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Enhancing flexibility for climate change using seasonal energy 
storage (aquifer thermal energy storage) in distributed energy 
systems 

A.T.D. Perera a,b,1,  Kenichi Sogac, Yujie Xub, Peter S. Nicod, Tianzhen Hongb  

aAndlinger Center For Energy And Environment, Princeton University, NJ 08540, United States 
bBuilding Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 
Berkeley, CA, 94720, United States 
cCivil and Environmental Engineering, University of California Berkeley, Berkeley, CA, United States  
dEarth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United 
States  

 

Abstract 

Long-term energy storage is expected to play a vital role in the deep decarbonization of building 
energy sectors, while enhancing the flexibility of buildings to withstand future climate variations. 
However, it is challenging to design distributed multi-energy systems (DMES) while taking into account 
the uncertainties introduced by climate change, since stochastic optimization of such systems is 
difficult. The present study introduces a stochastic optimization model to address this bottleneck, 
taking into account DMES including aquifer thermal energy storage (ATES) as the long-term thermal 
storage. For the first time, a novel optimization algorithm links ATES with the DMES optimization 
model with the support of a simplified geotechnical model. Subsequently, a case study was conducted, 
focusing on a residential district in Chicago where the impact of future climate condition, energy 
demand, and solar and wind energy potentials were evaluated using Weather Research and 
Forecasting (WRF) data (up to 2080) and the EnergyPlus model. The study revealed that ATES is an 
attractive way to improve the renewable energy penetration level and minimize the dependence on 
fossil fuels with reasonable support from the grid to assist the fluctuations in both demand and 
generation. Furthermore, ATES notably reduces fuel consumption and dependence while greatly 
enhancing the flexibility of the energy system to withstand fluctuations in demand and renewable 
energy generation brought by future climate variations. These qualities will make ATES an important 
part of distributed energy systems, even though it is not currently the lowest cost alternative due to 
lack of technology maturity. The design platform introduced in the present study can be used to design 
DMES enhancing flexibility to accommodate future climate variations. 

Keywords: long-term/seasonal storage, distributed multi-energy systems, stochastic optimization, 
geothermal energy, aquifer thermal energy storage, ATES, climate change 
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Nomenclature 

distributed multi-energy systems DMES 

aquifer thermal energy storage ATES 

Weather Research and Forecasting WRF 

solar photovoltaic PV 

mixed integer linear programming MILP 

Hydrogen H2 

combined heat and power CHP 

internal combustion generator ICG 

global solar radiation on a tilted plane Gβ
t,s 

hourly solar energy generation  

Set of time steps T 

time step t ( )  

set of scenarios Ω 

scenario s ( ) 

area of a single SPV panel  ASPV  

number of SPV panels NSPV 

energy efficiency of the SPV panels  

power generation from wind turbines  

number of wind turbines Nw 

power generated by one wind turbine  

other wind turbine losses ηwind-losses 

Rated wind speed of the wind turbine vR 

cut-in wind speed of the wind turbine vCI 

cut-off wind speed of the wind turbine vCO 

rated power of the wind turbine PR  

maximum ICG’s power output  

minimum ICG’s power output  
      

State of Charge SOC 

 self-discharge coefficient of battery bank  

capacity of battery bank Cbat  

round-cycle efficiency of battery bank  

maximum current from battery bank   

voltage across the battery bank   

time step  for charge/discharge battery bank 
 

state of charge of the hot well  

self-discharge of the hot well  

heating demand of the building cluster   

fraction of thermal energy provided by ATES 
 

cooling demand of the building cluster   

fraction of the cooling demand supplied by 
the ATES   

recovery efficiency of ATES  

Number of hourly time steps for the discharge 

season   

electricity consumption for the heat pump of 
the ATES  

coefficient of performance of the heat pump 

  

state of charge of the cold well  

self-discharge of cold well  

coefficient of performance of the cooling 
cycle  

electricity consumption used to cool the ATES 
 

,
SPV

t sP

Tt∈∀

Ω∈∀s

,
SPV
t sη

W
stP ,

W
stP ,

max
ICGP

min
ICGP

,
Bat
t sσ

,
,
Bat ch
t sη

,max
,

Bat
t sI

BatV

t∆

,
1,

ATES H
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,
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ATES C
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porosity of the aquifer n 

fluid of volume injected into the aquifer Vin  

thickness of the aquifer L 

radius of the hydraulic front Rh 

radius of the heat front Rth 

volumetric heat capacity of water 𝑐𝑐𝑤𝑤  

heat capacity of the aquifer 𝑐𝑐𝑎𝑎𝑎𝑎  

volumetric heat capacity of solids 𝑐𝑐𝑠𝑠  

storage period tsp  

groundwater flow rate u*  

overlap area of ATES 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

electricity consumption of the auxiliary 

devices of the ATES   

electricity consumption for the air-
conditioning 

,t sAC  

loss of power supply in electricity sector  

electricity load demand  

maximum power flow from the battery 

  

maximum power that can be taken from the 

grid  

renewable power generation  

loss of heating demand   

loss of cooling demand  

probability of occurrence for the scenario s 

sψ   

initial capital cost (ICC 

fixed operation and maintenance cost OMfixed 

 variable operation and maintenance cost 
OMvariable 

capital recovery factor CRFc  

the real interest rate PRI  

levelized energy cost LEC 

 

1 Introduction  

Decarbonizing the energy sector is a main challenge to be faced during climate change mitigation [1]. 
Integration of renewable energy technologies to replace carbon intensive means of power generation 
based of fossil fuel resources is essential. At the same time, market uncertainties of fossil fuels due to 
geopolitical activities encourage a move to renewable energy technologies such as solar and wind. 
Therefore, a significant increase in the penetration levels of solar photovoltaic (PV) and wind 
technologies is observed throughout the world. For example, China alone has installed 53 gigawatts 
(GW) of solar PV during 2021 [2]. However, when compared to the national level targets required for 
1.5°C scenarios, the trends for both solar PV and wind integration become challenging [3]. The 
countries that have already reached higher penetration levels of wind and solar PV are gradually 
slowing the integration process, following an S curve [4]. Therefore, facilitating solar PV and wind 
integration is essential to reach 1.5°C climate targets. 

The intermittent nature of solar and wind energy is the main hurdle that must be addressed during 
the integration of these technologies. Both solar irradiation and wind speed are governed by weather 
conditions. The potential of solar and wind energy does not follow a pattern that enables them to 
meet continual energy demand, so they require additional support to store energy. Therefore, energy 
storage has become essential to support the integration of renewable energy technologies. Energy 

,t sΨ

,
E

t sLPS

,t sELD

,
Bat Max

t sP −

,
FG Max

t sP −

,
RE

t sP

HLPS

CLPS
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storage has been widely discussed in relation to transportation, industry, and the building sector [5]. 
Already the transportation sector is going through a revolution to replace inefficient and 
environmentally expensive internal combustion engines with vehicles supported by battery and 
hydrogen storage [6]. Similarly, grid storage and domestic electricity storage have been widely 
discussed, especially with the introduction of new tariff systems [7]. The significant cost reductions 
during recent years have made battery storage more popular in many sectors [8]. However, these 
developments must move beyond the electricity sector and enable energy storage technologies to 
facilitate decarbonization of the building sector, which constitutes up to 40% of energy demand [9]. 
Thermal energy storage can address needs such as the higher energy demand for heating during the 
winter to hot water demand from solar heaters during the night [9]. Therefore, short-term (daily) as 
well as long-term (seasonal) considerations play a vital role in the energy transition. 

Long-term storage plays a key role in enhancing renewable energy penetration levels, especially when 
reaching ambitious renewable energy targets [10]. Most of the recent studies in this area focus on 
long-term storage technologies such as pumped hydropower, power to hydrogen, and compressed air 
[11]. However, there are limitations in solely limiting the scope of these technologies to the electricity 
sector. For example, pumped hydro storage is highly sensitive to climate change [12], and the storage 
capacity is limited when considering global requirements. On the other hand, heating demand does 
not align with the availability to solar energy potential. Therefore, thermal energy storage is vital to 
enhance the solar energy integration levels. Therefore, it is important to move into multi-storage 
solutions that cover both electricity transportation and the heating sector, especially in deep 
decarbonization scenarios [10,13]. Guo et al. [14] showed the renewable energy penetration level 
could be improved up to 69% by using such multi-energy systems. More important, a significant 
portion of the thermal energy demand can be generated within the site of the distributed energy 
systems with the support of long-term storage. [15]. Further, Zeyen et al. [16] showed that long-term 
storage, along with building renovation and heat pumps, can reduce the total cost of the energy 
system up to 17%. However, incorporating consideration of long-term storage within a multi-energy 
system domain makes it quite challenging to perform optimization. 

Several studies have focused on the optimal sizing of multi-energy systems, including long-term 
storage. For example Heijde et al. optimized a solar energy district with long-term thermal energy 
storage [17]. They used a bi-level optimization algorithm where the primary level, with mixed integer 
linear programming (MILP), was used for dispatch strategy, and the secondary level, with a genetic 
algorithm, was used for design optimization. Gabrielli optimized a multi-energy system with seasonal 
hydrogen storage using MILP [18]. Murrey et al. assessed the impact of both short- and long-term 
energy storage (specifically focusing at power to Hydrogen (H2) and showed that long-term storage 
has the potential to shift renewable surpluses in the summer towards demand later in the year. 
According to Petkov et al. [19], uncertainty plays a vital role when designing distributed energy 
systems with long-term energy storage. Li [20] et al. performed stochastic optimization of a 
heterogeneous energy storage system operation. Optimizing energy systems with long-term storage 
while taking into account the uncertainties is a challenging task. Quiroz and Strunz [21] introduced a 
distributed algorithm based on Dantzig-Wolfe decomposition [22] to optimize a distributed energy 
system with renewable energy technologies. According to Quiroz and Strunz [21], the optimization 
process  took eight days, even after limiting the dispatch strategy to be four representative weeks of 
the year. Limiting the represented period to under a year makes it challenging to assess the impact of 
climate change where simulation-based formulations of objective functions need to be formulated to 
consider an entire year [23,24]. Furthermore, thermal storage is not considered in the system design, 
which again plays a major role when considering the impact of climate change. Therefore, it is 
important to develop computational methods to perform design optimization of distributed energy 

about:blank#!
about:blank#!
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systems that take into account sectors such as heating and cooling along with the electricity while 
addressing the bottlenecks in the present state of the art (one objective of this study).  

To help develop distributed multi-energy systems that can withstand the fluctuations introduced by 
future climate variations and enhance renewable energy penetration, the present study focused on a 
distributed energy system configuration that includes long-term thermal energy storage. Borehole 
and aquifer thermal energy storage (ATES) have been well known subsurface technologies that can 
operate as seasonal storage technologies [9]. Although both of these technologies have shown 
economic viability, less attention has been given to ATES historically [9]. However, more recently, 
much attention has been given to ATES by both the geothermal and energy storage communities, 
since it has shown the potential to be an economically competitive long-term energy storage 
technique [25]. A number of aspects related to ATES have been investigated in the present state of 
the art. Numerical models have been developed to assess the thermal performances of ATES. These 
models have focused on assessing the energy recovery efficiency and thermal performance of ATES 
under different ground conditions [26]. Subsurface thermo-hydro models are often coupled with 
thermal system models in order to achieve this task. Techno-economic assessments have been 
performed to assess the viability of ATES under different conditions. These studies have reflected the 
economic potential of ATES up to a certain level [27,28]. 

Integration of ATES into distributed energy systems such as energy hubs has been discussed recently 
[29–31]. Rostampour and Tamas [29] and Rostampor et al. [29] have discussed the optimal operation 
of ATES in distributed energy systems, which clearly demonstrate the potential of ATES to be 
integrated into distributed energy systems. The optimal operation of a distributed energy system 
highly depends on the system’s configuration, including its capacity for PV panels, wind turbines, a 
combined heat and power (CHP) system, and other storage techniques, such as battery banks [32]. 
More important, renewable energy integration could help to withstand certain operational costs of 
ATES, which can help to increase their market penetration. However, optimal design of distributed 
energy systems with ATES is a challenging task. The complex coupling between subsurface thermo-
hydro behaviour and ATES operation makes it quite challenging to integrate ATES into a distributed 
energy system. The subsurface characteristics that influence the thermal performance of ATES are 
often obtained from numerical models that are not compatible with energy system optimization 
models. To the best of the authors’ knowledge, design optimization (system sizing) of distributed 
energy systems with ATES has not been performed before. The optimization problem becomes more 
challenging when considering the future climate variations due to climate change, which will favour 
the integration of ATES. Therefore, a reasonable research gap must be addressed to facilitate ATES 
integration into distributed energy systems. 

To address these bottlenecks in the present state of the art, this study focused on addressing the 
following objectives: 

• Develop a computational model integrating ATES into the distributed energy system that can 
facilitate energy system optimization. 

• Extend the computation model to perform stochastic optimization considering the 
uncertainties brought by future climate variations and building operation. 

• Perform multi-objective optimization, considering aspects such as cost, grid integration level, 
and fuel consumption. 

• Assess the impact of ATES on renewable energy integration and battery storage sizing. 
• Assess the impact of ATES on the performance indicators such as cost, grid integration level, 

and flexibility. 

about:blank
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The manuscript is organized as follows: Section 2 presents the computational model developed in the 
study. Section 3 presents the case study, including the derivation of demand profiles. Section 4 
presents the results of the Pareto optimization, followed by a comprehensive assessment. 

2 Techno-economic model for the distributed energy system  

The techno-economic model presents a brief overview of the energy system model used in the present 
study. A stochastic model was used to account for uncertainties brought by the changes in energy 
demand and renewable energy generation. 

2.1  Outline of the distributed energy system 

The distributed energy system that can cater the multi energy services such as electricity, heating, and 
cooling with the support of the renewable energy technologies generated locally is considered in this 
study (Fig. 1). The energy hub concept has been widely used to consider such distributed energy 
systems catering multi energy services. The present study uses the same concept and an extension to 
the energy hub models developed previously. The energy hub consists of renewable energy 
technologies such as solar PV and wind turbines. Both electrical and thermal energy storage 
technologies were considered. The battery bank operated as the electricity storage while the ATES 
operated as the thermal storage. The boiler and chiller were used as alternative heating and cooling 
options. In addition, a chiller and heat pump were connected with the ATES to match the temperatures 
between the well and the building energy system. The internal combustion generator (ICG) operated 
as the dispatchable energy source. Both the boiler and the ICG were using fossil fuel provided 
externally. The system was operating in grid integrated mode and included a time-of-use tariff system. 
Grid curtailments were considered for both injection and purchase of electricity to and from the grid. 
A limit is set for maximum power that could be injected to or purchased from the grid. 

 

Fig. 1 Outliner of the energy system 

2.2 Energy system model 

2.2.1 Solar PV generation 
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Solar PV and wind energy technologies were considered as non-dispatchable renewable energy 
technologies. The hourly potential for both these technologies were extracted from a climate model. 
A comprehensive explanation about the method used to extract the climate data is presented in 
Section 3. Hourly global horizontal irradiation data are extracted from the climate data set, which is 
used to calculate the global solar radiation on a tilted plane that comprises the solar PV (SPV) panels 
(i.e., Gβ

t,s) using an anisotropic diffuse solar radiation model. A comprehensive explanation about the 
models used to compute the global solar radiation on a tilted plane is presented in Ref. [33]. Finally, 
hourly solar energy generation (

,
SPV

t sP ) for time step t ( Tt∈∀ ) in scenario s ( Ω∈∀s ) (denotes the 

scenario considered for stochastic optimization) is computed using Eq. 1. 

, , , , ,SPV SPV SPV SPV
t s t s t sP G A N t T sβ η= ∀ ∈ ∀ ∈Ω                                       (1) 

In Eq. 1, ASPV and NSPV represent the area of a single SPV panel, as well as the number of SPV panels. 
A semi empirical formula proposed by Durisch et al. [34] is used to determine the energy efficiency of 

the SPV panels ( ,
SPV
t sη ). A time series of 8,760 timesteps was considered for the simulation. 

2.2.2 Wind power generation 

A similar approach was used to formulate the power generation from wind turbines ( W
stP , ) according 

to Eq. 2. 

Ω∈∀∈∀= sTtPP s
W
st

W
st ,, N  )(v 

losses-Ww
,t

~

,, η                                                 (2) 

In Eq. 2, Nw denotes the number of wind turbines that is optimized using the optimization algorithm, 
W
stP , denotes power generated by one wind turbine, calculated using the power curve, and ηwind-losses 

accounts for other losses that take place in energy conversion.  

The power generation from a single wind turbine is computed by using the cubic spline interpolation 
function with the support of a power curve of the wind turbine given by the manufacturer. Eq. 3 
presents the cubic spline interpolation function. 

, ,
3 2
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t s t s t s t s CI t s
w w w w w
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
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

 

In Eq. 3, respectively w
ia , w

ib , w
ic , and w

id  denote coefficients of the polynomial function, which vary 
depending on the “power curve” of the wind turbine. Rated wind speed, cut-in wind speed, cut-off 
wind speed, and rated power of the wind turbine are respectively presented by vR, vCI, vCO,  and PR. 

2.2.3 Computational model for the internal combustion generator and boiler 

Two dispatchable energy technologies—an internal combustion generator (ICG) and a boiler—were 
considered in this study. The ICG was used to provide the electricity demand, depending on the 
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dispatch strategy. The fuel consumption of the ICG was formulated based on its operating load  

( ,
ICG

t sP ) according to Eq. 4, taking into account the valve point effect (usually not considered in simple 

polynomial equations).  

2

, 0 1 , 2 , 3 4 , min min , maxsin( ( )) , , ,ICGICG ICG ICG ICG ICG ICG ICG ICG ICG ICG ICG ICG
t s t s t s t s t sFC a a P a P a a P P t T s P P P= + + + − ∀ ∈ ∀ ∈Ω < <           (4) 

In Eq. 4, 
max
ICGP and 

min
ICGP  denote the ICG’s maximum and minimum power output, respectively. The 

constants 
0
ICGa to 

4
ICGa  are constants that vary depending upon the type of ICG. A similar approach is 

used to compute the fuel consumption of the boilers.  

2.2.4 Model for the battery bank  

A battery bank and ATES are used for the system’s energy storage. The battery bank acts as short-
term electricity storage, while the ATES operates as seasonal thermal storage. Both the ATES and the 
battery bank are modeled using the State of Charge (SOC) model, which helps to determine the charge 
level available in the energy storage. The SOC of the battery bank is determined using Eq. 5. 

,max ,
1, , , , , min 1, max(1 ) / , , ,Bat Bat Bat Bat Bat Bat ch Bat Bat Bat Bat

t s t s t s t s t s t sSOC SOC V I t c t T s SOC SOC SOCσ η+ += − + ∆ ∀ ∈ ∀ ∈Ω < <    (5) 

In Eq. 5, ,
Bat
t sσ  denotes the self-discharge coefficient of the battery bank, which ( ,

Bat
t sσ ) was taken as 

0.02% (per hour). Cbat and ,
,
Bat ch
t sη , respectively, present the capacity of the battery bank and its round-

cycle efficiency. Batc denotes the capacity of the battery bank. ,max
,

Bat
t sI  , BatV , and t∆  present the 

maximum current that can be taken, voltage across the battery bank, and time step (taken as one 
hour), respectively. Based on the number of charge–discharge cycles, the Rain-Flow Algorithm [35] is 
used to compute the replace time for the battery bank. Finally, replacement time is used to compute 
the variable maintenance cost of the battery bank. 

2.2.5 Energy flow model for the ATES 

• Model for the energy storage 

A similar approach based on the State of Charge (SOC) model was used for the ATES. The ATES consists 
of a hot well and a cool well. The state of charge of the hot well ( ,

1,
ATES H

t sSOC +
) is determined based on 

charging from the cooling cycle, self-discharge ( ,
,
ATES H
t sσ ), and discharge from the heating cycle 

according to Eq. 6 A. The hot well is charged whenever cooling is performed, where water flow takes 
place from the cold well to the hot well. Eq. 6 A is formulated when the complete cooling cycle could 
be achieved without the support of air-conditioning (other operating states are described in the 
dispatch). ,

,
H B
t sQ  denotes the heating demand of the building cluster. The ATES can provide only a 

fraction of the thermal potential required for heating the building cluster. A heat pump is used to 
provide the rest of the thermal potential (to increase the temperature). The fraction of the thermal 
energy provided by the ATES is presented by Hα , while the fraction of thermal energy provided by 
the heat pump is 1- Hα . Hα depends on the temperature of the hot well, the heat pump’s operating 
characteristics, and the building energy system. Similarly, ,

,
C B
t sQ  and Cα  , respectively, denote the 

cooling demand and the fraction of the cooling demand supplied by the ATES ((1- Cα ) presents the 
fraction of cooling demand supplied by the refrigeration cycle). The self-discharge ( ,

,
ATES H
t sσ ) presents 
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the thermal losses that take place from the hot well. Ideally, ,
,
ATES H
t sσ  depends on the state of charge of 

the hot well. However, numerical models that are used to compute ,
,
ATES H
t sσ  may significantly increase 

the computational time, which makes it difficult to be used with the optimization algorithms. 
Therefore, an analytical approach was used in the present study to compute ,

,
ATES H
t sσ  as presented in 

Eq. 6 B. Recovery efficiency is computed ( ) in a seasonal manner considering the operation of 
the ATES. For the climate of Chicago a heating season of (tsp) 92 days are considered. Out of the 
energy stored in the cold well during this period,  can be utilized during the summer due to 
the losses incurred (the rest is lost due to thermal and flow losses). In this study, we assumed that the 
thermal losses take place uniformely throughout the year. Therefore, the self-discharge can be  

(per hour) formulated according to Eq. 6 B, where we assume that the thermal losses take place 

uniformly throughout the discharge season. In Eq. 6 B, ATES
Seasonalt∆  denotes the hourly time steps for 

the discharge season (2208 time steps (92x24)). Finally, electricity consumption for the heat pump of 

the ATES ( ,
,
ATES H

t sHP ) is computed using Eq. 6 C. In Eq. 6 C, ,
,
HP H

t sCOP presents the coefficient of 

performance of the heat pump, which is taken as a function of temperature as shown in Eq. 6D where 
Tcond, out and Tevap, in represents the temperatures at the condenser outlet and evaporator inlets. The 
state of the charge of ATES depends on the operating state of the dispatch strategy. Considering State 
A marked in Fig. 3 (a) the state of the charge of hotwell can be formulated as Eq. 6A. 

  
, , , , , , , , ,

1, , , , , min 1,(1 ) ( ) / , , ,ATES H ATES H ATES H H B H C B C ATES H ATES H ATES H ATES H
t s t s t s t s t s t sSOC SOC Q Q c t T s SOC SOC cσ α α+ += − − − ∀ ∈ ∀ ∈Ω < <    (6 A) 

, ,Re
, (1 ) /ATES H ATES c ATES

t s Seasonaltσ η= − ∆                      (6 B) 

, , ,
, , ,(1 ) / , , 0 1ATES H H B H HP H H

t s t s t sHP Q COP t T sα α= − ∀ ∈ ∀ ∈Ω < <                    (6 C) 

,
, , ,7.5 0.07( )HP H

t s cond out evap inCOP T T= − −          (6D) 

A similar approach is taken for the cold well, as presented in Eq. 7 A-C. The state of charge of the cold 

well ( ,
1,

ATES C
t sSOC + ) is presented according to Eq. 7 A. Similar to the hot well, the state of charge is 

determined based on charging from the hot cycle, self-discharge ( ,
,
ATES H
t sσ ), and discharge from the cool 

cycle. Eq. 7 A is formulated when the complete hot cycle could be achieved without the support of the 
boiler (other operating states are described in the dispatch). ,

,
C B
t sQ  denotes the cooling demand of the 

building cluster. The ATES can provide only a fraction of the thermal potential required for cooling the 
building cluster. A cooling cycle is used to provide the rest of the thermal potential (reduce the 
temperature). The fraction of the thermal energy removed by the ATES is presented by Cα , while the 
fraction of thermal energy reduced by the cooling cycle is 1- Cα . Cα depends on the temperature of 
the cold well, operating characteristics of the cooling cycle, and the building energy system. Similarly, 

,
,
ATES C
t sσ  presents the self-discharge of cold well, which is formulated according to Eq. 7 B. Finally, 

electricity consumption used to cool the ATES ( ,
,Re ATES C

t sf ) is computed using Eq. 7 C. In Eq. 7 C, Re ,
,

f C
t sCOP  

presents the coefficient of performance of the cooling cycle, which is taken as a function of 
temperature. The state of the charge of ATES depends on the operating state of the dispatch strategy. 
Considering State A marked in Fig. 3 (b) the state of the charge of hotwell can be formulated as Eq. 
7A. 

,ReATES cη

,ReATES cη

,
,
ATES H
t sσ
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, , , , , , , , ,
1, , , , , min 1,(1 ) ( ) / , , ,ATES C ATES C ATES C C B C H B H ATES C ATES C ATES C ATES C

t s t s t s t s t s t sSOC SOC Q Q c t T s SOC SOC cσ α α+ += − − − ∀ ∈ ∀ ∈Ω < <  (7 A) 

, ,Re
, (1 ) /ATES C ATES c ATES

t s Seasonaltσ η= − ∆                  (7 B) 

, , Re ,
, , ,Re (1 ) / ,ATES C C B C f C

t s t s t sf Q COP t T sα= − ∀ ∈ ∀ ∈Ω                 (7 C) 

 

• Thermal recovery efficiency 

In this study, the thermal recovery efficiency of an ATES (
,ReATES cη ) was estimated by a model 

developed by Bloemendal and Hartog [36]. The model considers the effect of groundwater flow as the 
primary source of reducing recovery efficiency. When a heated (or cold) fluid of volume Vin is injected 
into the aquifer of thickness L (assuming the well screened fully across the aquifer), the radius of the 
hydraulic front Rh from the centerline of the well is given below by considering volume conservation 
(Eq. 8). 

𝑅𝑅ℎ = �𝑉𝑉𝑖𝑖𝑖𝑖/(𝑛𝑛𝑛𝑛𝑛𝑛)           (8) 

where n is the porosity of the aquifer. 

As the injected fluid permeates through the fluid phase of the porous media, the heat stored in the 
injected fluid dissipates into the solid phase. The absorption of the heat into the solid phase causes 
the heat front to retard from the hydraulic front, as shown in Fig. 2(a). The radius of the heat front can 
be evaluated by considering thermal equilibrium (Eq. 9). 

𝑅𝑅𝑡𝑡ℎ = �
𝑛𝑛𝑐𝑐𝑤𝑤
𝑐𝑐𝑎𝑎𝑎𝑎

𝑅𝑅ℎ            (9) 

where is 𝑐𝑐𝑤𝑤  the volumetric heat capacity of water, 𝑐𝑐𝑎𝑎𝑎𝑎  is the heat capacity of the aquifer (𝑐𝑐𝑎𝑎𝑎𝑎 =
𝑛𝑛𝑐𝑐𝑤𝑤 + (1 − 𝑛𝑛)𝑐𝑐𝑠𝑠) , and 𝑐𝑐𝑠𝑠 is the solids volumetric heat capacity.  

The impact of ambient groundwater flow on the recovery efficiency is estimated by assuming that a 
cylindrical shape of the injected volume (the dotted line in Fig. 2(b)) is maintained during the 
movement of the heated cylinder to the downstream (the solid line in Fig. 2(b)). The displacement 
distance of the heat source is given by tspu*, where tsp is the storage period (e.g., half a year) and u* 
is the  ground water flow rate. When the heat is recovered from the well by extracting a fluid volume 
equal to the injected volume Vin, it is assumed that the heat in the overlap area shown in Fig. 2(b) can 
be recovered. From the geometry, the overlap area can be computed as follows (Eq. 10). 

𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 2𝑅𝑅𝑡𝑡ℎ2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢∗

2𝑅𝑅𝑡𝑡ℎ
� − 𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢∗�𝑅𝑅𝑡𝑡ℎ2 − 1

4
(𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢∗)2      (10) 

The recovery efficiency 𝜂𝜂𝑡𝑡ℎis therefore defined by taking the ratio of the overall area 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜to the 
original heat source footprint area 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(= 𝜋𝜋𝑅𝑅𝑡𝑡ℎ2 ) , according to Eq. 11. 

𝜂𝜂𝑡𝑡ℎ = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= 2
𝜋𝜋
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢

∗

2𝑅𝑅𝑡𝑡ℎ
� − 𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢∗

𝜋𝜋𝑅𝑅𝑡𝑡ℎ
2 �𝑅𝑅𝑡𝑡ℎ2 − 1

4
(𝑡𝑡𝑠𝑠𝑠𝑠𝑢𝑢∗)2      (11) 

Further details of the model and the discussion on the assumptions is given by Bloemendal and Hartog 
[36]. 
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Fig. 2: (a) and (b), respectively, present a side view and a plan view of the aquifer thermal energy storage 

The electricity consumption for the thermal loads is formulated by taking the electricity demand for 
the ATES and the air conditioning demand (

,t sAC ), which cannot be supplied using the ATES according 

to Eq. 12. In Eq. 12, 
,t sΨ  and 

,t sAC denote the electricity consumption of the auxiliary devices of the 

ATES, including the water pumps and the electricity consumption for the air-conditioning (whenever 
ATES cannot fully meet the cooling load).  

, ,
, , , , ,Re , ,Th ATES H ATES C

t s t s t s t s t sE HP f AC t T s= + + +Ψ ∀ ∈ ∀ ∈Ω                     (12) 

SOC model used in this study captures the mass flow including the exchange of mass between the two 
wells and the water leaks that took place. However, energy has a quality that is not conserved which 
is described by the Second law of thermodynamics. However, the model has certain limitations in 
capturing the second law efficiency (in general, most the energy system models used for planning 
distributed energy systems are not considering the Second Law).  The study considers the wells to 
maintain constant temperature with time (neglecting the temperature drop while the thermal losses 
take place). Since the Second law efficiency (and the thermal losses) may lead to change the 
temperatures in the wells which we took to be constant, the quality of energy may reduce, leading to 
poor COP (Coefficient of Performance) in heat pumps. To capture the impact of temperature losses 
brought by heat transfer, we introduced a coefficient to COP of heat pumps to reflect the practical 
conditions. 

 

2.3 Dispatch model 

The complex formulation of the energy system operation brought up by the ATES with seasonal 
storage makes it difficult to use a typical linear or mixed integer linear formulation for the dispatch 
strategy. Therefore, finite and fuzzy state model are used to formulate the dispatch strategy. 

2.3.1 Formulation of the dispatch strategy to supply heat and cooling demand 

Well

Ground surface

Aquifer layer

Rth (Radius of the 
thermal front) Rh (Radius of the 

hydraulic front)

Infiltration 
volume Vin

Fully screened 
aquifer length L

(a) Side view (without ground water flow) (b) Plan view (with ground water flow)

Groundwater u*

Well

Heat source with footprint 
area Afootprint Immediately 
after injection volume V

Heat source moved by 
groundwater flow after 
storage period tsp

Area recoverable 
by the borehole 
Aoverlap

Rth

Moving distance tspu*
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Finite state models are used to formulate the dispatch strategy when supplying the heating and 
cooling demand, as shown in Fig. 3. The heating demand can be supplied either from the ATES and 
the assisted heat pump or by using the boiler. The priority is given to use the ATES whenever the hot 
well can provide the heating demand, since using the boiler will lead to increased carbon dioxide (CO2) 
emission levels and add operational costs. Therefore, a boiler is only used to supply the energy 
demands that cannot be provided by using the ATES. In a similar manner, priority is given to the ATES 
when supplying the cooling demand. Whenever it is not possible to provide the cooling demand using 
the cold well, an air conditioner is used. The total electricity consumption due to pumping water or 
using air-conditioning and heat pumps are summed up to the electricity demand, which is considered 
in the secondary stage of the dispatch strategy as presented in Ref. [1] . 

 

(a) 

 

 

(b) 

Fig. 3: Primary stage of dispatch strategy providing (a) heating and (b) cooling energy demands. 
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2.3.2 Formulation of the dispatch strategy to provide the electricity demand 

The dispatch strategy used for the electricity sector consists of two levels. The first level consists of a 
fuzzy state model that determines the operating load factor of the diesel generator based on the state 
of charge level of the battery bank, renewable energy generation, and electricity demand. Fuzzy logic 
has been used in many applications related to the dispatch optimization of hybrid energy systems [37–
40], as it is one of the most promising methods for implementing energy management strategies in 
hybrid energy systems [41]. After completing the primary level power generation within the energy 
hub power generation using both renewable energy technologies and ICG can be determined. Further, 
the mismatch between the energy demand and the power generation also can be computed. The 
secondary stage of the dispatch strategy is focused on deriving the interactions with energy storage 
and the electricity grid. Finite state automate is used to derive the operating state of the system in the 
secondary stage. The mismatch/excess generation within the system, price of electricity in the grid, 
state of charge in the battery bank, grid curtailments for purchase and injection, and the electricity 
demand are considered when determining the operating state. An extended explanation of the 
dispatch strategy can be found in Ref. [42]. 

 

2.4 Formulation of objective functions and constraints for optimization  

Several performance indicators were used in this study to optimize and analyze the system that is 
formulated in this section. 

2.4.1 Power supply reliability 

There will be a breakdown (introduced as loss of power supply, LPS) in the energy supply (including 
electricity, heating, and cooling) whenever it cannot be provided using the energy hub. For example, 

loss of power supply in electricity sector ( ,
E

t sLPS ) could take place according to Eq. 13.  

, , , , , , , ,E Th RE ngen Bat Max FG Max
t s t s t s t s t s t sLPS ELD E P P P P t T s− −= + − − − − ∀ ∈ ∀ ∈Ω    (13)

 

In this equation, ,t sELD , ngenP , ,
Bat Max

t sP − , and ,
FG Max

t sP − denote the electricity load demand of the 

application, nominal power of the ICG, maximum power flow from the battery depending upon the 
state of charge, and maximum power that can be taken from the grid considering the grid 

curtailments, respectively. ,
RE

t sP denotes the renewable power generation computed using Eq. 1 and 

Eq. 2. 

The loss of load probability (LOLP) model is used to evaluate the power supply reliability of the energy 
system in line with Ref. [43] using the loss of power supply. Finally, the expected value of LOLP is 
formulated according to Eq. 14, which is used as the performance indicator to evaluate the power 
supply reliability. 

, , ,

, ,
, , ,

( ) , ,

E H H C C
t s t s t s

t T
s s ELD H H B C C B

s t s t s t s
t T t T t T

LPS LPS LPS
LOLP t T s

P Q Q

γ γ
ψ

γ γ
∀ ∈

∀ ∈Ω
∀ ∈Ω

∀ ∈ ∀ ∈ ∀ ∈

+ +
= ∀ ∈ ∀ ∈Ω

+ +

∑
∑ ∑ ∑ ∑

E    (14) 
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In this equation, HLPS and CLPS denote loss of heating and cooling demand, respectively. Hγ  and 
Cγ denote the weighting factor for heat to power and cool to power (the conversion taken as the 

reciprocal of coefficient of performance of a heat pump and refrigeration cycle [based on the second 

law of thermodynamics]). sψ  presents the probability of occurrence for the scenario s ( s∈Ω ). 

 

2.4.2 Grid integration (GI) Level 

Grid integration (GI) level presents the autonomy of the distributed energy system, which is 
considered as an important performance indicator when integrating long-term storage. Higher 
autonomy is usually expected with the integration of long-term energy storage. Usually, a multi-
energy hub could maintain interaction among electricity, thermal and gas grids. However, the present 
study limited the scope to the interaction between the energy hub and the electricity grid. The GI was 
defined in number of different ways. The present study used the formulation introduced in Ref. [42], 
as presented in Eq. 15. 

Ω∈∀∈∀= ∑ ∑
∑

Ω∈∀
∈∀

∈∀
Ω∈∀ sTt

ELD

P
GI

s
Tt

st

Tt

FG
st

ss ,,)(
,

,

ψE                      (15) 

PFG and PTG denote the energy units in kilowatt-hours (kWh) purchased and sold to and from the grid 
during steady state operation in time step t and scenario s. 

 

2.4.3 Net present value 

Net present value (NPV) is used in this study as the performance indicator reflecting financial 
feasibility. NPV has been amply used in the literature to evaluate the financial aspect of energy system 
implementation projects. In most instances, the formulation of the NPV is simplified by linearizing or 
by using piecewise linearization methods to fulfill the requirements for the optimization algorithm 
(especially when conducting stochastic optimization [44–48]); such simplifications were not 
performed in this study. The NPV consists of initial capital cost (ICC), fixed operation and maintenance 
cost (OMfixed), and variable operation and maintenance cost (OMvariable). Cash flows due to the 
acquisition and installation of system components are considered under initial capital costs. Cash 
flows that take place within the lifetime of the project are considered under operation and 
maintenance cost (OM). Scheduled maintenance, expenses for expenditures such as fuel, or income 
from grid interactions and other factors are considered under OMfixed. OMvariable considers the cost 
components related to replacement of system components such as battery banks, inverters, and ICG. 
The operation and maintenance cost (OM) is computed using Eq. 16. 

var
, , ,( ) , , ,Fixed l iable

s c s c c h s
c C h H c C

OM OM CRF PRI OM s c C h H
∀ ∈ ∀ ∈ ∀ ∈

= + ∀ ∈Ω ∀ ∈ ∀ ∈∑ ∑ ∑         (17) 

In this equation, CRFc denotes the capital recovery factor for the cth component. PRI denotes the real 
interest rate calculated using both interest rates for investment and the local market annual inflation 
ratio. The year is presented by h. 
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Finally, the levelized energy cost (LEC) of all the cash flows is calculated combining initial capital cost 
(ICC) and OM according to Eq. 18.  

, ,
, , ,

( ) , ,s
s ELD H H B C C B

s t s t s t s
t T t T t T

OM ICCLEC t T s
P Q Q

ψ
γ γ∀ ∈Ω

∀ ∈ ∀ ∈ ∀ ∈

+
= ∀ ∈ ∀ ∈Ω

+ +∑ ∑ ∑ ∑
E                   (18) 

2.4.4 Flexibility of the system 

The flexibility has been defined in number of different ways, considering the aspects of demand, 
generation, transmission, and distribution [49]. Although flexibility has been defined as operation of 
the system, Kondziella and Bruckner [50] highlighted the importance of enhancing the flexibility at the 
early design stage, which is quite vital. Perera et al. [51] redefined the flexibility concept, focusing on 
the design aspect of distributed energy systems addressing this bottleneck being linked to the 
stochastic optimization of distributed energy systems. In this model, flexibility is defined as 
considering all the criteria related to evaluate the system, including LEC, reliability, renewable energy 
utilization, and CO2 emissions based on the flexibility concept practiced in manufacturing systems 
[52,53]. In this model, performance change in each criterion due to the changes in the external factors 
is calculated first. Flexibility is defined for the Pareto solutions obtained from the multi-objective 
optimization by using the scenarios used for the stochastic optimization. Performance degradation for 

criterion n ( nPD ) is calculated according to Eq. 19 with respect to a reference scenario. In this study, 
the expected values for the performance indicators (which enable to consider all the scenarios) are 
used as the reference value ( ). The deviation of the each performance indicator for each scenario 

with respect to the reference value is considered when computing the flexibility. Higher flexibility will 
lead to minimize the deviation.  

, , ,( ) /n s s n D n D n
s

PD CI CI CIψ
∀ ∈Ω

= −∑         (19) 

Relative change due to the changes that take place in the system input is taken the measure to 
evaluate the flexibility. Coefficient of closure (CC) defined in the Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS) is used to evaluate the flexibility of design solutions. A 
comprehensive explanation about the method is presented in Ref. [51]. 

 

2.5 Optimization algorithm and high-performance computing (HPC) implementation 

System sizing of distributed energy systems has been widely discussed in recent literature. 
Refs. [54,55] provide a review on the present state of the art. However, stochastic optimization of 
long-term energy storage has not been discussed widely, since it is quite challenging to perform such 
optimization. The present study relates with longterm energy storage and investigates the impact of 
future climate variations where lengthy time series are required to be considered for each scenario. 
The stochastic optimization which used to be conder a pool of scenarios results in a large pool of 
decision space variables which makes it quite challenging to handle. In addition, the geothermal model 
used with ATES further complicates the optimization process.  This can be understood when referring 
to the recent work on stochastic optimization where LP with Dantzig–Wolfe decomposition [2].  Ref. 
[2] ended up in difficult situation to handle the optimization problem (even with a short time series 
which is not sufficient to evaluate the impact brought up by the future climate variations). The typical 
LP/MILP approach uses a value based approach when solving the dispatch problem while the heuristic 

,D nCI
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method used in the present study uses a policy based approach when solving the dispatch problem. 
The decision space notably reduce when using a policy based approach which makes it possible to 
hangle the complexity of the problem with the support of High Performance GPU computing. 
Therefore, a heuristic approach was used in the present study. Heuristic algorithms such as particle 
swarm, simulated annealing, and evolutionary algorithms are used to optimize distributed energy 
hubs due to the complexity of the objective functions [56].  

Heuristic algorithms demand extended computational time for optimization. Therefore, performing 
stochastic optimization with objective functions formulated using an extended period of simulation 
can be an exhaustive task. To address this bottleneck, the present study used graphical processing 
unit (GPU) accelerated computing. The modern GPUs are a collection of thousands of simple central 
processing units (CPU) that can perform independently. As a result, they enable large-scale 
parallelization, greatly reducing the computational time. This enables researchers to perform 
stochastic optimization with a large pool of scenarios, including stochastic optimization based on 
evolutionary algorithms [57,58]. The computational algorithm consists of two components. The first 
is used for the simulation-based evaluation of objective functions, which is implemented in the GPU. 
The second is devoted to the elements of the optimization algorithm that are implemented in the CPU. 
The decision space of the energy system optimization problem consists of design parameters of the 
energy hub and dispatch strategy. The parameters of the system design include the following: 

• Type and capacity of the wind turbines and SPV panels, which represent renewable energy 
components.  

• ICG, ATES, and battery bank capacities, which represent dispatchable sources and energy 
storage (both thermal and electricity).  

The parameters related to the dispatch strategy include: 

• weight matrix, which represents fuzzy logic rules for the secondary level dispatch strategy for 
electricity, and  

• state transition points for the secondary level dispatch strategy for electricity.  

The net present value of the system, grid integration level, and fuel consumption are used as the 
objective functions. Loss of load probability is considered to be a constraint for the optimization. 

A number of optimization techniques have been used to minimize the difficulties due to the 
uncertainties brought up by future climate variations and the building energy usage. Techniques 
such as stochastic, robust and stochastic-robust techniques have been used in this context. The 
robust optimization is computationally less intensive. However, it often leads to a more conservative 
design. In contrast, stochastic optimization is computationally intensive but leads to a more realistic 
energy system design. Designing distributed energy systems (capacity sizing) is more challenging as it 
leads to a coupled optimization of dispatch and system sizing.  In order to address these difficulties, 
sample average approximation method [1] is used this study to perform stochastic optimization. It 
has been used in the present state of the art energy system optimization by  Sharafi and El Mekkawy 
[2] and Perera et al [3] for simulation-based optimization to optimize standalone energy systems. 
However, none of these studies have considered the thermal energy storage or long term energy 
storage. A Steady ε-State Evolutionary Algorithm [59], based on the ε-dominance technique, was 
accordingly used in this study to conduct the optimization process. A comprehensive overview about 
the optimization algorithm and implementation of the dispatch strategy can be found in Refs. 
[23,42]. 
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3 Case study  

3.1 Description about the district of buildings  

A virtual residential district in Chicago was selected for this study. It has a peak thermal load of 
1 megawatt (MW). The load profile was generated with a two-story single-family residential 
prototype building model using EnergyPlus simulation. The model was developed by Pacific 
Northwest National Laboratory (PNNL) and complied with the IECC 2006 standards. The building has 
a conditioned floor area of 220 square meters (m2) and an unconditioned attic of 110 m2. The 
weather conditions are close to those of O’Hare International Airport. Chicago belongs to climate 
zone 5A, cool and humid. The HVAC system is a typical residential split system with a single-speed 
direct expansion cooling coil and a gas heating coil. 

To account for the variability among buildings, five different variations of the model were 
introduced:  

• Defaults: the default settings that comply with the requirements of IECC 2006 standards. 
• Infiltration: This variation had a 30% higher zone infiltration, where the 

ZoneInfiltration:EffectiveLeakageArea object, used in EnergyPlus to describe infiltration, was 
set to 1,240 square centimeters (cm2) instead of 953 cm2, as in the default setting. 

• Thermostat setpoint: This variation had a 2°C higher cooling setpoint and a 2°C lower 
heating setpoint before 7 am and after 10 pm, compared with the default settings. 

• Occupancy: The number of occupants in this variation was five instead of the default, three.  
• Internal loads: 30 percent higher internal loads; the lighting power density was changed 

from 2.06 to 2.62 watts per square meter (W/m2). 

The community-level load profile was compiled by scaling up the energy and demand outputs of 
each model by 58. That multiplier was chosen so that the highest hourly peak thermal load of the 
scaled load profile would not exceed 1 MW. 

3.2 Curation of climate data  
The historic climate data of 1980–2009 and future climate data of 2020–2080 for scenario RCP8.5 
was retrieved from model output of the Weather Research and Forecasting (WRF) model, version 
4.2.1. The data are gridded at 12 kilometer (km)-by-12 km resolution, downloaded from the Globus 
endpoints.2 Fig. 4 shows the weather data grid and the city boundary of Chicago. The weather data 
at the red grid point was selected to represent the city, due to its proximity to the center of the city, 
(41.8781°N, 87.9090°W) 

                                                           
2 https://app.globus.org/file-manager?origin_id=c296b088-b769-11eb-afd8-e1e7a67e00c1&origin_path=%2F.  

about:blank
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Fig. 4: WRF data grid and Chicago city boundary 

Six variables were downloaded: (1) near surface air temperature at 2 m, (2) wind U component (the 
east-going component of the horizontal wind), (3) the V wind component (the north-going 
component of the horizontal wind) at 10 m, (4) the water vapor mixing ratio at 2 m, (5) surface 
pressure, and (6) downward short-wave flux at ground surface. These variables were converted into 
six EnergyPlus weather file input fields: dry bulb temperature, relative humidity, atmospheric 
pressure, global horizontal radiation, direct normal radiation, and diffuse horizontal radiation. The 
downward short-wave solar irradiance at ground surface was separated into the three solar 
radiation inputs in the EnergyPlus weather file using the Excel tool developed by Ilaria Ballarini [60]. 
The wind speed was derived from the wind U and V components. Relative humidity was computed 
from dry bulb temperature, ambient pressure, and humidity ratio using functions defined in 
psychropy.py [61]. Table 1 shows the conversion. 

Table 1: Conversion from WRF climate data to EnergyPlus weather data input fields 

EnergyPlus .epw fields WRF field Conversion method 
Wind speed (m/s) wind U and V component at 1 m 

(m/s) 
Compute the norm 

Dry bulb temperature (°C) near surface air temperature at 
2 m (K) 

No conversion needed 
Relative humidity (%) Using methods defined in 

psychropy.py [61] water vapor mixing ratio at 2 m 
(kg/kg) 
surface pressure (Pa) 

Atmospheric pressure (Pa) No conversion needed 
Global horizontal radiation 
(Wh/m2) 

downward short-wave flux at 
ground surface (W/m2) 

Excel tool developed by Ilaria 
Ballarini [60] 

Direct normal radiation 
(Wh/m2) 
Diffuse horizontal radiation 
(Wh/m2) 
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3.3 Assessment of the energy demand  
This section summarizes the distribution of the annual total site energy, energy end uses, and peak 
demand of the residential community, across five different model variations over 90 years. From 
1980 to 2080, the annual total site energy gradually decreased for all five model variations described 
in Section 3.1 (Fig. 5). Fig. 6 shows the annual energy end uses of the community over time. We can 
see a slight increase in cooling energy use and a decrease in heating energy use. This agrees with the 
increase in cooling degree days (CDD) and a decrease in heating degree days (HDD) from 1980 to 
2080. The overall site energy use and total thermal energy consumption decreased, as the climate in 
Chicago is heating dominant. The equipment and lighting energy stayed the same over time. For the 
cooling end use, the model with 30% more internal load had the highest consumption across all 
years, and the model that adjusted thermostat setpoints had the lowest consumption over time. The 
cooling consumption of the other three model variations were in between, with the default model 
slightly lower than the other two. For heating and total thermal (the total of heating and cooling) 
end use, the model with increased infiltration had the highest consumption, and the model that 
adjusted thermostat setpoints had the lowest consumption. For lighting and equipment, the model 
with 30% more internal loads had the highest consumption, while the other four model variations 
had the same consumption in these two end uses. 

 

Fig. 5: Annual site energy from 1980 to 2009 and from 2020 to 2080 
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Fig. 6: Annual consumption of main energy end-uses from 1980 to 2009 and from 2020 to 2080 

In Fig. 7, the plot of cooling and heating peak demand reveals a slight increase in cooling electricity 
peak demand and a decrease in heating gas peak demand over the years. This also aligns with the 
trend of increased CDD and decreased HDD over time, as shown in Fig. 7. The model variation with 
increased infiltration had the highest electricity and gas peak demand. 

 

Fig. 7: Annual heating and cooling peak demand of 1980 to 2009 and 2020 to 2080 

Fig. 8 shows the annual HDD and CDD from 1980 to 2009 and from 2020 to 2080. The CDD doubled 
and the HDD decreased by a third from 1980 to 2080. This climate change pattern agrees with the 



21 
 

trend of increased cooling and decreased heating consumption and peak demand shown in Fig. 5 
through Fig. 7. 

 

 
Fig. 8: CDD and HDD from 1980 to 2009 and from 2020 to 2080 

3.4 Scenarios for the stochastic optimization 

The variation of energy demand discussed in this section which was brought up by future climate 
variations as well as model variations were taken as the basis for the stochastic optimization. The 
future climate variations are having an impact on the renewable energy generation in addition to the 
energy demand which was captured in the energy system optimization. The demand and renewable 
energy potential for the future climate conditions obtained from 2020–2080 for scenario RCP8.5 from 
Weather Research and Forecasting (WRF) model was the basis for the scenarios generated (the past 
recoded data are not considered). 60 scenarios are generated taking each year as a separate scenario 
(each time series consist of 8760 timesteps 24x365) which will have a unique energy demand, wind 
speed and solar irradiation data. Subsequently, the impact of demand uncertainty is further 
investigated by extending the scenario tree. The uncertainty brought up by infiltration, adjusted 
thermostat setpoints, changes of internal loads, and changes in occupancy were considered by adding 
an additional scenario leading the pool of scenarios up to 300 (60x5). The impact of these 300 
scenarios on the energy system is considered during the optimization which represents the impact of 
uncertainties brought up by the human and climate systems. 

 

4 Results and discussion 

A techno-economic assessment was performed to assess the feasibility of distributed energy 
systems with ATES. The possibility of using ATES to improve energy autonomy, as well as to support 
less dependence on fossil fuels, are evaluated in this section. Less dependency on fossil fuels implies 
less dependency on their associated CO2 emissions (eco-friendliness). 
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4.1 Cost-fuel consumption and grid integration Pareto front 

A Pareto optimization was performed considering net present value, fuel consumption, and grid 
integration level. Fossil fuel consumption is a reflection of the CO2 emissions by the system, which 
does not include the CO2 impact of grid electricity (in this case it is not in favor of ATES, since the CO2 
levels in the grid electricity are reasonably high). A well distributed Pareto front is observed in Fig. 9 
(a) when considering these three objectives. Each design solution represents a unique system design 
with a unique operational strategy. The well distributed Pareto front (Fig. 9 (a)) demonstrates that 
these three objectives are conflicting among themselves. As a result, it is not possible to maximize 
these performance indicators simultaneously. A 2D contour plot of the Pareto front was obtained to 
get a more detailed overview of the Pareto front (Fig. 9(b)). Region P in Fig. 9 (b) presents the design 
solutions having a highest fuel consumption, which tends to distribute in a very small portion of the 
Pareto front, where NPV is quite low. The design solutions having the lowest grid interaction levels 
show relatively lower fuel consumption when compared to those in Region P. Region Q presents the 
design solutions with the lowest fuel consumption, which is well distributed, taking a reasonably large 
portion of the contour plot. A sharp reduction in fuel consumption is observed from region P to region 
Q when the grid integration levels are between 0.4 and 0.6 (also noticeable in the scatter plot). Boilers 
and ICG play a major role in Region P compared to the design solutions in Region Q.  

 

(a) 
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Fig. 9:(a) Scatter plot and (b) contour plot of the Pareto front obtained considering NPV, grid integration level, and fuel 
consumption as the objective functions. Region P and Q, respectively, present the zones with the highest and lowest fuel 

consumption. 

It is important to assess the changes in system design when varying the performance indicators 
throughout the Pareto front. The renewable energy capacity (the sum of both PV and wind installed) 
and energy storage capacity for the Pareto solutions were assessed, respectively. A contour plot of 
normalized NPV, normalized grid integration level, and installed renewable energy capacity was 
created, and four cross sections taken with constant normalized NPV and grid integration levels (Fig. 
10). The contour plot clearly demonstrates that the installed renewable energy capacity shows a clear 
pattern when moving from the design solutions with lower NPV to higher NPV. This could be 
understood further by looking into cross section L-L, which was taken (2d cross section taken from the 
full 3d results space and displayed for simplicity sake) with a fixed normalized grid integration level. 
The renewable penetration level increased with the increase of NPV. When moving from L-L to K-K, a 
similar variation in renewable energy capacity can be observed. However, in K-K, the gradient is 
slightly lower than the L-L. In contrast, both N-N and M-M do not show a significant variation in the 
installed renewable energy capacity (except a small portion in MM). A significant variation in the 
renewable energy capacity takes place within Region R. Therefore, design solutions with a wider 
capacity of renewable energy technologies can be observed in this region.  

The size of the battery storage of the Pareto solutions obtained do not reflect a clear pattern, as shown 
in the contour plot in Fig. 11 being different from the renewable energy capacity. The two cross 
sections T-T and S-S were taken from the contour plot with constant NPV. A complex variation in 
energy storage size is observed when increasing the grid integration level. It varies from 10 to 28 when 
moving across the contour plot. Similarly, the cross-section V-V taken with constant grid integration 
level shows a complex variation in the storage size. However, the storage size is more stable in the 
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cross-section U-U, especially within Region R. Therefore, in contrast to the renewable energy capacity, 
more stability is observed within Region R concerning energy storage. 
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Fig. 10: The contour and sectional plots obtained to assess the variation of renewable energy integration levels of the 
Pareto solutions 
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Fig. 11: The contour and sectional plots obtained to assess the variation of energy storage size of the Pareto solutions 

4.2 Role of ATES in distributed energy systems 

It is interesting to assess the role of ATES within the energy system. Although we observe a well 
distributed Pareto front with a large pool of alternative solutions, designs with ATES are limited to a 
small portion in the Pareto front (only limited to Region R). Region R includes design solutions with a 
higher grid integration level and relatively low NPV. A heat map of the 3D Pareto surface was taken, 
and Pareto solutions with ATES were taken from different sections of Region R to further assess the 
impact of ATES on performance indicators and the renewable energy integration process (Fig. 12). 
Accordingly, seven design solutions representing six zones within Region R were taken and tabulated 
in Table 2.  
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Fig. 12: The heat map of the Pareto front (having ATES design solutions) with seven design solutions marked within the heat 
map. See Table 2 for a detailed system configuration of these designs. 
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Table 2: Selected design solutions with ATES extracted from the Pareto front 

 

The ATES capacity has a clear impact on the performance indicators, as well as the system design 
(especially renewable energy integration). The design solution with higher ATES capacity tends to 
consume less fuel and demonstrate the potential to integrate more PV and wind energy (Table 2). For 
example, when moving from System A to D, and subsequently H, the installed renewable energy 
capacity reduces from 1,165 to 695 and 460 kW. The direct impact of reduction in installed renewable 
energy capacity is reflected in the heat map. Renewable energy integration drops notably when 
reducing the capacity of the ATES. The renewable energy capacity increases linearly with the size of 
ATES demonstrating the potential of ATES technology to enhance the renewable energy penetration 
levels. In a similar manner, the cost increases as we increase the capacity of ATES. The NPV is 
increasing from 5.47 to 7.33 x 106 $ when moving from system H to A. As a result, ATES can not be 
observed in the cost optimal design solutions.  This clearly indicates the economic challenges that 
need to be addressed when popularizing the ATES technology. It is expected that the technology 
maturity will address this bottleneck in the future.  

The ICG capacity increases, respectively, from 3,199 to 6,382 and 17,354 kWh. System A lays at the 
edge of the Pareto front with a very low fuel consumption rate of 4500 litres per year which increases 
up to 6800 when moving into H. As discussed in the previous section, the size of the battery storage 
does not change notably, except for System H. Similarly, the ICG capacity stays constant, and the 
power generation from the ICG does not vary significantly (except with systems H and D). Similarly, 
the grid injection of excess power generated does not show a significant change among the design 
solutions. For example, systems C and D inject over 100 megawatt-hours, which accounts for about 
16% of the total energy demand of the building stock (after converting the thermal load into the 
electricity demand). It can be concluded that higher ATES capacity will lead to an increase in the 
installed renewable energy capacity while reducing the fuel consumption. A slight increase in the grid 
integration level is observed which assists the renewable energy integration being the buffer. 
Therefore, ATES is an ideal way to improve the renewable energy penetration level and minimize the 
dependence on fossil fuels with reasonable support from the grid (to assist the fluctuations in both 
demand and generation).  

 

Sys. NPV1 GI2 FC3 TG4 REC5 SPV6 BB7 ICG8 Flex9 ICG10 ATES11 

A 7.33 14.56 0.45 92240 1165 77.7 23 40 61.3 3199 1500 

B 7.03 12.54 0.47 79415 1125 64.4 21 40 57.5 2759 1250 

C 6.63 16.52 0.49 104643 815 85.3 22 40 57.5 4690 1250 

D 6.48 17.22 0.50 109096 695 91.4 21 40 53.8 6382 1000 

E 6.14 14.31 0.53 90641 700 68.6 21 40 52.7 4706 1000 

F 6.10 12.94 0.54 81983 665 66.9 23 40 50.4 3471 500 

G 5.91 14.87 0.56 94201 535 77.6 22 40 47.8 4100 500 

H 5.47 11.28 0.68 71448 460 56.5 14 40 46.2 17354 250 
1 Net present value (x $1,000,000) 
2 Grid integration level (%) 
3 Fuel consumption (x1,000) in litres 
4 Energy injected to the grid (kWh) 
5 Installed renewable energy capacity (kW) 
6 Percentage of solar PV in installed renewable capacity 
7 Number of battery banks 
8 ICG capacity (kWh) 
9 Flexibility 
10 Power generation from the ICG (kWh) 
11 ATES capacity injection/production rate m3/day 
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4.3 Overall assessment of ATES integration 

Following the detailed assessment conducted at the system component level, a more holistic 
assessment considering the performance indicators was performed. The main performance indicators 
to be considered in this context were flexibility, cost, and fuel consumption. To achieve this objective, 
flexibility levels of the Pareto solutions were plotted in the contour plot in Fig. 5. Flexibility is a broad 
concept and can be defined in a number of ways. However, quantifying the flexibility of a system at 
the early design stage is a challenging task. In this study, we used the definition presented by Perera 
et al. [51] to quantify flexibility. According to Perera et al. [51], a system with higher flexibility should 
not show a significant deviation in its performance indicators due to the changes brought by the 
external factors. In this specific case, the changes brought by future climate variations on demand and 
renewable energy potential were taken into consideration when assessing flexibility. As shown in 
Fig. 17, design solutions with the lowest grid integration level (which operates in stand-alone mode) 
had the lowest flexibility levels. These designs need to withstand the fluctuations brought by external 
sources without any external support, which leads to a poor flexibility level. On the other hand, designs 
belonging to Region R had the highest flexibility levels. This clearly indicates that ATES can notably 
improve the flexibility levels of the distributed energy system. The most important fact is that higher 
flexibility is achieved with a reasonably high renewable integration level. For example, System A (with 
the highest ATES capacity) in Table 2 had the highest renewable energy integration level, while at the 
same time having the highest flexibility level. However, Region Y in Fig. 17 presents a zone with higher 
flexibility without ATES. The energy systems in Region Y are having lower grid interaction when 
compared to Region R. The design solutiuons in Region Y consist of higher renewable energy 
penetration levels and a larger battery storage. A higher waste of renewable energy (renewable 
energy that can not be utilized) is observed in this region. Due to the larger capacity of battery bank 
and the renewable energy that cannot be utilized, the NPV is notably high in Region Y when compared 
to Region R. This clearly reflects the contribution of ATES in improving flexibility while supporting 
renewable energy integration. 

It is clear that ATES has a positive impact on flexibility and renewable energy integration levels. 
However, ATES also depends on the grid considerably, which leads to a reduced autonomy level of the 
distributed system (discussed earlier). In order to understand the impact of ATES on the NPV and fuel 
consumption, a 2D Pareto optimization was performed with ATES in the decision space and compared 
with the 3D Pareto solutions obtained previously (Fig. 18). It is clearly reflected that the Pareto 
solutions of the 3D Pareto front merge with the Pareto solutions of 2D Pareto front when considering 
the alternative design solutions with lowest NPV and fuel consumption. However, the 3D Pareto front 
provides alternative designs with lowest fuel consumption and net present value, as shown in 
Regions W and X, which are not covered by ATES. Therefore, ATES does not emerge as the optimal 
alternative design, although it has many merits when used to simply conduct a cost optimization. We 
believe that the technology maturity of ATES will improve to address these limitations, and it will 
become a leading component in distributed energy systems due to its potential to improve flexibility 
and renewable energy integration levels. 
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Fig. 17: Contour plot presenting the flexibility of Pareto design solutions. Flexibility levels are substantial considering 

lower grid integration levels. Higher flexibility is demonstrated by design solutions within Region R with ATES. 
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Fig. 18: A 2D Pareto front obtained with ATES in the decision space considering fuel consumption and NPV as objective 

functions. Region W and X represent the design solutions with lowest fuel consumption and cost, which are not 

captured by the 2D Pareto front. 

5 Conclusions  

Energy storage has been widely discussed in the recent past and is known to be a major driver in the 
fight against climate change. Among energy storage technologies, long-term storage has gained much 
attention due to its potential to enhance renewable energy penetration levels notably. More 
important, long-term storage could play a vital role when enhancing the climate resilience of energy 
infrastructure. However, design optimization of distributed energy systems with long-term energy 
storage that account for future climate variations is a challenging task, since stochastic optimization 
of such energy systems presents a number of challenges. 

The present study has successfully addressed these bottlenecks and developed a stochastic 
optimization model to design multi-energy systems, including electrical and thermal storage (long 
term). Furthermore, to the best of authors’ knowledge, it is the first study that performed design 
optimization of a distributed energy system that includes aquifer thermal energy storage (ATES). 
Although techno-economic assessment has been performed for ATES in the present state of the art, 
its potential to be a part of distributed energy systems has not been widely discussed. The complex 
energy flows and the impact of geotechnical phenomena on energy storage heighten the challenge of 
including ATES into the energy system optimization process. This study reveals that ATES has the 
potential to facilitate renewable energy integration while maintaining flexibility, rather than relying 
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on an internal combustion generator or a battery bank. Furthermore, ATES works in harmony with the 
battery bank, which enables the energy system to be flexible by using both short-term and long-term 
storage. Furthermore, ATES demonstrates the potential to notably reduce fuel consumption. These 
unique features will support the energy transition by helping to decarbonizing the building sector. 
Note, however, that ATES does not become either the lowest cost or lowest fuel consumption 
solution, even with the stochastic model. A price reduction of ATES technology is needed for that to 
occur; however, that can be expected as the technology matures. 
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