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Purpose: To quantify visual field (VF) variability as a function of threshold sensitivity
and location, and to compare weighted pointwise linear regression (PLR) with
unweighted PLR and pointwise exponential regression (PER) for data fit and
prediction ability.

Methods: Two datasets were used for this retrospective study. The first was used to
characterize and estimate VF variability, and included a total of 4,747 eyes of 3,095
glaucoma patients with six or more VFs and 3 years or more of follow-up. After
performing PER for each series, standard deviation of residuals was quantified for each
decibel of sensitivity as a measure of variability. A separate dataset was used to test
and compare unweighted PLR, weighted PLR, and PER for data fit and prediction, and
included 261 eyes of 176 primary open-angle glaucoma patients with 10 or more VFs
and 6 years or more of follow-up.

Results: The degree of variability changed as a function of threshold sensitivity with a
zenith and a nadir at 33 and 11 dB, respectively. Variability decreased with eccentricity
and was higher in the central 108 (P , 0.001). Differences among the methods for data
fit were negligible. PER was the best model to predict future sensitivity values in the
mid term and long term.

Conclusions: VF variability increases with the severity of glaucoma damage and
decreases with eccentricity. Weighted linear regression neither improves model fit nor
prediction. PER exhibited the best prediction ability, which is likely related to the
nonlinear nature of long-term glaucomatous perimetric decay.

Translational Relevance: This study suggests that taking into account hetero-
scedasticity has no advantage in VF modeling.

Introduction

Glaucoma is a chronic optic neuropathy charac-
terized by typical modifications of the optic nerve
head, retinal nerve fiber layer, and visual field (VF).
White-on-white automated perimetry is the standard
used for the evaluation and follow-up of patients
suffering from glaucoma and correlates with the
patients’ disability and quality of life.1 The timely
identification of clinically significant rates of perimet-
ric progression should prompt consideration of
treatment escalation to preserve visual function.

The perimetric examination is notoriously dis-

turbed by variability, which confounds the quantifi-
cation of disease progression. Previous studies have
shown that VF variability is not equally spread
(homoscedastic) across the entire perimetric range,
but varies as a function of threshold sensitivity
(heteroscedastic).2–5 Ordinary least square regression
(OLSR) of global indices, VF clusters, or single
locations are statistical tools commonly used to assess
and quantify glaucoma progression, but they incor-
rectly assume data homoscedasticity. Heteroscedas-
ticity does not invalidate results obtained with OLSR,
but in its presence, this model may not be the best
linear unbiased estimator, whereas other linear and
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nonlinear models may be preferable.6 We have
previously shown that pointwise exponential regres-
sion (PER) can better predict future changes than
pointwise OLSR, and the vulnerability of OLSR to
data heteroscedasticity could represent one plausible
explanation.7–9

If the degree of heteroscedasticity is known, it can
be used to generate a weighted linear model, which
assigns higher or lower weight to observations
whether they have a lower or higher variance,
respectively. However, performance of weighted
linear regression has not been reported for VF
modeling, and it could be better than classical models
because it accounts for heteroscedasticity.

In this study, we characterize variability as a
function of threshold sensitivity and test location, and
compare weighted pointwise linear regression (PLR)
with unweighted PLR and PER in terms of both data
fit and prediction ability.

Methods

This was a retrospective study based on a large
cohort of patients with glaucoma treated at the
Glaucoma Division of the Stein Eye Institute,
University of California, Los Angeles (UCLA). The
study was approved by the UCLA Human Research
Protection Program, was performed in accordance
with the tenets set forth in the Declaration of
Helsinki, and complied with the Health Insurance
Portability and Accountability Act regulations.

The study was divided into two parts with separate
datasets used for each one. The first was to
characterize VF variability and estimate the amount
of variability for each decibel of threshold sensitivity
to develop a weighted linear model. Inclusion criteria
for eyes in this part of the study were as follows:
diagnosis of any type of glaucoma, six or more
reliable VF examinations, and 3 years or more of
follow-up. All the tests were carried out with the
Humphrey Visual Field perimeter (Carl Zeiss Oph-
thalmic Systems, Inc., Dublin, CA) with a 24-2 or 30-
2, size III white stimulus, and Swedish Interactive
Threshold Algorithm (SITA) standard strategy. For
the 30-2 examinations, only those locations corre-
sponding to the 24-2 grid were included from the
analysis. Reliability criteria included 20% or fewer
false positives, 25% or fewer false negatives, and no
limitation for fixation losses.10

The second part of the study aimed to account for
data heteroscedasticity with a weighted PLR, and to
compare its performance against unweighted PLR

and PER. For this purpose, we used a different
dataset of patients with the following criteria:
diagnosis of primary open-angle glaucoma (POAG),
10 or more reliable VF examinations, and 6 years or
more of follow-up. This second dataset was thus used
as a test dataset. All calculations were performed with
R statistical software.11

The baseline MD and the MD rate of change,
obtained by regressing the MD values of each VF
series over time, were chosen to be similar between the
two groups, and differences were assessed with the
Mann-Whitney U test.

Analysis of VF Variability

The estimation of VF variability was performed
with a method similar to that reported by Russell et
al.2 Three different regression models (exponential,
linear, logistic) were employed to estimate variability.
For each VF series, pointwise regressions were
calculated on the threshold sensitivities (dB) over
time, excluding the two locations corresponding to
the blind spot. For the exponential model, the linear
trend (negative or positive) was first determined with
simple linear regression, and one of two models
(decreasing or increasing) was used. The exponential
model was based on a logarithm-transformed linear
model and was mathematically defined by the
following equations:

Decay model: ln yð Þ ¼ aþ b � xþ e;

Improvement model: ln Y� yð Þ ¼ aþ b � xþ e;

where the dependent variable y is the observed
threshold sensitivity (dB), x the time (years), a the
intercept, b the slope of the regression line, e the
random error, and Y equal to normal age-matched
and location-matched sensitivity þ 2 standard devia-
tions (SDs).12,13

The OLSR was expressed by the following
formula:

y ¼ aþ b � xþ e:

A floor of 0 dB was set to prevent negative
predicted values.

The pointwise logistic regression was mathemati-
cally expressed as:

y ¼ f
1þ eaþb�xþe

;

where a, b, and f were model parameters to be
estimated.
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The residuals, which represent the difference
between the predicted and observed values, were used
as a measure of variability. The residuals were
estimated with the least squares method for exponen-
tial and linear regressions, and with the Newton-
Raphson method for logistic regression. Analyses
were performed with all the residuals pooled together
and binned for observed threshold sensitivity, loca-
tion, and both threshold sensitivity and location. All
the data presented in this study were based on the
results from the exponential regression, but analyses
were repeated using OLSR and logistic regression to
estimate the variability and results are reported in the
supplementary material. The SDs of the residuals
were calculated for each value of threshold sensitivity,
and the relationship between these two variables was

mathematically summarized. Because it has been
shown that such a relationship is nonlinear,2 we fitted
an exponential function, which is expressed by the
following logarithm-transformed linear model:

ln SDð Þ ¼ aþ b � Sensitivity;

where SD is the standard deviation of the residuals,
Sensitivity is the threshold sensitivity value (dB), and
a and b are, respectively, the intercept and the slope to
be estimated from the data. Because the relationship
between variability and sensitivity was not monoton-
ic, we also fitted a spline function, which is a piecewise
polynomial divided into segments by endpoints called
knots. The function is expressed by the following
formula:

lnðSDÞ
aþ b1 � Sensitivity; for Sensitivity � k1
aþ b1 � Sensitivityþ b2 � ðSensitivity� k1Þ; for k1 , Sensitivity � k2 � � � ;
aþ b1 � Sensitivityþ b2 � ðSensitivity� k1Þ � � � bi � ðSensitivity� ki�1Þ; for , Sensitivity . ki�1

8<
:

where Sensitivity is the integer value of threshold
sensitivity ranging from 0 to 35 dB; k1, k2, and ki–1 are
the sensitivity values corresponding to the first,
second, and ith � 1 knots, respectively; a is the
intercept to estimate; and b1, b2, and bi are the slopes
to be estimated from the data for the first, second,
and ith piece of regression, respectively.

VF Modeling

Regression analysis was performed at each loca-
tion on threshold sensitivities over time, excluding test
locations corresponding to the blind spot. Locations
with a sensitivity of 0 dB in two of three first
examinations were excluded from the analysis. The
regression models performed were unweighted linear,
exponential, and weighted linear.

The simple linear model was defined as follows:

y i½ � ¼ aþ b � x i½ �;

where y[i] is the ith known value of observed threshold
sensitivity (dB), and x[i] is the ith known value of the
follow-up (years). The unweighted linear (and expo-
nential) models assume that the variance of y (and
ln[y]) are constant for all the observations. The
weighted linear regression model has the same
specifications of unweighted OLSR, except for the
assumption of constant variance. Instead of assuming
equal variance, we assume that the ith observation,

y[i], has variance vi. We then obtain the weighted

regression estimates using a weight

w i½ � ¼
1

vi

for the ith observation.6 For the exponential model,

the linear trend (negative or positive) was first

determined with simple linear regression, and one of

two models (decreasing or increasing) was used. The

exponential model was based on a logarithm-trans-

formed linear model and was mathematically defined

by the following equations:

Decay model: lnðy i½ �Þ ¼ aþ b � x i½ �;

Improvement model: ln Y i½ � � y i½ �
� �

¼ aþ b � x i½ �;

where Y[i] is equal to normal age-matched and

location-matched sensitivity þ 2 SD.12,13

Because the dynamic range of the instrument is

limited, predicted values with linear models that were

negative or abnormally high (i.e., over the normal

age-matched and location-matched sensitivityþ2 SD)

were censored at 0 dB and at the normal age-matched

and location-matched sensitivity þ 2 SD dB, respec-

tively.12,13 The exponential model asymptotically

tends toward the floor or ceiling, respectively, and

does not require censoring.
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Model Evaluation

Models were compared for data fit and prediction
ability with the average root-mean-square error
(RMSE) as a criterion. For the data fit, all the
observations were regressed over the entire follow-up.
For prediction ability, regressions were based only on
initial observations as defined next, and were used to
predict the value of a future observation. To predict
VF number 10, we sequentially regressed the first five
to the first nine VFs, adding one VF at every iteration
(VF1–5, VF1–6, VF1–7, VF1–8, and VF1–9). To predict
VF number 15, we sequentially performed a regres-
sion of first five to the first 13 VFs adding two VFs at
every iteration (VF1–5, VF1–7, VF1–9, VF1–11, and
VF1–13). To predict VF number 20, we sequentially
performed a regression of first five to the first 17 VFs
adding three VFs at every iteration (VF1–5, VF1–8,
VF1–11, VF1–14, and VF1–17).

Results

Variability Estimation

The baseline characteristics of patients used to
estimate variability are reported in Table 1. A total of
4747 eyes of 3095 patients were included in the study.
A total of 2,630,628 single observations from 50,589

examinations had a mean (SD) sensitivity of 23.5
(8.3) dB. The frequency distribution of the observed
sensitivities is illustrated in Figure 1.

The distribution of the residuals varied according
to the sensitivity level, as shown in Figure 2. The
magnitude of variability decreased as threshold
sensitivity values increased. The residuals were
symmetrically spread around the median down to a
sensitivity of approximately 10 dB, then became
asymmetric because the dynamic range of the
instrument is limited by a floor at 0 dB, which
restricts the lower range of predicted values. A
similar distribution was seen also when residuals
were estimated with OLSR or logistic regression
(Supplementary Fig. S1). The SD of the residuals as
a function of the observed threshold sensitivity
values is shown in Figure 3A, and the value of the
SD, which represents the degree of variability for
each decibel, is provided in Supplementary Table S1.
The variability was minimum at 33 dB (SD of the
residuals ¼ 2.0 dB), steadily increased with decreas-
ing sensitivity, peaked at 11 dB (SD of the residuals¼
5.5 dB), then dropped at 0 dB to 3.4 dB. As shown in
Figure 3B, the relationship between variability and
threshold sensitivity was expressed by the following
formula: ln SDð Þ ¼ �0:027 � Sensitivityþ 1:79. Be-
cause of this relationship it is better described by a
spline curve with two knots at 14 and 32 dB, as
expressed by the following formula (Fig 3B):

lnðSDÞ
1:39þ 0:029 � Sensitivity; for Sensitivity � 14dB
1:39þ 0:029 � Sensitivity� 0:090 � ðSensitivity� 14Þ; for Sensitivity 15--32dB:
1:53þ 0:029 � Sensitivity� 0:090 � Sensitivity� 14ð Þ þ 0:104 � ðSensitivity� 32Þ; for Sensitivity. 32dB

8<
:

Table 1. Characteristics of the Study Population to
Estimate Visual Field Variability

Variable Value

N patients/eyes 3095/4747
Age at baseline, y, median (IQR) 66.4 (57.3–73.5)
Follow-up, y, median (IQR) 9.5 (6.5–12.8)
Total number of VFs 50,589
N of VF per eye, median (IQR) 9 (7–13)
Baseline MD, dB, median (IQR) �3.2 (�6.6 to �1.7)
MD rate of change, dB/year,

median (IQR)
�0.14 (�0.40 to 0.01)

Figure 1. Frequency distribution of the observed sensitivity
values.
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As illustrated by the b coefficients of the above
equation, the three regression pieces of the spline
model have different behaviors. Starting from the 0
dB, the first segment (0–14 dB) had a positive trend
with significant variability increase (P , 0.0001), the
intermediate segment (14–32 dB) had a negative slope
with a significant variability reduction (P , 0.0001),
while the last segment (32–35 dB) had a positive slope
with a variability increase (P , 0.0001).

The variability curve as a function of the threshold
sensitivity showed a similar shape when residuals were
estimated with logistic and linear models, as shown in
Supplementary Figure S2. With these two models, the
variability reached a plateau below 10 dB instead of
decreasing as with the exponential model. As illus-
trated in Supplementary Figure S3, the first piece of
the spline (0–14 dB) was almost flat with any
significant trend for linear model (P ¼ 0.40), while it
slightly increased with the logistic model (P¼ 0.004).

Figure 4 shows the values of SD according to the
value of threshold sensitivity for each test location.
Variability increased with the reduction of the
threshold sensitivity, while it decreased with eccen-
tricity. Similar results were obtained when locations
were grouped on the basis of their distance from
fixation (Fig. 5), or when the analysis was conducted
on total deviation values (data not shown). Overall,
the variability was larger in the central 108 compared
with more than 208 and 108 to 208 areas (P , 0.001);
conversely, no difference in variability was found
outside the central 108 (P ¼ 0.61).

Model Comparisons

The baseline characteristics of patients for this
portion of the study are given in Table 2. A total of
261 eyes of 176 patients with POAG were included in

the study, with a median follow-up of 15 years and 20
VFs. This cohort of patients did not significantly
differ from the previous one with respect to baseline
mean deviation (MD; P¼ 0.17) or MD rate of change
(P ¼ 0.29).

For the model fit (Fig. 6), the median (interquartile
range [IQR]) RMSE was 2.03 (1.45–3.68) for the
unweighted PLR, 2.03 (1.45–3.72) for the weighted
PLR, and 2.03 (1.45–3.74) for the PER. The
differences among the methods were negligible.

Figure 7 shows the RMSEs of the three models to
predict VFs numbers 10, 15, and 20. Absolute RMSE
values for each method, as well as RMSE differences
among methods, became smaller with an increased
number of VFs used to make the prediction, and a
similar trend was seen for the prediction of the VFs
numbers 10, 15, and 20.

To predict VF n810 (Fig. 7A), PER had the
smallest RMSE (P , 0.0001) for VF1–5, VF1–6, and
VF1–7, while unweighted PLR had the smallest RMSE
(P , 0.0001) for VF1–8, and VF1–9. Weighted linear

Figure 3. (A) LOESS curve fitting the SD of the residuals, which
represents the amount of variability, as a function of the observed
threshold sensitivity values. (B) Straight (blue line) and spline (red
line) curves fitting the logarithm of the SD of the residuals as
function of the observed threshold sensitivity values. Spline curve
has got two knots at 32 and 14 dB.

Figure 2. Boxplot of the residual distribution as a function of the
values of observed sensitivity.
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regression had a higher RMSE (P , 0.0001) than
unweighted PLR for every comparison.

To predict VF n815 (Fig. 7B), PER had the
smallest RMSE (P , 0.0001) for VF1–5, VF1–7,
VF1–9, and VF1–11, while unweighted PLR had the
smallest RMSE (P , 0.0001) for VF1–13. Once again,
weighted linear regression had a lower prediction
ability (P , 0.0001) than unweighted PLR at every
comparison, except for VF1-11 (P¼ 0.99).

To predict VF n820 (Fig. 7C), PER had the

smallest RMSE (P , 0.0001) for VF1–5, VF1–8,
VF1–11, and VF1–14, while unweighted PLR had the
smallest RMSE (P , 0.0001 versus PER and P ¼
0.007 versus weighted PLR) for VF1–17. Weighted
linear regression had a lower prediction ability (P ,

0.05) than unweighted PLR for every comparison,
except compared with unweighted PLR for VF1–11 (P
¼ 0.35).

Results remained unchanged both for data fit and
prediction also when weights were estimated with

Figure 4. Pointwise SD of the residuals grouped according to the observed sensitivity values. Increased pink intensity indicates higher
variability.

Figure 5. SD of the residuals as a function of the observed threshold sensitivity stratified for degrees from fixation.
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OLSR and logistic regression (Supplementary Figs.
S4 and S5).

Discussion

In this study, we measured VF variability as a
function of threshold sensitivity and test location. We
confirmed that variability is not equally spread across
the perimetric dynamic range because it varied with
threshold sensitivity and it decreases with eccentricity.
Specifically, the variability was low in the high-
sensitivity range, steadily increased with the worsen-
ing of glaucomatous damage with a peak at approx-
imately 10 dB, and then decreased. Based on the
values of variability obtained, we modeled weighted
PLR on a cohort of POAG patients and tested it
against unweighted PLR and PER. Although statis-
tically significant, differences among the methods for
data fit were too small to be clinically relevant.
Weighted linear regression was not better than
unweighted PLR with regard to both model fit and
prediction ability. PER was the best model to predict
future sensitivity values over the medium and long
term, while unweighted PLR was the best model to
predict the immediate one or two following VFs. The
models’ prediction abilities tended to converge with
the increase in the number of VFs used to make a
prediction.

The early identification of VF progression is one of
the most challenging tasks for the glaucoma specialist,
and has been the primary outcome of major glaucoma
trials.14–17 Beyond the dichotomy between progres-
sion and nonprogression, the quantification of the
rate of progression has added importance.18 Even
healthy patients experience a physiologic decay due to

senescence or cataract, but at slow rates.13,19 Also,
glaucoma patients may progress at different speeds,
and it is important to distinguish patients with slow
rates of decay from those with high rates of decay,
because the latter may require more intense follow-up
and aggressive therapeutic intervention.18 The identi-
fication and quantification of VF progression, how-
ever, is hampered by the intrinsic variability of the
perimetric examination. Several factors have been
associated with VF fluctuation, including patient and
technician experience, patient motivation, fatigue,
uncorrected refractive error, ethnicity, cognitive level,
percentage of false-positive and false-negative test
responses, time of the day, and season.10,20–24 In
addition, the stage of glaucoma is linked to variabil-
ity.25

Variability is an inherent property of VF exami-
nation, because the physiologic response to the
luminous stimulus relies on a probabilistic concept.
The relationship between the probability to see the
stimulus and the light brightness is described by the
frequency-of-seeing (FOS) curve, and the value of
threshold sensitivity indicates the intensity of a
stimulus to be able to elicit a response with a
probability of 50%.26 Previous studies have investi-
gated the relationship between threshold sensitivity
and variability with various methods. Old studies
defined the variability as the fluctuation of the
variance of the threshold sensitivity values in glauco-
ma patients clinically judged as stable.27–29 Zulauf
and colleagues27 evaluated 29 stable glaucoma pa-
tients, and found a mean fluctuation of 4.25 dB2 over
the entire VF with a significant association with
threshold sensitivity. Werner et al.28 measured vari-
ability in 67 glaucoma patients, and confirmed a

Table 2. Main Clinical Data of the Population Used to
Compare the Different Models

Variable

N patients/eyes 176/261
Age at baseline, y, median

(IQR)
63.6 (55.3–70.4)

Follow-up, y, median (IQR) 15.3 (12.2–17.6)
Number of VFs, median (IQR) 20 (15–25)
Baseline MD, dB, median

(IQR)
�3.8 (�8.6 to �1.8)

MD rate of change, dB/y,
median (IQR)

�0.16 (�0.38 to �0.04)

IOP, intraocular pressure; VFI, visual field index
Figure 6. Comparison of model fit for PER, unweighted PLR, and
weighted PLR.
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Figure 7. Comparison of ability to predict VF n810 (A), n815 (B), and n820 (C) for PER, unweighted PLR, and weighted PLR. **Significant at
P , 0.01; ****Significant at P , 0.0001; NS: not significant.
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correlation between variability and threshold sensi-
tivity. Boeglin et al.29 quantified the relationship
between variability and sensitivity, and found that
variability was lowest at 32 dB, then peaked at 10 dB,
and decreased below 10 dB. This methodology,
however, has limitations because it is impossible to
know if a series is truly stable and changes considered
fluctuation may instead be actual VF deterioration.

The FOS curve is another way to estimate
variability, and is generated with constant stimuli to
test a single location with many stimuli whose
intensity brackets the estimated threshold sensitivi-
ty.3,30,31 In a large cohort of patients, Chauhan et al.30

found a correlation between the slope of FOS curve,
which is a measure of variability, and threshold
sensitivity in healthy subjects, glaucoma suspects, and
glaucoma patients. Henson et al.3 studied the FOS
curves in a heterogeneous cohort of patients, which
included 23 healthy subjects and 25 POAG subjects,
and confirmed that variability is inversely related to
the threshold sensitivity. These findings were further
confirmed by Spry and colleagues.31 Nevertheless,
FOS studies have several limitations because they are
conducted on selected ‘‘research’’ subjects whose
variability could be lower than the general glaucoma
population, are costly, time-consuming, and suffer
from a small sample size.

Several studies have measured VF variability with
a test–retest approach.4,32–34 With this method, a
group of patients is repeatedly tested in a short period
of time with the assumption that glaucoma does not
progress over a short time period and all the
differences in sensitivity values represent variability.4

Artes and colleagues4 confirmed that variability
increases with the severity of glaucoma damage until
10 dB and then decreases. Most of the limitations of
FOS studies are also present in test–retest studies. In
addition, the latter approach dismisses the possibility
of a learning effect, which can be prolonged in some
patients.35

Recently, Russel et al.2 proposed a method based
on linear regression of retrospective large-scale
longitudinal data from a clinical practice. This
approach has several advantages, including the
possibility to study very large cohorts of patients
tested in a clinical setting, which are highly represen-
tative of the general glaucoma population. In our
study, we applied a similar method to that described
by Russell et al.,2 and we obtained similar results both
in terms of shape and absolute values of the
variability curve.

Previous studies summarized the relationship

between threshold sensitivity and standard deviation
of the variability. Henson et al.3 reported that the
variability increased with the reduction in threshold
sensitivity as follows: ln(SD) ¼�0.081 � Sensitivity
(dB)þ3.27, and this formula has been widely used to
generate noise in the field of computer-simulated
longitudinal VF data.36–38 Gardiner5 estimated the
variability on a large cohort of patients, and found
the following similar relationship: ln(SD) ¼�0.070 �
Sensitivity (dB) þ 2.70. Neither study, however,
quantified the variability for low-sensitivity values,
and assumed a similar trend for locations less than
10 and less than 15 dB, in the former and latter
study, respectively. We found an analogous relation-
ship because the variability increased with the
reduction of threshold sensitivity but with a less
steep slope, as expressed by the formula, ln(SD) ¼
�0.027 � Sensitivity (dB) þ 1.79. Previous studies
assumed a constant increase of variability below 10
dB, but we demonstrated that it restart decreasing
below 10 dB. When we ignored data below 10 dB,
variability increased according to the following
formula : ln SDð Þ ¼ �0:048 � Sensitivity dBð Þ þ 2:34.
The relationship between variability and threshold
sensitivity is neither linear nor monotonic, and is
therefore better captured by a spline function. We
fitted a spline with two knots and three piecewise of
regression, where each segment modeled the different
behavior of variability over the dynamic range, with
a variability increase between 0 and 14 dB (first
segment), a reduction in variability between 15 and
32 dB (second segment), and an increase of
variability between 33 and 35 dB (third segment).
This polynomial function better describes the non-
monotonic relationship between variability and
sensitivity.

Computer simulation may be used to compare
different methods to detect perimetric progression,
and consists of the simulation of longitudinal VF
series with predetermined rates and patterns of
progression.39 The previous formula by Henson et
al.3 has been widely employed to add variability to the
simulated sequences, but it is limited by a small
sample size, with no measured values below 10 dB. In
addition to providing a new descriptive mathematic
relationship, we also report the exact amount of
variability for each threshold sensitivity value (Sup-
plementary Table S1), and these data can be used to
simulate VF sequences more realistically. Because
residuals do not follow a normal distribution in the
low sensitivity range due to floor effect, the compu-
tation of the noise in a Gaussian form, which is based
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on the SD values, may be inaccurate. In this regard,
recent studies40,41 have used the actual distribution of
the residuals, empirically calculated on large cohort of
patients with the same methodology employed in the
present study. These methods, however, are difficult
to replicate because raw data has not been shared in
detail. In this article (see datasets in Supplementary
Files S1–S3), we share with the readers the residuals,
fitted, and observed values estimated with the three
different models (exponential, linear, and logistic) for
every eye, location, and time point. These values may
be used to generate a decibel-by-decibel distribution
of the residuals to replicate the aforementioned
methods.

It is commonly believed that variability increases
with eccentricity. Very few studies, however, quanti-
fied the effect of test location on the relationship
between variability and sensitivity. Almost 35 years
ago, Flammer et al.42 examined patients with
glaucoma, glaucoma suspects, and healthy subjects,
and found that fluctuation was not related to the test
location in the glaucoma suspects and healthy
subjects, but was slightly increased in glaucoma
patients in the upper hemifield, which is the most
frequently affected area. Werner et al.28 evaluated 67
glaucoma patients, and found that fluctuation in-
creased with eccentricity, but the effect of test location
disappeared with the correction for differences in
sensitivity. These results were replicated by Boeglin
and colleagues29 in 93 clinically stable eyes of 67
glaucoma patients. In a group of healthy subjects,
Heijl et al.12 found contradictory results with in-
creased fluctuation in the peripheral locations. In a
subsequent study, Heijl and colleagues33 evaluated a
small cohort of glaucoma patients with a test–retest
strategy, and found that an increase of variability
with eccentricity is seen in patients with mild-to-
moderate damage, but the difference was no longer
detected for locations with worse glaucomatous
damage, defined as total deviation values worse than
�10 dB. In a recent study, Gardiner5 tested the impact
of eccentricity on variability through linear regression
of large-scale longitudinal data and found an
increased variability at the peripheral test locations
only for sensitivity values above 28 dB. Surprisingly,
we observed an increase of fluctuation related to
eccentricity, as the variability was higher within 108

from fixation compared with more than 208. Al-
though these results are similar with those by
Gardiner,5 the explanation of these results is not
straightforward. Differences in study design, sample
size, test strategy, and degrees of VF test can justify

discrepancies in the study by Heijl et al.12 According
to the hill of vision, central locations have normally
higher threshold sensitivity values compared with
peripheral locations, and the same sensitivity value
may represent a more significant level of damage in
the central area because sensitivity at central locations
is normally higher than at peripheral locations. The
results did not change when we repeated the analysis
on the total deviation map, which accounts for
deviation from normal age-matched values for each
test location.

The first part of our study corroborated the
familiar concept that VF data are heteroscedastic,
because the amount of noise is not equally spread
across the entire dynamic range of the instrument,
but varies as a function of threshold sensitivity.
However, data heteroscedasticity contradicts one of
the main assumptions of the linear regression
model, which is among the most popular methods
to detect and measure perimetric progression.26

Violation of the homoscedasticity assumption did
not bias the results of standard OLSR, but this
model should not be considered the best linear
unbiased estimator.6

Different approaches have been proposed to deal
with data heteroscedasticity, and three of the most
popular are transformation of the outcome variable,
robust regression, and weighted regression.6 The first
method relies on the application of some function to
the dependent variable to reduce or minimize the
unequal variance. Log transformation is a popular
approach that does not preserve the linear relation-
ship between the variables, but leads to an exponen-
tial relationship. Exponential regression works by
compressing larger values more than smaller one, and,
therefore, it can compensate for heteroscedasticity
when the variance increases with the mean. In the
specific setting of VF modeling, however, exponential
regression is not able to account for heteroscedasticity
because the variability decreases as the threshold
sensitivity value increases. Other statistical methods
that preserve the linear relationship are available (e.g.,
Box-Cox or signed modulus power transformations),
but they have not been applied to VF modeling.6

Robust regression refers to a broad group of models
resistant to the presence of multiple outliers, some of
which can also deal with heteroscedasticity.6,43

Comparative studies did not find any advantage of
robust regressions over classical OLSR in terms of
both model fit and prediction, despite the theoretic
advantages of the former models.44,45 Weighted linear
regression is a third method to deal with hetero-
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scedastic data, and unlike the OLSR, treats each
observation differently as it assigns more or less
weight to those measures with smaller or higher
variance, respectively.46 Weighted linear regression
requires the precise and correct estimation of the
weights in a large sample, which has been used by a
relatively small number of studies.46 Our calculated
weights were estimated with a very large glaucoma-
tous population.

Despite these considerations, weighted PLR did
not add benefit to simple PLR or PER in terms of
both model fit and prediction. The evidence that
OLSR performs better than both weighted and robust
linear regression44,45 may suggest that data hetero-
scedasticity is not an important primary issue in VF
modeling. It may also suggest that ignoring data
heteroscedasticity does not significantly affect the
goodness-of-fit and the prediction ability of most of
the currently used methods to identify and measure
perimetric progression, which are based on simple
linear regression.

In accordance with Chen et al.,7 all methods
performed similarly for the data fit, and differences
were statistically but not clinically significant. In
contrast, prediction ability was considerably different
among the methods, and this provides further
evidence for the concept that goodness of fit and
prediction ability do not coincide.7,47 PER was the
best model to predict future sensitivity values in the
medium and long term, and models tended to
converge with the increase of VF number to make a
prediction. We have previously demonstrated that VF
loss across the entire perimetric range is best described
by a nonlinear (i.e., logistic) rather than a linear
function.48

This study carries all the limitations related to its
retrospective nature. In addition, some factors poten-
tially affecting fluctuation were ignored, such as
increased variability at the edge of a scotoma and
correlation between adjacent locations.49,50

In conclusion, VF variability is heteroscedastic
and increases with the severity of glaucoma damage,
but decreases with eccentricity. Weighted PLR,
which accounts for heteroscedasticity, did not
outperform other models for fitting long-term data.
PER was the best model to predict future sensitivity
values in the medium and long term. The better
prediction ability of PER may be related to the
nonlinear nature of long-term glaucomatous peri-
metric decay and the floor effect of perimetric
measurements.
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