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ABSTRACT

An investigation of the passage of veryuhigh;energy (up to
200 ﬁeV) nuclecns through matter is carried put with phenomenological
nucleon~nucleon cross sections recently obtained by Georée Trilling,
A model for nucleon-nucleus.interactions is assumed in which the nucleus -
is represented aé a8 constant-density sphere of nucleons, The intrae

nuclear and internuclear cascades are then treated analytlically to |
: E

obtain the secondary nucleon spectrum as a function of secondary energy'

and depth in the matter, In addition, another phenomenological formula

developed by Trilling for pion production is used to obtain the secondary

- pion spectrum with the same nuclear model, The effect of pion production

by pions has not been included, Numerical results for a variety of

nuclei are given as examples,



I, INTRODUCTION

In the past, & number of calculations for intranuclear cascades

" have ﬁeen carried out with existing experimental data used for the

fundamental nucleon intersctions, These calculations have,princiﬁally
been done by the Monte Carlo technique, because of the complexity of deallng

with the comﬁlicated energy and angular dependence of the various cross

.sections involvednl Other types of calculations have made necessary

extensive simplifying assumptions.2

The present investigation deals with cascades associated with
nucleons and pions at very high energiesg i.e.P from 5 tg 200 BeV,
In this "asymptotic" energy region, a number of simplifications occur,
In the first plaée, the total cross mections for nucleon-nucleon anq

pion-nucleon interactions are essentially constant,. Recently Trilling3

“has made an empirical fit to the experimental data for nucleon-nucleon

and pion~nucleon scattering around 20 BeV, and has achieved a reasonable
fit to the nucleon~nucle6n data with e functional form vhich becomes
quite simple at very high energies, Extrapolation to energles greater
than can be obyained in the lasboratory was achieved by use of empirical

evidence from cosmic ray experiments, A further simplification at

these energles is that such considerations aé the nuclear potentials

and the exclusion princiﬁle, which are significant at lower energies,
ﬁay be ignored., Further, at ve#y high energies secondary particles

are predominantly forwafd, 80 thatvthé angular spreadjof the secondaries
can be neglecﬁéﬁ. In the analysis to be described the nucleus is

treated as a sphere of nuclear matter having a constant'density; although
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; thiéisimplification-i;.nét at all baéié, and a moye complicated density
:“J"dis’crivbution could be used. {
In Section IIA, an enalytic trehtménﬁfof the energy spectrum of -
| .nucleons in matter on the basis of thelﬁighueﬁergy limit of the Trilling

formula is cérried out for caséades in hydrogen. The modei,is extended

_to other materials in Section ITB, These results should be valld for . 4

energies above about 10 BeV. At lower energies, the Trilling model is

somevhat complicated, and the analytic treatment must be supplemented by

8 perturbatioﬁ calculation an& a numerical integration,. 'This célculation

is outlined in Section IIC. vFinally, pion spectra are obtained.byluse

of another formula due to Trilling for pion production by nucleons, in

Section III, In the concluding section, représentative numerical results

are presénted for nucleon and plon spectra at depths up to 10 interaction

.mean free paths in various materials with a variety of incident energies,

II. NUCLEQN ENERGY SPECTRA IN MATTER

In the calculations here detailed we ignore'tha‘diffefence‘between
protons and neutrons, and simply treat them together as nucleons.,

It is expected that charged pion ‘production is such that after a number

of collisions the charge‘distribution of the secondaries is determined _’
only by the distribution of pfotons and neutrons in the medium.h The
distribution of nucleons can thén be obtained from the one-=dimensional )
cascade equaf%%n ‘ I
ap(B,L) iy | 1 o |
= - rx; pN(E,L)+-i-I; 4 py(E' LIRy(E,E')aE | (1)
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where ‘bN(E,L)dE is the number of nucleons between E and E + @E at

~the depth L in the matter, The first term on the right represents the

' removal of particles from the spectrum at energy E by collisions, and

the.second, the sddition to the spectrum at E by collisions of

particles with higher energy E' , The function RN(E,E') is the

‘ _probability distribution for secondary nucleons of energy E , as

generated by collisions of primary nucleons of energy E' , The mean

free path for nucleon-nucleon collisions is designated by XN « The

_ distribution is normalized so that

El

f RN(E,E')dE = 2 0
0 ‘ ,

®

since two secondary nucleons generally emerge from a high-energy collision.-v

The formula of Trilling for RN(E,E') characterizes only the inelastic

. part of the seéondary distribution and could be supplemented by the

elastic scattering, but at very high énefgies the elastic scattering

. is very nearly in the forvard direction and the corresponding RN(E,E’)

becomes almost proportional to 6(E « E*) , A & function in Ry

will not contribute to changes in the distribution and may be removed.

Thus we choose the interaction mean free psth to include only the

inelastic cross section

N "
AN = [n Uinel]

 where n is the nuclear density in the matter considéred, and we

‘neglect elastic terms in Eq. (1), At high energies argnel 1s well

i | DY
; V ‘ v

i i
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" approximated by & constant, As will be seen, this feature leads to

B eegaraﬁion between the dependence on energy and on depth of the secondary

spectra for a given number of collisions, As was mentioned in the

introduction, the angular distribution of secondaries at very high

‘energies is generally quite narrow: The average transverse momentum
for the Trilling formuls 1s about 500 MeV/c, so that for 1l0=BeV/c secondary

nucleons the angular spread would be of the order of 0.05 radlen, Thus

Lo in the present model we assume that the cascades associated with a given

of R(E,E') fbr a nucleus is made by use of Eq, (1), but with A

primary develop collinearly with that particle, both in nuclear and in
ordinary matter, In equations such as Eq, (1) we will therefore use
cross sectlions and production probabilities which have been integrated

over the angular distribution,

A, Cascades Within Nuclel

For the passage of nucleonn through hydrogen,»Eéa (1) can be
used directly,vwith RNiE,E') correspondingbto the‘nueleonunucleon
cross sections, For other kinds of matter, hewever, we first obtain
the secondary distribution from nucleon-nucleus collisions, using a
model in which intranuclear eascades are produced by colllsions with
independent nucleons in the nueleus, At lower energies previous
Monte Cerlo calculations indicate thet this model. represents the dats
quitelwell, and there seems to be no evidence up to 9 BeV and beyond

5

that cooperative multiparticle effects are Important,” The determination

N

-calculated witk the nucleonic density in nuclear matter, and with an

average obtained over all impact parameters for the nucleus.
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Since ‘the mean free path is assumed to be constant, we can readily

obtain the solution of the differential equation in L as

E

, , ‘ Y '
. p(E,2) = p(f«:.o)e"*f are 1) [ amom amze

0 E (2)

where 2 1is the depth measured in mean free paths,

e = L/X For
the incident beam (2 = 0) we choose p(E,0) = §(E = E ) .

Equation (2)
can be solved by iteration to obtain ‘
. L ’ '
et Lop(£E)) ,  (3)
S op(B8) = e*8E-5) + ) A R mE)D G
. ‘ m=l

where. Fm(E,EO)

is the energy distiibution of nucleons after m collisions:

rEo' B B2
| FR(BsEg) = o 4By f dE, *°° f dE
E E

(BB y) 00 By(Ey By () B )
E |

' Eo | x =
* . ae . 11}‘;000 ]
- ' ' E E

! | i :
i | 2 S ()
N B Henci

Ui
the energy. and depth dependence of the distribution in pN(B 2)
§

are ;actorizable ror a given number of nucleonic interactions.
!
I
!
i

=



._sysfem his result is

- fit was found for a = 6.0 mb/(BeV/c)® and b = 1,57 mb/(Bev/e)

. B

To continue, we must now introduce the formula for the differential" -

o inelastic cross séction which Trilling has obtained., In the laboratory o~

N

2 2 | 3.0 2 , e

. . ‘ : g, =eUP o ) o
- ddUQ = : P - (8. + bpz )e t o _
FET s S

A

¢

ﬁ-_wheres.y,B are the usual quantities needed for the Lorentz transformation

. ‘e 3% .
from laboratory to center-of-mass variables; and Bz is the longitudinal

% #*
velocity, P, the longitudinal momentum, and Py the! transverse

. momentum of the secondary nucleon, ail in the center«cf-mass system, The

momentum in the laboratory system is p , and the corresponding element

" of solid angle is dR ., Experimentsl data at 18,8 and 23.1 BeV/c were

- used to obtain the numerical coefficients in the formula, and the best

L 6

To maintain a constant total cross section, he sgsumed that for other

energies

- p. (18.8) e
a(po) = a(18.8 BeV/c) ~§25~—-m- ’ - A
’ pmax(PO) ﬂ o o S »

g

- and :

q "

. ' 2 .

e o p.  (18.8) | -

bfp,) = b(18.8Bev/c) T : . &

. in pmax(po) '

éﬁ -
, -

=
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where Po ~is the incident momentum and Prax is the maximum secondary

momentum in the center-of-magss-system, If one integrates over all solid

angles, one finds a.pproximately7

’ A )

dog  _m(a + bp )
e . %

dp 3v(8 + 8, )

. In the appendix it 48 shown that for very high energies,

(O)I!

a0\ 1 BE \ _ ] - .

while for lesser energles (down to 5 BeV) thig result should bYe - .

corrected by

| o ,
AR NE DA T (©)
dE Eq 2By o2 /- By \ By up

The parameters in Eq. (5) are found to be A = 0,72 and B = 0,56 .

In fhe range of energies from S t@ 200 BeV, the most significant
corrections aré those having a parameter of smallneés a = MEO/E2 .
These affect the digtribution most importantly fof cases in which

a low-energy égcondary emerges from & very~high-energy primary, For
example, if 'qé = 200 BeV, and E = § BeV, o = 8 , The large
corrections %g%thé distribution are associated with secondary particles

by

which are emitted backwards in the center-of-mass system, Since half



"f;‘of the”éecondéﬁies do go backwards and thereby have a low iaboratory-

- sytem energy, the secondary spectrum shows a large peak for. small energiés.

g,

t

Nevertheless, the effect of "(dc/dE)(l) on the calculated secondary

nucleon spectraiis not generally large because of the requirement of a

higheenergy primary and a low-energy secondary, which can take place only -

once_in a cascade chain, and so this correction may be treated as a
perturbation,

The contribution from da(o)/dE to Fm(E,Eo) can be treated

»analytically. For this contribution,

o

( /e e(E/E
1/E, £(E/E)) ,-

r{% (g,E))

' Let us now introdﬁce8 x = zn(Eo/E),v and define

3

| HE/E) = elx) .

‘Then we obtain, from Eq. (&),

(0) o o o : R o
Fp (E,Ey) = dEm_lf BLCNPRLL @€ oo
o Mel

E, )
) s(xl) g(x2 - "1) L g{x o xm_l)
EO ' Ei ' Em-l
1 x xmwl, - Xs R '.- 
: - Eo/ dxn_l-lf B2 f &
N - 0 o <0 O

!

- .x" 48(1&)8("2 - xl) $ee g(x -‘,’I;Sm-l). ‘ ,. 

5



If we now define -

HI
B -
o"'ﬂ
H oo~

o
St

Can Y M

=1

©
=1

o

A

| ' R | s(m)(x)

we see that

. B I (TN E e SR I
0 :

where Ag(l)(x)ls g(x) .+ Thus g(m)(x) is given as a repeated "faltung"

integration, TFrom the theory of Laplace transforms, the 'Laplace transform

of g(m) . i\{g(m)} is given by

o L™y e e .
' Since
i
gx) = A+Be*
ve find
. ~A'-B» |
. '.-~j{g} = FTEET »

where s is the independent variable in the transform space, Finally,

we can write the solution as
. _ m

v ' ' ;g(.‘?’)(x) ,”5.73;_{. —F o 2% :3.4-'2'31 dz . (1)

vhere the rcontouris taken counterclockwise around the poles at z = 0, =1,



=] 0=
.This ihtegral maey be evaluated by using the series expansions for»

the éxponential and the polynomial ﬂear the poles, to obtain the result

L 4
g(m)(x) a (m)(x) * 8( )(x) . A '. S
where,‘ v
. (, i el n k.-l 'rliwn“'év
k-n-l :
- k g (=1 : A ¢!
gém)(x)= Z _ me ) { <
g k=1l \ k .n=0 Nk =n ¢ 1/
e S
R )
and
’ m-l. m, - - - (nekel) n /M e N - 2
‘“‘)(x)zex PIRECA Ve iaalD WE- o (A
T k= Co. k n=0 - neoelXaenael
R - . | : S
.. . . ® . . ‘
Although this result is exsact and finite,.it is not completely satistactory
for numerical calculations ror large m,” As m increases, the R
individual terms in the series rapidly ingrease because of the binomial -
coefficiehts,?%ut as a result of cancellations between terms the total £

sum decrease§ %ith m 4 as will now be seen, Thus in the numerical

wre
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" calculations round-off errors were found to dominate the results even

'Afor modefate values of m , An aiternative form without this defect

will now be obtained,

Let us consider the contour for Eq, (7) to be a circle about

z =2, =B/(A+3B), in vhich the redius is larger than both lzol

- and [l + zol o If we nowset u=z - Zg o then

A,_B A B
z z+1 u+z u+ (1 +z2.)

0 -0

|
. L2
z z - {1 +z)
- f‘-l_—-o-*- --o-) - t00 +-§: l-—-—n-n-o—n+"0
u, u {u . u u _

~

~ The two series are uniformly and aBsolutely convergent on the contour,

Inserting the value of Zg » Ve find

| o
A B A+3B % :
z + 2+ 1 = u’ Ei: “n , 4
‘ n=0 %
where
L e [BEoamt ) am
B (A + B)"~t (A + B)?

Note tﬁat @0 =1,and a =0. To obtain the mth power, we use



n=0.

where

. “ ’ -
and the E:" is carried over ali n, so that S: n, s m ', and
o . e 1 4=0 . * .
_ Y im; = k . After inserting this serles into Eq. (T), we find
i=1 ' .

. B % s xm+knl
g(m)(x) e A"'B (A - B)m z mgk

S

then be evaluated as needed,

The asymptotic behavior of g

as

k=0 '(‘m + K = l)! | ° (8)

For numerical calculations Eq., (8) is very convenient, since

m.k need be calculated only once for given A,B and the series can
L4

In practice it converges quite wellog

(m)(x) for large x can be readily obtained

x4
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B. Cascades in Métter for Whieh Aﬁ"> 1

To treat cascades in matter for which the atomic weight ’(An) >1,

|

we mustiintroduce a'mode; for the nucleus, For simplicity we assume a

spherical nucleus of radius .R o and constant density d , though a mbdel
“"inclﬁding 8 continﬁous distribution could easily be trea?ed. Evidently

‘(h/3)nR3d = An + The secondary spectrum arising from a nucleon~nucleus

collision comes about from sequences of single nucleon-nucleon events

B within‘thé»nucleus, and the probability of n collisions in a cascade

will be determined by the path length in the nucleus, It is convenient

' to characterize the collisions by the impact parameter, b , vhich are

distributed according to

P(b)db = 5“3-’-2-‘-13-’- .

. R .
v ¥

|

' where P(b)db is the probability of an impact paramefér between b and

b +t?bv in a collision. The probability, (ﬁL s Of n%ﬁinterparticle
coli%sions on a bartiéularAtraJectory through the ndclé#s (assuming

strgight-line prépagation of the cascade) satisfies a éqisson distribution,
H okt .

‘;[
.

¥

Pal) = L el

Lol
N

)
R
A ) ‘

1

IR : '
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| ni where o =, (po ) 1is the inverse of the collision mean free ‘path in ‘

1nel Lo e
'."nuclegf matter, Using 12 = h(R - b2 ) , we obtain the probability for . -

“n collisions in traversing a nucleus: ' '

_2aR : o S
e =i [ e ()
ho ) 2n!(aR) 3 RS
. 0 =
. . . &
These probablilities may be éomputed.by using:tﬁe recursion
relation obtained by integration by parts: | -~ .wfhv, k
- L R '
e _|n+1la 2(2aD)™" gD
Pn n n=l ni Lo ®
where D= 2R , This formulas can be used for the smaller n's together
with o, = - (aR) 21 = (1 + oD) exp (=aD)] , but for large n
E cancellations occur which reduce the accuracy of the result, Alterhatively,
i1 ‘
-~ the recursion relation may be solved to obtain
s - o _2(n+1)e™® Y (aD)? |
oo o &n (C&D)e ) i! o
’ - i=n+2 R
With this result, Ve can now give the average spectrum to be >_ '5_1
expected from a nucleonnnucleus collision°
\ . ' -
i s e sy s 2V R Pane L ao
| “A L M 0 0 EO n ¢ _ -

PN
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| The § function arises from the probabllity of a nucleon's passsing through
e nucleﬁs without interaction. In the model, the sum over n was cut off

at n= An , although one would expect that a smaller cutoff should

perhaps be made.‘ The precise cutoff is not too impdrtant, since the
) likelihood of highen collisions is quite small, With this cutoff, the
;” g probabilities (;)n were renormalized sb that the total overall probability
for n < An was 1 . _ .
The term in (90 can be removed from consideration by & redefinition
- of the mean free path in bulk matter. Up to now, the me?n free path
‘that would enter the celculations is AN 8'[WR2n]"1 o The presence of
- ‘  the <§0 in R, leads to a correction such that
: ‘ ot s e PR L S (1)
, . N ‘ 0 : .
,zi If the distance in matter 1s measured in units of this new A , we find
that Eq. (10) now becomes .
ER,X ) (E,Ey)) = o (12)
‘ m |
wherF .
Fu = Bn (18~ z Pl ‘L
R ‘:z' ), n=A &1 \
e 1 it
":.{E \ Lx
* i e



| -6 ‘\
: Thelsum over n is introduced to take account of the cutoff in n.,

3 : o
CleIrly cp ié the probability that if any interaction takes plece then

n nterparticle collisions occur, We see that E;.di = ) ,

l
' l

It is clear that if the fundamental secondary distribution has

‘ \;‘
R : B shape independent of E (R(E, E ) is a function of x times 1), i
il
o then] RA' will also be of this form in the independent collision
cescade model. Thus we can introduce the R,* given by Eq. (12) into ;"v

A
Eqs. (3) and (4) to obtain the complete spectrum in matter. We find

“h

. ' - L M . ; - ; -
(0)}(18 L)E = e~ *6(E - Ey) + %,(_; z ;%_ ) 8(K)(x)Um?¢}dE . . (‘;3)-“3_.‘1; e

Y | : M=1 K=

S

where

L . ‘ o) m1 ot m2 ees
. UM:K = Z > (@l) (@2) - -

mlvmg’ee.e | mi m2 cee

© and the Z" indicgtes the sum over all m vith the restriction that

i

" -i};l m =M and Z im = K. Evidently M is the total nunbet of

collisions with nuclei that a nucleon has undergone in the distance L R

and XK is the number of nucleon-nucleon interactions it has had. In'.i'
‘ terns of the energy spectrum at a certain‘depth it,ia'seen that the';j

'1 _energy distribution, <K)‘(x) ,.after .K collisions is needed, dbut

'it is not necéﬁsary to take account of the number of collisions that i;

© took place in éach of the M nuclear encounters.
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One might wonder whether the results 1n 8 medium of atomic weight
An ‘eould be directly related to those for hydrogen without going
through Eq. (13) and the probabilities ¢5m' e This is not generally
the case, as can be seen easily: In hydrogen, the ratio between the
probability for m collisions in a diétance L and.that for one is
given by the Poisson disfributione Thus if we consider 2 << l, we
find (5,/P) << 1 . On the.other hand, for nuclel with A > 1 the

probability of m collisions depends on £ and on An . In this case

.+ for & << 1, thé'probability of m collisions depends primarily‘on
o . ) -

An and in any case is not to be given by a Poisson distribution, but

rather is given by Eq. (9) .

C. Corrections to the Proton Distribution

It has already been mentioned'that the preceding analysié deéls‘
only with the form-invariant part of the elementary cross section as

given in Eq. (5). There is an additional term, dc(l)/dE in Eq. (6),

" which is of importance particularly in collisjions in-which high-energy

primary nucleons produce low-energy secondaries, These contributions

may be treated as perturbations to the distribution, To obtain the
(0) R(1)

correction terms we begin with Eq, (i), and express Ry as Ry

The first correction to F (E E ) can then be written as

| M), s
inl)(E'Eo) - .[ aE, F z(xc)(ElsEo) f SRR SRR
n=0 g E ’



1

Using Eq. (6), one finds

F(E,E')

=Al

In this expression,
Aoy " in Section IIA, but (1) (g

m ? the integrations were carried out numerically as follows.,

5]

0
ET

-18- :
io)(E ) is f&rm»in?afianﬁ aﬁa\has Seen developédf

2,E ) is not. For these contributions to S e

_— . - .- LA
. . . .

el gm?2 2 o lo2m3 g
oo u BV - .
s where Alv= 5 AM/Eo » By BA/Eo r and B, = j; BM./E0 s The: : )
first integration can then he expressed as ' '
. 5 - S
. . A 1] K )
\ ' I_(E,E,.)de s/ pl0 gy EL p(1)(g Eryar
E ®0 . .
. N . ) " ' .l. vvl. : . N
X o . («1) (1) pwiy («2)pyy
iy R =. AE{A,G ""'(E) + n(E)G (E) * BG (B},
R A "\: Eo k x i
AT ? . ot -
Wiy = [ rO &2 « [ e e,
T : 0
'_z R o ;
aﬁd" ! N i . )

It is necessary to carry out the integrals

(k)(E) cnly once over the SRR

- desired range in x in order to obtain I (E E, ) for all needed points, l
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|

I | .
"”-I A C ft
o ‘ i i o @10 . . o Ef

because the G(k)'s are functions only of x "and can be calculated
|- .
\ N
segnentially. The I ,does not have this property, however, and to

perQOrm the last integration needed for P(l)

over x' is necessary for each value of EoE, » %:

i
|

':'k | III. PION SPECTRA 3
| - -

‘ In treating pion spectra in matter, experimental data for pion
production by high-energy protons are sufficiently extensive to provide
a phenomenological extrapolation to high energies, However, information

about pion production by pions does not exist in enough detail to allow

2 similar extrapolation for this process, so in the‘present calculations

‘this source of secondary plons has been ignored. Thus the results of the

calculation would—represent a lower limit to the total pion spectrs,

The pion cascade equation is analogous to Eq. (1):

E

0 : .
'x‘:r' p_“.‘ (E’L) + %‘; f R"(E’E' )ON(E' pL)dE' o v (lh) ;
E ;

dp_(E,L)
' daL

10

- In this equation Rﬂ(E,E') is the distribution of cherged vions of

energy E contributed by collisions from nucleons of energy E' , The

inelastic cross section for pions, s &t high energies is

i el
approximately constent, 80 we assume that A is constant, Trilling

“has recently developed a formula for R*(E,EO) , which is

»
s

: o -1o°hE2/E 2 «4,8E/(E )l/2
R (E,E,) ==3-E—(6;§- e Pebo—fp e 0 L 0s)

a full numerical integration ir
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The first térm contributes‘a high-energy-pion,distribution of constant '

multiplicity, while the second represents a cloud of lower-energy pions

l

of multiplicity proportional to Ella " This formula £its known S &
experimental data fairly well, It is somewhat similar to the formula )
developed by Cpcconi'et a.l.‘,l‘l but differs by its sepgration into a
high- and & low-energy part, and also in the behavioﬁiof the pion -
multiplicity wéth energy. This formula i3 meant to apply only to mesons
produced in the forward direction in the center»of-mass system, There
. would also be a\group of very-low=energy pions in the laboratory system
] N
whigh are producéd in the bvackward direction, (;%
:lﬂ% For hydrégen or nuclear matter cascades, Eq. (3) cen be used
3 direLtly with Eq.’ (lh) to obtain p_ . After solving the resulting o
l l |. . 3
dif’ferential equa.tion, we find - :
1\ o (BL) =) (LI (BE) Lo ae) .
whefew o o , ' , S
L. 1
R ';' Rad Ar" L dL"l ('x‘;’ N )L (L'/A )m ‘ L .
G e T [ . - an. |
\.0 A,

0,0, %‘ ) f R (EEOR(ELE) . a8
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B If ,Aﬁ = AN ,‘vthe'expréssion for dm ‘could be integrated to give a

Poisson distribution, but since the two inelastic cross sections are

éuite different, we resort to the recursion relation for d

‘ L
| L) "Xy
. Am N N
d (L) = sc=iomaee |d (L) = e
m A“ - XN | Tmel m! -
and:
P T 18
A A A |
d. (L) = = e ".e ¥ .
0 A=A
These equations can be solved té give
dm(L) = ‘i-—z‘{—-):" e N Z f];T -]5:'-- -i—- L . (19) |
T N ' N T :
o T k=m+l

¥

N

To extend‘the‘médei to matter fqr Ah.>.l ;.wé proeeea; asifor
protons, by.first treating the cas¢ades in a nucleus and secondly by
going to a medium consisting of a diétfibution of nuclei; For the firétl
. .step we are again led to aﬁ averaging over impact parameters. ‘I: Gm
is the probability that é nucleon makes m interacgions with nucleons onr“
passihg<throﬁgh the nucleus and‘then'in tée (m. + 1)th interactién

£

produces a pion which escapes from the nucleus, ve fihd, from Eq. (17),,

¥
.

Qi
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R Ag&in an integration'by patts gives a recursion relation,

o Ty Ve Rl

A\ 'M 2. . " A
0 b wrewiitit w [1-(1+D/Aw)e

Y

4

Alternatively, we can use Eq, (19) directly, and on a?eraging'dver L we
L find |

where 05k is'given by Eq. (9) o _
With these results, we can now give the dverage distribution of

"secondary pioh? of energy E %o be expected from a collision between a

nucleon of eﬁe?@y E' and a nucleus,. From Eq, (16) and the above

' e
_averaging ove¥ impact parameters we obtain
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R"’An(E,E ) = Z 6,0 (BE")

To obtain the pion spectrum. for the passage of nucleons through

3

‘matter consisting of such nuclei, we use Eq. (14) modified for nuclear
. cascades as above:

E

dL

0
=’ D .J_'_” .
' E

The first term corresponds to the loss of pions on passage through nucledi,

For the present calculations, this term has been chosen as

€ = ﬁR2V(1~£) ’

- where ‘E is the probﬁbility that the pion not make an inelastic collision _
in péssing through the nuéleus and Vv is the densit& of nuclei in the
medium, This chéice ovﬁrestimateé £ ,_since an iﬁelastic collision of
a highwenergy pion with a nucleus may lead to & distribuﬁion of less
energetic pions that still are high-energy pions, Unfortunately, the
information about such secondaries is too meéger'to provide e signifiéant
model and so the aﬁove choice has been made, As better information becomes
available this assumption should.be reconsidered. The probability & for
plons is analo§0us to @ » and has the same form except that the inelastic
cross section for pions must replace that for protons in 030 o

Be?ore giving the solution to Eq, (20), we note that to express'
the results f@f pions using the same depth variable as for the nucleons,
it is convenieﬁ% to express L in units of XN as given by Eq. (11),

The pion distribution-:is;then
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p(Ez>=e. 7o f

Using the relation

‘where

N o e s,) s e) Sy

L) e e
) (1 -po) R

2

e

Z F(E'E)U

we obtaln

.p(EZ) = }: I(” Z G(nn)n;"

mRO

and
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Dk = Z 'Um,k-nan o
- n=0

Again we obtain a recursion relation for Im( 2) of the form
gBe=t i (1,-@0)

I () = — I
" By =8 (-8 "

),

o - e

Iy(8) = P et e 0 ]

5 @O - E) . .
to glve

' mhl =f £ -;S k :
I (2,) = .'Q:.__.e_m Z .-—-_9, m! .
m (m+ k + 1)1

(1 =F4) koo \ 1 =& |

IV, NUMERICAL CALCULATIONS AND RESULTS

A number of calculatlons using the above formulae were carried
out for verloug representative values of A and E . The numerical

integrations n@’\:ded.for the firsteorder corrections to the proton spectra

~as discussed ih? Section IIC, and for the pion Spe'ctra, were evaluated

Cop
with an integraiion formula that retains second and fourth differences

of the integrand:lz

<.

A
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?,x+h

L PRI . " N LT

B Y . R, L IT,. Shy Il ATV Bl o

: ¢ ' L P e d Ld —— -

j _f(x Jax' h(f(x + 5 ) = F5 47 (x + 3 ) + 5558 (x+2)‘ I
o : IR o T ¢-2) B

.whére each function on the right 1s evaluated aswthe average of its

value at x and at x + h ,  The quantities AII(x) and ATV(x) are

 the second and fourth differences of £(x) at x .

The accuracy of this formuls was compared with that for one
retaining only second differences in iterating the "faltung" integration

|
of BEq, (4), An energy range of E/Eo = 40 was covered im 10, 20, and

L0 steps. When Ry, was set equal to Réo)',_We found that Eq. (22}

(0)

gave agreement with the exact result for F to'within-a few percént
for most values of X and m uging 20 points, .The agreement using thé
second=difference form was much less satisfactory, even for hO'poihts.
Because thé finel spectrum fdr pioﬁs inVolved three numerical integrations,

the number of points was very important inydetermining the running -~ -

time of the progrem, and so the more complicated fourth-difference

~formula was selected, togetier with 20 integration stéps plus & few

more which wer§ needed to determine differeﬁces at the end points of.
the integ?ation range. Ten points did not provide the desired aceuracy
in the end res;%ltso Since the numerical integratiogs involved :
FéO)(x) times;rathe} smooth fﬁpctions, the preceding analysis seemed
to‘be a good t@st of the accuracy of the integratibne

The ;ormula selected will give an exact result for polynomials

of 5th degreé:jr less, Near x = 0 , the functions ( )(x) vary as
‘ A;;!?? . '

§
7
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' 'this region of x ,

;27-
xm'll; however, so that for m > 6 one expects errors to appear, In
F(o)(x) is very small, and for x > 0 is positive
definite, The numerical calculations were checked at each step to
determine that the increment to_the integral was positive, In a few
cases the increment was negative for x near zero, and since it was
expected that the integral should be very small there in any case,

those increments vere set equal to zero, . This. occurred for a small.

fraction of the steps one unit from x =0 ’ and only very rarely for

. the second step sway, Values of the integrals were: nqeded for x <0

g

to qbtain diffe%enees of the integrands et some end pointse It is

easily seen that for m even, Fm is an odd runction of x , while

fofllm odd, Fg. is positive definite, This dependence was guaranteed
L

A :
fo:rlx <0 ina, manner analogous to that described above for ‘'x >0,
;II
i

O Finally, @ few second-order perturbation termvaere evaluated
N \ :
to compare them with the zero~ and firstorder contributions to
‘ i

F (E E ) o As has been stated, the firsteorder terms are-largest for

largJ E, and smﬁll E, For m values from 2 to 64dnd

E0 00 BeV, it was found that the secondaorder correction was about -

10% of the first order at E = 5 BeV, As the secondary energy is
incfe%sed the ratio rapidly becomes much smaller, Thus, since the
basie crossasection formulas are not expected to be as accurate as
this, corrections to the spectre from corrections beyond first order
have not been %ncluded. |

Certai§ other parameters are needed for numerical calculations,

‘For hydrogen%c%scades the depth is measured in mean.free paths, so for
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c L ?ujthe nucleon spectra nothing more is needed. For nuclei with A. l-;_vn

';‘ however, the ~?n ] depend on R,y and this quantity must be specified.

" We have chosen R = 1,25 X 10“3 1/3 cm, and 0 f el = 32 mb . This

leads to R = 0.50 o Al/3 }‘ For the pion calculations it is necessary -

- to know l"/lN . For this we have chosen ar = 20 mb , which leads

inel
“to A /A = 1,6 ; The results of the numerical calculations for secondary
| proton spectra are given in Figs. 1 through 11, and those for pions are
given in‘Figs. 12 through 18, It is seen that for Eo = 200 BeV and

: An= 1, the low;energy correction to.the elementary integecticn is very
important and'eontributes strongly’to the low-energy secondaries,

especially at small depths, For complex nuclel or larger depths,

- however, the correction becomes emall. One also sees that for complex

' nuclei the logarlthms of the secondary distributions are well enproximated o

~ by straight lines when plotted as a function of the logarithm of the energy,
‘with a 310pe whlch depends on the depth., It might also be noted that
.elthough the incident beam decreases_exponentially with depth, the
seconder& protons produced may also have significant'energies for highL
energy pion production, Thus.it is seen that over a,wide range of

- energies, the pion distribution is approximetely constant'in depth over
several mean free paths; " In our calculation the pionsbare essumed to be
absorbed whenever they undergo an interaction with a. nucleon. This is

not a realistic assumption, es they are much more likely to reappear:

at a somewhat iesser energy. Thus the-pions produced are assumed to

disappear too‘”apidly. A more realistic treatment of the pions would - .

probably show that the pion distribution increases vith depth for

I
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seversl mean free paths, so that to maximize the pion beam of a given '

moderate secondary energy from a target, for example, the target would
be much more than & mean free path long,.

Unfortunately the calculations are not readily compered with

.experimental data from_adcelerators or cosmic radiation at these

energies, because such data are primarily obtained as the number of stars

produced in photographic emulsions, To extend the analysis to include

" star production would probably require Monte Carlo calculations.such as

have already been reported in the literature, and would introduce a new
‘ ~ _ |
dimension of complexity in the-calculations., Thus no comparison of the

results with experiments has heen attempted,
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vhere a' p?‘ are constants,

|~ Appendix 'ASYMPTOTIC FORM OF THE TRILLING NUCLEON SPECTRUM

, The.secondafy nucleon spectrum as devéloped by fg;lling is of

N o -
thékgorm s . . ;
{‘_f !. - . .' . )
i:"‘ ) ' ' ' * ) x
: };.. a5 y(a(Eo),-«,b(Eo)p,) N o

.dp 3v(8+8)

- as givén invSeétion‘IIA. The transformation between the laboratory and -

center-of-mass systems is accomplished with- 8 = <(EO - M)/(Eo + M> l/2 k-:'

_ . _ , i ‘
and y = <(EO + M)/QM) 2y neglect transverse motions, and then.

* . #
~ find p = yp(1 —,B/Bp) s vhere Bp = p/E . [p is the c.m, momentum

and p -the laboratory-system momentum of the secondary nucleon.] One

can then deduce that -

/ - "B (1 - 8/8_)
(8 + B*')Hz (1= 32)";/2 B 4 B B8 >

-1 -
= sp[v(l - aep)] ‘ .

- . , . ‘A . . . ) * " -,l' L
- The dependence of a(EoL and b(Eo)' 1s then obtained using p . =

BYM = ((Eo - M)M/z)l/g-_, so that

~)

a = a'/By v = br/e%y° ’

s

On corverting from momentum to energy as'independent variable, we

find =

N
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w0 . 1 E (L '. L_y\2 Ll oe el
"3 7 B-Bpa.+8p = =1 -B(l..BP) b'l R

(A1)

Now 'E2/p2.= (l.-'mzlEa)-l:: 1+ M?/Ee , and-since we are interested

: bnly in E~+ 5 BeV, the term in M2/E2 _may be neglected as a smell

correction to the distribution, Further,

%-13% + Mz +0 % © (A2)
0 2Eo ' '

and' o

The second term in Eq. (A2) can be as large as 10% of the leading ternm,
while the higher terms will be very small and are neglected. If these
results are introduced in Eq, (Al), we then find thaticoefficient of

a' becomes

| | 1 2.1 o'l
; . - A - - L
N # 8 % WE) + 5 (WE)Z + Z (w/E)
',3 . I e ‘ _ l =

The' kirst term is the leading one, and the second can give a correction

i
of u? to 107.v The third term can be large, however, if E/E << 1,

:'»

As has been discugsed this situation corresponds to the spectrum

l Ri- :
generated by. secondaries going backwards in the center-of-mass system,
ﬁ', 1, ‘1



‘»3‘;.the dominant contributioﬁs come from smaller energy changes, with the

leading term, thus drastically affecting the low=-energy spectrum for

_ where A and B aré constants,

~values for a,§ and by assuming congervation 6f'nucleons in the

‘collisions, tﬁhs neglecting such effects as hyperon and antinucleon

-32-

" For E, = 200 BeV and E = 5 BeV , this correction is four times the
& single collision. On the other hand, for multiple collision processes

i resuit that this correction term becomes less significant,

For the coefficient of b’

2 2 3 § 0 hA’

1 1 : 2 M M ‘M M M .
BlZel| o= (LB ) [ =] +|=| + - -=T s
Py 8 L P E o LE " 2E°E 2 LE S

0 0
' .

the first term is the leading one, and the second may produce a qbrrectidn"

of 20%, The third and fourfh terms will be neglected as small, The

. fifth term is the hore important correction, and can be large compared

with the first if E/EO << l s 88 has been discussed for the corresponding

term‘in the a' coefficient, Thus we are led to the final form,

2. 2
ME : MOE
Y 1 M 01 BE M 0

0 e

—

P

The coefficients A and B 5héve been deduced from Trilling's

production, For very high energies, wévrequire

FREI
b Y
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0 .
j A+BEVE L LB ,
E E
0 0 0

‘Use of only the large~E portion of . the épectrum corresponds to ineclusion

of only one of the secondary nucleons in a collision, and hence should

integrate to 1 rather than 2 , Further, at E

0= 18.8 BeV, Trilling
finds
a0 »
'Eﬁj o a + bp » J
‘ EM 1/2” |
o 0 E
oc a+h -z?- ir. .
. o
Inserting his values for 5 and b s we find
do ) E
'a"E" < 6-O+1057 'ﬁ“" .
0
Since we also have
do ’
T A+ BE/Eo .

we finally can solve for A and B to obtain

A = 0,72 .

i B = 0.56 .

e A
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