenario easier to test.

Since the KOTO excess motivates the introduction of new feebly-coupled particles, it is

natural to speculate that these new species might contribute to cosmological dark matter—

and indeed, we have shown that S and P can constitute all of DM even in the most minimal

scenarios needed to explain the KOTO signal. Nevertheless, this comes at a cost: in the

absence of additional interactions, there is no mechanism to reduce the DM abundance,

and cosmological reheating must take place at very late times, at a temperature of order

10 MeV. This requirement should be interpreted as a cosmological constraint on our model

and similar models accounting for the KOTO excess. The scale of the preferred reheating

temperature originates mainly from the masses of the new scalars: since the DM abundance

is exponentially suppressed in mDM/Trh, the required reheating temperature depends only

logarithmically on the couplings and other scales of new physics.

Such a thermal history is necessary because the effective coupling lies in an intermediate

regime: it is too small for freeze-out to deplete the DM abundance, but large enough that

UV freeze-in generically overproduces DM. Thus, an additional feature is needed to prevent

overproduction. The simplest mechanism to accomplish this, without any modification

to the model, is to make a judicious choice of the reheating temperature. Since we are

working with an effective theory, the DM relic density is inherently sensitive to the reheating
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temperature—indeed, if Trh & ΛNP, we cannot consistently calculate the relic density, but

only bound it below. Thus, since Trh is necessarily a parameter of our model, Trh ∼ 10 MeV is

as natural as any other choice. As we have discussed, observational constraints are ineffective

at temperatures above ∼ 5 MeV.

We note that in principle low-temperature reheating might leave an imprint on early

universe probes such as BBN and CMB. Unfortunately, such potential signals are highly

model dependent. Specifically, low-reheating temperature scenarios have been shown in

the literature to impart a significant effect on the synthesis of light elements, primarily

via (i) modifications to the Hubble rate around BBN by changing the energy density of

both relativistic and matter species; (ii) changing the momentum distribution of electron-

flavor neutrinos, which directly enters charged current interactions, in turn governing the

neutron-proton chemical equilibrium; and (iii) by entropy exchange that can affect the ratio

of neutrino to photon temperature, which in turn is testable with CMB data.

Previous studies (see e.g. [35] and references therein) relied on simple assumptions such as

a single massive matter species driving reheating, and decaying primarily into neutrinos [20],

or electromagnetically-interacting species [33], or hadrons [34]. Generally, testable effects

arise for Trh . 5 MeV, implying that no signal is expected for the scenario discussed here,

where Trh & 10 MeV. However, it is important to point out that the reheating scenario might

include features that could manifest themselves when more stringent probes of CMB become

available in the future [1]. For instance, the field driving reheating might actually be an

ensemble of fields, with different masses; the S and P particles might be directly produced

in the decay of the field(s) driving reheating, changing the predictions for Trh made above;

or new physics in the neutrino sector could make reheating temperatures in the 10s of MeV

visible once constraints on Neff significantly improve.

There are other mechanisms which prevent the overproduction of dark matter without

requiring a particular temperature for reheating. One possibility is to add an interaction with

the SM to restore freeze-out as a viable thermal history, as we discussed briefly in the context

of a neutrino portal. This would be a heartening scenario: reheating can still take place at a

very high temperature, and the coupling to leptons might allow for additional experimental

probes. However, there are several other possibilities. In particular, it is possible that

the DM abundance is depleted by additional interactions within the dark sector. This is

not possible in our effective theory, but one can consider extensions which keep the DM in
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thermal equilibrium long after decoupling from the SM bath, or which allow other number-

changing processes at a sufficient rate to allow for freeze-out at high temperatures. We

emphasize again that our results imply cosmological constraints on models of the KOTO

excess: cosmology requires either a restricted range of reheating temperatures or additional

features of the low-energy theory, regardless of what fraction of cosmological DM is composed

of P .

Of course, one can also consider constraints which only apply if P makes up a significant

fraction of DM. The simplest of these is the Lyman-α constraint on warm DM [51], which

requires the P population to be non-relativistic at temperatures of O(keV). If P is produced

non-thermally via decays at 10 MeV, typical energies will be of order the masses of the

parent states, i.e., O(100 MeV). Thus, in order for P to be non-relativistic when Tγ ∼ keV,

we require that mP & 10 keV. This is a somewhat weaker bound than one expects from

supernovae, but it is not subject to the complicated physics involved in such constraints.

The annihilation cross section into visible states is much too small (∼ 10−50 cm2) for

indirect detection to be viable, nor is there any significant self-interaction in the dark sector.

However, the scattering cross section with nuclei could be as large as ∼ 0.1 pb, and thus

potentially within reach of future, planned experimental sensitivity for sub-GeV direct dark

matter searches. It is thus possible (albeit not guaranteed) that future experiments will probe

such signatures associated with our model—particularly direct detection—but it is important

to note that in the minimal scenario for the KOTO excess, these signatures are substantially

suppressed even compared to the generic expectation. This is because the KOTO excess only

requires SM interactions with the current SP , and not PP . Since any DM accounted for by

our model is composed entirely of P , this means that any diagrams contributing to indirect

detection must be suppressed by Λ−4
NP. Moreover, at lowest order, direct detection is only

sensitive to the inelastic scattering process NP → NS, which is kinematically prohibited

for non-relativistic DM. It is thus challenging to conclusively establish that P makes up

cosmological DM through direct observational means.

However, it is potentially much easier to determine whether a model like ours accounts

for the KOTO excess. If the excess persists at its present size, then as KOTO reaches its

design sensitivity, hundreds of events will be observed. With a sample of this size, it is

possible to distinguish our model from SM three-body decays kinematically in much of our

parameter space, simply by measuring the pion’s transverse momentum. In fig. 10, we show
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FIG. 10. Pion pT distributions for the KL → π0νν̄ decay and the KL → SP → π0PP decay in

our benchmark points. The distributions are shown both for prompt S decays and S decays with

a lifetime of 30 cm.

the transverse momentum distributions expected at KOTO in the SM and in our model. By

sampling from these distributions and applying the Kolmogorov–Smirnov test, we find that

the pT distribution in our model can be distinguished from the SM three-body decay at 5σ

with O(100) events in much of our parameter space. Sensitivity is lost when mP is small

and mS ∼ mKL
, and the distributions may also be too close to distinguish at smaller mS if

the S lifetime is shorter than O(10 cm). Still, there are good prospects for making such a

determination within the next several years, as KOTO continues to collect data.

There are also discovery prospects for S particles with meter- and centimeter-scale life-

times at future beam-dump experiments. In particular, as discussed in section III B, the

SeaQuest experiment can probe much shorter lifetimes than those to which CHARM and

NuCal are sensitive. Backgrounds are relatively easy to control for experiments of this type,
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and they remain sensitive even in our minimal scenario. The figure of merit is the S lifetime,

which is at least O(cm) in our minimal scenario. This can be reduced by enhancing the SP 3

interaction in our effective theory, but nonetheless, searches for long-lived particles promise

to be a powerful probe of our scenario in the coming decade.

VI. CONCLUSIONS

Taken together, the anomalous KOTO events and the Grossman–Nir bound provide a

strong hint for light new physics. In this work, we have introduced an effective theory that

accounts for the excess in the KL → π0 inv. channel with a metastable scalar S; a lighter,

stable pseudoscalar P ; and effective dimension-5 operators that mediate interactions between

S, P and the d and s quarks. We provided two UV-complete models that would produce

an effective theory consistent with our assumptions. We then investigated the implications

of our effective theory for cosmology and vice versa. In particular, we have shown that

cosmological overproduction of P places important constraints on the structure of the low-

energy theory.

At face value, in our minimal scenario, P cannot account for either dark matter or the

KOTO excess unless the reheating temperature is close to 10 MeV. While it is possible to

escape this conclusion by augmenting the model, e.g. with couplings of P to neutrinos, a low

reheating temperature is unavoidable in the model’s simplest incarnation. However, unless

P is very light, the required reheating temperature is compatible with current constraints

from BBN and CMB, possibly even offering an observational handle on the model once CMB

Stage IV experiments further probe the effective number of relativistic species.

Finally, we have discussed three experimental tests of our scenario. First, we have shown

that portions of our parameter space are within reach of future dark matter direct detection

experiments. Second, our metastable S may be discovered by upcoming long-lived particle

searches, particularly the planned SeaQuest upgrade. Finally, if P is in our favored mass

range, future KOTO data alone can discriminate between our decay chain and the SM three-

body decay on the basis of the neutral pion pT distribution. There are thus strong discovery

prospects for P dark matter within the next decade.
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Appendix A: KOTO simulation

In this appendix, we provide details of our calculation of the quantity R introduced in

eq. (23). R is the acceptance of the KL → SP → π0PP signal relative to the SM KL → π0νν̄

acceptance at KOTO. Our calculation is based on a Monte Carlo simulation following steps

similar to the ones described in [37, 40].

The layout of the KOTO beamline and the KOTO detector is described e.g. in [43]. We

start by generating KL momenta, pKL
, and KL decay vertex locations, zKL

, based on the

distribution

f(pKL
, zKL

) ∝ g(pKL
)× exp

(
−(zKL

− zexit)mKL

τKL
pKL

)
, (A1)

where zexit = 20 m is the distance of the beam exit from the target and g(pKL
) is the

measured KL momentum distribution at the beam exit from [43]. We include a small

transverse component of the KL momentum such that the beam profile at the beam exit is

constant within an 8.5 cm× 8.5 cm square and zero outside [43].

In the case of the SM decay, we generate pion momenta using the K → π form factor

from [16]. In the case of the KL → SP → π0PP decay, we first generate momenta for S,

based on the fixed energy of S in the KL rest frame, ES = (m2
KL

+ m2
S − m2

P )/(2mKL
).

We then decay S with a decay length distribution that is determined by the S → π0P and

S → 3P partial widths. The pion momentum is generated based on the known pion energy

in the S rest frame, Eπ0 = (m2
S +m2

π0 −m2
P )/(2mS).

Both in the SM case and the NP case, we let the pion decay promptly into two photons,

each with energy Eγ = mπ0/2 in the pion rest frame. We reject events with photons produced
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less than 2.5 m after the front face of the front barrel (which starts 1.507 m after the beam

exit), as they would be rejected by photon veto collar counters. All other photons are

propagated to the calorimeter located 6.148 m after the front face of the front barrel [43].

The energy and location of the detected photons in the calorimeter is smeared using the

parameters given in [48].

Based on the smeared energy and smeared location of the photons in the calorimeter,

the transverse momentum and decay vertex location of the pion is inferred following the

procedure described in [43]. If there is more than one solution for the vertex location in the

decay volume, we pick the location further away from the calorimeter. We then perform the

event selection as in [3], taking into account all cuts but timing and shape related cuts and

the trigger related cut on the center of energy deposition. We use the updated signal region

in the plane of the inferred pion transverse momentum and the pion decay vertex location

from [49].

The results for R in our benchmark scenarios are shown in fig. 3 as function of the S

lifetime.
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