
UC Davis
UC Davis Previously Published Works

Title
Combined network analysis and machine learning allows the prediction of metabolic 
pathways from tomato metabolomics data

Permalink
https://escholarship.org/uc/item/1sh4z6m7

Journal
Communications Biology, 2(1)

ISSN
2399-3642

Authors
Toubiana, David
Puzis, Rami
Wen, Lingling
et al.

Publication Date
2019-06-18

DOI
10.1038/s42003-019-0440-4
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sh4z6m7
https://escholarship.org/uc/item/1sh4z6m7#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Combined network analysis and machine learning
allows the prediction of metabolic pathways from
tomato metabolomics data
David Toubiana 1, Rami Puzis 2, Lingling Wen3, Noga Sikron3, Assylay Kurmanbayeva3,

Aigerim Soltabayeva3, Maria del Mar Rubio Wilhelmi1, Nir Sade3,4, Aaron Fait3, Moshe Sagi3,

Eduardo Blumwald 1 & Yuval Elovici2

The identification and understanding of metabolic pathways is a key aspect in crop

improvement and drug design. The common approach for their detection is based on gene

annotation and ontology. Correlation-based network analysis, where metabolites are arran-

ged into network formation, is used as a complentary tool. Here, we demonstrate the

detection of metabolic pathways based on correlation-based network analysis combined with

machine-learning techniques. Metabolites of known tomato pathways, non-tomato pathways,

and random sets of metabolites were mapped as subgraphs onto metabolite correlation

networks of the tomato pericarp. Network features were computed for each subgraph,

generating a machine-learning model. The model predicted the presence of the β-alanine-
degradation-I, tryptophan-degradation-VII-via-indole-3-pyruvate (yet unknown to plants),

the β-alanine-biosynthesis-III, and the melibiose-degradation pathway, although melibiose

was not part of the networks. In vivo assays validated the presence of the melibiose-

degradation pathway. For the remaining pathways only some of the genes encoding reg-

ulatory enzymes were detected.
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The reconstruction of metabolic pathways is a complex
process based on a constraint-based bottom-up approach;
such reconstruction typically uses gene annotation and

ontology, computational derivation, and discrete manual curation,
requiring a priori knowledge of the stoichiometry between com-
pounds, thermodynamic information of the pathway’s reactome,
as well as its cellular compartmentalization, and other factors. Due
to the complexity of reconstruction, metabolic pathways are more
often predicted computationally rather than on substantial
experimental evidence1. The reconstruction of metabolic networks
follows a defined set of steps; initiated at the known biochemistry,
genomics, and physiology, followed by the governing of the
physico-chemical constraints, proceeded by flux distribution pre-
dictions, and finalized by the determination of which of the
offered solutions translate into meaningful physiological states2,3.
Regardless of whether or not they are fully validated, metabolic
pathways are collected in databases of genome-scale
hypernetworks4,5, e.g., PlantCyc (http://www.plantcyc.org/)6,
BioCyc (http://biocyc.org/)7, and KEGG (http://www.genome.jp/
kegg/)8.

Complementary to the constraint-based approach, metabo-
lite networks—constituted on high-throughput data metabolite
profiles—provide an attractive method for studying the coor-
dinated behavior of metabolites without the need for a priori
knowledge. Metabolite profiles are correlated based on mathe-
matically defined (dis)similarity measures9, which are subse-
quently transformed into network form, where nodes represent
the metabolites and the links between them the correlation
coefficients.

Metabolite correlation-based networks are often reconstructed
based on the exploitation of the natural variability of mapping
populations10–14 or collections of different varieties or culti-
vars15–17 as they provide a large sample size, which stabilizes the
correlation and reduces the error rate. Correlation-based network
analysis (CNA) explores the structural properties of graphs that
can be used to interpret metabolite networks and even postulate
hypotheses18. Nonetheless, although CNA and graph theory are
equipped with a myriad of tools19–21, many studies limit them-
selves to employing CNA for the study of the global structure and
relationships of metabolite data. For the current study, we exploit
the tools from graph theory.

Machine learning (ML) employs a collection of techniques that
allow computers to learn from existing data without being
explicitly programmed22. An ML approach to predict metabolic
pathways in bacteria has been proposed based on properties of
metabolic pathways as defined in genome-scale networks23.
Although various ML algorithms exist to tackle problems for
studying metabolic profiles, the power of ML algorithms has been
underutilized in the analysis of metabolic correlation networks.

In this study, we delved deep into the possibilities of CNA
and ML by combining them to predict metabolic pathways in
correlation networks in the pericarp of a tomato introgression
line population. We demonstrate that this method can be
essentially used for functional metabolomics. We do so by
mapping existing metabolic pathways onto the metabolite
correlation networks followed by the computation of a set of
network properties for each pathway to derive an ML model.
The resulting ML model was then used to predict the existence
of yet unidentified pathways based on the mapping of path-
ways onto the correlation networks and computation of the
same set of network properties. To validate the model, we
applied several in vivo experiments on the positively pre-
dicted, yet unidentified pathways.

To the best of our knowledge this is the first study that employs
structural analysis of metabolite correlation networks in order to
identify metabolic pathways.

Results
The identification of metabolic pathways is a key aspect in under-
standing the metabolism of an organism of interest. PlantCyc
(http://www.plantcyc.org/) is a collection of metabolic pathways
found in plants. TomatoCyc is the subset of PlantCyc containing
metabolic pathways found in tomato—notwithstanding the possi-
bility that some of the remaining PlantCyc pathways may also be
found in tomato. The methods introduced in this paper facilitated
the identification of previously unknown metabolic pathways
within the tomato pericarp using supervised ML techniques com-
bined with metabolite CNA. It does so based solely on reactions and
may not be used to predict differences in catalytic activity.

Given a set of tomato pathways (positive instances) and a set of
pathways that do not exist in tomato (negative instances), a super-
vised ML model was induced in order to classify any given pathway
(test instance) as either tomato (positive) or non-tomato (negative). A
set of numeric profiles (feature vectors) of positive and negative
instances (the training set) was utilized by ML algorithms during the
training phase in order to induce such a model.

The numeric profiles of metabolic pathways were computed
from tomato CNs based on the tomato introgression line mapping
population24 as presented in Toubiana et al.11. The original
dataset10 contained metabolic profiles of the central metabolism of
the tomato fruit for three different harvesting seasons, hereinafter
referred to as seasons I, II, and III. For each season, a weighted,
undirected CN was constructed. Network links were weighted
according to their correlation coefficient, allowing negative values.
The CN for season I included 75 nodes, corresponding to the 75
metabolites, and 473 links; the CN for the season II was composed
of 75 nodes and 869 links, while the CN for season III had 78
nodes and 338 links. Each pathway analyzed (train or test) was
represented as a group of nodes in each one of the three CNs. A
numeric profile was computed for each group of nodes in each CN
(for details see the Methods section). Pathways that were part of
the PlantCyc and MetaCyc (https://metacyc.org/) collections but
not found in TomatoCyc were used to train and induce ML
models. A workflow of the current study is presented in Fig. 1.

Mapping identified plant and non-plant metabolic pathways.
In total, the three seasons and the corresponding CNs contained
109 different metabolites, i.e., nodes, while 52 common metabolites
were contained in all three CNs. Out of the 589 metabolic pathways
listed in TomatoCyc, 169 pathways were identified to be mapped as
a subgraph onto the three CNs. The mapping was partial in a sense
that it allowed omitting compounds from the pathways that were
not found in the 52 common metabolites. In other words, at least
two compounds of a given pathway needed to intersect with the
common set of 52 metabolites in order to be considered for path-
way mapping. Consequently, only the pathway’s corresponding
compounds were mapped followed by feature computation.

The superpathway of lysine, threonine, and methionine
biosynthesis II, had 36% of its compounds within the networks,
which resulted in the largest of all subgraphs. In total, 67
pathways were represented by exactly two compounds, while for
three pathways all of their compounds were found in the CNs.
The same analysis was repeated for the remaining 625 non-
tomato plant pathways, identifying 33 pathways that shared at
least two compounds with the tomato metabolite CNs. For the
non-plant MetaCyc pathways, 151 pathways were identified that
shared at least two or more compounds with the CNs. In both
cases (tomato and non-tomato MPs), the largest number of
compounds shared with the CNs was 18. Supplementary Fig. 1
illustrates the distributions of the relative portion of the
metabolites of the different MPs mapped to the CNs, revealing
a right-skewed distribution for all three-Cyc datasets. For the
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pathways corresponding to the TomatoCyc dataset the largest
relative frequency of ~25% was observed at approximately 40%
coverage, while for the pathways corresponding to the remaining
PlantCyc and MetaCyc datasets the peak was reached at
approximately 20% relative coverage with ~22 and ~31% relative
frequency, respectively. To compare the relative distributions of
coverage, a two-sided Kolmogorov-Smirnov test was employed,
revealing that the PlantCyc vis-à-vis the TomatoCyc and the
PlantCyc vis-à-vis the MetaCyc distributions were statistically
equal (p-values 0.09681 and 0.09887, respectively), while the
TomatoCyc vis-à-vis the MetaCyc distribution was significantly
different (p-value 2.631e-06).

ML model achieved high accuracy in classifying known path-
ways. The aforementioned 169 tomato pathways were used as the
positive instances in the training set (Supplementary Data 1). Half
of the negative instances (85) for training the ML classifier were
randomly chosen from the 151 MetaCyc pathways. The second
half was comprised of 85 random subsets (negative sampling) of
the 52 common metabolites. The aforementioned 33 non-tomato
plant pathways were not included in the training set (Supple-
mentary Data 2).

We used 10-fold cross-validation to choose the best ML
algorithm for the pathway classification problem and tune its
parameters. There are multiple performance measures to evaluate

the quality of ML models, including the area under the receiver
operating characteristic curve (AUC), which is often used as the
pivotal measure.

We applied various classifier algorithms (Fig. 2) and also
created models with different feature combinations, i.e., models
for each season individually, a season average model, and a model
for all season features combined (Table 1). The random forest
algorithm for all seasons combined rendered the best result,
achieving an AUC of .932 and accuracy of 83.78% (284 correctly
vs. 55 incorrectly classified instances, Supplementary Table 1).
The random forest algorithm is an ensemble of generated
decision trees for which the average prediction of the individual
trees is produced25.

Season II was identified as the main feature contributor. In
order to identify the most contributing features and reduce
potential overfitting, the features were evaluated using InfoGain26.
Figure 3 presents the 20 top-seeded features used to reestablish an
random forest model closest to the all-feature-model in terms of
ML performance measures, while Supplementary Table 2 lists their
definitions (a full ranking of the features is listed in Supplementary
Data 3). For the 20-feature-model, accuracy of 83.48% was achieved
with 283 correctly and 56 incorrectly classified instances. The AUC
was estimated at 0.923, compared to the AUC of 0.932 of the all-
feature-model (Table 1, Fig. 2).
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We observed that the 12 highest ranked features (out of the 20-
top seeded features) (Fig. 3) corresponded to season II. Nine of
the 20 features represented network properties that described how
well connected a node or a group of nodes was (see features 1-5,
11, 14, and 20 in Fig. 3 and Supplementary Table 2), revealing
that nodes of tomato pathways maintained greater connectivity to
each other than nodes of non-tomato pathways and of non-
pathways (random subsets of metabolites). In particular, the
distribution of positive (tomato pathways – blue) vs. negative
(non-tomato pathways – red) instances in the density-of-
subgraph-season_I feature emphasized this behavior.

Network centrality properties measure the importance of a
node or link for maintaining the cohesiveness of a network. Here,

the distribution of the centrality-related features (see features 12,
13, 15, 16, and 20 in Fig. 3 and Supplementary Table 2)
highlighted that the metabolites of the negative instances were
less central than the metabolites of the positive instances.

Community detection algorithms are applied to networks in
order to elucidate the macroscopic structure of the network.
Several different community detection algorithms have been
postulated and successfully applied20. The distributions of
features associated with the community structure (see features 8
and 18 in Fig. 3 and Supplementary Table 2) demonstrated that
nodes in the CN associated with the tomato pathways tend to be
grouped into the same community, in contrast to the nodes
corresponding to the non-tomato pathways. For definitions of all
features we refer the reader to the Methods section and
Supplementary Data 4.

The 20-feature-set ML model was verified applying leave-one-out
cross-validation (see Methods for more details and Supplementary
Data 5), during which 84.62% of the 169 tomato pathways were
classified correctly. When compared to the classification of millions
of random subsets of metabolites, the prediction values of all
tomato pathways fell within the first percentile (Supplementary
Fig. 2), while the prediction values of 170 non-tomato pathways
were, on average, (0.189) within the first quintile (Supplementary
Fig. 2). As such, the leave-one-out cross-validation method
validated the proposed random forest model.

Classification of test set predicted 22 pathways in tomato. After
validation, the abovementioned 33 plant pathways and the
remaining 66 MetaCyc pathways that were not included in the
training set, were classified by the trained ML model. Prediction
values associated with these instances ranged from 0 to 1. Here, a
prediction value threshold of 0.5 was chosen to forecast the
potential existence of a pathway in the tomato (Table 2 lists all of
the pathways with a prediction value ≥ 0.5, Supplementary Data 6
lists all of the pathways). In total, 22 pathways obtained a

Table 1 Random forest model performance measure summary

Class True positive rate
(Recall)

False positive rate Precision F-measure AUC

All season features—model I TomatoCyc pathways 0.917 0.241 0.791 0.849 0.932
MetaCyc and random
pathways

0.759 0.083 0.902 0.824 0.932

Weighted average 0.838 0.162 0.847 0.837 0.932
Season I features—model II TomatoCyc pathways 0.864 0.182 0.825 0.844 0.918

MetaCyc and random
pathways

0.818 0.136 0.858 0.837 0.917

Weighted average 0.841 0.159 0.841 0.841 0.917
Season II features—model III TomatoCyc pathways 0.876 0.229 0.791 0.831 0.91

MetaCyc and random
pathways

0.771 0.124 0.862 0.814 0.91

Weighted average 0.823 0.177 0.827 0.823 0.91
Season III features—model IV TomatoCyc pathways 0.828 0.306 0.729 0.776 0.876

MetaCyc and random
pathways

0.694 0.172 0.803 0.744 0.876

Weighted average 0.761 0.239 0.766 0.76 0.876
Averaged seasons feature—model V TomatoCyc pathways 0.858 0.212 0.801 0.829 0.914

MetaCyc and random
pathways

0.788 0.142 0.848 0.817 0.914

Weighted average 0.823 0.177 0.825 0.823 0.914
Reduced features based on model
I–model VI

TomatoCyc pathways 0.858 0.188 0.819 0.838 0.923

MetaCyc and random
pathways

0.812 0.142 0.852 0.831 0.923

Weighted average 0.835 0.165 0.836 0.835 0.923
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Fig. 2 The receiver operating characteristic (ROC) curves. The figure shows
the curves of the ROC for the ML models for the positive and negative class
instances. Abbreviations within the figure represent the different ML
algorithms: RF random forest, RF red random forest with reduced feature
set, AB AdaBoost, RT random tree, SVM support vector machine, NB
naïve Bayes
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Skewness absolute weighted degree of graph; 
season II

Ranking: 0.22
Mean: 0.18
SD: 0.65

Kurtosis absolute weighted degree of graph; 
season II

Ranking: 0.19
Mean: 0.49
SD: 0.02

Average absolute weighted degree of graph; 
season II

Ranking: 0.18
Mean: 0.14
SD: 0.01

Std. dev. absolute weighted degree of graph; 
season II

Ranking: 0.18
Mean: 279.53
SD: 81.5

Total absolute weighted degree of graph; 
season II

Ranking: 0.18
Mean: 36.17
SD: 28.9

Weighted std. dev. node betweenness
of subgraph; season II

Ranking: 0.17
Mean: 577.78
SD: 178.73

Edge number of graph; season II

Ranking: 0.17
Mean: 0.7
SD: 0.25

Edge betweenness community of 
subgraph; season II

Ranking: 0.16
Mean: 20.35
SD: 16.7

Mixed neighborhood; season II

Ranking: 0.16
Mean: 43.91
SD: 9.23

Union of neighborhood; season II

Ranking: 0.16
Mean: 254.01
SD: 71.76

Total weighted degree of graph; season II

Ranking: 0.15
Mean: 0.54
SD: 0.64

Weighted average closeness centrality
of subgraph; season II

Ranking: 0.14
Mean: 0.25
SD: 0.26

Average closeness centrality of 
subgraph; season III

Ranking: 0.14
Mean: 0.32
SD: 0.33

Density of subgraph; season I

Ranking: 0.14
Mean: 0.27
SD: 0.28

Average closeness centrality of subgraph;
season I

Ranking: 0.14
Mean: 0.44
SD: 0.66

Weighted average closeness centrality
of subgraph; season I

Ranking: 0.14
Mean: 0.25
SD: 0.12

Weighted std. dev. local clustering coefficient 
of subgraph within graph; season III

Ranking: 0.14
Mean: 0.67
SD: 0.23

Leading eigenvector community of subgraph;
season I   

Ranking: 0.14
Mean: 0.31
SD: 0.29

Ranking: 0.14
Mean: 0.44
SD: 0.03

Average closeness centrality of subgraph;
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Average weighted degree of graph;
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Fig. 3 Top-20 ranked features; positive vs. negative instance distribution An attribute information gain algorithm was applied, ranking the contribution of
the different features to the random forest model. The top-20 seeded features illustrated here were chosen to generate a reduced feature-set random
forest model. The different graphs corresponding to the 20 features show the distribution of the computed features of the positive test set instances (blue)
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prediction value of 0.5 or greater, of which six were associated
with PlantCyc pathways and 16 with MetaCyc pathways. The β-
alanine degradation I pathway achieved the highest prediction
value of 0.89. For the PlantCyc pathways, the melibiose degra-
dation pathway achieved the highest prediction value of 0.68.
While the inspection of the relative distribution of the 20 features
revealed many differences between positively and negatively
predicted metabolic pathways, three features emphasized the
difference in particular (Fig. 4): the edge betweenness community
of subgraph of season II showed higher values for the majority of
the positively predicted metabolic pathways, indicating a greater
edge betweenness for their corresponding subgraphs; for the
weighted standard deviation local clustering coefficient of sub-
graph within graph feature of season III positively predicted
metabolic pathways demonstrated a normal distribution, while
negatively predicted metabolic pathways showed a bimodal, left-
skewed distribution, suggestive for a greater variety of the local
clustering coefficient of subgraphs of non-tomato predicted
pathways; the leading eigenvector community of subgraph of
season I illustrated a left-skewed distribution for the positively
predicted metabolic pathways, showing that they tend to group
themselves following a leading eigenvector community.

Sensitivity analysis of the reduced feature model (see Methods
section for details and Supplementary Data 6 for results)
demonstrated that out of the 22 metabolic pathways with a
prediction value ≥ 0.5, only one metabolic pathway was mis-
classified, namely the MetaCyc listed superpathway of histidine,
purine, and pyrimidine biosynthesis. Out of the 77 metabolic

pathways with a prediction value < 0.5, 20.77% (16) were
misclassified.

To verify the model, four pathways whose corresponding genes
could be identified in the tomato genome were further subjected
to in vivo analysis to show their existence in the tomato pericarp;
two pathways corresponding to MetaCyc: the β-alanine degrada-
tion I, the L-tryptophan degradation VII (via indole-3-pyruvate);
and two pathways corresponding to PlantCyc: the melibiose
degradation and the β-alanine biosynthesis III pathways.

The β-alanine degradation I is a two-step pathway, where β-
alanine is catalyzed via β-alanine aminotransferase (EC 2.6.1.19)
to 3-oxoproponate and then via malonate semialdehyde
dehydrogenase (EC 1.2.1.18—also known as methylmalonate-
semialdehyde dehydrogenase) to CO2. The first conversion also
produces 2-oxoglutarate and L-glutamate, the second conver-
sion produces an acetyl CoA NADH. In tomato Solyc12g006450
codes for β-alanine aminotransferase and Solyc01g106080 for
malonate semialdehyde dehydrogenase. The presence of both
genes was validated by performing PCR on DNA extracted from
M82 tomatoes. A single amplicon was detected for both genes
(Fig. 5a, Supplementary Fig. 3) and was confirmed via direct
sequencing. The L-tryptophan degradation VII (via indole-3-
pyruvate) is a three-step metabolic pathway, where tryptophan
is converted into indole-3-pyruvate via tryptophan transaminase
(EC 2.6.1.27 - Solyc06g071640—Supplementary Data 7), which
is converted into indole-acetaldehyde, which is converted
into indole-3-acetate. Both final steps can be catalyzed via
indole-3-acetaldehyde oxidase / indolepyruvate decarboxylase

Table 2 Pathway existence prediction values for class 1

Database Pathway Original model Sensitivity analysis
average

Sensitivity analysis
variance

Conform with original
model average

MetaCyc beta-alanine degradation I 0.89 0.631 0.01812 TRUE
MetaCyc superpathway of butirocin biosynthesis 0.85 0.914 0.00990 TRUE
MetaCyc isopenicillin N biosynthesis 0.85 0.879 0.01379 TRUE
MetaCyc L-tryptophan degradation VII (via indole-3-

pyruvate)
0.76 0.773 0.01815 TRUE

MetaCyc L-tryptophan degradation IV (via indole-3-
lactate)

0.76 0.843 0.01298 TRUE

MetaCyc gliotoxin biosynthesis 0.75 0.843 0.01298 TRUE
MetaCyc superpathway of scopolin and esculin

biosynthesis
0.71 0.928 0.00850 TRUE

PlantCyc melibiose degradation 0.68 0.534 0.08974 TRUE
PlantCyc beta-alanine biosynthesis III 0.68 0.596 0.03190 TRUE
MetaCyc apicidin F biosynthesis 0.68 0.862 0.01167 TRUE
MetaCyc creatine biosynthesis 0.68 0.796 0.02079 TRUE
MetaCyc mycolyl-arabinogalactan-peptidoglycan

complex biosynthesis
0.65 0.708 0.02882 TRUE

PlantCyc putrescine degradation I 0.63 0.749 0.02393 TRUE
PlantCyc hypoglycin biosynthesis 0.61 0.824 0.01497 TRUE
MetaCyc L-tryptophan degradation VIII (to

tryptophol)
0.61 0.704 0.02038 TRUE

PlantCyc lathyrine biosynthesis 0.6 0.639 0.02321 TRUE
MetaCyc superpathway of L-methionine salvage and

degradation
0.6 0.731 0.02034 TRUE

MetaCyc superpathway of histidine, purine, and
pyrimidine biosynthesis

0.58 0.481 0.03771 FALSE

MetaCyc L-glutamate degradation VIII (to
propanoate)

0.54 0.571 0.03319 TRUE

MetaCyc L-phenylalanine degradation IV
(mammalian, via side chain)

0.53 0.714 0.02364 TRUE

PlantCyc superpathway of aspartate and asparagine
biosynthesis

0.52 0.624 0.02851 TRUE

MetaCyc benzoate fermentation (to acetate and
cyclohexane carboxylate)

0.5 0.609 0.03113 TRUE
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(EC 1.2.3.7 / 4.1.1.74 - Solyc01g088170 / Solyc11g071600—
Supplementary Data 7). Also here, the presence of all genes
encoding enzymes that regulate the L-tryptophan degradation
VII pathway was validated by performing PCR on DNA
extracted from M82 tomatoes (Fig. 5b).

The melibiose degradation is a single-step pathway, where
melibiose is degraded via α-galactosidase (EC 3.2.1.22) to the
sugars galactose and glucose27. Four loci associated with genes
coding for α-galactosidase were detected within the tomato
genome on chromosomes 3-6 (Supplementary Data 7)28. To
further verify the existence of the pathways, in vivo assays were
carried out on the transcript, enzymatic, and metabolite level,
verifying the presence and activity of α-galactosidase regulating the
melibiose degradation pathway. Quantitative RT-PCR showed that
the expression levels were not significantly different (p-value=
0.4489) for Solyc03g019790 on chromosome 3 between the parental
line M82 and IL 3-1 (Fig. 6a, Supplementary Table 3).
Solyc04g008730 on chromosome 4, Solyc05g013720 on chromo-
some 5, and Solyc06g050130 on chromosome 6 all were shown
to be differentially expressed on M82 and the respective ILs
(Fig. 6a, Supplementary Table 3—respective p-values= 0.0016,
0.0013, 0.0083). To test for the presence of α-galactosidase,
immunological analysis was performed against corresponding
antibodies raised against α-galactosidase from barley29, revealing
different amounts of the enzyme in M82 and the tested
introgression lines (Fig. 6b). In order to test for α-galactosidase
activity, aliquots of crude protein extract were subjected to a
colorimetric assay using p-nitrophenyl-α-D-galactopyranoside
(pNPGal) as artificial substrate. The analysis showed activity in
all of the lines tested (Fig. 6c). Quantitative levels of melibiose,
glucose, and galactose were also measured in the lines of interest.
To the best of our knowledge, this is the first study reporting
melibiose in the tomato pericarp. To verify the presence of
melibiose in tomato, eluted melibiose standard (Fig. 6d) vs.
putatively identified melibiose in the tomato pericarp (Fig. 6e) is
presented, as well as their corresponding deconvoluted spectra
(standard; Fig. 6f vs. sample; Fig. 6g). Quantitative analysis of
melibiose main and byproducts, glucose, and galactose showed
varying levels in M82 and the introgression lines (Fig. 6h).

The β-alanine biosynthesis III is one-step pathway, where L-
aspartate is converted to β-alanine via aspartate 1-decarboxylase /
L-tyrosine decarboxylase (EC 4.1.1.11/4.1.1.25 - Solyc09g064430).
Also here we performed PCR on DNA extracted from M82
tomatoes to validat its presence Fig. 5c.

Discussion
Understanding of the activity of metabolic pathways in the con-
text of complex metabolic coordination30 is a key aspect in many
domains, including agriculture (crop improvement) and health
care (drug design). The constraint-based approach is the common
(non-curated) method for proposing the existence of metabolic
pathways in an organism; in this approach, genes regulating
metabolic pathways are organized into genome-scale networks6–8,
complemented by enrichment analysis based on expression data
(gene ontology) for the identification of key metabolic processes.
However, this approach ignores the post-regulatory mechanisms
taking place between the genetic, enzymatic, and metabolic levels
of the cell.

The approach demonstrated here is based on quantitative
measurements of metabolites, and by that effectively accounts for
post-transcriptional and post-translational events, circumventing
the need for gene data integration. We showed that metabolic
correlation-based networks incorporate more information about
the cellular activity than has been attributed to them so far. In
fact, our study shows that metabolic pathways are deeply
embedded into metabolic CNs and shape their topological
structure.

To detect metabolic pathways within metabolic CNs, network
analysis was combined with ML techniques. In this analysis, 169
known metabolic pathways in tomato (positive instances) were
mapped as subgraphs onto the three metabolite CNs of the
pericarp of a tomato introgression line mapping population10.
Additionally, 85 metabolic pathways unassociated with tomato
from the MetaCyc collection as well as 85 random subsets of
metabolites were added to the training set as negative instances.
During the first trials of the study, initial ML models classified
some tomato-unassociated pathways as tomato metabolic path-
ways, although their corresponding nodes in the CN did not
correlate. We attribute this behavior to the fact that the initial ML
models were trained using only tomato-associated metabolic
pathways (positive instances from TomatoCyc) and tomato-
unassociated metabolic pathways (negative instances from
MetaCyc); thus, only a few negative instances contained uncor-
related metabolites within the studied CNs, not providing suffi-
cient negative examples for the ML classifier to learn from. This
observation led to the necessity to include also random subsets of
metabolites as negative instances.

For each pathway (instance) a set of 148 (Supplementary
Data 4) network-topological properties were computed for each
season (Supplementary Data 1). In order to avoid overfitting and
to identify the most contributing features, an InfoGain algo-
rithm26 was applied, reducing the complete feature set to the 20
most relevant features (Fig. 3, Supplementary Table 2). The
random forest model achieved an AUC of .923 (Fig. 2, Table 1)
based on the top-20 chosen features. Notably, these features
(Fig. 3) corresponded to the CN of season II, which had shown to
be the most densely connected graph of the three networks and
thus may incorporate more information in regard to metabolic
pathways. This finding may be the outcome of meteorological
changes between seasons impacting network topologies11, where
season II may have presented favorable conditions with regard to
pathway detection. In particular, features related to centrality
measures and to node connectivity were identified in the reduced
feature set. The high InfoGain of connectivity related properties
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Fig. 5 PCR validation of tomato genes. PCR amplification of tomato genes
Solyc01g10680, Solyc12g006450, Solyc06g071640, Solyc01g088170,
Solyc11g071600, Solyc09g064430 from DNA extracted from tomato fruits.
Amplicons are visible (M−1Kb+DNA ladder). Figure shows lanes spliced
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indicated that nodes of pathways associated with tomato were
more densely connected to each other than nodes of pathways not
associated with tomato. The high InfoGain of centrality related
features indicated that connections between nodes in different
tomato pathways were stronger than connections between nodes
in tomato unassociated pathways.

To predict the existence of previously unidentified pathways in
tomato, a test set, composed of 33 plant metabolic pathways
(PlantCyc) and 66 non-plant species metabolic pathways (Meta-
Cyc), was generated. Similar to the pathways in the training set,
each pathway in the test-set was mapped onto the three different
CNs, followed by feature computation (Fig. 4). Based on the
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reduced feature-set, the existence of each of the 99 unidentified
pathways was estimated by the trained random forest model. In
total, 22 pathways that were previously not known as tomato
pathways were here classified as such with a confidence level
above 0.5 (Table 2, Supplementary Data 6). Sensitivity analysis
confirmed all but one predicted pathway.

Limited in vivo analyses were performed on metabolic path-
ways with high prediction scores. Representative for MetaCyc, the
β-alanine degradation I pathway and the L-tryptophan degrada-
tion VII (via indole-3-pyrtuvate) were chosen. The presence of all
genes regulating both metabolic pathways were validated by
performing PCR on DNA (Fig. 5a, b). The set of metabolites
involved in the β-alanine degradation I and the L-tryptophan
degradation VII metabolic pathways intersects with metabolites
commonly reported in tomato in the current and other study. To
date the β-alanine degradation I pathway has been associated
with non-plant organisms, particularly in rat31–33. The named
metabolic pathway is attributed with energy conservation in form
of a CoA ester during the oxidation of an aldehyde32. The L-
tryptophan VII pathway has been documented in non-pathogenic
bacteria associated with plants34. Given that the set of metabolites
and genes (and likely enzymes) is also present in tomato, it is
probable to assume both metabolic pathways fulfill a similar
purpose here.

Representative for PlantCyc, the β-alanine biosynthesis III and
the top-scoring melibiose degradation pathway were analyzed.
The β-alanine biosynthesis III is one-step pathway regulated by
Solyc09g064430. In plants, only the aspartate 1-decarboxylation is
associated with aspartate 1-decarboxylase. In Archaea also L-
tyrosine decarboxylase has been shown to mediate the dec-
arboxylation of aspartate35. Here, the presence of the gene
encoding an L-tyrosine decarboxylase was validated via PCR
performed on DNA extracted from M82 tomatoes (Fig. 5c).
Nevertheless, the demonstration of the β-alanine biosynthesis III
in tomato requires further research.

The melibiose degradation pathway is also a one-step meta-
bolic pathway, where α-galactosidase cleaves melibiose into glu-
cose and galactose. Note that only glucose and galactose were
represented in the analyzed CNs. First, the transcript levels of
four genes transcribing for α-galactosidase were tested, showing
transcription in M82 and all corresponding ILs (Fig. 6a). Second,
the presence of α-galactosidase was assayed applying immuno-
logical analysis, showing varying levels in the different lines tested
(Fig. 6b). Third, α-galactosidase activity was tested using colori-
metric tests. Results were indicative for activity in M82 and all
corresponding lines (Fig. 6c). Finally, the presence of melibiose,
glucose, and galactose were detected in the tomato pericarp
(Fig. 6d–h). It is possible to claim that the mere presence of the
abovementioned cellular compounds is not evidence of the
melibiose degradation pathway, particularly since α-
galactosidases catalyze the hydrolysis of various storage

substances in plants. However, the melibiose degradation path-
way is catalyzed only by α-galactosidase. This fact, coupled with
our in vivo results, is substantial evidence of this metabolic
pathway’s presence in the tomato pericarp. To the best of our
knowledge, this is the first study to report the melibiose degra-
dation pathway in tomato.

The actual power of the novel method for metabolic pathway
detection presented here is revealed when placing the results in
context of the initial datasets. Twenty years into metabolomics
and tools for the definition of metabolites on an individual level
are still lagging36. Commonly, the functionality of metabolites is
determined based on their compound class affiliation rather than
on the metabolite’s individual characteristics, exacerbated by
enzyme promiscuity, cell compartmentation, and the complexity
of metabolite networks36. The contextualizing of metabolic
pathways into the CNs, as described in the current study, allowed
to derive metabolite functionality with respect to metabolic
pathways on an individual level. For instance, although all
metabolites comprising the β-alanine degradation I pathway are
present in tomato, this is the first study report its presence in
tomato and in plants in general. Previous studies10 did not
include melibiose in their respective datasets. The methodology
described here was able to identify the melibiose degradation
pathway although melibiose was not part of the initial (training)
dataset. However, it is important to highlight that the approach
presented here may be used to predict metabolic pathways but it
cannot be used to predict differences in catalytic activity.

The usage of CNA combined with ML techniques will greatly
contribute to metabolite pathway prediction and identification in
incomplete datasets. In addition, the identification of metabolic
pathways may be more accurate, as CNs are based on quantitative
metabolic data taking into account all post-regulatory mechan-
isms occurring along the cellular machinery – a capability that is
absent in the constraint-based pathway identification. Finally, as
metabolic profiling can be performed independent of an anno-
tated genome, the identification and prediction of metabolic
pathways can be applied to virtually all organisms.

Methods
General statistics and reproducibility. To construct metabolite CNs the meta-
bolic profiles of the tomato pericarp of an introgression line mapping population24

as generated for Schauer et al.10 were used. The dataset was composed of meta-
bolite profiles of the central metabolism from three different harvesting seasons
(field experiments) in three different years, hereinafter referred to as seasons I, II,
and III. Each metabolite profile was based on 4 to 6 biological replicates. For each
season a weighted, undirected metabolite CN was constructed as described by
Toubiana et al.11. Network nodes represented metabolites and network links were
weighted according to their Pearson correlation coefficient, allowing negative
values. Spurious correlations, where |r| ≤ 0.3 and p ≥ 0.01, were removed (for details
on how to generate metabolite CNs we refer the reader to Toubiana et al.9, where a
pipeline for CN construction was suggested). For more details of network con-
struction we refer the reader to the subsequent sections.

Fig. 6 In vivo validation of the melibiose degradation pathway in the tomato pericarp. a Boxplot representation of quantitative analysis of transcripts with
real-time RT-PCR performed for genes Solyc03g019790 on introgression line (IL) 3-1, Solyc04g008730 on IL 4-1, Solyc05g013720 on IL 5-1, and
Solyc06g050130 on IL 6-1. The center lines represent the median; box limits represent upper and lower quartiles; whiskers represent 1.5 × interquartile
range. The expression of each line was compared with M82 after normalization to SGN-U314153. The data represents the mean obtained for representative
experiments from three independent biological replications. The Student’s t-test was applied to compare the relative expression levels. The values denoted
by asterisk are significantly different (in which * indicates p < 0.05; ** indicates p < 0.01; and *** indicates p < 0.001). b Immunological analysis of α-
galactosidase against corresponding barley antibodies. c Boxplot of colorimetric assay using p-nitrophenyl-α-D-galactopyranoside (pNPGal) as artificial
substrate to test for α-galactosidase activity. The center line represents the median; box limits represent upper and lower quartiles; whiskers represent
1.5 × interquartile range. d Eluted melibiose standard chromatogram. e Tomato pericarp melibiose chromatogram. f Deconvoluted spectra of melibiose
standard. g Deconvoluted spectra of melibiose in tomato pericarp. h Boxplot of quantitative analysis of melibiose main and byproduct, glucose, and
galactose. Error bars represent standard deviation. The center lines represent the median; box limits represent upper and lower quartiles; whiskers
represent 1.5 × interquartile range
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Metabolic pathway mapping and onto CNs was achieved with pathways from
the PlantCyc and MetaCyc databases (see below for details). Feature computation
was achieved with R code as provided in https://github.com/toubiana/
CNA_combined_with_ML. The resulting feature-value datasets for positive and
negative instances are supplied as Supplementary Data 1 and 2.

Statistical tests for validation of metabolic pathways was performed with n ≥ 3
biological replicates. A priori statistical tests were performed followed by adequate
data transformation where necessary. Gene information for PCR performed on
selected genes is provided in Supplementary Data 7 and Supplementay Table 4.

Network construction. Metabolite CNs are represented as weighted networks
Gi= (Vi, Ei, w), where Vi is the set of nodes corresponding to metabolites found in
the dataset of season i, E is the set of links between them, and link weights (w:
E→R) correspond to the Pearson correlation coefficient. In the rest of this paper we
will use the terms nodes and metabolites interchangeably. The constructed CN for
season I was composed of jVI j ¼ 75 nodes and EIj j ¼ 473 links connecting them;
the CN for the season II was composed of VIIj j ¼ 75 nodes and EIIj j ¼ 869 links.
The CN for season III was composed of VIIIj j ¼ 78 nodes and EIIIj j ¼ 338 links.

As a plant pathway reference, the PlantCyc database (http://www.plantcyc.org/)
version PMN 10.0 was used, listing 1214 pathways, composed of 6200 reactions,
involving 152,416 enzymes and 5138 compounds. For tomato pathways, the
TomatoCyc database version 1.0 within PlantCyc was used, listing 589 pathways,
composed of 3379 reactions, involving 7106 enzymes and 2557 compounds.
Finally, the MetaCyc pathway database (http://metacyc.org/) version 20.0 was used,
listing 2454 pathways from 2788 different organisms, composed of 13,533
reactions, involving 11,041 enzymes and 13,191 compounds. MetaCyc pathways
that were also found in PlantCyc were regarded as a part of the PlantCyc pathway
collection. In addition, random sets of two to 18 metabolites were generated,
corresponding to the minimum and maximum length of coherent pathways
identified in all three networks. Only metabolic pathways that that shared at least
two compounds with all three CNs were relevant for subsequent analysis. Of the
3043 metabolic pathways, only 320 such pathways were identified.

Feature engineering. Manual feature engineering is a laborious task, requiring
detailed knowledge about the domain under investigation. Commonly, it is opted
to produce a large number of features, which can be subsequently reduced via ML
associated feature selection algorithms. Pathways from the aforementioned data-
bases were mapped onto the networks by detecting metabolites within the pathway,
which were also found in all three CNs. Network-based features were computed for
each pathway as follows:

First, we used previously defined structural properties to quantify the
importance of nodes and describe their location within the network: number of
neighbors, weighted degree, closeness centrality, betweenness centrality, stress
centrality, and clustering coefficient19. The edge betweenness centrality was used to
quantify the importance of links. Structural properties for quantifying the relations
between node pairs used in this study were: geodesic distance, Jaccard coefficient,
preferential attachment score, and friends measure37. All of these properties were
aggregated to produce the features of the pathways using the sum, the mean, and
the three central moments.

Second, we applied various community detection algorithms20 on each CN and
computed features based on the resulting communities (i.e., densely connected
clusters of nodes). The set of communities is denoted as Ci ¼
C1
i ;C

2
i ; ¼ ;Ck

i ; ¼
� �

where k is the index of a community in CN of season i. A
pathway j can be represented as a subset of metabolites in the CN of season i,
denoted as Sji � Vi . Dispersion of metabolites across the various clusters may
indicate the existence or absence of the respective chemical reactions. Therefore,
the ratio of the metabolites of a pathway co-residing in the largest community

MAXk Ck
i \ Sji

���
���= Sji

���
���

n o
is an important feature.

Next, we computed structural features from the neighborhoods of each pathway
j. We denoted the neighborhood of the node v in the CN for season i as the
following: Γi vð Þ ¼ u : v; uð Þ 2 Eif g. Note that Γi vð Þ is the set of all metabolites that
are significantly correlated with v. It is possible to compute various features from
the neighborhoods of nodes in each pathway.

Intersection: Iji ¼
T

u2Sji Γi uð Þ
���

���,

Union: Uj
i ¼

S
u2Sji Γi uð Þ

���
���;

Distinct neighborhoods: Dj
i ¼ u : 9v2Sji ; u 2 Γi vð Þ ^ :9v≠q2Sji ; u 2 Γi qð Þ

n o���
���,

and
Mixed neighborhoods: Mj

i ¼ Uj
i � Iji � Dj

i
The Distinct neighborhoods feature accounts for all nodes that are significantly

correlated to exactly one metabolite within the pathway j. The Mixed
neighborhoods feature accounts for all nodes that are significantly correlated to
more than one metabolite within the pathway j, but not all of them. We note that
these two features are reminiscent of the symmetric difference as defined in set
theory. In fact, for two nodes, the Distinct neighborhoods feature is equal to the
size of the symmetric difference of their neighborhoods. However, for a larger
number of nodes both features are different from the symmetric difference.

Finally, metabolic pathways were mapped as subgraphs onto the different CNs.
Two types of subgraphs were considered: conjunctive subgraphs and extended
subgraphs. Conjunctive subgraphs included all nodes in Sji and links between them,

denoted as SGj
i ¼ Sji; u; vð Þ 2 Ei : u 2 S ^ v 2 Sf g;w

� �
. Extended subgraphs

included all nodes in Sji as well as all of their neighbors, denoted as
ESGj

i ¼ V′; E′;wið Þ, where V ′ ¼ S
v2Sji Γi vð Þ and E′ ¼ u; vð Þ 2 Ei : u; v 2 V ′f g.

Network features (diameter, diameter centrality, global clustering coefficient,
assortativity, density) computed on these two types of subgraphs were used to
describe the pathways. In addition, all features related to the centrality of nodes and
links were computed on the conjunctive subgraph.

The complete list of 148 features and their verbal definitions can be found in
Supplementary Data 4. The three CNs examined (corresponding to the three
harvesting seasons I, II, and III) exhibited different topologies and thus, different
feature vectors. These vectors were combined into a single feature vector comprised
of 444 features. The actual numerical outcomes for all of the pathways examined
for each season can be found in Supplementary Data 1. All of the features were
computed using igraph38 and standard libraries in R39.

Feature selection. The dataset we analyzed included 339 pathways for which 444
features were computed. A large number of features may impair the ability of an
ML model to generalize beyond the data points used to produce it - a phenomenon
known as overfitting. In an effort to avoid overfitting and identify the most con-
tributing features, we selected the features with the highest information gain. This
procedure reduces the entropy of the class variable after analyzing the value for the
feature. For the current study, the top-20 ranked features (Fig. 3, Supplementary
Data 3) were used to build the ML models for subsequent analysis (Supplementary
Table 2). Feature reduction was performed using Weka40 version 3.6.11.

ML model selection. In an effort to identify an ML algorithm that can be suc-
cessfully applied to the pathway dataset generated, we tested several types of ML
algorithms (e.g., decision trees, regression, Bayesian networks, etc.). ML algorithm
tuning (a.k.a hyperparameter optimization) was performed applying a trial and
error approach.

Given an instance whose class is unknown, a trained ML model assigns a
probability of that instance being positive (a tomato pathway) or negative (a non-
tomato pathway). If the probability of an instance having a positive class is above
some predefined threshold, then the predicted class of that instance is positive.
Standard performance metrics can be used to compare the predicted classes
assigned to the pathways vs. their true classes, i.e., the true positive rate (TPR,
recall), false positive rate (FPR), precision, and F-measure. In addition, the
performance of ML models can be described by the receiver operating
characteristic (ROC) curve, which is created by plotting the TPR as a function of
the FPR at different threshold levels. The AUC under the ROC curve of ‘1’
indicates a perfect classifier. The AUC is often used as the pivotal measure, because
it does not require specifying the threshold and it is independent of the proportion
of positive and negative instances in the dataset.

In silico model validation. There are several procedures that can be used to
evaluate the ability of an ML model to predict the class of previously unseen
instances. The most popular method is k-fold cross-validation, where the dataset is
divided into k equal (equal number of instances) subsets. Each subset is then
removed from the dataset in its turn. An ML model is trained based on the
remaining subsets. The trained model is applied on every instance in the removed
subset, and the predicted class is recorded. Eventually after k iterations all instances
in the dataset will be assigned a predicted class vs. their original true class. Cross-
validation is typically used to prove the stability of a given ML algorithm and assess
whether or not the trained model is prone to overfitting. On one hand, a larger
number of folds results in a larger number of instances in the training set during
each iteration and consequently renders more accurate models. On the other hand,
a larger k requires training more ML models during the evaluation, which increases
the computational resources required.

Due to the large number of ML algorithms evaluated, 10-fold cross-validation
was used to select the best ML algorithm for the current study. Once the best ML
algorithm was chosen, we increased the number of folds to the maximal possible
value (339 pathways in our case) in order to obtain the most accurate in silico
evaluation results. This special case of k-fold cross validation is known as leave-
one-out cross-validation (LOOCV)41.

All ML modeling and testing was performed using Weka40 software, version
3.6.11. For the current study, the best model was achieved using the random forest
algorithm and an equal distribution between MetaCyc and randomly engineered
pathways (Fig. 2, Table 1). The random forest model was run with 100 trees, each
constructed while considering nine random features, and an out-of-bag error of
0.1711.

Balanced training set and negative sampling. Out of the 589 TomatoCyc
pathways investigated in this study, 169 pathways were identified within each of the
three CNs. These pathways were used as the positive instances of the training set.
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The total number of MetaCyc pathways that were not represented in PlantCyc and
could be selected as the negative instances was 151. Using the 169 TomatoCyc
pathways as the positive instances and the 151 MetaCyc pathways as the negative
instances resulted in inadequate performance of the ML models. In particular, sets
of metabolites consisting of disconnected nodes were rated disproportionally high.
ML models perform best when they are trained using a balanced training set where
there is an equal number of positive and negative instances42. In order to tackle this
bias we employed the random sampling methodology by adding non-pathways
(i.e., randomly generated sets of 2-18 metabolites) as negative instances to the
dataset43. Therefore, all of the positive instances were used for training, along with
85 randomly selected MetaCyc pathways and the same number of randomly
selected non-pathways. In total, 170 negative instances were produced (Supple-
mentary Data 2).

Sensitivity analysis. Sensitivity analysis was performed based on the final model,
where a subset with 80% of the training set instances were randomly chosen to
recreate a model with identical settings. After each model generation the test set
instances were subjected to prediction. This analysis was performed with 100
iterations, after which the corresponding average and variance values were
computed.

Real-time quantitative RT-PCR analysis. M82 tomato fruits were freeze lyo-
philized and grounded to a fine powder prior to extraction. Total genomic DNA
was extracted with Hexadecyl trimethyl-ammonium bromide (CTAB)44. Frag-
ments corresponding to specific genes regions were PCR amplified using Clo-
neAmp HiFi PCR Premix (Katara) with the primers shown in supplementary
Table 4. Each 25 µL reaction volume contained 12.5 µL of 2 × master mix, 1 µL of
10 µM primer, 2 µL of cDNA aliquot, and 9.5 µL ddH2O. The reactions were
conducted in a thermal cycler with initial denaturation at 94 °C for 5 min, followed
by 35 cycles of 94 °C for 15 s, 60 °C for 15 s, 72 °C for 30 s and then a final
extension at 72 °C for 5 min.

For relative quantitative RT-PCR, total RNA was extracted from the mesocarp
tissue (excluding the seed) from the ILs of interest and M82 using an Aurum Total
RNA Kit according to the manufacturer’s instructions (Bio-Rad, http://www.bio-
rad.com/). First-strand cDNA was synthesized in a 10 μL volume, containing 350
ng of plant total RNA by using an iScript cDNA Synthesis Kit (Bio-Rad). The
reaction was carried out using 1:10 dilutions of cDNA. PCR was hot started at 95 °
C and carried out for 40 cycles composed of 95 °C for 20 s, 65 °C for 20 s, and 72 °C
for 30 s. Amplification was monitored in real-time using an iCycler IQ multicolor
real time PCR Detection System (Bio-Rad). The list of primers (Supplementary
Table 4) was designed for exon junctions by the Primer3 program (http://bioinfo.
ut.ee/primer3-0.4.0/primer3). The relative contents of transcripts was determined
by the 2–ΔΔCt method45,46 based on the normalization of expression data with
regard to the expression of one reference gene. The reference genes were SGN-
U314153 and SGN-U316474, characterized by constitutive expression47. The
differences of Ct (ΔCt) between the control and target were compared.

Immunological analysis of α-galactosidase. Plant tissues were frozen in liquid
N2 and grinded in extraction buffer [HEPES 50 mM, NaCl 100 mM, KCl 10 mM,
0.4 M sucrose, PMSF 1mM, and protease inhibitor 1% (v/v)]. The homogenate was
centrifuged 20,000 × g for 10 minutes at 4 °C, and the protein concentration was
determined in the supernatant using a Bradford assay48. Proteins (20–30 µg) were
separated by SDS-PAGE, and transferred to a polyvinylidene difluoride membrane
(Bio-Rad, Hercules, CA). Blotting and incubation with a primary antibody raised
against alpha-galactosidase from barley were performed as described by Chrost and
Krupinska29. As a secondary antibody, a peroxidase-coupled anti-rabbit serum was
used for visualization of immunoreactive protein bands.

α-galactosidase activity assay. Enzyme extraction and assay were performed as
previously described in Sozzi et al.49 with certain modifications. Mesocarp tissue
(excluding the seed) from 5-10 fully mature tomato fruits weighing 50 g was cut
into small pieces and suspended with 50 mL 1M NaCl (pH was adjusted to six).
The suspension was homogenized with glass beads at 4 °C for a period of 30 s. The
resultant suspension was stirred for one hour at 4 °C, filtered through cheesecloth,
and centrifuged at 12,000 × g for 20 min. The supernatant fraction was loaded onto
PD SpinTrap G-25 columns (www.gelifesciences.com, GE Healthcare UK Ltd
Buckinghamshire, UK), pre-equilibrated with 20 mM sodium acetate/acetic acid
buffer (pH 4.75). The desalted protein was then eluted with the same buffer
(20 mM sodium acetate/acetic acid) and used immediately for enzyme assaying.

In order to test for α-galactosidase activity, aliquots of crude protein extract
were assayed as previously described50 using p-nitrophenyl-α-D-galactopyranoside
(pNPGal) as substrate. The assay mixture, composed of—40 μL of 26 mM pNPGal,
50 µL of 100 mM acetate buffer (pH 4.5), and 40 µL of 0.2% BSA, was pre-
incubated at 37 °C for two minutes, and the enzymatic reaction was initiated by the
addition of 20 µL of the crude extract. Following 15min of incubation at 37 °C, the
enzymatic reaction was terminated by adding 100 µL of 0.4 M Na2CO3, and the
released yellow colored p-nitrophenol was determined spectrophotometrically at
410 nm. A blank solution absent the protein was run concurrently, and the
appropriate correction was made.

Metabolite extraction and quantification. Frozen pericarp tissue powder was
extracted in chloroform-methanol, and metabolites were quantified by gas
chromatography-mass spectrometry (GC-MS) following a procedure optimized for
tomato tissue51. Pure standard of melibiose (purchased from Sigma) was diluted in
methanol and run in different quantities to build calibration curves. In the stan-
dard, two peaks were identified (1MEOX) (8TMS) main-product and by-product
(C37H89NO11Si8) MW 948 RI 2837 and 2868 by library RT 41.8 and 42.1 min.
Extract sample (300 µL) was injected (1 µL) with and without spiked-in standard.
Identification and annotation of melibiose was achieved based on comparison to an
authentic standard. In addition, control samples with spiked-in non-labeled stan-
dards were also used to confirm coelution. Metabolite identity was further matched
against publically available databases (the Golm Metabolome Database for GC-MS
reference data:52 http://gmd.mpimp-golm.mpg.de/. A similar approach was fol-
lowed for galactose and glucose.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are available as Supplementary Data files
(Supplementary Data 1-7).

Code availability
Source code used to compute features of metabolic pathways within correlation networks
was deposited on github: https://github.com/toubiana/CNA_combined_with_ML.
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