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ABSTRACT OF THE DISSERTATION

Projected-Search Methods for Constrained Optimization
by

Minxin Zhang
Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip E. Gill, Chair

Projected-search methods for bound-constrained optimization are based on searching along a con-
tinuous path obtained by projecting a search direction onto the feasible region. These methods
have the potential to change the direction of the search path multiple times along the bound-
ary of the feasible region at the cost of computing a single direction. However, as the objective
function is only piecewise differentiable along the path, conventional projected-search methods are
limited at using a simple backtracking procedure to obtain a step that satisfies an “Armijo-like”
sufficient decrease condition. To extend the benefits of Wolfe line search for unconstrained opti-
mization to projected-search methods, a new quasi-Wolfe step is introduced. Two general classes of
projected-search methods that use the new quasi-Wolfe search are then formulated and analyzed.
These methods may be broadly categorized as either active-set methods or interior methods. Addi-
tionally, a new quasi-Newton projected-search method UBOPT is proposed for unconstrained and
bound-constrained optimization. The method computes quasi-Newton directions in a sequence of
subspaces, and employs the framework of the class of projected-search active-set methods.
Furthermore, a new interior method is proposed for general nonlinearly constrained op-
timization, combining a shifted primal-dual interior method with a projected-search method for
bound-constrained optimization. The method involves the computation of an approximate Newton

direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and

xii



dual variables. The shifts allow the method to be safely “warm started” from a good approximate
solution and eliminate the ill-conditioning of the associated linear equations that may occur when
the variables are close to zero. The approximate Newton direction is used in conjunction with
a new projected-search algorithm that employs a flexible non-monotone quasi-Armijo line search
for the minimization of each penalty-barrier function. Numerical results demonstrate that the new
method requires significantly fewer iterations than a conventional interior method, thereby reducing

the number of times that the search direction need be computed.

xiii



Chapter 1

Introduction

1.1 Overview

Generally speaking, optimization is the selection of the best element from the set of all
available alternatives, with the goal of maximizing efficiency, effectiveness, or other desired out-
comes. The study of optimization relies on the formulation of a mathematical model of a given
problem, for which optimizing it means minimizing or maximizing a function, termed the objective
function. As the maximization of a function is equivalent to the minimization of the negative values
of the function, only the minimization needs to be considered here. Unconstrained optimization
aims to minimize an objective function f(z) without any constraints on values of . In contrast,
constrained optimization involves a set of constraints that define the acceptable values of the vari-
ables. This dissertation focuses on projected-search methods for constrained optimization, with the
objective and constraint functions assumed to be twice-continuously differentiable.

One special type of constrained optimization that will be considered is bound-constrained

optimization. A bound-constrained problem may be written in the form

mini]%lize f(z) subject to = € £2, (BC)
TER™

where f : R™ — R is the twice-continuously differentiable objective function and (2 = {a? e R
! < x< u} for vectors of lower and upper bounds such that ¢ < u (with all inequalities defined
componentwise). At a given a point x, the active set A(z) is the set of indices of the variables that

lie on their bounds, i.e., A(z) = {z cx; =40 or x; = Uy }



A general nonlinearly constrained optimization problem may be written in the form

| | | ' <€X> < x > <ux>
minimize f(z) subject to < < , (NP)
-T 05 c(z) u®

where f : R™ — R is the objective function, ¢ : R™ +— R™ represents the vector of constraint
functions, and (¢*,¢%) and (u*,u®) are constant vectors of lower and upper bounds. In this format,
a fixed variable or an equality constraint has the same value for its upper and lower bounds. A
variable or constraint with no upper or lower bound is indicated by a bound of +o00. By introducing

m new variables s, called slack variables, the problem (NP) may be reformulated as

L . e z u*
minimize f(z) subject to c(x) —s =0, < < . (NPs)

In this problem, x and s are treated as independent variables. As the bound constraints £° < s < u*
may be reformulated as s — ¢ > 0 and u® — s > 0, it is usually sufficient to consider a simplified

problem of the form

L : e S
Ininimize f(z) subject to c(x) —s=0, s>0, (NIPs)

which is an equivalent form of the inequality-constrained problem

minimize f(z) subject to c(x) > 0. (NIP)

TER™

A method that is designed to solve (NIPs) may be easily applied to solve the more general problem
(NPs) by treating the bound constraints on z in the same way as treating the bound constraints
on slack variables s.

All optimization methods discussed in this work are iterative in the following sense. For
an optimization problem, if z* is the exact solution, a sequence {xk } is generated by an iterative
optimization method such that each successive iterate is a new, and ideally, improved estimate of

*

x*. Although in theory the sequence is infinite, in practice only a finite number of iterates are
required to obtain a sufficiently accurate approximation of z*.

For unconstrained optimization, a line-search method generates a sequence of iterates of
the form z;1 = x + o pr, where pi is an n-dimensional vector that is called a search direction for
f at xy, and «y is a positive scalar that is called a step length. Often the step length oy, is chosen

to give a decrease in f that is at least as good as a fixed fraction 7, (0 < 1, < %) of the decrease



in the local affine model f(xy) + Vf(x1)"(z — z). If py is a descent direction for f at z; and ay,

is a positive scalar, then the decrease condition may be written as

fxr + arpr) < flog) + anaVi(zg) Yox, (1.1)

which is known as the Armijo condition (see Section 2.1.2). Most Armijo line searches are imple-
mented as a simple backtracking procedure in which an initial step is reduced by a constant factor
until the Armijo condition (1.1) is satisfied. Alternatively, backtracking may be used in conjunction
with a simple quadratic interpolation scheme using f(x), Vf(zx)Tpr and f(zx +apy) at each trial
a (see Dennis and Schnabel [21]).

Many practical methods use an oy, that satisfies an additional condition on the directional
derivative Vf(x) + axpr) pr. In particular, the strong Wolfe conditions require that oy, satisfies
both the Armijo condition (1.1) and

IV (2 + cwpr) "okl < 0w VF(zx) Toxl, (1.2)

where 7, is a preassigned scalar such that 7, € (n4,1) (see Section 2.1.2). The strong Wolfe
conditions allow 7, to be chosen to vary the accuracy of the step. If n, is fixed at a value close
to zero (e.g., 107%), then a value of 7, close to 1, gives a “tighter” or more accurate step with
respect to closeness to a critical point of Vf(zy + apy)Tpr. A value of 1y, close to one results in a
“looser” or more approximate step. A Wolfe line search is able to exploit sophisticated safeguarded
polynomial interpolation techniques to provide methods that are more reliable and efficient than
those based on backtracking (see, e.g., Hager [60] and Moré¢ and Thuente [71]).

Projected-search methods for bound-constrained optimization can be interpreted as an
extension of line-search methods. A projected-search method for problem (BC) generates a sequence
of feasible iterates { z, };io such that x5, = proj o(zx + axpr), where py, is a descent direction
for f at xp, ay is a scalar step length, and proj,(z) is the projection of x onto the feasible
region, The new iterate may be written as xp+1 = zx(ay), where z(a) denotes the vector x(a) =
proj o(zr + apr). A potential benefit of a projected-search method is that many changes to the
active set can be made at the cost of computing a single search direction. The projected-search
methods of Goldstein [57], Levitin and Polyak [67], and Bertsekas [4] are based on using the gradient-
descent direction p,, = —Vf(x). Bertsekas [6] proposes a method based on computing py using a
Newton-like method. Calamai and Moré [13] consider methods that identify the optimal active set

using a projected-search method and then switch to Newton’s method. Projected-search methods



based on computing py using a quasi-Newton method are proposed by Ni and Yuan [73], Kim, Sra
and Dhillon [64], Ferry [28], and Ferry, Gill, Wong and Zhang [30].

In a projected-search method, the function zy(«) defines a piecewise-linear continuous
path, and the function f(zj()) is not necessarily differentiable along xy(cr). This implies that
it is not possible to use a line search based on the conventional Wolfe conditions. Thus, existing
projected-search methods are restricted to using a search based on satisfying an Armijo-like con-
dition along the path xy(a). For the case where py = —Vf(xx), a commonly used Armijo-like

condition is

Fan(an)) < flan) +naVF (@0) T (2x(a) — 2p), (1.3)

proposed by Bertsekas [4] (see also, Calamai and Moré [13]). However, for a general py, this may
not be a sufficient-decrease condition for a backtracking search as there is no guarantee that the
second term on the right-hand side of (1.3) is negative if the path xp(a) changes direction. An

Armijo-like condition that is appropriate for a general descent direction py is

f(ar(ar)) < fzr) + arna VS (z) Tpr (1.4)

(see, e.g., Ni and Yuan [73] and Kim, Sra and Dhillon [64]). Throughout this work, (1.4) is referred
to as the quasi-Armijo condition. If v and o denote fixed parameters such that v > 0 and o € (0, 1),
then a quasi-Armijo step has the form aj, = vo'*, where t;, is the smallest nonnegative integer such
that the quasi-Armijo condition (1.4) is satisfied. Other sufficient decrease conditions have been
proposed. For example, Bertsekas [6] considers an Armijo-like condition based on a combination of
(1.3) and (1.4), with the term (1.3) defined with components of a scaled gradient-descent direction.

For equality-constrained problems of the form

mini%lize f(z) subject to c(x) =0, (NEP)
TeR™

the classical penalty methods solve the problem by minimizing a sequence of parameterized penalty

functions defined as
1
Palaip”) £ fla) + glela)]

where the quadratic penalty term 2,%PHC(JU)H? is added to the objective function to penalize the
violation of the equality constraints, with the penalty parameter u” > 0. The iterates are pushed
towards the feasible region by consecutively reducing the penalty parameter u”. However, as p”

approaches zero, the Newton equations associated with minimizing the penalty function become



increasingly ill-conditioned. To overcome this ill-conditioning, the augmented Lagrangian method

is based on applying the quadratic penalty function to the "shifted" problem
miniglize f(z) subject to c(z) — u"y” =0, (1.5)
me n

where y” represents an estimate of the Lagrangian multiplier vector y. Minimizing the quadratic
penalty function for the shifted problem is equivalent to minimizing the augmented Lagrangian

function

La(z;y® p1") = f(z) — e(2)Ty® + %ip||c<x>||2,

The augmented Lagrangian method enables the iterates to converge to a solution of (NEP) while
avoiding the need for u” to decrease to zero. The method was proposed independently by Hestenes [61]
and Powell [79].

To solve a general nonlinearly constrained optimization problem that involves inequality
constraints, a popular class of methods is the interior methods. Unlike active-set methods, which
seek solutions by moving along the boundary of the feasible region, interior methods work by
iteratively moving through the interior of the feasible region. An interior method for the inequality-
constrained problem (NIP) is motivated by transforming the original constrained problem into the
unconstrained minimization of a sequence of parameterized barrier functions. These functions are
obtained by combining the objective function with a number of barrier terms that prevent the
iterates from violating the inequality constraints.

For a classical barrier method that solves (NIP), reducing the barrier parameter p? (i.e.,
the weight of the barrier terms) to zero allows the barrier minimizers to approach a solution of
(NIP) from the interior of the feasible region. However, as the barrier parameter and the values of
the constraints that are active at the solution approach zero, the linear equations associated with
solving each barrier subproblem become increasingly ill-conditioned. Shifted barrier functions were
introduced to avoid this ill-conditioning by implicitly shifting the constraint boundary so that the
barrier minimizers approach a solution without the need for the barrier parameter to go to zero.
This idea was proposed for barrier methods for linear programming by Gill, Murray, Saunders
and Wright [52] (see also Freund [41]). Shifted barrier functions are defined in terms of Lagrange
multiplier estimates and are analogous to augmented Lagrangian methods for equality-constrained
optimization. The advantages of an augmented Lagrangian function over the quadratic penalty
function for equality-constrained optimization motivated the class of modified barrier methods,
which were proposed independently for nonlinear optimization by Polyak [77] (see Section 2.2.2).

Under certain conditions, the minimizers of the parameterized barrier functions create a



continuous path that passes through the solution of (NIP) (see e.g. Theorem 2.2.6). Thus, many
interior methods are characterized as path-following methods due to their dependence on properties
of such a path. Within the framework of a path-following method, the barrier function may be
regarded as a merit function that measures the distance to the path and is used to force convergence
of the method. By treating the (primal) variables z and the dual variables y (representing the
Lagrangian multiplier) as independent, the primal-dual interior methods are particularly effective
in following this path defined by the barrier minimizers (see Section 2.2.3).

Optimization problems with a mixture of equality and inequality constraints may be solved
by combining a penalty or augmented Lagrangian method with a barrier method (see Section 2.2.4).
In [46], Gill, Kungurtsev and Robinson propose an algorithm for (NIPs) based on using a shifted
primal-dual penalty-barrier function as a merit function for a primal-dual path-following method.
This function involves a primal-dual shifted penalty term for the equality constraints c¢(z) — s =
0 (see, e.g. Gill and Robinson [53]) and an analogous primal-dual shifted barrier term for the
inequalities s > 0. The method will be reviewed in detail in Section 4.2.

Each penalty-barrier function includes logarithmic terms that generate a singularity at the
boundary of the feasible region, implying that the variables are subject to implicit bound constraints
during minimization. Conventional interior methods typically minimize the barrier function using
unconstrained approaches such as a line-search method, with an artificial upper bound imposed on
the step length to prevent the variables from becoming infeasible. However, it is also reasonable to

regard it as a bound-constrained problem and solve it utilizing a projected-search method.

1.2 Contributions of This Dissertation

In Chapter 3, two general classes of projected-search methods that employ a new quasi-
Wolfe line search are formulated for bound-constrained optimization. These methods may be
broadly categorized as either active-set methods or interior methods. The new quasi-Wolfe line
search, which was initially proposed by Ferry [28], is specifically designed for use with a piecewise
linear search path in order to extend the benefits of a conventional Wolfe line search to projected-
search methods. Convergence results are established under assumptions that are typical in the
analysis of projected-search methods for the class of projected-search active-set methods and the
class of projected-search interior methods respectively. In particular, for the active-set methods, it
is shown that if the sequence of iterates converges to a nondegenerate stationary point, then the
optimal active set can be identified within a finite number of iterations. It follows that once the op-

timal active set has been identified, any method in this class will have the same convergence rate as



its unconstrained counterpart. Additionally, a new quasi-Newton projected-search method UBOPT
is proposed in Section 3.4 for solving unconstrained and bound-constrained optimization problems,
which is an extension of the limited-memory reduced-Hessian method L-RHR of Leonard [66] and
Gill and Leonard [47]. The method UBOPT computes quasi-Newton directions in a sequence of
subspaces, and employs the framework of the class of projected-search active-set methods. Con-
vergence properties are established for UBOPT. Numerical results shown in Section 5.1 indicate
that using a quasi-Wolfe search in UBOPT resulted in a substantially better performance with re-
spect to function calls and the number of skipped quasi-Newton updates than using a quasi-Armijo
search. Numerical results in Section 5.2 indicate that a projected-search interior method for bound-
constrained optimization with a quasi-Wolfe line search can provide substantial improvements in
robustness and performance compared to a conventional interior method with a Wolfe line search.

Chapter 4 proposes a new projected-search interior method for solving general nonlinear
optimization problems of the form (NIPs). As an extension of the shifted primal-dual penalty-
barrier method of Gill, Kungurtsev and Robinson [46], a new primal-dual penalty-barrier function
is formulated to include shifts on both the dual variables and the slacks. This allows the method to
be safely "warm started" from a good approximate solution and eliminates the ill-conditioning of
the associated linear equations that may occur when the variables are close to zero. The penalty-
barrier function then serves as a merit function for a primal-dual path-following method. An
approximated Newton direction is used in conjunction with a novel projected-search algorithm that
employs a non-monotone flexible quasi- Armijo line search for the minimization of the merit function.
Unlike conventional interior methods, projected-search interior methods project the underlying
search direction onto a subset of the feasible region defined by perturbing the bounds. Therefore, the
direction of the search path may change multiple times along the boundary of the perturbed feasible
region at the cost of computing a single direction. The convergence of the projected-search algorithm
for minimizing the merit function with fixed parameters is established under certain assumptions.
Global convergence results of the new projected-search interior method are also established following
a similar procedure as the convergence analysis in Gill, Kungurtsev and Robinson [46]. Numerical
results presented in Section 5.3 indicate that the proposed method requires significantly fewer
iterations than a conventional interior method, thereby reducing the number of times that a search

direction must be computed.



1.3 Notation

Given vectors = and y, the vector consisting of x augmented by y is denoted by (z,y).
The subscript ¢ is appended to vectors to denote the ith component of that vector, whereas the
subscript k is appended to a vector to denote its value during the kth iteration of an algorithm, e.g.,
xy, represents the value for 2 during the kth iteration, whereas [y |; denotes the ith component of
the vector x;. Given vectors a and b with the same dimension, vectors with ith component a;b;
and a;/b; are denoted by a - b and a -/ b respectively. Given a scalar «, « -/ b is a vector whose
ith component is «/b;. Similarly, min(a,b) is a vector with components min(a;,b;). The vectors e
and e; denote, respectively, the column vector of ones and the jth column of the identity matrix
I. The dimensions of e, e; and I are defined by the context. The vector two-norm or its induced
matrix norm are denoted by || - ||. The inertia of a real symmetric matrix A, denoted by In(A),
is the integer triple (a4, a—,ag) giving the number of positive, negative and zero eigenvalues of A.
The n-vector Vf(x) denotes gradient of f(z), and the m x n matrix J(x) denotes the constraint
Jacobian, which has ith row Ve;(z)T. Given a Lagrangian function L(x,y) = f(z) — c¢(z)Ty with
y a m-vector of dual variables, the Hessian of the Lagrangian with respect to z is denoted by
H(z,y) = V3f(z) = >, y;V?ci(x). Let {a;};>0 be a sequence of scalars, vectors, or matrices
and let {f3;};>0 be a sequence of positive scalars. If there exists a positive constant v such that
laj|| < ~vB;, we write a; = O(B;). If there exists a sequence {7;} — 0 such that [a;| < 7;8;,
we say that a; = o(8;). If there exists a positive constant v such that |a;| > v8;, we write
o = $2(B;). If there exist positive constants 71 and 2 such that y15; < |la;|| < 728, we write
a; = O(B;). Given a diagonal matrix D = diag(ds, da, ..., dy), the Moore-Penrose pseudoinverse
of D, denoted by D', is diagonal with D; =0 for d; =0 and DL =1/d; for d; # 0.



Chapter 2

Background

2.1 Line-Search Methods

2.1.1 Fundamentals of unconstrained optimization

Unconstrained optimization focuses on the minimization of a scaler-valued function f(x)
without constraints on the values of . An unconstrained optimization problem may be written in
the form

minimize f(z),

where f : R"™ — R is the objective function and D C R"™ is the domain of f. It is assumed here that
f is twice-continuously differentiable, and D is an open convex set, e.g., D = R".

A formal definition of a solution of an unconstrained optimization problem is given below.

Definition 2.1.1 (Global unconstrained minimizer). Given f : D C R™ — R, the point a* € D
is a global unconstrained minimizer of f on D if f(z*) < f(z) for all x € D. If x* is a global

unconstrained minimizer, then f(x*) is called the global unconstrained minimum of f.

Unfortunately, finding a global unconstrained minimizer is computationally intractable
except in special cases. Practical methods can be formulated if the conditions on a minimizer are
slightly relaxed by focusing on the local behavior of f. Let x* denote an interior point in D and
define B(z*,d) as the set of points in D that lie in an open ball of radius ¢ centered at z*, i.e.,
B(z*,8)={zeD: |z —z*| <}



Definition 2.1.2 (Local unconstrained minimizer). Given f: D C R™ — R, z* is a local uncon-
strained minimizer of f if there exists an open ball B(x*,0) such that B(x*,0) C D and f(z*) < f(z)
for all x € B(z*,9).

Definition 2.1.3 (Strict unconstrained minimizer; weak minimizer). Given f: D C R™ — R, an
unconstrained minimizer x* of f is a strict unconstrained minimizer if there exists a neighborhood
B(z* §) C D such that

f@™) < f(z) forall x € B(z"6), x # z*.

An unconstrained minimizer x* is a weak unconstrained minimizer if it is not a strict unconstrained

minimaizer.

Definition 2.1.4 (Isolated unconstrained minimizer). Given f : D C R"™ — R, an unconstrained
minimizer x* is an isolated unconstrained minimizer of f if there exists an open ball B(x*,d) such

that =* is the only unconstrained minimizer in B(x*,9).

Theorem 2.1.1 (First-order necessary condition for an unconstrained minimizer). Given f : R™ —
R, assume that x* is an unconstrained minimizer of f, and that f is differentiable at x*. Then

Vf(z*) = 0.

Proof. By assumption, x* is an unconstrained minimizer, which implies that
f(z® +tp) > f(z¥) for all p € R™ and, given p, all sufficiently small . (2.1)

Because f is differentiable at z*, the directional derivative of f along any direction p is Vf(x*)Tp,

and if ¢ approaches zero from the positive side,

tgr&_ %(f(ac* +tp) — f(z*)) = Vf(z*)Tp for all p € R". (2.2)

The combination of (2.1) and (2.2) implies that Vf(z*)Tp > 0 for all p € R™, which can be true
only if Vf(z*) = 0. O

Definition 2.1.5 (Unconstrained stationary point). Given f: D C R™ — R, assume that * is an

interior point of D and that f is differentiable at *. If Vf(z*) = 0, x* is called a stationary point
of .

Theorem 2.1.2 (Second-order necessary conditions for an unconstrained minimizer [54]). Given

f D C R" — R, assume that x* is an unconstrained minimizer of f, and that the second-
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order derivative of f ewists at z*. Then Vf(x*) = 0 and the Hessian matriz V2f(x*) is positive

semidefinite.

Proof. As z* is an unconstrained minimizer, it must be an interior point of D. Existence of the
second derivative of f at x* implies, that the first derivative exists. The fact that Vf(z*) = 0 under
these circumstances follows from Theorem 2.1.1.

We now use contradiction to prove that V2f(x*) is positive semidefinite. Because the
second derivative of f exists at z*, a second-order Taylor-series expansion of f(z) at * implies that

}i_r}r(l] tlz[f(x* +tp) — f(z*)] = $pTV3f(2")p for all p € R™. (2.3)

If the Hessian matrix V2f(z*) is not positive semidefinite, then there is at least one vector p such
that pT V2f(z*)p < 0. For p = p, it follows from (2.3) that

lim t%[f(x* +1tp) — f(a*)] <. (2.4)

t—0

The fact that z* is an unconstrained minimizer means that, according to Definition 2.1.2, f(x* +
tp) — f(z*) > 0 for all p and sufficiently small ¢. But relation (2.4) implies that, for sufficiently
small ¢, f(z* 4+ tp) — f(z*) < 0, a contradiction that gives the desired result. O

Theorem 2.1.3 (Sufficient conditions for an isolated minimizer [54]). Given f : D C R" — R,
assume that x* is an unconstrained minimizer of f, and that the second-order derivative of f exists
at x*. If Vf(z*) = 0 and the Hessian matriz V2f(z*) is positive definite, then z* is an isolated

unconstrained minimizer.

Proof. First we show that z* is a strict minimizer. By assumption Vf(z*) = 0 and the second
derivative of f exists at z*, so that we have

lim 5 [f(" +19) ~ f(z*)] = 2"V (")

t—0 ¢
for all nonzero p € R™. (This is a restatement of (2.3).) The assumption that V2f(x*) is positive-
definite means that pTV2f(2x*)p > 0 for all nonzero p, and it follows that f(z* + tp) — f(z*) > 0
for all p # 0 and all sufficiently small nonzero ¢. Because p and ¢ are arbitrary, we conclude that
there exists a neighborhood of z* with the property that f(x*) is strictly less than f at every point
in this neighborhood. Hence z* satisfies Definition 2.1.3 of a strict local minimizer.

The next step is to show by contradiction that x* is an isolated minimizer, i.e., that z* is

an isolated stationary point. This implies that there is a neighborhood of z* in which there are no

11



other stationary points of f. As z* is an interior point where V2f exists, the gradient Vf exists in
a neighborhood of z* and is continuous at z*. Suppose that z* is not an isolated stationary point,
so that every neighborhood of z* contains at least one other stationary point, i.e., a point where
Vf necessarily vanishes. Consequently there is an infinite sequence of stationary points, say {Zx },
converging to x*, i.e.,

lim z = 2", with Vf(z;) =0.

k—o0
If || - || denotes the vector two-norm, the existence of V2f at z* implies that
. 1 * * 2 *
lim ———||Vf (2" +p) — Vf(z") = Vf(z")pl| = 0.
Ipli—o0 [l

As Zj, — 2* — 0, this relation (combined with the relations Vf(x*) = 0 and Vf(Z)) = 0) holds with
the vector py such that py = T — x*. Letting ux = pr/||pk|| (so that ||ug| = 1), we have

lim [|V2f(z*)ug| = 0. (2.5)
k—o0
Because V2f(z*) is positive definite, it is necessarily nonsingular, so that
IV2f(z)ul > o >0

for any vector u of unit-norm, where o is the smallest singular value of V2f(z*). This contradicts
(2.5) and shows that there is a neighborhood of * within which z* is the only stationary point.
As we have already shown that x* is a minimizer, the absence of other stationary points in a

neighborhood of z* implies that * must be an isolated minimizer. O

The above optimality conditions can be helpful not just in recognizing a solution, but also
in designing optimization algorithms. Based on the definition, if an interior point of the domain
D, say , is not a minimizer, then every neighborhood of £ must contain points where the values
of f is strictly less than f(Z). Thus there must exist at least one path along which one can move
away from a non-minimizer and strictly reduces f, and a straightforward choice for such a path is
a straight line. To make it precise, a direction of decrease is defined as a vector p along which any

sufficiently small positive move produces a strictly lower value of f.

Definition 2.1.6 (direction of decrease). Let f : D C R™ — R be continuous on D. A wvector
p € R™ is a direction of decrease for f at an interior point x € D if there exists a positive & such

that x + éap € D and f(x + ap) < f(x) for all a € (0, &).
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The next result provides verifiable conditions that characterize directions of decrease in

two circumstances: when f is continuously differentiable and when f has a second-order derivative.

Proposition 2.1.1 ([54]). Given f : D C R™ — R, assume that f is continuously differentiable on

a convex set Do C D, and let x be an interior point of Dy.
(a) If the vector p satisfies Vf(z)Tp < 0, then p is a direction of decrease for f at x.

(b) If, in addition, f has a second-order derivative at x, then any p such that Vf(z)Tp < 0 and
pTV2f(2)p < 0 is a direction of decrease for f at x.

Proof. Because x is an interior point of D and Vf is continuous on int(D), the fact that Vf(z)p < 0
implies existence of § > 0 such that 2 +ap € D and Vf(z 4+ ap)Tp < 0 for all 0 < o < §. By
the mean-value theorem for scalar-valued functions, for every « satisfying 0 < a < ¢§ there is a

corresponding ¢ € (0,1) such that

f(x +ap) = f(z) = aVf(z + tap) Tp.

As 0 < tar < a < 6, it follows that flx + ap) — f(x) < 0, which proves part (a).

Before proving part (b), observe that any direction p for which Vf(z)Tp > 0 cannot
possibly be a direction of decrease. As we know that any p for which Vf(z)Tp < 0 is automatically
a direction of decrease, we need to consider only p satisfying Vf(x)Tp = 0.

Suppose now that f has a second derivative at . The second-order Taylor-series expansion
implies that, for any p,

lim [ (z +ap) — f(z) ~ a¥f(2)"p] = 1"V ().

a=0 o2
For any vector p satisfying the properties given in ((b)), namely that Vf(z)Tp = 0 and f)TVQf(x)ﬁ <

0, it follows immediately that

lim 5 [f(@ +ap) - f(@)] = 15TV (2)p <0,

a—0

showing that f(z 4+ ap) — f(z) < 0 for all sufficiently small |o|. Consequently, if such a vector p

exists, it is a direction of decrease, which verifies part (b). O

Two important directions of decrease are defined as follows.

Definition 2.1.7 (Descent direction). Let f: D C R™ — R be continuously differentiable at x, an
interior point of D. The vector p is a descent direction for f at z if Vf(x)Tp < 0.

13



Definition 2.1.8 (Direction of negative curvature). Let f : D C R" — R have a second derivative
at x, an interior point of D. The vector p is a direction of negative curvature for f at x if
pTV2f(z)p < 0.

Definition 2.1.9 (Level set). Given f:D C R™ — R and a scalar vy, the level set L(v) is the set
of points x € D for which f(x) <7, i.e.,

L) ={zeD: flz) <.}

Next two definitions characterize the rate of convergence of a sequence.

Definition 2.1.10 (Q-order convergence). A sequence {xk } is said to converge to x* with Q-order
at least r/gel if there exist constants 5.(> 0) and K,.(> 0) such that, for all k > K, it holds that

|2kt1 — 2" < Brllow — 2"

Forr =2 and r = 3, the convergence is said to be at least Q-quadratic and Q-cubic respectively.

Definition 2.1.11 (Q-superorder convergence). A sequence {xk} is said to converge to x* with
Q-superorder at least r > 1 if, for every positive (B, there exists a constant Kg_ (> 0) such that, for
all k > Kg, _, it holds that

[zp1 — 2| < Brllek —2|"
For r = 1,2 and = 3, the convergence is said to be at least Q-superlinear, Q-superquadratic and

Q-supercubic respectively.

Two important classes of methods for unconstrained optimization are line-search methods
and trust-region methods. For a review of trust-region methods, see, e.g., M oré [69] and Conn,
Gould and Toint [17]. The rest of this section will focus on line-search methods.

A line-search method is an iterative approach that produces a sequence {xk } that has
the form z;1 = x) + agpr, where py is an n-dimensional vector usually called the search direction,
and aj is a positive scalar step chosen through a line search along py.

The computation of both p, and «j in a typical line-search method depends on local
model functions. Suppose that f is twice-continuously differentiable at an interior point xj of D.

A second-order Taylor-series expansion of f(z) at xp can be written as

flar+d) = flax) + Vf(zr) Td + 3d"V2f (r)d + o([[d]]*).
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When ||d]| is small enough so that the last two terms in the expansion can be treated as negligible,

letting d = © — x, gives the Taylor-series affine model of f near xy:
Ce(x) & flax) + Vi(ze) T (2 — ), (2.6)

which has the property that ¢x(zy) = f(zx) and Vi (zx) = Vf(zr). When the o(]|d||?) term can be

considered negligible, f(x) can be approximated by the Taylor-series quadratic model of f near xy:
(@) & flax) + Vf (@) " (2 — ax) + (@ — @) V2 (2) (2 — 1),

which, like the affine model, satisfies qx(xx) = f(zx) and Vgg(zx) = Vf(zx) with the further
property that V2 (zx) = V3f(zx). A more general quadratic model that is commonly used is of

the form

ae(x) = f(x) + Vf(zr) " (2 — 2p) + 5z — 2p) T Hy(z — 23), (2.7)

where Hj, is some symmetric approximation to V2f(zy).

2.1.2 Choices of the step length

To choose an appropriate step length «y for a line-search method, in often cases certain
conditions are imposed on «ay to ensure convergence of the method.

Associated with the k-th iteration of a conventional line-search method for unconstrained
optimization is a scalar-valued function my(z) that represents a local line-search model of f. The
step length oy is then chosen to give a decrease in f that is at least as good as a fixed fraction of

the decrease in the local model, i.e., a; must satisfy

flar) — flor + arpe = nalme(zr) — my(ar + arpr)) > 0, (2.8)

where 7, is a fixed parameter such that 0 < 7, < 1. The line-search model mj; must satisfy two
conditions. First, it must hold that my(z) — mg(zr + apr) > 0 for all « sufficiently small, i.e., the

model must predict a decrease in the objective for small a. Second, my must be such that
f(zr) — flzk + apy)

lim =1. 2.9
a—0t+ mk(xk) — mk(xk + Ozpk) ( )

These two conditions ensure that (2.8) is satisfied if «y is sufficiently small Typical line-search

models are the affine model (2.6) and the quadratic model (2.7) based on the first- and second-
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order Taylor-series approximations of f.

The affine model (2.6) gives the predicted reduction in f as

U(zy) — be(zk + apr) = fzk) — (F(zx) + aVf(zk) Tpr) = —aVf (k) "o

This prediction is strictly positive provided that pj is a descent direction. In this case, the sufficient

decrease condition (2.8) may be simplified as

flar + owpr) < flzr) + arnaVF(ze) Tor, (2.10)

which is known as the Armijo condition (see, e.g., Armijo [3], Ortega and Rheinboldt [75]). A line
search based on the Armijo condition is known as the Armijo line search. A step « that satisfies
the Armijo condition is called an Armijo step. The limit given in (2.9) implies that the Armijo
condition holds if ay is sufficiently small. Most Armijo line searches are implemented as a simple
backtracking procedure in which an initial step is reduced by a constant factor until the Armijo
condition (2.10) is satisfied. Thus an Armijo step has the form aj = yo'*, with v > 0 an initial step,
o a constant factor for backtracking that satisfies 0 < ¢ < 1, and ¢y, is the smallest positive integer
such that oy, satisfies the Armijo condition.

A sufficient decrease criterion can be based on the minimization of f(xp+agpx) by recalling
that, if o is a minimizer of f(x) + apy), the directional directive Vf(z + apr)Tpr, must be zero.
As an approximation to the exact line search that seeks a minimizer of f(xy + apy), we can require
that the magnitude of Vf(x), + api)Tpr be sufficiently reduced compared to Vf(zx)Tps. The first

Wolfe condition on ay can be written as

IV (@ + cwpr) "okl < nw Vf (zx) Toxl, (2.11)

where 71y, is a preassigned parameter such that 0 < 7, < 1 (see, e.g., Wolfe [86], Moré and
Thuente [71], and Gill, Murray, Saunders and Wright [51]). The above condition does not involve
the value of f, which implies that the Armijo condition (2.10) is also needed to ensure that «y gives
a sufficient decrease in f. Together, the two conditions (2.10) and (2.11) are called the strong Wolfe
conditions. A line search based on the strong Wolfe condition is known as the Wolfe line search. A
step « that satisfies the strong Wolfe conditions is called a Wolfe step.

The Wolfe conditions allow 7y, to be chosen to vary the accuracy of the step. If 7, is fixed
at a value close to zero (e.g., 10~%), then a value of 7, close to 17, gives a “tighter” or more accurate

step with respect to closeness to a critical point of Vf(zx + api)Tpr. A value of 1y close to 1
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results in a “looser” or more approximate step. A Wolfe line search is able to exploit sophisticated
safeguarded polynomial interpolation techniques to provide methods that are more reliable and
efficient than those based on backtracking (see, e.g., Hager [60] and Moré and Thuente [71]). The
next result shows that under relatively mild conditions on f, an interval of positive steps satisfying

the strong Wolfe conditions exists as long as 1y, > n,.

Proposition 2.1.2 (Existence of a Wolfe step [54]). Let f be a scalar-valued twice-continuously
differentiable function defined on an open convexr set D C R™. Consider a line-search algorithm
with ingtial point xg, such that the level set L(f(xo)) is bounded, and assume that py is a descent
direction for all k > 0. If n, and nw are fized scalars such that 0 < n, < n,, <1, then at every
iteration k, there exists an aik) > 0 and an interval (aﬁ’“), agk)) such that every o € (aﬁ,’“), agk)) 18

a Wolfe step.

Proof. To simplify the notation, define the univariate function ¢(a) = f(zx + apg), with ¢'(a) =
Vf (2 + apr) Tpr. The strong Wolfe conditions are then

6" ()] < nwl¢'(0)] and  ¢(a) < ¢(0) + an.¢'(0). (2.12)

A local affine model of the one-dimensional line search function ¢(«) is a straight line
emanating from « = 0 with negative slope ¢’(0), with the form ¢(0) + « ¢'(0).

Consider the function w(a) = ¢(a) — ¢(0) —an,¢'(0). This function has the property that
w(a) < 0 for all « that satisfy the Armijo condition (2.10). The proof is in two parts. First, we
show the existence of a positive step £ such that w'(§) = 0 and w(§) < 0. Next we show that &
satisfies the Wolfe conditions (2.12). First, we show that there exists a positive scalar o such that
w(a) < 0 for all @ € (0,0). Differentiating w(e) with respect to a gives w'(a) = ¢'(a) — 14¢'(0),
so that

w'(0) = ¢'(0) = 1.4¢'(0) = (1 = n.)¢'(0) <0,

where we have used the assumptions that ¢/(0) < 0 and 7, < 1. The nonzero derivative theorem
then implies that there exists a scalar o (¢ > 0) such that w(a) < 0 for all « € (0,0). Hence, there
exists a o1 € (0,0) such that w(oy) < 0.

From the compactness of the level set, ¢(«) is bounded below by some constant ¢oy, i-€.,
d(a) > Prow for all & € [0,00). As ¢(0) + an,¢’(0) = —oco as @ — +o00, there must exist a positive
o2 such that ¢(0) + 02149’ (0) = @1ow, and we have

w(02) = ¢(U2) - ¢(0) - 0277A¢/(0) > Qlow — rj)(()) - 0277A¢/(0) =0.
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Given scalars o1 and o2 (0 < 01 < 02) such that w(o1) < 0 and w(o2) > 0, the intermediate-value
theorem states that there must exist at least one positive o such that w(a) = 0. Let 8 denote the
smallest positive root of w(a) = 0. As w(0) = 0, w(f) = 0, and w(a) < 0 for all @ € (0,3), the
mean-value theorem implies the existence of an £ € (0,8) such that w'(¢) = 0 and w(&) < 0, or,

equivalently,

¢'(§) = n4¢'(0) and (&) < $(0) + &n.ad’(0).

As ¢/(0) < 0, we must have ¢'(§) < 0. Moreover, the inequality 1, < 1y, implies that

¢/(§) > 77A¢l(0) > 77W¢/(0)'

Putting all these inequalities together, we have

nwd'(0) < ¢'(€) <0< —nwd'(0),

or equivalently, |¢'(€)| < nw|#’(0)], which implies that £ satisfies |¢'(a)| < nw |8’ (0)].
We have shown that £ satisfies both the Wolfe conditions, so the set of points satisfying
the Wolfe conditions (2.11) and (2.10) is non-empty. O

The next theorem shows the convergence of an Armijo line-search method.

Theorem 2.1.4 (Armijo line search [54]). Let f be a scalar-valued twice-continuously differentiable
function defined on an open convex set D C R™. Assume that xg € {2 is chosen such that the level
set £(f(x0)) is bounded. Assume that {xk } is defined by xp11 = xf + P, where py is a descent

direction such that ||pg|| < 6 for some constant 0 independent of k, and «y, is an Armijo step Then
lim |Vf(zr) pr| = 0.
k—oc0
Proof. Observe that the Armijo condition implies that
far) = f(@re1) = =2 Vf (@) " or = nack|Vf (2x) Tprl,

because |Vf () pr| = —Vf () Tpr. This relation implies that {z} } is well defined and remains in
L(f(z0)). The assumption that f is bounded below on L(f(x)) implies that { f(xx)} is a bounded,
strictly decreasing sequence, and hence converges.

The rest of the proof is by contradiction. Assume that |Vf(zx)Tpx| does not converge to

zero. This implies that there must exist a positive e sufficiently small such that |Vf(zx)Tpe| > €
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infinitely often. Let € be such a number and let G denote the infinite subsequence G = {k :
IVF(2r) Tpr| > € } The step length for an Armijo line search is of the form ay = 72*, where jj, is

the smallest nonnegative integer such that

flar) = f(@r + arpr) = —apna Vi (zi) " p.

As f(zy) — f(or + arpr) — 0 and |Vf(zx)Tpi| > €, we must have o, — 0. The assumption that
the sequence of directions {py } is uniformly bounded implies that the sequence of vectors {axps }
must converge to zero.

Let G denote the indices of those iterations at which a reduction in the initial step length
was necessary, i.e., G = {kj k>0, keg } As {a}} converges to zero for k € G, G must be
an infinite set. For every k € G, define the step o) = ai/7c, which is the “last” step to fail the

sufficient reduction test. Then, by definition,

f(@p +oxpr) > flar) + onaVf(@e) Tk, keG.

Adding —o, Vf(z1) Tpr to both sides of this inequality and rearranging gives

flar + orpr) — fae) — ok Vf (@) Toe > —on (1 — n4) Vi (zi) T

>or(l—na)e, keG. (2.13)
The Taylor-series expansion of f(xy + orpi) gives
1
f(@k + owpr) — flzr) — ok Vf (xr) "ok = Uk/ (Vf(zk + towpr) — Vf (k) Tpr dt. (2.14)
0

If | - ||, denotes the norm dual to || - ||, i.e., ||z||p = max,x |z v|/||v]|, then the generalized

Cauchy-Schwartz inequality gives

|(Vf (zr + torpr) — V(@) "okl < |V (@r + towpr) — V(@) || o lpk]l-

If this inequality is substituted in (2.14) and standard norm inequalities are applied, the inequality
(2.13) implies that

1
(1—=na)e< / (Vf(wr + towpr) — Vi (zx)) Tpr dt < [nax IVf @k + toxpr) — Vi (@il Pkl
0 <t<
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for every k € G. The continuity of Vf implies that there exists some 6 € (0, /7c) such that

max ||Vf (g +togpr) = Vi(zx)llo = IV (@x + 0pr) = VF (@)l -

0<t<1

It follows that
(1 =na)e < [|Vf(zr + Opr) — Vf (i)l o [IPr]- (2.15)

However, aypr, — 0 on the , in which case it must hold that p; — 0, and the continuity of Vf(x)
gives
IVf (@r + Opr) — Vf(2k)|[o — 0.

The assumption on the boundedness of {py } implies that the right-hand side of (2.15) converges to

zero, which gives the required contradiction. O
The convergence of a Wolfe line-search method is stated below.

Theorem 2.1.5 (Wolfe line search [54]). Let f be a scalar-valued twice-continuously differentiable
function defined on an open convexr set D C R™. Assume that xo € {2 is chosen such that the level
set E(f(xo)) 18 bounded. Assume that {xk } is defined by xp11 = x) + P, where py is a descent
direction such that ||px|| < 0 for some constant 0 independent of k, and «y is a step that satisfies

the strong Wolfe conditions. Then
lim |Vf($k)Tpk’ =0.
k—o0

Proof. The first Wolfe condition is equivalent to the Armijo backtracking condition, and the argu-
ments of Theorem 2.1.4 may be used to show that { f(z)} is a convergent sequence.

As in Theorem 2.1.4, the main part of the proof is by contradiction. If |Vf(zx)Tpx| does
not converge to zero, then there must be a positive e sufficiently small such that |Vf(xy)Tpi| > €
infinitely often. If € is such a value, let G = { k : |[Vf (%) Tpy| > € }. With this assumption, the first
Wolfe condition gives

flag) — f(xgy1) > naage, forall k eg. (2.16)

As {f(xk)} is a convergent sequence, the left-hand side of (2.16) converges to zero for k € G. The
definitions of 7, and e imply that o, — 0 for k € G, and the uniform boundedness of the sequence

{pr} gives agpr — 0 for k € G.
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The second Wolfe condition may be rearranged to be of the form

\Vf (zk + cwpr) "ol < mw |VF(zk) Tprl, so that — |V (zy + awpr) "oe| > 0w [V (2k) Tpl.

It follows that

\Vf (z1) Tpi| + V(21 + arpr) Tpr > |V (@r) Tor] — [V (@r + cnpr) Tkl
> (1= nw)|Vf (k) "prl-

As |Vf(z1)Tpr| = —Vf(xr) Tpr, we have
Vf (r + arpr) Yok — VF(zr) Tpe > (1= 0w) |V (2r) Tor] > (1= nw)e, keg. (2.17)
Using standard norm inequalities, we obtain

Vf (@ + arpr) "pi — Vf (zx) "ok = (Vf (2 + arpr) — Vf(xkz))Tpk

< IV (zk + arpr) = Vi (@)l [Pl (2.18)
where || - ||, denotes the norm dual to || - ||. Inequalities (2.17) and (2.18) imply that
IVf (zn + axpr) = Vi (@r)llo Pkl = (1= nw)e >0, keg. (2.19)

Because 1 — 1y, and € are bounded away from zero, this inequality implies that the vector difference
inside the norm on the left is bounded away from zero. But we know that axpr — 0, for all k € G,
and the continuity of Vf(z) and the boundedness of {p;} imply that the left-hand side of (2.19)

must converge to zero. This gives the desired contradiction, and shows that |Vf(zx)Tpi| — 0. O

2.1.3 Implementing the Wolfe line search

A typical implementation of the Wolfe line search may be viewed as a two-stage process.
The first stage involves the determination of an interval containing a Wolfe step, if one exists. The
second stage locates a Wolfe step in this interval using safeguarded polynomial interpolation. If
the first stage fails, then the objective function is necessarily unbounded below. The key principle
that drives the first stage is that certain conditions may be formulated that determine if an interval

contains a Wolfe step. Much of the discussion in this section is based on the work of Moré and
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Sorensen [70], Moré and Thuente [71]. More information may be found in Wolfe [87]. The schematic
description of the line-search algorithm given in Algorithm 1 below follows that of Nocedal and
Wright [74]. In order to simplify the notation we omit the suffix k& and consider the univariate
function ¢(a) = f(z+ ap) for fixed vectors x and p. With this notation the Wolfe conditions (2.10)
and (2.11) may be written in the form

¢(a) < $(0) + anad’(0), and  [¢'(a)] < nwl¢'(0)].

Much of the theory associated with a Wolfe line search is based on the properties of the auxiliary

function

w(a) = ¢(a) = (¢(0) +ana¢'(0)), with w'(a) = ¢'(er) —n4d'(0).

Moré and Sorensen [70] show that a minimizer of this function at which w is negative satisfies the
Wolfe conditions. An example of a function ¢ and its associated auxiliary function w are depicted

in Figure 2.1. The first stage of a Wolfe line search is motivated by the following proposition.

N

- w()

Figure 2.1: The graph depicts ¢(«)

function w(a) ~ o(a) — (6(0) + an.d/(0)
function ¢(0) + an,¢’(0).

f(x + ap) as a function of positive «, with the shifted
) superimposed. The dashed line represents the affine

Proposition 2.1.3. Let {ai }Zo be a strictly monotonically increasing sequence with cg = 0.
Let ¢ and w be continuously differentiable univariate functions such that ¢'(0) < 0 and w(a) =
d(a) — ((0) + anad’(0)) with 0 < n, < 1. If there exists a least bounded index j such that at least

one of the following conditions is true:
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(a) a; is a Wolfe step;
(b) w(ay) > wlaj—1); or
(c) w'(a;) =0,

then there exists a Wolfe step o* € [aj_1,;]. Collectively, (a)—(c) are called the stage-one condi-

tions.

Proof. Observe that o;_; must satisfy none of the conditions (a)-(c), otherwise j would not be the
least index. This implies that w(aj_1) < w(aj—2) < -+ < w(a) = 0 from (b), and w'(aj—1) < 0

from (c).
Case 1. If (a) is true, the proposition is true trivially.

Case 2. If (b) is true, let @ = sup{a € [aj_1,0;5] tw(B) <0 forall € |a;_1,0] } If & = aj,
then w(@) = w(ey) > w(aj—1); if & < @, then by the continuity of w, w(@) =0 > w(a;—1). From
the mean-value theorem there must exist an @ € (oj_1, @) such that w'(@) = (w(a@) —w(aj—1))/(a—
a;j—1) > 0. The function w(«) is continuously differentiable with w’(a;_1) < 0 and w’(&) > 0. The
intermediate-value theorem then implies that there must exist a step a* € [aj_1,a] such that

w'(a*) =0. As w(a®) <0, a* is a Wolfe step.

Case 3. Finally, consider the case where (c) is true. If w(a) < 0 for all [aj_1,q;], then, as
w'(ej—1) < 0 and w'(a;) > 0, the continuity of w’ and the intermediate-value theorem imply that
there exists a step a* € [aj_1,q;] such that w'(a*) = 0. As w(a*) < 0, a* is a Wolfe step.
Otherwise, if there exists some a € [aj_1,;] such that w(a) > 0, let @ = sup{a € [aj_1,
o;] t w(B) < 0 for all B € [aj_1,a]}. The continuity of w implies that w(@) = 0. The same
argument used in Case 2 may be used to show that there must exist an & € (a;_1, &) such that

w'(&) > 0 and an a* € [oj_1, @] such that w'(a*) = 0 with w(a*) <O0. O

Note that the converse result is not true, e.g., there may be a Wolfe step in the interval
[0, 1] even though none of the stage-one conditions are satisfied for j = 1. The behavior of w(«)
is unknown at any « € (0, ay).

If the first step a; is not a Wolfe step, successively larger steps are computed until either
one of the stage-one conditions is satisfied or j is such that a; = oqmax. In practice, amax is an
upper bound imposed on the step and the search is terminated if the bound is exceeded during the
stage-one iterations. If a given a; does not satisty the stage-one conditions then w(a;) < w(aj_1) <

-+ < w(ap) = 0. If the algorithm reaches o, . = amax and none of the stage-one conditions have
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been satisfied, it terminates with «;, ., which is an Armijo step with the least computed function
value.

Proposition 2.1.3 implies that if one of the stage-one conditions is satisfied at iteration
Jj, then the interval [oj_1, ;] must contain a Wolfe step. At this point the line search termi-
nates successfully if the stage-one condition (a) is satisfied, or moves on to the second stage. The

computations associated with the second stage are based on the following result.

Proposition 2.1.4. Let ¢ and w be defined as in Proposition 2.1.3. Assume there exist distinct

POINLs Aow and omign such that
(a) w(oow) <0;
(b) w(uow) < w(nigh); and

(C) wl(a10W>(ahigh - alow) <0.

Then there exists a Wolfe step a* € I, where T is the interval defined with endpoints o and

Qhigh -

Proof. The proof is similar to that of Proposition 2.1.3, and is a special case of the proof of Propo-
sition 3.2.3. O

The conditions (a)—(c) of Proposition 2.1.4 are referred to collectively as the stage-two
conditions. The subscripts associated with the points oiow and amnign serve to emphasize the fact
that w(aiow) < w(amign). It is not necessarily the case that ciow < Qhign.

Algorithm 1 gives a schematic outline of a Wolfe line search. The calculations required
for a Wolfe line search may be organized into two “functions” associated with the stage-one and
stage-two conditions. If the first stage finds an interval that contains a Wolfe step, the first-stage
function labels the endpoints aiow and amign based on relative magnitudes of w(a;—1) and w(a;),
and calls the stage-two function Stage_Two(uow, Onign). The second-stage function interpolates the
endpoints to calculate a best-guess step, apew, in the interval. The second-stage function is called
recursively using agew and an existing endpoint, labeling them so that the stage-two conditions hold
for each call. This is repeated until oy, is a Wolfe step. In practice, it rarely takes more than one
or two interpolations to find a Wolfe step. It must be emphasized that in practice, the stage-two
calculations are not implemented as a recursive procedure. The recursive structure depicted in
Algorithm 1 is illustrative and reflects the fact that the intervals defined by cnew and anign form
a nested sequence. If Zj is the interval resulting from stage-one, the computations of stage-two

generate a sequence of intervals {Ij } and a sequence of points { al(g‘zv } such that o9 € Z;, each Z;
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contains a quasi-Wolfe step, and Z; C Z;_;. The intervals Z; form a nested sequence of “intervals

of uncertainty”.

Algorithm 1 Schematic outline of a Wolfe line search.

function WoLFE_LINE_SEARCH(«)
restriction: a > 0;

1:
2
3 constants: 7, € (0, %), Nw € (May 1), Ve > 1, amax € (0, +00);
4: a < min { Q. Omax }; Qolg < 0

5: while « is not a Wolfe step and a # apax do

6 if w(a) > w(ac) then

7 « < Stage_Two(apd, «); break;

8 else if w'(a) > 0 then

9: a + Stage_Two(a, aolq); break;

10: else

11: Qold ¢ @; @ < min { Ve, Qmax }; [Increase o towards Qmax]
12: end if
13: end while
14: return «;

15: end function
1: function STAGE_TWO(ow, high)

2 restriction: w(ow) < w(Ahigh);

3 Choose omew in the interior of the interval defined by aiow and omign;
4 if apew is a Wolfe step then

5: return oyey;

6 else if w(apew) > w(ow) then

7 return Stage_Two(ow, Cnew);

8 else if W' (anew)(Qhigh — Qlow) < 0 then

9 return Stage_Two(®new, Qthigh);

10: else
11: return Stage_Two(new, Mlow);
12: end if

13: end function

A practical implementation of a Wolfe line search is very complex. There are many ways
to interpolate to obtain a new point in the second stage. The use of finite precision imposes the
need for some sort of safeguarding during interpolation and gives rise to a whole host of issues,
including how to handle cases when the function or step length are changing by a value near or
less than machine precision. See, e.g., Brent [9], Hager [60], Ghosh and Hager [45], and Moré and
Thuente [71] for more details.
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2.1.4 Choices of the search direction

The search direction pp for a line-search method is typically derived by minimizing a
local quadratic model at xzy of the form (2.7), with Hj, some positive-definite approximation of the

Hessian matrix V?f(zy). Writing p = 2 — z; in (2.7) gives
e (p) = f(xx) + Vf(zx)"p + 3p" Hyp,
The explicit formula for p; can be obtained by setting the gradient of ¢x(p) to zero:
L= —HIZIVf(l'k>.
As Hj, is positive-definite,

Vf(mk)Tpk = _kaHkpk <0,

which implies that pj is a descent direction.
Simply defining Hy, as the identity matrix gives the steepest-descent direction —Vf(xy),
along which the function decreases the fastest in the sense that py, = —Vf(xy) is the solution of the

following minimization problem:

minimize Vf(x)"p subject to. [pull/|V x| = 1, (2.20)
where Vf(z)Tp represents the directional derivative of f at xj along a direction p. The precise
choice of the scaling of py is based on the idea of having ||px| — 0 as the sequence of iterates
approach a stationary point, i.e., as |Vf(xg)|| = 0. The steepest-descent direction is often used
when the second-order derivatives of f are unavailable or are too expensive to compute.

However, the steepest-descent direction can be inadequate as its definition does not include
the curvature information of f, which is crucial for locating a minimizer efficiently. The well-known

Newton’s method is a second-order method that uses the exact Hessian matrix at each iteration k:
Hk = VQf(l‘k)
Thus, the Newton direction py is derived by solving the linear system

V2f (zk)pr = —Vf (z1).
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To ensure that py is a descent direction, this approach can only be used when V2f(x},) is positive
definite at each iteration k. As this condition does not hold for general functions, one strategy is
to define Hy as a positive-definite approximation to V2f(xy), on the assumption that the “natural”
choice of Hy, = Vf(z}) will be made when V2f(x},) is sufficiently positive-definite. Such methods
are often referred to as modified Newton methods. A modified Hessian matrix Hj can be defined
as the positive-definite matrix closest to V2f(z) that has a condition number no greater than a
preassigned value, say 8. To determine the matrix Hj is to solve the following constrained matrix

problem:

%ini]énize{ |V2f(zy) — Hy||p : cond(Hy) < 8, Hj, symmetric positive definite },
ke nxmn

where || - || p represents the Frobenius norm and cond(Hy) denotes the condition number of H (i.e.,
the ratio of the eigenvalues of largest and smallest absolute value). The restriction on the size of
the condition number of Hj ensures that Hj is sufficiently positive-definite. This problem is often
solved using the symmetric indefinite factorization of the modified Cholesky factorization.

The following theorem states the local convergence properties of the Newton’s method.

The proof is widely available in literature, see, e.g., Nocedal and Wright [74].

Theorem 2.1.6 (Local convergence of Newton’s method [54]). Let f be a scalar-valued twice-
continuously differentiable function defined on an open conver set D C R™, and assume that

Vf(z*) = 0 and Vf(z*) is nonsingular for some z* € D. Then

(a) there exists a neighborhood B(xz*,§) such that, for any xq in B, the sequence of Newton iterates
{zk }k>0 such that
Tyl = T — VZf(xk)_1Vf(xk) (2.21)

are well defined, remain in B and converge to x* at Q-superlinear rate;

(b) if, in addition, V2f satisfies a local Lipschitz condition at x*,
192 (x) — V2 ()| < Llle — 2°]| for all @ € B

where L is a positive constant, the Newton iterates defined by (2.21) converge Q-quadratically

to x*; and

(c) if, in addition, V2f satisfies a local Lipschitz condition with constant L in a neighborhood of

x*, || f(zk)|| converges Q-quadratically to zero. O
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Theorem 2.1.4 and Theorem 2.1.5 imply that combining a descent direction and an Armijo
or Wolfe step ensures |Vf(xy)Tpr| — 0. However, to obtain convergence to a stationary point, i.e.,
Vf(xx) — 0, the search direction p; needs to have the property that |Vf(zy)Tpx| can go to zero

only when Vf(z) goes to zero.

Definition 2.1.12 (Direction of sufficient descent). A direction py is a direction of sufficient

descent if ||px|| is bounded and
Vf(zk)Tpr — 0 implies Vf(z) — 0 and py — 0.

A convenient characterization of directions of sufficient descent is provided by the following

lemma.

Lemma 2.1.1. Let {Hk } be a sequence of symmetric positve-definite matrices such that
Amaac(Hk) <M < +oo and Amin(Hk) >m >0,

where m and M are constants, and Mpe(Hg) and Apin(Hy) denotes the largest and smallest
eigenvalues of Hy respectively. If the search direction py is computed by solving the equations

Hypr = —Vf(xy), then py is a direction of sufficient decrease.

Proof. Because Hypr, = —Vf(xy), it follows that

VS (zk) ol = pg Hypgl = Aminllpr ]I, (2.22)

where || - || denotes the two-norm. As Apin(Hy) > m for all k& we have immediately that pr — 0
when |Vf(zx) Tpx| — 0.
Applying standard norm inequalities to the expression Hypr = —Vf(xy) for py gives

Vf(x
I ol = 97l s et ] > EEL 229
Using the relation | Hg|| = Amax, we may combine (2.22) and (2.23) as follows:
T )\min >\min 2
V) el = 2 [T ()| > 2 ) 2 (2:21)

max max

As by assumption Apax(Hg) < M, Apin(Hg) > m, we have Vf(zy) — 0 if |[Vf(zx)Tpr| — 0, as
required. O
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Combining Newton’s method with an Armijo or Wolfe line search ensures global conver-

gence of the Newton-based line-search algorithm.

Theorem 2.1.7 (Global convergence of Newton-based line-search method [54]). Let f be a scalar-
valued twice-continuously differentiable function defined on an open convexr set D C R™. Assume
that V2f () is positive definite for all x € D, with smallest eigenvalue uniformly bounded away from

zero; i.e., there exists o > 0 such that for all s € R™ and x € D,
sTV%f(x)s > ol|s||%. (2.25)

Given xg € D such that the level set L(f(xq)) is compact, consider the sequence Txy+1 = T + gDk,
where py is the Newton direction and ay is the Armijo or Wolfe step length. The sequence {xk } 18
well-defined and lies in L(f(xg)). Moreover, either the algorithm finds some xy, such that Vf(xy) =
0, or limg_,o Vf(zx) = 0.

Proof. To show that the iterates are well defined, observe that, if z; € L(f(zo)), the positive-
definiteness of V2f(z) ensures that the Newton direction is always a direction of descent. Hence,
Proposition 2.1.2 ensures the existence of a suitable oy, satisfying the step length conditions (2.11)
and (2.10), which implies that zx11 € L(f(x0)).

The smallest eigenvalue of Hj, is bounded below by assumption; continuity of V2f(z) and
the compactness of L(f(zo)) together imply that ||Hy| is bounded, so that the largest eigenvalue is
bounded above. The conditions of Lemma 2.1.1 therefore apply, and p} is a direction of sufficient

descent. The result then follows immediately from Definition 2.1.12. O

The next two theorems state that the “natural” step of unity eventually satisfies the Armijo

and Wolfe conditions; this property is essential to achieving quadratic rate of convergence.

Theorem 2.1.8 (Armijo sufficient decrease with a unit step [54]). Assume that the assumptions
of Theorem 2.1.7 hold. Moreover, assume that the scalar n, is chosen so that 0 < n, < % Then
there exists an index K such that for all k > K for which Vf(xy) # 0, the step ay, = 1 satisfies the

Armijo condition.

Proof. First, observe that (2.25) and the definition Vf(zx)px = —Vf () imply that
=V (1) pr = pp V2 (@)pe > o|lpe]|*. (2.:26)

As we know from Theorem 2.1.7 that Vf(xy) — 0, (2.26) implies that p, — 0. This condition
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and the descent property of py then imply that for all sufficiently large k, xp + pr € L(f(z0)). We
henceforth consider only such values of k.

The condition to be verified is that

f(@r+pr) — f(xr) = naVf (zx) 'pe < 0. (2.27)

Using the identity

flz+p) = f(@) +Vf(2)"p+ 50" Vi (x)p + /0 Pt (V2 (z +tp) = V2f(x))p(1 — 1) dt,

and the definition V2f(zy)pr = —Vf(zk), the left-hand side of (2.27) may be written as

Pl pi) = Flae) —na ) " = (1~ 20,09 ()

1
+ / pg (V2f(9ck + tpk) - sz(xk))pk(l - t) dt.
0
As V2f is continuous in the closed bounded region £(f(x)), the quantity wy such that
_ 2 o2
wi = max | Vf (xx + tpr) — VS (an)]

is bounded. Applying this definition of wy and (2.26), gives

Pl pi) = Flow) —ma V) T < (1~ 20095 ) T+ geonllpel?

< 50— 20, = )97 ) T (2.28)

As pr, — 0, there must exist an index K such that for all £ > K, wy will be small enough to satisfy
wr < o(1—2n,). When wy, satisfies this inequality, the right-hand side of (2.28) will be negative
for w sufficiently small (because 1, < % and Vf(z)Tpr < 0), and hence (2.27) is satisfied for
sufficiently large k. O

Theorem 2.1.9 (Wolfe sufficient decrease with a unit step [54]). Under the assumptions of Theo-
rem 2.1.7, there exists an index K such that for all k > K for which Vf(xy) # 0, the step a = 1
satisfies the strong Wolfe conditions (2.11) and (2.10).
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Proof. The condition to be verified is that |Vf(zx+pk) Tpe| < nw |Vf(2x) Tpk|. Consider the identity

1
Vf (zk + pr) — Vf (2x) — Vf (xk)pr = /0 (V2 (@r + tpx) — V3f(x1)) pr dt.

Multiplying by p,:: and re-arranging, we obtain

1
Vf(zi, + pe) "ok = Vf(@r) Toe + i VI (@0)pr + /0 pr (V2f(z + tpr) — V2 (y)) pr dt.

Substituting V2f(zx)pr = —Vf(xy) in this equation and applying norm inequalities gives

1
IVF (e + ) e < ‘ /0 pE (V2 (& + tpe) — V(1)) pr dt

< llpel? gma, [V (s + tpi) = 92 )| (2.29)

Substituting (2.26) and the definition of wy, in (2.29), we obtain the inequality
w
|V (2x + pr) Tpr| < 7]6 |V (xr) " x| - (2.30)

The continuity of V2f and the fact that pr — 0, implies that there must exist an index K such
that wy/o < ny for all k > K. Using this inequality in (2.30) gives that |Vf(zx + pr) pi| <
nw |Vf(zr) Tpi| is satisfied by xy, + py for all sufficiently large k.

Again, the result that ||py|| — 0 implies the existence of an index K such that for k > K, wy,
will be small enough to satisfy wp < o min(1—2n,4, 7y ). When wy, satisfies this inequality, the right-
hand side of (2.28) will be negative for w sufficiently small (because n, < 1 and Vf(zx) py < 0),
and hence the Armijo condition (2.27) is satisfied for sufficiently large k.

Thus, o = 1 satisfies both Wolfe conditions (2.10) and (2.11) for all sufficiently large
k. O

The fast local convergence of Newton-based methods derives from the curvature informa-
tion provided by the Hessian matrix at each iteration. Unfortunately, the required exact Hessian
may be expensive or impossible to obtain for many functions encountered in practice. Accordingly,
the development of quasi-Newton methods is motivated by the practical necessity of a method that
achieves fast local convergence without using second-order derivatives. In a quasi-Newton method,

an initial Hessian Hj is usually defined as a multiple of the identity matrix, and then each successive
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approximate Hessian is obtained by a low-rank update to the previous approximate Hessian, i.e.,
Hy, 1 = Hy + Uy, (2.31)

where Uy represents a low-rank matrix. The choice of Uy is based on the local affine model of Vf
near Tpi1:

Vf (k) = Vf(zp41) + V2 (@rr1) (@1 — Tpp1)-

Write di, = zx41 — 2 and wi, = Vf(zr41) — Vf(zr), it follows that
Wy ~ sz(xkﬂ)dk.
The approximate Hessian Hy1 is defined such that the following condition holds:
wy, = Hiq1dy

which is known as the quasi-Newton condition or secant condition. In addition, it is also crucial to
retain the symmetry and positive-definiteness of each Hy. An updating formula (2.31) is said to have
the property of hereditary symmetry if symmetry of Hy implies symmetry of Hy1, and hereditary
positive-definiteness if the positive-definiteness of Hj implies positive-definiteness of Hy, 1. The

well-known BFGS (Broyden-Fletcher-Goldfarb-Shanno) update

1
Hydpdf Hy, + ——wpwy (2.32)

Hir = Hy = wdek

1
d,?dek
is a symmetric, rank-two update to Hj that satisfies the quasi-Newton condition and has the
property of hereditary symmetry. Moreover, if w,;fdk > 0, then the BFGS update has the property

of hereditary positive-definiteness. Indeed, the BFGS updating formula can be rewritten as

1 1
(wpr dy)Y/2(d)f Hydy,)/? e df Hydy

Hy1 = (I +vpdd)He(I 4 dpv)l), with vy, = Hy.dy,.

This identity implies that Hyq is positive definite if Hy, is positive definite and I + dyv; is non-

singular (i.e., if 14+ vfdy # 0). As Hy; satisfies the quasi-Newton condition, it follows that
wi di, = dj Hi1dy, = dyp (I + vpdd)He(I + divl )di = (1 + vt dy)?d;; Hydg.

It wld, > 0, then (1 + vdy)? > 0, which implies that I + dyv! is nonsingular. Therefore,
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to ensure that the approximate Hessian remains positive definite in a quasi-Newton method, the
BFGS update is applied only when w;d, > 0.

For a quasi-Newton method, an important advantage of using a line search based on the
Wolfe conditions is that wgdk is always positive. This property is a consequence of the Wolfe step
satisfying the inequality Vf(zg+1)Tpr > nw Vf (2 pi, which is implicitly imposed via the first Wolfe
condition (2.11). The definition of w{ dj yields

wi di, = g (Vf (2e1) "ok — V(@) Tpe > —ar(1 = 0w )V (zi) Tpe > 0.

This property does not necessarily hold for an Armijo step.
The superlinear convergence of a quasi-Newton method can be proved assuming that the

sequence of iterates converges. The proof of the following theorem can be found in [23].

Theorem 2.1.10 (Superlinear convergence of a quasi-Newton method [54]). Let f(x) be twice-
continuously differentiable for all x € R™. Assume that there exists x* € R™ such that Vf(x*) =0
and V*f(z*) is positive definite. Let {Hk} be a sequence of nonsingular matrices. Suppose that

for some xg € R™ the sequence of iterates {xk } is given by
Thy1 = Tk + pr, where Hypy = —Vf(zg).

If the sequence {xk } converges to x*, and that xy # x* for any k, then {zk } converges superlin-
early to x* if and only if
i W = V2 @))pill _

0.
ko0 1k

O

For large-scale problems, limited-memory quasi-Newton methods are typically used. In
contrast to the regular quasi-Newton methods, limited-memory methods require storage for only a
few n-vectors.
For the conventional BFGS method, at the start of the k-th iteration, the inverse BFGS
approximation may be written in the form
My =V," M,V dp_1dp_q, with Vi, =1—

T
Yp—1dp_1-

_|_ - N
dg—lyk—l d;cr—lyk—l

A simple calculation gives V,f_l =V, _1Vi_1 = V,._1, which implies that Vj,_ is an oblique projection

that projects vectors onto the null-space of span(yg—1), i.e., Vi—1yg—1 = 0.
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If p; denotes the quantity p; = 1/djTyj7 then M, can be written as
My = (VitaVilo) My o (VioVi1) + pr—2 Vil dy—odi o Vit + pr—1di—ydi—y-
Continuing to expand each M; in turn gives the update

My =S VMO (Vi Vi)
+ Pr—m (qull e Vk’I;erl)dkfmdgfm(kaerl e Vkﬂ)

t Pk—mt1 (Vklll e VkT—erz)dk—deg—mH (Vk—m+2 e Vk—l)

+ P11 di_y-

This formula implies that at the start of iteration k, a limited-memory variant of M, may be defined

by updating an initial matrix M ’io) m times using the BFGS formula with the m pairs

(dk—la yk—l)’ (dk—27 yk—2)7 ey (dk—wu yk—m)

The resulting matrix is used to define the search direction as py = —MVf(xy). At the next step,
(dk—ms Yr—m) is discarded and the most recently computed pair (dy, yx) is added to the list of vector
pairs. The total storage is 2m vectors.

Additionally, a limited-memory reduced-Hessian method will be reviewed later in Sec-

tion 3.4.1.

2.2 Interior Methods

2.2.1 Inequality-constrained optimization

A nonlinear inequality-constrained optimization problem may be written in the general

form
mini%lize f(z) subject to c(x) >0, (NIP)
TeR™
where ¢(x) is an m-vector of nonlinear constraint functions with ith components ¢;(z) (i = 1,--- ,m),

and f and { ci(x) } are smooth functions that are assumed to be twice-continuously differentiable

in this work. For a constrained optimization problem, any point = satisfying all the constraints is
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called a feasible point, and the set of all such points is the feasible region. The feasible region for
this problem is given by
n= {:ccz(x) >0, i= 1,2,...,m}.

Definition 2.2.1. For problem (NIP), the constraint c;(x) > 0 is said to be satisfied at T if
c(Z) > 0, active if ¢;(T) = 0 and inactive if ¢;() > 0. The active set A(Z) is the set of indices
of the active constraints at z, i.e., A(Z) = {i:¢;() =0}. The constraint ¢;(z) > 0 is said to be

violated if ¢;(T) < 0.

Definition 2.2.2 (First-order KKT point for (NIP)). The first-order KKT conditions for the
inequality-constrained problem (NIP) hold at the point x*, or, equivalently, x* is a (first-order)

KKT point, if there exists an m-vector y*, called a Lagrange multiplier vector, such that

c(z*) >0, (feasibility) (2.33a)
Vf(z*) = J(=*)Ty*, (stationarity) (2.33b)
y* >0, (nonnegativity of the multipliers) (2.33¢)
c(z*) - y* =0. (complementarity) (2.33d)
The stationarity condition (2.33b) can be written as
V.L(z*y*) =0, where L(z,y)= f(z)—y c(x). (2.34)

Thus a KKT point is a stationary point with respect to z of the Lagrangian function L(z,y) defined
in (2.34). It is common to refer to x as the “primal variables” and to the Lagrange multipliers y as

the “dual variables”.
Definition 2.2.3 (Acceptable Lagrange multipliers). Given a KKT point x* for problem (NIP),
the set of acceptable Lagrange multipliers is defined as

V(x*) = {y eR™ : Vf(z*) = J(x*)Ty, y>0, and c¢(z*) -y=0 } (2.35)

The complementarity condition ¢(z*) - y = 0 forces y; to be zero if constraint ¢ is inactive,
but allows the possibility that y; = 0 when constraint ¢ is active. An important property, strict

complementarity, occurs when all the multipliers for active constraints are positive.

Definition 2.2.4 (Strict complementarity). Strict complementarity holds at the KKT point x* if
there is a multiplier y* € Y such that y; > 0 for all i € A(z*).
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Before considering the optimality conditions for (NIP), a formal definition of a constrained

local minimizer is given as follows..

Definition 2.2.5 (Constrained local minimizer). Let f be a function defined for all x € D C R"™.
Let N(z*,0) denote the set B(x* 6) N2, where B(x*,8) is an open ball centered at x* with B(z* ) C

D. A point x* is a constrained local minimizer of f if there is a § sufficiently small such that
f(x*) < f(x) for all z € N(x%,6).

A point x* is a strict or proper constrained minimizer if this inequality holds with strict inequality

except at x* itself, i.e., f(x*) < f(x) for all x € N(z* ).

For problems with linear constraints, the first-order KKT conditions alone are mecessary
for optimality. However, to specify first-order necessary conditions for optimality with nonlinear
constraints, the constraints are required to satisfy certain regularity conditions, known as constraint
qualifications, at x*. If these regularity conditions do not hold, a solution z* may or may not be
a KKT point. Two most commonly used constraint qualifications are defined below, which are

collectively known as first-order constraint qualifications.

Definition 2.2.6 (linear independence constraint qualification). The linear independence con-
straint qualification (LICQ) holds at the feasible point & of (NIP) if x is strictly feasible, or if the
active constraint gradients, {Vci (z) : i € A(x) } at x are linearly independent, i.e., Jo(x) has full

row rank.

Definition 2.2.7 (Mangasarian-Fromovitz constraint qualification). The Mangasarian-Fromovitz
constraint qualification (MFCQ) holds at the feasible point T of (NIP) if x is strictly feasible, or if
there exists a vector p such that Ve;(z)Tp > 0 for all i € A(z) (i.e., Ju(z)p > 0).

The MFCQ is a weaker condition than the LICQ in the sense that satisfaction of the
LICQ implies the MFCQ, but not the reverse. An important consequence of the MFCQ is the

boundedness of the set of acceptable multipliers.

Lemma 2.2.1 (Implication of the MFCQ: a bounded multiplier set [37]). If T is a first-order KKT
point at which the MFCQ is satisfied, then the set of multipliers Y defined in (2.35) is bounded.

Proof. First we consider the nature of ) at &, which consists of all y € R™ satisfying ¢(Z) - y = 0,
Vf(z) = J(Z) Ty, and y > 0. Tt is easy to see that Y (&) is convex. Given any § € Y(¥), V(&) can

be unbounded only if there is a nonzero ray u emanating from g such that § + cu € Y(z) for all
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a > 0. If such a ray exists, the complementarity condition will be satisfied only if components of u
corresponding to inactive constraints are zero. Thus, in order for both § and § + au to lie in Y(z),
it must be true that

VI (@) = J(2) a = Ja(@)" (Ja + aua),

where 7, and u, denote the subvectors of § and u corresponding to active constraints. It follows
that J,(2)Tu, = 0. Finally, 9. + au, will remain nonnegative for arbitrarily large positive o only
if u, > 0.

Turning now to the implications of the MFCQ, we know that a vector p exists such that
Jo(Z)p > 0, which means that aJ,(Z)p > 0 for any positive a. Thus for any positive 6 there is
a vector p satisfying J,(Z)p > fe, where e denotes the vector of all ones. As a result, the linear
program

maxilenize 0 subject to Jo(T)p—0e >0, 6 >0 (2.36)
P,

is feasible, but its objective function is unbounded above. Using standard duality theory for linear
programming, unboundedness of the primal objective implies infeasibility of the dual. The con-
straints of the dual corresponding to (2.36) are J,(7)Tu, = 0, eTu, = 1, and u, > 0, and so we
know that there is no vector u, satisfying these conditions. But, as shown in the first part of the
proof, these are precisely the properties that u, must have in order for V(&) to be unbounded. (The

T

condition e~ u, = 1 is simply a scaling restriction to ensure that u, # 0.) Consequently no ray u

exists, and Y(Z) is bounded. O

A practical disadvantage of the MFCQ compared to the LICQ is that verifying whether the
MFCQ is satisfied is more difficult—in fact, determining whether or not the MFCQ holds requires
solving a linear program. The argument developed in the proof of Lemma 2.2.1 shows that the

MFCQ holds at the KKT point 7 if the optimal solution of the linear program

maxilenize 6 subject to J.(ZT)p—0e>0, 0<0 <1, (2.37)
P,

occurs at the maximum possible value of 6, namely § = 1. Note that this linear programming (LP)
problem is feasible because its constraints are satisfied by 6 = 0 and p = 0.

The main first-order necessary condition for a solution of problem (NIP) can now be stated.

Theorem 2.2.1 (First-order necessary conditions). Let z* be a point such that c(z*) > 0, with

ca(x) = 0. If MFCQ holds at x*, then x* is a local minimizer of (NIP) only if x* is a first-order
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KKT point, i.e., there exists a vector y: such that
Vf(z*) = Ja(x*)TyZ, with yX > 0. (2.38)

Proof. See [37, Lemma 2.16]. O

For second-order optimality conditions, the Hessian of the Lagrangian L(x,y) (2.34) with

respect to z,

H(z,y) = Vi L(z,y) = V*f () - iyiVQCi(ﬂc)’
i=1

plays a crucial role. To make explicit use of the information about the stationarity of the objec-
tive function, second-order conditions typically involve curvature of the Lagrangian function along

feasible directions in the set

Cu(x)={p:p#0, Vf(z)"p=0and Ju(x)p >0},

which is known as the critical cone.

In order to formulate an appropriate second-order constraint qualification, it is useful
to write the set C,(x) in an equivalent form that requires = to be a KKT point, i.e., the set of
acceptable multipliers is not empty at z. At any KKT point z, choose some y € Y(z) and let
A, (z,y) denote the set of indices of active constraints with positive Lagrange multipliers and let
J,. (x) denote the corresponding matrix of constraint gradients. Similarly, let A,(z,y) denote the set
of indices of active constraints with zero multipliers, and let J,(z) denote the associated matrix of
constraint gradients. Note that A,(z,y) and A, (z,y) define a complete partition of the active set,
ie., A(z) = As(z,y) U A, (z,y). Moreover, this partition is a function of the particular y € Y(x).

If y, and y, denote the vectors of positive and zero components of y, it follows that
Vf(@)'p =y J(@)p =y T (@)p+y, Jy(x)p =y, (x)p = 0.
This implies that the critical cone may be written in the form
C.(z) = {p:p+#0such that J, (z)p =0 and J,(z)p >0 }.

This characterization suggests the use of an appropriate “second-order” tangent cone defined in
terms of the functions ¢,(z) and c, (x) given by the elements of ¢(z) with indices in A,(z,y) and

A, (z,y) respectively.
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Definition 2.2.8 (Second-order constraint qualification (SOCQ)). The second-order constraint
qualification for inequality constraints holds at a KKT point x if, for all y € Y(x), every nonzero
p satisfying J (x)p = 0 and J,(z)p > 0 is tangent to a twice-differentiable path x(o) such that
¢y (z(a)) =0 and co(z(a)) = 0 for all 0 < a < a.

Theorem 2.2.2 (Second-order necessary conditions for (NIP) [54]). If the first- and second-order

constraint qualifications hold at x*, then x* is a local solution of (NIP) only if

*

(a) z* is a KKT point, i.e., c(x*) > 0 and there exists a nonempty set Y(x*) of multipliers y

satisfying y > 0, c(z*) - y =0, and Vf(x*) = J(z*)Ty;

(b) for some y € Y(x*) and all p # 0 satisfying Vf(x*)Tp = 0 and J.(x*)p > 0, it holds that
p T H(z*y)p > 0.

Proof. Part (a) follows immediately from Theorem 2.2.1. To prove part (b), consider any nonzero
vector p satisfying Vf(z*)Tp = 0 and J,(z*)p > 0. Because of the second-order constraint qual-
ification, p is tangent to a twice-differentiable feasible path x*(a) such that ¢, (z*(a)) = 0 and
co(z*(a)) > 0 for all 0 < a < @&, with 2*(0) = z*. Let v denote dzx*(a)/da2|a:0, and assume
henceforth that all vector and matrix functions are evaluated at x* unless otherwise specified. As

for each i € A, (z,y), the constraint function ¢; is identically zero along z*(«a), we have

d? . . 2, d . d .
W&‘(ﬂ? () - = Ve (x (a))Tﬁx () - + %(Vci(ﬂv (a))T)gx () -
= Vei(z*) Yo+ pTV%;(2*)p = 0. (2.39)

Further, using the expression Vf(z*) = J(z*)Ty* = J, (z*)Ty* from (2.33) and the assumption
that J,_(z*)p =0,

= Vf(z")p =y " J.(z*)p=0. (2.40)

As a KKT point, z* is a stationary point of f along the feasible path. In order for x* to
be a local solution, the curvature of f along any feasible path must be nonnegative, i.e., it must
hold that

d2

Wf(m*(a)) > 0. (2.41)

a=0
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Using (2.40) and the definition of v, we write (2.41) as

d2 % d * d *
@) = (V@) pe @)
ZVf(Z‘*)T %$*(Q) +pTV2f(x*)p
a=0
=y () +p TV (2 )p. (2.42)

Rewriting (2.39) as Ve;(z%)Tv = —pTV%;(2*)p for i € A, (z,y), and substituting this expression
into (2.42), we obtain

O
Zaz/ (@7 (@)

= =" (3 v Viei(a) )p + 0"V (" )p = pTH "y )p 2 0,
0 i=1

where H(x* y*) is the Hessian of the Lagrangian at (z,y) = (z* y*). O

If the active constraints are linear, then both the first- and second-order constraint qual-
ifications hold. Similarly, the LICQ is sufficient to ensure that both the first- and second-order

constraint qualifications to hold.

Definition 2.2.9 (Isolated constrained minimizer). A local constrained minimizer x* is isolated if

there’s a neighborhood of ©* containing no other local constrained minimizers.

Theorem 2.2.3 (Sufficient conditions for an isolated minimizer). A point x* is an isolated local

constrained minimizer of (NIP) if

*

is a KKT point, i.e., c(x*) > 0 and there exists a nonempty set Y of multipliers y satisfying
y >0, c(z*) -y =0, and Vf(z*) = J(z*)"y;

(a) x

(b) the MFCQ holds at x*, i.e., there is a vector p such that Jo(x*)p > 0;

(c) for ally €Y and all nonzero p satisfying Vf(x*)Tp =0 and J,(z*)p > 0, there exists w > 0
such that p" H(z* y)p > w|lp|*.

Proof. See [37, Theorem 2.23]. O

Although Theorem 2.2.3 is very nice, its conditions are not easy to check in their full
generality. The verification of assumption (c) for all p such that Vf(z*)Tp = 0 and J.(z*)p > 0
requires finding the global minimizer of a possibly indefinite quadratic form over a cone, an NP-hard

problem, not to mention the issue of how to check that (c) holds for all y € Y(«*). If, however, the
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gradients of the active constraints at x* are linearly independent and strict complementarity holds,

Theorem 2.2.3 leads immediately to the following result.

Theorem 2.2.4 (Strong sufficient conditions for an isolated minimizer). A point z* is an isolated

local constrained minimizer of (NIP) if

(a) the LICQ holds at x*, i.e., Jo(x*) has full row rank;

(b) z* is a KKT point and strict complementarity holds, i.e., the (necessarily unique) multiplier

y* has the property that yf > 0 for all i € A(z*);

(c) for all nonzero p satisfying Jo(x*)p = 0, there exists an w > 0 such that
P H(zy")p 2 wllp|*.

Proof. See [37, Theorem 2.24]. O

As an alternative, many methods for inequality constraints may be motivated by con-
sidering a form of (NIP) in which the nonlinear inequality constraints are converted to equalities
using a set of nonnegative slack variables. A slack variable s; can be used to convert the inequality

constraint ¢;(z) > 0 to an equality constraint by means of the transformation:
ci(x) >0 ifand only if ¢;i(z) —s; =0, s; >0.
This gives the following mixed-constraint problem, which is equivalent to (NIP):

inimi j — 5= > NIP
Iinimize f(z) subject to c(z) —s=0, s>0, (NIPs)

Note that problem (NIPs) has two types of constraint: the nonlinear equality constraints
c(x) — s = 0 and the nonnegativity constraints s > 0. The treatment of equality constraints will
be discussed in Section 2.2.4. Problems of the form (NIPs) are especially convenient when the
x-variables are already subject to upper and lower bounds, which is a very common situation in
practice. In this situation, it is best to treat the bounds specially and not include them in the

general inequalities c(z) > 0.

2.2.2 Barrier methods

Classical barrier methods for inequality-constrained optimization is the foundation of the

modern interior methods. A barrier method is motivated by the unconstrained minimization of a
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function that combines the original objective function with a positively weighted barrier term that
prevents iterates from leaving the feasible region. The predominant barrier function today is the

logarithmic barrier function:

Blaip) = (@) = u ) lnci(a), (2.43)

where (1 is a positive scalar that is known as the barrier parameter. An important feature of B(z, )
is that it retains the smoothness properties of f(x) and c(z) as long as ¢(z) > 0.

Minimizers of the barrier function and local constrained minimizers of the original problem
are closely related. An initial hint of those relationships can be seen algebraically from the gradient

of the barrier function (2.43), denoted by VB(z; ), which can be expressed in various equivalent

forms:
VB(z;u) = Vf(x) — Z cl(Lx) Ve, (x), (2.44a)
= Vf(z) — pJ(z)TC(x)"te, and (2.44b)
= Vf(z) = J(2)" (1 -/ c(2)). (2.44c¢)

In the form (2.44b), C(x) denotes the m xm diagonal matrix of constraint values and e the m-vector
of all ones.
An unconstrained minimizer of B(z;u) will be denoted by either z, or z(u), and it will

be shown that c¢(z,) > 0. Because VB(x; u1) is twice-continuously differentiable, it must hold that

VB(z,, ;1) = Vf(z,) — pJ(r,) T C(x,) re = 0. (2.45)
It follows that m
Vf () = 1l (2) T Clap) le = S c.(l;ﬂ) Vei(z,).
i=1

Hence the objective gradient at x,, is a positive linear combination of the constraint gradients. The
coefficients in that linear combination are called the barrier multipliers (by analogy with Lagrange

multipliers) and denoted by y,. Formally, y,, is defined as

Yu = uC(wu)_le =/ clzy).
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Thus the gradient at x, can be expressed as

vf(xu) = Z

=1

Vei(zy,) = J(zH)Tyu, with y, >0,

1
ci(zp)

which resembles the stationarity and nonnegativity properties (2.33b) and (2.33c), Vf(z*) =
J(z*)Ty* and y* > 0, that hold at a KKT point. Moreover, the definition of Yy implies that

clxy) ~yp=p, or ci(xy)(yu)i =, t=1,...,m. (2.46)

This componentwise relationship between the barrier multipliers, constraint values, and the bar-
rier parameter, called perturbed complementarity, is analogous as yu — 0 to the complementarity
condition c¢(z*) - y* = 0 (2.33d) that holds at a KKT point.

An alternative interpretation of VB(x ;1) = 0 can be derived by defining m new indepen-

dent variables y and writing (2.45) as n + m nonlinear equations in x and y:

Vf(z) — J(z)T 0
f) @) _ (0} .

C(z)y — pe 0
Recalling that the barrier multipliers y,, are defined as p -/ c¢(z,), it is easy to see that (z,,y,)
satisfy the nonlinear equations (2.47). Conversely, given any solution (z ;y) of (2.47), the associated

vector x is a stationary point of the barrier function with parameter p. The equations (2.47) are

called the perturbed optimality conditions.

Definition 2.2.10 (Strictly feasible points). The subset of points in 2 for which all the constraint

functions are strictly positive is denoted by int.(£2) and defined as
int.(2) ={x:¢(x) >0, i=1,...,m}.

A point x in int.(§2) is said to be strictly feasible.

A general convergence theorem for the barrier methods (Theorem 2.2.5) depends on the
existence of a subset of local constrained minimizers that is “isolated” within the full set of local

constrained minimizers.

Definition 2.2.11 (Isolated subset). Given sets X* C X C R", X* is an isolated subset of X if
there exists a closed set € such that X* C int(€) and ENX = X*.

The following convergence theorem requires that at least one of the points in A* must
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lie in the closure of int.(f2), i.e., X* contains either a strictly feasible point or a limit point of
int.(£2). This assumption is needed because barrier methods can be viewed as finding the infimum
of f subject to ¢(x) > 0, so that a sequence of barrier minimizers, each of which lies in int.(f2), can

only converge to a feasible point that lies within the closure of int.(£2).

Theorem 2.2.5 (Local convergence for barrier methods). Consider the problem of minimizing f(z)
subject to c(x) > 0, where [ and ¢ are continuous. Let {2 denote the feasible region, let X denote
the set of minimizers with objective function value f*, and assume that X is nonempty. Let {Mk }
be a strictly decreasing sequence of positive barrier parameters such that limg o g = 0. Assume

that

(A1) there exists a nonempty compact set X* of local minimizers that is an isolated subset of X';
(A2) at least one point in X* lies in the closure of int.({2).

Then the following results hold:

(i) there exists a compact set S such that X* C int(S) and such that, for any feasible point T in
S but not in X*, f(z) > f*;

(ii) for all sufficiently small py, there is an unconstrained minimizer wy of the barrier function

B(x; pg) in int.(£2) Nint(S), with
B(wy ; p) =min{ B(z ;) : € int.(2) NS }.

Thus B(wy, ; pr) is the smallest value of B(x;py) for any x € int.(£2)NS;

(iii) any sequence of these unconstrained minimizers { W } of B(x; ug) has at least one convergent

subsequence;

(iv) the limit point T of any convergent subsequence {xk} of the unconstrained minimizers

{wy } defined in (i) lies in X*;

(v) for the convergent subsequences { zx } of part (iv),
lim f(zx) = f* = lim Bz ;).
k—o0

k—o0

Proof. See [37, Theorem 3.10]. O
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The following theoerem summarizes conditions under which a sequence of barrier minimiz-
ers not only converges to x* but also defines a differentiable path to x*. Depending on the context,

this path is called either the central path or the barrier trajectory.

Theorem 2.2.6 (Properties of the central path/barrier trajectory). Consider the problem of min-
imizing f(x) subject to c¢(x) > 0. Let 2 denote the feasible region, and assume that the set int,
of strictly feasible points is nonempty. Let x* be a local constrained minimizer. Assume that the

following sufficient optimality conditions hold at x*:

*

(a) x* is a KKT point, i.e., there exists a nonempty set Y of Lagrange multipliers y satisfying

Y={y:Vf(@)=J") "y, y>0, and c(z) - y=0};
(b) the MFCQ (Definition 2.2.7) holds at x*, i.e., there exists p such that Jo(z*)p > 0, where

Ja(x*) denotes the Jacobian of the active constraints at =*; and

(c) there exists w > 0 such that pT H(z*,y)p > w||p||? for all y € Y and all nonzero p satisfying
Vf(z*)Tp =0 and J,(z*)p > 0, where H(x*,y) is the Hessian of the Lagrangian.

Assume that a logarithmic barrier method is applied in which py converges monotonically to zero

as k — oo. Then

(i) there is at least one subsequence of unconstrained minimizers of the barrier function B(x; uy)

converging to x*;

(i) of { xk } is one such a convergent subsequence, then the sequence of barrier multipliers {y’C },

whose ith component is g /c;(x"), is bounded;
(iii) limpooy®* =7 € V.

If, in addition, strict complementarity holds at x*, i.e., there is a vector y € Y such that

yi >0 for all i € A, then
(iv) Fa > 0;
(v) for sufficiently large k, the Hessian matriz V2B(x*, ui,) is positive definite;

(vi) a unique, continuously differentiable vector function x(u) of unconstrained minimizers of

B(x;u) exists for positive p in a neighborhood of u = 0; and

(vii) lim, o, x(p) = z*.
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Proof. See [37, Theorem 3.12]. O
If the strict complementarity holds at z*, a useful corollary can be derived.

Corollary 2.2.1. Under assumptions (a)—(c) of Theorem 2.2.6 and the added assumption of strict

complementarity at x*, ||[2% — 2*|| = O(ux).
Proof. See [37, Corollary 3.14]. O

A direct translation of the above theory into practice leads to a method in which minimizers
x,, of the barrier function are computed for a sequence of positive barrier parameters ;i converging
to zero. Such a method is structured into inner and outer iterations, where the inner iterations
apply a line-search method or a trust-region method to compute an unconstrained minimizer of
B(z; u) for a fixed value of i, and the outer iterations test for convergence and adjust p. In recent
algorithms, the idea is to improve efficiency by performing only an inexact minimization of the
barrier function for each particular p. With such a strategy, inner iterations are executed until a
suitable measure of improvement has been achieved; the barrier parameter is then reduced and the
process repeated.

While a general-purpose unconstrained technique such as a Newton-based line-search
method can be applied to solve the subproblem of minimizing the barrier function B(x;u), it
should be noted that there is always an implicit constraint c(x) > 0 as B(x ;1) is only well-defined
at strictly feasible points. For linear constraints, often a “fraction to the boundary” parameter
is used such that the initial step is taken as a fraction of the distance to the boundary, thereby
retaining the strict feasibility of the next iterate. For nonlinear constraints, the determination of
the step to the boundary may require additional evaluations of the constraint functions. Moreover,
as many general-purpose line-search techniques rely on polynomial interpolations, they may not be
well suited to the extreme behavior of barrier functions near the boundary. Various special-purpose
line searches have been proposed for use in barrier methods (see e.g., MurW94).

Given an interior point x, the classical Newton barrier equations V?B(z ;) = —VB(z ;i)

at the current point x are

(VZf(x) - cfx) Ve () + y,J(x)TC(x)*?J(x)) p=—Vf(z)+pd(2)TC@) e, (2.48)

The equations (2.48) may be simplified by introducing an auxiliary m-vector 7(z ; 1), which can be

viewed as a Lagrange multiplier estimate defined at an arbitrary strictly feasible point.
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Definition 2.2.12 (Primal multipliers). At any strictly feasible point x, the vector w(x;u) with
components pi/c;(x) is known as the vector of primal multipliers. The dependence of ™ on u may

be omitted if u is obvious.

For any sequence {:vk } converging to x,, it must hold that limy_,o (g, ) = y,. Sub-

stituting the vector m in (2.48), the barrier gradient and Hessian may be written in the form

VB(z;p) = Vf(z) = J(2) " n(z;p) and

(2.49)
V°B(z;p) = H(z,7) + J(z)" (2, 1) O (2) J(2),

where H (z,7) is the Hessian of the Lagrangian evaluated with y = 7, and IT is the matrix diag(my,
T2, ..., Tm). These relations indicate that the barrier derivatives are intimately related to those of
the Lagrangian evaluated with the primal multipliers.

It is well-known that the Hessian matrix V2B becomes increasingly ill-conditioned as p — 0
(see e.g., [88]). Thanks to a fortuitous combination of the special structure of the linear system and
the cancellation errors that arise in computation, it is usually possible to solve the Newton barrier
equations with acceptable accuracy despite the ill-conditioning (see [89]). However, it can be shown
that the exact Newton step is inherently flawed in minimizing the classical barrier function because
of the strong possibility of violating the constraints and its inefficiency in following the barrier
trajectory (see [37]).

As an extension of the classical barrier methods, modified barrier methods [8, 15, 56, 72, 77|
define a sequence of unconstrained problems in which the value of p remains bounded away from
zero, thereby avoiding the need to solve a problem whose Hessian becomes extremely ill-conditioned
as u approaches zero. The modified barrier methods are based on the observation that for a fixed
positive 4, the constraints ¢;() > 0 and p1In (14 ¢;(x)/p) > 0 are equivalent, i.e., their associated
sets of feasible points are identical. Moreover, a KKT point for the original problem (NIP) is also

a KKT point for the modified problem

minei%ize f(x) subject to pln(1+ci(z)/p) >0, i=1,2,...,m. (2.50)

This motivates the definition of the modified barrier function:

M(z,y;p0) = f(z) =Y yiln (14 ci(x)/p), (2.51)

i=1

which can be interpreted as the conventional Lagrangian function for the modified problem (2.50).
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The modified barrier function implicitly imposes the shifted constraints ¢;(z)+p >0,i=1,2, ...,
m. Therefore, the barrier parameter p can be alternatively interpreted as shifts for the constraints
(113).

A complete theory analogous to that of the classical logarithmic barrier function exists for
the modified barrier function (see [77]). A crucial property of the modified barrier function is that
if y* is a multiplier vector in Y(x*) (see Definition 2.2.3), then there exists a fixed p* such that for
all u < p*, the corresponding x* is a local minimizer of M (z,y*;u), i.e., VM (z*,y*; 1) = 0 and
V2M (z*,y* ; ) is positive semidefinite. It follows that, if an optimal multiplier is known, z* can
be found from just one unconstrained minimization.

In practice, neither the optimal multiplier vector nor an upper bound on g is known in
advance. As a result, a sequence of problems must be solved in which each M (x,y;u) is defined
with estimates of y* and p*. The multiplier estimate is updated following each subproblem, and
the barrier parameter is reduced if V2M (z,y;p) is not sufficiently positive definite. (For details,
see, e.g., [8, 56, 72, 77].)

2.2.3 Primal-dual interior methods

Due to inherent flaws in the classical barrier method, it is desirable to develop interior
methods that retain the good properties of the classical methods while avoiding their defects. As
a result, primal-dual interior methods based on properties of (1) become increasingly popular for
solving general nonlinear programming problems (see e.g., [11, 16, 26, 34, 42, 80, 82]). In a primal-
dual method, the original (primal) variables = and the dual variables y (representing the Lagrange
multipliers) are treated as independent.

The usual motivation for primal-dual methods is to find (z,y) satisfying the equations
that hold at x(u). Based on the perturbed optimality conditions (2.47), the goal is to compute a

feasible solution (z(u),y(r)) of the n + m nonlinear equations F*(x,y) = 0, where

W) — Vf(z) = J(z)Ty
i 7y)_< C(z)y — pe )

Let v denote the (n 4+ m)-vector of the combined unknowns (z,y) at a point that is strictly feasible
in both = and y, i.e., ¢(z) > 0 and y > 0. If F'#(v) denotes the function F*(z,y), then a Newton
direction Av = (Ax, Ay) is defined by the Newton equations F*(v)' Av = —F#(v). After collecting
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terms on the right-hand side, the Newton primal-dual equations may be expressed as

(1) =) () (=) .
vi@ @) \ay Ca)(y — (1)
where H(x,y) is the Hessian of the Lagrangian evaluated at (z,y).

The success of primal-dual methods is due in part to their effectiveness at following the
barrier trajectory. In particular, if (z,y) = (m(u), y(,u)) is a point on the trajectory, and the barrier
parameter is reduced from p to fi, the primal-dual direction (i.e., the solution of (2.52) with p = f1)

is tangent to the trajectory at (z,y). This property is easily shown by noting that on the trajectory,
the relations y = 7(x, u) and Vf(x) — J(z)Ty = Vf(z) — J(z)Tm = 0 hold, and hence Az and Ay

satisfy
<H(x,y) —J(m)T> (Am) _ ( 0 ) (2.53)
YJ(@)  Clx)) \Qy (n—h)e)

On the other hand, differentiating F*(z,y) = 0 with respect to u leads to the following equations

for (a'(n),y'(1)):

(H(x(u),y(u)) —J(x(u))T> (Mu)) _ <0>. (2.54)

Y(p)J(x(w)  Clz(p) y' (1) e

If the strong sufficient optimality conditions of Theorem 2.2.4 hold at z*, then the matrix of
(2.54) has a bounded condition number as p — 0. Comparing (2.53) with (2.54) shows that
Ax = (@ — p)a’ (1) and Ay = (@ — )y’ (p). Hence, based on the Taylor-series affine model of z(u)
near u, Az and Ay will usually give a good approximation of the step to (m(ﬁ), y(ﬁ)), the next
point on the trajectory.

As in the classical Newton-barrier method, primal-dual methods have a two-level structure
of inner and outer iterations, with the inner iterations corresponding to the iterations of Newton’s
method for a given value of p. Primal-dual methods exhibit excellent performance in the neighbor-
hood of a trajectory. In particular, under the assumption of strict complementarity and a suitable
constraint qualification, the inner iterations converge at a Q-quadratic rate; see, e.g., [26]. Moreover,
the inner iterations can be terminated so that the combined sequence of inner iterates ultimately
converges to x* at a Q-superlinear rate; see, e.g., [59, 91, 93, 94].

Beyond the work associated with function evaluations, the cost of a primal-dual iteration is
dominated by the cost of solving the linear system (2.52). To improve efficiency for large problems,

a common approach is to use block elimination to obtain smaller “condensed” systems. As ¢(z) > 0,
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the (2,2) block of (2.52) may be eliminated to give the following n x n system for Ax:
Ho (2, y) Az = —(Vf(2) - J(2) "n(a, ), (2.55)
where the condensed primal-dual matriz H.(x,y) is defined as
H.(z,y) = H(z,y) + J(x) " D(x,y) ' J(z), with D(z,y) =Y 'C(z).

The matrix D, which is introduced for later convenience, is diagonal and positive definite, with
diagonal elements d; = ¢;/y;. The condensed primal-dual system can be solved by either direct
or iterative methods, using (for example) an off-the-shelf Cholesky factorization or preconditioned
conjugate-gradient method.

A drawback with block elimination is that significant fill-in can occur in H.. An alternative
strategy is to factorize the full (n+m) x (n+m) system in (2.52) (see, e.g., [39, 40, 48, 49]), typically
after symmetrizing the system. A symmetric matrix can be created by multiplying the second block

of equations in (2.52) by Y ~! and changing the sign of the second block of columns, giving

T A
J =D —Ay D(y—m)

where dependencies on x, y and p have been suppressed for brevity. As p — 0, the diagonals
of D corresponding to the active constraints grow without bound and so this particular form of
symmetrization produces an increasingly ill-conditioned system. However, it can be shown that the
ill-conditioning is benign as long as certain direct methods are used to factorize the matrix. (For
more details, see [36, 78, 89, 90].)

In the neighborhood of a trajectory of minimizers, the primal-dual system is usually non-
singular and the iterates converge at a Q-quadratic rate. However, when the problem is nonconvex
and the primal-dual iterate is far from the trajectory, there is no guarantee that a solution of the
primal-dual system or condensed system exist. In this case, systems based on certain modified
Hessians must be formulated.

An important component of a practical primal-dual method for nonconvex optimization is
the method used to ensure convergence from any starting point. One of the most popular strategies
is to require, through a line search, a sufficient decrease in a merit function that forces the early
iterates towards the trajectory.

A number of primal-dual methods use the classical barrier function B(z,u) as a merit
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function (see, e.g., [14, 63]). A different approach is based on the merit function

M*(z,y) = f(z) — ,uZlnci(a:) - MZ (ln (Q(i)%) +1-— Q(i)%) , (2.57)
i=1 i=1

which includes both primal and dual variables (see [34]). The function M*(z,y) is the classical
barrier function B(x, ) augmented by a weighted proximity term that measures the distance of
(z,y) to the trajectory (x(u),y(u)). A key property of M*(x,y) is that it is minimized with
respect to both = and y at any point (z(u),y(u)) on the trajectory, which implies that a decrease
in M*(z,y) can be used to measure the progress towards a minimizer of B(z, ). The gradient of

MH(z,y) is
VM (. ) = <Vf<x> 2] (1) C(x) e J(x)Ty) _ (vm:) = J(x)" (27 — y)) |

C(z)e — pY ~te Y 1C(z)(y — )

where m# = 7(x, ) is the vector of primal multipliers (see Definition 2.2.12)). The Hessian of
MM (z,y) is

V(1) = (H(xm—y) +27(2)"C () LI () J<w>T>

J(x) py =2

(
H(z,y+2(r—y)) +2J(2)THC(z)" I (z) J(x)T
J(z) pry-1)’

with D = Y ~'C(x) as defined before. As (2(u),y(1)) minimizes M*(z,y), it follows that VM*(z,y) =
0 and V2M*(z,y) is positive semidefinite at all points on the trajectory. As a result, line-search
or trust-region methods can be devised in which the local quadratic model is Q(s) = sTVM +
%STHl(Lpd)S, where
) _ <H(x,y) +2J(z)TD1J(x) J(:v)T)
" J(x) D )

ie., H,(fd) is V2M*(x,y) with 7 replaced by y. It can be shown that if H,(fd) is positive definite,
the solution of H, l(fd)s = —VM is the unique minimizer of Q(s), and that s = (Ax, Ay) also solves
the primal-dual system (2.52). Indeed, note that a premultiplication of both sides of (2.52) by the

I 2J(z)TD!
0 y-1

nonsingular matrix
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gives the equivalent equation

(H(x,y) +2J(z)TD " J(2) J@)T) (m) _ (Vf(x) — J(z)T(2r — y)> |
J(x) D Ay D(y — )

These properties suggest a line-search method for minimizing M*(z,y) that uses the so-
lution of the primal-dual system (2.52) as a search direction (for more details, see [34]). If H, ,(fd) is
sufficiently positive definite, the search direction is the unique solution of H ,(f’d)s = —VM (equiv-
alent to the primal-dual system (2.52)). Otherwise, the search direction can be chosen as a the
solution of a related positive-definite system H Efd)s = —VM, with H ffd) a modified Hessian that
approximates H ,(fd). If the condensed matrix is formed, it can be modified “on the fly” during the
factorization so that its factors are those of a positive-definite H + JTD~!J for some implicitly
defined H (see, e.g., [35]). Alternatively, the inertia-controlling LBLT factorization discussed in
[33, 34, 38] detects and modifies indefiniteness of the (implicitly defined) matrix H +JT D~1.J while
factorizing the full system (2.56). A potential drawback is that the row and column interchanges
needed by the inertia-controlling factorization interfere with the row and column ordering used to
maintain sparsity in the factors, producing factors that are generally less sparse than those obtained

by off-the-shelf sparse-matrix software.

2.2.4 Treatment of equality constraints

Although interior methods are, strictly speaking, relevant only to inequality constraints,
it is essential to take into account equality constraints as they may arise naturally as part of
an optimization problem together with inequality constraints. Additionally, it is sometimes more
efficient to convert an inequality constraint into an alternative form that involves one or more
equality constraints. The two most common reformulations of of the single inequality constraint

ci(x) > 0 are

ci(x) —s; =0, s; >0, where s; is called a slack variable; or

ci(x) +s; >0, s; =0, where s; is called a shift variable.

The slack and shift reformulations allow interior methods to be applied to inequality constraints
even if no initial strictly feasible point is known, as long as suitable techniques are available for
dealing with equality constraints. Moreover, within an interior method, it is extremely simple to

retain strict feasibility with respect to the bound constraint s; > 0 imposed on a slack variable,
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while the step to the boundary of a general nonlinear constraint must be calculated with additional
evaluations of the constraint function.

Now let £ and Z denote a partition of the m indices of constraint functions { ¢;(z) } such
that every i € £ corresponds to an equality constraint ¢;(x) = 0, and every i € Z corresponds to
an inequality constraint ¢;(z) > 0. A general nonlinearly constrained optimization problem may be

written in the form
minimize f(x)
ci(z)=0, ie& (NCP)

ci(z) >0, 1€

subject to

The problem is to find the least value of f(x) over all values of x in D that satisfy mp equality
constraints ¢;(x) =0, i € £, and m; inequality constraints ¢;(x) > 0, ¢ € Z. The feasible region for

this problem is given by
Q={2eR":¢(x)=0, i€&, and ¢(z) >0, i€}

Let ¢z (z) denote the subvector of components ¢;(x), with ¢ € Z, and ¢ (x) the subvector ¢;(z), with

ief.

Definition 2.2.13 (Active, inactive, and violated constraints). For the inequality constraints
cz(x) > 0, the ith constraint is said to be active at T if ¢;(Z) = 0, inactive if ¢;(£) > 0 and
violated if ¢;(Z) < 0. For the equality constraints c.(x) = 0, the ith constraint is satisfied at T if
¢i(T) = 0 and violated at T if ¢;(T) # 0. The active set A(Z) is the set of indices of the active
constraints at T, i.e., A(T) = {i: ¢;(¥) = 0}. The set of active inequality constraints at T is
denoted by A, (z), i.e., Aa(Z) = {i €T :¢;(2) =0}.

Before discussing methods for dealing with equality constraints, the optimality conditions
for the general mixed-constraint problem (NCP) will be stated. The following definition is directly

analogous to the definition of a KKT point for an inequality-constrained problem (Definition 2.2.2).

Definition 2.2.14 (First-order KKT point). The first-order KKT conditions for problem (NCP)
hold at the point x*, or, equivalently, =* is a (first-order) KKT point, if there exists a Lagrange
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multiplier vector y* such that

cz(x*) >0 and c.(z*) =0 (feasibility),
Vf(z*) = J(a*)Ty* (stationarity),
(2.58)
yr >0 (nonnegativity), and
e (x™) - yr = (complementarity).

The first-order KKT conditions may be written more compactly as F'(z,y) = 0, ¢z(z*) > 0,
yz > 0, with
Vf(z) = J(z)Ty
F(z,y) = cz(x) - Yz . (2.59)
ce(x)
The KKT conditions are based on the properties of constraint linearizations, and hence
they are necessary conditions for optimality only when the local constraint linearizations reflect the

properties of the nonlinear constraints, i.e., when a constraint qualification holds.

Definition 2.2.15 (LICQ for mixed constraints). The linear independence constraint qualification
holds at the feasible point & of (NCP) if the constraint gradients Vc;(z), i € EU A, (Z) are linearly

independent.

Definition 2.2.16 (MFCQ for mixed constraints). The Mangasarian—Fromovitz constraint qual-
ification holds at the feasible point & of (NCP) if the gradients of the equality constraints at T,
Vei(%), i € €, are linearly independent and if there exists a vector p such that NVe;(Z) p > 0 for all
i € Aa(Z) and Ve;(Z)Tp =0 for alli € €.

It must be emphasized that full row rank of J.(Z) is needed for the MFCQ to hold at Z.
Moreover, satisfaction of the LICQ implies that the MFCQ also holds.

Theorem 2.2.7 (First-order necessary conditions for mixed constraints). If z* is a local minimizer

of problem (NCP) and the MFCQ holds at x=*, then x* must be a KKT point. O

By analogy with Definition 2.2.3 for the inequality case, the set of multipliers that satisfy
the KKT conditions of Definition 2.2.14 is defined below.

Definition 2.2.17 (Acceptable Lagrange multipliers for mixed constraints). Given a KKT point
x* for problem (NCP), the set of acceptable multipliers is defined as

V(*) = {y eR™ : Vf(z*) = J(z*)Ty, yr >0, and yr - cz(z%) = O}. (2.60)
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Using Y(z*), second-order necessary conditions for optimality can be stated when the
LICQ holds.

Theorem 2.2.8 (Second-order necessary conditions for (NCP)). Suppose that x* is a local min-
imizer of (NCP) at which the LICQ holds. Then there is a vector y* which satisfies yi > 0,
cz(z*) - yX =0, and Vf(z*) = J(x*)Ty*, and pT H(z*,y*)p > 0 for all p satisfying Vf(z*)Tp =0,
Je(z*)p =0 and J.(x*)p > 0. O

The next theorem is analogous to Theorem 2.2.3.

Theorem 2.2.9 (Sufficient conditions for an isolated solution). The point x* is an isolated local

constrained minimizer of problem (NCP) if

(a) z* is a KKT point, i.e., cz(x*) > 0, ce(z*) = 0, and there exists a nonempty set Y of
multipliers y satisfying yz > 0, co(x*) - y; =0, and Vf(z*) = J(z*)Ty;

(b) the MFCQ holds at x*;

(c) for all y € Y(x*) of (2.60) and all nonzero p satisfying Vf(z*)Tp = 0, Je(x*)p = 0 and
Ja(z*)p >0, there exists w > 0 such that p™ H(x* y)p > w||p||>. O

Finally, the following theorem is analogues to Theorem 2.2.10.

Theorem 2.2.10 (Strong sufficient conditions for an isolated solution). The point z* is an isolated

local constrained minimizer of problem (NCP) if

(a) z* is feasible and the LICQ holds at z*, i.e., (‘EE?;) has full row rank;

(b) z* is a KKT point and strict complementarity holds, i.e., the (necessarily unique) multiplier

y* has the property that [y:]; > 0 for all i € A,(z*);

(c) for all nonzero p such that J,(xz*)p = 0, there exists w > 0 such that pT H(z* y*)p > wlp||*.
O

Condition (c) of Theorem 2.2.10 is equivalent to stating that the reduced Hessian of the

Lagrangian, Z(z*)TH (2% y*)Z(z*), is positive definite, where Z(z*) is a matrix whose columns

Jz(f*))
Ja(z™) )°

A classical treatment of equality constraints is to eliminate them through unconstrained

form a basis for the null space of (

minimization of a composite function that includes a penalty for violating c.(x) = 0—most com-
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monly, the quadratic penalty function ||c|3/u. For a general mixed-constraint problem, a penalty-

barrier function was proposed in [31]:

Bou(oi ) = 1) = 1 Y o) + 5 s (2.61)
ieT
The implicit constraints c;(z) > 0 are handled by the barrier term. Let x,, denote an unconstrained
minimizer of ®pp(z; 1). A detailed analysis, analogous to the results of barrier methods, is given in
[31] of the conditions under which, for sufficiently small 4, the sequence { x,, } defines a differentiable
penalty-barrier trajectory converging to x*.
To find z,,, stationarity of V®ps(z) must be exploited. Writing out V®@pg(z) and rear-
ranging produce a system of nonlinear equations equivalent to the condition that V@ (x) = 0:
V(@) = J(@)ty
cz(x) - yr — pe
ce(r) + pye

FH(z,y) = =0, (2.62)

where y; and y, represent multiplier estimates that converge to y; and y: as u — 0, and, at x,,
satisfy the relations

cz(zy) - yr = pe and pye = —ce ().

A useful interpretation of (2.62) is that the complementarity portions of the KKT conditions (2.58)
corresponding to both inequality and equality constraints have been perturbed.

For inequality constraints, define m(z, 1) as

mr(z, 1) = p -/ ez(2), (2.63)

so that 7, is an estimate of y; at the current iterate x for a specific value of u; see Definition 2.2.12.

To complete the definition of 7 (x, i) for the equality constraints, define an estimate of y. as

Te (@, 1) = —ce(2)/p-

Application of Newton’s method for equations to (2.62) gives

COE-EY -
zZJ W) \Ay W(y — )
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where W and Z denote diagonal matrices whose entries are

wr(z) = cz(x), we(x) =pe, 2:(y) =yz, and z:(y) =1. (2.65)

The matrix in (2.64) can be symmetrized into the form (2.56), where D = Z~'W; thus (2.64) can
be solved similarly as solving the primal-dual equations (2.52).

Treating equalities via a quadratic penalty function tends to regularize the problem in
the sense that, as long as p is nonzero, the matrix (ZJ W) may have full row rank even if the
Jacobian J; is rank-deficient. Consequently, one needs to modify only H to make the matrix in
(2.64) nonsingular [34].

A Newton-based line-search or trust-region method can be used to solve the nonlinear
equations (2.62). In the context of a line-search method, @,y itself can be used as a merit function.

Alternatively, the merit function M*(z,y) of (2.57) can be generalized by adding

1
o lles (@) + pye 3, (2.66)

1
sl @I + 5

which represents a combination of the original quadratic penalty term from (2.61) and a term that
reflects proximity to the condition pys = —ce(x,,) that holds along the penalty-barrier trajectory.
If x,, is a point on the penalty-barrier trajectory and y, is the associated multiplier defined by
(2.62), then (z,,y,) is an unconstrained minimizer of M*(z,y) for sufficiently small p. See [34, 43]
for further details.

Other than the classical penalty-barrier approach, the mixed-constraint problem (NCP)
can also be solved by applying a sequential quadratic programming (SQP) method to solve a

sequence of equality-constrained subproblems of the form

minimize f(z MZ Inc;(x
Tk €T (2.67)
subject to ¢;(x) =0, i €€,

with the value of p converging to zero (see, e.g., [12, 22, 42, 76, 92]).
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Chapter 3

Projected-Search Methods for

Bound-Constrained Optimization

3.1 Introduction

This chapter describes two new classes of projected-search methods for bound-constrained

problems of the form

minigﬁze f(z) subject to z € (2, (BC)
zeR™

where f : R" — R is a twice-continuously differentiable function and 2 = { reR" <z <u } for
vectors of lower and upper bounds such that ¢ < u (with all inequalities defined componentwise).

The first-order optimality conditions for problem (BC) at z* € 2 are
>0 ifat =4,

= (2, with Vlf(z*) =0 if¢; < Ij < Ujg,

<0 if zf = wy,

where V; f(z) denotes the i-th component of the gradient of f. These conditions impose sign
conditions on the gradient at components of x* associated with the active set A(x*).

A conventional projected-search method for problem (BC) generates a sequence of feasible
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iterates {xk };O:o such that zx11 = proj o (zr + axpr), where py is a descent direction for f at xy,

ay is a scalar step length, and proj ,(z) is the projection of z onto the feasible region, i.e.,

b if x; < fi,
[projn(x)]i = u; if z; > u;,

x; otherwise.

The new iterate may be written as zp11 = xp(ag), where xp(a) denotes the vector zy(a) =
proj o (zr + apg). The function z(«) defines a linear piecewise-continuous path, and the function
f(xk(a)) is not necessarily differentiable along x4 («). In particular, f(xk (a)) may have a “kink”
at any a > 0 at which [py]; # 0 and either [z + api | = ¢; or [z + apk]; = w;. This implies
that it is not possible to use a line search based on the conventional Wolfe conditions. Thus,
existing projected-search methods are restricted to using a search based on satisfying an Armijo-
like condition along the path xp(a). A commonly used Armijo-like condition is the quasi-Armijo

condition:
flen(an)) < fzx) + arnaVf (@) " pr. (3.1)

A step that satisfies this condition is called a quasi-Armijo step. If v and o denote fixed parameters
such that v > 0 and o € (0, 1), then a quasi-Armijo step has the form oy = yo'*, where ¢, is the
smallest nonnegative integer such that the quasi-Armijo condition (3.1) is satisfied.

In this chapter, a new quasi- Wolfe line search is formulated that extends the benefits of
a Wolfe line search to projected-search methods. The behavior of the search is similar to that of
a conventional Wolfe line search, except that a step is accepted under a wider range of conditions
that take into account points at which f is not differentiable. As in the unconstrained case, the
quasi-Wolfe step can be computed using safeguarded polynomial interpolation and the accuracy of
the step can be adjusted.

Two general classes of projected-search methods that use the new quasi-Wolfe search are
proposed for solving problem (BC). These methods may be broadly categorized as being active-set

methods or interior methods.

Projected-search active-set methods. The class of projected-search active-set methods is char-
acterized by the use of a descent direction d; computed with respect to a perturbed or extended
active set (a similar set is used by Bertsekas [6]). The vector di may be computed in many ways,
e.g., using an exact or modified Newton method or a quasi-Newton method. This direction is used

as the basis for the computation of a search direction py, and an associated step length ay, such that
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f (pro jo(zk +akpk)) < f(zg). The convergence properties are established under assumptions that
are typical in the analysis of projected-search methods. Moreover, it is shown that if the iterates
converge to a nondegenerate stationary point, then the optimal active set is identified in a finite
number of iterations. It follows that once the optimal active set has been identified, any method in
this class will have the same convergence rate as its unconstrained counterpart.

In addition, a new active-set method, a quasi-Newton projected-search method UBOPT is
proposed as an extension of the limited-memory reduced-Hessian method L-RHR of Leonard [66]
and Gill and Leonard [47]. The method is based on the work of Fenelon [27] and Siegel [81],
who independently proposed methods that exploit the fact that quasi-Newton methods accumulate
approximate curvature in a sequence of expanding subspaces. In particular, Fenelon considered
a method in which the search direction is computed using a reduced matrix that represents the
approximate Hessian in the subspace. Though the subspace and this reduced matrix increase in
dimension at each iteration, the dimension is limited to some fixed number and only the most recent

information is used to define the subspace and the matrix.

Projected-search interior methods. The class of projected-search interior methods combines
a traditional interior method with a projected-search algorithm for the minimization of a sequence
of merit functions parameterized by a positive scalar. The underlying Newton or approximate
Newton directions are projected onto a subset of the feasible region defined by perturbing the
bounds. Global convergence properties that are analogous to those of the active-set methods are
established.

The rest of the chapter is organized as follows. Section 3.2 defines a new step type,
a quasi- Wolfe step, and establishes theoretical results for the implementation of the quasi-Wolfe
search. Section 3.3 describes a class of projected-search active-set methods that utilizes the quasi-
Wolfe search, and establishes the convergence results. Section 3.4 begins with a brief review of the
L-RHR method of Leonard [66] and Gill and Leonard [47] for unconstrained optimization, and then
introduces the new method UBOPT for unconstrained and bound-constrained optimization that is
formulated based on the framework of the projected-search active-set methods, Section 3.5 proposes

a class of projected-search interior methods and establish its convergence results.
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3.2 The Quasi-Wolfe Search

3.2.1 The quasi-Wolfe step

At each iteration k, projected-search methods perform a search on the univariate function

Ui(a) = f(zr(@)) = f(proj o(zr + apk)),

instead of ¢ (a) = f(xk + apg). It is a substantially more difficult task because 1y is only piece-
wise continuously differentiable, with a finite number of jump discontinuities in the derivative (see
Section 3.2.2 below). In the following discussion, the suffix & is omitted if the iteration index is not
relevant to the discussion.

The definition of a quasi-Wolfe step involves the left and right derivatives ¥’ (a) and ¢, ()
of ¥ at a, which are defined as

Y (o) = lim ¢'(8) and ¢/ (a)= lim ¢'(B).

B—a~— B—at

Definition 3.2.1. Let n, and ny be constant scalars such that 0 < n, < nyw < 1. A step a > 0 is

called a quasi-Wolfe step if it satisfies the quasi-Armijo condition
(C1) (a) < (0) + an, b (0),

and at least one of the following conditions:

(Ca) [ ()] <y [ (0)];

(Cs) ¢ (a)] < ny [P (0)I;

(Cy4) 2 is not differentiable at o and ¥’ (a) <0 <Y ().

Figure 3.1 depicts three examples of a kink point satisfying the quasi-Wolfe conditions.
The properties of the quasi-Wolfe search are characterized by extending the framework for

the differentiable case. In particular, the discussion makes extensive use of the auxiliary function

w(a) =1(a) — (¥(0) + an, v} (0)), with w(a) =¥ () =0, (0). (3.2)

The following lemma is used to establish the propositions below.

Lemma 3.2.1. Let a, b € R be such that 0 < a < b, and assume that 0 is a univariate, continuous,
piecewise continuously differentiable function with a finite number of jump discontinuities in the

derivative.
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Figure 3.1: Three examples of a kink point satisfying the quasi-Wolfe conditions. The
left, center and right figures depict kink points satisfying conditions (Cs), (C3) and (Cy)
respectively. The slope of each dashed line is marked.

(a) If 0’ (a) <0 and O(a) < O(b), then there exists an x € (a,b) such that

0" (r) <0 <0, (2).

(b) If 0’ (a) <0 and 6’ (b) > 0 then there exists an x € (a,b) such that

0 (2) <0 <0, (a).

If 0 is differentiable at x then the inequalities in the conclusions of parts (a) and (b) hold as

equalities.

Proof. For part (a), let a = 59 < 81 < 89 < +++ < 8¢ < Sg4+1 = b, where s1, sa, ..., s; represent all
the points in (a,b) at which 6 is nondifferentiable. First, suppose that ¢’ (y) < 0 for all y € (a,b).
Then 0 is continuously differentiable and nonincreasing within each subinterval [s;, s;41] for j = 0,
1, ..., t. Tt follows that 6(a) > 6(s1) > --- > 6(s;) > 6(b). By assumption, this is true only
when 0(a) = 6(b), which implies that 6(a) = 6(s1). Thus, by Rolle’s Theorem, there exists an
x € (a,s1) C [a,b] such that 6'(z) = 0/ (x) = 0. Now suppose there is a y € (a,b) such that
¢'.(y) > 0, and let z = inf {y € (a,b) : O,(y) > 0}. Then z € (a,b), ¢, (x) > 0, and ¢’ (z) =
lim,_,,- ¢, (y) < 0. For part (b), let z = inf {y € (a,b) : ¢ (y) > 0}. Then = € (a,b), ¢, (z) > 0,
and ¢’ (z) = lim,_,,- ¢ (z) <O0. O

The next result establishes conditions on f and {2 that guarantee the existence of a quasi-

Wolfe step at each iteration.

Proposition 3.2.1. Let f be a scalar-valued continuously differentiable function defined on {2 =
{:c ceR": (<zx<u } Assume that xg € §2 is chosen such that the level set C(f(xo)) is bounded,

and assume that {pk} is a sequence of descent directions. If n, and ny are fived scalars such

62



that 0 < n, <, <1, then at every iteration k either there exists an agk) > 0 and an interval

(agk), agjk)) such that every a € (agk),agk)) is a quasi- Wolfe step, or there exists a quasi- Wolfe step

that satisfies the condition (Cy).

Proof. We omit the suffix k and write (o) = f(proj olz+ ap)). First, it will be shown that there
exists a positive scalar ¢ such that the function w of (3.2) satisfies w(a) < 0 for all a € (0,0). As
¥’ (0) = Vf(z)Tp < 0and , <1, it must hold that

W' (0) = (1 —n,)¥,(0) <0,

in which case there must be a scalar o (¢ > 0) such that w(a) < 0 for all & € (0,0). It follows that
there exists a o1 € (0,0) such that w(oy) < 0.

From the compactness of the level set £(f(z0)), 1(c) is bounded below by some constant
Ylow, 1-€., () > Yiow for all a € [0,00). As 1(0) + an 9’ (0) = —o0 as @ — 00, there must exist
a positive oo such that 1(0) + o47,¢, (0) = Yiow, and we have

LU(O'Q) = w(@) - ¢(0) - 0'2,’7A¢;(0) = '(/}(0—2) - djlow > 0.

Given scalars o1 and o9 (0 < 01 < 02) such that w(o1) < 0 and w(o2) > 0, the intermediate-value
theorem states that there must exist at least one positive « such that w(a) = 0. Let 8 denote the
least positive root of w(a) = 0, then w(a) < 0 for all & € (0,5). As w(0) = 0, w(B) = 0, and
W, (0) <0, by Lemma 3.2.1 ((a)), there exists an & € (0, 3) such that

W' (§) 0 <wl(§), or, equivalently, ¥ (£) < n,v(0) < ¥ (€).

By construction, £ € (0, 3), which implies that w(§) < 0, or equivalently, £ satisfies the
quasi-Armijo condition (Cy). If ¢/, (§) < 0, then the inequality 7, < 7y implies that & is a quasi-
Wolfe step that satisfies the derivative condition (C3). By the piecewise continuity of 1, (c), there
exists an a; > 0 and an interval (ay,ay) such that every a € (ay,ay) is a quasi-Wolfe step.

Otherwise, if ¢/ (§) > 0, then £ is a quasi-Wolfe step that satisfies the condition (Cy). O

The following result is analogous to Proposition 2.1.3 and motivates the first stage of a

quasi-Wolfe search.

Proposition 3.2.2. Let { Q; }Zo be a strictly monotonically increasing sequence with cg = 0. Let
1 be a continuous piecewise-differentiable univariate function whose derivative has a finite number

of jump discontinuities. Assume that ¢! (0) < 0 and define w(a) = ¥(a) — (¥(0) + an . (0)) with
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0 <n4 < 1. If there exists a least bounded index j such that at least one of the following “stage-one”
conditions is true:

(a) o  is a quasi- Wolfe step;

(b) w(a;) =2 w(aj_1); or

(c) W () =20,

then there exists a quasi- Wolfe step a* € [aj—1, o).

Proof. Observe that c;_; must satisfy none of the conditions (a)—(c), otherwise j would not be the
least index. This implies that w(a;—1) < w(aj—2) < - - - < w(ag) = 0 from (b), and w’ (a;—1) < 0
from (c).

The first step is to show that
w;(aj_l) < 0. (33)

If w'(aj—1) exists, then W' (aj_1) = W’ (a;—1) < 0. If w'(j_1) does not exist, then ((c)) implies
that w’ (oj—1) = ¥ (ej—1) — 1,9, (0) < 0, in which case ¥’ (a;_1) < 0 because 9’ (0) < 0 by
assumption. As (Cy) cannot hold at oy, it follows that ¢/ (a;—1) < 0. Now, if (C3) does not
hold at a;_; then ¢/ (a;—1) < 1,9 (0) < 1,9/ (0). Thus, ' (aj—1) = ¥/ (ej_1) — 0,9/ (0) < 0.
The inequality (3.3) is used in the proofs that follow.

Case 1. If (a) is true, the proposition holds trivially.

Case 2. If (b) is true, let @ = sup { & € [aj_1, o] 1 w(B) < O for all B € [aj_1,0] }. If @ = a; , then
w(@) = w(ay) > wlaj—1); if @ < «;, then by the continuity of w, w(&@) = 0 > w(aj—1). In either
case, as w' (aj_1) < 0 by (3.3), part (a) of Lemma 3.2.1 implies that there exists an o* € [a;_1, @]

such that

W' (o) <0< (a").

This implies that
P (") <, (0) < ¥ ().

From the definition of &, o* satisfies the quasi-Armijo condition (C1). As ¢’ (a*) < 0, if ¢, (a*) > 0,
then o* is a quasi-Wolfe step by (Cy4). Alternatively, if ¢/ (o) < 0, then

My (0) <9 (0) < ¥ (") <0,

and again, o is a quasi-Wolfe step by (Cs).
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Case 3. Finally, consider the case where (c) is true, i.e., w’ (a;) > 0. By (3.3), o’ (oj—1) < 0.
If w(a) <0 for all & € [aj_1, ], then either w’ (a;) = 0 such that «; is a quasi-Wolfe step, or

part (b) of Lemma 3.2.1 establishes the existence of a step o* € (a;_1, @;) such that

W' (o) <0< (aF),

and o* satisfies the quasi-Armijo condition (Cy). Otherwise, let @ = sup { a € [aj—1, ;] tw(B) <0
for all B € [oj_1,0] }. By the continuity of w, w(@) = 0 > w(ay;_1). It follows from part (a) of

Lemma 3.2.1 that there exists a step a* € [aj_1, @] such that

W' () <0< ("),

and o satisfies the quasi-Armijo condition (C;). The same argument used for the preceding case

shows that a* is a quasi-Wolfe step. O
The second stage of a quasi-Wolfe search is based on the following proposition.

Proposition 3.2.3. Let ¢ and w be defined as in Proposition 3.2.2. Assume there exist distinct

POINts Aow and omign such that
(a) w(oow) <05
(b) w(ow) < w(@high); and
(c) W (aiow) <0 if Alow < Qhigh 0r W (ow) > 0 if Qow > Onigh,

then there exists a quasi- Wolfe step o € I, where T is the interval defined with endpoints ciow and

Qhigh -

Proof. First, consider the case where aiow < omign. Let & = sup{a €T :wp) < 0} for all
B € [tuow, @]. By the continuity of w, w(@) = 0 > w(ajew). It follows from part (a) of Lemma 3.2.1
that there exists a step a* € [aow, @] such that w(a*) < 0 and
W' (o) <0< (a").
The same argument used in Proposition 3.2.2 shows that a* is a quasi-Wolfe step.
For the case quow > Qhign, let W(a) = w(ow + high — ). Then &(amigh) = w(aiew) < 0,

and &', (anigh) = —w’ (ow) < 0. Let @ = sup{a e :w(p) < O} for all 8 € [anigh, @]. The
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continuity of & implies that w(a@) = 0 > W(anigh). It follows from part (a) of Lemma 3.2.1 that

there exists a step 8% € [amign, @] such that @(5*) < 0 and
& (87) <0 <&, (8.

Let o = quow + @nigh — 8%, then a* € Z, w(a*) <0 and

It follows that o* is a quasi-Wolfe step. O

Although the implementation of a quasi-Wolfe search is similar to that of a Wolfe line
search, there are a number of crucial practical issues associated with the potential nondifferentia-
bility of the line-search function ) («). These issues include the definition of the derivatives of the

function ¢ («) and the computation of a new estimate of a quasi-Wolfe step.

3.2.2 Derivatives of the search function

The purpose of this section is to establish expressions for the left- and right-derivatives of

the search function (o) = f(x(a)), where z(a) is the vector proj o(z + ap) with components

/; if x; +ap; <4,
zi(a) = S u; if x; + ap; > u;,

x; +op; i 4 <z 4 api <.

First, the derivatives of z(«) are considered. Under the assumptions that x is feasible and « is
positive, it must hold that if xz; + ap; < ¢; then p; < 0, and if xz; + ap; > wu;, then p; > 0. This

implies that the right derivative of x(«) with respect to « is given by

0 if z;(a) =4; and p; <0,
[Iﬂr(a)]z =140 if z;(a) =u; and p; > 0,

p; otherwise.
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The vector 2/, () may be expressed in terms of P,(p), the projected direction of p at x, which is
defined as

0 if ; =4; and p¢<0,
[Pr(p))i=<0 if z; =u; and p; >0,

p; otherwise.

The vector P, (p) represents the projection of p onto the closure of the set of feasible directions at

z(a). If z(«) is differentiable at a point «, then
(@) = 2/ () = Py(a)(p)- (3.4)
If z(«) is not differentiable at « then there must be at least one index 4 such that
(x; + ap; =¥4; and p; <0) or (x; +ap; =u; and p; > 0).

An « satisfying one of these conditions is called a kink step with respect to i and it also must hold
that 2/ () # 2’ («). In order to compute the left derivative 2’ (), consider the values of z’(3) as
[ approaches « from below. If « is a kink step with respect to ¢ then x; + Bp; is feasible for all
B sufficiently close to a and it follows from (3.4) that z}(8) = p;. Combining this value with the
components of () associated with the differentiable case gives z’ (o) = P, (p), where

x

_ Di if « is a kink step with respect to i,
[Poy ()i =
[Pr(a)(p)]; otherwise.

The derivatives of the function ¢(a) can now be considered. If ¢)(«) is differentiable at «,

then the chain rule gives

¥'(@) = - (a(a)) = VF (#(e) T r{0) = T (a(e)) "o ).

Using this expression with the expression (3.4) for z’(«) gives

' (o) = Vf (z(a))TPI(a) (p).

If ¢)(«) is not differentiable at «, then « is a kink step and ¢’ () # ¢/ («). For any «a,
limg_, o+ 2'(B) = 2/ (), and limg_,,- 2'(8) = x_ (). It follows that the right- and left-derivatives
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of 1, (a) with respect to « are given by

V(@) = Vf (a(a)) "', (@) = Vf (2(a)) T Paay ()

and

W (a) = Vf (2() e (a) = Vf (2(2)) " P10, ().

These expressions imply that there is a jump of magnitude ‘ piVif (J:(a))| in the derivative of ¢ at
a kink step with respect to 1.

3.2.3 Computing a quasi-Wolfe step

As in the Wolfe line search discussed in Section 2.1.3, a quasi-Wolfe search may be regarded
as having two stages. Algorithm 2 gives a schematic outline of a quasi-Wolfe search.The first stage
begins with an initial step length «y and continues with steps of increasing magnitude until one of
three things happens: an acceptable step length is found; an interval that contains a quasi-Wolfe
step is found; or the step is considered to be unbounded. In practice, the search is terminated if the
computed step length exceeds a preassigned upper bound a,.x during the first-stage iterations. If
the search terminates at ay,,x without finding an interval containing a quasi-Wolfe step, then every
step computed up to that point satisfies the quasi-Armijo condition.

If the first stage terminates with a bounded step, the second stage repeatedly calls a
function Stage_Two(ow, thigh), Where

(a) the interval bounded by aiow and aunign contains a quasi-Wolfe step;
(b) among all the step lengths generated so far, ajoy gives the least value of w;
(€) Qnign is chosen so that W', (a1ow) < 0 if Qow < Qnign, Or W’ (ow) > 0 if diow > Anigh-

A major difference between a Wolfe and a quasi-Wolfe search concerns how interpolation
is used to find new steps in the second stage. Each time Stage_Two(iow, tnigh) is invoked, a new
trial step apew is generated. In the differentiable case, ey is usually obtained by polynomial
interpolation using the value of ¢ and its derivatives at aiow and omign. If the univariate search
function is only piecewise differentiable, there may be kink points between aiow and anjgn, in which
case a conventional interpolation approach may not provide a good estimate of a quasi-Wolfe step.
One strategy to speed convergence in this situation is to search for the kink step (if it exists) between
Olow and omign that is closest to aigw. This approach is justified by the following argument. If a
new point ey is not a quasi-Wolfe step, then based on Proposition 3.2.3, the end points ayqy and

Omigh are updated to aqow and opew in two cases:
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Algorithm 2 Schematic outline of a quasi-Wolfe search.

: function quasI_WoLFE_SEARCH(«)
restriction: o > 0;

1
2
3 constants: 7, € (0, %), Nw € (Nay 1), Ve > 1, amax € (0, +00);
4 a  min{®, max};  @oa « 0;

5: while « is not a quasi-Wolfe step and a # ayax do

6 if w(a) > w(ae) then

7 « + Stage_Two(apq, @); break;

8 else if w’ (a) > 0 then

9: a + Stage_Two(q, aolq); break;

10: else

11: Qold ¢ @) « 4 min { Ve, Amax }; [Increase o towards Qimax]
12: end if
13: end while
14: return «;

15: end function
1: function STAGE_TWO(ow, high)

2 restriction: w(aiow) < w(igh);

3 Choose omew in the interior of the interval defined by aiow and omnign;
4 if apew is a quasi-Wolfe step then

5: return aypeyw;

6 else if w(apew) > w(aow) then

7 return Stage_Two(ow, Onew);

8 else if W' (amew) <0 and aiow < anigh then

9 return Stage_Two(®new, Qhigh);

10: else if W’ (Anew) >0 and aiow > anign then
11: return Stage_Two(Gnew, Qthigh);

12: else

13: return Stage_Two(new, Mow);

14: end if

15: end function
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Case (1). w(anew) > w(ow);
Case (2). W (anew) < 0 if anigh < low, Or W (Anew) > 0 if anigh > Qow-

In these cases, the new interval bounded by aiow and apew will not contain a kink step. In the

remaining case:
/ : / .
Case (3). W (anew) > 0 if anigh < low, OF W (Anew) < 0 if anigh > Qow,

the new interval will be bounded by apigh and omew, but may contain kink points. However, the
new interval must contain at least one fewer kink point.
The search for the kink points proceeds as follows. At the first time invoking the function

Stage_Two((ow, tnigh), the kink steps are computed in O(n) floating-point operations (flops) from

(ui —x3)/pi if p; >0,
ki = (i —x;)/ps  if p; <O,

As the interval bounded by aiow and amigh contains a quasi-Wolfe step, only the kink steps within
that interval need be stored. These steps are then sorted in decreasing order within O(nlogn) flops
using a heapsort algorithm (see, e.g., Williams [85], Knuth [65, Section 5.2.3]). The kink step closest
to auow, Say K7, is either the smallest or the largest kink step within the interval of uncertainty,
depending on whether ooy is smaller or greater than amigh. Once ] has been found, the search
for kf (I > 1) is made towards oy starting at the kink step x;_; from the preceding iteration. To
prevent the iterations from lingering at Case (3) for too long, an upper limit is imposed on the
number of consecutive kink steps as trial steps. If this limit is reached, a new trial step is generated
by bisection.

Once all the kinks in the interval of uncertainty have been eliminated, conventional poly-
nomial interpolation may be used to generate a new step length. However, some care is necessary
to choose the appropriate left or right derivative for use in the interpolation (see Section 3.2.2).

In the following, two types of projected-search methods are formulated that utilize the
quasi-Wolfe line search. These methods may be broadly categorized as active-set methods and

interior methods.
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3.3 Projected-Search Active-Set Methods

3.3.1 The general framework

Given an initial xg € (2, consider the sequence of iterates { xk} that satisfies 41 =
xp(ag) = proj o(xr + agpr), where ay, is a quasi-Wolfe step, and py, is a descent direction for f at
x. The search direction py is based on the components of a feasible descent direction dj computed

in terms of a working set of indices at xj, such that

Wk:{i:[wk}ig&Jrek and V;f(zg) >0 or (3.5)
[xk)i > u; —ex and Vi f(zy) <0}, .

LY\ Vf(z),_y)||} for k > 1, with

I}, 1 the matrix of columns of the identity matrix of order n associated with the indices in the

where ¢y and € are fixed positive parameters, and €, = min {6, |

complement of Wy,_; in { 1,2,...,n } The matrix H,PIHI;{1 represents the projection P, | with
respect to the set Wy_1, i.e., for any d € R" it holds that II, I, ;d = P,,  (d), with

0 if ieWr_q,
d; if i Wk_1.

[P, _,(d)]i =

The search direction py is defined in terms of any direction dj such that d,, = Hkﬂ,;rdk, and
Vf(xr)Tdr < 0. Once dy is determined, the components of dj, are modified if necessary to give a
search direction py, such that [py ]; = max{ [dk i, 0 } if [z ]; < litepand [pi]; = min{ [dk]i, 0 } if
[z ]; > u;—eg. This additional step guarantees convergence in the situation where iterates approach
a boundary point from the interior of the feasible region—a phenomenon known as zigzagging or
jamming (see Bertsekas [5]). The vector py satisfies p, = IT, Il p,., and retains the descent property
of di. For example, if [dy]; # 0 and [x;]; < ¢; + €, then the definition of W) implies that
Vif(zr) <0. If [pr]; > 0 then [px]; = [dk];. Otherwise, [dy]; < 0 with V; f(z)[dr]; > 0, and
setting [pg ]; = 0 makes the directional derivative more negative.

The working set at zj is a subset of the extended active set, which is defined as
A, (x) = {z k] <l +ep or [xp]i > ui — e }

It is shown in Section 3.3.2 that, under certain conditions, { e } — 0, and A, (z;) = A(zy,) for k

sufficiently large, which would imply that p = dj for k sufficiently large.
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A general projected-search method based on the proposed framework is summarized in

Algorithm 3. There are various choices for the direction dj. For example, if d, = —II, II,'Vf(z,),

Algorithm 3 A class of active-set projected-search methods

1: constant: € > 0;
2: Choose x( € §2;
3: Let g =¢; k=0;
4: while not converged do
5 Determine the working set W, (3.5);
6 Compute a feasible descent direction dy at zj such that [dy ], = 0 if i € Wy;
7 Modify dj to give a search direction pg:
max{[dk]“()} if [xk]z </t; + €,

8: [prli = min{[dg];, 0} if [ ] > u; — e,

[dr i otherwise;
9: Compute a quasi-Wolfe step ay; zp11 = proj o(xr + arpr);
10: ex+1 = min {e, | IIVf(z,)|| }:

11: k+—k+1;
12: end while

then the method is a variant of projected gradient descent. Other choices include computing dj, as

the solution of the subproblem
minidmize Vf(zr) d+ 2d"Hid subject to d; =0 for all i € W, (3.6)

where Hj, a positive-definite approximation of V2f(xy). The new method UBOPT presented in
Section 3.4.2 computes dj as the solution of (3.6) with Hjy chosen as a positive-definite limited-

memory BFGS approximation of V2f(zy).

3.3.2 Convergence analysis

In this section, the convergence properties of the class of projected-search active-set meth-
ods are considered. As an introduction, the convergence of a method with a quasi-Armijo search is

examined first.

Theorem 3.3.1 (Active-set projected search with a quasi-Armijo search). Let f be a scalar-valued
continuously differentiable function defined on {2 = {x eR":/<z<u } Assume that xg € (2 is
chosen such that the level set C(f(xo)) is bounded, and {xk} is defined by x11 = zi (), where

ag 18 a quasi-Armijo step. For an arbitrarily fized € > 0, define ¢ = €, and

€ = min {6, HHE_lvf(xk'—l)H}
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for k > 1, where each I is a matriz with orthonormal columns that spans the set of projected
directions with respect to the working set Wy. If {pk} is a sequence of descent directions with
lpk|| < 6 for some constant 0 independent of k, I, ITTp, = p, for all k, and the components of px
satisfy [prli > 0 if [z )i < b + €, and [pr]i <0 if [z ]i > u; — €k, then

khm |Vf($k)Tpk’ =0.
—00

Proof. First, we show that limy_, . ‘Vf(xk)Tpk| =0 if liminfs o HHEVf(xk)H # 0. Observe that
the quasi-Armijo condition (3.1) implies that { f(zg) } is a strictly decreasing sequence. As the set
L(f(z0)) is bounded, it follows that { f(z;) } converges, with

0= lim f(z) — f(zpe1) > lim ogpna|VF(xr) Tpr| = 0.
k— o0 k—oo

The proof is by contradiction. Suppose that |Vf(xy)Tpx| 4 0 as k — oo, then there must exist
some € > 0 such that |Vf(z))Tpi| > € infinitely often. Let G = {k : |Vf(xx)Tpr| > €}, then it
must be that o — 0 for k € G. For all k € G, define the step Sr = ax/o. The hypothesis that
liminfr_ o ||HEVf(xk)H # 0 implies liminfg_, o, € > 0. As { lpk || } is uniformly bounded by 6
and lim infy_, o € > 0, there exists k such that each component of Bip;, satisfies I[ Bepr Ji| < ex for
all k> k in G. The assumptions on components of py, imply that [pg]; > 0 only if u; — [z ]; > e,
and [py]; < 0 only if [z ]; — £; > €. It follows that for all k > k in G, £; < [z + Bepr s < u; and
pProj o (wx + Brkpk) = Tk + Brpk-

Let G denote the indices k > k of iterations at which a reduction in the initial step length
was necessary, i.e., G = {k: ty >0, keG, k>k } Since ay, converges to zero, G must be an

infinite set. By definition,

f(@r + Bepk) = f(proj o(zx + Bepk)) > f(zk) + BrnaVf (k) Tpr, forall ke g.

Adding — B Vf(zx) Tpr to both sides and rearranging gives

f@e+ Brpr) — f(zr) — BeVf () Tk > —Be(1 — na) VS (zr) " pr
> Br(1 —n,)é forall keg. (3.7

The Taylor expansion of f(zy + Brpr) gives

1
Flan + Brpr) — f(xr) — BeVf (z) i = B /O (Vf (@ + 7Brpr) — Vf (zx)) " pr dr. (3.8)

73



If || - || » denotes the norm dual to || - ||, i.e., ||2||p = max,«o [zTv|/||v]|, then

|(Vf (@x + 7Brpr) — VI (2r)) o] < IVF (@r + 7Brpr) — VI (zi) o lpx -

If this inequality is substituted in (3.8), it then follows from (3.7) that

(1—na)e< /O (Vf (@ + 7Bipr) — Vf (k) T prdr

< max ||Vf(zx + 78:pr) — Vf(zi)|ollpkll, forall k€ g.

T 0<r<1

The continuity of Vf implies that there exists some 75 € [0, ;] such that

max [|Vf(xx + 7Bkpr) — Vf (@)l = [IVf (@ + Tipr) — Vi (2) | o-

0<7<1

Then
(1 —na)€ < [|Vf (zr + Tupr) — VI (zr) o ||pxl- (3.9)

However, agpr — 0 implies 7xpr, — 0 for k € G, and the continuity of Vf gives

IVf (zr + Tepr) — Vf(xr)|lo = 0.

As {||px|l } is uniformly bounded above by 6, the right-hand side of (3.9) converges to zero, which
gives the required contradiction.
Next it will be shown by contradiction that each convergent subsequence of { |Vf (zx) T pi| }

converges to zero regardless of the value of liminfy_, HH,;FVf(xk)H As IT, II'p, = p, for all k,
IV (1) | = [Vf (a) T I T oy | (3.10)

for all k. Suppose that there exists a convergent subsequence of { |Vf (zx) Tpi| }, say { |Vf (zx,) Tps,| },
that converges to a positive value. Then, (3.10) implies that the sequence { IVf (@, )Tﬂkj Hkl;,pkj| }

converges to a positive value. As { Ilp || } is bounded by a constant 6,

lim inf |, ¥ f () || > 0.
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Applying the previous arguments to the subsequence { |Vf (xkj)Tpkj| } gives
lim |Vf(zk,)  pr,| = 0,
j—o0

which is a contradiction.
As the level set £(f(z0)) is bounded, { |Vf(z;)"pi|} must be a bounded sequence. It
follows that

lim inf |Vf (2x) T pr| = limsup |Vf (1) Tpr| = 0.
k—o0 k— 00
Therefore, limy, o |Vf(zx) Tpr| = 0. O

Theorem 3.3.2 (Active-set projected search with a quasi-Wolfe search). Let f be a scalar-valued
continuously differentiable function defined on 2 = {x eR": (<zx<u } Assume that xg € {2
is chosen such that the level set L(f(z0)) is bounded, and { z) } is given by xxi1 = zp(ou), where

ag s a quasi- Wolfe step. For an arbitrarily fived € > 0, define g = €, and

€ = min {e, H,;F_1Vf(xk_1)”}.

for k > 1, where each Il is a matriz with orthonormal columns that spans the set of projected
directions with respect to the working set Wy. If {pk} is a sequence of descent directions with
lpkll < 0 for some constant 0 independent of k, IT, ITFp, = p, for all k, and the components of py
satisfy [pr]i > 0 if [xx )i < b+ €x, and [pr]i < 0 if [2x]i > ui — €k, then

lim |Vf($k)Tpk| =0.
k—o0

Proof. First, we show that limg_oc |Vf(2)Tpr| = 0 if liminfy_ e |[II7Vf(2,)|| # 0. The first
quasi-Wolfe condition (C;) is equivalent to the quasi-Armijo condition, and the arguments in the
proof of Theorem 3.3.1 may be used to show that { flag) } is a convergent sequence. This implies

that

lim aka(xk)Tpk =0.
k—o0

The proof is by contradiction. Suppose that |Vf(xy)Tpr| 4 0 as k — oo, then there exists some
€ > 0 such that |Vf(zx)Tpx| > € infinitely often. Let G = { k : |Vf(zx)Tpi| > €}, then it must be
that ap, — 0 for k € G. As { Ilp |l } is uniformly bounded above by 0, agpr — 0 for k € G.
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If the quasi-Wolfe condition (Cs) is satisfied, then

Vf (zr(ar)) " Py (o) k) > =1 [V (1) T pil.

Similarly, if the quasi-Wolfe condition (Cy) is satisfied, then

vf(wk(ak))Tka(ak)(pk) >0=> 77]W|Vf(l‘k)Tpk‘.

In either case, as Vf(x;) pr < 0, it must hold that

Vf (zk(ar)) " Pogar) k) — VI (@r) "ok > (1= 0w )|V (2k) Tpel > (1= nw)é, for k € G.

The application of the triangle inequality yields

0 < (1= nw)e <|Vf(ze(ar) " Poyar) r) — Vi (zr) |
< |vf($k(ak))TPa;k(ak)(pk) - vf('rk)prk(ak)(pk”
+ |V (k)T Py (o) (Pr) — Vif () T | - (3.11)

Let || - ||» denote the norm dual to || - ||, then

Vf (21 () " Pry(an) 0r) = VF (@8) " Pry g (Pr)]
<NV (zr(ar)) = VI (@) ol Poyan) @Il < IVf (@r(ar)) — V(@) |5 okl

As Vf is continuous and ||pg|| is uniformly bounded, the right-hand side of this inequality must

converge to zero for k € G, which implies that
T
‘Vf(xk(ak)) Py tan) (k) = V(1) T Py (ap) (01)| = 0, for k € G.
Basic norm inequalities give

|V (@) T P o) () — V(@) o] < IVF @) |l Pog(an) () — Pl
= [IVf (@)l o | Pey(an) (Pr) — Py, (01

As the level set E( f (mo)) is bounded, and the gradient Vf is continuous, the sequence of dual
norms { |Vf(zx)||» } is uniformly bounded. The hypothesis that liminfy o |17 Vf(z,)|| # 0
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implies liminfg_,~, € > 0. Also, because
2 () — i || < [lewpr|| — 0, for k€ g,
there must exist an k such that for all k£ > k in g,
[zp(ak) — 2k )i < €.

From the assumptions on the components of py, it must hold that for all & > k in G, [px ]; < 0 only
if [ ]; > ¢; + €k, in which case [z (ag)]; > €;; and [pg]; > 0 only if [k ]; < u; — €, in which case

[zr (k)] < u;. Tt follows that, for k € G sufficiently large,

Py (o) Pr) = Puy (pr) = Py-
Therefore,

va(xk)HD”sz(ak)(pk) - Pfk (pk)H — 07 for k € g7

and consequently
\Vf (@r) " Py (o) (k) — Vf (@) pi| = 0, for k€ G.

It follows that the right-hand side of (3.11) converges to zero for k € G, which gives the required
contradiction.

It remains to consider the case where the quasi-Wolfe condition (Cj) is satisfied, i.e.,

Vf(xk(ak))TPg;k(ak)(pk) > —nw |V (@) T prl-

The assumption that Vf(zx)Tpr < 0 gives

Vf (;Uk(ak))TP’

xg (g

y(ox) — Vi (2r) T > (1= 1w)|Vf(zr) pe| > (1 — nw)é, for k € G,
which implies that

0 < (1= m)e < |V (alan) TPy, o (or) = (1) "
< ‘Vf(mk(ak))TP;k(ak)(pk) - Vf(ﬂck)TP;k(ak)(pk)‘

|V @) TPy oy (1) = VF k) T

(3.12)
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The definition of the dual norm yields

‘vf('rk(ak))TPx_k(ak)(pk) o vf(xk)TPﬂC_k(ak)(pk)

< IVf (@r(ow) = VI @)l b l1P;, (i)l < 1VF (2 () — Vi (@)l 15 -

From the continuity of Vf and uniform boundedness of ||ps|, the right-hand side of the above

inequality converges to zero for k € G, which means that

‘Vf(ka(ak))TP;k( (pr) = Vf (@) TP, (k)| = 0, forkeg.

ay) k(o)

Also,

(VP @) TPy, 0 (0) = V@) o] <I9S @) 16l1P o (1) — ]

— [9F @)l 1By, 0y (P1) — Pru (o)

As the level set E( f (:UO)) is bounded, and Vf is continuous, it must hold that the sequence of dual

norms { [|Vf(zx)|» } is uniformly bounded. Also, as
[z (o) — @]l < [lowpr| — 0, for k€ G,
arguments analogous to those used to establish convergence in cases (Cz) and (Cy) give

(pr) = Pu,(py) = p, for k € G sufficiently large,

P:;k(oék)

in which case

IVf (@i)llo I P,

Ik(ak)

(pr) — Py, (pr)|| = 0, for k € G.

This implies that
Vi (@) Py, () (pr) = Vf (1) py| = 0, for ke G.

x

It follows that the right-hand side of (3.12) converges to zero for k € G, which gives the required
contradiction.

Finally, the same arguments from the proof of Theorem 3.3.1 imply that

lim |Vf(a:k)Tpk| =0
k—o0
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regardless of the value of lim infy_, o HH,;FVf(:Ek)H O

Based on the framework described in Section 3.3.1, the limit limg o |Vf(2r)Tpr| = 0
implies that
lim |Vf(zx)"d,| =0, (3.13)
k—o0

which would further imply that the projected gradient, IT, IT, Vf(z, ), converges to zero for an ap-
propriate choice of dj. For example, if d;, = —HkH,;TVf(mk), or dy, is the solution of the subproblem
(3.6) with the two-norm of the projected approximate Hessian, ||II, H,II,||, uniformly bounded,
then it may be verified that (3.13) implies that ||II,'Vf(zy)|| — 0.

Under the nondegeneracy assumption defined below, any algorithm based on the proposed
framework for which ||II}Vf(x,)|| — 0 will identify the optimal active set in a finite number of

iterations.

Definition 3.3.1. A point * € £2 is a stationary point of (BC) if V,f(z*) =0 for £; < x} < u,,
Vif(z*) >0 for xf =4, and {; < u;, and V; f(x*) <0 for xf =wu,; and £; < u;. A stationary point
x* is nondegenerate if V;f(z*) > 0 for zf = ¢, and {; < u;, and V;f(z*) < 0 for xf = u,; and
by < u;.

The next result shows that a projected-search method with either a quasi-Armijo or quasi-

Wolfe search will identify the optimal active set in a finite number of iterations.

Theorem 3.3.3. In addition to the assumptions of Theorem 3.3.1 or Theorem 3.3.2, assume that

{mk } converges to a nondegenerate stationary point x*. Consider the extended active set
Ae, (x) = {Z k)i <l +ep or [Tr]i > ui — € }

If | ITEVf (zp)| — 0, then A, (z) = A(zy) = A(z*) for all k sufficiently large.

Proof. First, we show that A(z*) C A, (z) for k sufficiently large by contradiction. Assume the
opposite is true, then there exists ¢ € A(z*) such that i ¢ A, () for an infinite subsequence K,
which implies that ¢ ¢ Wy, for all k € K. It follows that

|Vif(zp)| < |ITEVE(2)|| for k € K.
As f is continuously differentiable and ||II,'Vf(x,)|| — 0, letting k — oo in K gives

Vit @) =, lim_ [Vif ()| = 0.

79



This contradicts the nondegeneracy of x*.

Now we show that A, (zx) C A(x*) for k sufficiently large. If ¢; = u;, a simple argument
givesi € A, (zx) and i € A(x*). Consider an index ¢ such that ¢; < u;. From the definition of ¢, the
assumption ||II;TVf(x,)|| — 0 implies that €, — 0. Hence, for k sufficiently large, ¢; + €; < u; — €.
If i ¢ A(z*), then 4; < [2*]; < u;. As {xk} —z*and ¢, = 0, £; + e < [ar]i < u; — € for
k sufficiently large, which implies that ¢ ¢ A, (vx). Therefore, if i ¢ A(z*), then i ¢ Ag(zx), ie.
Ae, (x) C A(z*) for k sufficiently large. We conclude that A, (xi) = A(x*) for all k sufficiently
large.

It remains to show that A(zy) = A, (z) for k sufficiently large. Obviously A(zy) C
Ae, (x) for all k. It is trivial if ¢; = u;. Now consider the case where ¢; < u;. Note that
{xk } — z* implies limg_ o0 ||[Tr+1 — @] = 0. As limp_ oo (u; — €x11) — (b + €x) = u; — €; > 0,
[[Zr+1 — 2k i] < (u; — €g41) — (€; + €) for k sufficiently large. Suppose kg is such that, for all
k> ko, A, (z) = A(z*) and |[xg+1 — 2k || < (i — €x+1) — (€ + €;). The inclusion A, () C
A(zy) for all k& > kg is established using a contradiction argument. Assume that there exists
i € Ae, (1) = A(x*) for all k > ko, but i ¢ A(xy,) for some k > ko. Then either ¢; < [xf]; < € +e€5
or u; — € < [x3]i < u;. If the inequality ¢; < [z]; < ¢; + € holds, the definition of pj in
Algorithm 3 implies that [pg]; > 0, and it must be the case that ¢; < [z ]; < [25, ]i- In addition,
l[2r1 — 25 )i| < (us—egy1) — (li+er) implies that [z, s < ui—€gy . Asi€ Aci o, (T4q), it must
hold that ¢; < [z} ]; < [2541 )i < 4i + €541- Inductively, for all & > k, b <[] <[xn]s <l + e,
which implies that [2*]; > [x]; > ¢;. A similar argument shows that if u; — ez < [2f]; < u;, then
[z*]; < [zg]i < u;. It follows that ¢ ¢ A(x*), which contradicts the assumption that i € A, (zx) =
A(z*) for all k > kg. Therefore, A, (zr) C A(xy) for all k > ko, which completes the proof. O

A simple example shows that the nondegeneracy of a stationary point is necessary for
identifying the optimal active set in a finite number of iterations. Let f : R? — R be given by
f(@) = $]|=|?, and let 2 = {x € R* : & > 0}. For this problem z* = (0,0)T is a degenerate
stationary point and the global minimizer of f over 2. Assume that the step length «; < 1 for all

k, and let € = % Starting from zo = (1,1)7, the projected-gradient method gives

k

8
o
I
—
—
|
SN

k—1
1
;) o=t = 2 Tl 0 1)
j=0
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for £k > 1. Then {:Ek } converges to the degenerate stationary point z*, and

S

k
[z ] = H(1 - 2a5) >

k-1
22 [ (- 20) =&, i=1,2
=0

for all k > 1. It follows that A, (z) = 0 for all k, although A(z*) = {1,2}.

3.4 A Limited-Memory Reduced-Hessian Method

Based on the general framework of projected-search active-set methods described previ-
ously, a quasi-Newton projected-search method UBOPT for unconstrained and bound-constrained
optimization can now be proposed, which is an extension of the limited-memory reduced-Hessian

method for unconstrained optimization of Leonard [66] and Gill and Leonard [47].

3.4.1 Background: an L-RHR method for unconstrained optimization

This section gives a brief review of the limited-memory reduced-Hessian method L-RHR
for the unconstrained minimization of the twice continuously differentiable function f : R® — R.
For more details, see Gill and Leonard [47]. As a quasi-Newton method, it generates a sequence of
iterates {xk } such that 11 = x + agpk, where py is a descent direction and «y is a Wolfe step.
The search direction satisfies Hypr = —Vf(xy), where Hy is a positive-definite approximation to the
Hessian matrix of f. Given Hj, the sequence of approximate Hessian matrices { Hy } is generated

using the BFGS update:

1 1
————Hys,s) Hy, + Tuzkwg, (3.14)

Hk+1 = Hk - T I1
Si S Wy Sg

where s = zp41 — x, Wi = Vf(zr41) — VSf(2k), and w,;rsk approximates the curvature of f along
Pk-

The reduced-Hessian method of Gill and Leonard takes advantage of the implicit structure
of the quasi-Newton Hessian to compute search directions from a smaller search space. The method
is implemented in a limited-memory framework by limiting the number of basis vectors for the search
space. The gradient subspace defined as span { Vf(zo), Vf(z1), ..., Vf(xg) } and denoted by Gy,
with Gi& denoting the orthogonal complement of Gy, in R". Reduced-Hessian methods are based on
the following result (see, e.g., Fletcher and Powell [32], Fenelon [27], and Siegel [81]).

81



Lemma 3.4.1. Consider the BFGS method applied to a general nonlinear function. If Hy = ol
(c > 0) and Hyp, = —Vf(zy), then py € Gy for all k. Moreover, if z € Gy, and y € Gi-, then
Hyz € G and Hyy = oy.

If r denotes the dimension of Gy, let Z; be an n X rp matrix whose columns form an or-
thonormal basis for Gi. Given an (n—r)xn orthonormal basis Y}, for g,i-, the matrix Qp = ( Zy Yy )
defines an orthogonal transformation z — Qrx. The transformed gradient and approximate Hes-
sian are then given by Q' Vf(z,) and Q} H,Q,, respectively. If Hy = ol (o > 0), it follows from

Lemma 3.4.1 that the transformation induces a block-diagonal structure, with

ZTH,Z, 0

3.15
0 olp_r, ( )

QrH,Q), = < 0

ZIVf ()
) and Qi Vf(xy) = < R
The matrix ZE H,Z, is positive-definite and is known as the approximate reduced Hessian (or
just reduced Hessian). The vector Z;! Vf(z,) is known as the reduced gradient. If the equation
Hypr, = —Vf(zy) for the search direction is written as (Qf H,Q,)QFp, = —QFVf(x,), then it
follows from (3.15) that

Pk = Zrqr, where g satisfies Z} H,Zyq), = —Z Vf(xy). (3.16)

The matrices Zj, and Z,! H, Z, may be used to reconstruct Hj, which need not be stored explicitly.

In particular, it satisfies that

Hi, = Q,Qn H,QQF

ZrH,Z, 0 zZr
=(z, v, 3.17
( i ’“> ( 0 oL r, ) \Y;T (317

= 2 (Zy HyZy) 2)) + o (1 — Z,2)).

If By is an n X r; matrix with columns that form a basis for G, an orthonormal basis Z; can
be defined in terms of the economy-size QR decomposition By = ZyT}, where T} is a nonsingular
ri X T upper-triangular matrix. In practice, Zj can be stored explicitly along with T}, or implicitly
by storing only By, and T}, with computations involving Zj, utilizing Z, = BT} ! If the Cholesky
factorization ZE H,7Z, = RERk is known, ¢ can be computed from the forward substitution
Rld, = —ZIVf(z,) and back-substitution Ryg = dj.

The dimension of Z ,;F H, 7, is limited by discarding the oldest basis vector when the number

of basis vectors exceeds some predefined limit m. Assume for the moment that the gradients in
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the sequence span { Vf(zo), Vf(z1), ..., Vf(xy) } are linearly independent. Lemma 3.4.1 implies
that the search direction py lies in Gy, for all k. Siegel [81] proposed that a subset of {p;C } be used
to form a basis for Gy, instead of { Vf(xk) } and showed that this modification endows the method
with finite termination on a strictly convex quadratic function. Consider any iteration k such that
1 <k <m—1. At the start of the iteration, the directions py, ..., px_1 are known, but p; has yet
to be computed from equations (3.16) that use Zj. This implies that it is not possible to use pj
as part of By. Nevertheless, Gy is spanned by both the gradients and the search directions, which
means that the latest gradient Vf(zy) can be used as a temporary basis vector until p; has been
computed, at which point it can be swapped with Vf(zy). The swap does not change Zj, but the
last column of T}, is replaced by the vector ¢, = Z,I'p, found as part of the computation of py in
(3.16). If Vf(xp41) is accepted after the line search, it is added to the basis and the QR factors are
updated as in (3.18). This update expands the reduced Hessian by a row and column (see (3.19)),
and the last diagonal is reinitialized with o, = wlw, /w]s,.

If £k > m — 1, the addition of Vf(zp4+1) gives a basis with m + 1 columns and the oldest
column pg_,,+1 must be removed before starting iteration k£ + 1. The factors Zx41 and Ty
associated with the next basis By = (pk7m+2 S g Vf(gck+1)) are updated using two sets
of plane rotations applied on the right of the orthogonal factor and left of the triangular factor of
(pk—m+1 e DR Vf(g:k+1)). Further details of the methods for updating the QR and Cholesky
factors when a column is removed from the basis are given by Gill and Leonard [47].

During the k-th iteration of L-RHR, the number of columns in By (and Zj) can either
remain unchanged or increase by one, depending on whether or not the new gradient Vf(x41) lies
in Gi. This is determined from the value of the scalar p.1 such that p,_ , = [[(I=2, 2 )Vf (2} 4)]l.
If ppy+1 = 0, then Vf(xry1) € Gk and Vf(xgy1) is said to be rejected. The matrix factors for the
next iteration remain unchanged. Otherwise, ri11 = 7, + 1 and Vf(zx41) is said to be accepted. In
this case, By is augmented by a new column Vf(xy41), and the matrix factors of By are given
by
Ty ZgVf(@y41)

) = Zip1 T (3.18)
0 Pr+1

Byt1 = (Bk vf(karl)) = (Zk Zk+1) <

where 241 is defined by the identity p, 12,1 = (I — Z,Z)Vf(x; ). Note that T4, is nonsin-
gular as pry1 # 0. The Cholesky factor Ry is updated by adding a row and column to account for

83



the new last column of Zj1. It follows from Lemmas 3.4.1 and (3.15) that

ZTHZ,  ZTHz,, ZVH.Z, 0
o HyZyq = T . = , (3.19)
e Hy 2y 2 Hyzy 0 o

giving the expanded block-diagonal factor

R 0
Rl(cl) = ( ‘ 1/2) ’
0 o

If Vf(xk+1) is rejected, then ri11 = 7 and R,(:) =R,

In addition, the factor Ry is computed by modifying R,(cl) to reflect the rank-two BFGS
update to Z,\, | H, Z, , , resulting from the rank-two update to Hy defined in (3.14). Let s = Z[, |5,
and y = Z}, jw,. Ifu= RI(CI)S/HR;:)SH and v = y/\/yTs—R,(cl)Tu, then it may be verified by direct
multiplication that

2 Hip1 Zr = (B + w0 T(RY + ™),

)+ wT to upper-triangular form. The

Two sets of plane rotations can be applied to restore R,(C1
first, S1, is the product of plane rotations Py 2P 3 P, that zero out components 2 through 7

of u, i.e., Syu = 7yey, with v = £||ul|. The application of Sy to R,(Cl) +uvT gives
Sl(R,(:) +uv®) = SlR,(:) + ve,vT. (3.20)

By construction, S; applied to R,(Cl) results in an upper-Hessenberg matrix. As ve;vT is a matrix
with only nonzeros in its first row, the right-hand side of (3.20) is also upper-Hessenberg. A second
set of plane rotations S5 is then defined such that R,(f) = 5951 Ry, where Sy = P{ 4Py 5--- P/ ;..
The resulting matrix R,(f) is the upper-triangular factor of Z,;F 1 Hy 12,1 For more details, see
Dennis and Schnabel [20], and Gill and Leonard [47]).

In finite-precision arithmetic, the use of the economy QR factorization instead of the full
QR may cause a loss of orthogonality in Zj, as columns are added to the basis. When a gradient is
accepted, the new column is computed as zx11 = Vg41/pr+1, where Vpyr = (I—ZkZ,;F)Vf(ka) and
P41 = |[vk+1]|- This choice of z41 is designed to force Z;' v, to be small relative to || Vf (zx+1)]|.
However, if pry1 is small and [|Z v, || = €||Vf(zr41)| for some small €, then the normalized
vector zp41 = Upt1/prt1 would satisfy only | Z, 2, || = €||Vf (2 1)]l/ppyr- In this situation, the

error relative to ||Vf(zx41)|| may be very large, resulting in a significant loss of orthogonality in
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the computed zj41. To rectify this loss of orthogonality, Daniel, Gragg, Kaufman and Stewart [19]
propose a reorthogonalization scheme. If ||vgy1||/||Vf(zk+1)| is small, then vg4q is refined using
the scheme

v;c—i-l = - ZkZl;r)Ulc-i-r

If |vj 41 I/ llvk+1]| is not too small, then v}, can be scaled to provide a satisfactory update to Zg 1.

Otherwise, the process is repeated.

The initial approximate Hessian can greatly influence the practical performance of quasi-
Newton methods. A choice of Hy = oI, with some arbitrary positive o can result in poor per-
formance, especially when V2f(x*) is ill-conditioned. Moreover, equation (3.15) reveals that o
represents the approximate curvature along all directions in g,ﬂ-. To enhance the performance of
L-RHR, Hessian reinitialization is applied to “reset” the approximate Hessian matrix with current
curvature information. When a new gradient is accepted, the reduced Hessian is expanded with oy

rather than o in equation (3.19). Gill and Leonard [47] use o), = w w, /w;' s, in L-RHR.

3.4.2 UBOPT: an L-RHR method for bound constraints

The new algorithm UBOPT is introduced in this section as an extension of the algorithm L-
RHR for solving problem (BC). Given an initial o € £2, the sequence of iterates { , } is generated
as described in Algorithm 3, with the search direction p; computed in terms of a descent direction

dy, that is determined by solving the following subproblem:
minimize Vf(zr) d+ 2d"Hid  subject to d; =0 for all i € W, (3.21)

where Hj, is a positive-definite limited-memory BFGS approximation of V2f(zy), and W is the
working set defined as in (3.5). The matrix Hy is maintained in reduced-Hessian form and is not
stored explicitly.

The complement of W, in { 1,2,..., n} is denoted by Fj, which may be regarded as the
set of indices of the variables that are free to move at x;. Let I, denote a matrix with orthonormal
columns that span the set of projected directions with respect to the working set Wy. The columns
of IT; can be taken as the columns of the identity matrix of order n associated with the indices in

Fi. If di; is the solution of (3.21), then it satisfies that

I} Hydy, = — I, Vf ().

85



A result analogous to Lemma 3.4.1 can be proved for the bound-constrained case.
Lemma 3.4.2. Let dy, be the unique solution of (3.21), and let
S = span {{II, I Vf(z;): j=0,...,k} U{I, I H;s; : j =0,....k —1}},
where s; = xj41 —x; for each j. If Hy = ol, then dj, € Sk. Moreover, if z € Sy, then I, II'H, » €
Sisify e HkH,;FSkL, then Hpy = oy.
Proof. Recall the BFGS update formula

1 1
T T

H,_,=H, —
k+1 k 7]
Sk Sk k Sk

where sy, = xp41 — xk, and wg, = Vf(zr11) — Vf(zg). It follows that

k—1
1 T 1 T
Hy=Hy—Y < I, Hysjsj Hj = —x—wjuw; ) : (3.22)
J

w: 8.
Jj=0 J

If Hy = o1, then

1
= —II, I1,F Hyd,
g
k—1 T T
1 TH,d, wld,
== HkH,;fdek+Z< LT Hysy — — T T w )
g i j=0 5 HJSJ T J
[ k—1 T
1 w; dy,
= —II, 'V () +Z< HkH Hjs; — ijs 1,11} wj>
7=0 J g

Therefore, d, € S. It follows from (3.22) that, if 2 € S, then ILII'H, 2 € Si; and if y €
I ITTSE, then Hyy = H I I y = oy. U

It is worth noting that, in the case when the search direction is not bent during the
line search, ie. s, = a;p,, then the vector Hkﬂ,;ersk is parallel to the projected gradient
I, 11 kT Vf(zy,).

As described in the previous section, the L-RHR method for unconstrained optimization
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computes a search direction px that lies within a subspace

Gk £ span{p;, - ,pr_1, Vf(zgk)}, with I =max{0,k —m + 1}.

For bound-constrained optimization, the computation of the search directions is based on the pro-
jected gradients. Additionally, to improve practical efficiency, the strategy proposed by Siegel [81]
that swaps the search direction with the gradient is incorporated as in the unconstrained case.
Thus, a descent direction dj, is computed as an approximate solution of the subproblem (3.21) that

lies within the projected subspace
G £ span { I, IT, py, -+, I 11} pe—1, IL T, Vf ()}, with | = max{0,k —m + 1}.

The search direction py is then determined by modifying dj as in Steps 7-8 of Algorithm 3. In the
following discussion, let Bj, denote a matrix whose columns form a basis of G. Similarly, let B,
denote a matrix whose columns form a basis of G, and an orthonormal basis Zj, is defined in terms
of the economy-size QR decomposition By = ZT}, with T a nonsingular upper-triangular matrix.
The vector dj, is computed as di = Zxq, where ¢ is the solution of the symmetric positive-
definite equations
Zy Hy,Zy,q = =2 Vf ()

Note that By, is the matrix By, with zeros in the rows corresponding to indices in the current working
set. The search direction may be computed efficiently by using a Cholesky factor of the “projected”
reduced Hessian matrix R,;FRk = ZEHka.

Once d has been computed, the search direction py is derived as described in Algorithm 3,
and then the next iterate xx1 is found using the quasi-Wolfe search described in Section 3.2. The
associated working set Wy is then updated and the projected matrix factors By, Zx, and T} are
modified to reflect the changes in the working set. If the projected gradient at xpy; contains
components outside of range(Z), then it can be added to the basis. If the value of the scalar
p=1(I—2ZkZ})Vf(zk+1)| is zero, then the new gradient lies in G and Vf(z441) is rejected for
inclusion in Gj. In this case, no further updates to the factors of By, are needed. Otherwise, the
dimension of G increases by one and the gradient Vf(xj1) is accepted. In this case, By gains a
new column and the change must be incorporated in the QR factors of By, analogous to (3.18). The
matrix updates associated with changes in the working set and the basis are based on the work of
Daniel et al. [19] and are omitted here; for a detailed description, see [30, Section 5].

The convergence of a projected-search active-set method has been established in Theo-
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rem 3.3.2. Moreover, if the eigenvalues of the projected approximate Hessian are uniformly bounded,

then the projected gradient converges to zero as shown in the theorem below.

Theorem 3.4.1. Let {xk } be a sequence of iterates generated by Algorithm UBOPT. In addition
to assumptions of Theorem 3.3.2, if there exist a constants v such that every eigenvalue of the

projected approximate Hessian satisfies
0 < NI} H,IT,) < v < o0

for all k, where Il is a matriz with orthonormal columns that spans the set of projected directions

with respect to the working set Wy (zy), then
lim (I (,)] = 0.
—00

Proof. Let dj, denote the approximate solution to the subproblem (3.21) within the subspace
spanned by columns of II, II,' B, , and let Z, be the orthogonal factor of the thin QR decomposition
of HkH,;FBk. Then

IV () V] = Vf(24) T 2 (Z) Hy Zy) 7 2V ()] 2 125 VF (@) P Amax (1) Hy IT,),

for all k, where Apax (IT,F H, IT,) represents the largest eigenvalue of the projected approximate Hes-
sian. As represents the largest eigenvalue of the projected approximate Hessian. As IT, I, Vf(x, )

lies in the column space of Zy,
1Z N (@)l = 12 T IS ()| = IV ()| = (HT VS ()
It follows that
IV () T di| 2 L Vf ()1 Amax (L Hy 1) > (LN ()12 /-

Then
0= lim |Vf(zx) pr| 2 lim |Vf(xx) dy| > lim |17V (2)]1% /-
k—o0 k—o0 k—r o0

Therefore,
klim | ITEVf ()| = 0.
—00
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Furthermore, it is stated in Theorem 3.3.3 that, if the sequence of iterates { Tk } converges
to a nondegenrate stationary point, then the optimal active set can be identified with a finite number
of iterations, i.e., UBOPT will eventually reduce to the L-RHR for the unconstrained minimization
with respect to the inactive variables. Therefore, Algorithm UBOPT eventually has the same

convergence properties as L-RHR.

3.5 Projected-Search Interior Methods

3.5.1 The general framework

A typical interior method for problem (BC) is based on minimizing a sequence of uncon-
strained functions M (v; ) parameterized by a positive scalar u. In general, the function M (v ; p)
is either not defined or unbounded for some values of the variables, which implies that the v are
subject to implicit bound constraints during the minimization. It follows that for a given u, the

problem to be solved has the general form

minimize M (v;u) subject to v € {2, (IPBC)

vER™Y

where (2 = {x ER™ 4, < U< Uy }, with £, and wu, fixed n,-vectors of lower and upper bounds
on v. Such a function M (v; u) typically has the property that if v approaches the boundary of 2,
the value of the function becomes 400 (see Section 2.2). For example, in the case of the classical

logarithmic barrier method, the function M (v;u) is given by

flz) — Z,uln (xj —Ej) — Zuln (uj — :Uj),
j=1 j=1

so that v = x and the implicit bounds are ¢ < = < .

The proposed projected-search line-search method for problem (IPBC) generates a se-
quence of feasible iterates { Vg, };OZO such that vy 41 = proj o, (vx + o, Avy), where Avy, is a descent
direction for M(v;p), oy is a quasi-Wolfe step, and proj g, (v) is the projection of v onto the

perturbed feasible region
Qk:{v:vk—a(vk—ﬁv)Svgvk—ka(uv—vk)}, (3.23)

where ¢ a fixed positive scalar such that 0 < ¢ < 1. The quantity ¢ may be interpreted as the

“fraction to the boundary” parameter used in many conventional interior methods.
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It is worth mentioning that, although this chapter concerns bound-constrained problems
only, the framework of projected-search interior methods proposed here may also be applied to
general nonlinearly constrained problems given an appropriate merit function M (v; ). Projected-
search interior methods have the potential of requiring fewer iterations than a conventional interior
method, thereby reducing the number of times that a search direction need be computed. Section 5.2
gives numerical results for a primal-dual projected-search interior method based on the method of
Forsgren and Gill [34].

3.5.2 Convergence analysis

In this section, the convergence properties of the class of projected-search interior methods
are established. As the parameter p is fixed in problem (IPBC), the notation can be simplified by
writing M (v) = M(v;pu). The projected search is performed on the univariate function ¥y (a) =
M (proj o, (vi + i Avg)).

Theorem 3.5.1 (Interior projected search with a quasi-Armijo search). Let M (v) be a continuously
differentiable function defined on 2 such that M(v) — oo as v approaches the boundary of 2.
Assume that vg € (2 is chosen such that the level set L'(M(vo)) s bounded, and {vk } is defined by

Uky1 = Proj o, (vg + apAuy), where proj , (v) is the projection of v onto the set
= {v:vk—a(vk—ﬁv) gvgvk—i—a(uv—vk)},

with o a fixed positive scalar such that 0 < o < 1, Avy is a descent direction, and «y is a quasi-

Armijo step. Also assume that ||Avg|| < 6 for some constant 0 independent of k Then
lim |[VM (vg,)T Avg| = 0.
k—o0

Proof. Observe that the quasi-Armijo condition implies that {M (vk)} is a strictly decreasing
sequence. As the set £(M(vg)) is bounded, it follows that { M(vy) } converges, with

0= lim M(vy) — M(vpy1) > lim agna|VM (vg) " Avg| = 0.
k—o0 k—o0

The proof is by contradiction. Suppose that |VM (vi)T Avg| 4 0 as k — oo, then there
must exist some € > 0 such that |VM (vy) T Avg| > € infinitely often. Let G = { k : [VM (vy) T Avy| >
€}, then aj, — 0 for k € G. Let v = inf,cr(ar(v0)).i { v; — Ui, u; — v; } By the continuity of M (v) in
12, the level set L(M (vg)) is closed. Hence, L(M (vp)) is a compact subset of the open set 2, which
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implies that v > 0. By the quasi-Armijo condition, each vy, lies in £(M (vg)). Therefore, for each i,
u; — [vg)i >, and [vg]; — I; > for all k. For each k, define the step By = ay,/0. As {||Avgl| } is
uniformly bounded by 6, there exists k such that each componet of 8, Avy, satisfies |[ B Av |i| < o7y
for all k > kin G. It follows that v+ By Avi, € 24, which implies proj o, (et BrAvy) = v+ B Avy,.

Let G denote the indices k > k of iterations at which a reduction in the initial step length
was necessary, i.e., G = {k‘ ity >0, ke g, k> k } Since oy, converges to zero, G must be an

infinite set. By definition of the quasi-Armijo step,
M (vy, + BrAvy) = M(proj g, (vg, + SrAvy)) > M(v) + Brna VM (vg) " Avg, for all k € G.
Adding — B, VM (v) T Avy, to both sides and rearranging gives

M(’Uk + BkAvk) — M(Uk) — ﬁkVM(vk)TAvk > —ﬂk<1 — UA)VM(Uk)TAUk
> Br(1—n4)E forall keg. (3.24)

The Taylor expansion of M (v + S Avy) gives
1
M(U}C—‘I_/Bk;A/Uk) —M(’Uk) —BkVM(Uk)TAUk = Bk / (VM(’Uk —l—TﬁkA’Uk) —VM(Uk)) TA’Uk dr. (325)
0
If | - ||, denotes the norm dual to || - ||, i.e., ||v]|p = max,.o [vTv|/||v]], then
| (VM (vi + 7Bk Avg) — VM (vr)) T Avg| < [|VM (vi, + 7Bp Avg) — VM (vi) || o] Avge -
If this inequality is substituted in (3.25), it then follows from (3.24) that

1
(1—na)e< /O (VM(Uk + 7Bk Avy) — VM(vk))TAvk dr

< max VM (vg, + 7Bx Avg) — VM (vi,)|| o || Avg ||, for all k € G.

The continuity of VM implies that there exists some 75 € [0, i) such that

Juax IVM (vi, + 78K Avy,) — VM (vg) || = || VM (v, + 71, Avi) — VM (vg) || -

Then
(1 —=ma)e < [|[VM (v + T Avg) — VM (i) || 5 || Avg || (3.26)
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However, ayAvy — 0 implies 7, Avg — 0 for k € G, and the continuity of VM gives
(| VM (vg, 4+ T Avk) — VM (vi) || — 0.

As {||Avg|| } is uniformly bounded above by 6, the right-hand side of (3.26) converges to zero,

which gives the required contradiction.
O

Theorem 3.5.2 (Interior projected search with a quasi-Wolfe search). Let M (v) be a continuously
differentiable function defined on 2 such that M(v) — oo as v approaches the boundary of 2.
Assume that vy € §2 is chosen such that the level set L(M(vo)) s bounded, and {vk } is defined by

Uk+1 = Proj o, (v + apAuy), where proj g (v) is the projection of v onto the set
2, = {v:vk—a(vk—ﬁv) _vgvk—i—a(uy—vk)},

with o a fized positive scalar such that 0 < o < 1, Avy is a descent direction, and oy, is a quasi- Wolfe

step. Also assume that ||Avg|| < 0 for some constant 6 independent of k Then
lim |VM (vg,)T Avg| = 0.
k—o0

Proof. The first quasi-Wolfe condition (Cy) is equivalent to the quasi-Armijo condition, and the
arguments in the proof of Theorem 3.5.1 may be used to show that {M(vk)} is a convergent
sequence. This implies that

lim akVM(vk)TAvk =0.

k— o0

The proof is by contradiction. Suppose that [VM (vi,) T Avg| 4 0 as k — oo, then there exists some
€ > 0 such that |[VM (vy)TAvy| > € infinitely often. Let G = {k : [VM (vy)T Avy| > €}, then it
must be that ay — 0 for k € G. As {||Avg| } is uniformly bounded above by 6, a;Av, — 0 for
keg.

If the quasi-Wolfe condition (Cs) is satisfied, then

VM (vi () T Poy ) (Avi) = =0, [VM (v1) T Avy|.
Similarly, if the quasi-Wolfe condition (Cy) is satisfied, then

VM (vi (k) T Py (o) (Avg) > 0 > =1y, [ VM (0) T Avg|.
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In either case, as VM (vg)T Avy, < 0, it must hold that
VM(Uk(Oék))Tka(ak)(A’Uk) — VM(vk)TAvk Z (1 — nw)‘VM(Uk)TA’UH > (]. — nw)g
for k € G. The application of the triangle inequality yields

0< (1 — nw)g < |VM(’U}C(OLk))TPUk(ak)(AUk) — VM(Uk)TAUk|
(ak)(Avk) - VM(Uk)Tka(ak)(Avk”
+ | VM (03) T Py, () (Avg) — VM (vi) T Ay . (3.27)

< |VM (vi(ax)) " P,

k

Let || - ||» denote the norm dual to || - ||, then

VM (vr (1)) " Py (o) (01) = VM (05) T Py () (Avy) |
< VM (vi (k) — VM (k) || 5 | Py o) (Avi) | < IVM (vr (k) — VM (vg) || o || Avie |-

As VM is continuous and ||Avyg|| is uniformly bounded, the right-hand side of this inequality must

converge to zero for k € G, which implies that
T
‘VM(Uk(Oék)) ka(ak)(Avk) — VM(Uk)Tka(ak)(AUk) — 0, for keg.
Basic norm inequalities give

[VM (k) " Poy () (Avk) = VM (0) T Avg | < [IVM (08| || P () (Avr) — Avg|
= VM (i) [ o Py (ar) (Avk) = Py (Avg)]].

Let v = inf,ez(a(vo)),i { Vi — lisui — v; }. By the same arguments in the proof of Theorem 3.5.1,
~ > 0, and for each i, u; — [vg]; > v, and [vg]; — I; > « for all k. Therefore, for k € G sufficiently

large such that each component [ o Avy |; < o7,
ka(ak)(Avk) = ka (Avk) = A'Uk.

Therefore,
IVM (vi) [lp[| Poy (o) (Avk) — Py, (Avg)|| = 0, for k € G,
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and consequently
{VM(vk)Tka(ak)(Avk) — VM(Uk)TAUk| — 0, for k € G.

It follows that the right-hand side of (3.27) converges to zero for k € G, which gives the required
contradiction.

It remains to consider the case where the quasi-Wolfe condition (Cj) is satisfied, i.e.,

VM (vi(ax)) TP

v (k)

(Avg) > —nw| VM () T Avg.
The assumption that VM (vi)T Avy < 0 gives

VM (vi(ax)) " P,

vk(ak)

(Avg) — VM (v,) T Avg, > (1 — 0y ) VM (v) T Avg| > (1 = ny )€
for k € G, which implies that

0<(1—nw)é< ‘VM(uk(ak))TPv;(ak)(Avk) - VM(vk)TAvk‘

< ‘VM(vk(ak))TP’ (Avy) — VM(vk)TPU’k(ak)(Avk)‘

vg (k)
+ ‘VM(vk)TPv’k (o (A0i) VM(vk)TAvk‘ . (3.28)
The definition of the dual norm yields
‘VM(vk(ak))Tp;k (o (Avr) — VM (0) TP, (ak)(Avk)’

< |IVM (Avg(ar)) — VM (vr) | o P,

vk(ak

) (Avg) || < [[VM (vr(ak)) — VM (o) || || Avi]|.

From the continuity of VM and uniform boundedness of ||Avg||, the right-hand side of the above

inequality converges to zero for k € G, which means that

‘VM(Uk(ock)) Tp-

vk (o)

(Avg) — VM (v,) TP

v (ok)

(Avg)| — 0, for k € g.
Also,

‘VM(vk)TP’

v (o)

(Avg) — VM (vp) " Avg | < [ VM (v3)|[o]| P,

v (o)

(Avy) — Awg||

= [IVM (vp)||o | Py, () (Avk) = Po, (Avg)|].

94



As vk (ag) — vi]| < |lagAug|| — 0 for k € G, arguments analogous to those used to establish
convergence in cases (Cs) and (Cy) give

p-

vg (o)

(Avy,) = P, (Avy,) = Av,, for k € G sufficiently large,

in which case

||VM(vk)||DHPU’k(%)(Avk) — P, (Avg)|| = 0, for k€G.

This implies that

VM (vi)* P

v (o)

(Avy,) — VM (vg,) T Avg| — 0, for k € G.

It follows that the right-hand side of (3.28) converges to zero for k € G, which gives the required

contradiction. 0

Chapter 3, as well as the numerical results in Sections 5.1-5.2, is partially a reprint of the
paper "Projected-search methods for bound-constrained optimization" by Michael W. Ferry, Philip
E. Gill, Elizabeth Wong, and Minxin Zhang, available on arXiv:2110.08359 [math.OC]. Manuscript
submitted for publication, 2021. The dissertation author served as the primary investigator and au-
thor of the paper. Additionally, Section 3.4 partially reprints the paper by Michael W. Ferry, Philip
E. Gill, Elizabeth Wong, and Minxin Zhang, titled "A limited-memory reduced-Hessian method
for bound-constrained optimization." Center for Computational Mathematics Report CCoM 21-01,
Center for Computational Mathematics, University of California San Diego, La Jolla, CA, 2021.

The dissertation author was the primary author of the content.
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Chapter 4

A Projected-Search Interior Method

for Nonlinear Optimization

4.1 Introduction

This chapter concerns the formulation and analysis of a new primal-dual interior method

for solving nonlinear optimization problems of the form

inimi subi — 5= > NIPs
Iinimize f(z) subject to c(z) —s=0, s>0, (NIPs)

where ¢ : R” — R™ and f : R® — R are twice-continuously differentiable. (The slack variables s
serve to convert the inequalities ¢(x) > 0 into a mixture of equalities and inequalities that do not
require the need to know an initial point for which ¢ is strictly positive.)

In [46], Gill, Kungurtsev and Robinson propose an algorithm for (NIPs) based on using
a shifted primal-dual penalty-barrier function as a merit function for a primal-dual path-following
method. This function involves a primal-dual shifted penalty term for the equality constraints
¢(z) — s = 0 and an analogous primal-dual shifted barrier term for the inequalities s > 0. It is
shown that a specific approximate Newton method for the unconstrained minimization of the merit
function generates search directions that are identical to those associated with a variant of the
conventional path-following method in which the perturbation of the complementarity condition
does not need to go to zero.

The proposed method is based on a newly formulated merit function that includes shifts for
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the dual variables as well as the slack variables s. (For problems with a mixture of upper and lower
bounds on x and s, the method may be regarded as shifting both the primal and dual variables,
see Appendix A.) Shifts on the dual variables allow the method to be safely “warm started” from
a good approximate solution and eliminates the ill-conditioning of the associated linear equations
that may occur when the dual variables are close to zero.

The shifted primal-dual penalty-barrier function includes logarithmic barrier terms that
create a singularity at the boundary of the primal-dual shifted feasible region, which implies that
the variables are subject to implicit bound constraints during the minimization. A novel projected-
search method is designed for the minimization of the all-shifted penalty-barrier function, which
employs a flexible non-monotone gquasi-Armijo line search. Unlike conventional interior methods,
projected-search interior methods project the underlying search direction onto a subset of the
feasible region defined by perturbing the bounds. With this approach the direction of the search
path may change multiple times along the boundary of the perturbed feasible region at the cost
of computing a single direction. Projected-search interior methods have the potential of requiring
fewer iterations than a conventional interior method, thereby reducing the number of times that a
search direction must be computed.

The projected-search method generates a sequence of feasible iterates {vy }72, such that
Uk41 = Proj o, (v + arAuvy), where proj g, (v) is the projection of the vector v of primal-dual
variables onto a perturbed feasible region (2;. Under mild assumptions, it is shown that there
exists a limit point of the computed iterates that is either an infeasible stationary point, or a
complementary approximate Karush-Kuhn-Tucker point (KKT), i.e., it satisfies reasonable stopping
criteria and is a KKT point under a complementary approximate KKT regularity condition that is
weaker than MFCQ (see Andreani, Martinez, Ramos and Svaiter [1]).

The rest of the chapter is organized as follows. Section 4.2 reviews the method of Gill,
Kungurtsev and Robinson [46], which is based on minimizing a shifted primal-dual penalty-barrier
function. In the neighborhood of a solution, under suitable assumptions, the method is equivalent
to a variant of the primal-dual path-following method in which the slack variables are shifted. In
Section 4.3 this method is extended to include shifts on the dual variables as well as the slacks
to formulate an all-shifted primal-dual penalty-barrier function. In Section 4.4, a projected-search
algorithm is proposed for minimizing the all-shifted primal-dual penalty-barrier function for fixed
penalty and barrier parameters. The convergence of this algorithm is established under certain
assumptions. Section 4.5 presents an algorithm for solving problem (NIPs) that builds upon the

work from Section 4.4. Global convergence results of the algorithm are also established.
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4.2 Background: A Primal-Dual Method Based on Shifting
the Slacks

Given an appropriate constraint qualification, the first-order optimality conditions for

problem (NIPs) are given by

Vf(z) = J(x)"y =0, y—w=0,
c(x) —s=0, s>0, (4.1)
s -w=0, w >0,

where the vectors y and w constitute the Lagrange multipliers for the equality constraint ¢(z)—s =0
and nonnegativity constraint s > 0 respectively (see Theorem 2.2.7). Any point satisfying the
conditions (4.1) is called a first-order KKT point.

Primal-dual path-following methods generate a sequence of iterates that approximate a
continuous primal-dual path that passes through a solution of (NIPs). Points on this path satisfy
a system of nonlinear equations that represent the deviations from a perturbation of the first-order
optimality conditions (4.1). In a conventional path-following approach, the perturbed optimality
conditions correspond to replacing the equality constraints and complementarity conditions of (4.1)
by c¢(z) — s = py and s - w = pe, where p is a small positive parameter such that g — 0. This
method is closely related to penalty-barrier methods for solving (NIPs). Under certain conditions
on f and c the continuous trajectory of penalty-barrier minimizers associated with a continuous
penalty-barrier parameter p coincides with the primal-dual path.

In the neighborhood of a first-order KKT point, computing the search direction as the
solution of the Newton equations for a zero of the perturbed optimality conditions provides the
favorable local convergence rate associated with Newton’s method. Given the close connection with
penalty-barrier methods, solving the Newton equations provides an alternative to solving the ill-
conditioned equations associated with a conventional penalty-barrier method. In this context, the
penalty-barrier function may be regarded as a merit function for forcing convergence of the sequence
of Newton iterates of the path-following method. For examples of this approach, see Byrd, Hribar
and Nocedal [12], Wéchter and Biegler [83], Forsgren and Gill [34], and Gertz and Gill [44].

When implemented with exact second derivatives, path-following interior methods often
converge in few iterations—even for very large problems. As the dimension and zero/nonzero struc-
ture of the Jacobian matrix remains fixed, the Newton equations may be solved efficiently using

advanced “off-the-shelf” linear algebra software. On the negative side, although conventional path-
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following interior methods are very effective for solving “one-off” problems, they are difficult to adapt
to solving a sequence of related problems using so-called “warm starts”, i.e., using the solution of
one problem as an initial estimate of the solution of the next.

In a conventional path-following interior method, it is necessary to force u — 0 to ensure
that points near the path eventually satisfy the optimality conditions (4.1). However, if an aug-
mented Lagrangian method defined with multiplier estimate y” and penalty parameter p” is used
to minimize f(x) subject to ¢(x) = 0, then perturbed conditions of the form c(z) = pu”(y”® — y)
hold at a minimizer. It follows that u” need not go to zero if y” is chosen converge to the optimal
multipliers. Motivated by this observation, the method of Gill, Kungurtsev and Robinson [46] is

based on the perturbed optimality conditions

Vf(z) — J(x) "y =0, y—w =0,
clx) —s=p"(y® —y), s>0, (4.2)

E

s w=p?(w® —w), w >0,

where p and p® are positive scalars and y” and w” denote estimates of the Lagrange multipliers
for the constraints ¢(x) — s = 0 and s > 0, respectively. The perturbed complementarity condition
in (4.2) may be written in the form (s + p”e) - w = p”w”, which implies that if w” > 0 then
s+ pPe > 0and w > 0. Gill, Kungurtsev and Robinson show that an appropriate merit function
for a path-following interior method based on the conditions (4.2) is the shifted primal-dual penalty-

barrier function

M(z,s,y,w;y”, w” pn”,p1”) = f(z) — (c(z) — s)"y"

+%IIC( )—8|I2+7H (@) = s+ u"(y —y")|*

quBw In (s; + p”) Zqu In (w;(s; + p ))+Zwi(5i+ﬂB)-
i=1

In the neighborhood of a minimizer of (NIPs) satisfying certain second-order optimality conditions,
the Newton equations for a zero of the conditions (4.2) are equivalent to the Newton equations
for a minimizer of M. Under certain assumptions, a limit point of the iterates generated by the
algorithm may always be found that is either an infeasible stationary point or a complementary
approximate KKT point (see Andreani, Martinez and Svaiter [2]). The reader is referred to Gill,

Kungurtsev and Robinson [46] for more details.

99



In the following section, the Gill, Kungurtsev and Robinson algorithm is extended to

include shifts on the dual variables w as well as the slack variables s.

4.3 An All-Shifted Primal-Dual Penalty-Barrier Function

To include shifts for the dual variables, the following perturbed optimality conditions are

considered:
Vf(z) = J(z)"y =0, y—w=0,
c(x) —s=p"(y" —y), 5>0, (4.3)
s w=p?(w® —w)+ p®(s® —9), w >0,

where y” € R™ is an estimate of a Lagrange multiplier vector for the constraint ¢(z) — s = 0,
w? € R™ is an estimate of a Lagrange multiplier for the constraint s > 0, s® € R™ is an estimate
of the optimal slacks, and p” and p® are positive scalars. The last equation of (4.3) may be written
in the form (s + pfe) - (w + pfe) = pu?(s? + w? + p®e), which implies that if s¥ + w? + pfe > 0
then s + p®e > 0 and w + pPe > 0. If F(x, s, y, w; s, y®, w®, u”, u?) denotes the function

Vf(@) = J(2)"y
Fla,s,y,w;s",y",w®, p”, yn”) = yﬂ: ., ) (4.4)
() = s+ p"(y —y”)

sw—pP(w? —w+ s —s)

then any point (z, s, y, w) that satisfies the perturbed optimality conditions (4.3) must satisty F'(z,
s, y, w; % yE w® pf pP) =0. Let F(v) denote the function at a given point v = (x, s,y, w).

The Newton equations for the step Av are given by F'(v)Av = —F(v), i.e.,

H(z,y) 0 —J(z)" 0 Az Vf(x) — J(z)Ty
0 0 I, -1, As _ y—w
J@)  Le p'In 0 Ayl | e —srury—ye) |
0 W+ pu”1l, 0 S+ pPly, Aw s-w—pP(w? —w+ s? —s)

(4.5)

where S and W denote diagonal matrices with diagonal entries s; and w; such that s; + u® > 0
and w; + p® > 0.

Next, a penalty-barrier function M needs to be formulated such that in a neighborhood

of a minimizer of M, the Newton equations for minimizing M approximate the Newton equations
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(4.5). such that in a neighborhood of a minimizer of M, the Newton equations for minimizing M

approximate the Newton equations (4.5). Consider the shifted primal-dual penalty-barrier function

1
Mz, s,y,w; 8", y" w p", 1) = f(z) —(c(z) = 8)Ty" + 5 lez) - ||
N~ ————— 12

A B —
(4) (B) )

1
+ 2/TPIIC(Jf) —s+u"(y -y

(D)

—2) " pP(wf + sf + p”) In(s; + 1)
=t (4.6)
®)

m

=3P (wf 4 sF 4+ p®) In(w; + 1)
=1

(F)
+ Zwi(si + 1) +2p” Zsi .
i=1 i=1
(G) (H)

Let S” denote the diagonal matrix with diagonal entries s?. Similarly, let
Sp=S+u°l,, S&=8°+u®l, and Wy =W + u®I,,.
Given the positive-definite matrices
D, =u"I,, and Dy=S,W;!

and auxiliary vectors
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the gradient VM may be written as

V(@) = J(@) " (7 + (7 —y))
(m" —y)+ (@ —7") + (w—7")
—Dp(n" —y)

—Dg(m" —w)

VM =

and the Hessian V2M may be written in the form

H+2J(z)"D;1J(x) —2J(z)T* D! J(x)T 0
2D J(x) 2Dyt + D WILTY + P S Iy, I
J(x) —In D, 0

0 I, 0 WY (D, IV + p*WitSy)

(4.8)
where H = H(z,7" + (¥ —y)) and II" = diag(7").
At the start of iteration k, given the primal-dual iterate vy = (zy, sk, Yk, Wk), the search

direction Avy = (Axy, Asg, Ayg, Awy) is computed by solving the linear equations
H} Avy, = —VM (vg,), (4.9)

where H}' is a positive-definite approximation of V?M (zg, sk, yk, wi). The remainder of this
section focuses on the computation of the search direction for a single iteration, with the notation
simplified by omitting the subscript k. The matrix H" in the equations HY Av = —VM (v) is
defined by substituting y for 7, w for 7", s for s and a symmetric matrix H for H in (4.8). This
gives

H+2J(x)"D; J(z) —2J()"D;Y  J@)T 0

—2D;1J 2(D;t + Dt —I, L,

HM — P (‘T) ( P B ) , (4.10)
J(z) ~I . 0
0 I, 0 Dy

where H is chosen such that H ~ H (z,y) and H" is positive definite. A generalization of Theo-
rem 5.1 of Gill, Kungurtsev and Robinson [46] may be used to show that the choice H = H(z, ) is
allowed in the neighborhood of a solution satisfying certain second-order optimality conditions. The
approximate Newton equations (4.9) defined with H" from (4.10) are not solved directly because

of the potential for numerical instability. Instead, an equivalent transformed system is solved based
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on the transformation
UH"Av = —UVM (v), (4.11)

where U is a nonsingular matrix defined by

I, 0 —=2J(z)TD;! 0
0 In 2Dt —2D;1
U= g g . (4.12)
0 0 L, 0
0 0 0 W+ p1,,

Upon multiplication and application of the identity W;Dy = Sp, the equations (4.11) may be

rewritten as

H 0 —J ()" 0 Az Vf(z) — J(z)Ty

0 0 I, I, As B y—w
J@)  ~In D, 0 ay | () = s+ "y~ y")

0 W+u”l, 0 S+ u?L, Aw s w—pP(w? —w+ s —s)

(4.13)
These equations are identical to the shifted path-following equations (4.5) when H = H(z,y). The
solution of (4.13) is given by

Aw=y—w+Ay and As=—Dy(y+ Ay) +p" W, ' (w” + 5" —s),

where Az and Ay satisfy the equations

( H J(z)T ) ( A:E) B ( Vf(z) — J(z)Ty ) (414)
J(@) —(Dr+Dy)) \ =4y Dp(y =)+ Duly —7")) |

The matrix H" in (4.10) is positive definite if H+ J(x)T(Dp + Dy)~1J(x) is positive definite or,
equivalently, if the (n + m) x (n + m) matrix associated with (4.14) has inertia (n,m,0). If this

condition does not hold for H = H (z,y), a common choice of H is the matrix H (z,y) + o1, for

some positive scalar ¢ (see Section 5.3).
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4.4 Minimizing the Merit Function using Projected Search

This section proposes a novel projected-search algorithm that utilizes a non-monotone
flezible quasi-Armijo line search for minimizing the merit function M(z, s, y, w;s®, y=, w®, u”,
w”) of (4.6) with fixed parameters s”, y*, w”, u” and p”. The flexible quasi-Armijo line search is a
generalization of the quasi-Armijo search that allows the acceptance of a step under a wider range of
conditions. The generalization uses the idea of flexible line search proposed by Curtis and Nocedal
[18], and also employs the relation between minimizing the merit function and finding a zero of
the shifted path-following function F(z, s,y,w;s”, y?, w”, u”, u?) of (4.4). In this case, the nota-
tion is simplified by writing M (z, s,y, w; s®,y?, w?, u”, u?) and F(z,s,y,w;s®, y= w?, u’, u?) as

M(v;u®) and F(v;p”), respectively.

4.4.1 The algorithm

For the merit function M (v;u”) to be well-defined, the variables must satisfy the implicit
bounds s > —pu®e, and w > —pPe. Thus, minimizing the merit function M (v; u*) is equivalent to

solving the bound-constrained problem
minimize M (v;p”) subject to v > ¢, (IPBC’)

with ¢ = ( — 00, —pfe, —o0, —,uBe), where an entry of “—oc0” is used to indicate that the associated
variable has no lower bound. Let proj, (v) be the projection of v onto the perturbed feasible
region

O ={v:v>min{v, —o(vy—0),0}}, (4.15)

with o a fixed positive scalar such that 0 < ¢ < 1. The quantity ¢ may be interpreted as the
“fraction to the boundary” parameter used in many conventional interior-point methods. The
proposed projected-search method for problem (IPBC’) is given in Algorithm 4. It generates a
sequence of feasible iterates {vy}32, such that vy 1 = projg,, (vr + arAvy), where Avy is the
search direction computed as in Section 4.3, and «j is a step computed using a flexible quasi-
Armijo search.

To perform the flexible quasi-Armijo search, a line-search Armijo parameter p” is cho-
sen such that p* > p”. At an iteration k, let ¢¥p(a;u) and ¢r(a;p) denote the functions
M(proj o, (vr + aAvk);u) and HF(proj o, (Vk + aluy) ;u) H A step a4, is acceptable if all of
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the three conditions

Pl s 1) < max { P (05 47), My 1, (4.16a)

Yoy s ") < max { (05 "), My}, and (4.16b)

Op(ag s 1”) < mpmin { @ (05 17), 1" Fray (4.16¢)
are satisfied, or

Ul i) < (05 ) + g, VM (v 5 ") T Avy, (4.16d)

for some value pj € [u”,p*] and some positive 7 < 1. In these conditions, Myax and Fiax
are large preassigned parameters and my is the number of iterations prior to iteration k at which
(4.16a)—(4.16¢) were satisfied. Any o« satisfying the conditions (4.16a)—(4.16¢) or the condition
(4.16d) is classified as a flexible quasi-Armijo step. Alternatively, an «y that satisfies (4.16d) for
pr = w” is simply known as a quasi-Armijo step. The conditions (4.16a)—(4.16d) allow a step to
be accepted if either (4.16a)—(4.16¢) holds, which implies that ay, gives a sufficient decrease in the
norm of the shifted path-following function F' (4.4), or (4.16d) holds, which implies that ay, satisfies
a flexible variant of the quasi-Armijo condition for the minimization of M.

The convergence analysis in subsection 4.4.2 below establishes the convergence of Al-
gorithm 4 under typical assumptions. However, the ultimate purpose is to develop a practical
algorithm for the solution of problem (NIPs) that uses Algorithm 4 as a basis for minimizing the
underlying merit function. The slack-variable reset in Step 18 of Algorithm 4 plays a crucial role
in this more general algorithm for handling (locally) infeasible problems (see Lemma 4.5.5). Anal-
ogous slack-variable resets are used in Gill, Murray and Saunders [50], and Gill, Kungurtsev and
Robinson [46]. As defined in Step 17 of Algorithm 4, 5,4 is the unique minimizer, with respect
to s, of the sum of the terms (B), (C), (D), (G) and (H) in the definition of the function M. In
particular, it follows from Step 17 and Step 18 of Algorithm 4 that the value of s;41 computed in
Step 18 satisfies

Spa1 = Sppr = (@pyr) — i (Y7 + S (Whyy — Ypyr) +17),

which implies, after rearrangement, that

(1) = S < Hg (yE + %(wkﬂ — Ypy1) + NB)- (4.17)
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Algorithm 4 Minimizing M for fixed parameters s?, y®, w?, pu*, u? and p*.

1: procedure MERIT-PROJ(x, So, Yo, Wo, $Z, w?, u*, u?, u*)

2 Restrictions: sg + p®e > 0, wg + p%e > 0, s¥ +w® + pPe > 0, p* > p” > 0, u® > 0;
3 Constants: {14,747 } € (0,1);

4: Set Vg < (JZQ,S(),yQ,’LUo);

5: while || VM (vg)|| > 0 do

6 Choose H}! > 0, and then compute the search direction Avy from (4.9);

7
8
9

Set ay + 1;
loop
if (4.16a)-(4.16¢) hold or (4.16d) holds for uj = p* then

10: break;
11: else if (4.16d) holds for pj, = u” then
12: break;
13: end if
14: Set ay,  yaau;
15: end loop
16: Set vg11 < proj g, (v + arpAuvy);
17 Set 8,41 ¢ c(@pq) — (V" + 5(Whyy — Yppr) + 17);
18: Perform a slack reset spi1 < max{sgt1, Sk+1};
19: Set vg41 (Q?k+1, Sk+1, Yk+1, ’u}}c+1);
20: end while

21: end procedure

4.4.2 Convergence analysis
The following assumptions are made for the convergence analysis:
Assumption 4.4.1. The functions f and c are twice continuously differentiable.

Assumption 4.4.2. The sequence of matrices { H)! }x>0 used in (4.9) are chosen to be uniformly

positive definite and bounded in norm.
Assumption 4.4.3. The sequence of iterates {xy } is contained in a bounded set.

Additionally, it will be show in Section 4.5 (proof of Lemma 4.5.2) that uj, is fixed for
all k£ sufficiently large if u” is chosen appropriately. In this section, without loss of generality, the
parameter p; in Algorithm 4 is assumed to be fixed at a value p”, with either p” = p” or p* = p*.

In order to simplify the notation, let M (v;u”) denote M (z, s, y, w;s®, y?, w?, 2%, u*, u?).

Lemma 4.4.1. The sequence of iterates {vj,} computed by Algorithm 4 is such that { M (vi,; u")}
is bounded. In particular, if ay is a step that satisfies (4.16d), then M (vi41;p") < M (vg; u").

Proof. As H} is positive definite by Assumption 4.4.2 and VM (v, ; 11”) is assumed to be nonzero for
all k£ > 0, the vector Avy is a descent direction for M at vg. This property, together with equations
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(4.16a) and (4.16b), imply that the line search performed in Algorithm 4 produces an a4 such that
the new point vx1 = proj g, (v + apAuvy) satisfies M (vg11 ;") < max{M (vg;p"), Mmax}. In
particular, if (4.16d) holds, then M (vj41;p") < M (v ;p™). It follows that the only way that the
desired result cannot hold is if the slack-reset procedure of Step 18 of Algorithm 4 causes M to
increase. The proof is complete if it can be shown that this cannot happen.

The vector ;11 used in the slack reset is the unique minimizer of the sum of the terms
(B), (C), (D), (G) and (H) defining the function M (v;u"), so that the sum of these terms cannot
increase. Also, (A) is independent of s, so that its value does not change. The slack-reset procedure
has the effect of possibly increasing the value of some of its components, which means that the (E)
and (F) terms in the definition of M can only decrease. In total, this implies that the slack reset

can never increase the value of M, which completes the proof. O

Lemma 4.4.2. The sequence of iterates {vy} = {(xk, Sk, Yk, wx) } computed by Algorithm 4 satisfies
the following properties.

(i) The sequences {si}, {c(zr) — sk}, {yr}, and {wy} are bounded.

(ii) For every i it holds that

o 51 o 51
hrknzlglf[sk—i—u el; >0 and hrknzlglf [w + p®e]; > 0.

(iii) The sequences {7 (zk,si) }, {7" (s)}, and { VM (vy;p”)} are bounded.
(iv) There ezists a scalar Moy such that M (vy ; ") > Migw > —o0 for all k.

Proof. First, we consider the case where (4.16¢) holds only finitely many times. For a proof by
contradiction, assume that {sy} is unbounded. As s; + p”e > 0 by construction, there exists a

subsequence of iterations S and component i such that

]lﬁhg [sk]i =00 and [si]; > [si]; for every jand all k € S. (4.18)
€

Next it will be shown that M must go to infinity on S. It follows from (4.18), Assumption 4.4.3,
and the continuity of ¢ that the term (A) in the definition of M is bounded below for all k, that
(B) cannot go to —oo any faster than ||sgx|| on S, and that (C) converges to oo on S at the same
rate as ||s|2. It is also clear that (D) is bounded below by zero. On the other hand, (E) goes
to —oo on S at the rate —In([s;]; + p”). Next, note that (H) is bounded below. Now, if (F) is

bounded below on S, then the previous argument proves that M converges to infinity on S, which
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contradicts Lemma 4.4.1. Otherwise, if (F) goes to —oco on S, then (G) converges to oo faster than
(F) converges to —oo. Thus, M converges to oo on S, which contradicts Lemma 4.4.1. We have
thus proved that {sj} is bounded, which is the first part of result (i). The second part of (i), i.e.,
the uniform boundedness of {c(xy) — s}, follows from the first result, the continuity of ¢, and
Assumption 4.4.3.

The next step is to establish the third bound in part (i), i.e., that {yx} is bounded. For

a proof by contradiction, assume that there exists some subsequence § and component i such that

1161611‘1'S llyrli| =00 and |[yx]s| > |[yx];| for every j and all k € S.

Using arguments similar to those of the preceding paragraph, together with the result established
above that {s;} is bounded, it follows that (A), (B) and (C) are bounded below over all k, and
that (D) converges to oo on S at the rate of [y ]? because {si} is bounded, as has been shown
above. Using the uniform boundedness of { Sk } and the assumption that s¥ +w” 4+ p® > 0, it may
be deduced that (E) is bounded below. If (F) is bounded below on S, then (G) is also bounded,
and as (H) is bounded below by zero we would conclude, in totality, that limges M (vy) = oo,
which contradicts Lemma 4.4.1. Thus, (F) must converge to —oo, which implies that (G) converges
to oo faster than (F) converges to —oo, so that limges M (v ; u”) = oo on S, which contradicts
Lemma 4.4.1. Thus, { y; } is bounded.

We now establish the final bound in part (i), i.e., we show that {wk } is bounded. The
boundedness of { zx }, { sx } and {yx } imply that (A), (B), (C), (D) and (H) are bounded and
that (E) is bounded below. For a proof by contradiction, assume that the set is unbounded, which

implies the existence of a subsequence S and a component ¢ such that

Ilcler% [wy]; = o0.

Then (F) converges to —oo, while (G) converges to oo faster than (F) converges to —oo, so that
limges, M(vg ;1) = 0o on S, which contradicts Lemma 4.4.1. It follows that {wk } is bounded.

Part (ii) is also proved by contradiction. Suppose that {[sz + p®e]; } — 0 on some
subsequence S and for some component i. As before, (A), (B), (C), (D), (G) and (H) are all
bounded from below over all k. We may also use w” + s” + u® > 0 and the fact that {Sk } and
{wy, } were proved to be bounded in part (i) to conclude that (E) and (F) converge to oo on S.
It follows that limges M (vg; u”) = oo, which contradicts Lemma 4.4.1, and therefore establishes

that liminf [ sy + pPe]; > 0 for every 1 < i < m. A similar argument may be used to prove that
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liminf [wg + pPe]; > 0 for every 1 < ¢ < m, which completes the proof.

Part (iii) and Part (iv) can be proved similarly as in the proof of Lemma 3.2(iii) and (iv)
in [46]. Consider part (iii). The sequence {7* (zy, sx)} is bounded as a consequence of part (i) and
the fact that y” and p” are fixed. Similarly, the sequence {WW(Sk)} is bounded as a consequence
of part (ii) and the fact that w”, s” and p” are fixed. Lastly, the sequence {VM(mk,sk,yk)}
is bounded as a consequence of parts (i) and (ii), the uniform boundedness just established for
{ﬂ'Y(CCk,Sk)} and {ﬂ'W(sk)}, Assumption 4.4.1, Assumption 4.4.3, and the fact that y=, w”, s”,
', and p® are fixed. For part (iv) it will be shown that each term in the definition of M is bounded
below. Term (A) is bounded below because of Assumption 4.4.1 and Assumption 4.4.2. Term (B)
is bounded below as a consequence of part (i) and the fact that y” is kept fixed. Terms (C) and
(D) are both nonnegative, hence, trivially bounded below. Terms (E) and (F) are bounded below
because u? and w” 4 s + pfe > 0 are held fixed, and part (i). Term (G) is bounded below because
of part (i). Finally, (H) is bounded below because s > —u”e. The existence of the lower bound

M,,,, now follows. O
Certain results hold when the gradient of M (v;u”) is bounded away from zero.

Lemma 4.4.3. If there exists a positive scalar € and a subsequence of iterates S satisfying
VM (v ; u")|| > € forall k€S,

then the following results must hold.
(i) The set { || Avk|l }res is bounded above and bounded away from zero.
(ii) There exists a positive scalar § such that VM (vy, ; u*)T Avy, < —6 for all k € S.
Proof. See the proof of Lemma 3.3 in [46]. O
Now the main convergence result for Algorithm 4 can be established.

Theorem 4.4.1 (Flexible quasi-Armijo search). Under Assumptions 4.4.1-4.4.3, there exists an
iteration subsequence S such that

: S P —
ilerpSVM(vk,u )=0.

Proof. First, consider the case where there exists an infinite subsequence of iterates S such that
the line-search conditions (4.16a)—(4.16¢) hold for all k£ € S. Then the line-search condition (4.16c¢)
implies that limyes [|F (v, ; u”)| = 0. By (4.11), F(vy ; 1u”) = Uy VM (vy, ; 1), where Uy, is a matrix
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of the form (4.12). Lemma 4.4.2((ii)) implies that { |[Us|| } is uniformly bounded away from zero,
which ensures that limges VM (vy ; 1) = 0.

Now assume the complementary case where the subsequence of iterates such that the line-
search conditions (4.16a)—(4.16¢) hold is finite. This implies that there exists kg such that for all
k > kg, the line-search condition (4.16d) must hold. Thus, all the subsequent iterates {vk } k> ko
lies within the level set

L(M(vkg ;")) & {v e 2: Mv;p") < M(vg,;1°)
where (2 represents the open set in which the merit function M (v; u”) is well defined, i.e.,
= {v = (z,s,y,w) : v > €}, with ¢ = (— oo,—uBe,—oo,—uBe).

Notice that the value of M (v;u”) is +0o on the boundary of 2. Then by the continuity of the
function M (v; u"), the level set £(M (vy, ; u”)) is a closed subset of £2. Moreover, Assumption 4.4.3
}k>k0 is a bounded subset of £(M (vy, ; u")).
Hence, there exists a compact subset of {2 such that {fuk } k> ko lies within the compact subset. It

follows that

and Lemma 4.4.2(i) imply that the set of iterates { vy,

1>

K {[Uk]i—[e]i}>0.

k>k£r}1igi§n
We show by contradiction that limy_,o, VM (vg ; u) = 0. Suppose there exists a constant € > 0
and a subsequence G such that ||VM (vg ;)| > € for all k € G. It follows from Lemma 4.4.1 and
Lemma 4.4.2(iv) that limg_yoo M(vg; ") = Mpmin > —oo. Using this result and the assumption
that the line-search condition (4.16d) is satisfied for all k sufficiently large, it must follow that

lim o, VM (vy ; p”) T Avg = 0,
k—o0

which, together with Lemma 4.4.3(ii), implies that limycg o = 0. For each k, define B £ o /va-
Then limgeg S = 0 and the backtracking procedure in Algorithm 4 implies that the condition
(4.16d) does not hold for the step 8 for all k sufficiently large. This means that the more stringent

quasi-Armijo condition does not hold, i.e.,
M (proj g, (vi + BrAvg) s 1”) > M (v s 1) + agn, VM (vy 5 17) T Avy, (4.19)

for all k sufficiently large. By Lemma 4.4.3(i), we also have limgeg || B Avg|| = 0. Thus, there exists
k such that every component of 3y Avy, satisfies |[ BxAvy |i| < oy for all k > k in G. It follows that
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Uk + BrAvg € (2, which implies proj o, (vi + BxAvy) = vk + Br.Avi. Now let G’ denote the indices
k > max{ ko, l_c} of iterations at which a reduction in the initial step length was necessary, i.e.,
g = {k o<1, keg, k> max{ko,E} } As «ay converges to zero, G’ must be an infinite set.
The inequality (4.19) implies that

M (vg + BrAuvg ; 1) > M(vg; 1) + Brnna VM (v ; ™) Avy,
for all k in G’. Adding — B3, VM (vx ; u”)T Avy to both sides and rearranging gives

M (vg + BrAvy 5 1) — M (vg 5 1) — B VM (v ; ™) T Avg, > =B (1 — 1) VM (v ; 17) T Awy,
> Br(1—mn4)d, forall keg'. (4.20)

The Taylor expansion of M (v + BrAvy ; u*) gives

M (v + B vy s 1) — M(o s 1) — BeVM (v s 5™) T Avg
1
— By / (VM (og + 78 Avy ") — VM (g s 5™)) T Avg . (4.21)
0

If || - || » denotes the norm dual to || - ||, i.e., |[v]|, = max,o [vTu|/||ul, then

| (VM (vy, + 7B Avy, 3 1) — VM (vg, 5 17)) T Avy,|
< VM (vg + 7Bk Avg s 1) — VM (v 5 17| o | Avge |-

If this inequality is substituted in (4.21), it then follows from (4.20) that
1
(1 —=n4)0 < / (VM(vk + 78k Avg s 7)) — VM (v, ;up))TAvk dr
0
< Juax, VM (vi + 7Bk Avy s ) — VM (v 5 ™) || o || Avg||, for all k€ G'.
The continuity of VM implies that there exists some 74 € [0, 8] such that
max (VM (o + B Ay 1) — VM (o517 o = VM (0 + 732033 67) = VM (o 7)o

Then
(1 =n4)d < ||VM (v + 1 Aoy 5 7)) — VM (vg 5 167) || o || Avie || (4.22)
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However, ayAvy — 0 implies 7, Avg — 0 for k € G, and the continuity of VM gives
IVM (vg, + T Avg s 7)) — VM (vg 5 1) || — 0.

Lemma 4.4.3(1) implies that the right-hand side of (4.22) converges to zero, which gives the required

contradiction. O

4.5 Solving the Nonlinear Optimization Problem

In this section, a projected-search interior method for solving the nonlinear optimization
problem (NIPs) is formulated and analyzed. The method incorporates the projected-search algo-
rithm presented in Section 4.4 with strategies for adjusting the parameters in the definition of the

merit function. These parameters were fixed in Algorithm 4.

4.5.1 The algorithm

The proposed method is given in Algorithm 5. The method uses the distinction among
O-iterations, M-iterations and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for problem (NIPs).
Progress towards optimality of the iterate vip11 = (Zr41, Sk+1, Yk+1, Wit1) is defined in terms of

the following feasibility, stationarity, and complementarity measures:

Xfeas(vk+1) = ||C(33k+1) - 3k+1||7
Xstny (Vk+1) = max (|| Vf(2e41) = J(@rs1)  Yrr [, [[Yrs1 — wegr]]), and

Xcomp(vk+1aﬂf) = ||min(q1(vk+1),q2(vk+1,p,’f))H )

where

¢ (Vk41) = max(\ min(5k+17wk+1a0)|a |5k+1 : wk+1|)’ and

05 (U1, px) = max (e, [min(sy oy + pe, wigy + pge,0)], [(spq + pie) - (wipy + pie)l)).

A first-order KKT point vg 1 for problem (NIPs) satisfies x (v, 1, u5) = 0, where

X(va :U') = Xfeas(v) + Xstny (U) + XCOmp(va ,LL) (423)

Given these definitions, the kth iteration is designated as an O-iteration if x(vii1,p7) < XP%,
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max

where { Xk } is a monotonically decreasing positive sequence. At an O-iteration the parameters
are updated as yg, | =y, 1, Wi, = wy; and xpPNY = %Xfax (see Step 11 of Algorithm 5). These
updates ensure that {Xg’ax} converges to zero if infinitely many O-iterations occur. The point
vk41 is called an O-iterate.

If the condition for an O-iteration does not hold, a test is made to determine if vgy41 =

(Th+1, Skt+1, Yk+1, Wet1) 1s an approximate first-order solution of the problem

minimize M(v; s, yf, wf, iuf, 1uf). (4.24)
v=(z,s,y,w)

In particular, the kth iteration is called an M-iteration if vy satisfies

IV M (Vgp1 38K Yk Wi s e 18 ) oo < T (4.25a)
Vs M (Vg1 5855 Ui s Wi s Mg B oo < T (4.25b)
IV M (01588 Yoo » Wi s ks 1) oo < Tl Digga lloos and (4.25¢)
IV M (11585 Yk > Wk e ) oo < Tl Dig [l (4.25d)

where 73, is a positive tolerance, Dy | = pfl, and DJ = (Sjyq + pp D)W,y + p1)~" In this
case vg41 is called an M-iterate because it is an approximate first-order solution of (4.24). The

estimates si, |, ¥, and wy,, are defined by the safeguarded values

5141 = min (max((), Sh41)s smaxe),
ylf+1 = max ( ~ Ymax®s min(yk+17 ymaxe))7 (426)

E _ .
Wy = MIN (wk+1, wmaxe)

for some large positive constants Smax, Ymax and wmax. Next, Step 15 checks if the condition

Xfeas(vkr+1) < Tk (427)

holds. If the condition holds, then py,, < py; otherwise, py,, %u}; to place more emphasis
on satisfying the constraint ¢(z) — s = 0 in subsequent iterations. Similarly, Step 16 checks the
inequalities

Xeomp (Vk415 Mk ) < Ty Skt = —Tge, and  wgy1 > —Tye. (4.28)

If these conditions hold, then puj,; < pi; otherwise, ug,, « %,u,‘j to place more emphasis on
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achieving complementarity in subsequent iterations.
An iteration that is not an O- or M-iteration is called an F-iteration. In an F-iteration
none of the parameters in the merit function are changed, so that progress is measured solely in

terms of the reduction in the merit function.

Algorithm 5 An all-shifted projected-search interior method.

1: procedure PDPROJ (0, S0, Yo, Wo)

2 Restrictions: sy > 0 and wg > 0;

3 Constants: {1,4,74 } C (0,1) and { Ymax, Wmax, Smax } C (0,00);
4: Choose yf; x§™ > 0; { pf, u§ } C (0,00); and pf > p;

5: Choose w§ and s§ such that w{ + s§ + pge > 0;

6 Set vy = (xo, S0, Yo, wp); k + 0O;

7 while || VM (vg)|| > 0 do

8 (s, y", w?, u", 1n®) = (si, Y, g, g, 145 );

9 Compute vgy1 in Steps 6-19 of Algorithm 4;

10: if X(vpp 1 pr) < X3 then [O-iterate]
p 1 P
11 O Ykt Whats M1 Bae 1 Trat) < (GXE ™ Yna 1 Wiy 1 Be s B s T )3
12: Skl <—max{0,sk+1 };
13: else if vy satisfies (4.25a)—(4.25d) then [M-iterate]
1. : )
14: Set (Xt Tug1) = (XF™, 57); Set sp, 1, yi,, and wi ; using (4.26);
15: if Xfeas(Vk+1) < 7k then pf |« up else pf | + uf end if
16: if Xeomp(Vka1s HR) < Ty Skt1 > —Tge and wyy1 > —7re then
17: MR 4 13
18: else
1
19: IRy 51
20: Reset 55, and w41 so that s, + p, e >0 and wy ) + pg, e > 05
21: end if
22: else [F-iterate]
23: (XY Sk 10 Yk 1 Whip 1o Bt Mot Tr) < O™ 8K Ui s Wi 15 1> 1)
24: end if
25: Update pj, , as in (4.29);
26: end while

27: end procedure

Reducing the barrier parameter p” in Step 19 of Algorithm 5 may cause a slack variable
s; or a dual variable w; to become infeasible with respect to its shifted bounds. In Step 20, if a
multiplier w; becomes infeasible after u”® is reduced, it is reinitialized as max { Ui, %wi } To remedy
the infeasibility of a slack variable s;, suppose p® and z” denote a shift before and after it is reduced,
with s; + p® > 0 and s; + 1” < 0, a strategy is proposed in Section 5.4 of [46], which temporarily
imposes an equality constraint s; = 0. This constraint is enforced by the primal-dual augmented

Lagrangian term until the nonlinear constraint value ¢;(x) becomes larger than i, at which point
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s; is assigned the value s; = ¢;(z) and allowed to move. On being freed, the corresponding Lagrange
multiplier w; is reinitialized as max { Ui, € }, where € is a small positive constant.
Given an initial value pg§ > g, in Step 25 of Algorithm 5, the line-search parameter pj, is

updated as

1 if Y (an s pg) < Yr(05 pg) + aunade and pi g = pis

by = (4.29)

1 .
max{ SHEs Moy } otherwise,

where 0, = VM (v, ; u*) T Av,. This updating rule guarantees that p > pt for all k.

4.5.2 Convergence Analysis

Convergence analysis for Algorithm 5 follows a similar procedure as in Section 4.2 of [46],
which uses the properties of the complementary approximate KKT (CAKKT) condition proposed

by Andreani, Martinez and Svaiter [2], as described below.

Definition 4.5.1 (CAKKT condition). A feasible point (x*,s*) (i.e., a point such that s* >0 and
c(x*) — s* = 0) is said to satisfy the CAKKT condition if there exists a sequence { (xj,s5,uj, 2;) }

with {z; } = 2* and {s; } — s* such that

{Vf(x;) = J(x;) " u; } —0,
{uj—z} =0,
{zj} >0, and

{ Zj + S5 } — 0.
Any (2*, s*) satisfying these conditions is called a CAKKT point.

Theorem 4.5.1 (Andreani, Martinez, Ramos and Svaiter [1, Theorem 4.2]). If (z*, s*) is a CAKKT
point that satisfies CAKKT-regularity, then (z*, s*) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of the

sequence { (zk, Sk) } are CAKKT points. As the results are tied to the different iteration types, to
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facilitate referencing of the iterations during the analysis we define

0= { k : iteration k is an O-iteration },
M= { k : iteration k is an M-iteration }, and

F = { k : iteration k is an F-iteration }

Lemma 4.5.1. If |O| = oo there exists at least one limit point (x*,s*) of the infinite sequence

{ (Th+1, Sk+1) }keO and any such limit point is a CAKKT point.

Proof. Assumption 4.4.3 implies that there must exist at least one limit point of { Tt }ke(’)~ If z*
is such a limit point, Assumption 4.4.1 implies the existence of K C O such that { 211 frex — =
and { c(zk41) Jrex — c(z*). As |O| = oo, the updating strategy of Algorithm 5 gives { x}*** } — 0.
Furthermore, as x(v) 1, pug) < X3 for all k € K C O, and Xfeas(vy ;1) < X(Vp 1, i) for all &, it
follows that {Xfcas(vk+l) }ke;g — 0, i.e., {C(xk_i'_l)*SkJ'_l }kelC — 0. With the definition s* = ¢(x*),
it follows that { sp41 frex — limgex c(@p41) = c(z*) = s*, which implies that (z*,s*) is feasible
for the general constraints because ¢(z*) — s* = 0. The remaining feasibility condition s* > 0 is

proved componentwise. For any 1 < i < m, define

Q1= {k : [Q1(”k+1)]i < [Q2(Uk+1»/if)]i} and Qy = {k : [Q2(Uk+17,uf)]i < [Q1(vk+1)]i }v

where g1 and ¢y are used in the definition of Ycomp. If the set K N Q; is infinite, then it fol-
lows from the inequalities {Xcomp(vkﬂ,p}j) bee < {x(rs1, 1f) brex < { X frex — 0 that
sf = limkno, [Sk+1]; > 0. Using a similar argument, if the set K N Qg is infinite, then sf =
limkno, [sk+1]; = limkno, [S,,+ufe]; > 0, where the second equality uses the limit { zf }kelm% —
0 that follows from the definition of Q5. Combining these two cases implies that s} > 0, as claimed.

It follows that the limit point (z*, s*) is feasible.

It remains to show that (z*,s*) is a CAKKT point. Let

_ [sk-i—l]i if k€ Qs;
[Sk+1]; =
[spi1 +pbe];, if ke Qs
and
- max { [wy4];,0} if k € Q;
[Wrt1]; =

[Wyi1 + 1iel; it k € Qo,
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for every 1 <i < m, and consider the sequence (Zx+1, Sg+1, Yr+1, Wr+1)kek as a candidate for the
sequence used in Definition 4.5.1 to verify that (z*, s*) is a CAKKT point. If ON Qs is finite, then it
follows from the definition of 5;y; and the limit {sk+1 }kelc — s* that { [Sk+1 i }ke)c — s7; also,
{Xcomp(vkﬂ,uf) }ke)c — 0 implies that lim infgexc[wr41]; > 0, therefore { [Wht1—Wkt1 i }ke’c —
0. On the other hand, if ON Q is infinite, then the definitions of Qy and X omp (V4 1, HE ), together
with the limit {Xcomp(ka, i) }ke;g — 0 imply that {,u,’j } — 0, giving { [Skt1 i }keic — 57 and
{ [Wrt1 — Wet1 )i }kelc — 0. As the choice of i was arbitrary, these cases taken together imply that
{§k+1 }ke)g — s* and {u’)kﬂ — W1 }ke;c — 0.

The next step is to show that { (Tht1s Skt Yk+1, Wht1) }ke;g satisfies the conditions re-
quired by Definition 4.5.1. It follows from the limit {X(Uk+17/1,5) }ke)C — 0 established above
that { Xewmy (Vit1) + Xeomp (Va1 #E) trex < { X(vpi1,f) brex — 0. This, together with the
limit {wk+1 — Wkt }ke;c — 0, implies that {Vf(ka) — J(xk“)Tka }ke’c — 0 and {ka —
W41 Jrek — 0, which establishes that conditions (4.30) and (4.31) hold. The nonnegativity of @, ;
for all k is obvious from its definition, which implies that (4.32) is satisfied for { W }ke;g. Finally, it
must be shown that (4.33) holds, i.e., that { Wy 1 * Spy }keIC — 0. Consider the ith components of
5% and wy,. If the set N Qy is infinite, then the definitions of 5111, q1(vit1) and Xeomp (Vg y15 15>
together with the limit { Xcomp (Vi1 #5) frex — 0, imply that { [@, ., - 5., ]i }xno, — 0. Sim-
ilarly, if the set KN Q> is infinite, then the definitions of 5x11, g2(vk+1, 5) and Xeomp (Vg y1s M5 )
together with the limits {Xcomp(vkﬂ,uf) }ke)c — 0 and {wkH — W1 }k-elc — 0, imply that
{ W1 * 5ps1li frexng, — 0. Thus, these two cases lead to the conclusion that { @, - 5,41 frex
0, which implies that condition (4.33) is satisfied. This concludes the proof that (z*, s*) is a CAKKT
point. O

In the complementary case where |O] < oo, it will be shown that every limit point of the
iteration subsequence { (Tht1, Sk+1) } kem is infeasible with respect to the constraint ¢(z) —s =0

but solves the least-infeasibility problem
minimize 3| c(z) — s||3 subject to s> 0. (4.34)
The first-order KKT conditions for problem (4.34) are

, s* >0, (4.35a)
, c(x*) —s" <0. (4.35b)

These conditions define an infeasible stationary point.
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Definition 4.5.2 (Infeasible stationary point). The pair (z*,s*) is an infeasible stationary point

if c(x*) — s* # 0 and (x*, s*) satisfies the optimality conditions (4.35).
Lemma 4.5.2. If |O] < oo, then | M| = oc.

Proof. The proof is by contradiction. Suppose that |[M| < oo, in which case |O U M| < oo. It
follows from the definition of Algorithm 5 that k& € F for all k sufficiently large, i.e., there must

exist an iteration index k such that
keF, yg =y, and (7, wf,py,py) = (T,w®, p”,pu?) >0 (4.36)

for all k¥ > kr. The updating rule for {ufc } implies that pj will be fixed at some p* > p”, and p,
is then fixed at the value p” for all k sufficiently large. It follows from Theorem 4.4.1 that there

exists a subsequence of iterates S such that
lim ||[VM =0.

Then Lemma 4.4.2(1) and Lemma 4.4.2(ii) can be applied to show that (4.25) is satisfied for all
k € S. This would mean, in view of Step 13 of Algorithm 5, that S € M with |S| = oo, which
contradicts (4.36) because F N M = 0. O

For the next lemma, we introduce the quantities

1 _
The1 = Yh — F(C(xk+1) —sp41) and ) = pg (Sppq +ppd) "wy — s+ s7) (4.37)
k

with S, ,, = diag(s;, ;) associated with the gradient of the merit function in (4.7).

Lemma 4.5.3. If |M| = oo then
lim |77, — =0.
frzyy 741 = Yrgal

Moreover, if there exists a subsequence of iterates I C M such that limgex s = s* > 0, then

li I =1 Yo =Tl =1 — =0.
kler?c ||7Tk+1 wk+1H klenlé ||7rk+1 7Tk+1|| klglc Hyk+1 wk+1||

Proof. Tt follows from (4.7) and (4.25c¢) that

17541 — Yrrall < 7g (4.38)
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As | M| = oo by assumption, Step 14 of Algorithm 5 implies that limy_, o 7, = 0. Combining this
with (4.38) establishes the first limit in the result.

Furthermore, if there exists a subsequence L C M such that limgex s = s* > 0, then the
updating rule of Algorithm 5 for s implies that limgex (sp — s;,) = 0. The limit limy_,oo 7% =0
may then be combined with (4.7), (4.25b) and (4.25¢) to show that

: W _ : Yy _ _w _
;?é% 7351 — wepa [ =0 and I?EHI% 1751 — Tl = 0. (4.39)
Finally, as limy_,oc 7% = 0, it follows from the bound (4.38) and limits (4.39) that

1' _ — 1 o Y Y o w w _ — 0'
. 1Yk+1 — Weiall s [ (Wrt1 — Thg1) + (Tog1 — ) + (T — wep)l
This establishes the last of the four limits. O

Lemma 4.5.4. If |O| < oo, then every limit point (z*,s*) of the subsequence { (Tj41, Sk+1) }rem
satisfies c(x*) — s* # 0.

Proof. The proof is similar to the proof of Lemma 4.7 in [46] but with some modified technical
details.

Let (2*,s*) be a limit point of (the necessarily infinite) sequence M, i.e., there exists a
subsequence K C M such that limgex (xgt1, sk+1) = (x*, s*). For a proof by contradiction, assume

that c¢(z*) — s* = 0, which implies that
lim Jle(zr+1) = sp4al = 0. (4.40)

First, we show that s* > 0, which will imply that (z*, s*) is feasible because of the
assumption that c(z*) — s* = 0. The line search in Algorithm 4 gives s, , + uge > 0 for all
k. If limg oo pg = 0, then s* = limgex s, > —limgex pge = 0. On the other hand, if
limg oo pf # 0, then Step 19 of Algorithm 5 is executed a finite number of times, y; = p® > 0
and (4.28) holds for all £ € M sufficiently large. A combination of the assumption that |O| < oo,
the result of Lemma 4.5.2, and the updates of Algorithm 5, establishes that limy_,o, 7% = 0 and

Xp = x> 0 for all sufficiently large k € K. (4.41)

Taking limits over k € M in (4.28) and using limy_, o, 7 = 0 gives s* > 0.
Using |O| < oo together with Lemma 4.5.3, the fact that limgex sp = s* > 0 with K C M,

119



and Step 16 of the line search of Algorithm 4 gives
]£1€H}% |Yks1 — Wppall =0, and w4+ pgyq >0 forall k> 0. (4.42)

Next, it can be observed from the definitions of 7, ; and V, M that

Vf($k+1) - J(T/k+1)Tl/k+1 = Vf($k+1) - J($k+1)T(27TI§+1 T Y41 — 2”1:+1)
= vf(karl) - J(xk+1>T(27T;c/+1 - yk+1) - 2J($k+1)T(yk+1 - 7Tl‘)€/+1)

= va(UIH-l 7y]§a wI§7 /.L;,/,LE) - 2J(xk+l)T(yk+1 - 71—]:—&-1)5

which combined with {fL‘k;+1 }ke;g — 2, limg 00 7 = 0, (4.25a), and Lemma 4.5.3 gives
lim {Vf(@rs1) = J(@rs1) Typs1 } = 0. (4.43)

The proof that limkex Xcomp (Vgy15 Hr) = 0 involves two cases.

Case 1: limy_,oo pf # 0. In this case pf = p” > 0 for all sufficiently large k. Combining this
with |[M| = co and the update to py in Step 19 of Algorithm 5, it must be that (4.28) holds for
all sufficiently large k € I, i.e., that Xeomp(Vpy1sHg) < 7 for all sufficiently large k € K. As

limg 00 7 = 0, it must hold that limgex Xcomp(karlv,u]}j) =0.

Case 2: limg oo py = 0. Lemma 4.5.3 implies that limgex (7)), — wy,;) = 0. The se-
quence {Sk+1 + Hff}kelc is bounded because {uf} is positive and monotonically decreasing
and limgek s, = s*, which means by the definition of ;" ; and the updating rule for s; ; in

(4.26),

= lim (pfwi = (Sppr + pEDwpra)- (4.44)

1 B W

0= iglc (Skgr T pe Dm0 — Weyr)
Moreover, as |O| < oo and wy > 0 for all k£ by construction, the updating strategy for wj in
Algorithm 5 guarantees that { wf } is bounded over all k (see (4.26)). It then follows from (4.44),

the uniform boundedness of {w,’j }, and limy_,oo pf = 0 that

0= I?EH% ([3k+1]i + Ng)[wk+1]i = I?EHI% ([sk+1}i + Ng)([wk+1]i +pg)- (4.45)

There are two subcases.

*

Subcase 2a: s; > 0 for some i. As limpex[s,,,]i = 57 > 0 and limg oo g = 0, it fol-
lows from (4.45) that limgex[w,,]i = 0. Combining these limits allows us to conclude that

limgex[q1(vi+1)]i = 0, which is the desired result for this case.
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Subcase 2b: s = 0 for some 4. In this case, it follows from the limits limy o g = 0 and (4.45),
wyy1 + py > 0 and the limit limpex[ski1]i = s7 = 0 that limgexc[g2(vy 1, p)]; = 0, which is the

desired result for this case.

As one of the two subcases above must occur for each component i, it follows that

]}:IEH)% Xcomp (vk—i-l? /’LI?) = O’

which completes the proof for Case 2.

Under the assumption ¢(z*) — s* = 0 it has been shown that (4.40), (4.42), (4.43), and the
limit limgex Xcomp (Vky1> #i) = 0 hold. Collectively, these results imply that limgex X (vy 41, 15) =
0. This limit, together with the inequality (4.41) and the condition checked in Step 10 of Algo-
rithm 5, gives k € O for all k € K C M sufficiently large. This is a contradiction because ONM = (),
which establishes the desired result that c(z*) — s* # 0. O

Lemma 4.5.5. If |O| < oo, then there exists at least one limit point (x*,s*) of the infinite se-
quence { (Thy1s Spy1) }ke/\/h and any such limit point is an infeasible stationary point as given by

Definition 4.5.2.

Proof. The proof is similar to the proof of Lemma 4.8 in [46] but with some modified technical
details.

If |O] < oo then Lemma 4.5.2 implies that |M| = co. Moreover, the updating strategy
of Algorithm 5 forces { yf } and {wf } to be bounded (see (4.26)). The next step is to show that
{ Sk+1 }keM is bounded.

For a proof by contradiction, suppose that {sk+1 }ke M is unbounded. It follows that
there must be a component 7 and a subsequence X C M for which {[Sk+1]i }ke;g — o0o0. When
Assumption 4.4.3 and Assumption 4.4.1 hold, {C(l’k+1) }kem { Vf(zks1) }kelc and { J(g41) }kG/C
must be bounded. This implies that { [mhq )i }ke)C is unbounded. On the other hand, by (4.7),
(4.25a), together with the limit limg_ o, 7 = 0 and Lemma 4.5.3,

0= kléﬂj\l/t HVIM(’UkJrl 7?/5,11)57/’[’5’”]?)”

= 1}»151}\1/1 va(xk-&-l) - J($k+1)T7T1’;+1 - J(xk—&-l)T(ﬂ-;c/-Q—l - yk+1)||

dim (19 (ox1) = (@) Pl | = 0,

which contradicts the unboundedness of { [7r,’€’+1 B }kelC . Thus, it must be the case that { Sk+1 }keM

is bounded.
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The next part of the proof is to establish that s* > 0, which is the inequality condition of
(4.35a). The test in Step 16 of Algorithm 5 (i.e., testing whether (4.28) holds) is checked infinitely
often because |M| = co. If (4.28) is satisfied finitely many times, then the update pf,, = Fuf
forces {,u,’fﬂ} — 0. Combining this with spy; + pge > 0 shows that s* > 0, as claimed. On
the other hand, if (4.28) is satisfied for all sufficiently large k € M, then pg, ; = p” > 0 for all
sufficiently large k and limgex Xcomp (Vg 115 #45) = 0 because {7} = 0. It follows from these two
facts that s* > 0, as claimed.

The boundedness of { Sk41 } rem and Assumption 4.4.3 ensure the existence of at least one
limit point of { (Th+1, Sk+1) }keM- If (x*, s*) is any such limit point, there must be a subsequence
K C M such that { (zg41,5k41) frex — (2%, s%). It remains to show that (z*, s*) is an infeasible
stationary point (i.e., that (z*, s*) satisfies the optimality conditions (4.35a)—(4.35b)).

As |0] < o0, it follows from Lemma 4.5.4 that c¢(z*) — s* # 0. Combining this with
{Tk } — 0, which holds because K C M is infinite (on such iterations 7541 %Tk), it follows that
the condition (4.27) of Step 15 of Algorithm 5 will not hold for all sufficiently large k € I C M.
The subsequent updates ensure that { 75 } — 0, hence { 5 } — 0 by the updating rule for { 1 },
which, combined with (4.17), the boundedness of { yf }, and Lemma 4.5.3, gives

{e(mpi1) = Spa1 bhex < {Mi (yf + %(U)kﬂ — Y1) + Mf) }keIC — 0.

This implies that ¢(z*) — s* < 0 and the second condition in (4.35b) holds.

For a proof of the equality condition of (4.35a) observe that the gradients must satisfy
{VaM (vit1 5y, wi, 17, 1y) teexc — 0 because condition (4.25) is satisfied for all k € M (cf. Step 13
of Algorithm 5). Multiplying Vi, M (v 15 Y5, wi, py,, 45 ) by py;, and applying the definition of 7,
from (4.37) yields

{urg(@pg) — J($k+1)T(MII;7ﬁ§+1 + p (T — yk+1))}ke,c — 0.
Combining this with {zg41}rex = @, {1 } — 0, and the result of Lemma 4.5.3 yields
{ - J(xk+1)T(:U‘I€7TI}€,+1)}ke;C = { - J(xkﬂ)T(/igyf —c(Tpyr) + 5k+1)}ke,< — 0.

Using this limit in conjunction with the boundedness of {y;}, the fact that {u;} — 0, and
{(zk+1, Sk+1 ke — (2%, s*) establishes that the first condition of (4.35a) holds.
It remains to show that the complementarity condition of (4.35b) holds. From Lemma 4.5.3

it must be the case that {7}, — 7} | trex — 0. Also, the limiting value does not change if the
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sequence is multiplied (term by term) by the bounded sequence {1 (S, ; + pg 1) ke (recall that

{8k+1}trex — s*). This yields

{1 (WE = sppa + 58) = 1k (Sper + 1L DY+ (Spr + i D (e(@gq1) = 5541) e = 0-

This limit, together with the limits {x } — 0 and {sk+1}rex — s*, and the boundedness of {y;}
and {wy} implies that
{(Sp1 + D (c(w40) — Sk+1)}k€}C — 0. (4.46)

As ¢(x*) — s* # 0, there must exist a constraint index ¢ such that [c(x*) — s*]; # 0. Combining
this with {(xx+1, Sk+1) ke — (2%, ") and (4.46) shows that {[sk+1]i + pf Jkex — 0. As s* is
nonnegative, it follows that {uf }rex — 0, However, as {47’} is a monotonically decreasing sequence,
it must hold that {x;]} — 0. Using this fact, (4.46), and {(zx41, Sk+1)} ke — (2, s%) it follows
that s* - (¢(z*) — s*) = 0, and the first condition in (4.35b) holds. This completes the proof. [

Theorem 4.5.2. Under Assumptions 4.4.1-4.4.3, one of the following occurs:

(i) |O] = o0, limit points of { (Tkt1, Sk+1) }ke(’) exist, and every such limit point (z*,s*) is a
CAKKT point for problem (NIPs). If, in addition, CAKKT-regularity holds at (z*,s*), then
(z*,s*) is a KKT point for problem (NIPs).

(i) |O] < o0, M| = oo, limit points of { (Tx+1,5k+1) frem exist, and every such limit point

(z*, s*) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 4.5.1 and Theorem 4.5.1. Part (ii) follows from Lemma 4.5.5.

Also, the exclusive conditions on |O| imply that only one of these two cases must occur. O

Chapter 4 and the numerical results in Section 5.3, in part, reprint the paper by Philip E.
Gill and Minxin Zhang, "A projected-search interior method for nonlinear optimization." Manuscript
submitted for publication, 2023. The dissertation author was the primary investigator and author

of the paper.
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Chapter 5

Numerical Results

5.1 A Projected-Search Active-Set Method for Bound Con-

straints

5.1.1 The implementation

Numerical results were obtained for the projected-search active-set method UBOPT, in
which the direction dj was computed as the solution of (3.21) with Hy chosen as a positive-definite
limited-memory BFGS approximation of V2f (). All testing was done on problems taken from the
CUTESt test collection (see Bongartz, Conn, Gould and Toint 7] and Gould, Orban and Toint [58]).
The CUTESst test set contains 154 bound-constrained problems of the form (BC). Although many
problems allow for the number of variables and constraints to be adjusted in the standard interface
format (SIF) data file, our tests used the default dimensions set in the CUTEst distribution. This
gave problems ranging in size from BQ1VAR (one variable) to WALL100 (149624 variables).

The practical effectiveness of the quasi-Wolfe search was evaluated by running two limited-
memory quasi-Newton methods, one with a quasi-Wolfe search and the other with a quasi-Armijo
search. The resulting implementations, UBOPT-qWolfe and UBOPT-gArmijo, are based on the For-
tran package UBOPT (see Ferry, Gill, Wong and Zhang [30]). In the quasi-Wolfe search, the
kink steps are sorted in decreasing order in O(nlogn) flops using a heapsort algorithm (see, e.g.,
Williams [85], Knuth [65, Section 5.2.3]), adapted from a Fortran implementation by Byrd, Lu,
Nocedal and Zhu [10]. For UBOPT-qWolfe, the Armijo tolerance 7, was set at 10~* and the Wolfe

tolerance 7y, = 0.9. In UBOPT-gArmijo, 17, = 0.3. The scalar e was set to the machine precision in
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the expression for € in the calculation (3.5) of the working set.

In order to provide some measure of the efficiency of the projected-search method relative
to a state-of-the-art method for bound-constrained optimization, the solvers UBOPT-qWolfe and
UBOPT-qArmijo were compared with the limited-memory method LBFGS-B (Byrd, Lu, Nocedal and
Zhu [10], Zhu, Byrd, Lu and Nocedal[95], and Morales and Nocedal [68]). All three solvers were
applied to the 154 bound-constrained problems from the CUTEst test set. The runs were terminated
at the first point z, such that

(@) [|1Poy (= V(@)oo <107°(1 + |f(2)]) and
(b) [f(zr) = flzr—1)] <107y x maX{ |f(@r)], | f(zr_1)],1 }; or

(©) [1Per (= Vf(@r)) oo < Veur;

where €,, is the machine precision. In the first iteration of the algorithms, only condition ((c)) is
tested. A nonoptimal termination was signaled by the violation of a time limit of 3600 seconds, a

limit of 10° iterations, or an abnormal exit because of numerical difficulties.

5.1.2 Numerical results

The solver UBOPT-gArmi jo failed on nine problems, with six failing because of numerical
difficulties (BLEACHNG, BQPGAUSS, BRATU1D, GRIDGENA, RAYBENDL, WALL10, and WEEDS). The solver
UBOPT-qWolfe failed on six problems, with four failures caused by numerical difficulties (GRIDGENA,
PALMERSE, PROBPENL, and WALL10). UBOPT-qWolfe identified problem BRATU1D as being unbounded.
For both solvers, CYCLOOCTLS and WALL50 could not be solved within the one hour time limit. In
the cases of numerical difficulties, the search algorithms were unable to compute an appropri-
ate step. We note that for UBOPT-qWolfe, the run for PROBPENL terminated at a near-optimal
point that satisfied condition ((a)) and ||Py, ( — Vf(z7))[lc = 1.99 X 1077. The solver LBFGS-B
failed on 16 problems. Seven failures were caused by numerical difficulties (BQPGAUSS, BRATU1D,
GRIDGENA, PALMER5A, PALMER5SB, PALMER7A, and WALL10), seven problems exceeded the iteration
limit (CHEBYQAD, PALMER1E, PALMER2E, PALMER3E, PALMER4E, PALMERGE, and PALMERSE), and two
problems exceeded the time limit (CYCLOOCTLS and WALLS0).

The relative performance of the solvers is summarized using performance profiles (in log,
scale), which were proposed by Dolan and Moré [24]. Let P denote a set of problems used for a

given numerical experiment. For each method s we define the function = : [0, r,] — R* such that

)

1
ms(T) = — Hp € P :logy(rps) < 7'}
P
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where n, is the number of problems in the test set and r, s denotes the ratio of the number of
function evaluations needed to solve problem p with method s and the least number of function
evaluations needed to solve problem p. If method s failed for problem p, then 7, s is set to be twice

of the maximal ratio. The parameter r,, is the maximum value of logy(ry s).

Performance Profile (function evaluations)

0.8

0.6

0.4

% of problems solved within 27 of best

0.2
—— UBOPT - gArmijo

UBOPT - qWolfe
—— L-BFGS-B

0.0

Figure 5.1: Performance profiles for the number of function evaluations required to solve 154 bound-
constrained problems from the CUTEst test set. The figure gives the profiles for the three solvers
UBOPT-qWolfe, UBOPT-gArmijo, and L-BFGS-B [10].

Figure 5.1 gives the function-evaluation performance profiles for the 154 bound-constrained
problems for UBOPT-qWolfe, UBOPT-qArmijo, and LBFGS-B. The profile utilized the total number
of function evaluations for comparison. Additional information about the runs used to generate
the performance profiles is given by Ferry, Gill, Wong and Zhang [29]. The results indicate that
using a quasi-Wolfe search in UBOPT resulted in a substantially better performance with respect
to function calls than using a quasi-Armijo search, and comparable and more robust performance
with respect to LBFGS-B.

A Dbenefit of the Wolfe conditions in the unconstrained case is that the restriction on the
directional derivative guarantees that the approximate curvature (Vf (xge1)—Vf (mk)) T(2py1 — 1)
is positive, which is a necessary condition for the quasi-Newton update to give a positive-definite
approximate Hessian. In the bound-constrained case, the use of a quasi-Wolfe projected search
makes it more likely that the update can be applied, but it is not possible to guarantee an update

in all cases. If the next iterate is given by xxy+1 = proj o (zr+arpr), where ay, is a quasi-Wolfe step,
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then (Vf(zx+1) — Vf (k) T (2r41 — 1) need not be greater than zero if the path proj () + cxpr)
changes direction for some a € (0,ay). If it does change direction, ¢’ (0) and v’ (o) may be
directional derivatives of f in a direction other than zpy; — xx. This situation is illustrated in
Figure 5.2, which depicts a two-dimensional region with lower bounds z; = 0 and zo = 0. In
this example ¢’ (0) is a directional derivative of f in direction [py]; and ¢’ (ay) is a directional
derivative of f in direction [pg ]2. As a result, if the path changes direction for o € (0, ), then

there is the possibility that the quasi-Newton update must be skipped.

.7)1:0

Tp11 = Proj o(xy + cupr)

ZI?Q:O

Figure 5.2: Example with no guarantee of an update for the approximate Hessian.

It is shown in Section 3.3.2 that if {xk } converges to a nondegenerate stationary point, then a
quasi-Wolfe search identifies the active set at the solution in a finite number of iterations. After
the active set stabilizes, a quasi-Wolfe search behaves exactly like a Wolfe line search in the sense
that updates to the approximate Hessian are guaranteed if f(z + apy) is bounded below.

To estimate how often the update is likely to be skipped with the quasi-Wolfe search,
statistics were collected from the test problems for which at least one of the search paths was “bent”
by projection. In total, the application of UBOPT-gqWolfe resulted in 259 of the potential 637268
updates being skipped (a2 0.04%). This can be compared to 6537 of the 679071 updates being
skipped (= 1.0%) for UBOPT-gArmijo. (The number of updates reflects the number of iterations

needed for convergence.)
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5.2 A Projected-Search Interior Method for Bound Constraints

5.2.1 The implementation

Numerical results are given for a MATLAB implementation of a projected-search method
based on the primal-dual interior method of Forsgren and Gill [34]. Applying this method to

bound-constrained problems, the unconstrained function
M(z, 21, 205p) 2 f(2) = Y {pn (z; — &) + pln ([21];(z; =€) = (2] (z; — )}
j=1
= {udn (uj — ;) + pln ([25);(u; — 7)) = [22];(u; — ;) }
j=1

is minimized for a sequence of p-values such that g — 0. This implies that the function M of
problem (IPBC) is given by M (v;u) = M(x, 21, 22 ; 1), with

T / u
v=1|2z |, lyo=10], and wu,=| 400
29 0 +o00

At any (x,z1,22) such that £ < © < w, 27 > 0 and 2z, > 0, let X; = diag(zj — Zj), X, =
diag(u; — x;), Z1 = diag([z];), and Zy = diag([z,);). One iteration of Newton’s method for
minimizing M (z, 21, 29 ; 1) requires solving the equations V2M (v;pu)Av = —VM (v;p). If the di-
agonal matrices pX; ! and nXy !'in the expression for V2M (v;u) are replaced by Z; and Zs,
we obtain an approximate Hessian with n x n principal minor Hj = V2f(x) + Xl_lZ1 + X{lZQ.
It follows that one iteration of an approximate Newton method for minimizing M (z, 21, 22 ; 1)
gives the estimate (z + Az, 21 + Az1, 22 + Azo), where Azy = —X{ ' (2 - (v + Az — €) — pe),
Azy = —X; (25 - (u— 2 — Az) — pe), and Az satisfies the equations

HyAz = —(Vf(z) — p X7 e+ pX5 te). (5.1)

Let vg denote a point such that ¢, < vy < u, and let Av, denote the solution of the approximate
Newton equations at vg. If the matrix Hy of (5.1) is positive definite, then Avy is a descent
direction for M (x,z1,29;u). Otherwise a positive-definite modified matrix H ¢ ~ Hjp must be
used. If necessary, the matrix Hy was modified using the method of Wéachter and Biegler (84,
Algorithm IC, p. 36|, which factors the matrix Hy, + d1,, for some § > 0. Each (possibly perturbed)
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Hj, matrix was factored using the MATLAB built-in command LDL, which uses the routine MA57
[25].

5.2.2 Numerical results

Results are presented from two variants of the Forsgren-Gill method. The first variant,
PD-Wolfe, is the conventional primal-dual method implemented with a Wolfe line search; the second
variant, PDproj-qWolfe, is the projected-search interior method proposed in Section 3.5. As the
underlying interior method is the same in both cases, the results show the benefits of formulating
the method as a projected-search method.

The algorithms were considered to have solved a problem successfully if
max { | max(0, g(z) - 2) oo, | max(0, ~g(x) - @)l | <1077,
where zy = min{1,(x —¢) -/ (1 4+ |¢))}, 2z, = min {1, (u — z) -/ (1 + |u])}, and

g(x) = Vf(z)/(max{L, [[Vf ()]s })-

A limit of 500 was placed on the number of iterations. The strategy for choosing the barrier
parameter p was that used in the method of Gertz and Gill [44]. The fraction-to-the-boundary
parameter o of (4.15) was set at 0.9.

All testing was done using MATLAB version R2019a on an iMac with a 3.0 GHz Intel Xeon
W processor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6 (64 bit). Results
were obtained for a subset of the bound-constrained problems in CUTEst for which the dimension
of the problem n is 600 or less, or n may be set at the largest value less than 1000. This gave 137
problems ranging in size from BQP1VAR (one variable) to POWELLBC (1000 variables). Exact second
derivatives were used for all the runs.

Figure 5.3 gives the performance profiles for the total number of iterations as well as the
total number of function evaluations required to solve the 137 problems. The profiles compare
the primal-dual interior method PD-Wolfe implemented with a Wolfe line search and a projected-
search interior method PDproj-qWolfe with a quasi-Wolfe line search (i.e., the method described
in Section 3.5). Figure 5.3 indicates that a projected-search interior method with a quasi-Wolfe
line search can provide substantial improvements in robustness and performance compared to a

conventional interior method.
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Iteration performance profile for Function evaluation performance profile for
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137 CUTEst bound-constrained problem 0 137 CUTEst bound-constrained problems
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Figure 5.3: Performance profiles for two interior-point methods PD-Wolfe and PDproj-qWolfe.
The figure gives the performance profiles for the total number of iterations and function evaluations
required to solve 137 bound-constrained problems from the CUTESst test set.

5.3 The Projected-Search Interior Method for Nonlinear Op-
timization

5.3.1 The implementation

Numerical results were obtained for MATLAB implementations of three variants of the
shifted interior method. Algorithm pdb is an implementation of the shifted primal-dual method
of Gill, Kungurtsev and Robinson [46]; pdbAll is the primal-dual method with shifts on both
the primal and dual variables; and pdProj is the projected-search interior method proposed in
Sections 4.3-4.5. Algorithms pdb and pdbAll are implemented with a flexible Armijo line search in
which the step length is chosen to satisfy the conditions (4.16a)—(4.16d) with ¢ (a; 1) and ¢p (o )
given by M (vg + aduvy ;) and ||F (vg + oy 5 p) ||. Exact second derivatives were used for all the
runs.

The iterates were terminated at the first point that satisfied the conditions ep(x,s) < 7p

and ep(z, s,y,w) < 7p, where e, and ey are the primal and dual infeasibilities

min { 0, s } )

o ’ 5.2a
) H<||c(x>—s||oo/max{1,Ilslloo} o

oo
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and

ep(x,s,y,w Hw Yl , (5.2b)

w - mln{l s}

‘ IVf () = J(2)Tylloo /o

oo

with o = max { 1, ||Vf(z)||, max { 1, ||y[| } |/ ()|l }. Similarly, the iterates were terminated at an

infeasible stationary point (z,s) if ep(x,s) > 75, min { 0, s} < 7p and e;(z, s) < Tins, where
e(x,s) =||J(@)" (c(z) —s) - min {1, s }Hoo /o (5.3)

5.3.2 Numerical results

The results were obtained for optimization problems from the CUTEst test collection. The
runs were done using MATLAB version R2020a on an iMac Pro with a 3.0 GHz Intel Xeon W pro-
cessor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6 (64 bit). Results were
obtained for five subsets of problems from the CUTEst test collection. The subsets consisted of 135
problems with a general nonlinear objective and upper and lower bounds on the variables (prob-
lems BC); 212 problems with a general nonlinear objective, general linear constraints and bounds on
the variables (problems LC); 124 problems formulated by Hock and Schittkowski ([62]) (problems
HS); 372 problems with a general nonlinear objective, general linear and nonlinear constraints and
bounds on the variables (problems NC); and 117 problems with a quadratic objective, general linear
constraints and bounds on the variables (problems QP). The BC, LC, NC and QP subsets were
selected based on the number of variables and general constraints. In particular, a problem was
chosen if the associated KKT system was of the order of 1000 or less. The same criterion was used
to set the dimension of those problems for which the problem size can be specified. The nonsmooth
problem HS87 was excluded from the Hock-Schittkowski problems. Exact second derivatives were
used for all the runs.

Each CUTEst problem may be written in the form

. . 0 x u®
minimize f(z) subject to <€S> < < ( )) < < S>7 (5.4)

where ¢ : R" — R™, f:R"” — R, and (%, ¢%) and (u*,u*) are constant vectors of lower and upper
bounds. In this format, a fixed variable or an equality constraint has the same value for its upper and

lower bounds. A variable or constraint with no upper or lower limit is indicated by a bound of +102°.
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The approximate Newton equations for problem (5.4) are derived in Appendix A. As is the case for
problem (NIPs) the principal work at each iteration is the solution of a reduced (n+m) x (n+ m)
KKT system analogous to (4.14). Each KKT matrix was factored using the MATLAB built-in
command LDL. If this matrix was singular or had more than m negative eigenvalues, the Hessian
of the Lagrangian H was modified using the method of Wéachter and Biegler [84, Algorithm IC,
p. 36|, which factors the KKT matrix with 61,, added to H. At any given iteration the value of § is
increased from zero if necessary until the inertia of the KKT matrix is correct.

All three MATLAB implementations were initialized with identical parameter values that
were chosen based on the empirical performance on the entire collection of problems. A summary of
the values is given in Table 5.1. The initial primal-dual estimate (xq, yo) was based on the default
initial values supplied by CUTEst. If necessary, xy was projected onto the set { z: 0 <z <uf } to
ensure feasibility with respect to the bounds on z. The iterates were terminated at the first point
that satisfied the conditions (5.2a)—(5.2b) or (5.3) defined in terms of the constraints associated
with problem (5.4).

Table 5.1: Control parameters for Algorithms pdb, pdbAll and pdProj.

Parameter Description Value
Smaxs> Ymax> Wmax | Maximum allowed y®, w?, s” 1.0e+6
JI7s Initial penalty parameter for Algorithm 5 1.0e-4
1% Initial flexible line-search penalty parameter for Algorithm 5 | 1.0
ug Initial barrier parameter for Algorithm 5 1.0e-4
To Initial termination tolerance for specifying an M-iterate 0.5
Tp Primal feasibility tolerance (5.2a) 1.0e-4
T Dual feasibility tolerance (5.2b) 1.0e-4
Ting Infeasible stationary point tolerance (5.3) 1.0e-4
X0ex Initial target for an O-iteration 1.0e+3
Na Line-search Armijo sufficient reduction 1.0e-2
Ne Line-search sufficient reduction for || F|| 1.0e-2
Ya Line-search factor for reducing an Armijo step 1.0e-3
Sunb Unbounded objective 1.0e-9
M nax Constants in line-search tolerance (4.16a) and (4.16b) 1.0e+12
Frax Constant in the line-search tolerance (4.16c¢) 1.0e+8
o Bound perturbation in the definition of 2, (4.15) 0.8
krmax Iteration limit for Algorithm 5 500

Figures 5.4-5.8 present the performance profiles for the total number of iterations and
function evaluations required to solve the 135 BC problems, 212 LC problems, 124 HS problems,
372 NC problems, and 117 QP problems successively. More details of the runs used to generate
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the performance profiles are given by Gill and Zhang [55]. The profiles show that the projected-
search interior method pdProj requires substantially fewer iterations and function evaluations than
the other two methods pdb and pdbAll. As a result, the pdProj method also necessitates fewer
computations of search directions. In particular, results from solving the 117 QP problems suggest
that the pdProj method is especially well-suited to solving the quadratic programming subproblem

in a sequential quadratic programming method for nonlinear optimization.

r

Function evaluation performance profiles for
135 BC problems from the CUTEst test set

Iteration performance profiles for
135 BC problems from the CUTEst test set

Figure 5.4: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 135 bound-constrained (BC) problems from the CUTEst test set. The left figure gives
the profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.
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Function evaluation performance profiles for
212 LC problems from the CUTEst test set

Iteration performance profiles for
212 LC problems from the CUTEst test set

04 F
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pdbAll ___ pdbAll __

ot} pdProj —_ || o pdProj ___
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Figure 5.5: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 212 linearly constrained (LC) problems from the CUTEst test set. The left figure gives
the profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.

0.5 F

Function evaluation performance profiles for
124 HS problems from the CUTEst test set

Iteration performance profiles for
124 HS problems from the CUTEst test set

0.4 0.4

03 03

02t pdb —_ 02 pdb —_
pdbAll __ pdbAll ___

01f pdProj 0.1 pdProj

Figure 5.6: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 124 Hock-Schittkowski (HS) problems from the CUTEst test set. The left figure gives the
profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.
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Iteration performance profiles for
372 NC problems from the CUTEst test set

Function evaluation performance profiles for
372 NC problems from the CUTEst test set

021 pdb S 02 pdb —_
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Figure 5.7: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 372 nonlinearly constrained (NC) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

Function evaluation performance profiles for
117 QP problems from the CUTEst test set || [

Iteration performance profiles for
117 QP problems from the CUTEst test set

02 pdb —_ 02 pdb J—
pdbAll pdbAll
0.1 pdProj 0.1 pdProj

Figure 5.8: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 117 quadratic programming (QP) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.
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