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Dynamics of liquid films exposed to high-frequency surface vibration

Ofer Manor*

Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Amgad R. Rezk, James R. Friend, and Leslie Y. Yeo
Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001, Australia

(Received 11 February 2015; published 19 May 2015)

We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) 
substrate vibration in the form of propagating surface waves and show that this single relationship is universally 
sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil 
films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency 
(Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from 
convective drift generated by the viscous periodic flow localized in a region characterized by the viscous 
penetration depth β− 1 �  (2µ/ ρω)1/2 adjacent to the substrate that is invoked directly by its vibration; µ  and ρ 
are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift
is responsible for driving the spreading of thin films of thickness h k− 1

l , which spread self-similarly as t1/4

along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave
number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy
from the substrate into the liquid and t the time. Films of greater thicknesses h � k− 1

l β− 1, in contrast, are
observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation
due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective
prediction of the spreading of these thin and thick films in opposing directions.

DOI: 10.1103/PhysRevE.91.053015 PACS number(s): 47.55.nd, 47.61.− k, 47.35.Rs

I. INTRODUCTION

High-frequency vibration in solids, assuming the form of
acoustic waves with frequencies in a similar range to high-
frequency (3–30 MHz) and very high frequency (30–300 MHz)
radio electromagnetic waves, were recently found to be
capable of driving novel drop and film wetting dynamics [1–8]
distinct from that excited by their lower-frequency counter-
parts [9–19]. In low-frequency studies, usually at frequencies
comparable to the natural oscillation frequency of the liquid
body (� 10 Hz–10 kHz), the liquid generally responds through
the generation of a predominantly convective (potential) flow
in the bulk [20,21]. This leads to shape oscillations of the
liquid body modulated by the restoring force imposed by its
surface tension [22,23], manifesting as patterns on the free
surface of liquid films [9–11,14,24]. In addition, these shape
oscillations can cause displacement of the three-phase contact
line in sessile drops that, in turn, results in a change in the
contact angle beyond its hysteresis range, rendering periodic
stick-slip contact line motion [18,25–27] and enabling drop
translation [13,17,19].

Such vibrational excitation also invokes a viscous-dominant
periodic vortical flow field in a thin region adjacent to the
solid substrate with a thickness characterized by a viscous
penetration length β− 1 � (2µ/ρω )1/2, where µ and ρ denote
the liquid viscosity and density, respectively, andω the angular
frequency of excitation. This periodic boundary layer flow,
first examined by Stokes for simple in-plane periodic substrate
motion (see, for example, Batchelor [28]), was subsequently
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extended by Schlichting (hence the flow being commonly
referred to as Schlichting boundary layer flow or Schlichting
streaming) and others to account for more complicated forms
of excitation, where the substrate motion, or, alternatively,
the bulk fluid motion, comprises a periodic standing wave
with a wavelength smaller than the characteristic length scale
of the substrate [29–41] and, recently, where the substrate
motion comprises propagating, generalized surface waves
(SWs) [42].

Much less is yet understood, however, concerning how
high-frequency substrate vibration influences the dynamics
of spreading films despite considerable interest of late in such
systems given their utility for manipulating flow at microscale
and nanoscale dimensions for a variety of microfluidic ap-
plications [43,44]. The distinct behavior observed in high-
frequency vibrational excitation appears to arise primarily
at high frequencies above 1 MHz and was first realized
when sessile water drops atop slightly hydrophilic substrates
were excited by 2-MHz bulk pistonlike vibration [4]. In
particular, the momentum generated as a consequence of such
high-frequency vibration, in the form of Reynolds stresses,
within a 400-nm-thick layer in the water drop immediately
adjacent to the substrate over which viscous penetration of
the compressional acoustic waves in the liquid occurs, was
sufficient to cause the apparent contact angle of the drop
to decrease. More specifically, the net force exerted at the
air-water interface in the vicinity of the contact line was
estimated to assume the form F � 1/β − 1 � ω1/2, so the
higher the applied frequency and thus the smaller the viscous
penetration length, the greater the influence of the vibration on
the dynamic change in the contact angle and thus the spreading
of the liquid. It will be seen below that a similar inverse
dependence of liquid spreading on the viscous penetration
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FIG. 1. (Color online) Schematic illustration of the spreading
observed for liquids on high-surface-energy substrates vibrating
at high frequencies under Rayleigh surface acoustic wave (SAW)
excitation generated by interdigitated transducer (IDT) electrodes
deposited on a piezoelectric substrate. (a) Thin submicron films
spread along the propagation direction of the SAW, whereas films of
intermediate thicknesses spread in the other direction, opposing that
of the SAW propagation. (b) Sessile drops (or thick submillimeter
films), on the other hand, advance along the SAW propagation
direction.

length associated with the substrate vibration is consistently
observed in other high-vibration-frequency systems.

Similar characteristics are observed, for example, in the
spreading of thin films of low-surface-tension, i.e., highly
wetting liquids, such as silicone oils under the excitation
of high-frequency Rayleigh surface acoustic waves (SAWs).
Unlike the high-surface-tension water drops that, given their
finite contact angle, possess millimeter-order thicknesses
comparable to the capillary length scale—large with respect
to β−1 under such high-frequency vibration, low-surface-
tension films typically possess thicknesses comparable to β−1,
giving rise to distinct spreading dynamics. In these cases,
the viscous-dominant periodic flow field, associated with the
viscous penetration of the vibration into the liquid, no longer
behaves as boundary layer flows [39] in the strictest sense. In
contrast, these sufficiently thin films possess flow fields that
are bounded by their free surface such that their dynamics are
increasingly governed by convective processes, thus taking
the form of inertial films [45,46], as will be seen subsequently.
Additionally, these oil films also exhibit a thickness-dependent
double spreading reversal phenomenon. Thin submicron films
that initially spread along the propagation direction of the SAW
were observed to reverse their direction above a critical film
thickness such that films of intermediate thickness, typically
several microns to tens of microns in height, spread in the
direction opposing that of the SAW propagation [Fig. 1(a)].
Increasing the film thickness further beyond a second critical
value, however, triggered a second spreading reversal wherein
thick submillimeter films and sessile drops were observed
to translate again along the SAW propagation direction
[Fig. 1(b)] [8].

In this paper we derive a unified theory that describes the
dynamic spreading behavior of liquid films atop high surface
energy substrates excited by high-frequency vibration in the
form of generalized traveling SWs, which include, but are not
necessarily limited to, Rayleigh SAWs. We begin in Sec. II by
formulating the equations governing the conservation of mass
and momentum subject to the relevant boundary conditions
for the vibrating substrate and the free surface of the film that
are then used to derive a generalized film spreading equation

that describes the spatiotemporal evolution of the film. This
is then simplified in Sec. III to first analyze thin films whose
thickness h is considerably smaller than the wavelength 2π/kl

of the compressional acoustic waves that form in the liquid due
to leakage of the surface wave energy from the substrate into
the liquid. Here we will show that the spreading dynamics of
these thin films, at least at thicknesses comparable to h ≈
β−1 ≈ 102–103 nm (�2π/kl)—away from the nanometer
length scales where capillary and intermolecular forces are
dominant—are determined by a balance between capillary
forces and the convective drift that arises due to the SW
excitation. Subsequently, we examine in Sec. IV thicker
films that are comparable in thickness to the compressional
acoustic waves in the liquid, h ∼ O(2π/kl), where the acoustic
radiation pressure becomes appreciable, and investigate the
film stability, wherein we observe that the thin films which are
stable at sufficiently small thicknesses become periodically
unstable at larger thicknesses. At these larger thicknesses,
stable films, experiencing both convective drift and acoustic
radiation pressure are observed to spread in a direction that
opposes the drift and hence the SW propagation direction for
the case in which the SW comprises a retrograde elliptical
surface motion, such as the Rayleigh SAWs employed in our
earlier experiments. As the films grow further in thickness,
such that h � 2π/kl , their spreading dynamics is dominated
by a different mechanism which is not accounted for in our
generalized film equation, that is, the Eckart streaming, which
was previously considered elsewhere [8].

Finally, concluding remarks are provided in Sec. V, where
we summarize the underlying physics that govern high-
frequency acoustic film spreading.

II. GENERALIZED FILM SPREADING EQUATION

We consider a two-dimensional liquid film of thickness
h∗(x∗,t∗) that spreads atop a horizontal solid substrate. The
coordinates x∗ and y∗ are measured along and transverse
(normal) to the solid-liquid boundary, respectively, and t∗
denotes time; henceforth, the asterisks (∗) denotes dimensional
quantities. As illustrated in Fig. 2, the substrate undulates due
to vibration imposed in the form of a propagating harmonic
SW, such as Lamb and flexural bulk waves, or Rayleigh and
Sezawa SAWs [43], for example. The motion of the two-
dimensional SW comprises both longitudinal and transverse
surface velocities (along and normal to the substrate surface)
with typically similar amplitudes χU ∗ and U ∗, respectively,
that differ in time by a phase difference ϕ. The SW, propagating
along the x∗ coordinate along the substrate surface y∗ = 0, is

Solid

Fluid
y

x

Surface wave

Air

h

FIG. 2. (Color online) Schematic of the two-dimensional liquid
film under excitation by surface waves propagating along the solid
substrate.
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further defined by a wave number k∗, an angular frequency
ω∗, and an amplitude attenuation coefficient α∗ and can be
described in general form as follows:(

u∗
x∗

u∗
y∗

)
x∗

=
(

χU ∗ei(ω∗t∗−k∗x∗)−α∗x∗

U ∗ei(ω∗t∗−k∗x∗+ϕ)−α∗x∗

)
; (1)

the real part of which describes the actual physical SW and
x∗ determines the spatial coordinate of the solid surface that
undergoes a corresponding motion transverse to, and along, the
solid surface with respect to (x∗,y∗ = 0). While contributions
from the motion of the solid surface may be appreciable under
the influence of Hz- and kHz-order SWs, the amplitude of
SWs in the MHz-order frequency regime that we examine are
usually subnanometer to nanometer in magnitude—extremely
small with respect to the thickness of the film—such that it is
possible to neglect its contribution to the flow field and thus
approximate x∗ ≈ (x∗,y∗ = 0) to leading order.

The SW propagation at the solid-liquid boundary then gives
rise to a predominantly viscous periodic flow, penetrating
into the liquid over a distance characterized by the viscous
penetration length β∗−1

while supporting a weak convective
drift that possesses a steady component. For h∗ � β∗−1

,
this flow attenuates in the bulk of the liquid and takes the
form of a boundary layer flow [42]. On the other hand, it
shall be seen that interactions between this flow, invoked
by direct contact between the SW and the liquid, in the
presence of the free surface associated with the film constitutes
the primary mechanism for its spreading when h∗ � β∗−1

.
Further, energy from the SW leaks into the fluid at the
Rayleigh angle θR = sin−1 k∗/k∗

l , measured from the positive
y axis, resulting in the generation of longitudinal compres-
sional acoustic waves (i.e., sound waves) in the liquid with
wavelength λ∗

l and corresponding wave number k∗
l [43,47].

Should the film thickness be larger than or comparable to
the acoustic wavelength in the liquid, i.e., h∗ � k∗−1

l � β∗−1
,

these acoustic waves impinge on the free surface, generating
a net acoustic radiation pressure [43,48,49]. Additionally,
attenuation of the acoustic waves propagating in the liq-
uid renders an effective body force that invokes Eckart
streaming [30,50,51].

In this section, we, however, first consider films where h∗
scales as β∗−1

. The dominant flow in the film that arises,
confined from below by the solid substrate along which the
SWs propagate and from above by the free surface of the film,
is governed by conservation equations similar to the classical
boundary layer flow equations, noting that these have been
used to model convective dynamics in thin films else-
where [45,46,52]. We will therefore delay an extension of
the analysis to film thicknesses that approach the acoustic
wavelength in the liquid—usually large with respect to the
viscous penetration length (β∗−1 � k∗−1

l )— until Sec. IV.
For thin films with thicknesses on the order β∗−1

, the
appropriate scaling for the variables associated with the flow
field in the film are then

t∗ → ω∗−1
t, (x∗,y∗, h∗, α∗−1

) → k∗−1
(x, ηy, ηh, α−1),

(u∗
x, u

∗
y) → U ∗(ux, ηuy), ψ∗ → k∗−1

ηU ∗ψ, (2)

(p∗, p∗
r ,

∗) → ηk∗γ ∗(p, pr,), A∗ → η4k∗−2
γ ∗A,

where η ≡ β∗−1
/k∗−1

and ψ∗ is a stream function satisfying
u∗ = (u∗

x, u
∗
y) = (∂yψ

∗,−∂xψ
∗); γ ∗ is the interfacial tension,

A∗ is the Hamaker constant, and, p∗, p∗
r , and ∗ are the hydro-

dynamic pressure, acoustic radiation pressure, and disjoining
pressure, respectively. The relevant boundary conditions are
those that describe the SW motion on the substrate y = 0
given by Eq. (1) as well as that which embodies the tangential
stress balance and normal stress jump at the free surface of the
film y = h(x,t) [8,46], i.e.,(

ux

uy

)
y=0

=
[

χei(t−x)−αx

ei(t−x+ϕ)−αx/η

]
(3)

and (
∂yux

∂yuy

)
y=h

=
[

0

(η/2Ca) (p + 2κ + pr − )

]
, (4)

respectively, where κ = ∂xxh/2 + O(η2) is the mean curvature
of the film and Ca ≡ μ∗U ∗/γ ∗ is the capillary number. Mass
and momentum conservation further require [37,38]

∂4
yψ/2 = ε

[
∂yψ ∂x

(
∂2
yψ

) − ∂xψ ∂y

(
∂2
yψ

)]
+ ∂t

(
∂2
yψ

) + O(η2), (5)

in which ω∗/k∗ and ε ≡ U ∗k∗/ω∗ represent the phase velocity
and the Mach number of the SW propagating in the solid,
respectively, and (ux,uy) = (∂yψ,−∂xψ).

Two naturally small parameters, ε and η, are observed
to appear in Eqs. (3) and (5). It is reasonable to require
ε � η � 1 given common values for the SW velocity am-
plitude U ∗ ∼ O (0.01–1 m/s) under high-frequency exci-
tation [42], in particular, ω∗/2π ≈ 30 MHz as a typical
frequency of the Rayleigh SAWs used, for which ϕ =
3π/2. It then follows that ω∗/k∗ ≈ 4 × 103 m/s, χ ≈ 1,
and U ∗ ≈ 0.1 m/s, which, together with typical values
characteristic of silicone oil used in the experiments, i.e., μ∗ ≈
10−1 Pa s, ρ∗ ≈ 103 kg/m3, and γ ∗ ≈ 10−2 N/m, give Ca ≈ 1,
η ≈ 0.5 × 10−1, ε/η ≈ 0.5 × 10−3, and ε ≈ 2.5 × 10−5.

We proceed by asymptotically expanding the flow variables
using the following ansatz:

ux =
∞∑

n=−1

fnux,n, uy =
∞∑

n=−1

fnuy,n, ψ =
∞∑

n=−1

fnψn,

(6)

in which fn+1 � fn and in which ux,n, uy,n, and ψn are O(1).
Although accounting for the formation of capillary waves in
the following leading-order analysis, we nevertheless neglect
contributions to the secondary-order convective drift of liquid
in the film from these capillary waves since their linear dis-
placement amplitude—typically subnanometer to nanometer
in magnitude under the low-input-power conditions in which
we observe the film spreading dynamics—are comparable
to the displacement amplitude of the SW we had earlier
neglected. The transverse and longitudinal SW components
given by Eq. (3) determine the magnitude of the leading-
order velocity field f−1 = 1/η and the next order correction
f0 = 1. EquatingO(1/η) terms then specifies the leading-order
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stream-function equation and boundary conditions:

∂4
yψ−1/2 = ∂t

(
∂2
yψ−1

)
, (7)

(
ux,−1

uy,−1

)
y=0

=
[

0

ei(t−x+ϕ)−αx

]
, (8)

(
∂yux,−1

∂yuy,−1

)
y=h

=
[

0

0 + O(η2Ca−1)

]
. (9)

Further equating O(0) terms gives the next order correction:

∂4
yψ0/2 = ∂t

(
∂2
yψ0

)
, (10)

(
ux,0

uy,0

)
y=0

=
[
χei(t−x)−αx

0

]
, (11)

(
∂yux,0

∂yuy,0

)
y=h

=
[

0

0 + O(ηCa−1)

]
. (12)

It then follows that Eqs. (7)–(9) are satisfied by a unidirec-
tional periodic flow field,

ψ−1 = 1

i + α
ei(t−x+ϕ)−αx. (13)

Should the film be sufficiently thick, surpassing that of
the boundary layer thickness, such that acoustic waves of
wavelength k∗−1

l generated due to leakage of the SW energy
from the substrate can be sustained, this flow field then
describes the initial propagation of such waves through the
liquid, while still in proximity to the solid substrate. Further,
Eqs. (10)–(12) are satisfied by the viscous-dominant periodic
vortical flow field,

ψ0 = χ

(
−1

4
+ i

4

)
sinh−2

[(
1

2
+ i

2

)
h

]
ei(t−x)−αx

×{− sinh [(1 + i) (y − h)] − sinh [(1 + i) h]

+ (1 + i)y}. (14)

As noted previously [42], Eq. (14) satisfies only the O(1)
longitudinal velocity of the solid surface and is independent of
the O(1/η) transverse motion. Periodic flow to this order may
thus be represented as a superposition of the unidirectional and
vortical flow fields given by Eqs. (13) and (14), respectively,
regardless of their magnitude. This was also hinted in a recent
generalized study of vibration-induced flow [47], in which a
similar assertion was made by decomposing the flow field into
its potential and solenoidal components.

We now show that the next order correction to Eqs. (13)
and (14), of magnitude f1 ≡ ε/η and emerging from weak
convective interactions between the two above-mentioned
leading flow fields, comprises a steady component that
dominates over long times. Following a procedure employed
earlier [29,34,37,38,42], we decouple the velocity field into
its transient and quasisteady components by time averaging
the flow field over the fast time scale ω∗−1

; physically, this is
equivalent to the linear periodic component of the flow, which
alternates (together with its corresponding harmonics) ω∗/2π

times every second, naturally vanishing at the much slower
hydrodynamic time scales over which the flow is observed.

Equating the f1 ≡ ε/η magnitude terms, while using a
procedure in which we simplify the normal stress condition
with the use of the full Navier-Stokes equation [45,46,53], we
convert the condition for ∂y〈uy,1〉 ≡ −∂yx〈ψ1〉 to an equivalent
condition for ∂yy〈ux,1〉 ≡ ∂yyy〈ψ1〉 that does not involve a
derivative of the stream function ψ with respect to x. After
time averaging, the quasisteady nonvanishing components of
the stream-function equation and boundary conditions can be
written as:

∂4
y 〈ψ1〉/2 = −〈

∂xψ−1∂
3
yψ0

〉
, (15)

(〈ux,1〉
〈uy,1〉

)
y=0

=
(

0

0

)
, (16)

(
∂y〈ux,1〉
∂yy〈ux,1〉

)
y=h

=
[

0

−(η4/εCa)(∂xxxh + ∂xpr − ∂x)

]
,

(17)

where ζ and 〈ζ 〉 above refer to the real component of
the arbitrary function ζ and its time average, i.e., 〈ζ 〉 ≡
(1/2π )

∫ 2π

0 ζ dt . Equations (15)–(17) are satisfied by a long
analytical solution for the stream function that we omit here
given that it has no particular significance in the present
analysis other than to note that the leading-order nonvanishing
flow field at long times assumes the magnitude f1 = ε/η and
therefore gives rise to the following expression that specifies
the nondimensional, nonvanishing, leading-order volume flux
in the film, occurring between the streamlines representing the
film-substrate and free interfaces:

Q = ε

η
χe−2αxf (h(x); ϕ) + η3

3Ca
h3 (∂xxxh + ∂xpr − ∂x) ,

(18)

wherein

f (h(x); ϕ) ≡ 1

2(cos h − cosh h)2
{sin ϕ(cos h − cosh h)2

+h(cos h − cosh h)[sin h(sin ϕ + cos ϕ)

+ sinh h(sin ϕ − cos ϕ)] + h2(sin ϕ sin h sinh h

− cos ϕ cos h cosh h + cos ϕ)}. (19)

The first term on the right-hand side of Eq. (18) quantifies
convective contributions to the volume flux from the steady
component of the SW-induced flow (i.e., the convective drift)
and the second term incorporates contributions from capillary
forces, the acoustic radiation pressure, and the disjoining
pressure invoked by intermolecular forces such as van der
Waals and electrical double layer forces.

The volume flux in Eq. (18) then can be employed to derive
the requisite relationship that describes the dynamics of the
liquid film under high-frequency SW excitation. Given that
the spreading occurs on a hydrodynamic time scale, which
is significantly longer than that associated with the period of
forcing ω∗−1

, a choice of two time scales is available: a capillary
time scale, associated with the rate at which the spreading at
the contact line occurs, and a convective time scale, associated
with convective spreading of the film that is invoked by the
volumetric drift in Eq. (18). Given that convective spreading
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is of interest and capillary forces are weak, as will be shown
subsequently, we choose to rescale the time variable with the
convective time scale, i.e.,

t∗ → 1

χ

η

ε

k∗−1

U ∗ t, (20)

in place of the scaling presented earlier in Eq. (2), while
retaining all other transformations for the rest of the variables.
Together with the scaling in Eq. (2), the dimensionless
kinematic condition [46]

∂th + 1

χ

η

ε
(ux∂xh − uy) = 0 at y = h, (21)

subject to continuity

∂xux + ∂yuy = 0 (22)

and the homogeneous boundary conditions at the liquid-
substrate interface in Eq. (16) then lead to the integral mass
conservation relationship:

∂th + 1

χ

η

ε
∂xQ = 0, (23)

which, together with Eqs. (18) and (19), give the following
relationship that governs the spatiotemporal evolution of the
film as it spreads:

∂th + ∂x[e−2αxf (h(x); ϕ)]

+ 2�

3χ
∂x[h3(∂xxxh + ∂xpr − ∂x)] = 0, (24)

in which � ≡ η2We−1 = 2k∗3
γ ∗μ∗/ρ∗2

U ∗2
ω∗, with We ≡

ρ∗U ∗2
k∗−1

/γ ∗ being the Weber number that describes con-
tributions to the film dynamics from both the SW-induced
convective drift and capillary forces, and η ≡ (β∗−1

/k∗−1
). In

dimensional terms, Eq. (24) takes the form

∂∗
t h∗ + χU ∗

(2ω∗μ∗/ρ∗)1/2
∂∗
x {e−2α∗x∗

f ∗[(h∗(x∗)/β∗−1
); ϕ]}

+ 1

3μ∗ ∂∗
x [h∗3

(γ ∗∂x∗x∗x∗h∗ + ∂∗
x p∗

r − ∂∗
x ∗)] = 0, (25)

wherein f ∗[(h∗(x∗)/β∗−1
); ϕ] has units of a volume flux.

Equations (24) and (25) therefore constitute a generalized
relationship that describes the different contributions to the
high-frequency vibration driven film spreading dynamics,
whose transient nature is captured by the first term to the
left of the equation. The second term on the left captures
SW contributions to the film dynamics through the convective
drift flow it invokes; we note that the convective time scale
in Eq. (20) renders this term of order unity in dimensional
Eq. (24). The last term on the left side of Eq. (24), on the other
hand, captures contributions from capillary, acoustic radiation
pressure, and intermolecular forces and possesses an order
of magnitude that corresponds to that of the dimensionless
group �. We thus observe that this last term diminishes in
magnitude when β∗−1

decreases, resulting in an increase in the
relative contribution of the SW-induced convective drift to the
film dynamics (given by the second term), consistent with that
discussed in Sec. I.

FIG. 3. (Color online) Schematic illustrations of (a) a thin film
(h∗ � β∗−1 � k∗−1

l ) and (b) a thick film (h∗ � k∗−1

l ), indicating where
the SW penetrates the liquid and is attenuated. dx0/dt denotes the
Eulerian film spreading velocity at the film’s leading edge. Note that
the attenuation of the SAW is negligible for the case of the thin film.

III. DYNAMICS OF THIN FILMS

We now proceed to apply the generalized film spreading
relationship given by Eq. (24) to thin liquid films [Fig. 3(a)]:
films with thicknesses h that are small compared to the
wavelength of the compressional acoustic waves that are
generated in the liquid due to leakage of the energy from the
SW propagating in the solid, i.e., in dimensional terms h∗ �
β∗−1 � k∗−1

l , such that effects due to the acoustic radiation
pressure and Eckart streaming—phenomena that are a direct
consequence of the generation of acoustic waves in the
liquid—are weak and can therefore be ignored. The acoustic
waves that leak into the liquid possess similar frequency to
that of the SW, although due to the (usually) lower sound
speed in the liquid, they typically possess smaller wavelengths
compared to that of the SW according to the ratio of the speed
of sound in the liquid and the solid. As an example, acoustic
waves generated in the half space of water with a sound
speed of 1500 m/s due to energy leakage from a 20-MHz
SAW with wavelength 2πk∗−1 = 200 μm propagating along
a lithium niobate piezoelectric substrate with a sound speed
of approximately 4000 m/s possess a wavelength 2πk∗−1

l ≈
(2πk∗−1

) × 1500/4000 = 75 μm.
In this case where the film is too thin to sustain longitudinal

bulk acoustic waves within it, the attenuation of the SW
itself can also be ignored to leading order. This is because
the leakage of SW energy in the form of such bulk acoustic
waves now occurs effectively into the air phase above the thin
film. For example, the attenuation length for Rayleigh SAWs
α∗−1 ≈ 2πρ∗

s k∗−2
/ρ∗

f k∗−1

l [54], in which ρ∗
s is the density of the

solid substrate and ρ∗
f the density of the fluid phase the acoustic

waves propagate within, suggests that α∗−1 ≈ 5000 mm for
liquid films that are too thin to sustain bulk acoustic waves—
much longer than the length of the substrate itself, which is
typically only several millimeters. By comparison, the SW
attenuation length α∗−1 ≈ 1 mm is much shorter for films with
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sufficient thickness to support the propagation of the bulk
acoustic waves into them (i.e., h∗ � k∗−1

l ) and is no longer
negligible over the length of the substrate. For SWs in the
form of propagating bulk waves, the attenuation length is
even longer given the distribution of its mechanical energy
throughout the solid substrate. Whichever the case, given
that the SW attenuation length scale under thin films is thus
much larger than the substrate length itself, it is therefore not
unreasonable to impose α → 0 to leading order and to neglect
effects due to both the acoustic radiation pressure, i.e., pr ≈ 0,
and Eckart streaming.

To further simplify the analysis, we expand the volume flux
in h:

Q = χε

η

[
cos ϕ

4
h2 − sin ϕ

72
h4 + O(h6)

]

+ η3

3Ca
h3 (∂xxxh − ∂x) . (26)

Here we examine a common case in which the film is excited by
SWs in the form of a Rayleigh SAW [5,6] with phase difference
ϕ = 3π/2 (given its retrograde elliptical motion [42]) such that
Eq. (26) becomes

Q ≈ χε

η

[
h4

72
+ O

(
h8)] + η3

3Ca
h3 (∂xxxh − ∂x) . (27)

The leading equation governing the dynamic spreading of the
thin film in Eq. (24) then reads

∂th + 1

18
h3∂xh + 2

3χ
�[3h2∂xh (∂xxxh − ∂x)

+h3 (∂xxxxh − ∂xx)] ≈ 0. (28)

Redimensionalizing Eq. (28) and assuming that the disjoining
pressure of the highly wetting silicone oil film is dominated by
repulsive van der Waals forces, approximated in dimensional
terms for the liquid film geometry by ∗ ≡ A∗/6πh∗3, we
recover the film spreading equation obtained previously for
thin films [8]:

∂t∗h
∗ + χU ∗2

18ω∗β∗−1

(
h∗

β∗−1

)3

∂x∗h∗

+ γ ∗

3μ∗ ∂x∗

{
h∗3

[
∂x∗x∗x∗h∗ +

(
A∗

2πγ ∗

)
1

h∗4 ∂x∗h∗
]}

≈ 0. (29)

Considering earlier work on inertial film spreading [45], it is
clear that a positive convective component [second term on the
left-hand side of Eq. (28)] drives the film to spread along the
drift, which for Rayleigh SAW is along the SAW propagation
path.

In the derivation of Eq. (29) we have assumed h∗ ≈ β∗−1
,

which typically ranges between 102 nm and 1 μm for the high-
frequency range considered here, such that the convective drift
is the underlying driving mechanism for the film spreading. It
will be shown later in Sec. IV C that this drift also influences
the spreading dynamics for thicker films h∗ � β∗−1

until the
film becomes sufficiently thick to the point at which Eckart
streaming, which was not accounted for in Eq. (28), becomes
dominant.

In any case, two further characteristic length scales as-
sociated with the spreading film dynamics become apparent
in Eq. (29): an acoustic capillary length scale h∗/β∗−1 ≈
(γ ∗ω∗β∗−1

/μ∗χU ∗2
)1/3, which arises from a comparison be-

tween the kinematic wave velocity (χU ∗2
/ω∗β∗−1

)(h∗/β∗−1
)3

in the second term in Eq. (29) and the capillary spreading
velocity γ ∗/μ∗ in the third term of Eq. (29), and a capil-
lary molecular length scale (A∗/2πγ ∗)1/2 in the third term
of Eq. (29). In the former, both capillary and convective
stresses balance when h∗/β∗−1 ≈ 1. In other words, we expect
convective stresses to be dominant and hence to generate
drift in thicker films, whereas capillary stresses are dominant
in thinner films. For the latter, we note that the capillary
molecular length scale is typically on the order of 1–10 nm (for
A∗ ≈ 10−19 J), which is significantly smaller than the acoustic
capillary length scale such that the effects of the SW excitation
diminish at these thicknesses close to the contact line and the
spreading film dynamics is governed by the usual balance
between capillary and disjoining pressure.

For completeness, we highlight the insight that can
be gleaned from the singular limit of Eq. (29), wherein
capillary terms are small. Rescaling the time variable by
t∗ → (18ω∗β∗−1

k∗−1
/χU ∗2

)t , we arrive at the kinematic wave
equation

∂th + h3∂xh ≈ 0 (30)

by accounting for integral conservation of mass, which, under
constant density, can be written as∫ x0(t)

x=0
h dx = const, (31)

where x = x0(t) is the position of the front of the spreading
film. A similarity solution for the above equations was then
obtained by introducing the similarity transformation:

ξ ≡ x/ta, H ≡ h/tb, t = τ, (32)

which, upon substitution, renders Eqs. (30) and (31) time
independent, i.e., ∂τH = 0, when 3b − a + 1 = 0 and a = −b.
It then follows that a = 1/4 and b = −1/4 such that at long
times the leading edge of the film spreads as

x0 ∼ t1/4, (33)

while the film decreases in height as

h(x) ∼ t−1/4, (34)

eventually approaching a singularity as the rear of the film
catches up with its advancing front. This then results in
the steepening of the slope near the advancing front where
the influence of capillary and intermolecular forces, though
assumed insignificant to begin with, becomes sufficiently
strong to overcome the assumed initial dominance of the
convective term assumed in Eq. (30). This quantitative picture,
and, in particular, the similarity scalings given by Eqs. (33)
and (34), are remarkably consistent with the experimental
data obtained for thin silicone oil films spreading under the
influence of MHz-order Rayleigh SAWs [8].
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IV. DYNAMICS OF THICK FILMS

We now return to the generalized film spreading equa-
tion we have derived in Eq. (24) to examine films of
larger thicknesses, i.e., films with sufficient thicknesses
(h∗ � k∗−1

l � β∗−1
) to support the leakage of the SW energy

into the fluid in the form of acoustic waves. To do so, we,
however, first discuss how the acoustic radiation pressure
potentially influences the stability of the film.

A. Acoustic radiation pressure

Due to the large difference in the acoustic impedance
(density multiplied by the bulk sound speed) across the free
surface of the liquid, the transfer of momentum associated
with the generation of acoustic waves in the liquid upon
leakage of the SW energy into the liquid from the substrate
produces a net steady force on the free surface over long
times (t∗ � 1/ω∗). This is known as the acoustic radiation
pressure [43,48,49,55,56] and takes the generalized form

p∗
r = (p∗I · n) · n + (〈ρ∗u∗u∗〉 · n) · n, (35)

where I and n are the identity tensor and the unit outward
normal vector to the free surface, respectively. In particular, we
examine acoustic radiation pressure effects along the nearly flat
portion of the free surface of the film away from its advancing
front in the vicinity of the contact line. These nearly flat free
surfaces serve as near-ideal reflectors (as a consequence of the
large jump in the acoustic impedance across the free surface)
of the acoustic waves that form in the liquid due to leakage
off the SW energy and give rise to acoustic resonances and
antiresonances within the film, thus leading to appreciable
acoustic radiation pressure effects at specific film thicknesses.

More specifically, the acoustic waves propagating in a
liquid can be described predominantly by a potential flow
field generated by the normal component of the SW velocity
u∗

y , whose local form, we assume, for simplicity, resembles the
completely in-phase vertical substrate motion of a pistonlike
acoustic wave transducer—reasonable given h∗/k∗−1 ∼ 1. It
then follows that the parallel acoustic waves generated from
such pistonlike motion of the substrate produces an acoustic
radiation pressure at the free surface, which, in dimensionless
form, reads [5]

pr = Weae
−2αx [1 + O (hkl)]

cos2 [(kl/β) h] sin2 [(kl/β) h]
, (36)

where Wea ≡ (1 + B/2A)ρ∗
aU

∗2
k∗−1/8ηγ ∗ is an acoustic

Weber number that describes the relative magnitudes of the
acoustic radiation and capillary pressures acting at the free
surface, B and A are the Fox and Wallace coefficients [49], and
ρ∗

a is the density of the air phase above the liquid film. It then
can be seen from Fig. 4 that pr decays to negligible values in the
vicinity of each of its minima at h∗/2πk∗

l
−1β∗ = (1 + 2i)/8

(i = 0,1,2, . . .) and becomes singular at h∗/2πk∗
l
−1β∗ →

2i/8 (i = 0,1,2, . . .), suggesting that the film, being nearly
flat, is quantized to specific thickness values, consistent
with previous experimental observations [5,6,8]. In particular,
low-surface-energy oil films were found to spread with a
characteristic film thickness corresponding to i = 1 [8] and
i = 3 [6] while high-surface-energy water films were found

FIG. 4. Dimensionless acoustic radiation pressure and its gradi-
ent as a function of the scaled film thickness.

to form a cascading series of flat films with thicknesses
corresponding to i � 7 [5].

We note that the above is not applicable for the thin films
with dimensional thickness h∗ � k∗−1

l considered earlier in
Sec. III since Eq. (36) was derived under the dimensional
assumption that h∗ ≈ k∗−1

l such that the pressure singularity
appearing in Eq. (36) and illustrated in Fig. 4 for the limit
h → 0 is not valid; in the present analysis, the acoustic
pressure singularities occur due to resonances of the acoustic
wave generated within the film as a consequence of leakage
of the SW energy into the liquid, which, as discussed earlier,
were not supported in sufficiently thin films with dimensional
thicknesses corresponding to h∗ � k∗−1

l . More specifically, p∗
r

is linearly proportional to the average excess acoustic energy in
the film, i.e., p∗

r ∝ 〈E∗〉, where along the path of the acoustic
waves emitted by the SW [49],

E∗ = ω∗

2k∗
l

ρ∗L − ρ∗

ρ∗ + ρ∗u∗L2

y

2
; (37)

the right-hand side of the equation describes the Lagrangian
excess potential and kinematic energies with respect to
the normal SW velocity, arising from the deviation of the
Lagrangian density and normal velocity fields, ρ∗L

and u∗L

y =
u∗

y − ei(t∗−x∗+ϕ)−α∗x∗
/η, from their equilibrium values, ρ∗ and

u∗
y = 0, respectively. For sufficiently thin films of thickness

h∗ � β∗−1 � k∗−1

l that do not permit the generation of acoustic
waves in the liquid, the flow in the film is strictly the
unidirectional flow field in Eq. (13), which, together with
u∗L

y = 0 and ρ∗L = ρ∗ that causes the excess energy in the
film in Eq. (37) to vanish, gives

pr ≈ 0. (38)

Next we highlight the insight gained from an examination of
the film stability under the influence of the spatially periodic
acoustic radiation pressure given by Eq. (36) as well as the film
spreading dynamics when they are exposed to such acoustic
radiation pressure.

053015-7



MANOR, REZK, FRIEND, AND YEO PHYSICAL REVIEW E 91, 053015 (2015)

B. Stability of the film thickness

Recalling an earlier result [8], we subject the nearly flat
film of thickness h0, i.e., the steady “base state” component,
to a small perturbation along the longitudinal axis δg(x,t) ≡
δCeinx+σ t , where δ � 1, C is an arbitrary constant, n is the
wave number of a film thickening mode, and σ is the rate of
growth of the film’s dynamic response to small interferences
in its thickness h0:

h(x,t) = h0 + δg(x,t). (39)

Expanding Eq. (24) and retaining the leading-orderO(δ) linear
terms then gives

σ

2�/3χ
= (∂hpr |h=h0 )n2 − n4 + · · · , (40)

in which the remaining expression in the equation above
consists of the convective terms in Eq. (24) that comprise
oscillatory complex components which do not affect the film’s
stability. From Eq. (40), it appears that capillary forces act
to stabilize the film, whereas the acoustic radiation pressure
may act to destabilize it. Further, it is apparent that a
negative radiation pressure slope, i.e., ∂hpr |h=h0 < 0, renders
σ negative, resulting in a stable film; a positive radiation
pressure slope, i.e., ∂hpr |h=h0 > 0, on the other hand, may
render σ positive for certain values in the radiation pressure
slope and thus produce an unstable film. We thus highlight
the linear rate growth coefficient of the film thickness σ for
∂hpr |h=h0 > 0 by transforming Eq. (40) to

σ

2�(∂hpr |h=h0 )2/3χ

=
(

n√
∂hpr |h=h0

)2

−
(

n√
∂hpr |h=h0

)4

+ · · · , (41)

which is illustrated in Fig. 5. It then becomes apparent that for
∂hpr |h=h0 > 0, the film becomes unstable (σ > 0) under suffi-
ciently small disturbance wave numbers (n/

√
∂hpr |h=h0 < 1),

i.e., for sufficiently large wavelength disturbances along the
free surface of the film.

FIG. 5. Variation in the linear film thickness growth rate σ with
the disturbance wave number n for positive values in the acoustic
radiation pressure slope (∂hpr |h=h0 > 0), which renders the film
thickness unstable (σ > 0) under sufficiently small disturbance wave
numbers (n/

√
∂hpr |h=h0 < 1); we exclude complex contributions

to σ .

Should the film thickness h be sufficiently small, i.e.,
h∗ � k∗−1

l /8, then ∂hpr |h=h0 < 0 and the film is stable; we
note that the film remains stable even with further decreases
in the film thickness such that h∗ � β∗−1 � k∗−1

l , wherein the
acoustic radiation pressure becomes negligible [see Eq. (38)].
In contrast, should the film thickness be sufficiently large to
support the nonmonotonic thickness variation in pr given by
Eq. (36), we find that σ may either be positive (unstable) or
negative (stable) depending on the rate at which the acoustic
radiation pressure varies with the film thickness ∂hpr |h=h0 .
If ∂hpr |h=h0 < 0, the acoustic radiation pressure forces the
free surface upwards and hence causes the film to thicken,
which, in turn, leads to a decrease in the acoustic radiation
pressure, thus producing a stable film thickness. On the other
hand, if ∂hpr |h=h0 > 0, film thickening further increases the
acoustic radiation pressure that, in turn, causes further growth
in the film’s thickness, therefore resulting in an unstable film.
This can be seen in Fig. 5 where the real component of σ

is plotted against n for ∂hpr |h=h0 > 0, from which we note
that the film is unstable to longwave disturbances whose
dimensionless wave number is smaller than the imposed square
root of the dimensionless acoustic radiation pressure gradient,
i.e., n <

√
∂hpr , with n/

√
∂hpr |h=h0 = 2/

√
2 being the “most

dangerous” disturbance mode at which the instability growth
rate is at its maximum value. We therefore conclude that
sufficiently thin films, such as those discussed in Sec. III
where h∗ � k∗−1

l /8, are stable irrespective of their thicknesses
whereas thicker films for which h∗ � k∗−1

l � β∗−1
will gener-

ally assume stable thickness values that satisfy ∂hpr |h=h0 � 0,
translating to the dimensional thickness range

2i

8
<

h∗

2πk∗−1

l

<
1 + 2i

8
(i = 1,2, . . .). (42)

C. Spreading dynamics

We now turn our attention to the spreading dynamics
of thick films, such that h∗ � k∗−1

l , where contributions to
spreading due to the acoustic radiation pressure and SW
attenuation become appreciable. Such thick films are found
to spread in the opposite direction to that of the Rayleigh
SAW propagation [6] and thus the drift the SAW invokes in
the film, opposing the spreading direction of the thin films
considered in Sec. III. Here, in particular, we show the validity
of the generalized film equation in Eq. (24) for describing
the spreading dynamics of these films by showing that the
expression for the spreading velocity of thick films derived
earlier [6,8] can be recovered from our unified theory, subject
to anO(1) correction due to the explicit inclusion of the normal
stress condition at the free surface of the film in the present
analysis.

Under high-frequency SW excitation, films with thick-
nesses comparable to the acoustic wavelength in the liquid, i.e.,
h∗ � k∗−1

l � β∗−1
(typically 10–102 μm for common liquids

and for the system parameters specified in Sec. II), result in
appreciable SW energy leakage from the substrate and into the
predominantly flat liquid film [Fig. 3(b)] in the form of acoustic
waves; as a consequence, there exists appreciable attenuation
of the SW and acoustic radiation pressure is imparted at the free
surface of the film. The interplay between capillary forces and
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the acoustic radiation pressure then imposes the stable periodic
film thickness constraint given by Eq. (42), at least along the
flat film region away from the curved capillary ridge region at
the advancing film front next to the three-phase contact line.
These films are nevertheless too thin for Eckart streaming
effects to become appreciable (which requires h∗ � k∗−1

l ) so
the spreading film dynamics is governed predominantly by
capillary forces, the SW-induced acoustic radiation pressure,
and convective drift.

In the following, we simplify Eq. (24) using assumptions
that are appropriate for the thick film geometry in order to attain
a leading-order equation that can be solved analytically. Away
from the region of the curved film meniscus, the film thickness
h approaches a stable nominal value h0—considered large with
respect to the viscous penetration length since β∗−1 � k∗−1

l

(i.e., in dimensionless terms, h0 � 1) [33,34,47]—specified
by a dominant balance between the capillary and acoustic
radiation pressures in Eq. (42), i.e., h ≈ h0 to leading order. In
addition, since the thickness of the film away from the menis-
cus is much greater than the viscous penetration length, i.e.,
h∗

0 � β∗−1
(see Sec. III), it is possible to simplify the volume

flux by taking Q in the limit h∗
0/β

∗−1 � 1 (or, in dimensionless
terms, h0 � 1). Further, since � ≈ 10−1 in Eq. (24) for the
characteristic range of experimental parameters specified in
Sec. II, we ignore, to first approximation, contributions that
appear from the meniscus region of the advancing film. The
generalized film equation in Eq. (24) then simplifies to

∂th ≈ −∂x

[
χe−2α(x−x0)

2
(cos ϕ − sin ϕ) h

]
; (43)

x = x0 is taken to be the position of the advancing film front
where the SW first encounters the liquid film and continues to
propagate under the film but with appreciable attenuation.

We transform Eq. (43) into Lagrangian coordinates with
an origin attached to the Eulerian coordinate x = x0(t), where
the film becomes flat (h ≈ h0) and where SAW attenuation
commences, using the Galilean transformation x → x − x0

and dh/dt = ∂th + (dx0/dt)∂xh, assuming dx0/dt is a weak
function of time; dh/dt is the material derivative of the film
thickness. Taking the advancing front to be stationary in the
Lagrangian frame of view (dx0/dt ≈ 0) then renders

∂xh
dx0

dt
≈ ∂x

[
χe−2αx

2
(cos ϕ − sin ϕ) h

]
. (44)

Given α∗−1 ≈ 1 mm [54] in dimensional terms for the range of
experimental parameters employed in Sec. II, it is reasonable
to assume that the SW attenuation length is short with respect
to the length of the film but long with respect to the length scale
of the capillary ridge at the advancing film front. Consequently,
the attenuation of the SW along the substrate beneath the
meniscus at the film front can be considered negligible. Since
the advancing front of the meniscus is at x = 0, we assume
h/h0 → 0 at x → −∞ and h/h0 ≈ 1 for x > 0. We then
integrate Eq. (44) from x → −∞ to x → ∞, where we
assume as before that dx0/dt is constant. As we ignore
contributions from the meniscus, the limits of the integral
on the right-hand side of the equation are equivalent to an

integration from x → 0 to x → ∞, giving

dx0

dt
≈ −χ

2
(cos ϕ − sin ϕ) , (45)

or, in a dimensional form,

dx∗
0

dt∗
= −χ

2

ε

η
U ∗(cos ϕ − sin ϕ)

= −χ

2

U ∗2

ω∗β∗−1 (cos ϕ − sin ϕ). (46)

The relationship above then describes the dynamic spread-
ing of the film’s leading edge. For SWs in the form of
Rayleigh SAWs (ϕ = 3π/2), it can then be seen that the film
spreads in a direction opposing that of the SW propagation,
consistent with that alluded to above. In contrast, other forms
of SW excitation, such as Sezawa SAWs where ϕ = π/2,
will drive film spreading along the direction of the wave
propagation in the solid. In both cases, however, the film
spreads in the direction opposite to that of the SW-induced
drift. This counterintuitive effect wherein the film spreads in
opposition to the direction of the SW-induced drift, which
is not obvious from the governing equations, is due to the
constant film thickness constraint imposed by the acoustic
radiation pressure, at least away from the meniscus region at
the advancing film front; mass conservation then requires the
film to spread in the direction opposite to that of the imposed
internal volume flux. This can be strongly contrasted with the
spreading of most other films via conventional means such
as gravity- or Marangoni-driven spreading in which the film
continuously increases in thickness near the advancing front
due to the imposed internal volume flux and decreases in
thickness along the rear to conserve mass, resulting in film
spreading along the direction of the film’s internal volume
flux. This constitutes the mechanics of spreading of thin films
in Sec. III where it is clear that a positive convective component
[second term on the left of Eq. (28)] drives the film to spread
along the drift through a pseudo kinematic wave equation
when capillary contributions in Eq. (28) are omitted.

It is, however, apparent that we obtain a slightly different
1/2 numerical prefactor in Eqs. (45) and (46) compared to the
1/6 log 2 numerical prefactor in earlier work [6,8]. As noted
above, this difference arises from the simplifying assumption
made in the earlier work that omitted an explicit normal stress
balance at the free surface of the film.

V. CONCLUDING REMARKS

In this work, we have derived a generalized model that
governs the dynamic spreading behavior of liquid films on
substrates under high-frequency (MHz-order) vibration in the
form of propagating SWs. In particular, the film spreading
dynamics is driven by the invocation of a dominant viscous
periodic flow, which supports a weak convective and steady
contribution in the form of a confined Reynolds stress that
may translate into an effective surface force or an equivalent
convective drift near the contact line region. In fact, the role
of β∗−1

is prevalent and appears throughout the expressions
governing the spreading in various cases, be it in the point
surface force that arises due to the coarse-grained Reynolds
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stress on the interface in the case of low-surface-energy
substrates where the initial contact angles are large [4] or
in the velocity of the advancing front in Eq. (46) for thick
films on high-surface-energy substrates [6]: The smaller the
value of β∗−1

as the excitation frequency is increased, the
larger the force or the velocity. Both directionality and phase
of the substrate excitation are also found to play an important
role, influencing the direction along which the film spreads:
Spatially isotropic vibration on the substrate was found to
render axisymmetric spreading in all directions, whereas
directionally propagating SWs were found to render spreading
along a specific direction, influenced by the phase of the SW
between its longitudinal and transverse component.

The diversity of thickness scales that a liquid body can
assume then yields various scenarios for the spreading film.
This is captured through the generalized film spreading
relationship given by Eq. (25), which governs the counterin-
tuitively opposing spreading dynamics of thin and thick films
that predominantly arise as a consequence of the convective
drift generated by the dominant viscous periodic flow, which is
a consequence of the direct interaction between the undulating
substrate boundary as the SW traverses it and the liquid in the
film immediately adjacent to it.

Sufficiently thin films with thicknesses beyond molecular
length scales h∗ ≈ (A∗/2πγ ∗)1/2 ≈ 1–10 nm, where capillary
and intermolecular forces are dominant, and within the range
h∗ � β∗−1 ≈ 0.1–1 μm, are governed by a balance between
capillary stresses and the SW-invoked drift in the film. As
these thin films are not sufficiently thick to support the
propagation of acoustic waves into the liquid due to the
leakage of SW energy from the substrate, the acoustic radiation

pressure acting on the interface is negligible and hence beyond
this thickness, i.e., h∗ � β∗−1 � k∗−1

l , the convective drift
generated by the dominant viscous periodic flow highlighted
in Eq. (29) constitutes the primary mechanism that drives the
spreading in the same direction of the drift, which, in turn,
is along the propagation direction of the SW for the case of
Rayleigh SAWs. In the inertial limit, in which the convective
drift dominates the film dynamics over capillary effects, the
film is observed to spread self-similarly as t1/4, consistent with
that observed in previous experiments.

Films of larger thicknesses (h∗ � k∗−1

l ≈ 10–103 μm), on
the other hand, permit the leakage of the SW energy from the
substrate to produce MHz compressional acoustic waves in
the liquid and are therefore influenced by an additional stress
mechanism, namely the acoustic radiation pressure, leading to
periodically stable and unstable films (or regions within a film),
as predicted by the linear stability theory in Eq. (42). Together
with the drift flow, they give rise to a volume flux that causes
the film to spread with constant velocity according to Eq. (46)
in the direction that opposes the drift flow and, in the case of
Rayleigh SAWs, in the direction opposite to that of the SW
propagation, which is also consistent that observed to date.
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