
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Projected-Search Methods for Constrained Optimization

Permalink
https://escholarship.org/uc/item/1sj0p4qk

Author
Zhang, Minxin

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sj0p4qk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Projected-Search Methods for Constrained Optimization

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Minxin Zhang

Committee in charge:

Professor Philip E. Gill, Chair
Professor Randolph E. Bank
Professor Robert R. Bitmead
Professor Michael J. Holst
Professor Wenxin Zhou

2023

Copyright

Minxin Zhang, 2023
All rights reserved.

The Dissertation of Minxin Zhang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my family.

iv

EPIGRAPH

A journey of a thousand miles begins with one step.

—Lao Tzu

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract . xii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contributions of This Dissertation . 6
1.3 Notation . 8

Chapter 2 Background . 9
2.1 Line-Search Methods . 9

2.1.1 Fundamentals of unconstrained optimization 9
2.1.2 Choices of the step length . 15
2.1.3 Implementing the Wolfe line search 21
2.1.4 Choices of the search direction . 26

2.2 Interior Methods . 34
2.2.1 Inequality-constrained optimization 34
2.2.2 Barrier methods . 41
2.2.3 Primal-dual interior methods . 48
2.2.4 Treatment of equality constraints 52

Chapter 3 Projected-Search Methods for Bound-Constrained Optimization 58
3.1 Introduction . 58
3.2 The Quasi-Wolfe Search . 61

3.2.1 The quasi-Wolfe step . 61
3.2.2 Derivatives of the search function 66
3.2.3 Computing a quasi-Wolfe step . 68

3.3 Projected-Search Active-Set Methods . 71
3.3.1 The general framework . 71
3.3.2 Convergence analysis . 72

3.4 A Limited-Memory Reduced-Hessian Method 81

vi

3.4.1 Background: an L-RHR method for unconstrained optimization . . 81
3.4.2 UBOPT: an L-RHR method for bound constraints 85

3.5 Projected-Search Interior Methods . 89
3.5.1 The general framework . 89
3.5.2 Convergence analysis . 90

Chapter 4 A Projected-Search Interior Method for Nonlinear Optimization 96
4.1 Introduction . 96
4.2 Background: A Primal-Dual Method Based on Shifting the Slacks 98
4.3 An All-Shifted Primal-Dual Penalty-Barrier Function 100
4.4 Minimizing the Merit Function using Projected Search 104

4.4.1 The algorithm . 104
4.4.2 Convergence analysis . 106

4.5 Solving the Nonlinear Optimization Problem 112
4.5.1 The algorithm . 112
4.5.2 Convergence Analysis . 115

Chapter 5 Numerical Results . 124
5.1 A Projected-Search Active-Set Method for Bound Constraints 124

5.1.1 The implementation . 124
5.1.2 Numerical results . 125

5.2 A Projected-Search Interior Method for Bound Constraints 128
5.2.1 The implementation . 128
5.2.2 Numerical results . 129

5.3 The Projected-Search Interior Method for Nonlinear Optimization 130
5.3.1 The implementation . 130
5.3.2 Numerical results . 131

Appendix A Equations of an All-Shifted Primal-Dual Penalty-Barrier Method for Nonlinear
Optimization . 136
A.1 Introduction . 136
A.2 Optimality Conditions . 139
A.3 The Path-Following Equations . 140
A.4 A Shifted Primal-Dual Penalty-Barrier Function 146
A.5 Derivation of the Primal-Dual Line-Search Direction 150
A.6 The Shifted Primal-Dual Penalty-Barrier Direction 159
A.7 Summary . 162

Bibliography . 165

vii

LIST OF FIGURES

Figure 2.1: The graph depicts ϕ(α) = f(x + αp) as a function of positive α, with the
shifted function ω(α) = ϕ(α) −

(
ϕ(0) + αηAϕ

′(0)
)

superimposed. The dashed
line represents the affine function ϕ(0) + αηAϕ

′(0). 22

Figure 3.1: Three examples of a kink point satisfying the quasi-Wolfe conditions. The left,
center and right figures depict kink points satisfying conditions (C2), (C3) and
(C4) respectively. The slope of each dashed line is marked. 62

Figure 5.1: Performance profiles for the number of function evaluations required to solve
154 bound-constrained problems from the CUTEst test set. The figure gives the
profiles for the three solvers UBOPT-qWolfe, UBOPT-qArmijo, and L-BFGS-B [10]. 126

Figure 5.2: Example with no guarantee of an update for the approximate Hessian. 127

Figure 5.3: Performance profiles for two interior-point methods PD-Wolfe and PDproj-qWolfe.
The figure gives the performance profiles for the total number of iterations and
function evaluations required to solve 137 bound-constrained problems from the
CUTEst test set. 130

Figure 5.4: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and
pdProj applied to 135 bound-constrained (BC) problems from the CUTEst test
set. The left figure gives the profiles for the number of function evaluations. The
right figure gives the profiles for the number of iterations. 133

Figure 5.5: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and
pdProj applied to 212 linearly constrained (LC) problems from the CUTEst test
set. The left figure gives the profiles for the number of function evaluations. The
right figure gives the profiles for the number of iterations. 134

Figure 5.6: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and
pdProj applied to 124 Hock-Schittkowski (HS) problems from the CUTEst test
set. The left figure gives the profiles for the number of function evaluations. The
right figure gives the profiles for the number of iterations. 134

Figure 5.7: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and
pdProj applied to 372 nonlinearly constrained (NC) problems from the CUTEst
test set. The left figure gives the profiles for the number of function evaluations.
The right figure gives the profiles for the number of iterations. 135

Figure 5.8: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and
pdProj applied to 117 quadratic programming (QP) problems from the CUTEst
test set. The left figure gives the profiles for the number of function evaluations.
The right figure gives the profiles for the number of iterations. 135

viii

LIST OF TABLES

Table 5.1: Control parameters for Algorithms pdb, pdbAll and pdProj. 132

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Prof. Philip Gill, for his

unwavering support in all aspects of my research. His patient guidance, immense passion and

exceptional expertise in optimization were essential to the successful completion of this dissertation.

I would also like to extend my appreciation to my committee members: Prof. Randolph

Bank, Prof. Robert Bitmead, Prof. Michael Holst and Prof. Wenxin Zhou, for their invaluable

support throughout the journey. Special thanks to Prof. Bank and Prof. Holst for the inspiring

discussions during the weekly CCoM seminars over the years and for their many other forms of

guidance.

Many thanks go to all the friends and colleagues I have been fortunate to share this

journey with. A heartfelt thank you to my family, for always offering me their unconditional love

and support.

Chapter 3, as well as the numerical results in Sections 5.1–5.2, is partially a reprint of the

paper "Projected-search methods for bound-constrained optimization" by Michael W. Ferry, Philip

E. Gill, Elizabeth Wong, and Minxin Zhang, available on arXiv:2110.08359 [math.OC]. Manuscript

submitted for publication, 2021. The dissertation author served as the primary investigator and au-

thor of the paper. Additionally, Section 3.4 partially reprints the paper by Michael W. Ferry, Philip

E. Gill, Elizabeth Wong, and Minxin Zhang, titled "A limited-memory reduced-Hessian method

for bound-constrained optimization." Center for Computational Mathematics Report CCoM 21-01,

Center for Computational Mathematics, University of California San Diego, La Jolla, CA, 2021.

The dissertation author was the primary author of the content.

Chapter 4 and Section 5.3, in part, reprint the paper by Philip E. Gill and Minxin Zhang,

"A projected-search interior method for nonlinear optimization." Manuscript submitted for publi-

cation, 2023. The dissertation author was the primary investigator and author of the paper.

Appendix A, in part, reprints the material by Philip E. Gill and Minxin Zhang, "Equations

for a Projected-Search Path-Following Method for Nonlinear Optimization." Center for Computa-

tional Mathematics Report CCoM 22-02, Center for Computational Mathematics, University of

California San Diego, La Jolla, CA, 2022. The dissertation author was the primary author of this

material.

x

VITA

2014 B. S. in Mathematics, Wuhan University

2014-2016 Graduate Research and Teaching Assistant, University of Water-
loo

2016 M. Math in Applied Mathematics, University of Waterloo

2017-2023 Graduate Research and Teaching Assistant, University of Califor-
nia San Diego

2023 Ph. D. in Mathematics, University of California San Diego

PUBLICATIONS

Philip E. Gill. and Minxin Zhang. A projected-search interior method for nonlinear optimization.
Manuscript submitted for publication, 2023.

Michael W. Ferry, Philip E. Gill, Elizabeth Wong, and Minxin Zhang. Projected-search meth-
ods for bound-constrained optimization. arXiv:2110.08359 [math.OC]. Manuscript submitted for
publication, 2021.

Michael W. Ferry, Philip E. Gill, Elizabeth Wong, and Minxin Zhang. A limited-memory reduced-
Hessian method for bound-constrained optimization. Center for Computational Mathematics Re-
port CCoM 21-01, Center for Computational Mathematics, University of California San Diego, La
Jolla, CA, 2021.

Minxin Zhang and Kirsten A. Morris. Sensor choice for minimum error variance estimation. IEEE
Transactions on Automatic Control, 63(2):315-330, February 2018.

Minxin Zhang. Infinite-dimensional Kalman filtering and sensor placement problem. Master’s
thesis, University of Waterloo, 2016. Eprint on UWSpace.

Minxin Zhang and Kirsten A. Morris. Effect of sensor noise on estimation of diffusion. IFAC-
PapersOnLine, Vol.49(8):60-65, 2016. 2nd IFAC Workshop on Control of Systems Governed by
Partial Differential Equations, Bertinoro, Italy, 13 -15 June, 2016.

xi

https://optimization-online.org/?p=20629
https://arxiv.org/abs/2110.08359
https://arxiv.org/abs/2110.08359
https://ccom.ucsd.edu/reports/UCSD-CCoM-21-01.pdf
https://ccom.ucsd.edu/reports/UCSD-CCoM-21-01.pdf
https://uwspace.uwaterloo.ca/handle/10012/10607

ABSTRACT OF THE DISSERTATION

Projected-Search Methods for Constrained Optimization

by

Minxin Zhang

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip E. Gill, Chair

Projected-search methods for bound-constrained optimization are based on searching along a con-

tinuous path obtained by projecting a search direction onto the feasible region. These methods

have the potential to change the direction of the search path multiple times along the bound-

ary of the feasible region at the cost of computing a single direction. However, as the objective

function is only piecewise differentiable along the path, conventional projected-search methods are

limited at using a simple backtracking procedure to obtain a step that satisfies an “Armijo-like”

sufficient decrease condition. To extend the benefits of Wolfe line search for unconstrained opti-

mization to projected-search methods, a new quasi-Wolfe step is introduced. Two general classes of

projected-search methods that use the new quasi-Wolfe search are then formulated and analyzed.

These methods may be broadly categorized as either active-set methods or interior methods. Addi-

tionally, a new quasi-Newton projected-search method UBOPT is proposed for unconstrained and

bound-constrained optimization. The method computes quasi-Newton directions in a sequence of

subspaces, and employs the framework of the class of projected-search active-set methods.

Furthermore, a new interior method is proposed for general nonlinearly constrained op-

timization, combining a shifted primal-dual interior method with a projected-search method for

bound-constrained optimization. The method involves the computation of an approximate Newton

direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and

xii

dual variables. The shifts allow the method to be safely “warm started” from a good approximate

solution and eliminate the ill-conditioning of the associated linear equations that may occur when

the variables are close to zero. The approximate Newton direction is used in conjunction with

a new projected-search algorithm that employs a flexible non-monotone quasi-Armijo line search

for the minimization of each penalty-barrier function. Numerical results demonstrate that the new

method requires significantly fewer iterations than a conventional interior method, thereby reducing

the number of times that the search direction need be computed.

xiii

Chapter 1

Introduction

1.1 Overview

Generally speaking, optimization is the selection of the best element from the set of all

available alternatives, with the goal of maximizing efficiency, effectiveness, or other desired out-

comes. The study of optimization relies on the formulation of a mathematical model of a given

problem, for which optimizing it means minimizing or maximizing a function, termed the objective

function. As the maximization of a function is equivalent to the minimization of the negative values

of the function, only the minimization needs to be considered here. Unconstrained optimization

aims to minimize an objective function f(x) without any constraints on values of x. In contrast,

constrained optimization involves a set of constraints that define the acceptable values of the vari-

ables. This dissertation focuses on projected-search methods for constrained optimization, with the

objective and constraint functions assumed to be twice-continuously differentiable.

One special type of constrained optimization that will be considered is bound-constrained

optimization. A bound-constrained problem may be written in the form

minimize
x∈Rn

f(x) subject to x ∈ Ω, (BC)

where f : Rn 7→ R is the twice-continuously differentiable objective function and Ω =
{
x ∈ Rn :

ℓ ≤ x ≤ u
}

for vectors of lower and upper bounds such that ℓ ≤ u (with all inequalities defined

componentwise). At a given a point x, the active set A(x) is the set of indices of the variables that

lie on their bounds, i.e., A(x) =
{
i : xi = ℓi or xi = ui

}
.

1

A general nonlinearly constrained optimization problem may be written in the form

minimize
x

f(x) subject to

(
ℓX

ℓS

)
≤

(
x

c(x)

)
≤

(
uX

uS

)
, (NP)

where f : Rn 7→ R is the objective function, c : Rn 7→ Rm represents the vector of constraint

functions, and (ℓX , ℓS) and (uX , uS) are constant vectors of lower and upper bounds. In this format,

a fixed variable or an equality constraint has the same value for its upper and lower bounds. A

variable or constraint with no upper or lower bound is indicated by a bound of ±∞. By introducing

m new variables s, called slack variables, the problem (NP) may be reformulated as

minimize
x

f(x) subject to c(x)− s = 0,

(
ℓX

ℓS

)
≤

(
x

s

)
≤

(
uX

uS

)
. (NPs)

In this problem, x and s are treated as independent variables. As the bound constraints ℓS ≤ s ≤ uS

may be reformulated as s − ℓS ≥ 0 and uS − s ≥ 0, it is usually sufficient to consider a simplified

problem of the form

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0, (NIPs)

which is an equivalent form of the inequality-constrained problem

minimize
x∈Rn

f(x) subject to c(x) ≥ 0. (NIP)

A method that is designed to solve (NIPs) may be easily applied to solve the more general problem

(NPs) by treating the bound constraints on x in the same way as treating the bound constraints

on slack variables s.

All optimization methods discussed in this work are iterative in the following sense. For

an optimization problem, if x∗ is the exact solution, a sequence
{
xk
}

is generated by an iterative

optimization method such that each successive iterate is a new, and ideally, improved estimate of

x∗. Although in theory the sequence is infinite, in practice only a finite number of iterates are

required to obtain a sufficiently accurate approximation of x∗.

For unconstrained optimization, a line-search method generates a sequence of iterates of

the form xk+1 = xk+αkpk, where pk is an n-dimensional vector that is called a search direction for

f at xk, and αk is a positive scalar that is called a step length. Often the step length αk is chosen

to give a decrease in f that is at least as good as a fixed fraction ηA (0 < ηA <
1
2) of the decrease

2

in the local affine model f(xk) +∇f(xk)T(x− xk). If pk is a descent direction for f at xk and αk

is a positive scalar, then the decrease condition may be written as

f(xk + αkpk) ≤ f(xk) + αkηA∇f(xk)Tpk, (1.1)

which is known as the Armijo condition (see Section 2.1.2). Most Armijo line searches are imple-

mented as a simple backtracking procedure in which an initial step is reduced by a constant factor

until the Armijo condition (1.1) is satisfied. Alternatively, backtracking may be used in conjunction

with a simple quadratic interpolation scheme using f(xk), ∇f(xk)Tpk and f(xk+αpk) at each trial

α (see Dennis and Schnabel [21]).

Many practical methods use an αk that satisfies an additional condition on the directional

derivative ∇f(xk + αkpk)
Tpk. In particular, the strong Wolfe conditions require that αk satisfies

both the Armijo condition (1.1) and

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)Tpk|, (1.2)

where ηW is a preassigned scalar such that ηW ∈ (ηA, 1) (see Section 2.1.2). The strong Wolfe

conditions allow ηW to be chosen to vary the accuracy of the step. If ηA is fixed at a value close

to zero (e.g., 10−4), then a value of ηW close to ηA gives a “tighter” or more accurate step with

respect to closeness to a critical point of ∇f(xk + αpk)
Tpk. A value of ηW close to one results in a

“looser” or more approximate step. A Wolfe line search is able to exploit sophisticated safeguarded

polynomial interpolation techniques to provide methods that are more reliable and efficient than

those based on backtracking (see, e.g., Hager [60] and Morè and Thuente [71]).

Projected-search methods for bound-constrained optimization can be interpreted as an

extension of line-search methods. A projected-search method for problem (BC) generates a sequence

of feasible iterates
{
xk
}∞
k=0

such that xk+1 = projΩ(xk + αkpk), where pk is a descent direction

for f at xk, αk is a scalar step length, and projΩ(x) is the projection of x onto the feasible

region, The new iterate may be written as xk+1 = xk(αk), where xk(α) denotes the vector xk(α) =

projΩ(xk + αpk). A potential benefit of a projected-search method is that many changes to the

active set can be made at the cost of computing a single search direction. The projected-search

methods of Goldstein [57], Levitin and Polyak [67], and Bertsekas [4] are based on using the gradient-

descent direction pk = −∇f(xk). Bertsekas [6] proposes a method based on computing pk using a

Newton-like method. Calamai and Moré [13] consider methods that identify the optimal active set

using a projected-search method and then switch to Newton’s method. Projected-search methods

3

based on computing pk using a quasi-Newton method are proposed by Ni and Yuan [73], Kim, Sra

and Dhillon [64], Ferry [28], and Ferry, Gill, Wong and Zhang [30].

In a projected-search method, the function xk(α) defines a piecewise-linear continuous

path, and the function f
(
xk(α)

)
is not necessarily differentiable along xk(α). This implies that

it is not possible to use a line search based on the conventional Wolfe conditions. Thus, existing

projected-search methods are restricted to using a search based on satisfying an Armijo-like con-

dition along the path xk(α). For the case where pk = −∇f(xk), a commonly used Armijo-like

condition is

f
(
xk(αk)

)
≤ f(xk) + ηA∇f(xk)T(xk(α)− xk), (1.3)

proposed by Bertsekas [4] (see also, Calamai and Moré [13]). However, for a general pk, this may

not be a sufficient-decrease condition for a backtracking search as there is no guarantee that the

second term on the right-hand side of (1.3) is negative if the path xk(α) changes direction. An

Armijo-like condition that is appropriate for a general descent direction pk is

f
(
xk(αk)

)
≤ f(xk) + αkηA∇f(xk)Tpk (1.4)

(see, e.g., Ni and Yuan [73] and Kim, Sra and Dhillon [64]). Throughout this work, (1.4) is referred

to as the quasi-Armijo condition. If γ and σ denote fixed parameters such that γ > 0 and σ ∈ (0, 1),

then a quasi-Armijo step has the form αk = γσtk , where tk is the smallest nonnegative integer such

that the quasi-Armijo condition (1.4) is satisfied. Other sufficient decrease conditions have been

proposed. For example, Bertsekas [6] considers an Armijo-like condition based on a combination of

(1.3) and (1.4), with the term (1.3) defined with components of a scaled gradient-descent direction.

For equality-constrained problems of the form

minimize
x∈Rn

f(x) subject to c(x) = 0, (NEP)

the classical penalty methods solve the problem by minimizing a sequence of parameterized penalty

functions defined as

P2(x ;µ
P) △

= f(x) +
1

2µP
∥c(x)∥2,

where the quadratic penalty term 1
2µP ∥c(x)∥2 is added to the objective function to penalize the

violation of the equality constraints, with the penalty parameter µP > 0. The iterates are pushed

towards the feasible region by consecutively reducing the penalty parameter µP . However, as µP

approaches zero, the Newton equations associated with minimizing the penalty function become

4

increasingly ill-conditioned. To overcome this ill-conditioning, the augmented Lagrangian method

is based on applying the quadratic penalty function to the "shifted" problem

minimize
x∈Rn

f(x) subject to c(x)− µPyE = 0, (1.5)

where yE represents an estimate of the Lagrangian multiplier vector y. Minimizing the quadratic

penalty function for the shifted problem is equivalent to minimizing the augmented Lagrangian

function

LA(x ; y
E, µP) = f(x)− c(x)TyE +

1

2µP
∥c(x)∥2,

The augmented Lagrangian method enables the iterates to converge to a solution of (NEP) while

avoiding the need for µP to decrease to zero. The method was proposed independently by Hestenes [61]

and Powell [79].

To solve a general nonlinearly constrained optimization problem that involves inequality

constraints, a popular class of methods is the interior methods. Unlike active-set methods, which

seek solutions by moving along the boundary of the feasible region, interior methods work by

iteratively moving through the interior of the feasible region. An interior method for the inequality-

constrained problem (NIP) is motivated by transforming the original constrained problem into the

unconstrained minimization of a sequence of parameterized barrier functions. These functions are

obtained by combining the objective function with a number of barrier terms that prevent the

iterates from violating the inequality constraints.

For a classical barrier method that solves (NIP), reducing the barrier parameter µB (i.e.,

the weight of the barrier terms) to zero allows the barrier minimizers to approach a solution of

(NIP) from the interior of the feasible region. However, as the barrier parameter and the values of

the constraints that are active at the solution approach zero, the linear equations associated with

solving each barrier subproblem become increasingly ill-conditioned. Shifted barrier functions were

introduced to avoid this ill-conditioning by implicitly shifting the constraint boundary so that the

barrier minimizers approach a solution without the need for the barrier parameter to go to zero.

This idea was proposed for barrier methods for linear programming by Gill, Murray, Saunders

and Wright [52] (see also Freund [41]). Shifted barrier functions are defined in terms of Lagrange

multiplier estimates and are analogous to augmented Lagrangian methods for equality-constrained

optimization. The advantages of an augmented Lagrangian function over the quadratic penalty

function for equality-constrained optimization motivated the class of modified barrier methods,

which were proposed independently for nonlinear optimization by Polyak [77] (see Section 2.2.2).

Under certain conditions, the minimizers of the parameterized barrier functions create a

5

continuous path that passes through the solution of (NIP) (see e.g. Theorem 2.2.6). Thus, many

interior methods are characterized as path-following methods due to their dependence on properties

of such a path. Within the framework of a path-following method, the barrier function may be

regarded as a merit function that measures the distance to the path and is used to force convergence

of the method. By treating the (primal) variables x and the dual variables y (representing the

Lagrangian multiplier) as independent, the primal-dual interior methods are particularly effective

in following this path defined by the barrier minimizers (see Section 2.2.3).

Optimization problems with a mixture of equality and inequality constraints may be solved

by combining a penalty or augmented Lagrangian method with a barrier method (see Section 2.2.4).

In [46], Gill, Kungurtsev and Robinson propose an algorithm for (NIPs) based on using a shifted

primal-dual penalty-barrier function as a merit function for a primal-dual path-following method.

This function involves a primal-dual shifted penalty term for the equality constraints c(x) − s =

0 (see, e.g. Gill and Robinson [53]) and an analogous primal-dual shifted barrier term for the

inequalities s ≥ 0. The method will be reviewed in detail in Section 4.2.

Each penalty-barrier function includes logarithmic terms that generate a singularity at the

boundary of the feasible region, implying that the variables are subject to implicit bound constraints

during minimization. Conventional interior methods typically minimize the barrier function using

unconstrained approaches such as a line-search method, with an artificial upper bound imposed on

the step length to prevent the variables from becoming infeasible. However, it is also reasonable to

regard it as a bound-constrained problem and solve it utilizing a projected-search method.

1.2 Contributions of This Dissertation

In Chapter 3, two general classes of projected-search methods that employ a new quasi-

Wolfe line search are formulated for bound-constrained optimization. These methods may be

broadly categorized as either active-set methods or interior methods. The new quasi-Wolfe line

search, which was initially proposed by Ferry [28], is specifically designed for use with a piecewise

linear search path in order to extend the benefits of a conventional Wolfe line search to projected-

search methods. Convergence results are established under assumptions that are typical in the

analysis of projected-search methods for the class of projected-search active-set methods and the

class of projected-search interior methods respectively. In particular, for the active-set methods, it

is shown that if the sequence of iterates converges to a nondegenerate stationary point, then the

optimal active set can be identified within a finite number of iterations. It follows that once the op-

timal active set has been identified, any method in this class will have the same convergence rate as

6

its unconstrained counterpart. Additionally, a new quasi-Newton projected-search method UBOPT

is proposed in Section 3.4 for solving unconstrained and bound-constrained optimization problems,

which is an extension of the limited-memory reduced-Hessian method L-RHR of Leonard [66] and

Gill and Leonard [47]. The method UBOPT computes quasi-Newton directions in a sequence of

subspaces, and employs the framework of the class of projected-search active-set methods. Con-

vergence properties are established for UBOPT. Numerical results shown in Section 5.1 indicate

that using a quasi-Wolfe search in UBOPT resulted in a substantially better performance with re-

spect to function calls and the number of skipped quasi-Newton updates than using a quasi-Armijo

search. Numerical results in Section 5.2 indicate that a projected-search interior method for bound-

constrained optimization with a quasi-Wolfe line search can provide substantial improvements in

robustness and performance compared to a conventional interior method with a Wolfe line search.

Chapter 4 proposes a new projected-search interior method for solving general nonlinear

optimization problems of the form (NIPs). As an extension of the shifted primal-dual penalty-

barrier method of Gill, Kungurtsev and Robinson [46], a new primal-dual penalty-barrier function

is formulated to include shifts on both the dual variables and the slacks. This allows the method to

be safely "warm started" from a good approximate solution and eliminates the ill-conditioning of

the associated linear equations that may occur when the variables are close to zero. The penalty-

barrier function then serves as a merit function for a primal-dual path-following method. An

approximated Newton direction is used in conjunction with a novel projected-search algorithm that

employs a non-monotone flexible quasi-Armijo line search for the minimization of the merit function.

Unlike conventional interior methods, projected-search interior methods project the underlying

search direction onto a subset of the feasible region defined by perturbing the bounds. Therefore, the

direction of the search path may change multiple times along the boundary of the perturbed feasible

region at the cost of computing a single direction. The convergence of the projected-search algorithm

for minimizing the merit function with fixed parameters is established under certain assumptions.

Global convergence results of the new projected-search interior method are also established following

a similar procedure as the convergence analysis in Gill, Kungurtsev and Robinson [46]. Numerical

results presented in Section 5.3 indicate that the proposed method requires significantly fewer

iterations than a conventional interior method, thereby reducing the number of times that a search

direction must be computed.

7

1.3 Notation

Given vectors x and y, the vector consisting of x augmented by y is denoted by (x, y).

The subscript i is appended to vectors to denote the ith component of that vector, whereas the

subscript k is appended to a vector to denote its value during the kth iteration of an algorithm, e.g.,

xk represents the value for x during the kth iteration, whereas [xk]i denotes the ith component of

the vector xk. Given vectors a and b with the same dimension, vectors with ith component aibi
and ai/bi are denoted by a · b and a ·/ b respectively. Given a scalar α, α ·/ b is a vector whose

ith component is α/bi. Similarly, min(a, b) is a vector with components min(ai, bi). The vectors e

and ej denote, respectively, the column vector of ones and the jth column of the identity matrix

I. The dimensions of e, ej and I are defined by the context. The vector two-norm or its induced

matrix norm are denoted by ∥ · ∥. The inertia of a real symmetric matrix A, denoted by In(A),

is the integer triple (a+, a−, a0) giving the number of positive, negative and zero eigenvalues of A.

The n-vector ∇f(x) denotes gradient of f(x), and the m × n matrix J(x) denotes the constraint

Jacobian, which has ith row ∇ci(x)T. Given a Lagrangian function L(x, y) = f(x) − c(x)Ty with

y a m-vector of dual variables, the Hessian of the Lagrangian with respect to x is denoted by

H(x, y) = ∇2f(x) −
∑m

i=1 yi∇2ci(x). Let {αj}j≥0 be a sequence of scalars, vectors, or matrices

and let {βj}j≥0 be a sequence of positive scalars. If there exists a positive constant γ such that

∥αj∥ ≤ γβj , we write αj = O
(
βj
)
. If there exists a sequence {γj} → 0 such that ∥αj∥ ≤ γjβj ,

we say that αj = o(βj). If there exists a positive constant γ such that ∥αj∥ > γβj , we write

αj = Ω(βj). If there exist positive constants γ1 and γ2 such that γ1βj ≤ ∥αj∥ ≤ γ2βj , we write

αj = Θ(βj). Given a diagonal matrix D = diag(d1, d2, . . . , dn), the Moore-Penrose pseudoinverse

of D, denoted by D†, is diagonal with D†
ii = 0 for di = 0 and D†

ii = 1/di for di ̸= 0.

8

Chapter 2

Background

2.1 Line-Search Methods

2.1.1 Fundamentals of unconstrained optimization

Unconstrained optimization focuses on the minimization of a scaler-valued function f(x)

without constraints on the values of x. An unconstrained optimization problem may be written in

the form

minimize
x∈D

f(x),

where f : Rn 7→ R is the objective function and D ⊂ Rn is the domain of f . It is assumed here that

f is twice-continuously differentiable, and D is an open convex set, e.g., D = Rn.

A formal definition of a solution of an unconstrained optimization problem is given below.

Definition 2.1.1 (Global unconstrained minimizer). Given f : D ⊂ Rn 7→ R, the point x∗ ∈ D
is a global unconstrained minimizer of f on D if f(x∗) ≤ f(x) for all x ∈ D. If x∗ is a global

unconstrained minimizer, then f(x∗) is called the global unconstrained minimum of f .

Unfortunately, finding a global unconstrained minimizer is computationally intractable

except in special cases. Practical methods can be formulated if the conditions on a minimizer are

slightly relaxed by focusing on the local behavior of f . Let x∗ denote an interior point in D and

define B(x∗, δ) as the set of points in D that lie in an open ball of radius δ centered at x∗, i.e.,

B(x∗, δ) =
{
x ∈ D : ∥x− x∗∥ < δ

}
.

9

Definition 2.1.2 (Local unconstrained minimizer). Given f : D ⊂ Rn 7→ R, x∗ is a local uncon-

strained minimizer of f if there exists an open ball B(x∗, δ) such that B(x∗, δ) ⊂ D and f(x∗) ≤ f(x)
for all x ∈ B(x∗, δ).

Definition 2.1.3 (Strict unconstrained minimizer; weak minimizer). Given f : D ⊆ Rn 7→ R, an

unconstrained minimizer x∗ of f is a strict unconstrained minimizer if there exists a neighborhood

B(x∗, δ) ⊂ D such that

f(x∗) < f(x) for all x ∈ B(x∗, δ), x ̸= x∗.

An unconstrained minimizer x∗ is a weak unconstrained minimizer if it is not a strict unconstrained

minimizer.

Definition 2.1.4 (Isolated unconstrained minimizer). Given f : D ⊂ Rn 7→ R, an unconstrained

minimizer x∗ is an isolated unconstrained minimizer of f if there exists an open ball B(x∗, δ) such

that x∗ is the only unconstrained minimizer in B(x∗, δ).

Theorem 2.1.1 (First-order necessary condition for an unconstrained minimizer). Given f : Rn 7→
R, assume that x∗ is an unconstrained minimizer of f , and that f is differentiable at x∗. Then

∇f(x∗) = 0.

Proof. By assumption, x∗ is an unconstrained minimizer, which implies that

f(x∗ + tp) ≥ f(x∗) for all p ∈ Rn and, given p, all sufficiently small t. (2.1)

Because f is differentiable at x∗, the directional derivative of f along any direction p is ∇f(x∗)Tp,
and if t approaches zero from the positive side,

lim
t→0+

1

t

(
f(x∗ + tp)− f(x∗)

)
= ∇f(x∗)Tp for all p ∈ Rn. (2.2)

The combination of (2.1) and (2.2) implies that ∇f(x∗)Tp ≥ 0 for all p ∈ Rn, which can be true

only if ∇f(x∗) = 0.

Definition 2.1.5 (Unconstrained stationary point). Given f : D ⊂ Rn 7→ R, assume that x∗ is an

interior point of D and that f is differentiable at x∗. If ∇f(x∗) = 0, x∗ is called a stationary point

of f .

Theorem 2.1.2 (Second-order necessary conditions for an unconstrained minimizer [54]). Given

f : D ⊂ Rn 7→ R, assume that x∗ is an unconstrained minimizer of f , and that the second-

10

order derivative of f exists at x∗. Then ∇f(x∗) = 0 and the Hessian matrix ∇2f(x∗) is positive

semidefinite.

Proof. As x∗ is an unconstrained minimizer, it must be an interior point of D. Existence of the

second derivative of f at x∗ implies, that the first derivative exists. The fact that ∇f(x∗) = 0 under

these circumstances follows from Theorem 2.1.1.

We now use contradiction to prove that ∇2f(x∗) is positive semidefinite. Because the

second derivative of f exists at x∗, a second-order Taylor-series expansion of f(x) at x∗ implies that

lim
t→0

1

t2
[
f(x∗ + tp)− f(x∗)

]
= 1

2p
T∇2f(x∗)p for all p ∈ Rn. (2.3)

If the Hessian matrix ∇2f(x∗) is not positive semidefinite, then there is at least one vector p̂ such

that p̂T∇2f(x∗)p̂ < 0. For p = p̂, it follows from (2.3) that

lim
t→0

1

t2
[
f(x∗ + tp̂)− f(x∗)

]
< 0. (2.4)

The fact that x∗ is an unconstrained minimizer means that, according to Definition 2.1.2, f(x∗ +

tp) − f(x∗) ≥ 0 for all p and sufficiently small t. But relation (2.4) implies that, for sufficiently

small t, f(x∗ + tp̂)− f(x∗) < 0, a contradiction that gives the desired result.

Theorem 2.1.3 (Sufficient conditions for an isolated minimizer [54]). Given f : D ⊂ Rn 7→ R,

assume that x∗ is an unconstrained minimizer of f , and that the second-order derivative of f exists

at x∗. If ∇f(x∗) = 0 and the Hessian matrix ∇2f(x∗) is positive definite, then x∗ is an isolated

unconstrained minimizer.

Proof. First we show that x∗ is a strict minimizer. By assumption ∇f(x∗) = 0 and the second

derivative of f exists at x∗, so that we have

lim
t→0

1

t2
[
f(x∗ + tp)− f(x∗)

]
= 1

2p
T∇2f(x∗)p

for all nonzero p ∈ Rn. (This is a restatement of (2.3).) The assumption that ∇2f(x∗) is positive-

definite means that pT∇2f(x∗)p > 0 for all nonzero p, and it follows that f(x∗ + tp) − f(x∗) > 0

for all p ̸= 0 and all sufficiently small nonzero t. Because p and t are arbitrary, we conclude that

there exists a neighborhood of x∗ with the property that f(x∗) is strictly less than f at every point

in this neighborhood. Hence x∗ satisfies Definition 2.1.3 of a strict local minimizer.

The next step is to show by contradiction that x∗ is an isolated minimizer, i.e., that x∗ is

an isolated stationary point. This implies that there is a neighborhood of x∗ in which there are no

11

other stationary points of f . As x∗ is an interior point where ∇2f exists, the gradient ∇f exists in

a neighborhood of x∗ and is continuous at x∗. Suppose that x∗ is not an isolated stationary point,

so that every neighborhood of x∗ contains at least one other stationary point, i.e., a point where

∇f necessarily vanishes. Consequently there is an infinite sequence of stationary points, say {x̄k},
converging to x∗, i.e.,

lim
k→∞

x̄k = x∗, with ∇f(x̄k) = 0.

If ∥ · ∥ denotes the vector two-norm, the existence of ∇2f at x∗ implies that

lim
∥p∥→0

1

∥p∥
∥∇f(x∗ + p)−∇f(x∗)−∇2f(x∗)p∥ = 0.

As x̄k −x∗ → 0, this relation (combined with the relations ∇f(x∗) = 0 and ∇f(x̄k) = 0) holds with

the vector pk such that pk = x̄k − x∗. Letting uk = pk/∥pk∥ (so that ∥uk∥ = 1), we have

lim
k→∞

∥∇2f(x∗)uk∥ = 0. (2.5)

Because ∇2f(x∗) is positive definite, it is necessarily nonsingular, so that

∥∇2f(x∗)u∥ ≥ σ > 0

for any vector u of unit-norm, where σ is the smallest singular value of ∇2f(x∗). This contradicts

(2.5) and shows that there is a neighborhood of x∗ within which x∗ is the only stationary point.

As we have already shown that x∗ is a minimizer, the absence of other stationary points in a

neighborhood of x∗ implies that x∗ must be an isolated minimizer.

The above optimality conditions can be helpful not just in recognizing a solution, but also

in designing optimization algorithms. Based on the definition, if an interior point of the domain

D, say x̄, is not a minimizer, then every neighborhood of x̄ must contain points where the values

of f is strictly less than f(x̄). Thus there must exist at least one path along which one can move

away from a non-minimizer and strictly reduces f , and a straightforward choice for such a path is

a straight line. To make it precise, a direction of decrease is defined as a vector p along which any

sufficiently small positive move produces a strictly lower value of f .

Definition 2.1.6 (direction of decrease). Let f : D ⊂ Rn 7→ R be continuous on D. A vector

p ∈ Rn is a direction of decrease for f at an interior point x ∈ D if there exists a positive α̂ such

that x+ α̂p ∈ D and f(x+ αp) < f(x) for all α ∈ (0, α̂).

12

The next result provides verifiable conditions that characterize directions of decrease in

two circumstances: when f is continuously differentiable and when f has a second-order derivative.

Proposition 2.1.1 ([54]). Given f : D ⊂ Rn 7→ R, assume that f is continuously differentiable on

a convex set D0 ⊂ D, and let x be an interior point of D0.

(a) If the vector p satisfies ∇f(x)Tp < 0, then p is a direction of decrease for f at x.

(b) If, in addition, f has a second-order derivative at x, then any p̂ such that ∇f(x)Tp̂ < 0 and

p̂T∇2f(x)p̂ < 0 is a direction of decrease for f at x.

Proof. Because x is an interior point of D and∇f is continuous on int(D), the fact that∇f(x)Tp < 0

implies existence of δ > 0 such that x + αp ∈ D and ∇f(x + αp)Tp < 0 for all 0 ≤ α < δ. By

the mean-value theorem for scalar-valued functions, for every α satisfying 0 < α < δ there is a

corresponding t̂ ∈ (0, 1) such that

f(x+ αp)− f(x) = α∇f(x+ t̂αp)Tp.

As 0 < t̂α < α < δ, it follows that f(x+ αp)− f(x) < 0, which proves part (a).

Before proving part (b), observe that any direction p for which ∇f(x)Tp > 0 cannot

possibly be a direction of decrease. As we know that any p for which ∇f(x)Tp < 0 is automatically

a direction of decrease, we need to consider only p satisfying ∇f(x)Tp = 0.

Suppose now that f has a second derivative at x. The second-order Taylor-series expansion

implies that, for any p,

lim
α→0

1

α2

[
f(x+ αp)− f(x)− α∇f(x)Tp

]
= 1

2p
T∇2f(x)p.

For any vector p̂ satisfying the properties given in ((b)), namely that∇f(x)Tp̂ = 0 and p̂T∇2f(x)p̂ <

0, it follows immediately that

lim
α→0

1

α2

[
f(x+ αp̂)− f(x)

]
= 1

2 p̂
T∇2f(x)p̂ < 0,

showing that f(x + αp̂) − f(x) < 0 for all sufficiently small |α|. Consequently, if such a vector p̂

exists, it is a direction of decrease, which verifies part (b).

Two important directions of decrease are defined as follows.

Definition 2.1.7 (Descent direction). Let f : D ⊂ Rn 7→ R be continuously differentiable at x, an

interior point of D. The vector p is a descent direction for f at x if ∇f(x)Tp < 0.

13

Definition 2.1.8 (Direction of negative curvature). Let f : D ⊂ Rn 7→ R have a second derivative

at x, an interior point of D. The vector p is a direction of negative curvature for f at x if

pT∇2f(x)p < 0.

Definition 2.1.9 (Level set). Given f : D ⊂ Rn 7→ R and a scalar γ, the level set L(γ) is the set

of points x ∈ D for which f(x) ≤ γ, i.e.,

L(γ) =
{
x ∈ D : f(x) ≤ γ.

}
Next two definitions characterize the rate of convergence of a sequence.

Definition 2.1.10 (Q-order convergence). A sequence
{
xk
}

is said to converge to x∗ with Q-order

at least r/ge1 if there exist constants βr(≥ 0) and Kr(≥ 0) such that, for all k ≥ Kr, it holds that

∥xk+1 − x∗∥ ≤ βr∥xk − x∗∥r.

For r = 2 and r = 3, the convergence is said to be at least Q-quadratic and Q-cubic respectively.

Definition 2.1.11 (Q-superorder convergence). A sequence
{
xk
}

is said to converge to x∗ with

Q-superorder at least r ≥ 1 if, for every positive βr there exists a constant Kβr
(≥ 0) such that, for

all k ≥ Kβr
, it holds that

∥xk+1 − x∗∥ ≤ βr∥xk − x∗∥r.

For r = 1, 2 and = 3, the convergence is said to be at least Q-superlinear, Q-superquadratic and

Q-supercubic respectively.

Two important classes of methods for unconstrained optimization are line-search methods

and trust-region methods. For a review of trust-region methods, see, e.g., M oré [69] and Conn,

Gould and Toint [17]. The rest of this section will focus on line-search methods.

A line-search method is an iterative approach that produces a sequence
{
xk
}

that has

the form xk+1 = xk+αkpk, where pk is an n-dimensional vector usually called the search direction,

and αk is a positive scalar step chosen through a line search along pk.

The computation of both pk and αk in a typical line-search method depends on local

model functions. Suppose that f is twice-continuously differentiable at an interior point xk of D.

A second-order Taylor-series expansion of f(x) at xk can be written as

f(xk + d) = f(xk) +∇f(xk)Td+ 1
2d

T∇2f(xk)d+ o(∥d∥2).

14

When ∥d∥ is small enough so that the last two terms in the expansion can be treated as negligible,

letting d = x− xk gives the Taylor-series affine model of f near xk:

ℓk(x)
△
= f(xk) +∇f(xk)T(x− xk), (2.6)

which has the property that ℓk(xk) = f(xk) and ∇ℓk(xk) = ∇f(xk). When the o(∥d∥2) term can be

considered negligible, f(x) can be approximated by the Taylor-series quadratic model of f near xk:

qk(x)
△
= f(xk) +∇f(xk)T(x− xk) + 1

2 (x− xk)
T∇2f(xk)(x− xk),

which, like the affine model, satisfies qk(xk) = f(xk) and ∇qk(xk) = ∇f(xk) with the further

property that ∇2qk(xk) = ∇2f(xk). A more general quadratic model that is commonly used is of

the form

qk(x) = f(xk) +∇f(xk)T(x− xk) + 1
2 (x− xk)

THk(x− xk), (2.7)

where Hk is some symmetric approximation to ∇2f(xk).

2.1.2 Choices of the step length

To choose an appropriate step length αk for a line-search method, in often cases certain

conditions are imposed on αk to ensure convergence of the method.

Associated with the k-th iteration of a conventional line-search method for unconstrained

optimization is a scalar-valued function mk(x) that represents a local line-search model of f . The

step length αk is then chosen to give a decrease in f that is at least as good as a fixed fraction of

the decrease in the local model, i.e., αk must satisfy

f(xk)− f(xk + αkpk ≥ ηA(mk(xk)−mk(xk + αkpk)) > 0, (2.8)

where ηA is a fixed parameter such that 0 < ηA < 1. The line-search model mk must satisfy two

conditions. First, it must hold that mk(xk)−mk(xk +αpk) > 0 for all α sufficiently small, i.e., the

model must predict a decrease in the objective for small α. Second, mk must be such that

lim
α→0+

f(xk)− f(xk + αpk)

mk(xk)−mk(xk + αpk)
= 1. (2.9)

These two conditions ensure that (2.8) is satisfied if αk is sufficiently small Typical line-search

models are the affine model (2.6) and the quadratic model (2.7) based on the first- and second-

15

order Taylor-series approximations of f .

The affine model (2.6) gives the predicted reduction in f as

ℓk(xk)− ℓk(xk + αpk) = f(xk)− (f(xk) + α∇f(xk)Tpk) = −α∇f(xk)Tpk.

This prediction is strictly positive provided that pk is a descent direction. In this case, the sufficient

decrease condition (2.8) may be simplified as

f(xk + αkpk) ≤ f(xk) + αkηA∇f(xk)Tpk, (2.10)

which is known as the Armijo condition (see, e.g., Armijo [3], Ortega and Rheinboldt [75]). A line

search based on the Armijo condition is known as the Armijo line search. A step α that satisfies

the Armijo condition is called an Armijo step. The limit given in (2.9) implies that the Armijo

condition holds if αk is sufficiently small. Most Armijo line searches are implemented as a simple

backtracking procedure in which an initial step is reduced by a constant factor until the Armijo

condition (2.10) is satisfied.Thus an Armijo step has the form αk = γσtk , with γ > 0 an initial step,

σ a constant factor for backtracking that satisfies 0 < σ < 1, and tk is the smallest positive integer

such that αk satisfies the Armijo condition.

A sufficient decrease criterion can be based on the minimization of f(xk+αkpk) by recalling

that, if α is a minimizer of f(xk + αpk), the directional directive ∇f(xk + αpk)
Tpk must be zero.

As an approximation to the exact line search that seeks a minimizer of f(xk +αpk), we can require

that the magnitude of ∇f(xk + αpk)
Tpk be sufficiently reduced compared to ∇f(xk)Tpk. The first

Wolfe condition on αk can be written as

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)Tpk|, (2.11)

where ηW is a preassigned parameter such that 0 ≤ ηW < 1 (see, e.g., Wolfe [86], Moré and

Thuente [71], and Gill, Murray, Saunders and Wright [51]). The above condition does not involve

the value of f , which implies that the Armijo condition (2.10) is also needed to ensure that αk gives

a sufficient decrease in f . Together, the two conditions (2.10) and (2.11) are called the strong Wolfe

conditions. A line search based on the strong Wolfe condition is known as the Wolfe line search. A

step α that satisfies the strong Wolfe conditions is called a Wolfe step.

The Wolfe conditions allow ηW to be chosen to vary the accuracy of the step. If ηA is fixed

at a value close to zero (e.g., 10−4), then a value of ηW close to ηA gives a “tighter” or more accurate

step with respect to closeness to a critical point of ∇f(xk + αpk)
Tpk. A value of ηW close to 1

16

results in a “looser” or more approximate step. A Wolfe line search is able to exploit sophisticated

safeguarded polynomial interpolation techniques to provide methods that are more reliable and

efficient than those based on backtracking (see, e.g., Hager [60] and Morè and Thuente [71]). The

next result shows that under relatively mild conditions on f , an interval of positive steps satisfying

the strong Wolfe conditions exists as long as ηW ≥ ηA.

Proposition 2.1.2 (Existence of a Wolfe step [54]). Let f be a scalar-valued twice-continuously

differentiable function defined on an open convex set D ⊂ Rn. Consider a line-search algorithm

with initial point x0, such that the level set L(f(x0)) is bounded, and assume that pk is a descent

direction for all k ≥ 0. If ηA and ηW are fixed scalars such that 0 < ηA ≤ ηW < 1, then at every

iteration k, there exists an α
(k)
L > 0 and an interval (α(k)

L , α
(k)
U) such that every α ∈ (α

(k)
L , α

(k)
U) is

a Wolfe step.

Proof. To simplify the notation, define the univariate function ϕ(α) = f(xk + αpk), with ϕ′(α) =

∇f(xk + αpk)
Tpk. The strong Wolfe conditions are then

|ϕ′(α)| ≤ ηW |ϕ′(0)| and ϕ(α) ≤ ϕ(0) + αηAϕ
′(0). (2.12)

A local affine model of the one-dimensional line search function ϕ(α) is a straight line

emanating from α = 0 with negative slope ϕ′(0), with the form ϕ(0) + αϕ′(0).

Consider the function ω(α) = ϕ(α)−ϕ(0)−αηAϕ
′(0). This function has the property that

ω(α) ≤ 0 for all α that satisfy the Armijo condition (2.10). The proof is in two parts. First, we

show the existence of a positive step ξ such that ω′(ξ) = 0 and ω(ξ) < 0. Next we show that ξ

satisfies the Wolfe conditions (2.12). First, we show that there exists a positive scalar σ such that

ω(α) < 0 for all α ∈ (0, σ). Differentiating ω(α) with respect to α gives ω′(α) = ϕ′(α) − ηAϕ
′(0),

so that

ω′(0) = ϕ′(0)− ηAϕ
′(0) = (1− ηA)ϕ

′(0) < 0,

where we have used the assumptions that ϕ′(0) < 0 and ηA < 1. The nonzero derivative theorem

then implies that there exists a scalar σ (σ > 0) such that ω(α) < 0 for all α ∈ (0, σ). Hence, there

exists a σ1 ∈ (0, σ) such that ω(σ1) < 0.

From the compactness of the level set, ϕ(α) is bounded below by some constant ϕlow, i.e.,

ϕ(α) ≥ ϕlow for all α ∈ [0,∞). As ϕ(0) + αηAϕ
′(0)→ −∞ as α→ +∞, there must exist a positive

σ2 such that ϕ(0) + σ2ηAϕ
′(0) = ϕlow, and we have

ω(σ2) = ϕ(σ2)− ϕ(0)− σ2ηAϕ
′(0) ≥ ϕlow − ϕ(0)− σ2ηAϕ

′(0) = 0.

17

Given scalars σ1 and σ2 (0 ≤ σ1 < σ2) such that ω(σ1) < 0 and ω(σ2) > 0, the intermediate-value

theorem states that there must exist at least one positive α such that ω(α) = 0. Let β denote the

smallest positive root of ω(α) = 0. As ω(0) = 0, ω(β) = 0, and ω(α) < 0 for all α ∈ (0, β), the

mean-value theorem implies the existence of an ξ ∈ (0, β) such that ω′(ξ) = 0 and ω(ξ) < 0, or,

equivalently,

ϕ′(ξ) = ηAϕ
′(0) and ϕ(ξ) < ϕ(0) + ξηAϕ

′(0).

As ϕ′(0) < 0, we must have ϕ′(ξ) < 0. Moreover, the inequality ηA ≤ ηW implies that

ϕ′(ξ) ≥ ηAϕ
′(0) ≥ ηWϕ

′(0).

Putting all these inequalities together, we have

ηWϕ
′(0) ≤ ϕ′(ξ) ≤ 0 ≤ −ηWϕ

′(0),

or equivalently, |ϕ′(ξ)| ≤ ηW |ϕ′(0)|, which implies that ξ satisfies |ϕ′(α)| ≤ ηW |ϕ′(0)|.
We have shown that ξ satisfies both the Wolfe conditions, so the set of points satisfying

the Wolfe conditions (2.11) and (2.10) is non-empty.

The next theorem shows the convergence of an Armijo line-search method.

Theorem 2.1.4 (Armijo line search [54]). Let f be a scalar-valued twice-continuously differentiable

function defined on an open convex set D ⊂ Rn. Assume that x0 ∈ Ω is chosen such that the level

set L
(
f(x0)

)
is bounded. Assume that

{
xk
}

is defined by xk+1 = xk +αkpk, where pk is a descent

direction such that ∥pk∥ ≤ θ for some constant θ independent of k, and αk is an Armijo step Then

lim
k→∞

∣∣∇f(xk)Tpk∣∣ = 0.

Proof. Observe that the Armijo condition implies that

f(xk)− f(xk+1) ≥ −ηAαk∇f(xk)Tpk = ηAαk|∇f(xk)Tpk|,

because |∇f(xk)Tpk| = −∇f(xk)Tpk. This relation implies that {xk} is well defined and remains in

L(f(x0)). The assumption that f is bounded below on L(f(x0)) implies that {f(xk)} is a bounded,

strictly decreasing sequence, and hence converges.

The rest of the proof is by contradiction. Assume that |∇f(xk)Tpk| does not converge to

zero. This implies that there must exist a positive ϵ sufficiently small such that |∇f(xk)Tpk| ≥ ϵ

18

infinitely often. Let ϵ be such a number and let G denote the infinite subsequence G =
{
k :

|∇f(xk)Tpk| ≥ ϵ
}
. The step length for an Armijo line search is of the form αk = γjkC , where jk is

the smallest nonnegative integer such that

f(xk)− f(xk + αkpk) ≥ −αkηA∇f(xk)Tpk.

As f(xk) − f(xk + αkpk) → 0 and |∇f(xk)Tpk| ≥ ϵ, we must have αk → 0. The assumption that

the sequence of directions {pk} is uniformly bounded implies that the sequence of vectors {αkpk}
must converge to zero.

Let Ḡ denote the indices of those iterations at which a reduction in the initial step length

was necessary, i.e., Ḡ =
{
k : jk > 0, k ∈ G

}
. As {αk} converges to zero for k ∈ G, Ḡ must be

an infinite set. For every k ∈ Ḡ, define the step σk = αk/γC , which is the “last” step to fail the

sufficient reduction test. Then, by definition,

f(xk + σkpk) > f(xk) + σkηA∇f(xk)Tpk, k ∈ Ḡ.

Adding −σk∇f(xk)Tpk to both sides of this inequality and rearranging gives

f(xk + σkpk)− f(xk)− σk∇f(xk)Tpk > −σk(1− ηA)∇f(xk)Tpk

> σk(1− ηA)ϵ, k ∈ Ḡ. (2.13)

The Taylor-series expansion of f(xk + σkpk) gives

f(xk + σkpk)− f(xk)− σk∇f(xk)Tpk = σk

∫ 1

0

(
∇f(xk + tσkpk)−∇f(xk)

)
Tpk dt. (2.14)

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥x∥D = maxv ̸=0 |xTv|/∥v∥, then the generalized

Cauchy-Schwartz inequality gives

|
(
∇f(xk + tσkpk)−∇f(xk)

)
Tpk| ≤ ∥∇f(xk + tσkpk)−∇f(xk)∥D∥pk∥.

If this inequality is substituted in (2.14) and standard norm inequalities are applied, the inequality

(2.13) implies that

(1− ηA)ϵ <

∫ 1

0

(
∇f(xk + tσkpk)−∇f(xk)

)
Tpk dt ≤ max

0≤t≤1
∥∇f(xk + tσkpk)−∇f(xk)∥D ∥pk∥,

19

for every k ∈ Ḡ. The continuity of ∇f implies that there exists some θ ∈ (0, αk/γC) such that

max
0≤t≤1

∥∇f(xk + tσkpk)−∇f(xk)∥D = ∥∇f(xk + θpk)−∇f(xk)∥D.

It follows that

(1− ηA)ϵ < ∥∇f(xk + θpk)−∇f(xk)∥D ∥pk∥. (2.15)

However, αkpk → 0 on the , in which case it must hold that θpk → 0, and the continuity of ∇f(x)
gives

∥∇f(xk + θpk)−∇f(xk)∥D → 0.

The assumption on the boundedness of {pk} implies that the right-hand side of (2.15) converges to

zero, which gives the required contradiction.

The convergence of a Wolfe line-search method is stated below.

Theorem 2.1.5 (Wolfe line search [54]). Let f be a scalar-valued twice-continuously differentiable

function defined on an open convex set D ⊂ Rn. Assume that x0 ∈ Ω is chosen such that the level

set L
(
f(x0)

)
is bounded. Assume that

{
xk
}

is defined by xk+1 = xk +αkpk, where pk is a descent

direction such that ∥pk∥ ≤ θ for some constant θ independent of k, and αk is a step that satisfies

the strong Wolfe conditions. Then

lim
k→∞

∣∣∇f(xk)Tpk∣∣ = 0.

Proof. The first Wolfe condition is equivalent to the Armijo backtracking condition, and the argu-

ments of Theorem 2.1.4 may be used to show that {f(xk)} is a convergent sequence.

As in Theorem 2.1.4, the main part of the proof is by contradiction. If |∇f(xk)Tpk| does

not converge to zero, then there must be a positive ϵ sufficiently small such that |∇f(xk)Tpk| ≥ ϵ

infinitely often. If ϵ is such a value, let G =
{
k : |∇f(xk)Tpk| ≥ ϵ

}
. With this assumption, the first

Wolfe condition gives

f(xk)− f(xk+1) ≥ ηAαkϵ, for all k ∈ G. (2.16)

As {f(xk)} is a convergent sequence, the left-hand side of (2.16) converges to zero for k ∈ G. The

definitions of ηA and ϵ imply that αk → 0 for k ∈ G, and the uniform boundedness of the sequence

{pk} gives αkpk → 0 for k ∈ G.

20

The second Wolfe condition may be rearranged to be of the form

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)Tpk|, so that − |∇f(xk + αkpk)

Tpk| ≥ ηW |∇f(xk)Tpk|.

It follows that

|∇f(xk)Tpk|+∇f(xk + αkpk)
Tpk ≥ |∇f(xk)Tpk| − |∇f(xk + αkpk)

Tpk|

≥ (1− ηW)|∇f(xk)Tpk|.

As |∇f(xk)Tpk| = −∇f(xk)Tpk, we have

∇f(xk + αkpk)
Tpk −∇f(xk)Tpk ≥ (1− ηW)|∇f(xk)Tpk| ≥ (1− ηW)ϵ, k ∈ G. (2.17)

Using standard norm inequalities, we obtain

∇f(xk + αkpk)
Tpk −∇f(xk)Tpk =

(
∇f(xk + αkpk)−∇f(xk)

)T
pk

≤ ∥∇f(xk + αkpk)−∇f(xk)∥D ∥pk∥, (2.18)

where ∥ · ∥D denotes the norm dual to ∥ · ∥. Inequalities (2.17) and (2.18) imply that

∥∇f(xk + αkpk)−∇f(xk)∥D ∥pk∥ ≥ (1− ηW)ϵ > 0, k ∈ G. (2.19)

Because 1−ηW and ϵ are bounded away from zero, this inequality implies that the vector difference

inside the norm on the left is bounded away from zero. But we know that αkpk → 0, for all k ∈ G,
and the continuity of ∇f(x) and the boundedness of {pk} imply that the left-hand side of (2.19)

must converge to zero. This gives the desired contradiction, and shows that |∇f(xk)Tpk| → 0.

2.1.3 Implementing the Wolfe line search

A typical implementation of the Wolfe line search may be viewed as a two-stage process.

The first stage involves the determination of an interval containing a Wolfe step, if one exists. The

second stage locates a Wolfe step in this interval using safeguarded polynomial interpolation. If

the first stage fails, then the objective function is necessarily unbounded below. The key principle

that drives the first stage is that certain conditions may be formulated that determine if an interval

contains a Wolfe step. Much of the discussion in this section is based on the work of Moré and

21

Sorensen [70], Morè and Thuente [71]. More information may be found in Wolfe [87]. The schematic

description of the line-search algorithm given in Algorithm 1 below follows that of Nocedal and

Wright [74]. In order to simplify the notation we omit the suffix k and consider the univariate

function ϕ(α) = f(x+αp) for fixed vectors x and p. With this notation the Wolfe conditions (2.10)

and (2.11) may be written in the form

ϕ(α) ≤ ϕ(0) + αηAϕ
′(0), and |ϕ′(α)| ≤ ηW |ϕ′(0)|.

Much of the theory associated with a Wolfe line search is based on the properties of the auxiliary

function

ω(α) = ϕ(α)−
(
ϕ(0) + αηAϕ

′(0)
)
, with ω′(α) = ϕ′(α)− ηAϕ

′(0).

Moré and Sorensen [70] show that a minimizer of this function at which ω is negative satisfies the

Wolfe conditions. An example of a function ϕ and its associated auxiliary function ω are depicted

in Figure 2.1. The first stage of a Wolfe line search is motivated by the following proposition.

ω(α)

φ(α)

α

Figure 2.1: The graph depicts ϕ(α) = f(x + αp) as a function of positive α, with the shifted
function ω(α) = ϕ(α) −

(
ϕ(0) + αηAϕ

′(0)
)

superimposed. The dashed line represents the affine
function ϕ(0) + αηAϕ

′(0).

Proposition 2.1.3. Let
{
αi

}∞
i=0

be a strictly monotonically increasing sequence with α0 = 0.

Let ϕ and ω be continuously differentiable univariate functions such that ϕ′(0) < 0 and ω(α) =

ϕ(α)−
(
ϕ(0) + αηAϕ

′(0)
)

with 0 < ηA < 1. If there exists a least bounded index j such that at least

one of the following conditions is true:

22

(a) αj is a Wolfe step;

(b) ω(αj) ≥ ω(αj−1); or

(c) ω′(αj) ≥ 0,

then there exists a Wolfe step α∗ ∈ [αj−1, αj]. Collectively, (a)–(c) are called the stage-one condi-

tions.

Proof. Observe that αj−1 must satisfy none of the conditions (a)–(c), otherwise j would not be the

least index. This implies that ω(αj−1) < ω(αj−2) < · · · < ω(α0) = 0 from (b), and ω′(αj−1) < 0

from (c).

Case 1. If (a) is true, the proposition is true trivially.

Case 2. If (b) is true, let ᾱ = sup
{
α ∈ [αj−1, αj] : ω(β) ≤ 0 for all β ∈ [αj−1, α]

}
. If ᾱ = αj ,

then ω(ᾱ) = ω(αj) ≥ ω(αj−1); if ᾱ < αj , then by the continuity of ω, ω(ᾱ) = 0 > ω(αj−1). From

the mean-value theorem there must exist an α̂ ∈ (αj−1, ᾱ) such that ω′(α̂) =
(
ω(ᾱ)−ω(αj−1)

)
/(ᾱ−

αj−1) > 0. The function ω(α) is continuously differentiable with ω′(αj−1) < 0 and ω′(α̂) > 0. The

intermediate-value theorem then implies that there must exist a step α∗ ∈ [αj−1, α̂] such that

ω′(α∗) = 0. As ω(α∗) ≤ 0, α∗ is a Wolfe step.

Case 3. Finally, consider the case where (c) is true. If ω(α) < 0 for all [αj−1, αj], then, as

ω′(αj−1) < 0 and ω′(αj) ≥ 0, the continuity of ω′ and the intermediate-value theorem imply that

there exists a step α∗ ∈ [αj−1, αj] such that ω′(α∗) = 0. As ω(α∗) < 0, α∗ is a Wolfe step.

Otherwise, if there exists some α ∈ [αj−1, αj] such that ω(α) ≥ 0, let ᾱ = sup
{
α ∈ [αj−1,

αj] : ω(β) ≤ 0 for all β ∈ [αj−1, α]
}
. The continuity of ω implies that ω(ᾱ) = 0. The same

argument used in Case 2 may be used to show that there must exist an α̂ ∈ (αj−1, ᾱ) such that

ω′(α̂) > 0 and an α∗ ∈ [αj−1, α̂] such that ω′(α∗) = 0 with ω(α∗) ≤ 0.

Note that the converse result is not true, e.g., there may be a Wolfe step in the interval

[0, α1] even though none of the stage-one conditions are satisfied for j = 1. The behavior of ω(α)

is unknown at any α ∈ (0, α1).

If the first step α1 is not a Wolfe step, successively larger steps are computed until either

one of the stage-one conditions is satisfied or j is such that αj = αmax. In practice, αmax is an

upper bound imposed on the step and the search is terminated if the bound is exceeded during the

stage-one iterations. If a given αj does not satisfy the stage-one conditions then ω(αj) < ω(αj−1) <

· · · < ω(α0) = 0. If the algorithm reaches αjmax
= αmax and none of the stage-one conditions have

23

been satisfied, it terminates with αjmax , which is an Armijo step with the least computed function

value.

Proposition 2.1.3 implies that if one of the stage-one conditions is satisfied at iteration

j, then the interval [αj−1, αj] must contain a Wolfe step. At this point the line search termi-

nates successfully if the stage-one condition (a) is satisfied, or moves on to the second stage. The

computations associated with the second stage are based on the following result.

Proposition 2.1.4. Let ϕ and ω be defined as in Proposition 2.1.3. Assume there exist distinct

points αlow and αhigh such that

(a) ω(αlow) ≤ 0;

(b) ω(αlow) ≤ ω(αhigh); and

(c) ω′(αlow)(αhigh − αlow) < 0.

Then there exists a Wolfe step α∗ ∈ I, where I is the interval defined with endpoints αlow and

αhigh.

Proof. The proof is similar to that of Proposition 2.1.3, and is a special case of the proof of Propo-

sition 3.2.3.

The conditions (a)–(c) of Proposition 2.1.4 are referred to collectively as the stage-two

conditions. The subscripts associated with the points αlow and αhigh serve to emphasize the fact

that ω(αlow) ≤ ω(αhigh). It is not necessarily the case that αlow < αhigh.

Algorithm 1 gives a schematic outline of a Wolfe line search. The calculations required

for a Wolfe line search may be organized into two “functions” associated with the stage-one and

stage-two conditions. If the first stage finds an interval that contains a Wolfe step, the first-stage

function labels the endpoints αlow and αhigh based on relative magnitudes of ω(αj−1) and ω(αj),

and calls the stage-two function Stage_Two(αlow, αhigh). The second-stage function interpolates the

endpoints to calculate a best-guess step, αnew, in the interval. The second-stage function is called

recursively using αnew and an existing endpoint, labeling them so that the stage-two conditions hold

for each call. This is repeated until αnew is a Wolfe step. In practice, it rarely takes more than one

or two interpolations to find a Wolfe step. It must be emphasized that in practice, the stage-two

calculations are not implemented as a recursive procedure. The recursive structure depicted in

Algorithm 1 is illustrative and reflects the fact that the intervals defined by αlow and αhigh form

a nested sequence. If I0 is the interval resulting from stage-one, the computations of stage-two

generate a sequence of intervals
{
Ij
}

and a sequence of points
{
α
(j)
low

}
such that α(j) ∈ Ij , each Ij

24

contains a quasi-Wolfe step, and Ij ⊂ Ij−1. The intervals Ij form a nested sequence of “intervals

of uncertainty”.

Algorithm 1 Schematic outline of a Wolfe line search.

1: function Wolfe_Line_Search(α)
2: restriction: α > 0;
3: constants: ηA ∈ (0, 12), ηW ∈ (ηA, 1), γe > 1, αmax ∈ (0,+∞);
4: α← min

{
α, αmax

}
; αold ← 0;

5: while α is not a Wolfe step and α ̸= αmax do
6: if ω(α) ≥ ω(αold) then
7: α← Stage_Two(αold, α); break;
8: else if ω′(α) ≥ 0 then
9: α← Stage_Two(α, αold); break;

10: else
11: αold ← α; α← min

{
γeα, αmax

}
; [Increase α towards αmax]

12: end if
13: end while
14: return α;
15: end function
1: function Stage_Two(αlow, αhigh)
2: restriction: ω(αlow) ≤ ω(αhigh);
3: Choose αnew in the interior of the interval defined by αlow and αhigh;
4: if αnew is a Wolfe step then
5: return αnew;
6: else if ω(αnew) ≥ ω(αlow) then
7: return Stage_Two(αlow, αnew);
8: else if ω′(αnew)(αhigh − αlow) < 0 then
9: return Stage_Two(αnew, αhigh);

10: else
11: return Stage_Two(αnew, αlow);
12: end if
13: end function

A practical implementation of a Wolfe line search is very complex. There are many ways

to interpolate to obtain a new point in the second stage. The use of finite precision imposes the

need for some sort of safeguarding during interpolation and gives rise to a whole host of issues,

including how to handle cases when the function or step length are changing by a value near or

less than machine precision. See, e.g., Brent [9], Hager [60], Ghosh and Hager [45], and Moré and

Thuente [71] for more details.

25

2.1.4 Choices of the search direction

The search direction pk for a line-search method is typically derived by minimizing a

local quadratic model at xk of the form (2.7), with Hk some positive-definite approximation of the

Hessian matrix ∇2f(xk). Writing p = x− xk in (2.7) gives

qk(p) = f(xk) +∇f(xk)Tp+ 1
2p

THkp,

The explicit formula for pk can be obtained by setting the gradient of qk(p) to zero:

pk = −H−1
k ∇f(xk).

As Hk is positive-definite,

∇f(xk)Tpk = −pTkHkpk < 0,

which implies that pk is a descent direction.

Simply defining Hk as the identity matrix gives the steepest-descent direction −∇f(xk),
along which the function decreases the fastest in the sense that pk = −∇f(xk) is the solution of the

following minimization problem:

minimize
p∈Rn

∇f(xk)Tp subject to ∥pk∥/∥∇f(xk)∥ = 1, (2.20)

where ∇f(xk)Tp represents the directional derivative of f at xk along a direction p. The precise

choice of the scaling of pk is based on the idea of having ∥pk∥ → 0 as the sequence of iterates

approach a stationary point, i.e., as ∥∇f(xk)∥ → 0. The steepest-descent direction is often used

when the second-order derivatives of f are unavailable or are too expensive to compute.

However, the steepest-descent direction can be inadequate as its definition does not include

the curvature information of f , which is crucial for locating a minimizer efficiently. The well-known

Newton’s method is a second-order method that uses the exact Hessian matrix at each iteration k:

Hk = ∇2f(xk).

Thus, the Newton direction pk is derived by solving the linear system

∇2f(xk)pk = −∇f(xk).

26

To ensure that pk is a descent direction, this approach can only be used when ∇2f(xk) is positive

definite at each iteration k. As this condition does not hold for general functions, one strategy is

to define Hk as a positive-definite approximation to ∇2f(xk), on the assumption that the “natural”

choice of Hk = ∇2f(xk) will be made when ∇2f(xk) is sufficiently positive-definite. Such methods

are often referred to as modified Newton methods. A modified Hessian matrix Hk can be defined

as the positive-definite matrix closest to ∇2f(xk) that has a condition number no greater than a

preassigned value, say β. To determine the matrix Hk is to solve the following constrained matrix

problem:

minimize
Hk∈Rn×n

{
∥∇2f(xk)−Hk∥F : cond(Hk) ≤ β, Hk symmetric positive definite

}
,

where ∥ · ∥F represents the Frobenius norm and cond(Hk) denotes the condition number of H (i.e.,

the ratio of the eigenvalues of largest and smallest absolute value). The restriction on the size of

the condition number of Hk ensures that Hk is sufficiently positive-definite. This problem is often

solved using the symmetric indefinite factorization of the modified Cholesky factorization.

The following theorem states the local convergence properties of the Newton’s method.

The proof is widely available in literature, see, e.g., Nocedal and Wright [74].

Theorem 2.1.6 (Local convergence of Newton’s method [54]). Let f be a scalar-valued twice-

continuously differentiable function defined on an open convex set D ⊂ Rn, and assume that

∇f(x∗) = 0 and ∇2f(x∗) is nonsingular for some x∗ ∈ D. Then

(a) there exists a neighborhood B(x∗, δ) such that, for any x0 in B, the sequence of Newton iterates{
xk
}
k≥0

such that

xk+1 = xk −∇2f(xk)
−1∇f(xk) (2.21)

are well defined, remain in B and converge to x∗ at Q-superlinear rate;

(b) if, in addition, ∇2f satisfies a local Lipschitz condition at x∗,

∥∇2f(x)−∇2f(x∗)∥ ≤ L∥x− x∗∥ for all x ∈ B

where L is a positive constant, the Newton iterates defined by (2.21) converge Q-quadratically

to x∗; and

(c) if, in addition, ∇2f satisfies a local Lipschitz condition with constant L in a neighborhood of

x∗, ∥f(xk)∥ converges Q-quadratically to zero.

27

Theorem 2.1.4 and Theorem 2.1.5 imply that combining a descent direction and an Armijo

or Wolfe step ensures |∇f(xk)Tpk| → 0. However, to obtain convergence to a stationary point, i.e.,

∇f(xk) → 0, the search direction pk needs to have the property that |∇f(xk)Tpk| can go to zero

only when ∇f(xk) goes to zero.

Definition 2.1.12 (Direction of sufficient descent). A direction pk is a direction of sufficient

descent if ∥pk∥ is bounded and

∇f(xk)Tpk → 0 implies ∇f(x)→ 0 and pk → 0.

A convenient characterization of directions of sufficient descent is provided by the following

lemma.

Lemma 2.1.1. Let
{
Hk

}
be a sequence of symmetric positve-definite matrices such that

λmax(Hk) ≤M < +∞ and λmin(Hk) ≥ m > 0,

where m and M are constants, and λmax(Hk) and λmin(Hk) denotes the largest and smallest

eigenvalues of Hk respectively. If the search direction pk is computed by solving the equations

Hkpk = −∇f(xk), then pk is a direction of sufficient decrease.

Proof. Because Hkpk = −∇f(xk), it follows that

|∇f(xk)Tpk| = |pTkHkpk| ≥ λmin∥pk∥2, (2.22)

where ∥ · ∥ denotes the two-norm. As λmin(Hk) > m for all k we have immediately that pk → 0

when |∇f(xk)Tpk| → 0.

Applying standard norm inequalities to the expression Hkpk = −∇f(xk) for pk gives

∥Hk∥ ∥pk∥ ≥ ∥∇f(xk)∥, so that ∥pk∥ ≥
∥∇f(xk)∥
∥Hk∥

. (2.23)

Using the relation ∥Hk∥ = λmax, we may combine (2.22) and (2.23) as follows:

|∇f(xk)Tpk| ≥
λmin

λmax
∥pk∥ ∥∇f(xk)∥ ≥

λmin

λ2max

∥∇f(xk)∥2. (2.24)

As by assumption λmax(Hk) ≤ M , λmin(Hk) ≥ m, we have ∇f(xk) → 0 if |∇f(xk)Tpk| → 0, as

required.

28

Combining Newton’s method with an Armijo or Wolfe line search ensures global conver-

gence of the Newton-based line-search algorithm.

Theorem 2.1.7 (Global convergence of Newton-based line-search method [54]). Let f be a scalar-

valued twice-continuously differentiable function defined on an open convex set D ⊂ Rn. Assume

that ∇2f(x) is positive definite for all x ∈ D, with smallest eigenvalue uniformly bounded away from

zero; i.e., there exists σ > 0 such that for all s ∈ Rn and x ∈ D,

sT∇2f(x)s ≥ σ∥s∥2. (2.25)

Given x0 ∈ D such that the level set L(f(x0)) is compact, consider the sequence xk+1 = xk +αkpk,

where pk is the Newton direction and αk is the Armijo or Wolfe step length. The sequence
{
xk
}

is

well-defined and lies in L(f(x0)). Moreover, either the algorithm finds some xk such that ∇f(xk) =
0, or limk→∞∇f(xk) = 0.

Proof. To show that the iterates are well defined, observe that, if xk ∈ L(f(x0)), the positive-

definiteness of ∇2f(x) ensures that the Newton direction is always a direction of descent. Hence,

Proposition 2.1.2 ensures the existence of a suitable αk satisfying the step length conditions (2.11)

and (2.10), which implies that xk+1 ∈ L(f(x0)).
The smallest eigenvalue of Hk is bounded below by assumption; continuity of ∇2f(x) and

the compactness of L(f(x0)) together imply that ∥Hk∥ is bounded, so that the largest eigenvalue is

bounded above. The conditions of Lemma 2.1.1 therefore apply, and pN

k is a direction of sufficient

descent. The result then follows immediately from Definition 2.1.12.

The next two theorems state that the “natural” step of unity eventually satisfies the Armijo

and Wolfe conditions; this property is essential to achieving quadratic rate of convergence.

Theorem 2.1.8 (Armijo sufficient decrease with a unit step [54]). Assume that the assumptions

of Theorem 2.1.7 hold. Moreover, assume that the scalar ηA is chosen so that 0 < ηA < 1
2 . Then

there exists an index K such that for all k ≥ K for which ∇f(xk) ̸= 0, the step αk = 1 satisfies the

Armijo condition.

Proof. First, observe that (2.25) and the definition ∇2f(xk)pk = −∇f(xk) imply that

−∇f(xk)Tpk ≥ pTk∇2f(xk)pk ≥ σ∥pk∥2. (2.26)

As we know from Theorem 2.1.7 that ∇f(xk) → 0, (2.26) implies that pk → 0. This condition

29

and the descent property of pk then imply that for all sufficiently large k, xk + pk ∈ L(f(x0)). We

henceforth consider only such values of k.

The condition to be verified is that

f(xk + pk)− f(xk)− ηA∇f(xk)Tpk ≤ 0. (2.27)

Using the identity

f(x+ p) = f(x) +∇f(x)Tp+ 1
2p

T∇2f(x)p+

∫ 1

0

pT
(
∇2f(x+ tp)−∇2f(x)

)
p(1− t) dt,

and the definition ∇2f(xk)pk = −∇f(xk), the left-hand side of (2.27) may be written as

f(xk + pk)− f(xk)− ηA∇f(xk)Tpk =
1

2
(1− 2ηA)∇f(xk)Tpk

+

∫ 1

0

pTk
(
∇2f(xk + tpk)−∇2f(xk)

)
pk(1− t) dt.

As ∇2f is continuous in the closed bounded region L(f(x0)), the quantity ωk such that

ωk = max
0≤t≤1

∥∇2f(xk + tpk)−∇2f(xk)∥

is bounded. Applying this definition of ωk and (2.26), gives

f(xk + pk)− f(xk)− ηA∇f(xk)Tpk ≤
1

2
(1− 2ηA)∇f(xk)Tpk +

1

2
ωk∥pk∥2

≤ 1

2
(1− 2ηA −

ωk

σ
)∇f(xk)Tpk. (2.28)

As pk → 0, there must exist an index K such that for all k ≥ K, ωk will be small enough to satisfy

ωk < σ(1 − 2ηA). When ωk satisfies this inequality, the right-hand side of (2.28) will be negative

for ω sufficiently small (because ηA < 1
2 and ∇f(xk)Tpk < 0), and hence (2.27) is satisfied for

sufficiently large k.

Theorem 2.1.9 (Wolfe sufficient decrease with a unit step [54]). Under the assumptions of Theo-

rem 2.1.7, there exists an index K such that for all k ≥ K for which ∇f(xk) ̸= 0, the step αk = 1

satisfies the strong Wolfe conditions (2.11) and (2.10).

30

Proof. The condition to be verified is that |∇f(xk+pk)Tpk| ≤ ηW |∇f(xk)Tpk|. Consider the identity

∇f(xk + pk)−∇f(xk)−∇2f(xk)pk =

∫ 1

0

(
∇2f(xk + tpk)−∇2f(xk)

)
pk dt.

Multiplying by pTk and re-arranging, we obtain

∇f(xk + pk)
Tpk = ∇f(xk)Tpk + pTk∇2f(xk)pk +

∫ 1

0

pTk
(
∇2f(x+ tpk)−∇2f(xk)

)
pk dt.

Substituting ∇2f(xk)pk = −∇f(xk) in this equation and applying norm inequalities gives

∣∣∇f(xk + pk)
Tpk

∣∣ ≤ ∣∣∣∣∫ 1

0

pTk
(
∇2f(x+ tpk)−∇2f(xk)

)
pk dt

∣∣∣∣
≤ ∥pk∥2 max

0≤t≤1
∥∇2f(xk + tpk)−∇2f(xk)∥. (2.29)

Substituting (2.26) and the definition of ωk in (2.29), we obtain the inequality

∣∣∇f(xk + pk)
Tpk

∣∣ ≤ ωk

σ

∣∣∇f(xk)Tpk∣∣ . (2.30)

The continuity of ∇2f and the fact that pk → 0, implies that there must exist an index K such

that ωk/σ < ηW for all k ≥ K. Using this inequality in (2.30) gives that |∇f(xk + pk)
Tpk| ≤

ηW |∇f(xk)Tpk| is satisfied by xk + pk for all sufficiently large k.

Again, the result that ∥pk∥ → 0 implies the existence of an indexK such that for k ≥ K, ωk

will be small enough to satisfy ωk < σmin(1−2ηA, ηW). When ωk satisfies this inequality, the right-

hand side of (2.28) will be negative for ω sufficiently small (because ηA < 1
2 and ∇f(xk)Tpk < 0),

and hence the Armijo condition (2.27) is satisfied for sufficiently large k.

Thus, αk = 1 satisfies both Wolfe conditions (2.10) and (2.11) for all sufficiently large

k.

The fast local convergence of Newton-based methods derives from the curvature informa-

tion provided by the Hessian matrix at each iteration. Unfortunately, the required exact Hessian

may be expensive or impossible to obtain for many functions encountered in practice. Accordingly,

the development of quasi-Newton methods is motivated by the practical necessity of a method that

achieves fast local convergence without using second-order derivatives. In a quasi-Newton method,

an initial Hessian H0 is usually defined as a multiple of the identity matrix, and then each successive

31

approximate Hessian is obtained by a low-rank update to the previous approximate Hessian, i.e.,

Hk+1 = Hk + Uk, (2.31)

where Uk represents a low-rank matrix. The choice of Uk is based on the local affine model of ∇f
near xk+1:

∇f(xk) ≈ ∇f(xk+1) +∇2f(xk+1)(xk − xk+1).

Write dk = xk+1 − xk and wk = ∇f(xk+1)−∇f(xk), it follows that

wk ≈ ∇2f(xk+1)dk.

The approximate Hessian Hk+1 is defined such that the following condition holds:

wk = Hk+1dk

which is known as the quasi-Newton condition or secant condition. In addition, it is also crucial to

retain the symmetry and positive-definiteness of eachHk. An updating formula (2.31) is said to have

the property of hereditary symmetry if symmetry of Hk implies symmetry of Hk+1, and hereditary

positive-definiteness if the positive-definiteness of Hk implies positive-definiteness of Hk+1. The

well-known BFGS (Broyden-Fletcher-Goldfarb-Shanno) update

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

wT
k dk

wkw
T
k (2.32)

is a symmetric, rank-two update to Hk that satisfies the quasi-Newton condition and has the

property of hereditary symmetry. Moreover, if wT
k dk > 0, then the BFGS update has the property

of hereditary positive-definiteness. Indeed, the BFGS updating formula can be rewritten as

Hk+1 = (I + vkd
T
k)Hk(I + dkv

T
k), with vk =

1

(wT
k dk)

1/2(dTkHkdk)1/2
wk −

1

dTkHkdk
Hkdk.

This identity implies that Hk+1 is positive definite if Hk is positive definite and I + dkv
T
k is non-

singular (i.e., if 1 + vTk dk ̸= 0). As Hk+1 satisfies the quasi-Newton condition, it follows that

wT
k dk = dTkHk+1dk = dTk (I + vkd

T
k)Hk(I + dkv

T
k)dk = (1 + vTk dk)

2dTkHkdk.

It wT
k dk > 0, then (1 + vTk dk)

2 > 0, which implies that I + dkv
T
k is nonsingular. Therefore,

32

to ensure that the approximate Hessian remains positive definite in a quasi-Newton method, the

BFGS update is applied only when wT
k dk > 0.

For a quasi-Newton method, an important advantage of using a line search based on the

Wolfe conditions is that wT
k dk is always positive. This property is a consequence of the Wolfe step

satisfying the inequality ∇f(xk+1)
Tpk ≥ ηW∇f(xT

k pk, which is implicitly imposed via the first Wolfe

condition (2.11). The definition of wT
k dk yields

wT
k dk = αk(∇f(xk+1)

Tpk −∇f(xk)Tpk ≥ −αk(1− ηW)∇f(xk)Tpk > 0.

This property does not necessarily hold for an Armijo step.

The superlinear convergence of a quasi-Newton method can be proved assuming that the

sequence of iterates converges. The proof of the following theorem can be found in [23].

Theorem 2.1.10 (Superlinear convergence of a quasi-Newton method [54]). Let f(x) be twice-

continuously differentiable for all x ∈ Rn. Assume that there exists x∗ ∈ Rn such that ∇f(x∗) = 0

and ∇2f(x∗) is positive definite. Let
{
Hk

}
be a sequence of nonsingular matrices. Suppose that

for some x0 ∈ Rn the sequence of iterates
{
xk
}

is given by

xk+1 = xk + pk, where Hkpk = −∇f(xk).

If the sequence
{
xk
}

converges to x∗, and that xk ̸= x∗ for any k, then
{
xk
}

converges superlin-

early to x∗ if and only if

lim
k→∞

∥(Hk −∇2f(x∗))pk∥
∥pk∥

= 0.

For large-scale problems, limited-memory quasi-Newton methods are typically used. In

contrast to the regular quasi-Newton methods, limited-memory methods require storage for only a

few n-vectors.

For the conventional BFGS method, at the start of the k-th iteration, the inverse BFGS

approximation may be written in the form

Mk = V T
k−1Mk−1Vk−1 +

1

dTk−1yk−1

dk−1d
T
k−1, with Vk−1 = I − 1

dTk−1yk−1

yk−1d
T
k−1.

A simple calculation gives V 2
k−1 = Vk−1Vk−1 = Vk−1, which implies that Vk−1 is an oblique projection

that projects vectors onto the null-space of span(yk−1), i.e., Vk−1yk−1 = 0.

33

If ρj denotes the quantity ρj = 1/dTj yj , then Mk can be written as

Mk =
(
V T
k−1V

T
k−2

)
Mk−2

(
Vk−2Vk−1

)
+ ρk−2V

T
k−1dk−2d

T
k−2Vk−1 + ρk−1dk−1d

T
k−1.

Continuing to expand each Mj in turn gives the update

Mk =
(
V T
k−1 · · ·V T

k−m

)
M

(0)
k

(
Vk−m · · ·Vk−1

)
+ ρk−m

(
V T
k−1 · · ·V T

k−m+1

)
dk−md

T
k−m

(
Vk−m+1 · · ·Vk−1

)
+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
dk−m+1d

T
k−m+1

(
Vk−m+2 · · ·Vk−1

)
...

+ ρk−1dk−1d
T
k−1.

This formula implies that at the start of iteration k, a limited-memory variant of Mk may be defined

by updating an initial matrix M (0)
k m times using the BFGS formula with the m pairs

(dk−1, yk−1), (dk−2, yk−2), . . . , (dk−m, yk−m).

The resulting matrix is used to define the search direction as pk = −Mk∇f(xk). At the next step,

(dk−m, yk−m) is discarded and the most recently computed pair (dk, yk) is added to the list of vector

pairs. The total storage is 2m vectors.

Additionally, a limited-memory reduced-Hessian method will be reviewed later in Sec-

tion 3.4.1.

2.2 Interior Methods

2.2.1 Inequality-constrained optimization

A nonlinear inequality-constrained optimization problem may be written in the general

form

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (NIP)

where c(x) is anm-vector of nonlinear constraint functions with ith components ci(x) (i = 1, · · · ,m),

and f and
{
ci(x)

}
are smooth functions that are assumed to be twice-continuously differentiable

in this work. For a constrained optimization problem, any point x satisfying all the constraints is

34

called a feasible point, and the set of all such points is the feasible region. The feasible region for

this problem is given by

Ω =
{
x : ci(x) ≥ 0, i = 1, 2, . . . ,m

}
.

Definition 2.2.1. For problem (NIP), the constraint ci(x) ≥ 0 is said to be satisfied at x̄ if

c(x̄) ≥ 0, active if ci(x̄) = 0 and inactive if ci(x̄) > 0. The active set A(x̄) is the set of indices

of the active constraints at x̄, i.e., A(x̄) =
{
i : ci(x̄) = 0

}
. The constraint ci(x̄) ≥ 0 is said to be

violated if ci(x̄) < 0.

Definition 2.2.2 (First-order KKT point for (NIP)). The first-order KKT conditions for the

inequality-constrained problem (NIP) hold at the point x∗, or, equivalently, x∗ is a (first-order)

KKT point, if there exists an m-vector y∗, called a Lagrange multiplier vector, such that

c(x∗) ≥ 0, (feasibility) (2.33a)

∇f(x∗) = J(x∗)Ty∗, (stationarity) (2.33b)

y∗ ≥ 0, (nonnegativity of the multipliers) (2.33c)

c(x∗) · y∗ = 0. (complementarity) (2.33d)

The stationarity condition (2.33b) can be written as

∇xL(x∗, y∗) = 0, where L(x, y) = f(x)− yTc(x). (2.34)

Thus a KKT point is a stationary point with respect to x of the Lagrangian function L(x, y) defined

in (2.34). It is common to refer to x as the “primal variables” and to the Lagrange multipliers y as

the “dual variables”.

Definition 2.2.3 (Acceptable Lagrange multipliers). Given a KKT point x∗ for problem (NIP),

the set of acceptable Lagrange multipliers is defined as

Y(x∗) =
{
y ∈ Rm : ∇f(x∗) = J(x∗)Ty, y ≥ 0, and c(x∗) · y = 0

}
. (2.35)

The complementarity condition c(x∗) · y = 0 forces yi to be zero if constraint i is inactive,

but allows the possibility that yi = 0 when constraint i is active. An important property, strict

complementarity, occurs when all the multipliers for active constraints are positive.

Definition 2.2.4 (Strict complementarity). Strict complementarity holds at the KKT point x∗ if

there is a multiplier y∗ ∈ Y such that y∗i > 0 for all i ∈ A(x∗).

35

Before considering the optimality conditions for (NIP), a formal definition of a constrained

local minimizer is given as follows..

Definition 2.2.5 (Constrained local minimizer). Let f be a function defined for all x ∈ D ⊆ Rn.

Let N (x∗, δ) denote the set B(x∗, δ)∩Ω, where B(x∗, δ) is an open ball centered at x∗ with B(x∗, δ) ⊆
D. A point x∗ is a constrained local minimizer of f if there is a δ sufficiently small such that

f(x∗) ≤ f(x) for all x ∈ N (x∗, δ).

A point x∗ is a strict or proper constrained minimizer if this inequality holds with strict inequality

except at x∗ itself, i.e., f(x∗) < f(x) for all x ∈ N (x∗, δ).

For problems with linear constraints, the first-order KKT conditions alone are necessary

for optimality. However, to specify first-order necessary conditions for optimality with nonlinear

constraints, the constraints are required to satisfy certain regularity conditions, known as constraint

qualifications, at x∗. If these regularity conditions do not hold, a solution x∗ may or may not be

a KKT point. Two most commonly used constraint qualifications are defined below, which are

collectively known as first-order constraint qualifications.

Definition 2.2.6 (linear independence constraint qualification). The linear independence con-

straint qualification (LICQ) holds at the feasible point x̄ of (NIP) if x is strictly feasible, or if the

active constraint gradients,
{
∇ci(x) : i ∈ A(x)

}
at x are linearly independent, i.e., Ja(x) has full

row rank.

Definition 2.2.7 (Mangasarian-Fromovitz constraint qualification). The Mangasarian-Fromovitz

constraint qualification (MFCQ) holds at the feasible point x̄ of (NIP) if x is strictly feasible, or if

there exists a vector p such that ∇ci(x)Tp > 0 for all i ∈ A(x) (i.e., Ja(x)p > 0).

The MFCQ is a weaker condition than the LICQ in the sense that satisfaction of the

LICQ implies the MFCQ, but not the reverse. An important consequence of the MFCQ is the

boundedness of the set of acceptable multipliers.

Lemma 2.2.1 (Implication of the MFCQ: a bounded multiplier set [37]). If x̄ is a first-order KKT

point at which the MFCQ is satisfied, then the set of multipliers Y defined in (2.35) is bounded.

Proof. First we consider the nature of Y at x̄, which consists of all y ∈ Rm satisfying c(x̄) · y = 0,

∇f(x̄) = J(x̄)Ty, and y ≥ 0. It is easy to see that Y(x̄) is convex. Given any ȳ ∈ Y(x̄), Y(x̄) can

be unbounded only if there is a nonzero ray u emanating from ȳ such that ȳ + αu ∈ Y(x̄) for all

36

α ≥ 0. If such a ray exists, the complementarity condition will be satisfied only if components of u

corresponding to inactive constraints are zero. Thus, in order for both ȳ and ȳ+αu to lie in Y(x̄),
it must be true that

∇f(x̄) = J(x̄)Tȳa = Ja(x̄)
T(ȳa + αua),

where ȳa and ua denote the subvectors of ȳ and u corresponding to active constraints. It follows

that Ja(x̄)Tua = 0. Finally, ȳa + αua will remain nonnegative for arbitrarily large positive α only

if ua ≥ 0.

Turning now to the implications of the MFCQ, we know that a vector p exists such that

Ja(x̄)p > 0, which means that αJa(x̄)p > 0 for any positive α. Thus for any positive θ there is

a vector p satisfying Ja(x̄)p ≥ θe, where e denotes the vector of all ones. As a result, the linear

program

maximize
p,θ

θ subject to Ja(x̄)p− θe ≥ 0, θ ≥ 0 (2.36)

is feasible, but its objective function is unbounded above. Using standard duality theory for linear

programming, unboundedness of the primal objective implies infeasibility of the dual. The con-

straints of the dual corresponding to (2.36) are Ja(x̄)Tua = 0, eTua = 1, and ua ≥ 0, and so we

know that there is no vector ua satisfying these conditions. But, as shown in the first part of the

proof, these are precisely the properties that ua must have in order for Y(x̄) to be unbounded. (The

condition eTua = 1 is simply a scaling restriction to ensure that ua ̸= 0.) Consequently no ray u

exists, and Y(x̄) is bounded.

A practical disadvantage of the MFCQ compared to the LICQ is that verifying whether the

MFCQ is satisfied is more difficult—in fact, determining whether or not the MFCQ holds requires

solving a linear program. The argument developed in the proof of Lemma 2.2.1 shows that the

MFCQ holds at the KKT point x̄ if the optimal solution of the linear program

maximize
p,θ

θ subject to Ja(x̄)p− θe ≥ 0, 0 ≤ θ ≤ 1, (2.37)

occurs at the maximum possible value of θ, namely θ = 1. Note that this linear programming (LP)

problem is feasible because its constraints are satisfied by θ = 0 and p = 0.

The main first-order necessary condition for a solution of problem (NIP) can now be stated.

Theorem 2.2.1 (First-order necessary conditions). Let x∗ be a point such that c(x∗) ≥ 0, with

ca(x) = 0. If MFCQ holds at x∗, then x∗ is a local minimizer of (NIP) only if x∗ is a first-order

37

KKT point, i.e., there exists a vector y∗a such that

∇f(x∗) = Ja(x
∗)Ty∗a , with y∗a ≥ 0. (2.38)

Proof. See [37, Lemma 2.16].

For second-order optimality conditions, the Hessian of the Lagrangian L(x, y) (2.34) with

respect to x,

H(x, y) = ∇2
xxL(x, y) = ∇2f(x)−

m∑
i=1

yi∇2ci(x),

plays a crucial role. To make explicit use of the information about the stationarity of the objec-

tive function, second-order conditions typically involve curvature of the Lagrangian function along

feasible directions in the set

CL(x) =
{
p : p ̸= 0, ∇f(x)Tp = 0 and Ja(x)p ≥ 0

}
,

which is known as the critical cone.

In order to formulate an appropriate second-order constraint qualification, it is useful

to write the set CL(x) in an equivalent form that requires x to be a KKT point, i.e., the set of

acceptable multipliers is not empty at x. At any KKT point x, choose some y ∈ Y(x) and let

A+(x, y) denote the set of indices of active constraints with positive Lagrange multipliers and let

J+(x) denote the corresponding matrix of constraint gradients. Similarly, let A0(x, y) denote the set

of indices of active constraints with zero multipliers, and let J0(x) denote the associated matrix of

constraint gradients. Note that A0(x, y) and A+(x, y) define a complete partition of the active set,

i.e., A(x) = A0(x, y) ∪ A+(x, y). Moreover, this partition is a function of the particular y ∈ Y(x).
If y+ and y0 denote the vectors of positive and zero components of y, it follows that

∇f(x)Tp = yTJ(x)p = yT+ J+(x)p+ yT0 J0(x)p = yT+ J+(x)p = 0.

This implies that the critical cone may be written in the form

CL(x) =
{
p : p ̸= 0 such that J+(x)p = 0 and J0(x)p ≥ 0

}
.

This characterization suggests the use of an appropriate “second-order” tangent cone defined in

terms of the functions c0(x) and c+(x) given by the elements of c(x) with indices in A0(x, y) and

A+(x, y) respectively.

38

Definition 2.2.8 (Second-order constraint qualification (SOCQ)). The second-order constraint

qualification for inequality constraints holds at a KKT point x if, for all y ∈ Y(x), every nonzero

p satisfying J+(x)p = 0 and J0(x)p ≥ 0 is tangent to a twice-differentiable path x(α) such that

c+
(
x(α)

)
= 0 and c0

(
x(α)

)
≥ 0 for all 0 < α ≤ α̂.

Theorem 2.2.2 (Second-order necessary conditions for (NIP) [54]). If the first- and second-order

constraint qualifications hold at x∗, then x∗ is a local solution of (NIP) only if

(a) x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a nonempty set Y(x∗) of multipliers y

satisfying y ≥ 0, c(x∗) · y = 0, and ∇f(x∗) = J(x∗)Ty;

(b) for some y ∈ Y(x∗) and all p ̸= 0 satisfying ∇f(x∗)Tp = 0 and Ja(x
∗)p ≥ 0, it holds that

pTH(x∗, y)p ≥ 0.

Proof. Part (a) follows immediately from Theorem 2.2.1. To prove part (b), consider any nonzero

vector p satisfying ∇f(x∗)Tp = 0 and Ja(x
∗)p ≥ 0. Because of the second-order constraint qual-

ification, p is tangent to a twice-differentiable feasible path x∗(α) such that c+
(
x∗(α)

)
= 0 and

c0
(
x∗(α)

)
≥ 0 for all 0 < α ≤ α̂, with x∗(0) = x∗. Let v denote d2x∗(α)/dα2

∣∣
α=0

, and assume

henceforth that all vector and matrix functions are evaluated at x∗ unless otherwise specified. As

for each i ∈ A+(x, y), the constraint function ci is identically zero along x∗(α), we have

d2

dα2
ci
(
x∗(α)

)∣∣∣∣
α=0

= ∇ci
(
x∗(α)

)
T d2

dα2
x∗(α)

∣∣∣∣
α=0

+
d

dα
(∇ci

(
x∗(α)

)
T)

d

dα
x∗(α)

∣∣∣∣
α=0

= ∇ci(x∗)Tv + pT∇2ci(x
∗)p = 0. (2.39)

Further, using the expression ∇f(x∗) = J(x∗)Ty∗ = J+(x
∗)Ty∗+ from (2.33) and the assumption

that J+(x
∗)p = 0,

d

dα
f
(
x∗(α)

)∣∣∣∣
α=0

= ∇f
(
x∗(α)

)
T d

dα
x∗(α)

∣∣∣∣
α=0

= ∇f(x∗)Tp = y∗T+ J+(x
∗)p = 0. (2.40)

As a KKT point, x∗ is a stationary point of f along the feasible path. In order for x∗ to

be a local solution, the curvature of f along any feasible path must be nonnegative, i.e., it must

hold that
d2

dα2
f
(
x∗(α)

)∣∣∣∣
α=0

≥ 0. (2.41)

39

Using (2.40) and the definition of v, we write (2.41) as

d2

dα2
f
(
x∗(α)

)∣∣∣∣
α=0

=
d

dα

(
∇f
(
x∗(α)

)
T d

dα
x∗(α)

)∣∣∣∣
α=0

= ∇f(x∗)T d2

dα2
x∗(α)

∣∣∣∣
α=0

+ pT∇2f(x∗)p

= y∗T+ J+(x
∗)v + pT∇2f(x∗)p. (2.42)

Rewriting (2.39) as ∇ci(x∗)Tv = −pT∇2ci(x
∗)p for i ∈ A+(x, y), and substituting this expression

into (2.42), we obtain

d2

dα2
f
(
x∗(α)

)∣∣∣∣
α=0

= −pT
(m∑

i=1

y∗i∇2ci(x
∗)
)
p+ pT∇2f(x∗)p = pTH(x∗, y∗)p ≥ 0,

where H(x∗, y∗) is the Hessian of the Lagrangian at (x, y) = (x∗, y∗).

If the active constraints are linear, then both the first- and second-order constraint qual-

ifications hold. Similarly, the LICQ is sufficient to ensure that both the first- and second-order

constraint qualifications to hold.

Definition 2.2.9 (Isolated constrained minimizer). A local constrained minimizer x∗ is isolated if

there’s a neighborhood of x∗ containing no other local constrained minimizers.

Theorem 2.2.3 (Sufficient conditions for an isolated minimizer). A point x∗ is an isolated local

constrained minimizer of (NIP) if

(a) x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a nonempty set Y of multipliers y satisfying

y ≥ 0, c(x∗) · y = 0, and ∇f(x∗) = J(x∗)Ty;

(b) the MFCQ holds at x∗, i.e., there is a vector p such that Ja(x∗)p > 0;

(c) for all y ∈ Y and all nonzero p satisfying ∇f(x∗)Tp = 0 and Ja(x∗)p ≥ 0, there exists ω > 0

such that pTH(x∗, y)p ≥ ω∥p∥2.

Proof. See [37, Theorem 2.23].

Although Theorem 2.2.3 is very nice, its conditions are not easy to check in their full

generality. The verification of assumption (c) for all p such that ∇f(x∗)Tp = 0 and Ja(x
∗)p ≥ 0

requires finding the global minimizer of a possibly indefinite quadratic form over a cone, an NP-hard

problem, not to mention the issue of how to check that (c) holds for all y ∈ Y(x∗). If, however, the

40

gradients of the active constraints at x∗ are linearly independent and strict complementarity holds,

Theorem 2.2.3 leads immediately to the following result.

Theorem 2.2.4 (Strong sufficient conditions for an isolated minimizer). A point x∗ is an isolated

local constrained minimizer of (NIP) if

(a) the LICQ holds at x∗, i.e., Ja(x∗) has full row rank;

(b) x∗ is a KKT point and strict complementarity holds, i.e., the (necessarily unique) multiplier

y∗ has the property that y∗i > 0 for all i ∈ A(x∗);

(c) for all nonzero p satisfying Ja(x∗)p = 0, there exists an ω > 0 such that

pTH(x∗, y∗)p ≥ ω∥p∥2.

Proof. See [37, Theorem 2.24].

As an alternative, many methods for inequality constraints may be motivated by con-

sidering a form of (NIP) in which the nonlinear inequality constraints are converted to equalities

using a set of nonnegative slack variables. A slack variable si can be used to convert the inequality

constraint ci(x) ≥ 0 to an equality constraint by means of the transformation:

ci(x) ≥ 0 if and only if ci(x)− si = 0, si ≥ 0.

This gives the following mixed-constraint problem, which is equivalent to (NIP):

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0, (NIPs)

Note that problem (NIPs) has two types of constraint: the nonlinear equality constraints

c(x) − s = 0 and the nonnegativity constraints s ≥ 0. The treatment of equality constraints will

be discussed in Section 2.2.4. Problems of the form (NIPs) are especially convenient when the

x-variables are already subject to upper and lower bounds, which is a very common situation in

practice. In this situation, it is best to treat the bounds specially and not include them in the

general inequalities c(x) ≥ 0.

2.2.2 Barrier methods

Classical barrier methods for inequality-constrained optimization is the foundation of the

modern interior methods. A barrier method is motivated by the unconstrained minimization of a

41

function that combines the original objective function with a positively weighted barrier term that

prevents iterates from leaving the feasible region. The predominant barrier function today is the

logarithmic barrier function:

B(x ;µ) = f(x)− µ
m∑
i=1

ln ci(x), (2.43)

where µ is a positive scalar that is known as the barrier parameter. An important feature of B(x, µ)

is that it retains the smoothness properties of f(x) and c(x) as long as c(x) > 0.

Minimizers of the barrier function and local constrained minimizers of the original problem

are closely related. An initial hint of those relationships can be seen algebraically from the gradient

of the barrier function (2.43), denoted by ∇B(x ;µ), which can be expressed in various equivalent

forms:

∇B(x ;µ) = ∇f(x)−
m∑
i=1

µ

ci(x)
∇ci(x), (2.44a)

= ∇f(x)− µJ(x)TC(x)−1e, and (2.44b)

= ∇f(x)− J(x)T
(
µ ·/ c(x)

)
. (2.44c)

In the form (2.44b), C(x) denotes the m×m diagonal matrix of constraint values and e the m-vector

of all ones.

An unconstrained minimizer of B(x ;µ) will be denoted by either xµ or x(µ), and it will

be shown that c(xµ) > 0. Because ∇B(x ;µ) is twice-continuously differentiable, it must hold that

∇B(xµ ;µ) = ∇f(xµ)− µJ(xµ)TC(xµ)−1e = 0. (2.45)

It follows that

∇f(xµ) = µJ(xµ)
TC(xµ)

−1e =

m∑
i=1

µ

ci(xµ)
∇ci(xµ).

Hence the objective gradient at xµ is a positive linear combination of the constraint gradients. The

coefficients in that linear combination are called the barrier multipliers (by analogy with Lagrange

multipliers) and denoted by yµ. Formally, yµ is defined as

yµ = µC(xµ)
−1e = µ ·/ c(xµ).

42

Thus the gradient at xµ can be expressed as

∇f(xµ) =
m∑
i=1

µ

ci(xµ)
∇ci(xµ) = J(xµ)

Tyµ, with yµ > 0,

which resembles the stationarity and nonnegativity properties (2.33b) and (2.33c), ∇f(x∗) =

J(x∗)Ty∗ and y∗ ≥ 0, that hold at a KKT point. Moreover, the definition of yµ implies that

c(xµ) · yµ = µ, or ci(xµ)(yµ)i = µ, i = 1, . . . ,m. (2.46)

This componentwise relationship between the barrier multipliers, constraint values, and the bar-

rier parameter, called perturbed complementarity, is analogous as µ → 0 to the complementarity

condition c(x∗) · y∗ = 0 (2.33d) that holds at a KKT point.

An alternative interpretation of ∇B(x ;µ) = 0 can be derived by defining m new indepen-

dent variables y and writing (2.45) as n+m nonlinear equations in x and y:

(
∇f(x)− J(x)Ty
C(x)y − µe

)
=

(
0

0

)
. (2.47)

Recalling that the barrier multipliers yµ are defined as µ ·/ c(xµ), it is easy to see that (xµ, yµ)

satisfy the nonlinear equations (2.47). Conversely, given any solution (x ; y) of (2.47), the associated

vector x is a stationary point of the barrier function with parameter µ. The equations (2.47) are

called the perturbed optimality conditions.

Definition 2.2.10 (Strictly feasible points). The subset of points in Ω for which all the constraint

functions are strictly positive is denoted by intc(Ω) and defined as

intc(Ω) =
{
x : ci(x) > 0, i = 1, . . . ,m

}
.

A point x in intc(Ω) is said to be strictly feasible.

A general convergence theorem for the barrier methods (Theorem 2.2.5) depends on the

existence of a subset of local constrained minimizers that is “isolated” within the full set of local

constrained minimizers.

Definition 2.2.11 (Isolated subset). Given sets X ∗ ⊆ X ⊆ Rn, X ∗ is an isolated subset of X if

there exists a closed set E such that X ∗ ⊂ int(E) and E ∩ X = X ∗.

The following convergence theorem requires that at least one of the points in X ∗ must

43

lie in the closure of intc(Ω), i.e., X ∗ contains either a strictly feasible point or a limit point of

intc(Ω). This assumption is needed because barrier methods can be viewed as finding the infimum

of f subject to c(x) > 0, so that a sequence of barrier minimizers, each of which lies in intc(Ω), can

only converge to a feasible point that lies within the closure of intc(Ω).

Theorem 2.2.5 (Local convergence for barrier methods). Consider the problem of minimizing f(x)

subject to c(x) ≥ 0, where f and c are continuous. Let Ω denote the feasible region, let X denote

the set of minimizers with objective function value f∗, and assume that X is nonempty. Let
{
µk

}
be a strictly decreasing sequence of positive barrier parameters such that limk→∞ µk = 0. Assume

that

(A1) there exists a nonempty compact set X ∗ of local minimizers that is an isolated subset of X ;

(A2) at least one point in X ∗ lies in the closure of intc(Ω).

Then the following results hold:

(i) there exists a compact set S such that X ∗ ⊂ int(S) and such that, for any feasible point x̄ in

S but not in X ∗, f(x̄) > f∗;

(ii) for all sufficiently small µk, there is an unconstrained minimizer wk of the barrier function

B(x ;µk) in intc(Ω) ∩ int(S), with

B(wk ;µk) = min
{
B(x ;µk) : x ∈ intc(Ω) ∩ S

}
.

Thus B(wk ;µk) is the smallest value of B(x ;µk) for any x ∈ intc(Ω) ∩ S;

(iii) any sequence of these unconstrained minimizers
{
wk

}
of B(x ;µk) has at least one convergent

subsequence;

(iv) the limit point x∞ of any convergent subsequence
{
xk
}

of the unconstrained minimizers{
wk

}
defined in (ii) lies in X ∗;

(v) for the convergent subsequences
{
xk
}

of part (iv),

lim
k→∞

f(xk) = f∗ = lim
k→∞

B(xk ;µk).

Proof. See [37, Theorem 3.10].

44

The following theoerem summarizes conditions under which a sequence of barrier minimiz-

ers not only converges to x∗ but also defines a differentiable path to x∗. Depending on the context,

this path is called either the central path or the barrier trajectory.

Theorem 2.2.6 (Properties of the central path/barrier trajectory). Consider the problem of min-

imizing f(x) subject to c(x) ≥ 0. Let Ω denote the feasible region, and assume that the set intc

of strictly feasible points is nonempty. Let x∗ be a local constrained minimizer. Assume that the

following sufficient optimality conditions hold at x∗:

(a) x∗ is a KKT point, i.e., there exists a nonempty set Y of Lagrange multipliers y satisfying

Y =
{
y : ∇f(x∗) = J(x∗)Ty, y ≥ 0, and c(x∗) · y = 0

}
;

(b) the MFCQ (Definition 2.2.7) holds at x∗, i.e., there exists p such that Ja(x∗)p > 0, where

Ja(x
∗) denotes the Jacobian of the active constraints at x∗; and

(c) there exists ω > 0 such that pTH(x∗, y)p ≥ ω∥p∥2 for all y ∈ Y and all nonzero p satisfying

∇f(x∗)Tp = 0 and Ja(x∗)p ≥ 0, where H(x∗, y) is the Hessian of the Lagrangian.

Assume that a logarithmic barrier method is applied in which µk converges monotonically to zero

as k →∞. Then

(i) there is at least one subsequence of unconstrained minimizers of the barrier function B(x ;µk)

converging to x∗;

(ii) if
{
xk
}

is one such a convergent subsequence, then the sequence of barrier multipliers
{
yk
}
,

whose ith component is µk/ci(x
k), is bounded;

(iii) limk→∞ yk = ȳ ∈ Y.

If, in addition, strict complementarity holds at x∗, i.e., there is a vector y ∈ Y such that

yi > 0 for all i ∈ A, then

(iv) ȳa > 0;

(v) for sufficiently large k, the Hessian matrix ∇2B(xk, µk) is positive definite;

(vi) a unique, continuously differentiable vector function x(µ) of unconstrained minimizers of

B(x ;µ) exists for positive µ in a neighborhood of µ = 0; and

(vii) limµ→0+ x(µ) = x∗.

45

Proof. See [37, Theorem 3.12].

If the strict complementarity holds at x∗, a useful corollary can be derived.

Corollary 2.2.1. Under assumptions (a)–(c) of Theorem 2.2.6 and the added assumption of strict

complementarity at x∗, ∥xk − x∗∥ = Θ(µk).

Proof. See [37, Corollary 3.14].

A direct translation of the above theory into practice leads to a method in which minimizers

xµ of the barrier function are computed for a sequence of positive barrier parameters µ converging

to zero. Such a method is structured into inner and outer iterations, where the inner iterations

apply a line-search method or a trust-region method to compute an unconstrained minimizer of

B(x ;µ) for a fixed value of µ, and the outer iterations test for convergence and adjust µ. In recent

algorithms, the idea is to improve efficiency by performing only an inexact minimization of the

barrier function for each particular µ. With such a strategy, inner iterations are executed until a

suitable measure of improvement has been achieved; the barrier parameter is then reduced and the

process repeated.

While a general-purpose unconstrained technique such as a Newton-based line-search

method can be applied to solve the subproblem of minimizing the barrier function B(x ;µ), it

should be noted that there is always an implicit constraint c(x) > 0 as B(x ;µ) is only well-defined

at strictly feasible points. For linear constraints, often a “fraction to the boundary” parameter

is used such that the initial step is taken as a fraction of the distance to the boundary, thereby

retaining the strict feasibility of the next iterate. For nonlinear constraints, the determination of

the step to the boundary may require additional evaluations of the constraint functions. Moreover,

as many general-purpose line-search techniques rely on polynomial interpolations, they may not be

well suited to the extreme behavior of barrier functions near the boundary. Various special-purpose

line searches have been proposed for use in barrier methods (see e.g., MurW94).

Given an interior point x, the classical Newton barrier equations ∇2B(x ;µ) = −∇B(x ;µ)

at the current point x are

(
∇2f(x)−

m∑
i=1

µ

ci(x)
∇2ci(x) + µJ(x)TC(x)−2J(x)

)
p = −∇f(x) + µJ(x)TC(x)−1e. (2.48)

The equations (2.48) may be simplified by introducing an auxiliary m-vector π(x ;µ), which can be

viewed as a Lagrange multiplier estimate defined at an arbitrary strictly feasible point.

46

Definition 2.2.12 (Primal multipliers). At any strictly feasible point x, the vector π(x ;µ) with

components µ/ci(x) is known as the vector of primal multipliers. The dependence of π on µ may

be omitted if µ is obvious.

For any sequence
{
xk
}

converging to xµ, it must hold that limk→∞ π(xk, µ) = yµ. Sub-

stituting the vector π in (2.48), the barrier gradient and Hessian may be written in the form

∇B(x ;µ) = ∇f(x)− J(x)Tπ(x ;µ) and

∇2B(x ;µ) = H
(
x, π

)
+ J(x)TΠ(x, µ)C−1(x) J(x),

(2.49)

where H(x, π) is the Hessian of the Lagrangian evaluated with y = π, and Π is the matrix diag(π1,

π2, . . . , πm). These relations indicate that the barrier derivatives are intimately related to those of

the Lagrangian evaluated with the primal multipliers.

It is well-known that the Hessian matrix∇2B becomes increasingly ill-conditioned as µ→ 0

(see e.g., [88]). Thanks to a fortuitous combination of the special structure of the linear system and

the cancellation errors that arise in computation, it is usually possible to solve the Newton barrier

equations with acceptable accuracy despite the ill-conditioning (see [89]). However, it can be shown

that the exact Newton step is inherently flawed in minimizing the classical barrier function because

of the strong possibility of violating the constraints and its inefficiency in following the barrier

trajectory (see [37]).

As an extension of the classical barrier methods, modified barrier methods [8, 15, 56, 72, 77]

define a sequence of unconstrained problems in which the value of µ remains bounded away from

zero, thereby avoiding the need to solve a problem whose Hessian becomes extremely ill-conditioned

as µ approaches zero. The modified barrier methods are based on the observation that for a fixed

positive µ, the constraints ci(x) ≥ 0 and µ ln
(
1 + ci(x)/µ

)
≥ 0 are equivalent, i.e., their associated

sets of feasible points are identical. Moreover, a KKT point for the original problem (NIP) is also

a KKT point for the modified problem

minimize
x∈Rn

f(x) subject to µ ln
(
1 + ci(x)/µ

)
≥ 0, i = 1, 2, . . . ,m. (2.50)

This motivates the definition of the modified barrier function:

M(x, y ;µ) = f(x)− µ
m∑
i=1

yi ln
(
1 + ci(x)/µ

)
, (2.51)

which can be interpreted as the conventional Lagrangian function for the modified problem (2.50).

47

The modified barrier function implicitly imposes the shifted constraints ci(x)+µ ≥ 0, i = 1, 2, . . . ,

m. Therefore, the barrier parameter µ can be alternatively interpreted as shifts for the constraints

([15]).

A complete theory analogous to that of the classical logarithmic barrier function exists for

the modified barrier function (see [77]). A crucial property of the modified barrier function is that

if y∗ is a multiplier vector in Y(x∗) (see Definition 2.2.3), then there exists a fixed µ∗ such that for

all µ < µ∗, the corresponding x∗ is a local minimizer of M(x, y∗ ;µ), i.e., ∇M(x∗, y∗ ;µ) = 0 and

∇2M(x∗, y∗ ;µ) is positive semidefinite. It follows that, if an optimal multiplier is known, x∗ can

be found from just one unconstrained minimization.

In practice, neither the optimal multiplier vector nor an upper bound on µ is known in

advance. As a result, a sequence of problems must be solved in which each M(x, y ;µ) is defined

with estimates of y∗ and µ∗. The multiplier estimate is updated following each subproblem, and

the barrier parameter is reduced if ∇2M(x, y ;µ) is not sufficiently positive definite. (For details,

see, e.g., [8, 56, 72, 77].)

2.2.3 Primal-dual interior methods

Due to inherent flaws in the classical barrier method, it is desirable to develop interior

methods that retain the good properties of the classical methods while avoiding their defects. As

a result, primal-dual interior methods based on properties of x(µ) become increasingly popular for

solving general nonlinear programming problems (see e.g., [11, 16, 26, 34, 42, 80, 82]). In a primal-

dual method, the original (primal) variables x and the dual variables y (representing the Lagrange

multipliers) are treated as independent.

The usual motivation for primal-dual methods is to find (x, y) satisfying the equations

that hold at x(µ). Based on the perturbed optimality conditions (2.47), the goal is to compute a

feasible solution (x(µ), y(µ)) of the n+m nonlinear equations Fµ(x, y) = 0, where

Fµ(x, y) =

(
∇f(x)− J(x)Ty
C(x)y − µe

)
.

Let v denote the (n+m)-vector of the combined unknowns (x, y) at a point that is strictly feasible

in both x and y, i.e., c(x) > 0 and y > 0. If Fµ(v) denotes the function Fµ(x, y), then a Newton

direction ∆v = (∆x,∆y) is defined by the Newton equations Fµ(v)′∆v = −Fµ(v). After collecting

48

terms on the right-hand side, the Newton primal-dual equations may be expressed as(
H(x, y) −J(x)T

Y J(x) C(x)

)(
∆x

∆y

)
= −

(
∇f(x)− J(x)Ty
C(x)

(
y − π(x, µ)

)) , (2.52)

where H(x, y) is the Hessian of the Lagrangian evaluated at (x, y).

The success of primal-dual methods is due in part to their effectiveness at following the

barrier trajectory. In particular, if (x, y) =
(
x(µ), y(µ)

)
is a point on the trajectory, and the barrier

parameter is reduced from µ to µ̂, the primal-dual direction (i.e., the solution of (2.52) with µ = µ̂)

is tangent to the trajectory at (x, y). This property is easily shown by noting that on the trajectory,

the relations y = π(x, µ) and ∇f(x)− J(x)Ty = ∇f(x)− J(x)Tπ = 0 hold, and hence ∆x and ∆y

satisfy (
H(x, y) −J(x)T

Y J(x) C(x)

)(
∆x

∆y

)
= −

(
0(

µ− µ̂
)
e

)
, (2.53)

On the other hand, differentiating Fµ(x, y) = 0 with respect to µ leads to the following equations

for
(
x′(µ), y′(µ)

)
: (

H
(
x(µ), y(µ)

)
−J(x(µ))T

Y (µ)J(x(µ)) C(x(µ))

)(
x′(µ)

y′(µ)

)
=

(
0

e

)
. (2.54)

If the strong sufficient optimality conditions of Theorem 2.2.4 hold at x∗, then the matrix of

(2.54) has a bounded condition number as µ → 0. Comparing (2.53) with (2.54) shows that

∆x = (µ̂− µ)x′(µ) and ∆y = (µ̂− µ)y′(µ). Hence, based on the Taylor-series affine model of x(µ)

near µ, ∆x and ∆y will usually give a good approximation of the step to
(
x(µ̂), y(µ̂)

)
, the next

point on the trajectory.

As in the classical Newton-barrier method, primal-dual methods have a two-level structure

of inner and outer iterations, with the inner iterations corresponding to the iterations of Newton’s

method for a given value of µ. Primal-dual methods exhibit excellent performance in the neighbor-

hood of a trajectory. In particular, under the assumption of strict complementarity and a suitable

constraint qualification, the inner iterations converge at a Q-quadratic rate; see, e.g., [26]. Moreover,

the inner iterations can be terminated so that the combined sequence of inner iterates ultimately

converges to x∗ at a Q-superlinear rate; see, e.g., [59, 91, 93, 94].

Beyond the work associated with function evaluations, the cost of a primal-dual iteration is

dominated by the cost of solving the linear system (2.52). To improve efficiency for large problems,

a common approach is to use block elimination to obtain smaller “condensed” systems. As c(x) > 0,

49

the (2, 2) block of (2.52) may be eliminated to give the following n× n system for ∆x:

HC(x, y)∆x = −
(
∇f(x)− J(x)Tπ(x, µ)

)
, (2.55)

where the condensed primal-dual matrix HC(x, y) is defined as

HC(x, y) = H(x, y) + J(x)TD(x, y)−1J(x), with D(x, y) = Y −1C(x).

The matrix D, which is introduced for later convenience, is diagonal and positive definite, with

diagonal elements di = ci/yi. The condensed primal-dual system can be solved by either direct

or iterative methods, using (for example) an off-the-shelf Cholesky factorization or preconditioned

conjugate-gradient method.

A drawback with block elimination is that significant fill-in can occur inHC . An alternative

strategy is to factorize the full (n+m)×(n+m) system in (2.52) (see, e.g., [39, 40, 48, 49]), typically

after symmetrizing the system. A symmetric matrix can be created by multiplying the second block

of equations in (2.52) by Y −1 and changing the sign of the second block of columns, giving

(
H JT

J −D

)(
∆x

−∆y

)
= −

(
∇f − JTy

D(y − π)

)
, (2.56)

where dependencies on x, y and µ have been suppressed for brevity. As µ → 0, the diagonals

of D corresponding to the active constraints grow without bound and so this particular form of

symmetrization produces an increasingly ill-conditioned system. However, it can be shown that the

ill-conditioning is benign as long as certain direct methods are used to factorize the matrix. (For

more details, see [36, 78, 89, 90].)

In the neighborhood of a trajectory of minimizers, the primal-dual system is usually non-

singular and the iterates converge at a Q-quadratic rate. However, when the problem is nonconvex

and the primal-dual iterate is far from the trajectory, there is no guarantee that a solution of the

primal-dual system or condensed system exist. In this case, systems based on certain modified

Hessians must be formulated.

An important component of a practical primal-dual method for nonconvex optimization is

the method used to ensure convergence from any starting point. One of the most popular strategies

is to require, through a line search, a sufficient decrease in a merit function that forces the early

iterates towards the trajectory.

A number of primal-dual methods use the classical barrier function B(x, µ) as a merit

50

function (see, e.g., [14, 63]). A different approach is based on the merit function

Mµ(x, y) = f(x)− µ
m∑
i=1

ln ci(x)− µ
m∑
i=1

(
ln

(
ci(x)yi
µ

)
+ 1− ci(x)yi

µ

)
, (2.57)

which includes both primal and dual variables (see [34]). The function Mµ(x, y) is the classical

barrier function B(x, µ) augmented by a weighted proximity term that measures the distance of

(x, y) to the trajectory
(
x(µ), y(µ)

)
. A key property of Mµ(x, y) is that it is minimized with

respect to both x and y at any point (x(µ), y(µ)) on the trajectory, which implies that a decrease

in Mµ(x, y) can be used to measure the progress towards a minimizer of B(x, µ). The gradient of

Mµ(x, y) is

∇Mµ(x, y) =

(
∇f(x)− 2µJ(x)TC(x)−1e− J(x)Ty

C(x)e− µY −1e

)
=

(
∇f(x)− J(x)T(2π − y)

Y −1C(x)
(
y − π

))
,

where π = π(x, µ) is the vector of primal multipliers (see Definition 2.2.12)). The Hessian of

Mµ(x, y) is

∇2Mµ(x, y) =

(
H(x, 2π − y) + 2J(x)TC(x)−1ΠJ(x) J(x)T

J(x) µY −2

)

=

(
H
(
x, y + 2(π − y)

)
+ 2J(x)TΠC(x)−1J(x) J(x)T

J(x) DΠY −1

)
,

withD = Y −1C(x) as defined before. As
(
x(µ), y(µ)

)
minimizesMµ(x, y), it follows that∇Mµ(x, y) =

0 and ∇2Mµ(x, y) is positive semidefinite at all points on the trajectory. As a result, line-search

or trust-region methods can be devised in which the local quadratic model is Q(s) = sT∇M +

1
2s

TH
(pd)
µ s, where

H(pd)
µ =

(
H(x, y) + 2J(x)TD−1J(x) J(x)T

J(x) D

)
,

i.e., H(pd)
µ is ∇2Mµ(x, y) with π replaced by y. It can be shown that if H(pd)

µ is positive definite,

the solution of H(pd)
µ s = −∇M is the unique minimizer of Q(s), and that s = (∆x,∆y) also solves

the primal-dual system (2.52). Indeed, note that a premultiplication of both sides of (2.52) by the

nonsingular matrix (
I 2J(x)TD−1

0 Y −1

)

51

gives the equivalent equation(
H(x, y) + 2J(x)TD−1J(x) J(x)T

J(x) D

)(
∆x

∆y

)
= −

(
∇f(x)− J(x)T(2π − y)

D(y − π)

)
.

These properties suggest a line-search method for minimizing Mµ(x, y) that uses the so-

lution of the primal-dual system (2.52) as a search direction (for more details, see [34]). If H(pd)
µ is

sufficiently positive definite, the search direction is the unique solution of H(pd)
µ s = −∇M (equiv-

alent to the primal-dual system (2.52)). Otherwise, the search direction can be chosen as a the

solution of a related positive-definite system H̄
(pd)
µ s = −∇M , with H̄

(pd)
µ a modified Hessian that

approximates H(pd)
µ . If the condensed matrix is formed, it can be modified “on the fly” during the

factorization so that its factors are those of a positive-definite H̄ + JTD−1J for some implicitly

defined H̄ (see, e.g., [35]). Alternatively, the inertia-controlling LBLT factorization discussed in

[33, 34, 38] detects and modifies indefiniteness of the (implicitly defined) matrix H+JTD−1J while

factorizing the full system (2.56). A potential drawback is that the row and column interchanges

needed by the inertia-controlling factorization interfere with the row and column ordering used to

maintain sparsity in the factors, producing factors that are generally less sparse than those obtained

by off-the-shelf sparse-matrix software.

2.2.4 Treatment of equality constraints

Although interior methods are, strictly speaking, relevant only to inequality constraints,

it is essential to take into account equality constraints as they may arise naturally as part of

an optimization problem together with inequality constraints. Additionally, it is sometimes more

efficient to convert an inequality constraint into an alternative form that involves one or more

equality constraints. The two most common reformulations of of the single inequality constraint

ci(x) ≥ 0 are

ci(x)− si = 0, si ≥ 0, where si is called a slack variable; or

ci(x) + si ≥ 0, si = 0, where si is called a shift variable.

The slack and shift reformulations allow interior methods to be applied to inequality constraints

even if no initial strictly feasible point is known, as long as suitable techniques are available for

dealing with equality constraints. Moreover, within an interior method, it is extremely simple to

retain strict feasibility with respect to the bound constraint si ≥ 0 imposed on a slack variable,

52

while the step to the boundary of a general nonlinear constraint must be calculated with additional

evaluations of the constraint function.

Now let E and I denote a partition of the m indices of constraint functions
{
ci(x)

}
such

that every i ∈ E corresponds to an equality constraint ci(x) = 0, and every i ∈ I corresponds to

an inequality constraint ci(x) ≥ 0. A general nonlinearly constrained optimization problem may be

written in the form

minimize
x∈Rn

f(x)

subject to

 ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I.

(NCP)

The problem is to find the least value of f(x) over all values of x in D that satisfy mE equality

constraints ci(x) = 0, i ∈ E , and mI inequality constraints ci(x) ≥ 0, i ∈ I. The feasible region for

this problem is given by

Ω =
{
x ∈ Rn : ci(x) = 0, i ∈ E , and ci(x) ≥ 0, i ∈ I

}
.

Let cI(x) denote the subvector of components ci(x), with i ∈ I, and cE(x) the subvector ci(x), with

i ∈ E .

Definition 2.2.13 (Active, inactive, and violated constraints). For the inequality constraints

cI(x) ≥ 0, the ith constraint is said to be active at x̄ if ci(x̄) = 0, inactive if ci(x̄) > 0 and

violated if ci(x̄) < 0. For the equality constraints cE(x) = 0, the ith constraint is satisfied at x̄ if

ci(x̄) = 0 and violated at x̄ if ci(x̄) ̸= 0. The active set A(x̄) is the set of indices of the active

constraints at x̄, i.e., A(x̄) =
{
i : ci(x̄) = 0

}
. The set of active inequality constraints at x̄ is

denoted by Aa(x̄), i.e., Aa(x̄) =
{
i ∈ I : ci(x̄) = 0

}
.

Before discussing methods for dealing with equality constraints, the optimality conditions

for the general mixed-constraint problem (NCP) will be stated. The following definition is directly

analogous to the definition of a KKT point for an inequality-constrained problem (Definition 2.2.2).

Definition 2.2.14 (First-order KKT point). The first-order KKT conditions for problem (NCP)

hold at the point x∗, or, equivalently, x∗ is a (first-order) KKT point, if there exists a Lagrange

53

multiplier vector y∗ such that

cI(x
∗) ≥ 0 and cE(x

∗) = 0 (feasibility),

∇f(x∗) = J(x∗)Ty∗ (stationarity),

y∗I ≥ 0 (nonnegativity), and

cI(x
∗) · y∗I = 0 (complementarity).

(2.58)

The first-order KKT conditions may be written more compactly as F (x, y) = 0, cI(x∗) ≥ 0,

yI ≥ 0, with

F (x, y) =


∇f(x)− J(x)Ty

cI(x) · yI

cE(x)

 . (2.59)

The KKT conditions are based on the properties of constraint linearizations, and hence

they are necessary conditions for optimality only when the local constraint linearizations reflect the

properties of the nonlinear constraints, i.e., when a constraint qualification holds.

Definition 2.2.15 (LICQ for mixed constraints). The linear independence constraint qualification

holds at the feasible point x̄ of (NCP) if the constraint gradients ∇ci(x̄), i ∈ E ∪ Aa(x̄) are linearly

independent.

Definition 2.2.16 (MFCQ for mixed constraints). The Mangasarian–Fromovitz constraint qual-

ification holds at the feasible point x̄ of (NCP) if the gradients of the equality constraints at x̄,

∇ci(x̄), i ∈ E, are linearly independent and if there exists a vector p such that ∇ci(x̄)Tp > 0 for all

i ∈ Aa(x̄) and ∇ci(x̄)Tp = 0 for all i ∈ E.

It must be emphasized that full row rank of JE(x̄) is needed for the MFCQ to hold at x̄.

Moreover, satisfaction of the LICQ implies that the MFCQ also holds.

Theorem 2.2.7 (First-order necessary conditions for mixed constraints). If x∗ is a local minimizer

of problem (NCP) and the MFCQ holds at x∗, then x∗ must be a KKT point.

By analogy with Definition 2.2.3 for the inequality case, the set of multipliers that satisfy

the KKT conditions of Definition 2.2.14 is defined below.

Definition 2.2.17 (Acceptable Lagrange multipliers for mixed constraints). Given a KKT point

x∗ for problem (NCP), the set of acceptable multipliers is defined as

Y(x∗) =
{
y ∈ Rm : ∇f(x∗) = J(x∗)Ty, yI ≥ 0, and yI · cI(x∗) = 0

}
. (2.60)

54

Using Y(x∗), second-order necessary conditions for optimality can be stated when the

LICQ holds.

Theorem 2.2.8 (Second-order necessary conditions for (NCP)). Suppose that x∗ is a local min-

imizer of (NCP) at which the LICQ holds. Then there is a vector y∗ which satisfies y∗I ≥ 0,

cI(x
∗) · y∗I = 0, and ∇f(x∗) = J(x∗)Ty∗, and pTH(x∗, y∗)p ≥ 0 for all p satisfying ∇f(x∗)Tp = 0,

JE(x
∗)p = 0 and Ja(x∗)p ≥ 0.

The next theorem is analogous to Theorem 2.2.3.

Theorem 2.2.9 (Sufficient conditions for an isolated solution). The point x∗ is an isolated local

constrained minimizer of problem (NCP) if

(a) x∗ is a KKT point, i.e., cI(x∗) ≥ 0, cE(x∗) = 0, and there exists a nonempty set Y of

multipliers y satisfying yI ≥ 0, cI(x∗) · yI = 0, and ∇f(x∗) = J(x∗)Ty;

(b) the MFCQ holds at x∗;

(c) for all y ∈ Y(x∗) of (2.60) and all nonzero p satisfying ∇f(x∗)Tp = 0, JE(x
∗)p = 0 and

Ja(x
∗)p ≥ 0, there exists ω > 0 such that pTH(x∗, y)p ≥ ω∥p∥2.

Finally, the following theorem is analogues to Theorem 2.2.10.

Theorem 2.2.10 (Strong sufficient conditions for an isolated solution). The point x∗ is an isolated

local constrained minimizer of problem (NCP) if

(a) x∗ is feasible and the LICQ holds at x∗, i.e.,
(

JE(x
∗)

Ja(x
∗)

)
has full row rank;

(b) x∗ is a KKT point and strict complementarity holds, i.e., the (necessarily unique) multiplier

y∗ has the property that [y∗a]i > 0 for all i ∈ Aa(x
∗);

(c) for all nonzero p such that Ja(x∗)p = 0, there exists ω > 0 such that pTH(x∗, y∗)p ≥ ω∥p∥2.

Condition (c) of Theorem 2.2.10 is equivalent to stating that the reduced Hessian of the

Lagrangian, Z(x∗)TH(x∗, y∗)Z(x∗), is positive definite, where Z(x∗) is a matrix whose columns

form a basis for the null space of
(

JE(x
∗)

Ja(x
∗)

)
.

A classical treatment of equality constraints is to eliminate them through unconstrained

minimization of a composite function that includes a penalty for violating cE(x) = 0—most com-

55

monly, the quadratic penalty function ∥cE∥22/µ. For a general mixed-constraint problem, a penalty-

barrier function was proposed in [31]:

ΦPB(x ;µ) = f(x)− µ
∑
i∈I

ln ci(x) +
1

2µ
∥cE∥22. (2.61)

The implicit constraints cI(x) > 0 are handled by the barrier term. Let xµ denote an unconstrained

minimizer of ΦPB(x ;µ). A detailed analysis, analogous to the results of barrier methods, is given in

[31] of the conditions under which, for sufficiently small µ, the sequence
{
xµ
}

defines a differentiable

penalty-barrier trajectory converging to x∗.

To find xµ, stationarity of ∇ΦPB(x) must be exploited. Writing out ∇ΦPB(x) and rear-

ranging produce a system of nonlinear equations equivalent to the condition that ∇ΦPB(x) = 0:

Fµ(x, y) =


∇f(x)− J(x)Ty
cI(x) · yI − µe
cE(x) + µyE

 = 0, (2.62)

where yI and yE represent multiplier estimates that converge to y∗I and y∗E as µ → 0, and, at xµ,

satisfy the relations

cI(xµ) · yI = µe and µyE = −cE(xµ).

A useful interpretation of (2.62) is that the complementarity portions of the KKT conditions (2.58)

corresponding to both inequality and equality constraints have been perturbed.

For inequality constraints, define πI(x, µ) as

πI(x, µ) = µ ·/ cI(x), (2.63)

so that πI is an estimate of yI at the current iterate x for a specific value of µ; see Definition 2.2.12.

To complete the definition of π(x, µ) for the equality constraints, define an estimate of yE as

πE(x, µ) = −cE(x)/µ.

Application of Newton’s method for equations to (2.62) gives

(
H −JT

ZJ W

)(
∆x

∆y

)
= −

(
∇f − JTy

W (y − π)

)
, (2.64)

56

where W and Z denote diagonal matrices whose entries are

wI(x) = cI(x), wE(x) = µe, zI(y) = yI, and zE(y) = 1. (2.65)

The matrix in (2.64) can be symmetrized into the form (2.56), where D = Z−1W ; thus (2.64) can

be solved similarly as solving the primal-dual equations (2.52).

Treating equalities via a quadratic penalty function tends to regularize the problem in

the sense that, as long as µ is nonzero, the matrix (ZJ W) may have full row rank even if the

Jacobian JE is rank-deficient. Consequently, one needs to modify only H to make the matrix in

(2.64) nonsingular [34].

A Newton-based line-search or trust-region method can be used to solve the nonlinear

equations (2.62). In the context of a line-search method, ΦPB itself can be used as a merit function.

Alternatively, the merit function Mµ(x, y) of (2.57) can be generalized by adding

1

2µ
∥cE(x)∥22 +

1

2µ
∥cE(x) + µyE∥22, (2.66)

which represents a combination of the original quadratic penalty term from (2.61) and a term that

reflects proximity to the condition µyE = −cE(xµ) that holds along the penalty-barrier trajectory.

If xµ is a point on the penalty-barrier trajectory and yµ is the associated multiplier defined by

(2.62), then (xµ, yµ) is an unconstrained minimizer of Mµ(x, y) for sufficiently small µ. See [34, 43]

for further details.

Other than the classical penalty-barrier approach, the mixed-constraint problem (NCP)

can also be solved by applying a sequential quadratic programming (SQP) method to solve a

sequence of equality-constrained subproblems of the form

minimize
x∈Rn

f(x)− µ
∑
i∈I

ln ci(x)

subject to ci(x) = 0, i ∈ E ,
(2.67)

with the value of µ converging to zero (see, e.g., [12, 22, 42, 76, 92]).

57

Chapter 3

Projected-Search Methods for

Bound-Constrained Optimization

3.1 Introduction

This chapter describes two new classes of projected-search methods for bound-constrained

problems of the form

minimize
x∈Rn

f(x) subject to x ∈ Ω, (BC)

where f : Rn 7→ R is a twice-continuously differentiable function and Ω =
{
x ∈ Rn : ℓ ≤ x ≤ u

}
for

vectors of lower and upper bounds such that ℓ ≤ u (with all inequalities defined componentwise).

The first-order optimality conditions for problem (BC) at x∗ ∈ Ω are

x∗ ∈ Ω, with ∇if(x∗)


≥ 0 if x∗i = ℓi,

= 0 if ℓi < x∗i < ui,

≤ 0 if x∗i = ui,

where ∇if(x) denotes the i-th component of the gradient of f . These conditions impose sign

conditions on the gradient at components of x∗ associated with the active set A(x∗).
A conventional projected-search method for problem (BC) generates a sequence of feasible

58

iterates
{
xk
}∞
k=0

such that xk+1 = projΩ(xk +αkpk), where pk is a descent direction for f at xk,

αk is a scalar step length, and projΩ(x) is the projection of x onto the feasible region, i.e.,

[projΩ(x)]i =


ℓi if xi < ℓi,

ui if xi > ui,

xi otherwise.

The new iterate may be written as xk+1 = xk(αk), where xk(α) denotes the vector xk(α) =

projΩ(xk +αpk). The function xk(α) defines a linear piecewise-continuous path, and the function

f
(
xk(α)

)
is not necessarily differentiable along xk(α). In particular, f

(
xk(α)

)
may have a “kink”

at any α > 0 at which [pk]i ̸= 0 and either [xk + αpk]i = ℓi or [xk + αpk]i = ui. This implies

that it is not possible to use a line search based on the conventional Wolfe conditions. Thus,

existing projected-search methods are restricted to using a search based on satisfying an Armijo-

like condition along the path xk(α). A commonly used Armijo-like condition is the quasi-Armijo

condition:

f
(
xk(αk)

)
≤ f(xk) + αkηA∇f(xk)Tpk. (3.1)

A step that satisfies this condition is called a quasi-Armijo step. If γ and σ denote fixed parameters

such that γ > 0 and σ ∈ (0, 1), then a quasi-Armijo step has the form αk = γσtk , where tk is the

smallest nonnegative integer such that the quasi-Armijo condition (3.1) is satisfied.

In this chapter, a new quasi-Wolfe line search is formulated that extends the benefits of

a Wolfe line search to projected-search methods. The behavior of the search is similar to that of

a conventional Wolfe line search, except that a step is accepted under a wider range of conditions

that take into account points at which f is not differentiable. As in the unconstrained case, the

quasi-Wolfe step can be computed using safeguarded polynomial interpolation and the accuracy of

the step can be adjusted.

Two general classes of projected-search methods that use the new quasi-Wolfe search are

proposed for solving problem (BC). These methods may be broadly categorized as being active-set

methods or interior methods.

Projected-search active-set methods. The class of projected-search active-set methods is char-

acterized by the use of a descent direction dk computed with respect to a perturbed or extended

active set (a similar set is used by Bertsekas [6]). The vector dk may be computed in many ways,

e.g., using an exact or modified Newton method or a quasi-Newton method. This direction is used

as the basis for the computation of a search direction pk, and an associated step length αk such that

59

f
(
projΩ(xk+αkpk)

)
< f(xk). The convergence properties are established under assumptions that

are typical in the analysis of projected-search methods. Moreover, it is shown that if the iterates

converge to a nondegenerate stationary point, then the optimal active set is identified in a finite

number of iterations. It follows that once the optimal active set has been identified, any method in

this class will have the same convergence rate as its unconstrained counterpart.

In addition, a new active-set method, a quasi-Newton projected-search method UBOPT is

proposed as an extension of the limited-memory reduced-Hessian method L-RHR of Leonard [66]

and Gill and Leonard [47]. The method is based on the work of Fenelon [27] and Siegel [81],

who independently proposed methods that exploit the fact that quasi-Newton methods accumulate

approximate curvature in a sequence of expanding subspaces. In particular, Fenelon considered

a method in which the search direction is computed using a reduced matrix that represents the

approximate Hessian in the subspace. Though the subspace and this reduced matrix increase in

dimension at each iteration, the dimension is limited to some fixed number and only the most recent

information is used to define the subspace and the matrix.

Projected-search interior methods. The class of projected-search interior methods combines

a traditional interior method with a projected-search algorithm for the minimization of a sequence

of merit functions parameterized by a positive scalar. The underlying Newton or approximate

Newton directions are projected onto a subset of the feasible region defined by perturbing the

bounds. Global convergence properties that are analogous to those of the active-set methods are

established.

The rest of the chapter is organized as follows. Section 3.2 defines a new step type,

a quasi-Wolfe step, and establishes theoretical results for the implementation of the quasi-Wolfe

search. Section 3.3 describes a class of projected-search active-set methods that utilizes the quasi-

Wolfe search, and establishes the convergence results. Section 3.4 begins with a brief review of the

L-RHR method of Leonard [66] and Gill and Leonard [47] for unconstrained optimization, and then

introduces the new method UBOPT for unconstrained and bound-constrained optimization that is

formulated based on the framework of the projected-search active-set methods, Section 3.5 proposes

a class of projected-search interior methods and establish its convergence results.

60

3.2 The Quasi-Wolfe Search

3.2.1 The quasi-Wolfe step

At each iteration k, projected-search methods perform a search on the univariate function

ψk(α) = f
(
xk(α)

)
= f

(
projΩ(xk + αpk)

)
,

instead of ϕk(α) = f(xk + αpk). It is a substantially more difficult task because ψk is only piece-

wise continuously differentiable, with a finite number of jump discontinuities in the derivative (see

Section 3.2.2 below). In the following discussion, the suffix k is omitted if the iteration index is not

relevant to the discussion.

The definition of a quasi-Wolfe step involves the left and right derivatives ψ′
−(α) and ψ′

+(α)

of ψ at α, which are defined as

ψ′
−(α) = lim

β→α−
ψ′(β) and ψ′

+(α) = lim
β→α+

ψ′(β).

Definition 3.2.1. Let ηA and ηW be constant scalars such that 0 < ηA < ηW < 1. A step α > 0 is

called a quasi-Wolfe step if it satisfies the quasi-Armijo condition

(C1) ψ(α) ≤ ψ(0) + αηAψ
′
+(0),

and at least one of the following conditions:

(C2) |ψ′
−(α)| ≤ ηW |ψ′

+(0)|;

(C3) |ψ′
+(α)| ≤ ηW |ψ′

+(0)|;

(C4) ψ is not differentiable at α and ψ′
−(α) ≤ 0 ≤ ψ′

+(α).

Figure 3.1 depicts three examples of a kink point satisfying the quasi-Wolfe conditions.

The properties of the quasi-Wolfe search are characterized by extending the framework for

the differentiable case. In particular, the discussion makes extensive use of the auxiliary function

ω(α) = ψ(α)−
(
ψ(0) + αηAψ

′
+(0)

)
, with ω′

±(α) = ψ′
±(α)− ηAψ

′
+(0). (3.2)

The following lemma is used to establish the propositions below.

Lemma 3.2.1. Let a, b ∈ R be such that 0 ≤ a < b, and assume that θ is a univariate, continuous,

piecewise continuously differentiable function with a finite number of jump discontinuities in the

derivative.

61

+η
W
ψ′

+
(0)

−η
W
ψ′

+
(0)

ψ(α)

+η
A
ψ′

+
(0)

−η
W
ψ′

+
(0)

+η
W
ψ′

+
(0)

+η
A
ψ′

+
(0)

ψ(α)

+η
A
ψ′

+
(0)

ψ(α)

Figure 3.1: Three examples of a kink point satisfying the quasi-Wolfe conditions. The
left, center and right figures depict kink points satisfying conditions (C2), (C3) and (C4)
respectively. The slope of each dashed line is marked.

(a) If θ′+(a) ≤ 0 and θ(a) ≤ θ(b), then there exists an x ∈ (a, b) such that

θ′−(x) ≤ 0 ≤ θ′+(x).

(b) If θ′+(a) < 0 and θ′−(b) > 0 then there exists an x ∈ (a, b) such that

θ′−(x) ≤ 0 ≤ θ′+(x).

If θ is differentiable at x then the inequalities in the conclusions of parts (a) and (b) hold as

equalities.

Proof. For part (a), let a = s0 < s1 < s2 < · · · < st < st+1 = b, where s1, s2, . . . , st represent all

the points in (a, b) at which θ is nondifferentiable. First, suppose that θ′+(y) ≤ 0 for all y ∈ (a, b).

Then θ is continuously differentiable and nonincreasing within each subinterval [sj , sj+1] for j = 0,

1, . . . , t. It follows that θ(a) ≥ θ(s1) ≥ · · · ≥ θ(st) ≥ θ(b). By assumption, this is true only

when θ(a) = θ(b), which implies that θ(a) = θ(s1). Thus, by Rolle’s Theorem, there exists an

x ∈ (a, s1) ⊂ [a, b] such that θ′(x) = θ′±(x) = 0. Now suppose there is a y ∈ (a, b) such that

θ′+(y) > 0, and let x = inf
{
y ∈ (a, b) : θ′+(y) > 0

}
. Then x ∈ (a, b), θ′+(x) ≥ 0, and θ′−(x) =

limy→x− θ′+(y) ≤ 0. For part (b), let x = inf
{
y ∈ (a, b) : θ′+(y) > 0

}
. Then x ∈ (a, b), θ′+(x) ≥ 0,

and θ′−(x) = limy→x− θ′+(x) ≤ 0.

The next result establishes conditions on f and Ω that guarantee the existence of a quasi-

Wolfe step at each iteration.

Proposition 3.2.1. Let f be a scalar-valued continuously differentiable function defined on Ω ={
x ∈ Rn : ℓ ≤ x ≤ u

}
. Assume that x0 ∈ Ω is chosen such that the level set L

(
f(x0)

)
is bounded,

and assume that
{
pk
}

is a sequence of descent directions. If ηA and ηW are fixed scalars such

62

that 0 < ηA ≤ ηW < 1, then at every iteration k either there exists an α
(k)
L > 0 and an interval

(α
(k)
L , α

(k)
U) such that every α ∈ (α

(k)
L , α

(k)
U) is a quasi-Wolfe step, or there exists a quasi-Wolfe step

that satisfies the condition (C4).

Proof. We omit the suffix k and write ψ(α) = f
(
projΩ(x+αp)

)
. First, it will be shown that there

exists a positive scalar σ such that the function ω of (3.2) satisfies ω(α) < 0 for all α ∈ (0, σ). As

ψ′
+(0) = ∇f(x)Tp < 0 and ηA < 1, it must hold that

ω′
+(0) = (1− ηA)ψ

′
+(0) < 0,

in which case there must be a scalar σ (σ > 0) such that ω(α) < 0 for all α ∈ (0, σ). It follows that

there exists a σ1 ∈ (0, σ) such that ω(σ1) < 0.

From the compactness of the level set L
(
f(x0)

)
, ψ(α) is bounded below by some constant

ψlow, i.e., ψ(α) ≥ ψlow for all α ∈ [0,∞). As ψ(0) + αηAψ
′
+(0)→ −∞ as α→∞, there must exist

a positive σ2 such that ψ(0) + σ2ηAψ
′
+(0) = ψlow, and we have

ω(σ2) = ψ(σ2)− ψ(0)− σ2ηAψ
′
+(0) = ψ(σ2)− ψlow ≥ 0.

Given scalars σ1 and σ2 (0 ≤ σ1 < σ2) such that ω(σ1) < 0 and ω(σ2) ≥ 0, the intermediate-value

theorem states that there must exist at least one positive α such that ω(α) = 0. Let β denote the

least positive root of ω(α) = 0, then ω(α) < 0 for all α ∈ (0, β). As ω(0) = 0, ω(β) = 0, and

ω′
+(0) < 0, by Lemma 3.2.1 ((a)), there exists an ξ ∈ (0, β) such that

ω′
−(ξ) ≤ 0 ≤ ω′

+(ξ), or, equivalently, ψ′
−(ξ) ≤ ηAψ

′
+(0) ≤ ψ′

+(ξ).

By construction, ξ ∈ (0, β), which implies that ω(ξ) ≤ 0, or equivalently, ξ satisfies the

quasi-Armijo condition (C1). If ψ′
+(ξ) ≤ 0, then the inequality ηA < ηW implies that ξ is a quasi-

Wolfe step that satisfies the derivative condition (C3). By the piecewise continuity of ψ′
+(α), there

exists an αL > 0 and an interval (αL, αU) such that every α ∈ (αL, αU) is a quasi-Wolfe step.

Otherwise, if ψ′
+(ξ) > 0, then ξ is a quasi-Wolfe step that satisfies the condition (C4).

The following result is analogous to Proposition 2.1.3 and motivates the first stage of a

quasi-Wolfe search.

Proposition 3.2.2. Let
{
αi

}∞
i=0

be a strictly monotonically increasing sequence with α0 = 0. Let

ψ be a continuous piecewise-differentiable univariate function whose derivative has a finite number

of jump discontinuities. Assume that ψ′
+(0) < 0 and define ω(α) = ψ(α)−

(
ψ(0) +αηAψ

′
+(0)

)
with

63

0 < ηA < 1. If there exists a least bounded index j such that at least one of the following “stage-one”

conditions is true:

(a) αj is a quasi-Wolfe step;

(b) ω(αj) ≥ ω(αj−1); or

(c) ω′
−(αj) ≥ 0,

then there exists a quasi-Wolfe step α∗ ∈ [αj−1, αj].

Proof. Observe that αj−1 must satisfy none of the conditions (a)–(c), otherwise j would not be the

least index. This implies that ω(αj−1) < ω(αj−2) < · · · < ω(α0) = 0 from (b), and ω′
−(αj−1) < 0

from (c).

The first step is to show that

ω′
+(αj−1) < 0. (3.3)

If ω′(αj−1) exists, then ω′
+(αj−1) = ω′

−(αj−1) < 0. If ω′(αj−1) does not exist, then ((c)) implies

that ω′
−(αj−1) = ψ′

−(αj−1) − ηAψ
′
+(0) < 0, in which case ψ′

−(αj−1) < 0 because ψ′
+(0) < 0 by

assumption. As (C4) cannot hold at αj−1, it follows that ψ′
+(αj−1) < 0. Now, if (C3) does not

hold at αj−1 then ψ′
+(αj−1) < ηWψ

′
+(0) < ηAψ

′
+(0). Thus, ω′

+(αj−1) = ψ′
+(αj−1) − ηAψ

′
+(0) < 0.

The inequality (3.3) is used in the proofs that follow.

Case 1. If (a) is true, the proposition holds trivially.

Case 2. If (b) is true, let ᾱ = sup
{
α ∈ [αj−1, αj] : ω(β) ≤ 0 for all β ∈ [αj−1, α]

}
. If ᾱ = αj , then

ω(ᾱ) = ω(αj) ≥ ω(αj−1); if ᾱ < αj , then by the continuity of ω, ω(ᾱ) = 0 > ω(αj−1). In either

case, as ω′
+(αj−1) < 0 by (3.3), part (a) of Lemma 3.2.1 implies that there exists an α∗ ∈ [αj−1, ᾱ]

such that

ω′
−(α

∗) ≤ 0 ≤ ω′
+(α

∗).

This implies that

ψ′
−(α

∗) ≤ ηAψ
′
+(0) ≤ ψ′

+(α
∗).

From the definition of ᾱ, α∗ satisfies the quasi-Armijo condition (C1). As ψ′
−(α

∗) < 0, if ψ′
+(α

∗) ≥ 0,

then α∗ is a quasi-Wolfe step by (C4). Alternatively, if ψ′
+(α

∗) < 0, then

ηWψ
′
+(0) < ηAψ

′
+(0) ≤ ψ′

+(α
∗) < 0,

and again, α∗ is a quasi-Wolfe step by (C3).

64

Case 3. Finally, consider the case where (c) is true, i.e., ω′
−(αj) ≥ 0. By (3.3), ω′

+(αj−1) < 0.

If ω(α) ≤ 0 for all α ∈ [αj−1, αj], then either ω′
−(αj) = 0 such that αj is a quasi-Wolfe step, or

part (b) of Lemma 3.2.1 establishes the existence of a step α∗ ∈ (αj−1, αj) such that

ω′
−(α

∗) ≤ 0 ≤ ω′
+(α

∗),

and α∗ satisfies the quasi-Armijo condition (C1). Otherwise, let ᾱ = sup
{
α ∈ [αj−1, αj] : ω(β) ≤ 0

for all β ∈ [αj−1, α]
}
. By the continuity of ω, ω(ᾱ) = 0 > ω(αj−1). It follows from part (a) of

Lemma 3.2.1 that there exists a step α∗ ∈ [αj−1, ᾱ] such that

ω′
−(α

∗) ≤ 0 ≤ ω′
+(α

∗),

and α∗ satisfies the quasi-Armijo condition (C1). The same argument used for the preceding case

shows that α∗ is a quasi-Wolfe step.

The second stage of a quasi-Wolfe search is based on the following proposition.

Proposition 3.2.3. Let ψ and ω be defined as in Proposition 3.2.2. Assume there exist distinct

points αlow and αhigh such that

(a) ω(αlow) ≤ 0;

(b) ω(αlow) ≤ ω(αhigh); and

(c) ω′
+(αlow) < 0 if αlow < αhigh or ω′

−(αlow) > 0 if αlow > αhigh,

then there exists a quasi-Wolfe step α∗ ∈ I, where I is the interval defined with endpoints αlow and

αhigh.

Proof. First, consider the case where αlow < αhigh. Let ᾱ = sup
{
α ∈ I : ω(β) ≤ 0

}
for all

β ∈ [αlow, α]. By the continuity of ω, ω(ᾱ) = 0 ≥ ω(αlow). It follows from part (a) of Lemma 3.2.1

that there exists a step α∗ ∈ [αlow, ᾱ] such that ω(α∗) ≤ 0 and

ω′
−(α

∗) ≤ 0 ≤ ω′
+(α

∗).

The same argument used in Proposition 3.2.2 shows that α∗ is a quasi-Wolfe step.

For the case αlow > αhigh, let ω̃(α) = ω(αlow + αhigh − α). Then ω̃(αhigh) = ω(αlow) ≤ 0,

and ω̃′
+(αhigh) = −ω′

−(αlow) < 0. Let ᾱ = sup
{
α ∈ I : ω̃(β) ≤ 0

}
for all β ∈ [αhigh, α]. The

65

continuity of ω̃ implies that ω̃(ᾱ) = 0 ≥ ω̃(αhigh). It follows from part (a) of Lemma 3.2.1 that

there exists a step β∗ ∈ [αhigh, ᾱ] such that ω̃(β∗) ≤ 0 and

ω̃′
−(β

∗) ≤ 0 ≤ ω̃′
+(β

∗).

Let α∗ = αlow + αhigh − β∗, then α∗ ∈ I, ω(α∗) ≤ 0 and

ω′
−(α

∗) = −ω̃′
+(β

∗) ≤ 0 ≤ −ω̃′
−(β

∗) = ω′
+(α

∗).

It follows that α∗ is a quasi-Wolfe step.

Although the implementation of a quasi-Wolfe search is similar to that of a Wolfe line

search, there are a number of crucial practical issues associated with the potential nondifferentia-

bility of the line-search function ψ(α). These issues include the definition of the derivatives of the

function ψ(α) and the computation of a new estimate of a quasi-Wolfe step.

3.2.2 Derivatives of the search function

The purpose of this section is to establish expressions for the left- and right-derivatives of

the search function ψ(α) = f
(
x(α)

)
, where x(α) is the vector projΩ(x+ αp) with components

xi(α) =


ℓi if xi + αpi < ℓi,

ui if xi + αpi > ui,

xi + αpi if ℓi ≤ xi + αpi ≤ ui.

First, the derivatives of x(α) are considered. Under the assumptions that x is feasible and α is

positive, it must hold that if xi + αpi < ℓi then pi < 0, and if xi + αpi > ui, then pi > 0. This

implies that the right derivative of x(α) with respect to α is given by

[x′+(α)]i =


0 if xi(α) = ℓi and pi < 0,

0 if xi(α) = ui and pi > 0,

pi otherwise.

66

The vector x′+(α) may be expressed in terms of Px(p), the projected direction of p at x, which is

defined as

[Px(p)]i =


0 if xi = ℓi and pi < 0,

0 if xi = ui and pi > 0,

pi otherwise.

The vector Px(p) represents the projection of p onto the closure of the set of feasible directions at

x(α). If x(α) is differentiable at a point α, then

x′(α) = x′+(α) = Px(α)(p). (3.4)

If x(α) is not differentiable at α then there must be at least one index i such that

(xi + αpi = ℓi and pi < 0) or (xi + αpi = ui and pi > 0).

An α satisfying one of these conditions is called a kink step with respect to i and it also must hold

that x′+(α) ̸= x′−(α). In order to compute the left derivative x′−(α), consider the values of x′(β) as

β approaches α from below. If α is a kink step with respect to i then xi + βpi is feasible for all

β sufficiently close to α and it follows from (3.4) that x′i(β) = pi. Combining this value with the

components of x′i(β) associated with the differentiable case gives x′−(α) = P−
x(α)(p), where

[P−
x(α)(p)]i =

pi if α is a kink step with respect to i,

[Px(α)(p)]i otherwise.

The derivatives of the function ψ(α) can now be considered. If ψ(α) is differentiable at α,

then the chain rule gives

ψ′(α) =
d

dα
f
(
x(α)

)
= ∇f

(
x(α)

)
T d

dα
x(α) = ∇f

(
x(α)

)
Tx′(α).

Using this expression with the expression (3.4) for x′(α) gives

ψ′(α) = ∇f
(
x(α)

)
TPx(α)(p).

If ψ(α) is not differentiable at α, then α is a kink step and ψ′
−(α) ̸= ψ′

+(α). For any α,

limβ→α+ x′(β) = x′+(α), and limβ→α− x′(β) = x−(α). It follows that the right- and left-derivatives

67

of ψ+(α) with respect to α are given by

ψ′
+(α) = ∇f

(
x(α)

)
Tx′+(α) = ∇f

(
x(α)

)
TPx(α)(p),

and

ψ′
−(α) = ∇f

(
x(α)

)
Tx−(α) = ∇f

(
x(α)

)
TP−

x(α)(p).

These expressions imply that there is a jump of magnitude
∣∣pi∇if(x(α))∣∣ in the derivative of ψ at

a kink step with respect to i.

3.2.3 Computing a quasi-Wolfe step

As in the Wolfe line search discussed in Section 2.1.3, a quasi-Wolfe search may be regarded

as having two stages. Algorithm 2 gives a schematic outline of a quasi-Wolfe search.The first stage

begins with an initial step length α0 and continues with steps of increasing magnitude until one of

three things happens: an acceptable step length is found; an interval that contains a quasi-Wolfe

step is found; or the step is considered to be unbounded. In practice, the search is terminated if the

computed step length exceeds a preassigned upper bound αmax during the first-stage iterations. If

the search terminates at αmax without finding an interval containing a quasi-Wolfe step, then every

step computed up to that point satisfies the quasi-Armijo condition.

If the first stage terminates with a bounded step, the second stage repeatedly calls a

function Stage_Two(αlow, αhigh), where

(a) the interval bounded by αlow and αhigh contains a quasi-Wolfe step;

(b) among all the step lengths generated so far, αlow gives the least value of ω;

(c) αhigh is chosen so that ω′
+(αlow) < 0 if αlow < αhigh, or ω′

−(αlow) > 0 if αlow > αhigh.

A major difference between a Wolfe and a quasi-Wolfe search concerns how interpolation

is used to find new steps in the second stage. Each time Stage_Two(αlow, αhigh) is invoked, a new

trial step αnew is generated. In the differentiable case, αnew is usually obtained by polynomial

interpolation using the value of ϕ and its derivatives at αlow and αhigh. If the univariate search

function is only piecewise differentiable, there may be kink points between αlow and αhigh, in which

case a conventional interpolation approach may not provide a good estimate of a quasi-Wolfe step.

One strategy to speed convergence in this situation is to search for the kink step (if it exists) between

αlow and αhigh that is closest to αlow. This approach is justified by the following argument. If a

new point αnew is not a quasi-Wolfe step, then based on Proposition 3.2.3, the end points αlow and

αhigh are updated to αlow and αnew in two cases:

68

Algorithm 2 Schematic outline of a quasi-Wolfe search.

1: function quasi_Wolfe_Search(α)
2: restriction: α > 0;
3: constants: ηA ∈ (0, 12), ηW ∈ (ηA, 1), γe > 1, αmax ∈ (0,+∞);
4: α← min{α, αmax}; αold ← 0;
5: while α is not a quasi-Wolfe step and α ̸= αmax do
6: if ω(α) ≥ ω(αold) then
7: α← Stage_Two(αold, α); break;
8: else if ω′

−(α) ≥ 0 then
9: α← Stage_Two(α, αold); break;

10: else
11: αold ← α; α← min

{
γeα, αmax

}
; [Increase α towards αmax]

12: end if
13: end while
14: return α;
15: end function
1: function Stage_Two(αlow, αhigh)
2: restriction: ω(αlow) ≤ ω(αhigh);
3: Choose αnew in the interior of the interval defined by αlow and αhigh;
4: if αnew is a quasi-Wolfe step then
5: return αnew;
6: else if ω(αnew) ≥ ω(αlow) then
7: return Stage_Two(αlow, αnew);
8: else if ω′

+(αnew) < 0 and αlow < αhigh then
9: return Stage_Two(αnew, αhigh);

10: else if ω′
−(αnew) > 0 and αlow > αhigh then

11: return Stage_Two(αnew, αhigh);
12: else
13: return Stage_Two(αnew, αlow);
14: end if
15: end function

69

Case (1). ω(αnew) ≥ ω(αlow);

Case (2). ω′
+(αnew) < 0 if αhigh < αlow, or ω′

−(αnew) > 0 if αhigh > αlow.

In these cases, the new interval bounded by αlow and αnew will not contain a kink step. In the

remaining case:

Case (3). ω′
+(αnew) ≥ 0 if αhigh < αlow, or ω′

−(αnew) ≤ 0 if αhigh > αlow,

the new interval will be bounded by αhigh and αnew, but may contain kink points. However, the

new interval must contain at least one fewer kink point.

The search for the kink points proceeds as follows. At the first time invoking the function

Stage_Two(αlow, αhigh), the kink steps are computed in O(n) floating-point operations (flops) from

κi =


(ui − xi)/pi if pi > 0,

(ℓi − xi)/pi if pi < 0,

∞ if pi = 0.

As the interval bounded by αlow and αhigh contains a quasi-Wolfe step, only the kink steps within

that interval need be stored. These steps are then sorted in decreasing order within O(n log n) flops

using a heapsort algorithm (see, e.g., Williams [85], Knuth [65, Section 5.2.3]). The kink step closest

to αlow, say κ∗1, is either the smallest or the largest kink step within the interval of uncertainty,

depending on whether αlow is smaller or greater than αhigh. Once κ∗1 has been found, the search

for κ∗l (l > 1) is made towards αlow starting at the kink step κ∗l−1 from the preceding iteration. To

prevent the iterations from lingering at Case (3) for too long, an upper limit is imposed on the

number of consecutive kink steps as trial steps. If this limit is reached, a new trial step is generated

by bisection.

Once all the kinks in the interval of uncertainty have been eliminated, conventional poly-

nomial interpolation may be used to generate a new step length. However, some care is necessary

to choose the appropriate left or right derivative for use in the interpolation (see Section 3.2.2).

In the following, two types of projected-search methods are formulated that utilize the

quasi-Wolfe line search. These methods may be broadly categorized as active-set methods and

interior methods.

70

3.3 Projected-Search Active-Set Methods

3.3.1 The general framework

Given an initial x0 ∈ Ω, consider the sequence of iterates
{
xk
}

that satisfies xk+1 =

xk(αk) = projΩ(xk + αkpk), where αk is a quasi-Wolfe step, and pk is a descent direction for f at

xk. The search direction pk is based on the components of a feasible descent direction dk computed

in terms of a working set of indices at xk such that

Wk =
{
i : [xk]i ≤ ℓi + ϵk and ∇if(xk) > 0 or

[xk]i ≥ ui − ϵk and ∇if(xk) < 0
}
,

(3.5)

where ϵ0 and ϵ are fixed positive parameters, and ϵk = min
{
ϵ,
∥∥ΠT

k−1∇f(xk−1)
∥∥} for k ≥ 1, with

Πk−1 the matrix of columns of the identity matrix of order n associated with the indices in the

complement ofWk−1 in
{
1, 2, . . . , n

}
. The matrix Πk−1Π

T
k−1 represents the projection PWk−1

with

respect to the set Wk−1, i.e., for any d ∈ Rn it holds that Πk−1Π
T
k−1d = PWk−1

(d), with

[PWk−1
(d)]i =

0 if i ∈ Wk−1,

di if i ̸∈ Wk−1.

The search direction pk is defined in terms of any direction dk such that dk = ΠkΠ
T
k dk, and

∇f(xk)Tdk < 0. Once dk is determined, the components of dk are modified if necessary to give a

search direction pk such that [pk]i = max
{
[dk]i, 0

}
if [xk]i ≤ ℓi+ϵk and [pk]i = min

{
[dk]i, 0

}
if

[xk]i ≥ ui−ϵk. This additional step guarantees convergence in the situation where iterates approach

a boundary point from the interior of the feasible region—a phenomenon known as zigzagging or

jamming (see Bertsekas [5]). The vector pk satisfies pk = ΠkΠ
T
k pk, and retains the descent property

of dk. For example, if [dk]i ̸= 0 and [xk]i ≤ ℓi + ϵk, then the definition of Wk implies that

∇if(xk) ≤ 0. If [pk]i > 0 then [pk]i = [dk]i. Otherwise, [dk]i < 0 with ∇if(xk)[dk]i ≥ 0, and

setting [pk]i = 0 makes the directional derivative more negative.

The working set at xk is a subset of the extended active set, which is defined as

Aϵk(xk) =
{
i : [xk]i ≤ ℓi + ϵk or [xk]i ≥ ui − ϵk

}
.

It is shown in Section 3.3.2 that, under certain conditions,
{
ϵk
}
→ 0, and Aϵk(xk) = A(xk) for k

sufficiently large, which would imply that pk = dk for k sufficiently large.

71

A general projected-search method based on the proposed framework is summarized in

Algorithm 3. There are various choices for the direction dk. For example, if dk = −ΠkΠ
T
k ∇f(xk),

Algorithm 3 A class of active-set projected-search methods

1: constant: ϵ > 0;
2: Choose x0 ∈ Ω;
3: Let ϵ0 = ϵ; k = 0;
4: while not converged do
5: Determine the working set Wk (3.5);
6: Compute a feasible descent direction dk at xk such that [dk]i = 0 if i ∈ Wk;
7: Modify dk to give a search direction pk:

8: [pk]i =


max{[dk]i, 0} if [xk]i ≤ ℓi + ϵk,

min {[dk]i, 0} if [xk]i ≥ ui − ϵk,
[dk]i otherwise;

9: Compute a quasi-Wolfe step αk; xk+1 = projΩ(xk + αkpk);
10: ϵk+1 = min

{
ϵ,
∥∥ΠT

k ∇f(xk)
∥∥};

11: k ← k + 1;
12: end while

then the method is a variant of projected gradient descent. Other choices include computing dk as

the solution of the subproblem

minimize
d

∇f(xk)Td+ 1
2d

THkd subject to di = 0 for all i ∈ Wk, (3.6)

where Hk a positive-definite approximation of ∇2f(xk). The new method UBOPT presented in

Section 3.4.2 computes dk as the solution of (3.6) with Hk chosen as a positive-definite limited-

memory BFGS approximation of ∇2f(xk).

3.3.2 Convergence analysis

In this section, the convergence properties of the class of projected-search active-set meth-

ods are considered. As an introduction, the convergence of a method with a quasi-Armijo search is

examined first.

Theorem 3.3.1 (Active-set projected search with a quasi-Armijo search). Let f be a scalar-valued

continuously differentiable function defined on Ω =
{
x ∈ Rn : ℓ ≤ x ≤ u

}
. Assume that x0 ∈ Ω is

chosen such that the level set L
(
f(x0)

)
is bounded, and

{
xk
}

is defined by xk+1 = xk(αk), where

αk is a quasi-Armijo step. For an arbitrarily fixed ϵ > 0, define ϵ0 = ϵ, and

ϵk = min
{
ϵ,
∥∥ΠT

k−1∇f(xk−1)
∥∥}

72

for k ≥ 1, where each Πk is a matrix with orthonormal columns that spans the set of projected

directions with respect to the working set Wk. If
{
pk
}

is a sequence of descent directions with

∥pk∥ ≤ θ for some constant θ independent of k, ΠkΠ
T
k pk = pk for all k, and the components of pk

satisfy [pk]i ≥ 0 if [xk]i ≤ ℓi + ϵk, and [pk]i ≤ 0 if [xk]i ≥ ui − ϵk, then

lim
k→∞

∣∣∇f(xk)Tpk∣∣ = 0.

Proof. First, we show that limk→∞
∣∣∇f(xk)Tpk∣∣ = 0 if lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥ ̸= 0. Observe that

the quasi-Armijo condition (3.1) implies that
{
f(xk)

}
is a strictly decreasing sequence. As the set

L
(
f(x0)

)
is bounded, it follows that

{
f(xk)

}
converges, with

0 = lim
k→∞

f(xk)− f(xk+1) ≥ lim
k→∞

αkηA|∇f(xk)Tpk| = 0.

The proof is by contradiction. Suppose that |∇f(xk)Tpk| ̸→ 0 as k → ∞, then there must exist

some ϵ̄ > 0 such that |∇f(xk)Tpk| > ϵ̄ infinitely often. Let G =
{
k : |∇f(xk)Tpk| > ϵ̄

}
, then it

must be that αk → 0 for k ∈ G. For all k ∈ G, define the step βk = αk/σ. The hypothesis that

lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥ ̸= 0 implies lim infk→∞ ϵk > 0. As

{
∥pk∥

}
is uniformly bounded by θ

and lim infk→∞ ϵk > 0, there exists k̄ such that each component of βkpk satisfies |[βkpk]i| < ϵk for

all k ≥ k̄ in G. The assumptions on components of pk imply that [pk]i > 0 only if ui − [xk]i > ϵk,

and [pk]i < 0 only if [xk]i − ℓi > ϵk. It follows that for all k ≥ k̄ in G, ℓi ≤ [xk + βkpk]i ≤ ui and

projΩ(xk + βkpk) = xk + βkpk.

Let Ḡ denote the indices k ≥ k̄ of iterations at which a reduction in the initial step length

was necessary, i.e., Ḡ =
{
k : tk > 0, k ∈ G, k ≥ k̄

}
. Since αk converges to zero, Ḡ must be an

infinite set. By definition,

f(xk + βkpk) = f
(
projΩ(xk + βkpk)

)
> f(xk) + βkηA∇f(xk)Tpk, for all k ∈ Ḡ.

Adding −βk∇f(xk)Tpk to both sides and rearranging gives

f(xk + βkpk)− f(xk)− βk∇f(xk)Tpk > −βk(1− ηA)∇f(xk)Tpk

> βk(1− ηA)ϵ̄, for all k ∈ Ḡ. (3.7)

The Taylor expansion of f(xk + βkpk) gives

f(xk + βkpk)− f(xk)− βk∇f(xk)Tpk = βk

∫ 1

0

(
∇f(xk + τβkpk)−∇f(xk)

)
Tpk dτ. (3.8)

73

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥x∥D = maxv ̸=0 |xTv|/∥v∥, then

∣∣(∇f(xk + τβkpk)−∇f(xk)
)
Tpk

∣∣ ≤ ∥∇f(xk + τβkpk)−∇f(xk)∥D∥pk∥.

If this inequality is substituted in (3.8), it then follows from (3.7) that

(1− ηA)ϵ̄ <

∫ 1

0

(
∇f(xk + τβkpk)−∇f(xk)

)
Tpk dτ

≤ max
0≤τ≤1

∥∇f(xk + τβkpk)−∇f(xk)∥D∥pk∥, for all k ∈ Ḡ.

The continuity of ∇f implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

∥∇f(xk + τβkpk)−∇f(xk)∥D = ∥∇f(xk + τkpk)−∇f(xk)∥D.

Then

(1− ηA)ϵ̄ < ∥∇f(xk + τkpk)−∇f(xk)∥D∥pk∥. (3.9)

However, αkpk → 0 implies τkpk → 0 for k ∈ G, and the continuity of ∇f gives

∥∇f(xk + τkpk)−∇f(xk)∥D → 0.

As
{
∥pk∥

}
is uniformly bounded above by θ, the right-hand side of (3.9) converges to zero, which

gives the required contradiction.

Next it will be shown by contradiction that each convergent subsequence of
{
|∇f(xk)Tpk|

}
converges to zero regardless of the value of lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥. As ΠkΠ
T
k pk = pk for all k,

|∇f(xk)Tpk| = |∇f(xk)TΠkΠ
T
k pk| (3.10)

for all k. Suppose that there exists a convergent subsequence of
{
|∇f(xk)Tpk|

}
, say

{
|∇f(xkj

)Tpkj
|
}
,

that converges to a positive value. Then, (3.10) implies that the sequence
{
|∇f(xkj

)TΠkj
ΠT

kj
pkj
|
}

converges to a positive value. As
{
∥pk∥

}
is bounded by a constant θ,

lim inf
j→∞

∥∥ΠT
kj
∇f(xkj

)
∥∥ > 0.

74

Applying the previous arguments to the subsequence
{
|∇f(xkj)

Tpkj |
}

gives

lim
j→∞

|∇f(xkj
)Tpkj

| = 0,

which is a contradiction.

As the level set L
(
f(x0)

)
is bounded,

{
|∇f(xk)Tpk|

}
must be a bounded sequence. It

follows that

lim inf
k→∞

|∇f(xk)Tpk| = lim sup
k→∞

|∇f(xk)Tpk| = 0.

Therefore, limk→∞ |∇f(xk)Tpk| = 0.

Theorem 3.3.2 (Active-set projected search with a quasi-Wolfe search). Let f be a scalar-valued

continuously differentiable function defined on Ω =
{
x ∈ Rn : ℓ ≤ x ≤ u

}
. Assume that x0 ∈ Ω

is chosen such that the level set L
(
f(x0)

)
is bounded, and

{
xk
}

is given by xk+1 = xk(αk), where

αk is a quasi-Wolfe step. For an arbitrarily fixed ϵ > 0, define ϵ0 = ϵ, and

ϵk = min
{
ϵ,
∥∥ΠT

k−1∇f(xk−1)
∥∥}.

for k ≥ 1, where each Πk is a matrix with orthonormal columns that spans the set of projected

directions with respect to the working set Wk. If
{
pk
}

is a sequence of descent directions with

∥pk∥ ≤ θ for some constant θ independent of k, ΠkΠ
T
k pk = pk for all k, and the components of pk

satisfy [pk]i ≥ 0 if [xk]i ≤ ℓi + ϵk, and [pk]i ≤ 0 if [xk]i ≥ ui − ϵk, then

lim
k→∞

|∇f(xk)Tpk| = 0.

Proof. First, we show that limk→∞ |∇f(xk)Tpk| = 0 if lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥ ̸= 0. The first

quasi-Wolfe condition (C1) is equivalent to the quasi-Armijo condition, and the arguments in the

proof of Theorem 3.3.1 may be used to show that
{
f(xk)

}
is a convergent sequence. This implies

that

lim
k→∞

αk∇f(xk)Tpk = 0.

The proof is by contradiction. Suppose that |∇f(xk)Tpk| ̸→ 0 as k → ∞, then there exists some

ϵ̄ > 0 such that |∇f(xk)Tpk| > ϵ̄ infinitely often. Let G =
{
k : |∇f(xk)Tpk| > ϵ̄

}
, then it must be

that αk → 0 for k ∈ G. As
{
∥pk∥

}
is uniformly bounded above by θ, αkpk → 0 for k ∈ G.

75

If the quasi-Wolfe condition (C2) is satisfied, then

∇f
(
xk(αk)

)
TPxk(αk)(pk) ≥ −ηW |∇f(xk)Tpk|.

Similarly, if the quasi-Wolfe condition (C4) is satisfied, then

∇f
(
xk(αk)

)
TPxk(αk)(pk) ≥ 0 ≥ −ηW |∇f(xk)Tpk|.

In either case, as ∇f(xk)Tpk < 0, it must hold that

∇f
(
xk(αk)

)
TPxk(αk)(pk)−∇f(xk)

Tpk ≥ (1− ηW)|∇f(xk)Tpk| > (1− ηW)ϵ̄, for k ∈ G.

The application of the triangle inequality yields

0 < (1− ηW)ϵ̄ <
∣∣∇f(xk(αk)

)
TPxk(αk)(pk)−∇f(xk)

Tpk
∣∣

≤
∣∣∇f(xk(αk)

)
TPxk(αk)(pk)−∇f(xk)

TPxk(αk)(pk)
∣∣

+
∣∣∇f(xk)TPxk(αk)(pk)−∇f(xk)

Tpk
∣∣ . (3.11)

Let ∥ · ∥D denote the norm dual to ∥ · ∥, then

∣∣∇f(xk(αk)
)
TPxk(αk)(pk)−∇f(xk)

TPxk(αk)(pk)
∣∣

≤ ∥∇f
(
xk(αk)

)
−∇f(xk)∥D∥Pxk(αk)(pk)∥ ≤ ∥∇f

(
xk(αk)

)
−∇f(xk)∥D∥pk∥.

As ∇f is continuous and ∥pk∥ is uniformly bounded, the right-hand side of this inequality must

converge to zero for k ∈ G, which implies that∣∣∣∇f(xk(αk)
)T
Pxk(αk)(pk)−∇f(xk)

TPxk(αk)(pk)
∣∣∣→ 0, for k ∈ G.

Basic norm inequalities give

∣∣∇f(xk)TPxk(αk)(pk)−∇f(xk)
Tpk

∣∣ ≤ ∥∇f(xk)∥D∥Pxk(αk)(pk)− pk∥

= ∥∇f(xk)∥D∥Pxk(αk)(pk)− Pxk
(pk)∥.

As the level set L
(
f(x0)

)
is bounded, and the gradient ∇f is continuous, the sequence of dual

norms
{
∥∇f(xk)∥D

}
is uniformly bounded. The hypothesis that lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥ ̸= 0

76

implies lim infk→∞ ϵk > 0. Also, because

∥xk(αk)− xk∥ ≤ ∥αkpk∥ → 0, for k ∈ G,

there must exist an k̄ such that for all k ≥ k̄ in G,

[xk(αk)− xk]i < ϵk.

From the assumptions on the components of pk, it must hold that for all k ≥ k̄ in G, [pk]i < 0 only

if [xk]i > ℓi + ϵk, in which case [xk(αk)]i > ℓi; and [pk]i > 0 only if [xk]i < ui− ϵk, in which case

[xk(αk)]i < ui. It follows that, for k ∈ G sufficiently large,

Pxk(αk)(pk) = Pxk
(pk) = pk.

Therefore,

∥∇f(xk)∥D∥Pxk(αk)(pk)− Pxk
(pk)∥ → 0, for k ∈ G,

and consequently ∣∣∇f(xk)TPxk(αk)(pk)−∇f(xk)
Tpk

∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (3.11) converges to zero for k ∈ G, which gives the required

contradiction.

It remains to consider the case where the quasi-Wolfe condition (C3) is satisfied, i.e.,

∇f
(
xk(αk)

)
TP−

xk(αk)
(pk) ≥ −ηW |∇f(xk)Tpk|.

The assumption that ∇f(xk)Tpk < 0 gives

∇f
(
xk(αk)

)
TP−

xk(αk)
(pk)−∇f(xk)Tpk ≥ (1− ηW)|∇f(xk)Tpk| > (1− ηW)ϵ̄, for k ∈ G,

which implies that

0 < (1− ηW)ϵ̄ <
∣∣∣∇f(xk(αk)

)
TP−

xk(αk)
(pk)−∇f(xk)Tpk

∣∣∣
≤
∣∣∣∇f(xk(αk)

)
TP−

xk(αk)
(pk)−∇f(xk)TP−

xk(αk)
(pk)

∣∣∣
+
∣∣∣∇f(xk)TP−

xk(αk)
(pk)−∇f(xk)Tpk

∣∣∣ . (3.12)

77

The definition of the dual norm yields

∣∣∣∇f(xk(αk)
)
TP−

xk(αk)
(pk)−∇f(xk)TP−

xk(αk)
(pk)

∣∣∣
≤ ∥∇f

(
xk(αk)

)
−∇f(xk)∥D∥P−

xk(αk)
(pk)∥ ≤ ∥∇f

(
xk(αk)

)
−∇f(xk)∥D∥pk∥.

From the continuity of ∇f and uniform boundedness of ∥pk∥, the right-hand side of the above

inequality converges to zero for k ∈ G, which means that∣∣∣∇f(xk(αk)
)
TP−

xk(αk)
(pk)−∇f(xk)TP−

xk(αk)
(pk)

∣∣∣→ 0, for k ∈ G.

Also, ∣∣∣∇f(xk)TP−
xk(αk)

(pk)−∇f(xk)Tpk
∣∣∣ ≤ ∥∇f(xk)∥D∥P−

xk(αk)
(pk)− pk∥

= ∥∇f(xk)∥D∥P−
xk(αk)

(pk)− Pxk
(pk)∥.

As the level set L
(
f(x0)

)
is bounded, and ∇f is continuous, it must hold that the sequence of dual

norms
{
∥∇f(xk)∥D

}
is uniformly bounded. Also, as

∥xk(αk)− xk∥ ≤ ∥αkpk∥ → 0, for k ∈ G,

arguments analogous to those used to establish convergence in cases (C2) and (C4) give

P−
xk(αk)

(pk) = Pxk
(pk) = pk for k ∈ G sufficiently large,

in which case

∥∇f(xk)∥D∥P−
xk(αk)

(pk)− Pxk
(pk)∥ → 0, for k ∈ G.

This implies that ∣∣∣∇f(xk)TP−
xk(αk)

(pk)−∇f(xk)Tpk
∣∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (3.12) converges to zero for k ∈ G, which gives the required

contradiction.

Finally, the same arguments from the proof of Theorem 3.3.1 imply that

lim
k→∞

|∇f(xk)Tpk| = 0

78

regardless of the value of lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥.

Based on the framework described in Section 3.3.1, the limit limk→∞ |∇f(xk)Tpk| = 0

implies that

lim
k→∞

|∇f(xk)Tdk| = 0, (3.13)

which would further imply that the projected gradient, ΠkΠ
T
k ∇f(xk), converges to zero for an ap-

propriate choice of dk. For example, if dk = −ΠkΠ
T
k ∇f(xk), or dk is the solution of the subproblem

(3.6) with the two-norm of the projected approximate Hessian, ∥ΠT
k HkΠk∥, uniformly bounded,

then it may be verified that (3.13) implies that ∥ΠT
k ∇f(xk)∥ → 0.

Under the nondegeneracy assumption defined below, any algorithm based on the proposed

framework for which ∥ΠT
k ∇f(xk)∥ → 0 will identify the optimal active set in a finite number of

iterations.

Definition 3.3.1. A point x∗ ∈ Ω is a stationary point of (BC) if ∇if(x∗) = 0 for ℓi < x∗i < ui,

∇if(x∗) ≥ 0 for x∗i = ℓi and ℓi < ui, and ∇if(x∗) ≤ 0 for x∗i = ui and ℓi < ui. A stationary point

x∗ is nondegenerate if ∇if(x∗) > 0 for x∗i = ℓi and ℓi < ui, and ∇if(x∗) < 0 for x∗i = ui and

ℓi < ui.

The next result shows that a projected-search method with either a quasi-Armijo or quasi-

Wolfe search will identify the optimal active set in a finite number of iterations.

Theorem 3.3.3. In addition to the assumptions of Theorem 3.3.1 or Theorem 3.3.2, assume that{
xk
}

converges to a nondegenerate stationary point x∗. Consider the extended active set

Aϵk(xk) =
{
i : [xk]i ≤ ℓi + ϵk or [xk]i ≥ ui − ϵk

}
.

If ∥ΠT
k ∇f(xk)∥ → 0, then Aϵk(xk) = A(xk) = A(x∗) for all k sufficiently large.

Proof. First, we show that A(x∗) ⊂ Aϵk(xk) for k sufficiently large by contradiction. Assume the

opposite is true, then there exists i ∈ A(x∗) such that i /∈ Aϵk(xk) for an infinite subsequence K,

which implies that i /∈ Wk for all k ∈ K. It follows that

|∇if(xk)| ≤ ∥ΠT
k ∇f(xk)∥ for k ∈ K.

As f is continuously differentiable and ∥ΠT
k ∇f(xk)∥ → 0, letting k →∞ in K gives

|∇if(x∗)| = lim
k→∞,k∈K

|∇if(xk)| = 0.

79

This contradicts the nondegeneracy of x∗.

Now we show that Aϵk(xk) ⊂ A(x∗) for k sufficiently large. If ℓi = ui, a simple argument

gives i ∈ Aϵk(xk) and i ∈ A(x∗). Consider an index i such that ℓi < ui. From the definition of ϵk, the

assumption ∥ΠT
k ∇f(xk)∥ → 0 implies that ϵk → 0. Hence, for k sufficiently large, ℓi + ϵk < ui− ϵk.

If i /∈ A(x∗), then ℓi < [x∗]i < ui. As
{
xk
}
→ x∗ and ϵk → 0, ℓi + ϵk < [xk]i < ui − ϵk for

k sufficiently large, which implies that i /∈ Aϵk(xk). Therefore, if i /∈ A(x∗), then i /∈ Ak(xk), i.e.

Aϵk(xk) ⊂ A(x∗) for k sufficiently large. We conclude that Aϵk(xk) = A(x∗) for all k sufficiently

large.

It remains to show that A(xk) = Aϵk(xk) for k sufficiently large. Obviously A(xk) ⊂
Aϵk(xk) for all k. It is trivial if ℓi = ui. Now consider the case where ℓi < ui. Note that{
xk
}
→ x∗ implies limk→∞ ∥xk+1 − xk∥ = 0. As limk→∞(ui − ϵk+1) − (ℓi + ϵk) = ui − ℓi > 0,

|[xk+1 − xk]i| < (ui − ϵk+1) − (ℓi + ϵk) for k sufficiently large. Suppose k0 is such that, for all

k ≥ k0, Aϵk(xk) = A(x∗) and |[xk+1 − xk]i| < (ui − ϵk+1) − (ℓi + ϵk). The inclusion Aϵk(xk) ⊂
A(xk) for all k ≥ k0 is established using a contradiction argument. Assume that there exists

i ∈ Aϵk(xk) = A(x∗) for all k ≥ k0, but i /∈ A(xk) for some k̄ ≥ k0. Then either ℓi < [xk̄]i ≤ ℓi+ ϵk̄
or ui − ϵk̄ ≤ [xk̄]i < ui. If the inequality ℓi < [xk̄]i ≤ ℓi + ϵk̄ holds, the definition of pk in

Algorithm 3 implies that [pk̄]i ≥ 0, and it must be the case that ℓi < [xk̄]i ≤ [xk̄+1]i. In addition,∣∣[xk̄+1 − xk̄]i
∣∣ < (ui−ϵk̄+1)−(ℓi+ϵk̄) implies that [xk̄+1]i < ui−ϵk̄+1. As i ∈ Aϵk̄+1

(xk̄+1), it must

hold that ℓi < [xk̄]i ≤ [xk̄+1]i ≤ ℓi + ϵk̄+1. Inductively, for all k ≥ k̄, ℓi < [xk̄]i ≤ [xk]i ≤ ℓi + ϵk,

which implies that [x∗]i ≥ [xk̄]i > ℓi. A similar argument shows that if ui− ϵk̄ ≤ [xk̄]i < ui, then

[x∗]i ≤ [xk̄]i < ui. It follows that i /∈ A(x∗), which contradicts the assumption that i ∈ Aϵk(xk) =

A(x∗) for all k ≥ k0. Therefore, Aϵk(xk) ⊂ A(xk) for all k ≥ k0, which completes the proof.

A simple example shows that the nondegeneracy of a stationary point is necessary for

identifying the optimal active set in a finite number of iterations. Let f : R2 → R be given by

f(x) = 1
5∥x∥

2, and let Ω =
{
x ∈ R2 : x ≥ 0

}
. For this problem x∗ = (0, 0)T is a degenerate

stationary point and the global minimizer of f over Ω. Assume that the step length αk ≤ 1 for all

k, and let ϵ = 1√
2
. Starting from x0 = (1, 1)T, the projected-gradient method gives

xk =

k∏
j=0

(1− 2
5αj)

(
1

1

)
, and ϵk = 2

5∥xk−1∥ = 2
√
2

5

k−1∏
j=0

(
1− 2

5αj

)

80

for k ≥ 1. Then
{
xk
}

converges to the degenerate stationary point x∗, and

[xk]i =

k∏
j=0

(1− 2
5αj) >

2
√
2

5

k−1∏
j=0

(
1− 2

5αj

)
= ϵk, i = 1, 2

for all k ≥ 1. It follows that Aϵk(xk) = ∅ for all k, although A(x∗) =
{
1, 2

}
.

3.4 A Limited-Memory Reduced-Hessian Method

Based on the general framework of projected-search active-set methods described previ-

ously, a quasi-Newton projected-search method UBOPT for unconstrained and bound-constrained

optimization can now be proposed, which is an extension of the limited-memory reduced-Hessian

method for unconstrained optimization of Leonard [66] and Gill and Leonard [47].

3.4.1 Background: an L-RHR method for unconstrained optimization

This section gives a brief review of the limited-memory reduced-Hessian method L-RHR

for the unconstrained minimization of the twice continuously differentiable function f : Rn 7→ R.

For more details, see Gill and Leonard [47]. As a quasi-Newton method, it generates a sequence of

iterates
{
xk
}

such that xk+1 = xk + αkpk, where pk is a descent direction and αk is a Wolfe step.

The search direction satisfies Hkpk = −∇f(xk), where Hk is a positive-definite approximation to the

Hessian matrix of f . Given H0, the sequence of approximate Hessian matrices
{
Hk

}
is generated

using the BFGS update:

Hk+1 = Hk −
1

sTkHksk
Hksks

T
kHk +

1

wT
k sk

wkw
T
k , (3.14)

where sk = xk+1 − xk, wk = ∇f(xk+1)−∇f(xk), and wT
k sk approximates the curvature of f along

pk.

The reduced-Hessian method of Gill and Leonard takes advantage of the implicit structure

of the quasi-Newton Hessian to compute search directions from a smaller search space. The method

is implemented in a limited-memory framework by limiting the number of basis vectors for the search

space. The gradient subspace defined as span
{
∇f(x0), ∇f(x1), . . . , ∇f(xk)

}
and denoted by Gk,

with G⊥k denoting the orthogonal complement of Gk in Rn. Reduced-Hessian methods are based on

the following result (see, e.g., Fletcher and Powell [32], Fenelon [27], and Siegel [81]).

81

Lemma 3.4.1. Consider the BFGS method applied to a general nonlinear function. If H0 = σI

(σ > 0) and Hkpk = −∇f(xk), then pk ∈ Gk for all k. Moreover, if z ∈ Gk and y ∈ G⊥k , then

Hkz ∈ Gk and Hky = σy.

If rk denotes the dimension of Gk, let Zk be an n× rk matrix whose columns form an or-

thonormal basis for Gk. Given an (n−rk)×n orthonormal basis Yk for G⊥k , the matrixQk =
(
Zk Yk

)
defines an orthogonal transformation x 7→ Qkx. The transformed gradient and approximate Hes-

sian are then given by QT
k∇f(xk) and QT

kHkQk, respectively. If H0 = σI (σ > 0), it follows from

Lemma 3.4.1 that the transformation induces a block-diagonal structure, with

QT
kHkQk =

(
ZT
k HkZk 0

0 σIn−rk

)
and QT

k∇f(xk) =

(
ZT
k ∇f(xk)

0

)
. (3.15)

The matrix ZT
k HkZk is positive-definite and is known as the approximate reduced Hessian (or

just reduced Hessian). The vector ZT
k ∇f(xk) is known as the reduced gradient. If the equation

Hkpk = −∇f(xk) for the search direction is written as (QT
kHkQk)Q

T
k pk = −QT

k∇f(xk), then it

follows from (3.15) that

pk = Zkqk, where qk satisfies ZT
k HkZkqk = −ZT

k ∇f(xk). (3.16)

The matrices Zk and ZT
k HkZk may be used to reconstruct Hk, which need not be stored explicitly.

In particular, it satisfies that

Hk = QkQ
T
kHkQkQ

T
k

=
(
Zk Yk

)(ZT
k HkZk 0

0 σIn−rk

)(
ZT
k

Y T
k

)
= Zk(Z

T
k HkZk)Z

T
k + σ(I − ZkZ

T
k).

(3.17)

If Bk is an n × rk matrix with columns that form a basis for Gk, an orthonormal basis Zk can

be defined in terms of the economy-size QR decomposition Bk = ZkTk, where Tk is a nonsingular

rk×rk upper-triangular matrix. In practice, Zk can be stored explicitly along with Tk, or implicitly

by storing only Bk and Tk, with computations involving Zk utilizing Zk = BkT
−1
k . If the Cholesky

factorization ZT
k HkZk = RT

k Rk is known, qk can be computed from the forward substitution

RT
k dk = −ZT

k ∇f(xk) and back-substitution Rkqk = dk.

The dimension of ZT
k HkZk is limited by discarding the oldest basis vector when the number

of basis vectors exceeds some predefined limit m. Assume for the moment that the gradients in

82

the sequence span
{
∇f(x0), ∇f(x1), . . . , ∇f(xk)

}
are linearly independent. Lemma 3.4.1 implies

that the search direction pk lies in Gk for all k. Siegel [81] proposed that a subset of
{
pk
}

be used

to form a basis for Gk instead of
{
∇f(xk)

}
and showed that this modification endows the method

with finite termination on a strictly convex quadratic function. Consider any iteration k such that

1 ≤ k ≤ m− 1. At the start of the iteration, the directions p0, . . . , pk−1 are known, but pk has yet

to be computed from equations (3.16) that use Zk. This implies that it is not possible to use pk
as part of Bk. Nevertheless, Gk is spanned by both the gradients and the search directions, which

means that the latest gradient ∇f(xk) can be used as a temporary basis vector until pk has been

computed, at which point it can be swapped with ∇f(xk). The swap does not change Zk, but the

last column of Tk is replaced by the vector qk = ZT
k pk found as part of the computation of pk in

(3.16). If ∇f(xk+1) is accepted after the line search, it is added to the basis and the QR factors are

updated as in (3.18). This update expands the reduced Hessian by a row and column (see (3.19)),

and the last diagonal is reinitialized with σk = wT
k wk/w

T
k sk.

If k ≥ m − 1, the addition of ∇f(xk+1) gives a basis with m + 1 columns and the oldest

column pk−m+1 must be removed before starting iteration k + 1. The factors Zk+1 and Tk+1

associated with the next basis Bk+1 =
(
pk−m+2 · · · pk ∇f(xk+1)

)
are updated using two sets

of plane rotations applied on the right of the orthogonal factor and left of the triangular factor of(
pk−m+1 · · · pk ∇f(xk+1)

)
. Further details of the methods for updating the QR and Cholesky

factors when a column is removed from the basis are given by Gill and Leonard [47].

During the k-th iteration of L-RHR, the number of columns in Bk (and Zk) can either

remain unchanged or increase by one, depending on whether or not the new gradient ∇f(xk+1) lies

in Gk. This is determined from the value of the scalar ρk+1 such that ρk+1 = ∥(I−ZkZ
T
k)∇f(xk+1)∥.

If ρk+1 = 0, then ∇f(xk+1) ∈ Gk and ∇f(xk+1) is said to be rejected. The matrix factors for the

next iteration remain unchanged. Otherwise, rk+1 = rk +1 and ∇f(xk+1) is said to be accepted. In

this case, Bk is augmented by a new column ∇f(xk+1), and the matrix factors of Bk+1 are given

by

Bk+1 =
(
Bk ∇f(xk+1)

)
=
(
Zk zk+1

)(Tk ZT
k ∇f(xk+1)

0 ρk+1

)
= Zk+1Tk+1, (3.18)

where zk+1 is defined by the identity ρk+1zk+1 = (I − ZkZ
T
k)∇f(xk+1). Note that Tk+1 is nonsin-

gular as ρk+1 ̸= 0. The Cholesky factor Rk is updated by adding a row and column to account for

83

the new last column of Zk+1. It follows from Lemmas 3.4.1 and (3.15) that

ZT
k+1HkZk+1 =

 ZT
k HkZk ZT

k Hkzk+1

zTk+1HkZk zTk+1Hkzk+1

 =

ZT
k HkZk 0

0 σ

 , (3.19)

giving the expanded block-diagonal factor

R
(1)
k =

(
Rk 0

0 σ1/2

)
.

If ∇f(xk+1) is rejected, then rk+1 = rk and R(1)
k = Rk.

In addition, the factor Rk+1 is computed by modifying R(1)
k to reflect the rank-two BFGS

update to ZT
k+1HkZk+1 resulting from the rank-two update to Hk defined in (3.14). Let s = ZT

k+1sk

and y = ZT
k+1wk. If u = R

(1)
k s/∥R(1)

k s∥ and v = y/
√
yTs−R(1)T

k u, then it may be verified by direct

multiplication that

ZT
k+1Hk+1Zk+1 = (R

(1)
k + uvT)T(R

(1)
k + uvT).

Two sets of plane rotations can be applied to restore R(1)
k + uvT to upper-triangular form. The

first, S1, is the product of plane rotations P1,2P1,3 · · ·P1,rk that zero out components 2 through rk
of u, i.e., S1u = γe1, with γ = ±∥u∥. The application of S1 to R(1)

k + uvT gives

S1(R
(1)
k + uvT) = S1R

(1)
k + γe1v

T. (3.20)

By construction, S1 applied to R(1)
k results in an upper-Hessenberg matrix. As γe1vT is a matrix

with only nonzeros in its first row, the right-hand side of (3.20) is also upper-Hessenberg. A second

set of plane rotations S2 is then defined such that R(2)
k = S2S1R2, where S2 = P ′

1,2P
′
2,3 · · ·P ′

rk−1,rk
.

The resulting matrix R
(2)
k is the upper-triangular factor of ZT

k+1Hk+1Zk+1. For more details, see

Dennis and Schnabel [20], and Gill and Leonard [47]).

In finite-precision arithmetic, the use of the economy QR factorization instead of the full

QR may cause a loss of orthogonality in Zk as columns are added to the basis. When a gradient is

accepted, the new column is computed as zk+1 = vk+1/ρk+1, where vk+1 = (I−ZkZ
T
k)∇f(xk+1) and

ρk+1 = ∥vk+1∥. This choice of zk+1 is designed to force ZT
k vk+1 to be small relative to ∥∇f(xk+1)∥.

However, if ρk+1 is small and ∥ZT
k vk+1∥ = ϵ∥∇f(xk+1)∥ for some small ϵ, then the normalized

vector zk+1 = vk+1/ρk+1 would satisfy only ∥ZT
k zk+1∥ = ϵ∥∇f(xk+1)∥/ρk+1. In this situation, the

error relative to ∥∇f(xk+1)∥ may be very large, resulting in a significant loss of orthogonality in

84

the computed zk+1. To rectify this loss of orthogonality, Daniel, Gragg, Kaufman and Stewart [19]

propose a reorthogonalization scheme. If ∥vk+1∥/∥∇f(xk+1)∥ is small, then vk+1 is refined using

the scheme

v′k+1 = (I − ZkZ
T
k)vk+1.

If ∥v′k+1∥/∥vk+1∥ is not too small, then v′k+1 can be scaled to provide a satisfactory update to Zk+1.

Otherwise, the process is repeated.

The initial approximate Hessian can greatly influence the practical performance of quasi-

Newton methods. A choice of H0 = σI, with some arbitrary positive σ can result in poor per-

formance, especially when ∇2f(x∗) is ill-conditioned. Moreover, equation (3.15) reveals that σ

represents the approximate curvature along all directions in G⊥k . To enhance the performance of

L-RHR, Hessian reinitialization is applied to “reset” the approximate Hessian matrix with current

curvature information. When a new gradient is accepted, the reduced Hessian is expanded with σk
rather than σ in equation (3.19). Gill and Leonard [47] use σk = wT

k wk/w
T
k sk in L-RHR.

3.4.2 UBOPT: an L-RHR method for bound constraints

The new algorithm UBOPT is introduced in this section as an extension of the algorithm L-

RHR for solving problem (BC). Given an initial x0 ∈ Ω, the sequence of iterates
{
xk
}

is generated

as described in Algorithm 3, with the search direction pk computed in terms of a descent direction

dk that is determined by solving the following subproblem:

minimize
d

∇f(xk)Td+ 1
2d

THkd subject to di = 0 for all i ∈ Wk, (3.21)

where Hk is a positive-definite limited-memory BFGS approximation of ∇2f(xk), and Wk is the

working set defined as in (3.5). The matrix Hk is maintained in reduced-Hessian form and is not

stored explicitly.

The complement of Wk in
{
1, 2, . . . , n

}
is denoted by Fk, which may be regarded as the

set of indices of the variables that are free to move at xk. Let Πk denote a matrix with orthonormal

columns that span the set of projected directions with respect to the working setWk. The columns

of Πk can be taken as the columns of the identity matrix of order n associated with the indices in

Fk. If dk is the solution of (3.21), then it satisfies that

ΠT
k Hkdk = −ΠT

k ∇f(xk).

85

A result analogous to Lemma 3.4.1 can be proved for the bound-constrained case.

Lemma 3.4.2. Let dk be the unique solution of (3.21), and let

Sk = span
{
{ΠkΠ

T
k ∇f(xj) : j = 0, . . . , k} ∪ {ΠkΠ

T
k Hjsj : j = 0, . . . , k − 1}

}
,

where sj = xj+1−xj for each j. If H0 = σI, then dk ∈ Sk. Moreover, if z ∈ Sk, then ΠkΠ
T
k Hkz ∈

Sk; if y ∈ ΠkΠ
T
k S⊥k , then Hky = σy.

Proof. Recall the BFGS update formula

Hk+1 = Hk −
1

sTkHksk
Hksks

T
kHk +

1

wT
k sk

wkw
T
k ,

where sk = xk+1 − xk, and wk = ∇f(xk+1)−∇f(xk). It follows that

Hk = H0 −
k−1∑
j=0

(
1

sTj Hjsj
Hjsjs

T
j Hj −

1

wT
j sj

wjw
T
j

)
. (3.22)

If H0 = σI, then

dk =ΠkΠ
T
k dk

=
1

σ
ΠkΠ

T
k H0dk

=
1

σ

ΠkΠ
T
k Hkdk +

k−1∑
j=0

(
sTj Hjdk
sTj Hjsj

ΠkΠ
T
k Hjsj −

wT
j dk

wT
j sj

ΠkΠ
T
k wj

)
=

1

σ

−ΠkΠ
T
k ∇f(xk) +

k−1∑
j=0

(
sTj Hjdk
sTj Hjsj

ΠkΠ
T
k Hjsj −

wT
j dk

wT
j sj

ΠkΠ
T
k wj

) .
Therefore, dk ∈ Sk. It follows from (3.22) that, if z ∈ Sk, then ΠkΠ

T
k Hkz ∈ Sk; and if y ∈

ΠkΠ
T
k S⊥k , then Hky = HkΠkΠ

T
k y = σy.

It is worth noting that, in the case when the search direction is not bent during the

line search, i.e. sk = αkpk, then the vector ΠkΠ
T
k Hksk is parallel to the projected gradient

ΠkΠ
T
k ∇f(xk).

As described in the previous section, the L-RHR method for unconstrained optimization

86

computes a search direction pk that lies within a subspace

Ḡk △
= span {pl, · · · , pk−1,∇f(xk)} , with l = max{0, k −m+ 1}.

For bound-constrained optimization, the computation of the search directions is based on the pro-

jected gradients. Additionally, to improve practical efficiency, the strategy proposed by Siegel [81]

that swaps the search direction with the gradient is incorporated as in the unconstrained case.

Thus, a descent direction dk is computed as an approximate solution of the subproblem (3.21) that

lies within the projected subspace

Gk △
= span

{
ΠkΠ

T
k pl, · · · , ΠkΠ

T
k pk−1, ΠkΠ

T
k ∇f(xk)

}
, with l = max{0, k −m+ 1}.

The search direction pk is then determined by modifying dk as in Steps 7–8 of Algorithm 3. In the

following discussion, let B̄k denote a matrix whose columns form a basis of Ḡk. Similarly, let Bk

denote a matrix whose columns form a basis of Gk, and an orthonormal basis Zk is defined in terms

of the economy-size QR decomposition Bk = ZkTk, with Tk a nonsingular upper-triangular matrix.

The vector dk is computed as dk = Zkq, where q is the solution of the symmetric positive-

definite equations

ZT
k HkZkq = −ZT

k ∇f(xk).

Note that Bk is the matrix B̄k with zeros in the rows corresponding to indices in the current working

set. The search direction may be computed efficiently by using a Cholesky factor of the “projected”

reduced Hessian matrix RT
k Rk = ZT

k HkZk.

Once dk has been computed, the search direction pk is derived as described in Algorithm 3,

and then the next iterate xk+1 is found using the quasi-Wolfe search described in Section 3.2. The

associated working set Wk is then updated and the projected matrix factors Bk, Zk, and Tk are

modified to reflect the changes in the working set. If the projected gradient at xk+1 contains

components outside of range(Zk), then it can be added to the basis. If the value of the scalar

ρ = ∥
(
I − ZkZ

T
k

)
∇f(xk+1)∥ is zero, then the new gradient lies in Gk and ∇f(xk+1) is rejected for

inclusion in Ḡk. In this case, no further updates to the factors of Bk are needed. Otherwise, the

dimension of G increases by one and the gradient ∇f(xk+1) is accepted. In this case, B̄k gains a

new column and the change must be incorporated in the QR factors of Bk analogous to (3.18). The

matrix updates associated with changes in the working set and the basis are based on the work of

Daniel et al. [19] and are omitted here; for a detailed description, see [30, Section 5].

The convergence of a projected-search active-set method has been established in Theo-

87

rem 3.3.2. Moreover, if the eigenvalues of the projected approximate Hessian are uniformly bounded,

then the projected gradient converges to zero as shown in the theorem below.

Theorem 3.4.1. Let
{
xk
}

be a sequence of iterates generated by Algorithm UBOPT. In addition

to assumptions of Theorem 3.3.2, if there exist a constants γ such that every eigenvalue of the

projected approximate Hessian satisfies

0 < λ(ΠT
k HkΠk) ≤ γ <∞

for all k, where Πk is a matrix with orthonormal columns that spans the set of projected directions

with respect to the working set Wk(xk), then

lim
k→∞

∥ΠT
k ∇f(xk)∥ = 0.

Proof. Let dk denote the approximate solution to the subproblem (3.21) within the subspace

spanned by columns of ΠkΠ
T
k Bk, and let Zk be the orthogonal factor of the thin QR decomposition

of ΠkΠ
T
k Bk. Then

|∇f(xk)Tdk| = |∇f(xk)TZk(Z
T
k HkZk)

−1ZT
k ∇f(xk)| ≥ ∥ZT

k ∇f(xk)∥2/λmax(Π
T
k HkΠk),

for all k, where λmax(Π
T
k HkΠk) represents the largest eigenvalue of the projected approximate Hes-

sian. As represents the largest eigenvalue of the projected approximate Hessian. As ΠkΠ
T
k ∇f(xk)

lies in the column space of Zk,

∥ZT
k ∇f(xk)∥ = ∥ZT

k ΠkΠ
T
k ∇f(xk)∥ = ∥ΠkΠ

T
k ∇f(xk)∥ = ∥ΠT

k ∇f(xk)∥.

It follows that

|∇f(xk)Tdk| ≥ ∥ΠT
k ∇f(xk)∥2/λmax(Π

T
k HkΠk) ≥ ∥ΠT

k ∇f(xk)∥2/γ.

Then

0 = lim
k→∞

|∇f(xk)Tpk| ≥ lim
k→∞

|∇f(xk)Tdk| ≥ lim
k→∞

∥ΠT
k ∇f(xk)∥2/γ.

Therefore,

lim
k→∞

∥ΠT
k ∇f(xk)∥ = 0.

88

Furthermore, it is stated in Theorem 3.3.3 that, if the sequence of iterates
{
xk
}

converges

to a nondegenrate stationary point, then the optimal active set can be identified with a finite number

of iterations, i.e., UBOPT will eventually reduce to the L-RHR for the unconstrained minimization

with respect to the inactive variables. Therefore, Algorithm UBOPT eventually has the same

convergence properties as L-RHR.

3.5 Projected-Search Interior Methods

3.5.1 The general framework

A typical interior method for problem (BC) is based on minimizing a sequence of uncon-

strained functions M(v ;µ) parameterized by a positive scalar µ. In general, the function M(v ;µ)

is either not defined or unbounded for some values of the variables, which implies that the v are

subject to implicit bound constraints during the minimization. It follows that for a given µ, the

problem to be solved has the general form

minimize
v∈Rnv

M(v ;µ) subject to v ∈ Ω, (IPBC)

where Ω =
{
x ∈ Rn : ℓv < v < uv

}
, with ℓv and uv fixed nv-vectors of lower and upper bounds

on v. Such a function M(v ;µ) typically has the property that if v approaches the boundary of Ω,

the value of the function becomes +∞ (see Section 2.2). For example, in the case of the classical

logarithmic barrier method, the function M(v ;µ) is given by

f(x)−
n∑

j=1

µ ln
(
xj − ℓj

)
−

n∑
j=1

µ ln
(
uj − xj

)
,

so that v = x and the implicit bounds are ℓ < x < u.

The proposed projected-search line-search method for problem (IPBC) generates a se-

quence of feasible iterates
{
vk
}∞
k=0

such that vk+1 = projΩk
(vk +αk∆vk), where ∆vk is a descent

direction for M(v ;µ), αk is a quasi-Wolfe step, and projΩk
(v) is the projection of v onto the

perturbed feasible region

Ωk =
{
v : vk − σ(vk − ℓv) ≤ v ≤ vk + σ(uv − vk)

}
, (3.23)

where σ a fixed positive scalar such that 0 < σ < 1. The quantity σ may be interpreted as the

“fraction to the boundary” parameter used in many conventional interior methods.

89

It is worth mentioning that, although this chapter concerns bound-constrained problems

only, the framework of projected-search interior methods proposed here may also be applied to

general nonlinearly constrained problems given an appropriate merit function M(v ;µ). Projected-

search interior methods have the potential of requiring fewer iterations than a conventional interior

method, thereby reducing the number of times that a search direction need be computed. Section 5.2

gives numerical results for a primal-dual projected-search interior method based on the method of

Forsgren and Gill [34].

3.5.2 Convergence analysis

In this section, the convergence properties of the class of projected-search interior methods

are established. As the parameter µ is fixed in problem (IPBC), the notation can be simplified by

writing M(v) = M(v ;µ). The projected search is performed on the univariate function ψk(α) =

M
(
projΩk

(vk + αk∆vk)
)
.

Theorem 3.5.1 (Interior projected search with a quasi-Armijo search). Let M(v) be a continuously

differentiable function defined on Ω such that M(v) → ∞ as v approaches the boundary of Ω.

Assume that v0 ∈ Ω is chosen such that the level set L
(
M(v0)

)
is bounded, and

{
vk
}

is defined by

vk+1 = projΩk
(vk + αk∆vk), where projΩk

(v) is the projection of v onto the set

Ωk =
{
v : vk − σ(vk − ℓv) ≤ v ≤ vk + σ(uv − vk)

}
,

with σ a fixed positive scalar such that 0 < σ < 1, ∆vk is a descent direction, and αk is a quasi-

Armijo step. Also assume that ∥∆vk∥ ≤ θ for some constant θ independent of k Then

lim
k→∞

|∇M(vk)
T∆vk| = 0.

Proof. Observe that the quasi-Armijo condition implies that
{
M(vk)

}
is a strictly decreasing

sequence. As the set L
(
M(v0)

)
is bounded, it follows that

{
M(vk)

}
converges, with

0 = lim
k→∞

M(vk)−M(vk+1) ≥ lim
k→∞

αkηA|∇M(vk)
T∆vk| = 0.

The proof is by contradiction. Suppose that |∇M(vk)
T∆vk| ̸→ 0 as k → ∞, then there

must exist some ϵ̄ > 0 such that |∇M(vk)
T∆vk| > ϵ̄ infinitely often. Let G =

{
k : |∇M(vk)

T∆vk| >
ϵ̄
}
, then αk → 0 for k ∈ G. Let γ = infv∈L(M(v0)),i

{
vi− ℓi, ui− vi

}
. By the continuity of M(v) in

Ω, the level set L(M(v0)) is closed. Hence, L(M(v0)) is a compact subset of the open set Ω, which

90

implies that γ > 0. By the quasi-Armijo condition, each vk lies in L(M(v0)). Therefore, for each i,

ui − [vk]i > γ, and [vk]i − li > γ for all k. For each k, define the step βk = αk/σ. As
{
∥∆vk∥

}
is

uniformly bounded by θ, there exists k̄ such that each componet of βk∆vk satisfies |[βk∆vk]i| < σγ

for all k ≥ k̄ in G. It follows that vk+βk∆vk ∈ Ωk, which implies projΩk
(vk+βk∆vk) = vk+βk∆vk.

Let Ḡ denote the indices k ≥ k̄ of iterations at which a reduction in the initial step length

was necessary, i.e., Ḡ =
{
k : tk > 0, k ∈ G, k ≥ k̄

}
. Since αk converges to zero, Ḡ must be an

infinite set. By definition of the quasi-Armijo step,

M(vk + βk∆vk) =M(projΩk
(vk + βk∆vk)) > M(vk) + βkηA∇M(vk)

T∆vk, for all k ∈ Ḡ.

Adding −βk∇M(vk)
T∆vk to both sides and rearranging gives

M(vk + βk∆vk)−M(vk)− βk∇M(vk)
T∆vk > −βk(1− ηA)∇M(vk)

T∆vk

> βk(1− ηA)ϵ̄, for all k ∈ Ḡ. (3.24)

The Taylor expansion of M(vk + βk∆vk) gives

M(vk+βk∆vk)−M(vk)−βk∇M(vk)
T∆vk = βk

∫ 1

0

(
∇M(vk+τβk∆vk)−∇M(vk)

)
T∆vk dτ. (3.25)

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥v∥D = maxv ̸=0 |vTv|/∥v∥, then

∣∣(∇M(vk + τβk∆vk)−∇M(vk)
)
T∆vk

∣∣ ≤ ∥∇M(vk + τβk∆vk)−∇M(vk)∥D∥∆vk∥.

If this inequality is substituted in (3.25), it then follows from (3.24) that

(1− ηA)ϵ̄ <

∫ 1

0

(
∇M(vk + τβk∆vk)−∇M(vk)

)
T∆vk dτ

≤ max
0≤τ≤1

∥∇M(vk + τβk∆vk)−∇M(vk)∥D∥∆vk∥, for all k ∈ Ḡ.

The continuity of ∇M implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

∥∇M(vk + τβk∆vk)−∇M(vk)∥D = ∥∇M(vk + τk∆vk)−∇M(vk)∥D.

Then

(1− ηA)ϵ̄ < ∥∇M(vk + τk∆vk)−∇M(vk)∥D∥∆vk∥. (3.26)

91

However, αk∆vk → 0 implies τk∆vk → 0 for k ∈ G, and the continuity of ∇M gives

∥∇M(vk + τk∆vk)−∇M(vk)∥D → 0.

As
{
∥∆vk∥

}
is uniformly bounded above by θ, the right-hand side of (3.26) converges to zero,

which gives the required contradiction.

Theorem 3.5.2 (Interior projected search with a quasi-Wolfe search). Let M(v) be a continuously

differentiable function defined on Ω such that M(v) → ∞ as v approaches the boundary of Ω.

Assume that v0 ∈ Ω is chosen such that the level set L
(
M(v0)

)
is bounded, and

{
vk
}

is defined by

vk+1 = projΩk
(vk + αk∆vk), where projΩk

(v) is the projection of v onto the set

Ωk =
{
v : vk − σ(vk − ℓv) ≤ v ≤ vk + σ(uv − vk)

}
,

with σ a fixed positive scalar such that 0 < σ < 1, ∆vk is a descent direction, and αk is a quasi-Wolfe

step. Also assume that ∥∆vk∥ ≤ θ for some constant θ independent of k Then

lim
k→∞

|∇M(vk)
T∆vk| = 0.

Proof. The first quasi-Wolfe condition (C1) is equivalent to the quasi-Armijo condition, and the

arguments in the proof of Theorem 3.5.1 may be used to show that
{
M(vk)

}
is a convergent

sequence. This implies that

lim
k→∞

αk∇M(vk)
T∆vk = 0.

The proof is by contradiction. Suppose that |∇M(vk)
T∆vk| ̸→ 0 as k →∞, then there exists some

ϵ̄ > 0 such that |∇M(vk)
T∆vk| > ϵ̄ infinitely often. Let G =

{
k : |∇M(vk)

T∆vk| > ϵ̄
}
, then it

must be that αk → 0 for k ∈ G. As
{
∥∆vk∥

}
is uniformly bounded above by θ, αk∆vk → 0 for

k ∈ G.
If the quasi-Wolfe condition (C2) is satisfied, then

∇M
(
vk(αk)

)
TPvk(αk)(∆vk) ≥ −ηW |∇M(vk)

T∆vk|.

Similarly, if the quasi-Wolfe condition (C4) is satisfied, then

∇M
(
vk(αk)

)
TPvk(αk)(∆vk) ≥ 0 ≥ −ηW |∇M(vk)

T∆vk|.

92

In either case, as ∇M(vk)
T∆vk < 0, it must hold that

∇M
(
vk(αk)

)
TPvk(αk)(∆vk)−∇M(vk)

T∆vk ≥ (1− ηW)|∇M(vk)
T∆vk| > (1− ηW)ϵ̄

for k ∈ G. The application of the triangle inequality yields

0 < (1− ηW)ϵ̄ <
∣∣∇M(vk(αk)

)
TPvk(αk)(∆vk)−∇M(vk)

T∆vk
∣∣

≤
∣∣∇M(vk(αk)

)
TPvk(αk)(∆vk)−∇M(vk)

TPvk(αk)(∆vk)
∣∣

+
∣∣∇M(vk)

TPvk(αk)(∆vk)−∇M(vk)
T∆vk

∣∣ . (3.27)

Let ∥ · ∥D denote the norm dual to ∥ · ∥, then

∣∣∇M(vk(αk)
)
TPvk(αk)(vk)−∇M(vk)

TPvk(αk)(∆vk)
∣∣

≤ ∥∇M
(
vk(αk)

)
−∇M(vk)∥D∥Pvk(αk)(∆vk)∥ ≤ ∥∇M

(
vk(αk)

)
−∇M(vk)∥D∥∆vk∥.

As ∇M is continuous and ∥∆vk∥ is uniformly bounded, the right-hand side of this inequality must

converge to zero for k ∈ G, which implies that∣∣∣∇M(vk(αk)
)T
Pvk(αk)(∆vk)−∇M(vk)

TPvk(αk)(∆vk)
∣∣∣→ 0, for k ∈ G.

Basic norm inequalities give

∣∣∇M(vk)
TPvk(αk)(∆vk)−∇M(vk)

T∆vk
∣∣ ≤ ∥∇M(vk)∥D∥Pvk(αk)(∆vk)−∆vk∥

= ∥∇M(vk)∥D∥Pvk(αk)(∆vk)− Pvk(∆vk)∥.

Let γ = infv∈L(M(v0)),i

{
vi − ℓi, ui − vi

}
. By the same arguments in the proof of Theorem 3.5.1,

γ > 0, and for each i, ui − [vk]i > γ, and [vk]i − li > γ for all k. Therefore, for k ∈ G sufficiently

large such that each component [αk∆vk]i < σγ,

Pvk(αk)(∆vk) = Pvk(∆vk) = ∆vk.

Therefore,

∥∇M(vk)∥D∥Pvk(αk)(∆vk)− Pvk(∆vk)∥ → 0, for k ∈ G,

93

and consequently

∣∣∇M(vk)
TPvk(αk)(∆vk)−∇M(vk)

T∆vk
∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (3.27) converges to zero for k ∈ G, which gives the required

contradiction.

It remains to consider the case where the quasi-Wolfe condition (C3) is satisfied, i.e.,

∇M
(
vk(αk)

)
TP−

vk(αk)
(∆vk) ≥ −ηW |∇M(vk)

T∆vk|.

The assumption that ∇M(vk)
T∆vk < 0 gives

∇M
(
vk(αk)

)
TP−

vk(αk)
(∆vk)−∇M(vk)

T∆vk ≥ (1− ηW)|∇M(vk)
T∆vk| > (1− ηW)ϵ̄

for k ∈ G, which implies that

0 < (1− ηW)ϵ̄ <
∣∣∣∇M(vk(αk)

)
TP−

vk(αk)
(∆vk)−∇M(vk)

T∆vk

∣∣∣
≤
∣∣∣∇M(vk(αk)

)
TP−

vk(αk)
(∆vk)−∇M(vk)

TP−
vk(αk)

(∆vk)
∣∣∣

+
∣∣∣∇M(vk)

TP−
vk(αk)

(∆vk)−∇M(vk)
T∆vk

∣∣∣ . (3.28)

The definition of the dual norm yields

∣∣∣∇M(vk(αk)
)
TP−

vk(αk)
(∆vk)−∇M(vk)

TP−
vk(αk)

(∆vk)
∣∣∣

≤ ∥∇M
(
∆vk(αk)

)
−∇M(vk)∥D∥P−

vk(αk)
(∆vk)∥ ≤ ∥∇M

(
vk(αk)

)
−∇M(vk)∥D∥∆vk∥.

From the continuity of ∇M and uniform boundedness of ∥∆vk∥, the right-hand side of the above

inequality converges to zero for k ∈ G, which means that∣∣∣∇M(vk(αk)
)
TP−

vk(αk)
(∆vk)−∇M(vk)

TP−
vk(αk)

(∆vk)
∣∣∣→ 0, for k ∈ G.

Also, ∣∣∣∇M(vk)
TP−

vk(αk)
(∆vk)−∇M(vk)

T∆vk

∣∣∣ ≤ ∥∇M(vk)∥D∥P−
vk(αk)

(∆vk)−∆vk∥

= ∥∇M(vk)∥D∥P−
vk(αk)

(∆vk)− Pvk(∆vk)∥.

94

As ∥vk(αk) − vk∥ ≤ ∥αk∆vk∥ → 0 for k ∈ G, arguments analogous to those used to establish

convergence in cases (C2) and (C4) give

P−
vk(αk)

(∆vk) = Pvk(∆vk) = ∆vk for k ∈ G sufficiently large,

in which case

∥∇M(vk)∥D∥P−
vk(αk)

(∆vk)− Pvk(∆vk)∥ → 0, for k ∈ G.

This implies that ∣∣∣∇M(vk)
TP−

vk(αk)
(∆vk)−∇M(vk)

T∆vk

∣∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (3.28) converges to zero for k ∈ G, which gives the required

contradiction.

Chapter 3, as well as the numerical results in Sections 5.1–5.2, is partially a reprint of the

paper "Projected-search methods for bound-constrained optimization" by Michael W. Ferry, Philip

E. Gill, Elizabeth Wong, and Minxin Zhang, available on arXiv:2110.08359 [math.OC]. Manuscript

submitted for publication, 2021. The dissertation author served as the primary investigator and au-

thor of the paper. Additionally, Section 3.4 partially reprints the paper by Michael W. Ferry, Philip

E. Gill, Elizabeth Wong, and Minxin Zhang, titled "A limited-memory reduced-Hessian method

for bound-constrained optimization." Center for Computational Mathematics Report CCoM 21-01,

Center for Computational Mathematics, University of California San Diego, La Jolla, CA, 2021.

The dissertation author was the primary author of the content.

95

Chapter 4

A Projected-Search Interior Method

for Nonlinear Optimization

4.1 Introduction

This chapter concerns the formulation and analysis of a new primal-dual interior method

for solving nonlinear optimization problems of the form

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0, (NIPs)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. (The slack variables s

serve to convert the inequalities c(x) ≥ 0 into a mixture of equalities and inequalities that do not

require the need to know an initial point for which c is strictly positive.)

In [46], Gill, Kungurtsev and Robinson propose an algorithm for (NIPs) based on using

a shifted primal-dual penalty-barrier function as a merit function for a primal-dual path-following

method. This function involves a primal-dual shifted penalty term for the equality constraints

c(x) − s = 0 and an analogous primal-dual shifted barrier term for the inequalities s ≥ 0. It is

shown that a specific approximate Newton method for the unconstrained minimization of the merit

function generates search directions that are identical to those associated with a variant of the

conventional path-following method in which the perturbation of the complementarity condition

does not need to go to zero.

The proposed method is based on a newly formulated merit function that includes shifts for

96

the dual variables as well as the slack variables s. (For problems with a mixture of upper and lower

bounds on x and s, the method may be regarded as shifting both the primal and dual variables,

see Appendix A.) Shifts on the dual variables allow the method to be safely “warm started” from

a good approximate solution and eliminates the ill-conditioning of the associated linear equations

that may occur when the dual variables are close to zero.

The shifted primal-dual penalty-barrier function includes logarithmic barrier terms that

create a singularity at the boundary of the primal-dual shifted feasible region, which implies that

the variables are subject to implicit bound constraints during the minimization. A novel projected-

search method is designed for the minimization of the all-shifted penalty-barrier function, which

employs a flexible non-monotone quasi-Armijo line search. Unlike conventional interior methods,

projected-search interior methods project the underlying search direction onto a subset of the

feasible region defined by perturbing the bounds. With this approach the direction of the search

path may change multiple times along the boundary of the perturbed feasible region at the cost

of computing a single direction. Projected-search interior methods have the potential of requiring

fewer iterations than a conventional interior method, thereby reducing the number of times that a

search direction must be computed.

The projected-search method generates a sequence of feasible iterates {vk}∞k=0 such that

vk+1 = projΩk
(vk + αk∆vk), where projΩk

(v) is the projection of the vector v of primal-dual

variables onto a perturbed feasible region Ωk. Under mild assumptions, it is shown that there

exists a limit point of the computed iterates that is either an infeasible stationary point, or a

complementary approximate Karush-Kuhn-Tucker point (KKT), i.e., it satisfies reasonable stopping

criteria and is a KKT point under a complementary approximate KKT regularity condition that is

weaker than MFCQ (see Andreani, Martínez, Ramos and Svaiter [1]).

The rest of the chapter is organized as follows. Section 4.2 reviews the method of Gill,

Kungurtsev and Robinson [46], which is based on minimizing a shifted primal-dual penalty-barrier

function. In the neighborhood of a solution, under suitable assumptions, the method is equivalent

to a variant of the primal-dual path-following method in which the slack variables are shifted. In

Section 4.3 this method is extended to include shifts on the dual variables as well as the slacks

to formulate an all-shifted primal-dual penalty-barrier function. In Section 4.4, a projected-search

algorithm is proposed for minimizing the all-shifted primal-dual penalty-barrier function for fixed

penalty and barrier parameters. The convergence of this algorithm is established under certain

assumptions. Section 4.5 presents an algorithm for solving problem (NIPs) that builds upon the

work from Section 4.4. Global convergence results of the algorithm are also established.

97

4.2 Background: A Primal-Dual Method Based on Shifting

the Slacks

Given an appropriate constraint qualification, the first-order optimality conditions for

problem (NIPs) are given by

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = 0, s ≥ 0,

s · w = 0, w ≥ 0,

 (4.1)

where the vectors y and w constitute the Lagrange multipliers for the equality constraint c(x)−s = 0

and nonnegativity constraint s ≥ 0 respectively (see Theorem 2.2.7). Any point satisfying the

conditions (4.1) is called a first-order KKT point.

Primal-dual path-following methods generate a sequence of iterates that approximate a

continuous primal-dual path that passes through a solution of (NIPs). Points on this path satisfy

a system of nonlinear equations that represent the deviations from a perturbation of the first-order

optimality conditions (4.1). In a conventional path-following approach, the perturbed optimality

conditions correspond to replacing the equality constraints and complementarity conditions of (4.1)

by c(x) − s = µy and s · w = µe, where µ is a small positive parameter such that µ → 0. This

method is closely related to penalty-barrier methods for solving (NIPs). Under certain conditions

on f and c the continuous trajectory of penalty-barrier minimizers associated with a continuous

penalty-barrier parameter µ coincides with the primal-dual path.

In the neighborhood of a first-order KKT point, computing the search direction as the

solution of the Newton equations for a zero of the perturbed optimality conditions provides the

favorable local convergence rate associated with Newton’s method. Given the close connection with

penalty-barrier methods, solving the Newton equations provides an alternative to solving the ill-

conditioned equations associated with a conventional penalty-barrier method. In this context, the

penalty-barrier function may be regarded as a merit function for forcing convergence of the sequence

of Newton iterates of the path-following method. For examples of this approach, see Byrd, Hribar

and Nocedal [12], Wächter and Biegler [83], Forsgren and Gill [34], and Gertz and Gill [44].

When implemented with exact second derivatives, path-following interior methods often

converge in few iterations–even for very large problems. As the dimension and zero/nonzero struc-

ture of the Jacobian matrix remains fixed, the Newton equations may be solved efficiently using

advanced “off-the-shelf” linear algebra software. On the negative side, although conventional path-

98

following interior methods are very effective for solving “one-off” problems, they are difficult to adapt

to solving a sequence of related problems using so-called “warm starts”, i.e., using the solution of

one problem as an initial estimate of the solution of the next.

In a conventional path-following interior method, it is necessary to force µ→ 0 to ensure

that points near the path eventually satisfy the optimality conditions (4.1). However, if an aug-

mented Lagrangian method defined with multiplier estimate yE and penalty parameter µP is used

to minimize f(x) subject to c(x) = 0, then perturbed conditions of the form c(x) = µP (yE − y)
hold at a minimizer. It follows that µP need not go to zero if yE is chosen converge to the optimal

multipliers. Motivated by this observation, the method of Gill, Kungurtsev and Robinson [46] is

based on the perturbed optimality conditions

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP (yE − y), s ≥ 0,

s · w = µB(wE − w), w ≥ 0,

 (4.2)

where µP and µB are positive scalars and yE and wE denote estimates of the Lagrange multipliers

for the constraints c(x)− s = 0 and s ≥ 0, respectively. The perturbed complementarity condition

in (4.2) may be written in the form (s + µBe) · w = µBwE, which implies that if wE > 0 then

s + µBe > 0 and w > 0. Gill, Kungurtsev and Robinson show that an appropriate merit function

for a path-following interior method based on the conditions (4.2) is the shifted primal-dual penalty-

barrier function

M(x, s, y, w ; yE, wE, µP , µB) = f(x)− (c(x)− s)TyE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP (y − yE)∥2

−
m∑
i=1

µBwE

i ln
(
si + µB

)
−

m∑
i=1

µBwE

i ln
(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB).

In the neighborhood of a minimizer of (NIPs) satisfying certain second-order optimality conditions,

the Newton equations for a zero of the conditions (4.2) are equivalent to the Newton equations

for a minimizer of M . Under certain assumptions, a limit point of the iterates generated by the

algorithm may always be found that is either an infeasible stationary point or a complementary

approximate KKT point (see Andreani, Martínez and Svaiter [2]). The reader is referred to Gill,

Kungurtsev and Robinson [46] for more details.

99

In the following section, the Gill, Kungurtsev and Robinson algorithm is extended to

include shifts on the dual variables w as well as the slack variables s.

4.3 An All-Shifted Primal-Dual Penalty-Barrier Function

To include shifts for the dual variables, the following perturbed optimality conditions are

considered:
∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP (yE − y), s ≥ 0,

s · w = µB(wE − w) + µB(sE − s), w ≥ 0,

 (4.3)

where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraint c(x) − s = 0,

wE ∈ Rm is an estimate of a Lagrange multiplier for the constraint s ≥ 0, sE ∈ Rm is an estimate

of the optimal slacks, and µP and µB are positive scalars. The last equation of (4.3) may be written

in the form (s + µBe) · (w + µBe) = µB(sE + wE + µBe), which implies that if sE + wE + µBe > 0

then s+ µBe > 0 and w + µBe > 0. If F (x, s, y, w; sE, yE, wE, µP , µB) denotes the function

F (x, s, y, w ; sE, yE, wE, µP , µB) =


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP (y − yE)

s · w − µB(wE − w + sE − s)

 , (4.4)

then any point (x, s, y, w) that satisfies the perturbed optimality conditions (4.3) must satisfy F (x,

s, y, w ; sE, yE, wE, µP , µB) = 0. Let F (v) denote the function at a given point v = (x, s, y, w).

The Newton equations for the step ∆v are given by F ′(v)∆v = −F (v), i.e.,
H(x, y) 0 −J(x)T 0

0 0 Im −Im
J(x) −Im µP Im 0

0 W + µBIm 0 S + µBIm




∆x

∆s

∆y

∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP (y − yE)

s · w − µB(wE − w + sE − s)

 ,

(4.5)

where S and W denote diagonal matrices with diagonal entries si and wi such that si + µB > 0

and wi + µB > 0.

Next, a penalty-barrier function M needs to be formulated such that in a neighborhood

of a minimizer of M , the Newton equations for minimizing M approximate the Newton equations

100

(4.5). such that in a neighborhood of a minimizer of M , the Newton equations for minimizing M

approximate the Newton equations (4.5). Consider the shifted primal-dual penalty-barrier function

M(x, s, y, w ; sE, yE, wE, µP , µB) = f(x)︸︷︷︸
(A)

−(c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
∥c(x)− s∥2︸ ︷︷ ︸

(C)

+
1

2µP
∥c(x)− s+ µP (y − yE)∥2︸ ︷︷ ︸

(D)

−2
m∑
i=1

µB(wE

i + sEi + µB) ln(si + µB)︸ ︷︷ ︸
(E)

−
m∑
i=1

µB(wE

i + sEi + µB) ln(wi + µB)︸ ︷︷ ︸
(F)

+

m∑
i=1

wi(si + µB)︸ ︷︷ ︸
(G)

+2µB

m∑
i=1

si︸ ︷︷ ︸
(H)

.



(4.6)

Let SE denote the diagonal matrix with diagonal entries sEi . Similarly, let

SB = S + µBIm, SE

B = SE + µBIm and WB =W + µBIm.

Given the positive-definite matrices

DP = µP Im and DB = SBW
−1
B ,

and auxiliary vectors

πY (x) = yE − 1

µP
(c(x)− s) and πW (s) = µB(S + µBI)−1(wE − s+ sE),

101

the gradient ∇M may be written as

∇M =


∇f(x)− J(x)T

(
πY + (πY − y)

)
(πY − y) + (πY − πW) + (w − πW)

−DP (π
Y − y)

−DB(π
W − w)

 , (4.7)

and the Hessian ∇2M may be written in the form
H + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B W−1

B ΠW + µBS−1
B) −Im Im

J(x) −Im DP 0

0 Im 0 W−1
B (DBΠ

W + µBW−1
B SB)

 ,

(4.8)

where H = H
(
x, πY + (πY − y)

)
and ΠW = diag(πW).

At the start of iteration k, given the primal-dual iterate vk = (xk, sk, yk, wk), the search

direction ∆vk = (∆xk, ∆sk, ∆yk, ∆wk) is computed by solving the linear equations

HM

k ∆vk = −∇M(vk), (4.9)

where HM

k is a positive-definite approximation of ∇2M(xk, sk, yk, wk). The remainder of this

section focuses on the computation of the search direction for a single iteration, with the notation

simplified by omitting the subscript k. The matrix HM in the equations HM∆v = −∇M(v) is

defined by substituting y for πY , w for πW , s for sE and a symmetric matrix Ĥ for H in (4.8). This

gives

HM =


Ĥ + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B) −Im Im

J(x) −Im DP 0

0 Im 0 DB

 , (4.10)

where Ĥ is chosen such that Ĥ ≈ H(x, y) and HM is positive definite. A generalization of Theo-

rem 5.1 of Gill, Kungurtsev and Robinson [46] may be used to show that the choice Ĥ = H(x, y) is

allowed in the neighborhood of a solution satisfying certain second-order optimality conditions. The

approximate Newton equations (4.9) defined with HM from (4.10) are not solved directly because

of the potential for numerical instability. Instead, an equivalent transformed system is solved based

102

on the transformation

UHM∆v = −U∇M(v), (4.11)

where U is a nonsingular matrix defined by

U =


Im 0 −2J(x)TD−1

P 0

0 Im 2D−1
P −2D−1

B

0 0 Im 0

0 0 0 W + µBIm

 . (4.12)

Upon multiplication and application of the identity WBDB = SB, the equations (4.11) may be

rewritten as
Ĥ 0 −J(x)T 0

0 0 Im −Im
J(x) −Im DP 0

0 W + µBIm 0 S + µBIm




∆x

∆s

∆y

∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP (y − yE)

s · w − µB(wE − w + sE − s)

 .

(4.13)

These equations are identical to the shifted path-following equations (4.5) when Ĥ = H(x, y). The

solution of (4.13) is given by

∆w = y − w +∆y and ∆s = −DB(y +∆y) + µBW−1
B (wE + sE − s),

where ∆x and ∆y satisfy the equations(
Ĥ J(x)T

J(x) −(DP +DB)

)(
∆x

−∆y

)
= −

(
∇f(x)− J(x)Ty

DP (y − πY) +DB(y − πW)

)
. (4.14)

The matrix HM in (4.10) is positive definite if Ĥ + J(x)T(DP +DB)
−1J(x) is positive definite or,

equivalently, if the (n +m) × (n +m) matrix associated with (4.14) has inertia (n,m, 0). If this

condition does not hold for Ĥ = H(x, y), a common choice of Ĥ is the matrix H(x, y) + δIn for

some positive scalar δ (see Section 5.3).

103

4.4 Minimizing the Merit Function using Projected Search

This section proposes a novel projected-search algorithm that utilizes a non-monotone

flexible quasi-Armijo line search for minimizing the merit function M(x, s, y, w ; sE, yE, wE, µP ,

µB) of (4.6) with fixed parameters sE, yE, wE, µP and µB. The flexible quasi-Armijo line search is a

generalization of the quasi-Armijo search that allows the acceptance of a step under a wider range of

conditions. The generalization uses the idea of flexible line search proposed by Curtis and Nocedal

[18], and also employs the relation between minimizing the merit function and finding a zero of

the shifted path-following function F (x, s, y, w ; sE, yE, wE, µP , µB) of (4.4). In this case, the nota-

tion is simplified by writing M(x, s, y, w ; sE, yE, wE, µP , µB) and F (x, s, y, w ; sE, yE, wE, µP , µB) as

M(v ;µP) and F (v ;µP), respectively.

4.4.1 The algorithm

For the merit function M(v ;µP) to be well-defined, the variables must satisfy the implicit

bounds s > −µBe, and w > −µBe. Thus, minimizing the merit function M(v ;µP) is equivalent to

solving the bound-constrained problem

minimize
v

M(v ;µP) subject to v > ℓ, (IPBC’)

with ℓ =
(
−∞,−µBe,−∞,−µBe

)
, where an entry of “−∞” is used to indicate that the associated

variable has no lower bound. Let projΩk
(v) be the projection of v onto the perturbed feasible

region

Ωk =
{
v : v ≥ min

{
vk − σ(vk − ℓ), 0

}}
, (4.15)

with σ a fixed positive scalar such that 0 < σ < 1. The quantity σ may be interpreted as the

“fraction to the boundary” parameter used in many conventional interior-point methods. The

proposed projected-search method for problem (IPBC’) is given in Algorithm 4. It generates a

sequence of feasible iterates {vk}∞k=0 such that vk+1 = projΩk
(vk + αk∆vk), where ∆vk is the

search direction computed as in Section 4.3, and αk is a step computed using a flexible quasi-

Armijo search.

To perform the flexible quasi-Armijo search, a line-search Armijo parameter µL is cho-

sen such that µL ≥ µP . At an iteration k, let ψk(α ;µ) and ϕk(α ;µ) denote the functions

M
(
projΩk

(vk + α∆vk) ;µ
)

and
∥∥F (projΩk

(vk + α∆vk) ;µ
)∥∥. A step αk is acceptable if all of

104

the three conditions

ψk(αk ;µ
P) < max

{
ψk(0 ;µ

P),Mmax

}
, (4.16a)

ψk(αk ;µ
L) < max

{
ψk(0 ;µ

L),Mmax

}
, and (4.16b)

ϕk(αk ;µ
P) ≤ ηF min

{
ϕk(0 ;µ

P), η
mk
F Fmax

}
(4.16c)

are satisfied, or

ψk(αk ;µ
F

k) ≤ ψk(0 ;µ
F

k) + αkηA∇M(vk ;µ
P)T∆vk, (4.16d)

for some value µF

k ∈ [µP , µL] and some positive ηF < 1. In these conditions, Mmax and Fmax

are large preassigned parameters and mk is the number of iterations prior to iteration k at which

(4.16a)–(4.16c) were satisfied. Any αk satisfying the conditions (4.16a)–(4.16c) or the condition

(4.16d) is classified as a flexible quasi-Armijo step. Alternatively, an αk that satisfies (4.16d) for

µF

k = µP is simply known as a quasi-Armijo step. The conditions (4.16a)–(4.16d) allow a step to

be accepted if either (4.16a)–(4.16c) holds, which implies that αk gives a sufficient decrease in the

norm of the shifted path-following function F (4.4), or (4.16d) holds, which implies that αk satisfies

a flexible variant of the quasi-Armijo condition for the minimization of M .

The convergence analysis in subsection 4.4.2 below establishes the convergence of Al-

gorithm 4 under typical assumptions. However, the ultimate purpose is to develop a practical

algorithm for the solution of problem (NIPs) that uses Algorithm 4 as a basis for minimizing the

underlying merit function. The slack-variable reset in Step 18 of Algorithm 4 plays a crucial role

in this more general algorithm for handling (locally) infeasible problems (see Lemma 4.5.5). Anal-

ogous slack-variable resets are used in Gill, Murray and Saunders [50], and Gill, Kungurtsev and

Robinson [46]. As defined in Step 17 of Algorithm 4, ŝk+1 is the unique minimizer, with respect

to s, of the sum of the terms (B), (C), (D), (G) and (H) in the definition of the function M . In

particular, it follows from Step 17 and Step 18 of Algorithm 4 that the value of sk+1 computed in

Step 18 satisfies

sk+1 ≥ ŝk+1 = c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
,

which implies, after rearrangement, that

c(xk+1)− sk+1 ≤ µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
. (4.17)

105

Algorithm 4 Minimizing M for fixed parameters sE, yE, wE, µP , µB and µL.

1: procedure merit-proj(x0, s0, y0, w0, s
E, wE, µP , µB, µL)

2: Restrictions: s0 + µBe > 0, w0 + µBe > 0, sE + wE + µBe > 0, µL ≥ µP > 0, µB > 0;
3: Constants:

{
ηA, γA, ηF

}
∈ (0, 1);

4: Set v0 ← (x0, s0, y0, w0);
5: while ∥∇M(vk)∥ > 0 do
6: Choose HM

k ≻ 0, and then compute the search direction ∆vk from (4.9);
7: Set αk ← 1;
8: loop
9: if (4.16a)–(4.16c) hold or (4.16d) holds for µF

k = µL then
10: break;
11: else if (4.16d) holds for µF

k = µP then
12: break;
13: end if
14: Set αk ← γAαk;
15: end loop
16: Set vk+1 ← projΩk

(vk + αk∆vk);
17: Set ŝk+1 ← c(xk+1)− µF

k

(
yE + 1

2 (wk+1 − yk+1) + µB
)
;

18: Perform a slack reset sk+1 ← max{sk+1, ŝk+1};
19: Set vk+1 ← (xk+1, sk+1, yk+1, wk+1);
20: end while
21: end procedure

4.4.2 Convergence analysis

The following assumptions are made for the convergence analysis:

Assumption 4.4.1. The functions f and c are twice continuously differentiable.

Assumption 4.4.2. The sequence of matrices {HM

k }k≥0 used in (4.9) are chosen to be uniformly

positive definite and bounded in norm.

Assumption 4.4.3. The sequence of iterates {xk} is contained in a bounded set.

Additionally, it will be show in Section 4.5 (proof of Lemma 4.5.2) that µF

k is fixed for

all k sufficiently large if µL is chosen appropriately. In this section, without loss of generality, the

parameter µF

k in Algorithm 4 is assumed to be fixed at a value µF , with either µF = µP or µF = µL.

In order to simplify the notation, let M(v ;µF) denote M(x, s, y, w ; sE, yE, wE, zE, µF , µB).

Lemma 4.4.1. The sequence of iterates {vk} computed by Algorithm 4 is such that
{
M(vk ;µ

F)
}

is bounded. In particular, if αk is a step that satisfies (4.16d), then M(vk+1 ;µ
F) < M(vk ;µ

F).

Proof. As HM

k is positive definite by Assumption 4.4.2 and ∇M(vk ;µ
P) is assumed to be nonzero for

all k ≥ 0, the vector ∆vk is a descent direction for M at vk. This property, together with equations

106

(4.16a) and (4.16b), imply that the line search performed in Algorithm 4 produces an αk such that

the new point vk+1 = projΩk
(vk + αk∆vk) satisfies M(vk+1 ;µ

F) < max{M(vk ;µ
F),Mmax}. In

particular, if (4.16d) holds, then M(vk+1 ;µ
F) < M(vk ;µ

F). It follows that the only way that the

desired result cannot hold is if the slack-reset procedure of Step 18 of Algorithm 4 causes M to

increase. The proof is complete if it can be shown that this cannot happen.

The vector ŝk+1 used in the slack reset is the unique minimizer of the sum of the terms

(B), (C), (D), (G) and (H) defining the function M(v ;µF), so that the sum of these terms cannot

increase. Also, (A) is independent of s, so that its value does not change. The slack-reset procedure

has the effect of possibly increasing the value of some of its components, which means that the (E)

and (F) terms in the definition of M can only decrease. In total, this implies that the slack reset

can never increase the value of M , which completes the proof.

Lemma 4.4.2. The sequence of iterates {vk} = {(xk, sk, yk, wk)} computed by Algorithm 4 satisfies

the following properties.

(i) The sequences {sk}, {c(xk)− sk}, {yk}, and {wk} are bounded.

(ii) For every i it holds that

lim inf
k≥0

[sk + µBe]i > 0 and lim inf
k≥0

[wk + µBe]i > 0.

(iii) The sequences
{
πY (xk, sk)

}
,
{
πW (sk)

}
, and

{
∇M(vk ;µ

P)
}

are bounded.

(iv) There exists a scalar Mlow such that M(vk ;µ
F) ≥Mlow > −∞ for all k.

Proof. First, we consider the case where (4.16c) holds only finitely many times. For a proof by

contradiction, assume that {sk} is unbounded. As sk + µBe > 0 by construction, there exists a

subsequence of iterations S and component i such that

lim
k∈S

[sk]i =∞ and [sk]i ≥ [sk]j for every j and all k ∈ S. (4.18)

Next it will be shown that M must go to infinity on S. It follows from (4.18), Assumption 4.4.3,

and the continuity of c that the term (A) in the definition of M is bounded below for all k, that

(B) cannot go to −∞ any faster than ∥sk∥ on S, and that (C) converges to ∞ on S at the same

rate as ∥sk∥2. It is also clear that (D) is bounded below by zero. On the other hand, (E) goes

to −∞ on S at the rate − ln
(
[sk]i + µB

)
. Next, note that (H) is bounded below. Now, if (F) is

bounded below on S, then the previous argument proves that M converges to infinity on S, which

107

contradicts Lemma 4.4.1. Otherwise, if (F) goes to −∞ on S, then (G) converges to ∞ faster than

(F) converges to −∞. Thus, M converges to ∞ on S, which contradicts Lemma 4.4.1. We have

thus proved that {sk} is bounded, which is the first part of result (i). The second part of (i), i.e.,

the uniform boundedness of {c(xk) − sk}, follows from the first result, the continuity of c, and

Assumption 4.4.3.

The next step is to establish the third bound in part (i), i.e., that {yk} is bounded. For

a proof by contradiction, assume that there exists some subsequence S and component i such that

lim
k∈S

∣∣[yk]i∣∣ =∞ and
∣∣[yk]i∣∣ ≥ ∣∣[yk]j∣∣ for every j and all k ∈ S.

Using arguments similar to those of the preceding paragraph, together with the result established

above that {sk} is bounded, it follows that (A), (B) and (C) are bounded below over all k, and

that (D) converges to ∞ on S at the rate of [yk]2i because {sk} is bounded, as has been shown

above. Using the uniform boundedness of
{
sk
}

and the assumption that sE +wE +µB > 0, it may

be deduced that (E) is bounded below. If (F) is bounded below on S, then (G) is also bounded,

and as (H) is bounded below by zero we would conclude, in totality, that limk∈S M(vk) = ∞,

which contradicts Lemma 4.4.1. Thus, (F) must converge to −∞, which implies that (G) converges

to ∞ faster than (F) converges to −∞, so that limk∈S M(vk ;µ
F) = ∞ on S, which contradicts

Lemma 4.4.1. Thus,
{
yk
}

is bounded.

We now establish the final bound in part (i), i.e., we show that
{
wk

}
is bounded. The

boundedness of
{
xk
}
,
{
sk
}

and
{
yk
}

imply that (A), (B), (C), (D) and (H) are bounded and

that (E) is bounded below. For a proof by contradiction, assume that the set is unbounded, which

implies the existence of a subsequence S and a component i such that

lim
k∈S

[wk]i =∞.

Then (F) converges to −∞, while (G) converges to ∞ faster than (F) converges to −∞, so that

limk∈S1 M(vk ;µ
F) =∞ on S, which contradicts Lemma 4.4.1. It follows that

{
wk

}
is bounded.

Part (ii) is also proved by contradiction. Suppose that
{
[sk + µBe]i

}
→ 0 on some

subsequence S and for some component i. As before, (A), (B), (C), (D), (G) and (H) are all

bounded from below over all k. We may also use wE + sE + µB > 0 and the fact that
{
sk
}

and{
wk

}
were proved to be bounded in part (i) to conclude that (E) and (F) converge to ∞ on S.

It follows that limk∈S M(vk ;µ
F) = ∞, which contradicts Lemma 4.4.1, and therefore establishes

that lim inf [sk + µBe]i > 0 for every 1 ≤ i ≤ m. A similar argument may be used to prove that

108

lim inf [wk + µBe]i > 0 for every 1 ≤ i ≤ m, which completes the proof.

Part (iii) and Part (iv) can be proved similarly as in the proof of Lemma 3.2(iii) and (iv)

in [46]. Consider part (iii). The sequence
{
πY (xk, sk)

}
is bounded as a consequence of part (i) and

the fact that yE and µP are fixed. Similarly, the sequence
{
πW (sk)

}
is bounded as a consequence

of part (ii) and the fact that wE, sE and µB are fixed. Lastly, the sequence
{
∇M(xk, sk, yk)

}
is bounded as a consequence of parts (i) and (ii), the uniform boundedness just established for{
πY (xk, sk)

}
and

{
πW (sk)

}
, Assumption 4.4.1, Assumption 4.4.3, and the fact that yE, wE, sE,

µP , and µB are fixed. For part (iv) it will be shown that each term in the definition of M is bounded

below. Term (A) is bounded below because of Assumption 4.4.1 and Assumption 4.4.2. Term (B)

is bounded below as a consequence of part (i) and the fact that yE is kept fixed. Terms (C) and

(D) are both nonnegative, hence, trivially bounded below. Terms (E) and (F) are bounded below

because µB and wE +sE +µBe > 0 are held fixed, and part (i). Term (G) is bounded below because

of part (i). Finally, (H) is bounded below because s > −µBe. The existence of the lower bound

Mlow now follows.

Certain results hold when the gradient of M(v ;µP) is bounded away from zero.

Lemma 4.4.3. If there exists a positive scalar ϵ and a subsequence of iterates S satisfying

∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ S,

then the following results must hold.

(i) The set
{
∥∆vk∥

}
k∈S is bounded above and bounded away from zero.

(ii) There exists a positive scalar δ such that ∇M(vk ;µ
P)T∆vk ≤ −δ for all k ∈ S.

Proof. See the proof of Lemma 3.3 in [46].

Now the main convergence result for Algorithm 4 can be established.

Theorem 4.4.1 (Flexible quasi-Armijo search). Under Assumptions 4.4.1–4.4.3, there exists an

iteration subsequence S such that

lim
k∈S
∇M(vk ;µ

P) = 0.

Proof. First, consider the case where there exists an infinite subsequence of iterates S such that

the line-search conditions (4.16a)–(4.16c) hold for all k ∈ S. Then the line-search condition (4.16c)

implies that limk∈S ∥F (vk ;µP)∥ = 0. By (4.11), F (vk ;µP) = Uk∇M(vk ;µ
P), where Uk is a matrix

109

of the form (4.12). Lemma 4.4.2((ii)) implies that
{
∥Uk∥

}
is uniformly bounded away from zero,

which ensures that limk∈S ∇M(vk ;µ
P) = 0.

Now assume the complementary case where the subsequence of iterates such that the line-

search conditions (4.16a)–(4.16c) hold is finite. This implies that there exists k0 such that for all

k > k0, the line-search condition (4.16d) must hold. Thus, all the subsequent iterates
{
vk
}
k>k0

lies within the level set

L
(
M(vk0 ;µ

F)
)

△
=
{
v ∈ Ω :M(v ;µF) ≤M(vk0 ;µ

F)
}
,

where Ω represents the open set in which the merit function M(v ;µF) is well defined, i.e.,

Ω =
{
v = (x, s, y, w) : v > ℓ

}
, with ℓ =

(
−∞,−µBe,−∞,−µBe

)
.

Notice that the value of M(v ;µF) is +∞ on the boundary of Ω. Then by the continuity of the

function M(v ;µF), the level set L
(
M(vk0

;µF)
)

is a closed subset of Ω. Moreover, Assumption 4.4.3

and Lemma 4.4.2(i) imply that the set of iterates
{
vk
}
k>k0

is a bounded subset of L
(
M(vk0 ;µ

F)
)
.

Hence, there exists a compact subset of Ω such that
{
vk
}
k>k0

lies within the compact subset. It

follows that

κ △
= min

k>k0,1≤i≤n

{
[vk]i − [ℓ]i

}
> 0.

We show by contradiction that limk→∞∇M(vk ;µ
P) = 0. Suppose there exists a constant ϵ > 0

and a subsequence G such that ∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ G. It follows from Lemma 4.4.1 and

Lemma 4.4.2(iv) that limk→∞M(vk ;µ
F) = Mmin > −∞. Using this result and the assumption

that the line-search condition (4.16d) is satisfied for all k sufficiently large, it must follow that

lim
k→∞

αk∇M(vk ;µ
P)T∆vk = 0,

which, together with Lemma 4.4.3(ii), implies that limk∈G αk = 0. For each k, define βk △
= αk/γA.

Then limk∈G βk = 0 and the backtracking procedure in Algorithm 4 implies that the condition

(4.16d) does not hold for the step βk for all k sufficiently large. This means that the more stringent

quasi-Armijo condition does not hold, i.e.,

M
(
projΩk

(vk + βk∆vk) ;µ
P
)
> M

(
vk ;µ

P
)
+ αkηA∇M(vk ;µ

P)T∆vk (4.19)

for all k sufficiently large. By Lemma 4.4.3(i), we also have limk∈G ∥βk∆vk∥ = 0. Thus, there exists

k̄ such that every component of βk∆vk satisfies |[βk∆vk]i| < σγ for all k > k̄ in G. It follows that

110

vk +βk∆vk ∈ Ωk, which implies projΩk
(vk +βk∆vk) = vk +βk∆vk. Now let G′ denote the indices

k > max
{
k0, k̄

}
of iterations at which a reduction in the initial step length was necessary, i.e.,

G′ =
{
k : αk < 1, k ∈ G, k > max

{
k0, k̄

}}
. As αk converges to zero, G′ must be an infinite set.

The inequality (4.19) implies that

M(vk + βk∆vk ;µ
P) > M(vk ;µ

P) + βkηA∇M(vk ;µ
P)T∆vk

for all k in G′. Adding −βk∇M(vk ;µ
P)T∆vk to both sides and rearranging gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk > −βk(1− ηA)∇M(vk ;µ

P)T∆vk

> βk(1− ηA)δ, for all k ∈ G′. (4.20)

The Taylor expansion of M(vk + βk∆vk ;µ
P) gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk

= βk

∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ. (4.21)

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥v∥D = maxu̸=0 |vTu|/∥u∥, then

∣∣(∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)
)
T∆vk

∣∣
≤ ∥∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)∥D∥∆vk∥.

If this inequality is substituted in (4.21), it then follows from (4.20) that

(1− ηA)δ <

∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ

≤ max
0≤τ≤1

∥∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D∥∆vk∥, for all k ∈ G′.

The continuity of ∇M implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

∥∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D = ∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D.

Then

(1− ηA)δ < ∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D∥∆vk∥. (4.22)

111

However, αk∆vk → 0 implies τk∆vk → 0 for k ∈ G, and the continuity of ∇M gives

∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D → 0.

Lemma 4.4.3(i) implies that the right-hand side of (4.22) converges to zero, which gives the required

contradiction.

4.5 Solving the Nonlinear Optimization Problem

In this section, a projected-search interior method for solving the nonlinear optimization

problem (NIPs) is formulated and analyzed. The method incorporates the projected-search algo-

rithm presented in Section 4.4 with strategies for adjusting the parameters in the definition of the

merit function. These parameters were fixed in Algorithm 4.

4.5.1 The algorithm

The proposed method is given in Algorithm 5. The method uses the distinction among

O-iterations, M-iterations and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for problem (NIPs).

Progress towards optimality of the iterate vk+1 = (xk+1, sk+1, yk+1, wk+1) is defined in terms of

the following feasibility, stationarity, and complementarity measures:

χfeas(vk+1) = ∥c(xk+1)− sk+1∥,

χstny(vk+1) = max
(
∥∇f(xk+1)− J(xk+1)

Tyk+1∥, ∥yk+1 − wk+1∥
)
, and

χcomp(vk+1, µ
B

k) =
∥∥min

(
q1(vk+1), q2(vk+1, µ

B

k)
)∥∥ ,

where

q1(vk+1) = max
(
|min(sk+1, wk+1, 0)|, |sk+1 · wk+1|

)
, and

q2(vk+1, µ
B

k) = max
(
µB

k e, |min(sk+1 + µB

k e, wk+1 + µB

k e, 0)|, |(sk+1 + µB

k e) · (wk+1 + µB

k e)|)
)
.

A first-order KKT point vk+1 for problem (NIPs) satisfies χ(vk+1, µ
B

k) = 0, where

χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ). (4.23)

Given these definitions, the kth iteration is designated as an O-iteration if χ(vk+1, µ
B

k) ≤ χmax
k ,

112

where
{
χmax
k

}
is a monotonically decreasing positive sequence. At an O-iteration the parameters

are updated as yE

k+1 = yk+1, w
E

k+1 = wk+1 and χmax
k+1 = 1

2χ
max
k (see Step 11 of Algorithm 5). These

updates ensure that
{
χmax
k

}
converges to zero if infinitely many O-iterations occur. The point

vk+1 is called an O-iterate.

If the condition for an O-iteration does not hold, a test is made to determine if vk+1 =

(xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

minimize
v=(x,s,y,w)

M(v ; sEk , y
E

k , w
E

k , µ
P

k , µ
B

k). (4.24)

In particular, the kth iteration is called an M-iteration if vk+1 satisfies

∥∇xM(vk+1 ; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)∥∞ ≤ τk, (4.25a)

∥∇sM(vk+1 ; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)∥∞ ≤ τk, (4.25b)

∥∇yM(vk+1 ; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)∥∞ ≤ τk∥DP

k+1∥∞, and (4.25c)

∥∇wM(vk+1 ; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)∥∞ ≤ τk∥DB

k+1∥∞, (4.25d)

where τk is a positive tolerance, DP

k+1 = µP

k I, and DB

k+1 = (Sk+1 + µB

k I)(Wk+1 + µB

k I)
−1. In this

case vk+1 is called an M-iterate because it is an approximate first-order solution of (4.24). The

estimates sEk+1, y
E

k+1 and wE

k+1 are defined by the safeguarded values

sEk+1 = min
(
max(0, sk+1), smaxe

)
,

yE

k+1 = max
(
− ymaxe,min(yk+1, ymaxe)

)
,

wE

k+1 = min
(
wk+1, wmaxe

)
 (4.26)

for some large positive constants smax, ymax and wmax. Next, Step 15 checks if the condition

χfeas(vk+1) ≤ τk (4.27)

holds. If the condition holds, then µP

k+1 ← µP

k ; otherwise, µP

k+1 ← 1
2µ

P

k to place more emphasis

on satisfying the constraint c(x) − s = 0 in subsequent iterations. Similarly, Step 16 checks the

inequalities

χcomp(vk+1, µ
B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke. (4.28)

If these conditions hold, then µB

k+1 ← µB

k ; otherwise, µB

k+1 ← 1
2µ

B

k to place more emphasis on

113

achieving complementarity in subsequent iterations.

An iteration that is not an O- or M-iteration is called an F-iteration. In an F-iteration

none of the parameters in the merit function are changed, so that progress is measured solely in

terms of the reduction in the merit function.

Algorithm 5 An all-shifted projected-search interior method.

1: procedure pdProj(x0, s0, y0, w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants:

{
ηA, γA

}
⊂ (0, 1) and

{
ymax, wmax, smax

}
⊂ (0,∞);

4: Choose yE
0 ; χmax

0 > 0;
{
µP
0 , µ

B
0

}
⊂ (0,∞); and µL

0 ≥ µP
0 ;

5: Choose wE
0 and sE0 such that wE

0 + sE0 + µB
0 e > 0;

6: Set v0 = (x0, s0, y0, w0); k ← 0;
7: while ∥∇M(vk)∥ > 0 do
8: (sE, yE, wE, µP , µB)← (sEk, y

E

k , w
E

k , µ
P

k , µ
B

k);
9: Compute vk+1 in Steps 6–19 of Algorithm 4;

10: if χ(vk+1, µ
B

k) ≤ χmax
k then [O-iterate]

11: (χmax
k+1, y

E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (12χ
max
k , yk+1, wk+1, µ

P

k , µ
B

k , τk);
12: sEk+1 ← max

{
0, sk+1

}
;

13: else if vk+1 satisfies (4.25a)–(4.25d) then [M-iterate]
14: Set (χmax

k+1, τk+1) = (χmax
k , 12τk); Set sEk+1, y

E

k+1 and wE

k+1 using (4.26);
15: if χfeas(vk+1) ≤ τk then µP

k+1 ← µP

k else µP

k+1 ← 1
2µ

P

k end if
16: if χcomp(vk+1, µ

B

k) ≤ τk, sk+1 ≥ −τke and wk+1 ≥ −τke then
17: µB

k+1 ← µB

k ;
18: else
19: µB

k+1 ← 1
2µ

B

k ;
20: Reset sk+1 and wk+1 so that sk+1 + µB

k+1e > 0 and wk+1 + µB

k+1e > 0;
21: end if
22: else [F-iterate]
23: (χmax

k+1, s
E

k+1, y
E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (χmax
k , sEk , y

E

k , w
E

k , µ
P

k , µ
B

k , τk);
24: end if
25: Update µL

k+1 as in (4.29);
26: end while
27: end procedure

Reducing the barrier parameter µB in Step 19 of Algorithm 5 may cause a slack variable

si or a dual variable wi to become infeasible with respect to its shifted bounds. In Step 20, if a

multiplier wi becomes infeasible after µB is reduced, it is reinitialized as max
{
yi,

1
2wi

}
. To remedy

the infeasibility of a slack variable si, suppose µB and µ̄B denote a shift before and after it is reduced,

with si + µB > 0 and si + µ̄B ≤ 0, a strategy is proposed in Section 5.4 of [46], which temporarily

imposes an equality constraint si = 0. This constraint is enforced by the primal-dual augmented

Lagrangian term until the nonlinear constraint value ci(x) becomes larger than µ̄B , at which point

114

si is assigned the value si = ci(x) and allowed to move. On being freed, the corresponding Lagrange

multiplier wi is reinitialized as max
{
yi, ϵ

}
, where ϵ is a small positive constant.

Given an initial value µL
0 ≥ µP

0 , in Step 25 of Algorithm 5, the line-search parameter µL

k is

updated as

µL

k+1 =

µL

k if ψk(αk ;µ
L

k) ≤ ψk(0 ;µ
L

k) + αkηAδk and µP

k+1 = µP

k ;

max
{

1
2µ

L

k, µ
P

k+1

}
otherwise,

(4.29)

where δk = ∇M(vk ;µ
P)T∆vk. This updating rule guarantees that µL

k ≥ µP

k for all k.

4.5.2 Convergence Analysis

Convergence analysis for Algorithm 5 follows a similar procedure as in Section 4.2 of [46],

which uses the properties of the complementary approximate KKT (CAKKT) condition proposed

by Andreani, Martínez and Svaiter [2], as described below.

Definition 4.5.1 (CAKKT condition). A feasible point (x∗, s∗) (i.e., a point such that s∗ ≥ 0 and

c(x∗)− s∗ = 0) is said to satisfy the CAKKT condition if there exists a sequence
{
(xj , sj , uj , zj)

}
with

{
xj
}
→ x∗ and

{
sj
}
→ s∗ such that

{
∇f(xj)− J(xj)Tuj

}
→ 0, (4.30){

uj − zj
}
→ 0, (4.31){

zj
}
≥ 0, and (4.32){

zj · sj
}
→ 0. (4.33)

Any (x∗, s∗) satisfying these conditions is called a CAKKT point.

Theorem 4.5.1 (Andreani, Martínez, Ramos and Svaiter [1, Theorem 4.2]). If (x∗, s∗) is a CAKKT

point that satisfies CAKKT-regularity, then (x∗, s∗) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of the

sequence
{
(xk, sk)

}
are CAKKT points. As the results are tied to the different iteration types, to

115

facilitate referencing of the iterations during the analysis we define

O =
{
k : iteration k is an O-iteration

}
,

M =
{
k : iteration k is an M-iteration

}
, and

F =
{
k : iteration k is an F-iteration

}
.

Lemma 4.5.1. If |O| = ∞ there exists at least one limit point (x∗, s∗) of the infinite sequence{
(xk+1, sk+1)

}
k∈O and any such limit point is a CAKKT point.

Proof. Assumption 4.4.3 implies that there must exist at least one limit point of
{
xk+1

}
k∈O. If x∗

is such a limit point, Assumption 4.4.1 implies the existence of K ⊆ O such that
{
xk+1

}
k∈K → x∗

and
{
c(xk+1)

}
k∈K → c(x∗). As |O| =∞, the updating strategy of Algorithm 5 gives

{
χmax
k

}
→ 0.

Furthermore, as χ(vk+1, µ
B

k) ≤ χmax
k for all k ∈ K ⊆ O, and χfeas(vk+1) ≤ χ(vk+1, µ

B

k) for all k, it

follows that
{
χfeas(vk+1)

}
k∈K → 0, i.e.,

{
c(xk+1)−sk+1

}
k∈K → 0. With the definition s∗ = c(x∗),

it follows that
{
sk+1

}
k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that (x∗, s∗) is feasible

for the general constraints because c(x∗) − s∗ = 0. The remaining feasibility condition s∗ ≥ 0 is

proved componentwise. For any 1 ≤ i ≤ m, define

Q1 =
{
k : [q1(vk+1)]i ≤ [q2(vk+1, µ

B

k)]i
}

and Q2 =
{
k : [q2(vk+1, µ

B

k)]i < [q1(vk+1)]i
}
,

where q1 and q2 are used in the definition of χcomp. If the set K ∩ Q1 is infinite, then it fol-

lows from the inequalities
{
χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K ≤

{
χmax
k

}
k∈K → 0 that

s∗i = limK∩Q1
[sk+1]i ≥ 0. Using a similar argument, if the set K ∩ Q2 is infinite, then s∗i =

limK∩Q2
[sk+1]i = limK∩Q2

[sk+1+µ
B

k e]i ≥ 0, where the second equality uses the limit
{
µB

k

}
k∈K∩Q2

→
0 that follows from the definition of Q2. Combining these two cases implies that s∗i ≥ 0, as claimed.

It follows that the limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Let

[s̄k+1]i =

[sk+1]i if k ∈ Q1;

[sk+1 + µB

k e]i if k ∈ Q2,

and

[w̄k+1]i =

max
{
[wk+1]i, 0

}
if k ∈ Q1;

[wk+1 + µB

k e]i if k ∈ Q2,

116

for every 1 ≤ i ≤ m, and consider the sequence (xk+1, s̄k+1, yk+1, w̄k+1)k∈K as a candidate for the

sequence used in Definition 4.5.1 to verify that (x∗, s∗) is a CAKKT point. If O∩Q2 is finite, then it

follows from the definition of s̄k+1 and the limit
{
sk+1

}
k∈K → s∗ that

{
[s̄k+1]i

}
k∈K → s∗i ; also,{

χcomp(vk+1, µ
B

k)
}
k∈K → 0 implies that lim infk∈K[wk+1]i ≥ 0, therefore

{
[w̄k+1−wk+1]i

}
k∈K →

0. On the other hand, if O∩Q2 is infinite, then the definitions of Q2 and χcomp(vk+1, µ
B

k), together

with the limit
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 imply that

{
µB

k

}
→ 0, giving

{
[s̄k+1]i

}
k∈K → s∗i and{

[w̄k+1−wk+1]i
}
k∈K → 0. As the choice of i was arbitrary, these cases taken together imply that{

s̄k+1

}
k∈K → s∗ and

{
w̄k+1 − wk+1

}
k∈K → 0.

The next step is to show that
{
(xk+1, s̄k+1, yk+1, w̄k+1)

}
k∈K satisfies the conditions re-

quired by Definition 4.5.1. It follows from the limit
{
χ(vk+1, µ

B

k)
}
k∈K → 0 established above

that
{
χstny(vk+1) + χcomp(vk+1, µ

B

k)
}
k∈K ≤

{
χ(vk+1, µ

B

k)
}
k∈K → 0. This, together with the

limit
{
w̄k+1 − wk+1

}
k∈K → 0, implies that

{
∇f(xk+1) − J(xk+1)

Tyk+1

}
k∈K → 0 and

{
yk+1 −

wk+1

}
k∈K → 0, which establishes that conditions (4.30) and (4.31) hold. The nonnegativity of w̄k+1

for all k is obvious from its definition, which implies that (4.32) is satisfied for
{
w̄k

}
k∈K. Finally, it

must be shown that (4.33) holds, i.e., that
{
w̄k+1 · s̄k+1

}
k∈K → 0. Consider the ith components of

s̄k and w̄k. If the set K∩Q1 is infinite, then the definitions of s̄k+1, q1(vk+1) and χcomp(vk+1, µ
B

k),

together with the limit
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0, imply that

{
[w̄k+1 · s̄k+1]i

}
K∩Q1

→ 0. Sim-

ilarly, if the set K ∩ Q2 is infinite, then the definitions of s̄k+1, q2(vk+1, µ
B

k) and χcomp(vk+1, µ
B

k),

together with the limits
{
χcomp(vk+1, µ

B

k)
}
k∈K → 0 and

{
w̄k+1 − wk+1

}
k∈K → 0, imply that{

[w̄k+1 · s̄k+1]i
}
k∈K∩Q2 → 0. Thus, these two cases lead to the conclusion that

{
w̄k+1 · s̄k+1

}
k∈K →

0, which implies that condition (4.33) is satisfied. This concludes the proof that (x∗, s∗) is a CAKKT

point.

In the complementary case where |O| <∞, it will be shown that every limit point of the

iteration subsequence
{
(xk+1, sk+1)

}
k∈M is infeasible with respect to the constraint c(x)− s = 0

but solves the least-infeasibility problem

minimize
x,s

1
2∥c(x)− s∥

2
2 subject to s ≥ 0. (4.34)

The first-order KKT conditions for problem (4.34) are

J(x∗)T
(
c(x∗)− s∗

)
= 0, s∗ ≥ 0, (4.35a)

s∗ ·
(
c(x∗)− s∗

)
= 0, c(x∗)− s∗ ≤ 0. (4.35b)

These conditions define an infeasible stationary point.

117

Definition 4.5.2 (Infeasible stationary point). The pair (x∗, s∗) is an infeasible stationary point

if c(x∗)− s∗ ̸= 0 and (x∗, s∗) satisfies the optimality conditions (4.35).

Lemma 4.5.2. If |O| <∞, then |M| =∞.

Proof. The proof is by contradiction. Suppose that |M| < ∞, in which case |O ∪ M| < ∞. It

follows from the definition of Algorithm 5 that k ∈ F for all k sufficiently large, i.e., there must

exist an iteration index kF such that

k ∈ F , yE

k = yE, and (τk, w
E

k , µ
P

k , µ
B

k) = (τ, wE, µP , µB) > 0 (4.36)

for all k ≥ kF . The updating rule for
{
µL

k

}
implies that µL

k will be fixed at some µL ≥ µP , and µF

k

is then fixed at the value µL for all k sufficiently large. It follows from Theorem 4.4.1 that there

exists a subsequence of iterates S such that

lim
k→S
∥∇M(vk)∥ = 0.

Then Lemma 4.4.2(i) and Lemma 4.4.2(ii) can be applied to show that (4.25) is satisfied for all

k ∈ S. This would mean, in view of Step 13 of Algorithm 5, that S ∈ M with |S| = ∞, which

contradicts (4.36) because F ∩M = ∅.

For the next lemma, we introduce the quantities

πY

k+1 = yE

k −
1

µP

k

(
c(xk+1)− sk+1

)
and πW

k+1 = µB

k (Sk+1 + µB

k I)
−1(wE

k − s+ sEk) (4.37)

with Sk+1 = diag(sk+1) associated with the gradient of the merit function in (4.7).

Lemma 4.5.3. If |M| =∞ then

lim
k∈M

∥πY

k+1 − yk+1∥ = 0.

Moreover, if there exists a subsequence of iterates K ⊆M such that limk∈K sk = s∗ ≥ 0, then

lim
k∈K

∥πW

k+1 − wk+1∥ = lim
k∈K

∥πY

k+1 − πW

k+1∥ = lim
k∈K

∥yk+1 − wk+1∥ = 0.

Proof. It follows from (4.7) and (4.25c) that

∥πY

k+1 − yk+1∥ ≤ τk. (4.38)

118

As |M| =∞ by assumption, Step 14 of Algorithm 5 implies that limk→∞ τk = 0. Combining this

with (4.38) establishes the first limit in the result.

Furthermore, if there exists a subsequence K ⊆M such that limk∈K sk = s∗ ≥ 0, then the

updating rule of Algorithm 5 for sEk implies that limk∈K (sEk − sk) = 0. The limit limk→∞ τk = 0

may then be combined with (4.7), (4.25b) and (4.25c) to show that

lim
k∈K

∥πW

k+1 − wk+1∥ = 0 and lim
k∈K

∥πY

k+1 − πW

k+1∥ = 0. (4.39)

Finally, as limk→∞ τk = 0, it follows from the bound (4.38) and limits (4.39) that

lim
k∈K

∥yk+1 − wk+1∥ = lim
k∈K

∥(yk+1 − πY

k+1) + (πY

k+1 − πW

k+1) + (πW

k+1 − wk+1)∥ = 0.

This establishes the last of the four limits.

Lemma 4.5.4. If |O| <∞, then every limit point (x∗, s∗) of the subsequence
{
(xk+1, sk+1)

}
k∈M

satisfies c(x∗)− s∗ ̸= 0.

Proof. The proof is similar to the proof of Lemma 4.7 in [46] but with some modified technical

details.

Let (x∗, s∗) be a limit point of (the necessarily infinite) sequence M, i.e., there exists a

subsequence K ⊆M such that limk∈K (xk+1, sk+1) = (x∗, s∗). For a proof by contradiction, assume

that c(x∗)− s∗ = 0, which implies that

lim
k∈K

∥c(xk+1)− sk+1∥ = 0. (4.40)

First, we show that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible because of the

assumption that c(x∗) − s∗ = 0. The line search in Algorithm 4 gives sk+1 + µB

k e > 0 for all

k. If limk→∞ µB

k = 0, then s∗ = limk∈K sk+1 ≥ − limk∈K µ
B

k e = 0. On the other hand, if

limk→∞ µB

k ̸= 0, then Step 19 of Algorithm 5 is executed a finite number of times, µB

k = µB > 0

and (4.28) holds for all k ∈ M sufficiently large. A combination of the assumption that |O| < ∞,

the result of Lemma 4.5.2, and the updates of Algorithm 5, establishes that limk→∞ τk = 0 and

χmax
k = χmax > 0 for all sufficiently large k ∈ K. (4.41)

Taking limits over k ∈M in (4.28) and using limk→∞ τk = 0 gives s∗ ≥ 0.

Using |O| <∞ together with Lemma 4.5.3, the fact that limk∈K sk = s∗ ≥ 0 with K ⊆M,

119

and Step 16 of the line search of Algorithm 4 gives

lim
k∈K

∥yk+1 − wk+1∥ = 0, and wk+1 + µB

k+1 > 0 for all k ≥ 0. (4.42)

Next, it can be observed from the definitions of πY

k+1 and ∇xM that

∇f(xk+1)− J(xk+1)
Tyk+1 = ∇f(xk+1)− J(xk+1)

T(2πY

k+1 + yk+1 − 2πY

k+1)

= ∇f(xk+1)− J(xk+1)
T
(
2πY

k+1 − yk+1

)
− 2J(xk+1)

T(yk+1 − πY

k+1)

= ∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k , µ
B

k)− 2J(xk+1)
T(yk+1 − πY

k+1),

which combined with
{
xk+1

}
k∈K → x∗, limk→∞ τk = 0, (4.25a), and Lemma 4.5.3 gives

lim
k∈K

{
∇f(xk+1)− J(xk+1)

Tyk+1

}
= 0. (4.43)

The proof that limk∈K χcomp(vk+1, µ
B

k) = 0 involves two cases.

Case 1: limk→∞ µB

k ̸= 0. In this case µB

k = µB > 0 for all sufficiently large k. Combining this

with |M| = ∞ and the update to µB

k in Step 19 of Algorithm 5, it must be that (4.28) holds for

all sufficiently large k ∈ K, i.e., that χcomp(vk+1, µ
B

k) ≤ τk for all sufficiently large k ∈ K. As

limk→∞ τk = 0, it must hold that limk∈K χcomp(vk+1, µ
B

k) = 0.

Case 2: limk→∞ µB

k = 0. Lemma 4.5.3 implies that limk∈K (πW

k+1 − wk+1) = 0. The se-

quence
{
Sk+1 + µB

k I
}
k∈K is bounded because

{
µB

k

}
is positive and monotonically decreasing

and limk∈K sk+1 = s∗, which means by the definition of πW

k+1 and the updating rule for sEk+1 in

(4.26),

0 = lim
k∈K

(Sk+1 + µB

k I)(π
W

k+1 − wk+1) = lim
k∈K

(
µB

kw
E

k − (Sk+1 + µB

k I)wk+1

)
. (4.44)

Moreover, as |O| < ∞ and wk > 0 for all k by construction, the updating strategy for wE

k in

Algorithm 5 guarantees that
{
wE

k

}
is bounded over all k (see (4.26)). It then follows from (4.44),

the uniform boundedness of
{
wE

k

}
, and limk→∞ µB

k = 0 that

0 = lim
k∈K

(
[sk+1]i + µB

k

)
[wk+1]i = lim

k∈K

(
[sk+1]i + µB

k

)
([wk+1]i + µB

k). (4.45)

There are two subcases.

Subcase 2a: s∗i > 0 for some i. As limk∈K[sk+1]i = s∗i > 0 and limk→∞ µB

k = 0, it fol-

lows from (4.45) that limk∈K[wk+1]i = 0. Combining these limits allows us to conclude that

limk∈K[q1(vk+1)]i = 0, which is the desired result for this case.

120

Subcase 2b: s∗i = 0 for some i. In this case, it follows from the limits limk→∞ µB

k = 0 and (4.45),

wk+1 + µB

k > 0 and the limit limk∈K[sk+1]i = s∗i = 0 that limk∈K[q2(vk+1, µ
B

k)]i = 0, which is the

desired result for this case.

As one of the two subcases above must occur for each component i, it follows that

lim
k∈K

χcomp(vk+1, µ
B

k) = 0,

which completes the proof for Case 2.

Under the assumption c(x∗)−s∗ = 0 it has been shown that (4.40), (4.42), (4.43), and the

limit limk∈K χcomp(vk+1, µ
B

k) = 0 hold. Collectively, these results imply that limk∈K χ(vk+1, µ
B

k) =

0. This limit, together with the inequality (4.41) and the condition checked in Step 10 of Algo-

rithm 5, gives k ∈ O for all k ∈ K ⊆M sufficiently large. This is a contradiction because O∩M = ∅,
which establishes the desired result that c(x∗)− s∗ ̸= 0.

Lemma 4.5.5. If |O| < ∞, then there exists at least one limit point (x∗, s∗) of the infinite se-

quence
{
(xk+1, sk+1)

}
k∈M, and any such limit point is an infeasible stationary point as given by

Definition 4.5.2.

Proof. The proof is similar to the proof of Lemma 4.8 in [46] but with some modified technical

details.

If |O| < ∞ then Lemma 4.5.2 implies that |M| = ∞. Moreover, the updating strategy

of Algorithm 5 forces
{
yE

k

}
and

{
wE

k

}
to be bounded (see (4.26)). The next step is to show that{

sk+1

}
k∈M is bounded.

For a proof by contradiction, suppose that
{
sk+1

}
k∈M is unbounded. It follows that

there must be a component i and a subsequence K ⊆ M for which
{
[sk+1]i

}
k∈K → ∞. When

Assumption 4.4.3 and Assumption 4.4.1 hold,
{
c(xk+1)

}
k∈K,

{
∇f(xk+1)

}
k∈K and

{
J(xk+1)

}
k∈K

must be bounded. This implies that
{
[πY

k+1]i
}
k∈K is unbounded. On the other hand, by (4.7),

(4.25a), together with the limit limk→∞ τk = 0 and Lemma 4.5.3,

0 = lim
k∈M

∥∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k , µ
B

k)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1 − J(xk+1)
T(πY

k+1 − yk+1)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1∥ = 0,

which contradicts the unboundedness of
{
[πY

k+1]i
}
k∈K . Thus, it must be the case that

{
sk+1

}
k∈M

is bounded.

121

The next part of the proof is to establish that s∗ ≥ 0, which is the inequality condition of

(4.35a). The test in Step 16 of Algorithm 5 (i.e., testing whether (4.28) holds) is checked infinitely

often because |M| = ∞. If (4.28) is satisfied finitely many times, then the update µB

k+1 = 1
2µ

B

k

forces
{
µB

k+1

}
→ 0. Combining this with sk+1 + µB

k e > 0 shows that s∗ ≥ 0, as claimed. On

the other hand, if (4.28) is satisfied for all sufficiently large k ∈ M, then µB

k+1 = µB > 0 for all

sufficiently large k and limk∈K χcomp(vk+1, µ
B

k) = 0 because
{
τk
}
→ 0. It follows from these two

facts that s∗ ≥ 0, as claimed.

The boundedness of
{
sk+1

}
k∈M and Assumption 4.4.3 ensure the existence of at least one

limit point of
{
(xk+1, sk+1)

}
k∈M. If (x∗, s∗) is any such limit point, there must be a subsequence

K ⊆ M such that
{
(xk+1, sk+1)

}
k∈K → (x∗, s∗). It remains to show that (x∗, s∗) is an infeasible

stationary point (i.e., that (x∗, s∗) satisfies the optimality conditions (4.35a)–(4.35b)).

As |O| < ∞, it follows from Lemma 4.5.4 that c(x∗) − s∗ ̸= 0. Combining this with{
τk
}
→ 0, which holds because K ⊆M is infinite (on such iterations τk+1 ← 1

2τk), it follows that

the condition (4.27) of Step 15 of Algorithm 5 will not hold for all sufficiently large k ∈ K ⊆ M.

The subsequent updates ensure that
{
µP

k

}
→ 0, hence

{
µF

k

}
→ 0 by the updating rule for

{
µL

k

}
,

which, combined with (4.17), the boundedness of
{
yE

k

}
, and Lemma 4.5.3, gives

{c(xk+1)− sk+1}k∈K ≤
{
µF

k

(
yE

k + 1
2 (wk+1 − yk+1) + µB

k

)}
k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0 and the second condition in (4.35b) holds.

For a proof of the equality condition of (4.35a) observe that the gradients must satisfy

{∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k , µ
B

k)}k∈K → 0 because condition (4.25) is satisfied for all k ∈M (cf. Step 13

of Algorithm 5). Multiplying ∇xM(vk+1 ; y
E

k , w
E

k , µ
P

k , µ
B

k) by µP

k , and applying the definition of πY

k+1

from (4.37) yields

{
µP

k g(xk+1)− J(xk+1)
T
(
µP

kπ
Y

k+1 + µP

k (π
Y

k+1 − yk+1)
)}

k∈K → 0.

Combining this with {xk+1}k∈K → x∗, {µP

k} → 0, and the result of Lemma 4.5.3 yields

{
− J(xk+1)

T (µP

kπ
Y

k+1)
}
k∈K =

{
− J(xk+1)

T (µP

k y
E

k − c(xk+1) + sk+1)
}
k∈K → 0.

Using this limit in conjunction with the boundedness of {yE

k}, the fact that {µP

k} → 0, and

{(xk+1, sk+1}k∈K → (x∗, s∗) establishes that the first condition of (4.35a) holds.

It remains to show that the complementarity condition of (4.35b) holds. From Lemma 4.5.3

it must be the case that {πW

k+1 − πY

k+1}k∈K → 0. Also, the limiting value does not change if the

122

sequence is multiplied (term by term) by the bounded sequence {µP

k (Sk+1 + µB

k I)}k∈K (recall that

{sk+1}k∈K → s∗). This yields

{
µB

kµ
P

k (w
E

k − sk+1 + sEk)− µP

k (Sk+1 + µB

k I)y
E

k + (Sk+1 + µB

k I)(c(xk+1)− sk+1)
}
k∈K → 0.

This limit, together with the limits {µP

k} → 0 and {sk+1}k∈K → s∗, and the boundedness of {yE

k}
and {wE

k} implies that {
(Sk+1 + µB

k I)(c(xk+1)− sk+1)
}
k∈K → 0. (4.46)

As c(x∗) − s∗ ̸= 0, there must exist a constraint index i such that [c(x∗) − s∗]i ̸= 0. Combining

this with {(xk+1, sk+1)}k∈K → (x∗, s∗) and (4.46) shows that {[sk+1]i + µB

k }k∈K → 0. As s∗ is

nonnegative, it follows that {µB

k }k∈K → 0, However, as {µB

k } is a monotonically decreasing sequence,

it must hold that {µB

k } → 0. Using this fact, (4.46), and {(xk+1, sk+1)}k∈K → (x∗, s∗) it follows

that s∗ ·
(
c(x∗)− s∗

)
= 0, and the first condition in (4.35b) holds. This completes the proof.

Theorem 4.5.2. Under Assumptions 4.4.1–4.4.3, one of the following occurs:

(i) |O| = ∞, limit points of
{
(xk+1, sk+1)

}
k∈O exist, and every such limit point (x∗, s∗) is a

CAKKT point for problem (NIPs). If, in addition, CAKKT-regularity holds at (x∗, s∗), then

(x∗, s∗) is a KKT point for problem (NIPs).

(ii) |O| < ∞, |M| = ∞, limit points of
{
(xk+1, sk+1)

}
k∈M exist, and every such limit point

(x∗, s∗) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 4.5.1 and Theorem 4.5.1. Part (ii) follows from Lemma 4.5.5.

Also, the exclusive conditions on |O| imply that only one of these two cases must occur.

Chapter 4 and the numerical results in Section 5.3, in part, reprint the paper by Philip E.

Gill and Minxin Zhang, "A projected-search interior method for nonlinear optimization." Manuscript

submitted for publication, 2023. The dissertation author was the primary investigator and author

of the paper.

123

Chapter 5

Numerical Results

5.1 A Projected-Search Active-Set Method for Bound Con-

straints

5.1.1 The implementation

Numerical results were obtained for the projected-search active-set method UBOPT, in

which the direction dk was computed as the solution of (3.21) with Hk chosen as a positive-definite

limited-memory BFGS approximation of ∇2f(xk). All testing was done on problems taken from the

CUTEst test collection (see Bongartz, Conn, Gould and Toint [7] and Gould, Orban and Toint [58]).

The CUTEst test set contains 154 bound-constrained problems of the form (BC). Although many

problems allow for the number of variables and constraints to be adjusted in the standard interface

format (SIF) data file, our tests used the default dimensions set in the CUTEst distribution. This

gave problems ranging in size from BQ1VAR (one variable) to WALL100 (149624 variables).

The practical effectiveness of the quasi-Wolfe search was evaluated by running two limited-

memory quasi-Newton methods, one with a quasi-Wolfe search and the other with a quasi-Armijo

search. The resulting implementations, UBOPT-qWolfe and UBOPT-qArmijo, are based on the For-

tran package UBOPT (see Ferry, Gill, Wong and Zhang [30]). In the quasi-Wolfe search, the

kink steps are sorted in decreasing order in O(n log n) flops using a heapsort algorithm (see, e.g.,

Williams [85], Knuth [65, Section 5.2.3]), adapted from a Fortran implementation by Byrd, Lu,

Nocedal and Zhu [10]. For UBOPT-qWolfe, the Armijo tolerance ηA was set at 10−4 and the Wolfe

tolerance ηW = 0.9. In UBOPT-qArmijo, ηA = 0.3. The scalar ϵ was set to the machine precision in

124

the expression for ϵk in the calculation (3.5) of the working set.

In order to provide some measure of the efficiency of the projected-search method relative

to a state-of-the-art method for bound-constrained optimization, the solvers UBOPT-qWolfe and

UBOPT-qArmijo were compared with the limited-memory method LBFGS-B (Byrd, Lu, Nocedal and

Zhu [10], Zhu, Byrd, Lu and Nocedal[95], and Morales and Nocedal [68]). All three solvers were

applied to the 154 bound-constrained problems from the CUTEst test set. The runs were terminated

at the first point xT such that

(a) ∥PxT

(
−∇f(xT)

)
∥∞ ≤ 10−5

(
1 + |f(xT)|

)
and

(b) |f(xT)− f(xT−1)| ≤ 107ϵM ×max
{
|f(xT)|, |f(xT−1)|, 1

}
; or

(c) ∥PxT

(
−∇f(xT)

)
∥∞ <

√
ϵM ,

where ϵM is the machine precision. In the first iteration of the algorithms, only condition ((c)) is

tested. A nonoptimal termination was signaled by the violation of a time limit of 3600 seconds, a

limit of 106 iterations, or an abnormal exit because of numerical difficulties.

5.1.2 Numerical results

The solver UBOPT-qArmijo failed on nine problems, with six failing because of numerical

difficulties (BLEACHNG, BQPGAUSS, BRATU1D, GRIDGENA, RAYBENDL, WALL10, and WEEDS). The solver

UBOPT-qWolfe failed on six problems, with four failures caused by numerical difficulties (GRIDGENA,

PALMER5E, PROBPENL, and WALL10). UBOPT-qWolfe identified problem BRATU1D as being unbounded.

For both solvers, CYCLOOCTLS and WALL50 could not be solved within the one hour time limit. In

the cases of numerical difficulties, the search algorithms were unable to compute an appropri-

ate step. We note that for UBOPT-qWolfe, the run for PROBPENL terminated at a near-optimal

point that satisfied condition ((a)) and ∥PxT

(
− ∇f(xT)

)
∥∞ = 1.99 × 10−7. The solver LBFGS-B

failed on 16 problems. Seven failures were caused by numerical difficulties (BQPGAUSS, BRATU1D,

GRIDGENA, PALMER5A, PALMER5B, PALMER7A, and WALL10), seven problems exceeded the iteration

limit (CHEBYQAD, PALMER1E, PALMER2E, PALMER3E, PALMER4E, PALMER6E, and PALMER8E), and two

problems exceeded the time limit (CYCLOOCTLS and WALL50).

The relative performance of the solvers is summarized using performance profiles (in log2

scale), which were proposed by Dolan and Moré [24]. Let P denote a set of problems used for a

given numerical experiment. For each method s we define the function πs : [0, rM] 7→ R+ such that

πs(τ) =
1

np

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

125

where np is the number of problems in the test set and rp,s denotes the ratio of the number of

function evaluations needed to solve problem p with method s and the least number of function

evaluations needed to solve problem p. If method s failed for problem p, then rp,s is set to be twice

of the maximal ratio. The parameter rM is the maximum value of log2(rp,s).

UBOPT - qWolfe

UBOPT - qArmijo

UBOPT - qWolfe

L-BFGS-B

%
o
f

p
ro

b
le

m
s

so
lv

ed
w

it
h
in

2
τ

o
f

b
es

t

0.0

0.2

0.4

0.6

0.8

1.0

τ

0 2 4 6 8 10 12 14

Performance Profile (function evaluations)

Figure 5.1: Performance profiles for the number of function evaluations required to solve 154 bound-
constrained problems from the CUTEst test set. The figure gives the profiles for the three solvers
UBOPT-qWolfe, UBOPT-qArmijo, and L-BFGS-B [10].

Figure 5.1 gives the function-evaluation performance profiles for the 154 bound-constrained

problems for UBOPT-qWolfe, UBOPT-qArmijo, and LBFGS-B. The profile utilized the total number

of function evaluations for comparison. Additional information about the runs used to generate

the performance profiles is given by Ferry, Gill, Wong and Zhang [29]. The results indicate that

using a quasi-Wolfe search in UBOPT resulted in a substantially better performance with respect

to function calls than using a quasi-Armijo search, and comparable and more robust performance

with respect to LBFGS-B.

A benefit of the Wolfe conditions in the unconstrained case is that the restriction on the

directional derivative guarantees that the approximate curvature
(
∇f(xk+1)−∇f(xk)

)
T(xk+1−xk)

is positive, which is a necessary condition for the quasi-Newton update to give a positive-definite

approximate Hessian. In the bound-constrained case, the use of a quasi-Wolfe projected search

makes it more likely that the update can be applied, but it is not possible to guarantee an update

in all cases. If the next iterate is given by xk+1 = projΩ(xk+αkpk), where αk is a quasi-Wolfe step,

126

then
(
∇f(xk+1)−∇f(xk)

)
T(xk+1−xk) need not be greater than zero if the path projΩ(xk+αkpk)

changes direction for some α ∈ (0, αk). If it does change direction, ψ′
+(0) and ψ′

−(αk) may be

directional derivatives of f in a direction other than xk+1 − xk. This situation is illustrated in

Figure 5.2, which depicts a two-dimensional region with lower bounds x1 = 0 and x2 = 0. In

this example ψ′
+(0) is a directional derivative of f in direction [pk]1 and ψ′

−(αk) is a directional

derivative of f in direction [pk]2. As a result, if the path changes direction for α ∈ (0, αk), then

there is the possibility that the quasi-Newton update must be skipped.

x1 = 0

x2 = 0

xk

xk+1 = projΩ(xk + αkpk)

xk+1 − xk
p1

p2

Figure 5.2: Example with no guarantee of an update for the approximate Hessian.

It is shown in Section 3.3.2 that if
{
xk
}

converges to a nondegenerate stationary point, then a

quasi-Wolfe search identifies the active set at the solution in a finite number of iterations. After

the active set stabilizes, a quasi-Wolfe search behaves exactly like a Wolfe line search in the sense

that updates to the approximate Hessian are guaranteed if f(xk + αpk) is bounded below.

To estimate how often the update is likely to be skipped with the quasi-Wolfe search,

statistics were collected from the test problems for which at least one of the search paths was “bent”

by projection. In total, the application of UBOPT-qWolfe resulted in 259 of the potential 637268

updates being skipped (≈ 0.04%). This can be compared to 6537 of the 679071 updates being

skipped (≈ 1.0%) for UBOPT-qArmijo. (The number of updates reflects the number of iterations

needed for convergence.)

127

5.2 A Projected-Search Interior Method for Bound Constraints

5.2.1 The implementation

Numerical results are given for a Matlab implementation of a projected-search method

based on the primal-dual interior method of Forsgren and Gill [34]. Applying this method to

bound-constrained problems, the unconstrained function

M(x, z1, z2 ;µ)
△
= f(x)−

n∑
j=1

{
µ ln

(
xj − ℓj

)
+ µ ln

(
[z1]j(xj − ℓj)

)
− [z1]j(xj − ℓj)

}
−

n∑
j=1

{
µ ln

(
uj − xj

)
+ µ ln

(
[z2]j(uj − xj)

)
− [z2]j(uj − xj)

}
is minimized for a sequence of µ-values such that µ → 0. This implies that the function M of

problem (IPBC) is given by M(v ;µ) =M(x, z1, z2 ;µ), with

v =


x

z1

z2

 , ℓv =


ℓ

0

0

 , and uv =


u

+∞
+∞

 .

At any (x, z1, z2) such that ℓ < x < u, z1 > 0 and z2 > 0, let X1 = diag
(
xj − ℓj

)
, X2 =

diag
(
uj − xj

)
, Z1 = diag([z1]j), and Z2 = diag([z2]j). One iteration of Newton’s method for

minimizing M(x, z1, z2 ;µ) requires solving the equations ∇2M(v ;µ)∆v = −∇M(v ;µ). If the di-

agonal matrices µX−1
1 and µX−1

2 in the expression for ∇2M(v ;µ) are replaced by Z1 and Z2,

we obtain an approximate Hessian with n × n principal minor Hk = ∇2f(x) + X−1
1 Z1 + X−1

2 Z2.

It follows that one iteration of an approximate Newton method for minimizing M(x, z1, z2 ;µ)

gives the estimate (x + ∆x, z1 + ∆z1, z2 + ∆z2), where ∆z1 = −X−1
1

(
z1 · (x + ∆x − ℓ) − µe

)
,

∆z2 = −X−1
2

(
z2 · (u− x−∆x)− µe

)
, and ∆x satisfies the equations

Hk∆x = −
(
∇f(x)− µX−1

1 e+ µX−1
2 e

)
. (5.1)

Let vk denote a point such that ℓv < vk < uv and let ∆vk denote the solution of the approximate

Newton equations at vk. If the matrix Hk of (5.1) is positive definite, then ∆vk is a descent

direction for M(x, z1, z2 ;µ). Otherwise a positive-definite modified matrix Ĥk ≈ Hk must be

used. If necessary, the matrix Hk was modified using the method of Wächter and Biegler [84,

Algorithm IC, p. 36], which factors the matrix Hk + δIn for some δ > 0. Each (possibly perturbed)

128

Hk matrix was factored using the Matlab built-in command LDL, which uses the routine MA57

[25].

5.2.2 Numerical results

Results are presented from two variants of the Forsgren-Gill method. The first variant,

PD-Wolfe, is the conventional primal-dual method implemented with a Wolfe line search; the second

variant, PDproj-qWolfe, is the projected-search interior method proposed in Section 3.5. As the

underlying interior method is the same in both cases, the results show the benefits of formulating

the method as a projected-search method.

The algorithms were considered to have solved a problem successfully if

max
{
∥max(0, g(x) · xℓ)∥∞, ∥max(0,−g(x) · xu)∥∞

}
≤ 10−5,

where xℓ = min {1, (x− ℓ) ·/ (1 + |ℓ|)}, xu = min {1, (u− x) ·/ (1 + |u|)}, and

g(x) = ∇f(x)/(max{1, ∥∇f(x)∥∞}).

A limit of 500 was placed on the number of iterations. The strategy for choosing the barrier

parameter µ was that used in the method of Gertz and Gill [44]. The fraction-to-the-boundary

parameter σ of (4.15) was set at 0.9.

All testing was done using Matlab version R2019a on an iMac with a 3.0 GHz Intel Xeon

W processor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6 (64 bit). Results

were obtained for a subset of the bound-constrained problems in CUTEst for which the dimension

of the problem n is 600 or less, or n may be set at the largest value less than 1000. This gave 137

problems ranging in size from BQP1VAR (one variable) to POWELLBC (1000 variables). Exact second

derivatives were used for all the runs.

Figure 5.3 gives the performance profiles for the total number of iterations as well as the

total number of function evaluations required to solve the 137 problems. The profiles compare

the primal-dual interior method PD-Wolfe implemented with a Wolfe line search and a projected-

search interior method PDproj-qWolfe with a quasi-Wolfe line search (i.e., the method described

in Section 3.5). Figure 5.3 indicates that a projected-search interior method with a quasi-Wolfe

line search can provide substantial improvements in robustness and performance compared to a

conventional interior method.

129

0.9

0.8

0.7

0.6

0.7

0.6

0.5

0.2

0.1

1 2 30.5 1.5 2.5 3.5

Iteration performance profile for

137 CUTEst bound-constrained problem

PDproj-qWolfe

PD-Wolfe

log(τ)

π
S
(τ
)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 30.5 1.5 2.5 3.5

Function evaluation performance profile for

137 CUTEst bound-constrained problems

PDproj-qWolfe

PD-Wolfe

log(τ)

π
S
(τ
)

Figure 5.3: Performance profiles for two interior-point methods PD-Wolfe and PDproj-qWolfe.
The figure gives the performance profiles for the total number of iterations and function evaluations
required to solve 137 bound-constrained problems from the CUTEst test set.

5.3 The Projected-Search Interior Method for Nonlinear Op-

timization

5.3.1 The implementation

Numerical results were obtained for Matlab implementations of three variants of the

shifted interior method. Algorithm pdb is an implementation of the shifted primal-dual method

of Gill, Kungurtsev and Robinson [46]; pdbAll is the primal-dual method with shifts on both

the primal and dual variables; and pdProj is the projected-search interior method proposed in

Sections 4.3–4.5. Algorithms pdb and pdbAll are implemented with a flexible Armijo line search in

which the step length is chosen to satisfy the conditions (4.16a)–(4.16d) with ψk(α ;µ) and ϕk(α ;µ)

given by M
(
vk +α∆vk ;µ

)
and ∥F

(
vk +α∆vk ;µ

)
∥. Exact second derivatives were used for all the

runs.

The iterates were terminated at the first point that satisfied the conditions eP (x, s) < τP

and eD(x, s, y, w) < τD, where eP and eD are the primal and dual infeasibilities

eP (x, s) =

∥∥∥∥∥
(

min
{
0, s

}
∥c(x)− s∥∞/max

{
1, ∥s∥∞

})∥∥∥∥∥
∞

, (5.2a)

130

and

eD(x, s, y, w) =

∥∥∥∥∥∥∥∥

∥∇f(x)− J(x)Ty∥∞/σ

∥w − y∥∞
w · min

{
1, s

}

∥∥∥∥∥∥∥∥
∞

, (5.2b)

with σ = max
{
1, ∥∇f(x)∥, max

{
1, ∥y∥

}
∥J(x)∥∞

}
. Similarly, the iterates were terminated at an

infeasible stationary point (x, s) if eP (x, s) > τP , min
{
0, s

}
≤ τP and eI(x, s) ≤ τinf , where

eI(x, s) =
∥∥J(x)T(c(x)− s) · min

{
1, s

}∥∥
∞ /σ. (5.3)

5.3.2 Numerical results

The results were obtained for optimization problems from the CUTEst test collection. The

runs were done using Matlab version R2020a on an iMac Pro with a 3.0 GHz Intel Xeon W pro-

cessor and 128 GB of 800 MHz DDR4 RAM running macOS, version 10.14.6 (64 bit). Results were

obtained for five subsets of problems from the CUTEst test collection. The subsets consisted of 135

problems with a general nonlinear objective and upper and lower bounds on the variables (prob-

lems BC); 212 problems with a general nonlinear objective, general linear constraints and bounds on

the variables (problems LC); 124 problems formulated by Hock and Schittkowski ([62]) (problems

HS); 372 problems with a general nonlinear objective, general linear and nonlinear constraints and

bounds on the variables (problems NC); and 117 problems with a quadratic objective, general linear

constraints and bounds on the variables (problems QP). The BC, LC, NC and QP subsets were

selected based on the number of variables and general constraints. In particular, a problem was

chosen if the associated KKT system was of the order of 1000 or less. The same criterion was used

to set the dimension of those problems for which the problem size can be specified. The nonsmooth

problem HS87 was excluded from the Hock-Schittkowski problems. Exact second derivatives were

used for all the runs.

Each CUTEst problem may be written in the form

minimize
x

f(x) subject to

(
ℓX

ℓS

)
≤

(
x

c(x)

)
≤

(
uX

uS

)
, (5.4)

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of lower and upper

bounds. In this format, a fixed variable or an equality constraint has the same value for its upper and

lower bounds. A variable or constraint with no upper or lower limit is indicated by a bound of ±1020.

131

The approximate Newton equations for problem (5.4) are derived in Appendix A. As is the case for

problem (NIPs) the principal work at each iteration is the solution of a reduced (n+m)× (n+m)

KKT system analogous to (4.14). Each KKT matrix was factored using the Matlab built-in

command LDL. If this matrix was singular or had more than m negative eigenvalues, the Hessian

of the Lagrangian H was modified using the method of Wächter and Biegler [84, Algorithm IC,

p. 36], which factors the KKT matrix with δIn added to H. At any given iteration the value of δ is

increased from zero if necessary until the inertia of the KKT matrix is correct.

All three Matlab implementations were initialized with identical parameter values that

were chosen based on the empirical performance on the entire collection of problems. A summary of

the values is given in Table 5.1. The initial primal-dual estimate (x0, y0) was based on the default

initial values supplied by CUTEst. If necessary, x0 was projected onto the set
{
x : ℓX ≤ x ≤ uX

}
to

ensure feasibility with respect to the bounds on x. The iterates were terminated at the first point

that satisfied the conditions (5.2a)–(5.2b) or (5.3) defined in terms of the constraints associated

with problem (5.4).

Table 5.1: Control parameters for Algorithms pdb, pdbAll and pdProj.

Parameter Description Value
smax, ymax, wmax Maximum allowed yE, wE, sE 1.0e+6
µP
0 Initial penalty parameter for Algorithm 5 1.0e-4
µL
0 Initial flexible line-search penalty parameter for Algorithm 5 1.0
µB
0 Initial barrier parameter for Algorithm 5 1.0e-4
τ0 Initial termination tolerance for specifying an M-iterate 0.5
τP Primal feasibility tolerance (5.2a) 1.0e-4
τD Dual feasibility tolerance (5.2b) 1.0e-4
τinf Infeasible stationary point tolerance (5.3) 1.0e-4
χmax
0 Initial target for an O-iteration 1.0e+3
ηA Line-search Armijo sufficient reduction 1.0e-2
ηF Line-search sufficient reduction for ∥F∥ 1.0e-2
γA Line-search factor for reducing an Armijo step 1.0e-3
funb Unbounded objective 1.0e-9
Mmax Constants in line-search tolerance (4.16a) and (4.16b) 1.0e+12
Fmax Constant in the line-search tolerance (4.16c) 1.0e+8
σ Bound perturbation in the definition of Ωk (4.15) 0.8
kmax Iteration limit for Algorithm 5 500

Figures 5.4–5.8 present the performance profiles for the total number of iterations and

function evaluations required to solve the 135 BC problems, 212 LC problems, 124 HS problems,

372 NC problems, and 117 QP problems successively. More details of the runs used to generate

132

the performance profiles are given by Gill and Zhang [55]. The profiles show that the projected-

search interior method pdProj requires substantially fewer iterations and function evaluations than

the other two methods pdb and pdbAll. As a result, the pdProj method also necessitates fewer

computations of search directions. In particular, results from solving the 117 QP problems suggest

that the pdProj method is especially well-suited to solving the quadratic programming subproblem

in a sequential quadratic programming method for nonlinear optimization.

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
135 BC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
135 BC problems from the CUTEst test set

pdb
pdbAll
pdProj

Figure 5.4: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 135 bound-constrained (BC) problems from the CUTEst test set. The left figure gives
the profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.

133

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
212 LC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
212 LC problems from the CUTEst test set

pdb
pdbAll
pdProj

Figure 5.5: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 212 linearly constrained (LC) problems from the CUTEst test set. The left figure gives
the profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
124 HS problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
124 HS problems from the CUTEst test set

pdb
pdbAll
pdProj

Figure 5.6: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 124 Hock-Schittkowski (HS) problems from the CUTEst test set. The left figure gives the
profiles for the number of function evaluations. The right figure gives the profiles for the number
of iterations.

134

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
372 NC problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

372 NC problems from the CUTEst test set
Iteration performance profiles for

pdb
pdbAll
pdProj

Figure 5.7: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 372 nonlinearly constrained (NC) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluation performance profiles for
117 QP problems from the CUTEst test set

pdb
pdbAll
pdProj

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration performance profiles for
117 QP problems from the CUTEst test set

pdb
pdbAll
pdProj

Figure 5.8: Performance profiles for the primal-dual interior algorithms pdb, pdbAll and pdProj
applied to 117 quadratic programming (QP) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

135

A
pp

en
di

x
A

E
qu

at
io

ns
of

an
A

ll-
Sh

ift
ed

P
ri

m
al

-D
ua

l

P
en

al
ty

-B
ar

ri
er

M
et

ho
d

fo
r

N
on

lin
ea

r

O
pt

im
iz

at
io

n

A
.1

In
tr

od
uc

ti
on

In
C

ha
pt

er
4,

a
pr

im
al

-d
ua

lp
at

h-
fo

llo
w

in
g

m
et

ho
d

w
as

pr
op

os
ed

fo
r

no
nl

in
ea

rl
y

co
ns

tr
ai

ne
d

op
ti

m
iz

at
io

n,
co

m
bi

ni
ng

a
sh

ift
ed

pr
im

al
-d

ua
lp

at
h-

fo
llo

w
in

g
m

et
ho

d
w

it
h

a
pr

oj
ec

te
d-

se
ar

ch
m

et
ho

d
fo

r
bo

un
d-

co
ns

tr
ai

ne
d

op
ti

m
iz

at
io

n.
T

he
m

et
ho

d

in
vo

lv
es

th
e

co
m

pu
ta

ti
on

of
an

ap
pr

ox
im

at
e

N
ew

to
n

di
re

ct
io

n
fo

r
a

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
fu

nc
ti

on
th

at
in

co
rp

or
at

es
sh

ift
s

on
bo

th
th

e
pr

im
al

an
d

du
al

va
ri

ab
le

s.
T

he
fo

cu
s

of
th

is
ap

pe
nd

ix
is

th
e

de
ri

va
ti

on
of

th
e

pr
im

al
-d

ua
le

qu
at

io
ns

fo
r

th
is

m
et

ho
d

w
he

n
ap

pl
ie

d
to

ge
ne

ra
l
no

nl
in

ea
rl

y
co

ns
tr

ai
ne

d
pr

ob
le

m
s.

In
pa

rt
ic

ul
ar

,
th

e
eq

ua
ti

on
s

ar
e

fo
rm

ul
at

ed
fo

r
pr

ob
le

m
s

w
ri

tt
en

in

136

th
e

ge
ne

ra
lf

or
m

:

m
in
im

iz
e

x
∈
R

n
,s
∈
R

m
f
(x
)

su
b
je
ct

to

  c(
x
)
−
s
=

0,
L

X
s
=
h

X
,

ℓS
≤
L

L
s,

L
U
s
≤
u

S
,

A
x
−
b
=

0,
E

X
x
=
b X
,

ℓX
≤
E

L
x
,
E

U
x
≤
u

X
,

(N
LP

)

w
he

re
A

de
no

te
s

a
co

ns
ta

nt
m

A
×
n

m
at

ri
x,

an
d
b,
h

X
,
b X

,
ℓS

,
u

S
,
ℓX

an
d
u

X
ar

e
fix

ed
ve

ct
or

s
of

di
m

en
si

on
m

A
,
m

X
,
n

X
,
m

L
,

m
U
,
n

L
an

d
n

U
,

re
sp

ec
ti

ve
ly

.
Si

m
ila

rl
y,
L

X
,
L

L
an

d
L

U
de

no
te

fix
ed

m
at

ri
ce

s
of

di
m

en
si

on
m

X
×
m

,
m

L
×
m

an
d
m

U
×
m

,

re
sp

ec
ti

ve
ly

,
an

d
E

X
,
E

L
an

d
E

U
ar

e
fix

ed
m

at
ri

ce
s

of
di

m
en

si
on

n
X
×
n
,
n

L
×
n

an
d
n

U
×
n
,

re
sp

ec
ti

ve
ly

.
T

hr
ou

gh
ou

t
th

e

di
sc

us
si

on
,t

he
fu

nc
ti

on
s
c
:
R

n
7→

R
m

an
d
f
:
R

n
7→

R
ar

e
as

su
m

ed
to

be
tw

ic
e-

co
nt

in
uo

us
ly

di
ffe

re
nt

ia
bl

e.
T

he
co

m
po

ne
nt

s
of

s
m

ay
be

in
te

rp
re

te
d

as
sl

ac
k

va
ri

ab
le

s
as

so
ci

at
ed

w
it

h
th

e
no

nl
in

ea
r

co
ns

tr
ai

nt
s.

T
he

qu
an

ti
ty
E

X
de

no
te

s
an

n
X
×
n

m
at

ri
x

fo
rm

ed
fr

om
n

X
in

de
pe

nd
en

t
ro

w
s

of
I n

,
th

e
id

en
ti

ty
m

at
ri

x
of

or
de

r
n
.

T
hi

s
im

pl
ie

s
th

at
th

e
eq

ua
lit

y
co

ns
tr

ai
nt

s
E

X
x
=
b X

fix
n

X
co

m
po

ne
nt

s
of
x

at
th

e
co

rr
es

po
nd

in
g

va
lu

es
of
b X

.
Si

m
ila

rl
y,
E

L

an
d
E

U
de

no
te
n

L
×
n

an
d
n

U
×
n

m
at

ri
ce

s
fo

rm
ed

fr
om

su
bs

et
s

of
ro

w
s

of
I n

su
ch

th
at
E

T X
E

L
=

0
,
E

T X
E

U
=

0
,
i.e

.,
a

va
ri

ab
le

is
ei

th
er

fix
ed

or
fr

ee
to

m
ov

e,
po

ss
ib

ly
bo

un
de

d
by

an
up

pe
r

or
lo

w
er

bo
un

d.
N

ot
e

th
at

an
x
j

m
ay

be
an

un
re

st
ri

ct
ed

va
ri

ab
le

in
th

e
se

ns
e

th
at

it
is

ne
it

he
r

fix
ed

no
r

su
bj

ec
t

to
an

up
pe

r
or

lo
w

er
bo

un
d,

in
w

hi
ch

ca
se
e
T j

is
no

t
a

ro
w

of
E

X
,
E

L
or
E

U
.

A
na

lo
go

us
de

fin
it

io
ns

ho
ld

fo
r
L

X
,L

L
an

d
L

U
as

su
bs

et
s

of
ro

w
s

of
I m

.
H

ow
ev

er
,w

e
im

po
se

th
e

re
st

ri
ct

io
n

th
at

a
gi

ve
n
s j

m
us

t

be
ei

th
er

fix
ed

or
re

st
ri

ct
ed

by
an

up
pe

r
or

lo
w

er
bo

un
d,

i.e
.,

th
er

e
ar

e
no

un
re

st
ri

ct
ed

sl
ac

ks
1
.

Le
t
E

F
de

no
te

th
e

m
at

ri
x

of

ro
w

s
of
I n

th
at

ar
e

no
t

ro
w

s
of
E

X
,
an

d
le

t
L

F
de

no
te

th
e

m
at

ri
x

of
ro

w
s

of
I m

th
at

ar
e

no
t

ro
w

s
of
L

X
.

If
n

F
=
n
−
n

X
an

d

m
F
=
m
−
m

X
,
th

en
E

F
an

d
L

F
ar

e
n

F
×
n

an
d
m

F
×
m

re
sp

ec
ti

ve
ly

.
N

ot
e

th
at
n

L
+
n

U
m

ay
be

le
ss

th
an

n
F
,
bu

t
m

F
m

us
t

eq
ua

l
m

L
+
m

U
.

T
he

m
at

ri
ce

s
(E

T X
E

T F

) an
d
(L

T X
L

T F

) ar
e

co
lu

m
n

pe
rm

ut
at

io
ns

of
I n

an
d
I m

.
M

or
eo

ve
r,

th
er

e
ar

e
n
×
n

an
d
m
×
m

pe
rm

ut
at

io
n

m
at

ri
ce

s
P
x

an
d
P
s

su
ch

th
at

P
x
=

(E F E
X

)
an

d
P
s
=

(L F L
X

) ,

w
it

h
E

F
E

T F
=
I
x F
,E

X
E

T X
=
I
x X
,a

nd
E

F
E

T X
=

0,
an

d
L

F
L

T F
=
I
s F
,L

X
L

T X
=
I
s X
,a

nd
L

F
L

T X
=

0.
1
T

hi
s

is
no

t
a

si
gn

ifi
ca

nt
re

st
ri

ct
io

n
be

ca
us

e
a

“f
re

e”
sl

ac
k

is
eq

ui
va

le
nt

to
a

un
re

st
ri

ct
ed

no
nl

in
ea

r
co

ns
tr

ai
nt

,
w

hi
ch

m
ay

be
di

sc
ar

de
d

fr
om

th
e

pr
ob

le
m

.
T

he
sh

ift
ed

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
eq

ua
ti

on
s

ca
n

be
de

ri
ve

d
w

it
ho

ut
th

is
re

st
ri

ct
io

n,
bu

t
th

e
de

ri
va

ti
on

is
be

yo
nd

th
e

sc
op

e
of

th
is

w
or

k.

137

A
ll

ge
ne

ra
l

in
eq

ua
lit

y
co

ns
tr

ai
nt

s
ar

e
im

po
se

d
in

di
re

ct
ly

us
in

g
a

sh
ift

ed
pr

im
al

-d
ua

l
ba

rr
ie

r
fu

nc
ti

on
.

T
he

ge
ne

ra
l

eq
ua

lit
y

co
ns

tr
ai

nt
s
c(
x
)
−
s
=

0
an

d
A
x
=
b

ar
e

en
fo

rc
ed

us
in

g
an

pr
im

al
-d

ua
la

ug
m

en
te

d
La

gr
an

gi
an

al
go

ri
th

m
,w

hi
ch

im
pl

ie
s

th
at

th
e

eq
ua

lit
ie

s
ar

e
sa

ti
sfi

ed
in

th
e

lim
it

.
T

he
ex

ce
pt

io
n

to
th

is
is

w
he

n
th

e
co

ns
tr

ai
nt

s
E

X
x
=
b X

,
an

d
L

X
s
=
h

X
ar

e
us

ed

to
fix

a
su

bs
et

of
th

e
va

ri
ab

le
s

an
d

sl
ac

ks
.

T
he

se
bo

un
ds

ar
e

en
fo

rc
ed

at
ev

er
y

it
er

at
e.

A
n

eq
ua

lit
y

co
ns

tr
ai

nt
c i
(x
)
=

0
m

ay
be

ha
nd

le
d

by
in

tr
od

uc
in

g
th

e
sl

ac
k

va
ri

ab
le
s i

an
d

w
ri

ti
ng

th
e

co
ns

tr
ai

nt
as

th
e

tw
o

co
ns

tr
ai

nt
s
c i
(x
)
−
s i

=
0

an
d
s i

=
0.

In
th

is
ca

se
th

e
it

h
co

or
di

na
te

ve
ct

or
e i

ca
n

be
in

cl
ud

ed
as

a
ro

w
of
L

X
.

Li
ne

ar

in
eq

ua
lit

y
co

ns
tr

ai
nt

s
m

us
t

be
in

cl
ud

ed
as

pa
rt

of
c.

A
lin

ea
r

eq
ua

lit
y

co
ns

tr
ai

nt
ca

n
be

ei
th

er
in

cl
ud

ed
w

it
h

th
e

no
nl

in
ea

r

eq
ua

lit
y

co
ns

tr
ai

nt
s

or
th

e
m

at
ri

x
A

.
T

he
co

ns
tr

ai
nt

s
in

vo
lv

in
g
A

m
ay

be
us

ed
to

te
m

po
ra

ri
ly

fix
a

su
bs

et
of

th
e

va
ri

ab
le

s
at

th
ei

r
bo

un
ds

w
it

ho
ut

al
te

ri
ng

th
e

un
de

rl
yi

ng
st

ru
ct

ur
e

of
th

e
ap

pr
ox

im
at

e
N

ew
to

n
eq

ua
ti

on
s.

In
th

is
ca

se
,t

he
as

so
ci

at
ed

ro
w

s

of
A

ar
e

ro
w

s
of

th
e

id
en

ti
ty

m
at

ri
x.

T
he

op
ti

m
al

it
y

co
nd

it
io

ns
fo

r
pr

ob
le

m
(N

LP
)

ar
e

gi
ve

n
in

Se
ct

io
n

A
.2

.
T

he
sh

ift
ed

pa
th

-f
ol

lo
w

in
g

eq
ua

ti
on

s
ar

e

fo
rm

ul
at

ed
in

Se
ct

io
n

A
.3

.
T

he
sh

ift
ed

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
fu

nc
ti

on
as

so
ci

at
ed

w
it

h
pr

ob
le

m
is

di
sc

us
se

d
in

Se
ct

io
n

A
.4

.

T
hi

s
fu

nc
ti

on
se

rv
es

as
a

m
er

it
fu

nc
ti

on
fo

r
th

e
pr

oj
ec

te
d-

se
ar

ch
m

et
ho

d.
T

he
eq

ua
ti

on
s

ar
e

fo
rm

ul
at

ed
in

Se
ct

io
ns

A
.5

an
d

A
.6

,

an
d

su
m

m
ar

iz
ed

in
Se

ct
io

n
A

.7
.

138

A
.2

O
pt

im
al

it
y

C
on

di
ti

on
s

T
he

fir
st

-o
rd

er
K

K
T

co
nd

it
io

ns
fo

r
pr

ob
le

m
(N

LP
)

ar
e

∇f
(x

∗)
−
J
(x

∗)
T
y
∗
−
A

T
v
∗
−
E

T X
z
∗ X
−
E

T L
z
∗ 1
+
E

T U
z
∗ 2
=

0,
z
∗ 1
≥

0
,

z
∗ 2
≥

0,

y
∗
−
L

T X
w

∗ X
−
L

T L
w

∗ 1
+
L

T U
w

∗ 2
=

0,
w

∗ 1
≥

0
,

w
∗ 2
≥

0,

c(
x
∗)
−
s∗

=
0,

L
X
s∗
−
h

X
=

0,

A
x
∗
−
b
=

0,
E

X
x
∗
−
b X

=
0,

E
L
x
∗
−
ℓX
≥

0
,

u
X
−
E

U
x
∗
≥

0
,

L
L
s∗
−
ℓS
≥

0
,

u
S
−
L

U
s∗
≥

0
,

z
∗ 1
·(
E

L
x
∗
−
ℓX
)
=

0,
z
∗ 2
·(
u

X
−
E

U
x
∗)

=
0
,

w
∗ 1
·(
L

L
s∗
−
ℓS
)
=

0
,

w
∗ 2
·(
u

S
−
L

U
s∗
)
=

0
,

                                        

(A
.1

)

w
he

re
y
∗ ,
w

∗ X
,
an

d
z
∗ X

ar
e

th
e

m
ul

ti
pl

ie
rs

fo
r

th
e

eq
ua

lit
y

co
ns

tr
ai

nt
s
c(
x
)
−
s
=

0,
L

X
s∗

=
h

X
an

d
E

X
x
∗
=
b X

,
an

d
z
∗ 1
,
z
∗ 2
,
w

∗ 1

an
d
w

∗ 2
m

ay
be

in
te

rp
re

te
d

as
th

e
La

gr
an

ge
m

ul
ti

pl
ie

rs
fo

r
th

e
in

eq
ua

lit
y

co
ns

tr
ai

nt
s
E

L
x
−
ℓX
≥

0,
u

X
−
E

U
x
≥

0
,L

L
s
−
ℓS
≥

0

an
d
u

S
−
L

U
s
≥

0
,r

es
pe

ct
iv

el
y.

T
he

co
m

po
ne

nt
s

of
v
∗

ar
e

th
e

m
ul

ti
pl

ie
rs

fo
r

th
e

lin
ea

r
eq

ua
lit

y
co

ns
tr

ai
nt

s
A
x
=
b.

T
he

di
sc

us
si

on
th

at
fo

llo
w

s
m

ak
es

ex
te

ns
iv

e
us

e
of

th
e

au
xi

lia
ry

qu
an

ti
ti

es

x
1
=
E

L
x
−
ℓX
,

x
2
=
u

X
−
E

U
x
,

s 1
=
L

L
s
−
ℓS
,

an
d

s 2
=
u

S
−
L

U
s.

(A
.2

)

In
so

m
e

ca
se

s
x
1
,x

2
,s

1
an

d
s 2

ar
e

us
ed

to
si

m
pl

ify
th

e
ex

pr
es

si
on

s
ap

pe
ar

in
g

in
ce

rt
ai

n
eq

ua
ti

on
s,

in
ot

he
rs

th
ey

ar
e

re
ga

rd
ed

139

as
in

de
pe

nd
en

t
va

ri
ab

le
s

as
so

ci
at

ed
w

it
h

th
e

pr
ob

le
m

m
in
im

iz
e

x
,x

1
,x

2
,s
,s

1
,s

2

f
(x
)

su
b
je
ct

to
c(
x
)
−
s
=

0,
A
x
−
b
=

0,

E
L
x
−
x
1
=
ℓX
,

L
L
s
−
s 1

=
ℓS
,

x
1
≥

0
,

s 1
≥

0,

E
U
x
+
x
2
=
u

X
,

L
U
s
+
s 2

=
u

S
,

x
2
≥

0
,

s 2
≥

0,

E
X
x
−
b X

=
0,

L
X
s
−
h

X
=

0,

                      
(N

LP
’)

w
hi

ch
is

eq
ui

va
le

nt
to

pr
ob

le
m

(N
LP

).
In

th
is

ca
se

,t
he

du
al

va
ri

ab
le

s
z
∗ 1
,z

∗ 2
,w

∗ 1
,a

nd
w

∗ 2
as

so
ci

at
ed

w
it

h
th

e
op

ti
m

al
it
y

co
nd

it
io

ns

(A
.1

)
ar

e
th

e
La

gr
an

ge
m

ul
ti

pl
ie

rs
fo

r
th

e
in

eq
ua

lit
y

co
ns

tr
ai

nt
s
x
1
≥

0,
x
2
≥

0,
s 1
≥

0,
an

d
s 2
≥

0,
re

sp
ec

ti
ve

ly
.

In
th

e
de

ri
va

ti
on

s
th

at
fo

llo
w

,t
he

ve
ct

or
s
z

an
d
w

ar
e

de
fin

ed
as

z
=
E

T X
z X

+
E

T L
z 1
−
E

T U
z 2
,

an
d

w
=
L

T X
w

X
+
L

T L
w

1
−
L

T U
w

2
.

(A
.3

)

A
.3

T
he

P
at

h-
Fo

llo
w

in
g

E
qu

at
io

ns

P
en

al
ty

an
d

ba
rr

ie
r

m
et

ho
ds

ar
e

cl
os

el
y

re
la

te
d

to
pa

th
-f
ol

lo
w

in
g

m
et

ho
ds

.
T

he
se

m
et

ho
ds

ap
pr

ox
im

at
e

a
co

nt
in

uo
us

pa
th

th
at

pa
ss

es
th

ro
ug

h
a

so
lu

ti
on

of
(N

LP
).

In
th

e
si

m
pl

es
t

ca
se

,
th

e
pa

th
is

pa
ra

m
et

er
iz

ed
by

a
po

si
ti

ve
sc

al
ar

pa
ra

m
et

er

th
at

m
ay

be
in

te
rp

re
te

d
as

a
pe

rt
ur

ba
ti

on
fo

r
th

e
op

ti
m

al
it
y

co
nd

it
io

ns
fo

r
th

e
pr

ob
le

m
(N

LP
).

Le
t
z

E 1
an

d
z

E 2
,w

E 1
an

d
w

E 2
de

no
te

no
nn

eg
at

iv
e

es
ti

m
at

es
of
z
∗ 1

an
d
z
∗ 2
,w

∗ 1
an

d
w

∗ 2
.

Si
m

ila
rl

y,
le

t
v

E
,x

E
an

d
sE

de
no

te

140

es
ti

m
at

es
of
v
∗ ,
x
∗

an
d
s∗

.
G

iv
en

sm
al

lp
os

it
iv

e
sc

al
ar

s
µ

P
,µ

A
an

d
µ

B
,c

on
si

de
r

th
e

pe
rt

ur
be

d
op

ti
m

al
it
y

co
nd

it
io

ns

∇f
(x
)
−
J
(x
)T
y
−
A

T
v
−
E

T X
z X
−
E

T L
z 1

+
E

T U
z 2

=
0,

z 1
≥

0,
z 2
≥

0
,

y
−
L

T X
w

X
−
L

T L
w

1
+
L

T U
w

2
=

0,
w

1
≥

0,
w

2
≥

0
,

c(
x
)
−
s
=
µ

P
(y

E
−
y
),

E
X
x
−
b X

=
0,

L
X
s
−
h

X
=

0,

A
x
−
b
=
µ

A
(v

E
−
v
),

E
L
x
−
ℓX
≥

0,
u

X
−
E

U
x
≥

0,

L
L
s
−
ℓS
≥

0,
u

S
−
L

U
s
≥

0,

z 1
·(
E

L
x
−
ℓX
)
=
µ

B
(z

E 1
−
z 1
)
+
µ

B
(E

L
x

E
−
E

L
x
),

z 2
·(
u

X
−
E

U
x
)
=
µ

B
(z

E 2
−
z 2
)
+
µ

B
(E

U
x
−
E

U
x

E
),

w
1
·(
L

L
s
−
ℓS
)
=
µ

B
(w

E 1
−
w

1
)
+
µ

B
(L

L
sE
−
L

L
s)
,

w
2
·(
u

S
−
L

U
s)

=
µ

B
(w

E 2
−
w

2
)
+
µ

B
(L

U
s
−
L

U
sE
).

     (A
.4

)

Le
t
v P

de
no

te
th

e
ve

ct
or

of
va

ri
ab

le
s
v P

=
(x

,
s,
y
,
v
,
w

X
,
z X

,
z 1

,
z 2

,
w

1
,
w

2
).

T
he

pr
im

al
-d

ua
l
pa

th
-f
ol

lo
w

in
g

eq
ua

ti
on

s
ar

e

141

gi
ve

n
by

F
(v

P
)
=

0,
w

it
h

F
(v

P
)
=

  ∇f
(x
)
−
J
(x
)T
y
−
A

T
v
−
E

T X
z X
−
E

T L
z 1

+
E

T U
z 2

y
−
L

T X
w

X
−
L

T L
w

1
+
L

T U
w

2

c(
x
)
−
s
+
µ

P
(y
−
y

E
)

A
x
−
b
+
µ

A
(v
−
v

E
)

E
X
x
−
b X

L
X
s
−
h

X

z 1
·(
E

L
x
−
ℓX
)
+
µ

B
(z

1
−
z

E 1
)
+
µ

B
(E

L
x
−
E

L
x

E
)

z 2
·(
u

X
−
E

U
x
)
+
µ

B
(z

2
−
z

E 2
)
+
µ

B
(E

U
x

E
−
E

U
x
)

w
1
·(
L

L
s
−
ℓS
)
+
µ

B
(w

1
−
w

E 1
)
+
µ

B
(L

L
s
−
L

L
sE
)

w
2
·(
u

S
−
L

U
s)

+
µ

B
(w

2
−
w

E 2
)
+
µ

B
(L

U
sE
−
L

U
s)

  =

  

∇f
(x
)
−
J
(x
)T
y
−
A

T
v
−
z

y
−
w

c(
x
)
−
s
+
µ

P
(y
−
y

E
)

A
x
−
b
+
µ

A
(v
−
v

E
)

E
X
x
−
b X

L
X
s
−
h

X

z 1
·(
E

L
x
−
ℓX
)
+
µ

B
(z

1
−
z

E 1
)
+
µ

B
(E

L
x
−
E

L
x

E
)

z 2
·(
u

X
−
E

U
x
)
+
µ

B
(z

2
−
z

E 2
)
+
µ

B
(E

U
x

E
−
E

U
x
)

w
1
·(
L

L
s
−
ℓS
)
+
µ

B
(w

1
−
w

E 1
)
+
µ

B
(L

L
s
−
L

L
sE
)

w
2
·(
u

S
−
L

U
s)

+
µ

B
(w

2
−
w

E 2
)
+
µ

B
(L

U
sE
−
L

U
s)

  ,

(A
.5

)

w
he

re
th

e
fir

st
n
+
m

eq
ua

ti
on

s
ar

e
w

ri
tt

en
in

te
rm

s
of
z

an
d
w

su
ch

th
at
z
=
E

T X
z X

+
E

T L
z 1
−
E

T U
z 2

an
d
w

=
L

T X
w

X
+
L

T L
w

1
−
L

T U
w

2
.

(T
o

si
m

pl
ify

th
e

no
ta

ti
on

,
th

e
de

pe
nd

en
ce

of
F

on
th

e
pa

ra
m

et
er

s
µ

A
,
µ

P
,
µ

B
,
x

E
,
sE

,
y

E
,
v

E
,
z

E 1
,
z

E 2
,
w

E 1
,
w

E 2
is

om
it

te
d.

)
A

ny

ze
ro

(x
,
s,
y
,
v
,
w

X
,
z X

,
z 1

,
z 2

,
w

1
,
w

2
)

of
F

su
ch

th
at
ℓX

<
E

L
x
,
E

U
x
<
u

X
,
ℓS
<
L

L
s,
L

U
<
u

S
,
z 1
>

0,
z 2
>

0,
w

1
>

0
,
an

d

w
2
>

0
ap

pr
ox

im
at

es
a

po
in

t
sa

ti
sf

yi
ng

th
e

op
ti

m
al

it
y

co
nd

it
io

ns
(A

.1
),

w
it

h
th

e
ap

pr
ox

im
at

io
n

be
co

m
in

g
in

cr
ea

si
ng

ly
ac

cu
ra

te

as
th

e
te

rm
s
µ

P
(y
−
y

E
),
µ

A
(v
−
v

E
),
µ

B
(E

L
x

E
−
E

L
x
),
µ

B
(E

U
x

E
−
E

U
x
),
µ

B
(L

L
sE
−
L

L
s)

,µ
B
(L

U
s
−
L

2 L
),
µ

B
(z

1
−
z

E 1
),
µ

B
(z

2
−
z

E 2
),

µ
B
(w

1
−
w

E 1
)

an
d
µ

B
(w

2
−
w

E 2
)

ap
pr

oa
ch

ze
ro

.
Fo

r
an

y
se

qu
en

ce
of
x

E
,s

E
,z

E 1
,z

E 2
,w

E 1
,w

E 2
,v

E
an

d
y

E
su

ch
th

at
x

E
→
x
∗ ,
sE
→
s∗

,

z
E 1
→

z
∗ 1
,
z

E 2
→

z
∗ 2
,
w

E 1
→

w
∗ 1
,
w

E 2
→

w
∗ 2
,
v

E
→

v
∗

an
d
y

E
→

y
∗ ,

it
m

us
t

ho
ld

th
at

so
lu

ti
on

s
(x

,
s,
y
,
v
,
z 1

,
z 2

,
w

1
,
w

2
)

of
(A

.4
)

m
us

t
sa

ti
sf

y
z 1
·(
x
−
ℓX
)
→

0
,z

2
·(
u

X
−
x
)
→

0,
w

1
·(
s
−
ℓS
)
→

0,
an

d
w

2
·(
u

S
−
s)
→

0,
T

hi
s

im
pl

ie
s

th
at

an
y

so
lu

ti
on

(x
,s

,

y
,v

,w
X
,z

X
,z

1
,z

2
,w

1
,w

2
)

of
(A

.4
)

w
ill

ap
pr

ox
im

at
e

a
so

lu
ti

on
of

(A
.1

)
in

de
pe

nd
en

tl
y

of
th

e
va

lu
es

of
µ

P
,µ

A
an

d
µ

B
(i

.e
.,

it

is
no

t
ne

ce
ss

ar
y

th
at
µ

P
→

0,
µ

A
→

0
an

d
µ

B
→

0)
.

If
v P

=
(x

,s
,y

,v
,w

X
,z

X
,z

1
,z

2
,w

1
,w

2
)
is

a
gi

ve
n

ap
pr

ox
im

at
e

ze
ro

of
F
(v

P
)
su

ch
th

at
ℓX
−
µ

B
<
E

L
x
,E

U
x
<
u

X
+
µ

B
,

ℓS
−
µ

B
<
L

L
s,
L

U
s
<
u

S
+
µ

B
,z

1
>

0,
z 2
>

0,
w

1
>

0,
an

d
w

2
>

0,
th

e
N

ew
to

n
eq

ua
ti

on
s

fo
r

th
e

ch
an

ge
in

va
ri

ab
le

s
∆
v P

=
(∆
x
,

142

∆
s,
∆
y
,∆

v
,∆

w
X
,∆

z X
,∆

z 1
,∆

z 2
,∆

w
1
,∆

w
2
)

ar
e

gi
ve

n
by

F
′ (
v P

)∆
v P

=
−
F
(v

P
),

w
it

h

F
′ (
v P

)
=

  H
(x
,y
)

0
−
J
T
−
A

T
0

−
E

T X
−
E

T L
E

T U
0

0

0
0

I m
0
−
L

T X
0

0
0
−
L

T L
L

T U

J
−
I m

D
Y

0
0

0
0

0
0

0

A
0

0
D

A
0

0
0

0
0

0

E
X

0
0

0
0

0
0

0
0

0

0
L

X
0

0
0

0
0

0
0

0

Z
µ 1
E

L
0

0
0

0
0

X
µ 1

0
0

0

−
Z

µ 2
E

U
0

0
0

0
0

0
X

µ 2
0

0

0
W

µ 1
L

L
0

0
0

0
0

0
S
µ 1

0

0
−
W

µ 2
L

U
0

0
0

0
0

0
0

S
µ 2

  ,
(A

.6
)

w
he

re X
µ 1
=

d
ia
g
(x

1
+
µ

B
e)
,

X
µ 2
=

d
ia
g
(x

2
+
µ

B
e)
,

S
µ 1
=

d
ia
g
(s

1
+
µ

B
e)
,

S
µ 2
=

d
ia
g
(s

2
+
µ

B
e)
,

Z
µ 1
=

d
ia
g
(z

1
+
µ

B
e)
,

Z
µ 2
=

d
ia
g
(z

2
+
µ

B
e)
,

W
µ 1
=

d
ia
g
(w

1
+
µ

B
e)
,

W
µ 2
=

d
ia
g
(w

2
+
µ

B
e)
,

  
(A

.7
)

w
it

h
x
1
,x

2
,s

1
an

d
s 2

gi
ve

n
by

(A
.2

).
A

ny
s

m
ay

be
w

ri
tt

en
as
s
=
L

T F
s F

+
L

T X
s X

,w
he

re
L

F
ar

e
th

e
ro

w
s

of
I m

or
th

og
on

al
to

th
e

ro
w

s
of
L

X
,i

.e
.,
L

T F
L

X
=

0.
T

he
ve

ct
or

s
s F

an
d
s X

ar
e

th
e

co
m

po
ne

nt
s

of
s

co
rr

es
po

nd
in

g
to

th
e

“f
re

e”
an

d
“fi

xe
d”

co
m

po
ne

nt
s

of
s,

re
sp

ec
ti

ve
ly

.
T

he
va

ri
ab

le
s
L

L
s

an
d
L

U
s

fo
rm

a
su

bs
et

of
s F

.
T

hr
ou

gh
ou

t,
w

e
as

su
m

e
th

at
s

sa
ti

sfi
es
L

X
s
−
h

X
=

0,
in

w
hi

ch
ca

se
∆
s X

=
0

an
d
∆
s

sa
ti

sfi
es

∆
s
=
L

T F
∆
s F

+
L

T X
∆
s X

=
L

T F
∆
s F
.

Si
m

ila
rl

y,
an

y
x

m
ay

be
w

ri
tt

en
as
x
=
E

T F
x

F
+
E

T X
x

X
,w

he
re
x

F
an

d
x

X
de

no
te

th
e

co
m

po
ne

nt
s

of
x

co
rr

es
po

nd
in

g
to

th
e

“f
re

e”

an
d

“fi
xe

d
va

ri
ab

le
s”

,
re

sp
ec

ti
ve

ly
.

T
he

va
ri

ab
le

s
E

L
x

an
d
E

U
x

fo
rm

a
su

bs
et

of
x

F
.

T
hr

ou
gh

ou
t,

w
e

as
su

m
e

th
at
x

X
sa

ti
sfi

es

143

E
X
x
−
b X

=
0,

in
w

hi
ch

ca
se
∆
x

X
=

0
an

d
∆
x

sa
ti

sfi
es

∆
x
=
E

T F
∆
x F

+
E

T X
∆
x

X
=
E

T F
∆
x F
.

A
ft

er
pr

em
ul

ti
pl

yi
ng

th
e

fir
st

an
d

fif
th

bl
oc

ks
of

eq
ua

ti
on

s
of

(A
.6

)
by

E
F

an
d
L

F
re

sp
ec

ti
ve

ly
,a

nd
su

bs
ti

tu
ti

ng
∆
x
=
E

T F
∆
x F

an
d
∆
s
=
L

T F
∆
s F

,t
he

eq
ua

ti
on

s
(A

.6
)

ca
n

be
w

ri
tt

en
in

th
e

re
du

ce
d

fo
rm

F̂
′ (
v F

)∆
v F

=
−
F̂
(v

F
),

w
he

re
∆
v F

=
(∆
x F

,∆
s F

,∆
y
,

∆
v
,∆

z 1
,∆

z 2
,∆

w
1
,∆

w
2
),

                   

H
F

0
−
J
T F
−
A

T F
−
E

T L
F

E
T U
F

0
0

0
0

L
F

0
0

0
−
L

T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

Z
µ 1
E

L
F

0
0

0
X

µ 1
0

0
0

−
Z

µ 2
E

U
F

0
0

0
0

X
µ 2

0
0

0
W

µ 1
L

L
F

0
0

0
0

S
µ 1

0

0
−
W

µ 2
L

U
F

0
0

0
0

0
S
µ 2

                                      ∆
x F

∆
s F

∆
y

∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

                   

=
−

                   

g F
−
J
T F
y
−
A

T F
v
−
E

T L
F
z 1

+
E

T U
F
z 2

y F
−
L

T L
F
w

1
+
L

T U
F
w

2

c(
x
)
−
s
+
µ

P
(y
−
y

E
)

A
x
−
b
+
µ

A
(v
−
v

E
)

z 1
·(
E

L
x
−
ℓX
)
+
µ

B
(z

1
−
z

E 1
)
+
µ

B
(E

L
x
−
E

L
x

E
)

z 2
·(
u

X
−
E

U
x
)
+
µ

B
(z

2
−
z

E 2
)
+
µ

B
(E

U
x

E
−
E

U
x
)

w
1
·(
L

L
s
−
ℓS
)
+
µ

B
(w

1
−
w

E 1
)
+
µ

B
(L

L
s
−
L

L
sE
)

w
2
·(
u

S
−
L

U
s)

+
µ

B
(w

2
−
w

E 2
)
+
µ

B
(L

U
sE
−
L

U
s)

                   ,

144

w
he

re
H

F
=
E

F
H
E

T F
,
J

F
=
J
(x
)E

T F
,
A

F
=
A
E

T F
,
g F

=
E

F
∇f

(x
),
E

L
F
=
E

L
E

T F
,
E

U
F
=
E

U
E

T F
,
y F

=
L

F
y
,
L

L
F
=
L

L
L

T F
an

d

L
U
F
=
L

U
L

T F
.

T
he

m
at

ri
ce

s
J

F
,A

F
,E

L
F

an
d
E

U
F

ar
e

th
e

co
lu

m
ns

of
J
(x
),
A

,E
L

an
d
E

U
as

so
ci

at
ed

w
it

h
th

e
“f
re

e”
co

m
po

ne
nt

s

of
x
.

T
he

m
at

ri
ce

s
L

L
F

an
d
L

U
F

ar
e

th
e

co
lu

m
ns

of
L

L
an

d
L

U
as

so
ci

at
ed

w
it

h
th

e
“f
re

e”
co

m
po

ne
nt

s
of
s.

T
he

n
sc

al
in

g
th

e
la

st

fo
ur

bl
oc

ks
of

eq
ua

ti
on

s
by

(r
es

pe
ct

iv
el

y)
(Z

µ 1
)−

1
,(
Z

µ 2
)−

1
,(
W

µ 1
)−

1
an

d
(W

µ 2
)−

1
gi

ve
s

                 H
F

0
−
J
T F
−
A

T F
−
E

T L
F

E
T U
F

0
0

0
0

L
F

0
0

0
−
L

T L
F

L
T U
F

J
F
−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                                  ∆
x F

∆
s F

∆
y

∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

                 =
−

                 g F
−
J
T F
y
−
A

T F
v
−
E

T L
F
z 1

+
E

T U
F
z 2

y F
−
L

T L
F
w

1
+
L

T U
F
w

2

c(
x
)
−
s
+
µ

P
(y
−
y

E
)

A
x
−
b
+
µ

A
(v
−
v

E
)

D
Z 1
(z

1
−
π

Z 1
)

D
Z 2
(z

2
−
π

Z 2
)

D
W 1
(w

1
−
π

W 1
)

D
W 2
(w

2
−
π

W 2
)

                 ,
(A

.8
)

w
he

re
A

F
=
A
E

T F
ar

e
th

e
co

lu
m

ns
of
A

as
so

ci
at

ed
w

it
h

th
e

“f
re

e”
co

m
po

ne
nt

s
of
x
,a

nd

D
Y
=
µ

P
I m
,

π
Y
=
y

E
−

1 µ
P
(c
−
s)
,

D
A
=
µ

A
I A
,

π
V
=
v

E
−

1 µ
A
(A
x
−
b)
,

D
W 1

=
S
µ 1
(W

µ 1
)−

1
,

π
W 1

=
µ

B
(S

µ 1
)−

1
(w

E 1
−
s 1

+
sE 1
),

D
Z 1
=
X

µ 1
(Z

µ 1
)−

1
,

π
Z 1
=
µ

B
(X

µ 1
)−

1
(z

E 1
−
x
1
+
x

E 1
),

D
W 2

=
S
µ 2
(W

µ 2
)−

1
,

π
W 2

=
µ

B
(S

µ 2
)−

1
(w

E 2
−
s 2

+
sE 2
),

D
Z 2
=
X

µ 2
(Z

µ 2
)−

1
,

π
Z 2
=
µ

B
(X

µ 2
)−

1
(z

E 2
−
x
2
+
x

E 2
),

w
it

h
au

xi
lia

ry
qu

an
ti

ti
es

x
E 1
=
E

L
x

E
−
ℓX
,

x
E 2
=
u

X
−
E

U
x

E
,

sE 1
=
L

L
sE
−
ℓS
,

an
d

sE 2
=
u

S
−
L

U
sE
.

G
iv

en
th

e
de

fin
it

io
ns

(A
.3

),
th

e
ve

ct
or

s
∆
s

an
d
∆
w

X
ar

e
re

co
ve

re
d

as
∆
s
=
L

T F
∆
s F

an
d
∆
w

X
=

[y
+
∆
y
−
w
] X

.
Si

m
ila

rl
y,
∆
x

an
d
∆
z X

ar
e

re
co

ve
re

d
as
∆
x
=
L

T F
∆
x F

an
d
∆
z X

=
[g

+
H
∆
x
−
J
T
(y

+
∆
y
)
−
z
] X

.

145

A
.4

A
Sh

if
te

d
P

ri
m

al
-D

ua
l
P
en

al
ty

-B
ar

ri
er

Fu
nc

ti
on

C
on

si
de

r
th

e
sh

ift
ed

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
pr

ob
le

m
ap

pl
ie

d
to

(N
P

):

m
in
im

iz
e

x
,x

1
,x

2
,s

,s
1
,s

2
,

y
,v
,z

1
,z

2
,w

1
,w

2

M
(x
,x

1
,x

2
,s
,s

1
,s

2
,y
,v
,w

1
,w

2
;µ

P
,µ

B
,y

E
,v

E
,w

E 1
,w

E 2
)

su
b
je
ct

to
E

L
x
−
x
1
=
ℓX
,

L
L
s
−
s 1

=
ℓS
,

x
1
+
µ

B
e
>

0,
z 1

+
µ

B
e
>

0,
s 1

+
µ

B
e
>

0
,

w
1
+
µ

B
e
>

0
,

E
U
x
+
x
2
=
u

X
,
L

U
s
+
s 2

=
u

S
,

x
2
+
µ

B
e
>

0,
z 2

+
µ

B
e
>

0,
s 2

+
µ

B
e
>

0
,

w
2
+
µ

B
e
>

0
,

E
X
x
−
b X

=
0,

L
X
s
−
h

X
=

0,

w
he

re
M

(x
,x

1
,x

2
,s
,s

1
,s

2
,y
,v
,z

1
,z

2
,w

1
,w

2
;µ

P
,µ

B
,y

E
,v

E
,z

E 1
,z

E 2
,w

E 1
,w

E 2
)

is
th

e
sh

ift
ed

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
fu

nc
ti

on

f
(x
)
−
(c(x)

−
s) T y

E
+

1

2µ
P
∥c
(x
)
−
s∥

2
+

1

2
µ

P
∥c
(x
)
−
s
+
µ

P
(y
−
y

E
)∥

2

−
(A
x
−
b)

T
v

E
+

1

2
µ

A
∥A
x
−
b∥

2
+

1

2µ
A
∥A
x
−
b
+
µ

A
(v
−
v

E
)∥

2

−
n
L ∑ j

=
1

{ µ
B
([
z

E 1
] j
+
[x

E 1
] j
+
µ

B
)
ln
([z 1

+
µ

B
e
] j
[x

1
+
µ

B
e
]2 j

) −[
z 1
·(
x
1
+
µ

B
e)

] j
−

2µ
B
[x

1
] j

}
−

n
U ∑ j
=
1

{ µ
B
([
z

E 2
] j
+
[x

E 2
] j
+
µ

B
)
ln
([z 2

+
µ

B
e
] j
[x

2
+
µ

B
e
]2 j

) −[
z 2
·(
x
2
+
µ

B
e)

] j
−

2µ
B
[x

2
] j

}
−

m
L ∑ i=
1

{ µ
B
([
w

E 1
] i
+
[s

E 1
] i
+
µ

B
)
ln
([w 1

+
µ

B
] i
[s

1
+
µ

B
e
]2 i

) −[
w

1
·(
s 1

+
µ

B
e)

] i
−

2µ
B
[s

1
] i

}
−

m
U ∑ i=
1

{ µ
B
([
w

E 2
] i
+
[s

E 2
]+

µ
B
)
ln
([w 2

+
µ

B
] i
[s

2
+
µ

B
e
]2 i

) −[
w

2
·(
s 2

+
µ

B
e)

] i
−

2µ
B
[s

2
] i

} .
(A

.9
)

146

T
he

gr
ad

ie
nt

m
ay

be
w

ri
tt

en
as

∇M
(x
,x

1
,x

2
,s
,s

1
,s

2
,y
,v
,z

1
,z

2
,w

1
,w

2
)
=

  ∇f
(x
)
−
A

T
(2(v

E
−

1 µ
A
(A
x
−
b)
)
−
v
) −J

(x
)T
(2(y

E
−

1 µ
P
(c
−
s)
)
−
y
)

z 1
+
2
µ

B
e
−

2µ
B
(X

µ 1
)−

1
(z

E 1
+
x

E 1
+
µ

B
e)

z 2
+
2
µ

B
e
−

2µ
B
(X

µ 2
)−

1
(z

E 2
+
x

E 2
+
µ

B
e)

2(yE
−

1 µ
P
(c
−
s)
) −y

w
1
+
2
µ

B
e
−
2µ

B
(S

µ 1
)−

1
(w

E 1
+
sE 1

+
µ

B
e)

w
2
+
2
µ

B
e
−
2µ

B
(S

µ 2
)−

1
(w

E 2
+
sE 2

+
µ

B
e)

c(
x
)
−
s
+
µ

P
(y
−
y

E
)

A
x
−
b
+
µ

A
(v
−
v

E
)

x
1
+
µ

B
e
−
µ

B
(Z

µ 1
)−

1
(z

E 1
+
x

E 1
+
µ

B
e)

x
2
+
µ

B
e
−
µ

B
(Z

µ 2
)−

1
(z

E 2
+
x

E 2
+
µ

B
e)

s 1
+
µ

B
e
−
µ

B
(W

µ 1
)−

1
(w

E 1
+
sE 1

+
µ

B
e)

s 2
+
µ

B
e
−
µ

B
(W

µ 2
)−

1
(w

E 2
+
sE 2

+
µ

B
e)

  ,

147

w
he

re
X

µ 1
,X

µ 2
,S

µ 1
,S

µ 2
,Z

µ 1
,Z

µ 2
,W

µ 1
an

d
W

µ 2
ar

e
de

fin
ed

in
(A

.7
).

E
qu

iv
al

en
tl

y,

∇M
=

  ∇f
(x
)
−
A

T
(πV +

(π
V
−
v
)) −

J
(x
)T
(πY

+
(π

Y
−
y
))

z 1
−

2π
Z 1

z 2
−

2π
Z 2

π
Y
+
(π

Y
−
y
)

w
1
−
2
π

W 1

w
2
−
2
π

W 2

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

  .

148

T
he

H
es

si
an
∇

2 M
(x
,x

1
,x

2
,s
,s

1
,s

2
,y
,v
,z

1
,z

2
,w

1
,w

2
)

is
gi

ve
n

by

  

H
1

0
0

−
2J

T
D

−
1

Y
0

0
J
T

A
T

0
0

0
0

0
2G

X 1
0

0
0

0
−
I m

0
I
x L

0
0

0

0
0

2G
X 2

0
0

0
0

0
0

I
x U

0
0

−
2D

−
1

Y
J

0
0

2
D

−
1

Y
0

0
0

0
0

0
0

0

0
0

0
0

2G
S 1

0
0

0
0

0
I
s L

0

0
0

0
0

0
2G

S 2
0

0
0

0
0

I
s U

J
0

0
−
I m

0
0

D
Y

0
0

0
0

0

A
0

0
0

0
0

0
D

A
0

0
0

0

0
I
x L

0
0

0
0

0
0

G
Z 1

0
0

0

0
0

I
x U

0
0

0
0

0
0

G
Z 2

0
0

0
0

0
0

I
s L

0
0

0
0

0
G

W 1
0

0
0

0
0

0
I
s U

0
0

0
0

0
G

W 2

  ,

w
he

re
H

1
=
H
(x
,2
π

Y
−
y
)
+

2 µ
A
A

T
A
+

2 µ
P
J
(x
)T
J
(x
),

an
d
I
x L
,I

x L
,I

s L
,I

s U
ar

e
id

en
ti

ty
m

at
ri

ce
s

of
si

ze
n

L
,n

U
,m

L
,m

U
re

sp
ec

ti
ve

ly
.

In
ad

di
ti

on

G
X 1
=

(X
µ 1
)−

1
(ΠZ 1

+
µ

B
I
) ,

G
X 2
=

(X
µ 2
)−

1
(ΠZ 2

+
µ

B
I
) ,

G
S 1
=

(S
µ 1
)−

1
(ΠW 1

+
µ

B
I
) ,

G
S 2
=

(S
µ 2
)−

1
(ΠW 1

+
µ

B
I
) ,

G
Z 1
=

(Z
µ 1
)−

1
(ΠX 1

+
µ

B
I
) ,

G
Z 2
=

(Z
µ 2
)−

1
(ΠX 2

+
µ

B
I
) ,

G
W 1

=
(W

µ 1
)−

1
(ΠS 1

+
µ

B
I
) ,

G
W 2

=
(W

µ 2
)−

1
(ΠS 2

+
µ

B
I
) ,

w
it

h
Π

Z 1
=

d
ia
g
(π

Z 1
),
Π

Z 2
=

d
ia
g
(π

Z 2
),
Π

W 1
=

d
ia
g
(π

W 1
),
Π

W 2
=

d
ia
g
(π

W 2
),
X

E 1
=

d
ia
g
(x

E 1
),
X

E 2
=

d
ia
g
(x

E 2
),
S

E 1
=

d
ia
g
(s

E 1
),

W
E 1
=

d
ia
g
(w

E 1
),
W

E 2
=

d
ia
g
(w

E 2
),
Z

E 1
=

d
ia
g
(z

E 1
)

an
d
Z

E 2
=

d
ia
g
(z

E 2
).

149

A
.5

D
er

iv
at

io
n

of
th

e
P

ri
m

al
-D

ua
l
L
in

e-
Se

ar
ch

D
ir

ec
ti

on

T
he

pr
im

al
-d

ua
lp

en
al

ty
-b

ar
ri

er
pr

ob
le

m
m

ay
be

w
ri

tt
en

in
th

e
fo

rm

m
in
im

iz
e

p
∈
I

M
(p
)

su
b
je
ct

to
C
p
=
b C
,

w
he

re

I
=
{p

:
p
=

(x
,x

1
,x

2
,s
,s

1
,s

2
,y
,v
,z

1
,z

2
,w

1
,w

2
),

w
it

h
x
i
+
µ

B
e
>

0
,s

i
+
µ

B
e
>

0
,z

i
+
µ

B
e
>

0,
w

i
+
µ

B
e
>

0
fo

r
i
=

1,
2}
,

an
d

C
=

           E
X

0
0

0
0

0
0

0
0

0
0

0

E
L
−
I
x L

0
0

0
0

0
0

0
0

0
0

E
U

0
I
x U

0
0

0
0

0
0

0
0

0

0
0

0
L

X
0

0
0

0
0

0
0

0

0
0

0
L

L
−
I
s L

0
0

0
0

0
0

0

0
0

0
L

U
0

I
s U

0
0

0
0

0
0           ,

an
d

b C
=

           b X ℓX u
X

h
X ℓS u
S

           .
(A

.1
0)

Le
t
p

be
an

y
ve

ct
or

in
I

su
ch

th
at
C
p
=
b C

.
T

he
N

ew
to

n
di

re
ct

io
n
∆
p

is
gi

ve
n

by
th

e
so

lu
ti

on
of

th
e

su
bp

ro
bl

em

m
in
im

iz
e

∆
p

∇M
(p
)T
∆
p
+

1 2
∆
p
T
∇

2 M
(p
)∆
p

su
b
je
ct

to
C
∆
p
=
b C
−
C
p
=

0.
(A

.1
1)

Le
t
N

de
no

te
a

m
at

ri
x

w
ho

se
co

lu
m

ns
fo

rm
a

ba
si

s
fo

r
n
u
ll
(C

),
i.e

.,
th

e
co

lu
m

ns
of
N

ar
e

lin
ea

rl
y

in
de

pe
nd

en
t

an
d
C
N

=

0.
E

ve
ry

fe
as

ib
le

di
re

ct
io

n
∆
p

m
ay

be
w

ri
tt

en
in

th
e

fo
rm

∆
p
=
N
d
.

T
hi

s
im

pl
ie

s
th

at
d

sa
ti

sfi
es

th
e

re
du

ce
d

eq
ua

ti
on

s

N
T
∇

2 M
(p
)N
d
=
−
N

T
∇M

(p
).

H
ow

ev
er

,
in

st
ea

d
of

so
lv

in
g

(A
.1

1)
,

w
e

fo
rm

ul
at

e
a

lin
ea

rl
y

co
ns

tr
ai

ne
d

ap
pr

ox
im

at
e

N
ew

to
n

m
et

ho
d

by
ap

pr
ox

im
at

in
g

th
e

H
es

si
an
∇

2 M
(p
)

by
a

m
at

ri
x
B
(p
)

su
ch

th
at
N

T
B
(p
)N

is
po

si
ti

ve
de

fin
it

e
w

it
h
N

T
B
(p
)N
≈

N
T
∇

2 M
(p
)N

.
C

on
si

de
r

th
e

m
at

ri
x
B

ob
ta

in
ed

by
re

pl
ac

in
g
π

Y
by

y
,π

Z 1
by

z 1
,π

Z 2
by

z 2
,π

W 1
by

w
1
,π

W 2
by

w
2
,x

E 1
by

x
1
,x

E 2
by

x
2
,s

E 1
by

s 1
,s

E 2
by

s 2
,z

E 1
by

z 1
,z

E 2
by

z 2
,w

E 1
by

w
1

an
d
w

E 2
by

w
2

in
∇

2 M
(x

,x
1
,x

2
,s

,s
1
,s

2
,y

,v
,z

1
,z

2
,w

1
,w

2
).

T
hi

s
gi

ve
s

150

an
ap

pr
ox

im
at

e
H

es
si

an
B
(x

,x
1
,x

2
,s

,s
1
,s

2
,y

,v
,z

1
,z

2
,w

1
,w

2
)

of
th

e
fo

rm

  H
B
+

2 µ
A
A

T
A
+

2 µ
P
J
T
J

0
0

−
2J

T
D

−
1

Y
0

0
J
T

A
T

0
0

0
0

0
2(
D

Z 1
)−

1
0

0
0

0
0

0
I
x L

0
0

0

0
0

−
2
(D

Z 2
)−

1
0

0
0

0
0

0
I
x U

0
0

−
2D

−
1

Y
J

0
0

2
D

−
1

Y
0

0
−
I m

0
0

0
0

0

0
0

0
0

2
(D

W 1
)−

1
0

0
0

0
0

I
s L

0

0
0

0
0

0
2
(D

W 2
)−

1
0

0
0

0
0

I
s U

J
0

0
−
I m

0
0

D
Y

0
0

0
0

0

A
0

0
0

0
0

0
D

A
0

0
0

0

0
I
x L

0
0

0
0

0
0

D
Z 1

0
0

0

0
0

I
x U

0
0

0
0

0
0

D
Z 2

0
0

0
0

0
0

I
s L

0
0

0
0

0
D

W 1
0

0
0

0
0

0
I
s U

0
0

0
0

0
D

W 2

  ,

w
he

re
H

B
≈
H
(x
,y
)

is
ch

os
en

so
th

at
th

e
ap

pr
ox

im
at

e
re

du
ce

d
H

es
si

an
N

T
B
(p
)N

is
po

si
ti

ve
de

fin
it

e
(s

ee
Se

ct
io

n
A

.7
).

G
iv

en

B
(p
),

an
ap

pr
ox

im
at

e
N

ew
to

n
di

re
ct

io
n

is
gi

ve
n

by
th

e
so

lu
ti

on
of

th
e

Q
P

su
bp

ro
bl

em

m
in
im

iz
e

∆
p

∇M
(p
)T
∆
p
+

1 2
∆
p
T
B
(p
)∆
p

su
b
je
ct

to
C
∆
p
=

0.

Le
tN

de
no

te
a

m
at

ri
x

w
ho

se
co

lu
m

ns
fo

rm
a

ba
si

sf
or

n
u
ll
(C

),
i.e

.,
th

e
co

lu
m

ns
of
N

ar
e

lin
ea

rl
y

in
de

pe
nd

en
ta

nd
C
N

=
0.

E
ve

ry

fe
as

ib
le
∆
p

m
ay

be
w

ri
tt

en
in

th
e

fo
rm

∆
p
=
N
d
.

T
hi

s
im

pl
ie

s
th

at
d

sa
ti

sfi
es

th
e

re
du

ce
d

eq
ua

ti
on

s
N

T
B
(p
)N
d
=
−
N

T
∇M

(p
).

151

C
on

si
de

r
th

e
nu

ll-
sp

ac
e

ba
si

s
de

fin
ed

fr
om

th
e

co
lu

m
ns

of

N
=

  E
T F

0
0

0
0

0
0

0

E
L
F

0
0

0
0

0
0

0

−
E

U
F

0
0

0
0

0
0

0

0
L

T F
0

0
0

0
0

0

0
L

L
F

0
0

0
0

0
0

0
−
L

U
F

0
0

0
0

0
0

0
0

I m
0

0
0

0
0

0
0

0
I A

0
0

0
0

0
0

0
0

I
x L

0
0

0

0
0

0
0

0
I
x U

0
0

0
0

0
0

0
0

I
s L

0

0
0

0
0

0
0

0
I
s U

  ,
(A

.1
2)

w
he

re
E

L
F
=
E

L
E

T F
,
E

U
F
=
E

U
E

T F
,
L

L
F
=
L

L
L

T F
an

d
L

U
F
=
L

U
L

T F
.

T
he

de
fin

it
io

n
of
N

of
(A

.1
2)

gi
ve

s
th

e
re

du
ce

d
H

es
si

an

N
T
B
(p
)N

su
ch

th
at

                 

Ĥ
F

−
2J

T F
D

−
1

Y
L

T F
J
T F

A
T F

E
T L
F
−
E

T U
F

0
0

−
2L

F
D

−
1

Y
J

F
2L

F
(D

−
1

Y
+
D

† W
)L

T F
−
L

F
0

0
0

L
T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                 ,

152

w
he

re
J

F
=
J
(x
)E

T F
,
A

F
=
A
E

T F
,
Ĥ

F
=
E

F
H

B
E

T F
+

2 µ
A
A

T F
A

F
+

2 µ
P
J
T F
J

F
+

2
(ET L

F
(D

Z 1
)−

1
E

L
F
+
E

T U
F
(D

Z 2
)−

1
E

U
F

) an
d
D

W
=

((LT L
(D

W 1
)−

1
L

L
+
L

T U
(D

W 2
)−

1
L

U
)) † .

Si
m

ila
rl

y,
th

e
re

du
ce

d
gr

ad
ie

nt
N

T
∇M

(p
)

is
gi

ve
n

by

                 g F
−
A

T F

(2πV
−
v
) −J

T F

(2πY
−
y
) −E

L
F
(2
π

Z 1
−
z 1
)
+
E

U
F
(2
π

Z 2
−
z 2
)

2
π

Y F
−
y F
−
L

L
F
(2
π

W 1
−
w

1
)
+
L

U
F
(2
π

W 2
−
w

2
)

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

                 ,

153

w
he

re
g F

=
E

F
∇f

(x
),
π

Y F
=
L

F
π

Y
an

d
y F

=
L

F
y
.

T
he

re
du

ce
d

ap
pr

ox
im

at
e

N
ew

to
n

eq
ua

ti
on

s
N

T
B
(p
)N
d
=
−
N

T
∇M

(p
)

ar
e

th
en                  

Ĥ
F

−
2J

T F
D

−
1

Y
L

T F
J
T F

A
T F

E
T L
F
−
E

T U
F

0
0

−
2L

F
D

−
1

Y
J

F
2L

F
(D

−
1

Y
+
D

† W
)L

T F
−
L

F
0

0
0

L
T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                                  d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

                 

=
−

                 g F
−
A

T F

(2πV
−
v
) −J

T F

(2πY
−
y
) −E

L
F
(2
π

Z 1
−
z 1
)
+
E

U
F
(2
π

Z 2
−
z 2
)

2π
Y F
−
y F
−
L

L
F
(2
π

W 1
−
w

1
)
+
L

U
F
(2
π

W 2
−
w

2
)

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

                 .
(A

.1
3)

154

G
iv

en
an

y
no

ns
in

gu
la

r
m

at
ri

x
R

,
th

e
di

re
ct

io
n
d

sa
ti

sfi
es
R
N

T
B
(p
)N
d
=
−
R
N

T
∇M

(p
).

In
pa

rt
ic

ul
ar

,
co

ns
id

er
th

e
bl

oc
k

up
pe

r-
tr

ia
ng

ul
ar

m
at

ri
x
R

su
ch

th
at

R
=

                   I
x F

0
−
2J

T F
D

−
1

Y
−
2A

T F
D

−
1

A
−
2
E

T L
F
(D

Z 1
)−

1
2E

T U
F
(D

Z 2
)−

1
0

0

I
s F

2L
F
D

−
1

Y
0

0
0

−
2
L

T L
F
(D

W 1
)−

1
2
L

T U
F
(D

W 2
)−

1

I m
0

0
0

0
0

I A
0

0
0

0

I
x L

0
0

0

I
x U

0
0

I
s L

0 I
s U

                   ,

w
he

re
ag

ai
n,
I
x L
,I

x U
,I

s L
,I

s U
ar

e
id

en
ti

ty
m

at
ri

ce
s

of
si

ze
n

L
,n

U
,m

L
,a

nd
m

U
re

sp
ec

ti
ve

ly
.

T
he

n
R

is
no

ns
in

gu
la

r
w

it
h

R
N

T
B
(p
)N

=

                   E
F
H

B
E

T F
0

−
J
T F
−
A

T F
−
E

T L
F

E
T U
F

0
0

0
0

L
F

0
0

0
−
L

T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                   

155

A
ls

o,

R
N

T
∇M

(p
)
=

                   g F
−
J
T F
y
−
A

T F
v
−
z 1

+
z 2

y F
−
w

1
+
w

2

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

                   .

T
hi

s
gi

ve
s

th
e

fo
llo

w
in

g
(u

ns
ym

m
et

ri
c)

re
du

ce
d

ap
pr

ox
im

at
e

N
ew

to
n

eq
ua

ti
on

s
fo

r
d
:

                   E
F
H

B
E

T F
0

−
J
T F
−
A

T F
−
E

T L
F

E
T U
F

0
0

0
0

L
F

0
0

0
−
L

T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                                      d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

                   =
−

                   g F
−
J
T F
y
−
A

T F
v
−
E

T L
F
z 1

+
E

T U
F
z 2

y F
−
L

T L
F
w

1
+
L

T U
F
w

2

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

                   .

(A
.1

4)

156

T
he

n,
th

e
id

en
ti

ty
∆
p
=
N
d

im
pl

ie
s

th
at

∆
p
=

  ∆
x

∆
x
1

∆
x
2

∆
s

∆
s 1

∆
s 2

∆
y

∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

  =
N
d
=

  E
T F
d
1

d
1

−
d
1

L
T F
d
2

d
2

−
d
2

d
3

d
4

d
5

d
6

d
7

d
8

  .
(A

.1
5)

157

T
he

se
id

en
ti

ti
es

al
lo

w
us

to
w

ri
te

eq
ua

ti
on

s
(A

.1
4)

in
th

e
fo

rm

                   E
F
H

B
E

T F
0

−
J
T F
−
A

T F
−
E

T L
F

E
T U
F

0
0

0
0

L
F

0
0

0
−
L

T L
F

L
T U
F

J
F

−
L

T F
D

Y
0

0
0

0
0

A
F

0
0

D
A

0
0

0
0

E
L
F

0
0

0
D

Z 1
0

0
0

−
E

U
F

0
0

0
0

D
Z 2

0
0

0
L

L
F

0
0

0
0

D
W 1

0

0
−
L

U
F

0
0

0
0

0
D

W 2

                                      ∆
x F

∆
s F

∆
y

∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

                   =
−

                   g F
−
J
T F
y
−
A

T F
v
−
E

T L
F
z 1

+
E

T U
F
z 2

y F
−
L

T L
F
w

1
+
L

T U
F
w

2

−
D

Y
(π

Y
−
y
)

−
D

A
(π

V
−
v
)

−
D

Z 1
(π

Z 1
−
z 1
)

−
D

Z 2
(π

Z 2
−
z 2
)

−
D

W 1
(π

W 1
−
w

1
)

−
D

W 2
(π

W 2
−
w

2
)

                   ,

(A
.1

6)

w
it

h
∆
x
=
E

T F
∆
x F

,∆
s
=
L

T F
∆
s F

,∆
x
1
=
∆
x F
−
(ℓ

X
−
E

L
x
+
x
1
),
∆
x
2
=
−
∆
x F

+
(u

X
−
E

U
x
−
x
2
),
∆
s 1

=
∆
s F
−
(ℓ

S
−
L

L
s
+
s 1
)

an
d
∆
s 2

=
−
∆
s F

+
(u

S
−
L

U
s
−
s 2
).

T
he

sh
ift

ed
pe

na
lt
y-

ba
rr

ie
r

eq
ua

ti
on

s
(A

.1
6)

ar
e

th
e

sa
m

e
as

th
e

pa
th

-f
ol

lo
w

in
g

eq
ua

ti
on

s
(A

.8
)

ex
ce

pt
fo

r
th

e
(1
,1
)

bl
oc

k,
w

he
re
H

F
is

re
pl

ac
ed

by
E

F
H

B
E

T F
.

158

A
.6

T
he

Sh
if
te

d
P

ri
m

al
-D

ua
l
P
en

al
ty

-B
ar

ri
er

D
ir

ec
ti

on

In
th

is
se

ct
io

n
w

e
co

ns
id

er
th

e
so

lu
ti

on
of

th
e

sh
ift

ed
pr

im
al

-d
ua

l
pe

na
lt
y-

ba
rr

ie
r

eq
ua

ti
on

s
(A

.1
6)

.
C

ol
le

ct
in

g
te

rm
s

an
d

re
or

de
ri

ng
th

e
eq

ua
ti

on
s

an
d

un
kn

ow
ns

,w
e

ob
ta

in

                   D
A

0
0

0
0

0
A

F
0

0
D

Z 1
0

0
0

0
E

L
F

0

0
0

D
Z 2

0
0

0
−
E

U
F

0

0
0

0
D

W 1
0

L
L
F

0
0

0
0

0
0

D
W 2
−
L

U
F

0
0

0
0

0
−
L

T L
F

L
T U
F

0
0

L
F

−
A

T F
−
E

T L
F

E
T U
F

0
0

0
E

F
H

B
E

T F
−
J
T F

0
0

0
0

0
−
L

T F
J

F
D

Y

                                      ∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

∆
s F

∆
x F

∆
y

                   =
−

                   

D
A
(v
−
π

V
)

D
Z 1
(z

1
−
π

Z 1
)

D
Z 2
(z

2
−
π

Z 2
)

D
W 1
(w

1
−
π

W 1
)

D
W 2
(w

2
−
π

W 2
)

y F
−
L

T L
F
w

1
+
L

T U
F
w

2

g F
−
J
T F
y
−
A

T F
v
−
E

T L
F
z 1

+
E

T U
F
z 2

D
Y
(y
−
π

Y
)

                   .

(A
.1

7)

C
on

si
de

r
th

e
di

ag
on

al
m

at
ri

ce
s

D
W

=
(LT L

(D
W 1
)−

1
L

L
+
L

T U
(D

W 2
)−

1
L

U

) †
an

d
D

Z
=
(ET L

(D
Z 1
)−

1
E

L
+
E

T U
(D

Z 2
)−

1
E

U

) † ,
w

he
re
(·) †

de
no

te
s

th
e

M
oo

re
-P

en
ro

se
ps

eu
do

in
ve

rs
e

of
a

m
at

ri
x.

T
he

id
en

ti
ty
I m

=
L

T X
L

X
+
L

T F
L

F
im

pl
ie

s
th

at
th

e
m
×
m

m
at

ri
x
D

W
sa

ti
sfi

es
th

e
id

en
ti

ti
es

L
T F
L

F
D

W
=
D

W
=
D

W
L

T F
L

F
,

an
d

L
T X
L

X
D

W
=

0.

159

If
eq

ua
ti

on
s

(A
.1

7)
ar

e
pr

em
ul

ti
pl

ie
d

by
th

e
m

at
ri

x

                 

I A 0
I
x L

0
0

I
x U

0
0

0
I
s L

0
0

0
0

I
s U

0
0

0
L

T L
F
(D

W 1
)−

1
−
L

T U
F
(D

W 2
)−

1
I
s F

A
T F
D

−
1

A
E

T L
F
(D

Z 1
)−

1
−
E

T U
F
(D

Z 2
)−

1
0

0
0

I
x F

0
0

0
D

W
L

T L
(D

W 1
)−

1
−
D

W
L

T U
(D

W 2
)−

1
L

T F
D

W
0

I m

                 
gi

ve
s

th
e

bl
oc

k
up

pe
r-

tr
ia

ng
ul

ar
sy

st
em

                   D
A

0
0

0
0

0
A

F
0

0
D

Z 1
0

0
0

0
E

L
F

0

0
0

D
Z 2

0
0

0
−
E

U
F

0

0
0

0
D

W 1
0

L
L
F

0
0

0
0

0
0

D
W 2

−
L

U
F

0
0

0
0

0
0

0
L

F
D

† W
L

T F
0

L
F

0
0

0
0

0
0

H̃
F

−
J
T F

0
0

0
0

0
0

J
F

D
Y
+
D

W

                                      ∆
v

∆
z 1

∆
z 2

∆
w

1

∆
w

2

∆
s F

∆
x F

∆
y

                   =
−

                   

D
A
(v
−
π

V
)

D
Z 1
(z

1
−
π

Z 1
)

D
Z 2
(z

2
−
π

Z 2
)

D
W 1
(w

1
−
π

W 1
)

D
W 2
(w

2
−
π

W 2
)

y F
−
π

W F

g F
−
J
T F
y
−
A

T F
π

V
−
π

Z F

D
W

(y F−
π

W F

) +D
Y

(y−
π

Y
)                   ,

160

w
he

re
H̃

F
=
E

F
H

B
E

T F
+
A

T F
D

−
1

A
A

F
+
E

F
D

† Z
E

T F
,π

W F
=
L

T L
F
π

W 1
−
L

T U
F
π

W 2
an

d
π

Z F
=
E

T L
F
π

Z 1
−
E

T U
F
π

Z 2
.

U
si

ng
bl

oc
k

ba
ck

-s
ub

st
it

ut
io

n,

∆
x F

an
d
∆
y

ca
n

be
co

m
pu

te
d

by
so

lv
in

g
th

e
eq

ua
ti

on
s

 H̃ F
−
J
T F

J
F

D
Y
+
D

W

  ∆x
F

∆
y

  =
−

 g
F
−
J
T F
y
−
A

T F
π

V
−
π

Z F

D
W

(y−
π

W
) +D

Y

(y−
π

Y
)  .

O
nc

e
∆
x F

an
d
∆
y

ar
e

kn
ow

n,
th

e
fu

ll
ve

ct
or
∆
x

is
co

m
pu

te
d

as
∆
x
=
E

T F
∆
x F

.
U

si
ng

th
e

id
en

ti
ty
∆
s
=
L

T F
∆
s F

in
th

e
si

xt
h

bl
oc

k
of

eq
ua

ti
on

s
gi

ve
s

∆
s
=
−
D

W
(y

+
∆
y
−
π

W
).

T
he

re
ar

e
se

ve
ra

lw
ay

s
of

co
m

pu
ti

ng
∆
w

1
an

d
∆
w

2
.

In
st

ea
d

of
us

in
g

th
e

bl
oc

k
up

pe
r-

tr
ia

ng
ul

ar
sy

st
em

ab
ov

e,
w

e
us

e
th

e
la

st

tw
o

bl
oc

ks
of

eq
ua

ti
on

s
of

(A
.8

)
to

gi
ve

∆
w

1
=
−
(S

µ 1
)−

1
(w 1
·(
L

L
(s

+
∆
s)
−
ℓS

+
µ

B
e)
−
µ

B
w

E 1
+
µ

B
L

L
(s
−
sE

+
∆
s)
) ,

an
d

∆
w

2
=
−
(S

µ 2
)−

1
(w 2
·(
u

S
−
L

U
(s

+
∆
s)

+
µ

B
e)
−
µ

B
w

E 2
+
µ

B
L

U
(s

E
−
s
−
∆
s)
) .

Si
m

ila
rl

y,
us

in
g

(A
.8

)
to

so
lv

e
fo

r
∆
z 1

an
d
∆
z 2

yi
el

ds

∆
z 1

=
−
(X

µ 1
)−

1
(z 1·

(E
L
(x

+
∆
x
)
−
ℓX

+
µ

B
e)
−
µ

B
z

E 1
+
µ

B
E

L
(x
−
x

E
+
∆
x
)) ,

an
d

∆
z 2

=
−
(X

µ 2
)−

1
(z 2·

(u
X
−
E

U
(x

+
∆
x
)
+
µ

B
e)
−
µ

B
z

E 2
+
µ

B
E

U
(x

E
−
x
−
∆
x
)) .

Si
m

ila
rl

y,
us

in
g

th
e

fir
st

bl
oc

k
of

eq
ua

ti
on

s
(A

.1
7)

to
so

lv
e

fo
r
∆
v

gi
ve

s
∆
v
=
−
(v
−
π̂

V
),

w
it

h
π̂

V
=
v

E
−

1 µ
A

(A(x
+
∆
x
)
−
b) .

F
in

al
ly

,t
he

ve
ct

or
s
∆
w

X
an

d
∆
z X

ar
e

re
co

ve
re

d
as
∆
w

X
=

[y
+
∆
y
−
w
] X

an
d
∆
z X

=
[g

+
H
∆
x
−
J
T
(y

+
∆
y
)
−
z
] X

,w
he

re

w
=
L

T X
w

X
+
L

T L
w

1
−
L

T U
w

2
an

d
z
=
E

T X
z X

+
E

T L
z 1
−
E

T U
z 2

.

161

A
.7

Su
m

m
ar

y

T
he

re
su

lt
s

of
th

e
pr

ec
ed

in
g

se
ct

io
n

im
pl

y
th

at
th

e
so

lu
ti

on
of

th
e

pa
th

-f
ol

lo
w

in
g

eq
ua

ti
on

s
F

′ (
v P

)∆
v P

=
−
F
(v

P
)

w
it

h

F
an

d
F

′
gi

ve
n

by
(A

.5
)

an
d

(A
.6

)
m

ay
be

co
m

pu
te

d
as

fo
llo

w
s.

Le
t
x

an
d
s

be
gi

ve
n

pr
im

al
va

ri
ab

le
s

an
d

sl
ac

k
va

ri
ab

le
s

su
ch

th
at
E

X
x
=
b X

,L
X
s
=
h

X
w

it
h
ℓX
−
µ

B
<
E

L
x
,E

U
x
<
u

X
+
µ

B
,ℓ

S
−
µ

B
<
L

L
s,
L

U
s
<
u

S
+
µ

B
.

Si
m

ila
rl

y,
le

t
z 1

,z
2
,w

1
,w

2
an

d
y

de
no

te
du

al
va

ri
ab

le
s

su
ch

th
at
w

1
>

0
,w

2
>

0
,z

1
>

0
,a

nd
z 2
>

0.
C

on
si

de
r

th
e

di
ag

on
al

m
at

ri
ce

s
X

µ 1
=

d
ia
g
(E

L
x
−
ℓX

+
µ

B
e)

,

X
µ 2
=

d
ia
g
(u

X
−
E

U
x
+
µ

B
e)

,
Z
1
=

d
ia
g
(z

1
),
Z
2
=

d
ia
g
(z

2
),
W

1
=

d
ia
g
(w

1
),
W

2
=

d
ia
g
(w

2
),
S
µ 1
=

d
ia
g
(L

L
s
−
ℓS

+
µ

B
e)

an
d

S
µ 2
=

d
ia
g
(u

S
−
L

U
s
+
µ

B
e)

.
C

on
si

de
r

th
e

qu
an

ti
ti

es

D
Y
=
µ

P
I m
,

π
Y
=
y

E
−

1 µ
P
(c
−
s)
,

D
A
=
µ

A
I A
,

π
V
=
v

E
−

1 µ
A
(A
x
−
b)
,

(D
Z 1
)−

1
=

(X
µ 1
)−

1
Z

µ 1
,

(D
W 1
)−

1
=

(S
µ 1
)−

1
W

µ 1
,

(D
Z 2
)−

1
=

(X
µ 2
)−

1
Z

µ 2
,

(D
W 2
)−

1
=

(S
µ 2
)−

1
W

µ 2
,

D
Z
=
(ET L

(DZ 1

) −1 E
L
+
E

T U

(DZ 2

) −1 E
U

) † ,
D

W
=
(LT L

(DW 1

) −1 L
L
+
L

T U

(DW 2

) −1 L
U

) † ,
π

Z 1
=
µ

B
(X

µ 1
)−

1
(z

E 1
−
x
1
+
x

E 1
),

π
W 1

=
µ

B
(S

µ 1
)−

1
(w

E 1
−
s 1

+
sE 1
),

π
Z 2
=
µ

B
(X

µ 2
)−

1
(z

E 2
−
x
2
+
x

E 2
),

π
W 2

=
µ

B
(S

µ 2
)−

1
(w

E 2
−
s 2

+
sE 2
),

π
Z
=
E

T L
π

Z 1
−
E

T U
π

Z 2
,

π
W

=
L

T L
π

W 1
−
L

T U
π

W 2
.

C
ho

os
e
H

B F
so

th
at
H

B F
ap

pr
ox

im
at

es
E

F
H
(x
,y
)E

T F
an

d
th

e
K

K
T

m
at

ri
x

 HB F
+
A

T F
D

−
1

A
A

F
+
E

F
D

† Z
E

T F
J
T F

J
F

−
(D

Y
+
D

W
) 

162

is
no

ns
in

gu
la

r
w

it
h
m

ne
ga

ti
ve

ei
ge

nv
al

ue
s.

(A
co

m
m

on
ch

oi
ce

of
H

B F
is

th
e

m
at

ri
x
E

F

(H(x
,y
)
+
σ
I n
) ET F

fo
r

so
m

e
no

nn
eg

at
iv

e

sc
al

ar
σ
.)

So
lv

e
th

e
K

K
T

sy
st

em

 HB F
+
A

T F
D

−
1

A
A

F
+
E

F
D

† Z
E

T F
−
J
T F

J
F

D
Y
+
D

W

  ∆x
F

∆
y

  =
−

(
g F
−
J
T F
y
−
A

T F
π

V
−
π

Z F

D
W

(y F−
π

W F

) +D
Y

(y−
π

Y
)) ,

an
d

se
t

∆
x
=
E

T F
∆
x F
,

x̂
=
x
+
∆
x
,

∆
z 1

=
−
(X

µ 1
)−

1
(z 1·

(E
L
x̂
−
ℓX

+
µ

B
e)
−
µ

B
z

E 1
+
µ

B
E

L
(x
−
x

E
+
∆
x
)) ,

∆
z 2

=
−
(X

µ 2
)−

1
(z 2·

(u
X
−
E

U
x̂
+
µ

B
e)
−
µ

B
z

E 2
+
µ

B
E

U
(x

E
−
x
−
∆
x
)) ,

ŷ
=
y
+
∆
y
,

∆
s

=
−
D

W
(ŷ
−
π

W
),

ŝ
=
s
+
∆
s,

∆
w

1
=
−
(S

µ 1
)−

1
(w 1
·(
L

L
ŝ
−
ℓS

+
µ

B
e)
−
µ

B
w

E 1
+
µ

B
L

L
(s
−
sE

+
∆
s)
) ,

∆
w

2
=
−
(S

µ 2
)−

1
(w 2
·(
u

S
−
L

U
ŝ
+
µ

B
e)
−
µ

B
w

E 2
+
µ

B
L

U
(s

E
−
s
−
∆
s)
) ,

π̂
V
=
v

E
−

1 µ
A
(A
x̂
−
b)
,

∆
v

=
π̂

V
−
v
,

w
=
L

T X
w

X
+
L

T L
w

1
−
L

T U
w

2
,

z
=

E
T X
z X

+
E

T L
z 1
−
E

T U
z 2
,

v̂
=
v
+
∆
v
,

∆
w

X
=

[ŷ
−
w
] X
,

∆
z X

=
[∇
f
(x
)
+
H
(x
)∆
x
−
J
(x
)T
ŷ
−
A

T
v̂
−
z
] X
.

163

T
he

as
so

ci
at

ed
m

er
it

fu
nc

ti
on

(A
.9

)
ca

n
be

w
ri

tt
en

as

f
(x
)
−
(c(x)

−
s) T y

E
+

1

2µ
P
∥c
(x
)
−
s∥

2
+

1

2
µ

P
∥c
(x
)
−
s
+
µ

P
(y
−
y

E
)∥

2

−
(A
x
−
b)

T
v

E
+

1

2
µ

A
∥A
x
−
b∥

2
+

1

2µ
A
∥A
x
−
b
+
µ

A
(v
−
v

E
)∥

2

−
n
L ∑ j

=
1

{ µ
B
([
z

E 1
] j
+
[E

L
x

E
−
ℓX

] j
+
µ

B
)
ln
([z 1

+
µ

B
e
] j
[E

L
x
−
ℓX

+
µ

B
e
]2 j

) −[
z 1
·(
E

L
x
−
ℓX

+
µ

B
e)

] j
−
2
µ

B
[E

L
x
−
ℓX

] j

}
−

n
U ∑ j
=
1

{ µ
B
([
z

E 2
] j
+
[u

X
−
E

U
x

E
] j
+
µ

B
)
ln
([z 2

+
µ

B
e
] j
[u

X
−
E

U
x
+
µ

B
e
]2 j

) −[
z 2
·(
u

X
−
E

U
x
+
µ

B
e)

] j
−
2
µ

B
[u

X
−
E

U
x
] j

}
−

m
L ∑ i=
1

{ µ
B
([
w

E 1
] i
+
[L

L
sE
−
ℓS

] i
+
µ

B
)
ln
([w 1

+
µ

B
] i
[L

L
s
−
ℓS

+
µ

B
e
]2 i

) −[
w

1
·(
L

L
s
−
ℓS

+
µ

B
e)

] i
−

2µ
B
[L

L
s
−
ℓS

] i

}
−

m
U ∑ i=
1

{ µ
B
([
w

E 2
] i
+
[u

S
−
L

U
sE

]+
µ

B
)
ln
([w 2

+
µ

B
] i
[u

S
−
L

U
s
+
µ

B
e
]2 i

) −[
w

2
·(
u

S
−
L

U
s
+
µ

B
e)

] i
−
2
µ

B
[u

S
−
L

U
s
] i

} .

A
pp

en
di

x
A

,
in

pa
rt

,
re

pr
in

ts
th

e
m

at
er

ia
l

by
P

hi
lip

E
.

G
ill

an
d

M
in

xi
n

Zh
an

g,
"E

qu
at

io
ns

fo
r

a
P

ro
je

ct
ed

-S
ea

rc
h

P
at

h-
Fo

llo
w

in
g

M
et

ho
d

fo
r

N
on

lin
ea

r
O

pt
im

iz
at

io
n.

"
C

en
te

r
fo

r
C

om
pu

ta
ti

on
al

M
at

he
m

at
ic

s
R

ep
or

t
C

C
oM

22
-0

2,
C

en
te

r
fo

r

C
om

pu
ta

ti
on

al
M

at
he

m
at

ic
s,

U
ni

ve
rs

it
y

of
C

al
ifo

rn
ia

Sa
n

D
ie

go
,L

a
Jo

lla
,C

A
,2

02
2.

T
he

di
ss

er
ta

ti
on

au
th

or
w

as
th

e
pr

im
ar

y

au
th

or
of

th
is

m
at

er
ia

l.

164

Bibliography

[1] Roberto Andreani, José Mario Martínez, Alberto Ramos, and Paulo J. S. Silva. Strict con-
straint qualifications and sequential optimality conditions for constrained optimization. Math.
Oper. Res., 43(3):693–717, 2018.

[2] Roberto Andreani, José Mario Martínez, and B. F. Svaiter. A new sequential optimality condi-
tion for constrained optimization and algorithmic consequences. SIAM J. Optim., 20(6):3533–
3554, 2010.

[3] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pacific Journal of Mathematics, 16:1–3, 1966.

[4] Dimitri P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE
Trans. Automatic Control, AC-21(2):174–184, 1976.

[5] Dimitri P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Computer
Science and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publish-
ers], New York, 1982.

[6] Dimitri P. Bertsekas. Projected Newton methods for optimization problems with simple con-
straints. SIAM J. Control Optim., 20(2):221–246, 1982.

[7] I. Bongartz, A. R. Conn, N. I. M. Gould, and Philippe L. Toint. CUTE: Constrained and
unconstrained testing environment. ACM Trans. Math. Software, 21(1):123–160, 1995.

[8] Marc G. Breitfeld and David F. Shanno. Computational experience with penalty-barrier meth-
ods for nonlinear programming. Ann. Oper. Res., 62:439–463, 1996.

[9] Richard P. Brent. Algorithms for minimization without derivatives. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1973. Prentice-Hall Series in Automatic Computation.

[10] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16:1190–1208, 1995.

[11] Richard H. Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region method based on
interior point techniques for nonlinear programming. Math. Program., 89(1, Ser. A):149–185,
2000.

[12] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm for large-
scale nonlinear programming. SIAM J. Optim., 9(4):877–900, 1999.

165

[13] Paul H. Calamai and Jorge J. Moré. Projected gradient methods for linearly constrained
problems. Math. Program., 39:93–116, 1987.

[14] Andrew R. Conn, Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. A primal-
dual trust-region algorithm for non-convex nonlinear programming. Math. Program., 87(2, Ser.
B):215–249, 2000. Studies in algorithmic optimization.

[15] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A globally convergent La-
grangian barrier algorithm for optimization with general inequality constraints and simple
bounds. Math. Comput., 66(217):261–288, 1997.

[16] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A primal-dual algorithm
for minimizing a non-convex function subject to bound and linear equality constraints. In
Nonlinear optimization and related topics (Erice, 1998), volume 36 of Appl. Optim., pages
15–49. Kluwer Acad. Publ., Dordrecht, 2000.

[17] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[18] Frank E. Curtis and Jorge Nocedal. Flexible penalty functions for nonlinear constrained opti-
mization. IMA J. Numer. Anal., 28(4):749–769, 2008.

[19] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable
algorithms for updating the Gram-Schmidt QR factorization. Math. Comput., 30:772–795,
1976.

[20] John E. Dennis, Jr. and Robert B. Schnabel. A new derivation of symmetric positive definite
secant updates. In Nonlinear Programming, 4 (Proc. Sympos., Special Interest Group on Math.
Programming, Univ. Wisconsin, Madison, Wis., 1980), pages 167–199. Academic Press, New
York, 1981.

[21] John E. Dennis, Jr. and Robert B. Schnabel. Numerical methods for unconstrained opti-
mization and nonlinear equations. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1996. Corrected reprint of the 1983 original.

[22] J. E. Dennis, Jr., M. Heinkenschloss, and L. N. Vicente. Trust-region interior-point SQP
algorithms for a class of nonlinear programming problems. SIAM J. Control Optim., 36:1750–
1794, 1998.

[23] J. E. Dennis Jr. and J. J. Moré. A characterization of superlinear convergence and its appli-
cation to quasi-Newton methods. Math. Comput., 28:549–560, 1974.

[24] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[25] Iain S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software, 30(2):118–144, 2004.

[26] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory
of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl.,
89(3):507–541, 1996.

166

[27] M. C. Fenelon. Preconditioned Conjugate-Gradient-Type Methods for Large-Scale Uncon-
strained Optimization. PhD thesis, Department of Operations Research, Stanford University,
Stanford, CA, 1981.

[28] Michael W. Ferry. Projected-Search Methods for Box-Constrained Optimization. PhD thesis,
Department of Mathematics, University of California, San Diego, May 2011.

[29] Michael W. Ferry, Philip E. Gill, Elizabeth Wong, and Minxin Zhang. Supplementary nu-
merical results for projected-search methods for bound-constrained optimization. Center for
Computational Mathematics Report CCoM 20-08, Center for Computational Mathematics,
University of California, San Diego, La Jolla, CA, 2020.

[30] Michael W. Ferry, Philip E. Gill, Elizabeth Wong, and Minxin Zhang. A limited-memory
reduced-Hessian method for bound-constrained optimization. Center for Computational Math-
ematics Report CCoM 21-01, Center for Computational Mathematics, University of California,
San Diego, La Jolla, CA, 2021.

[31] Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, sec-
ond edition, 1990. Reprint of the 1968 original.

[32] Roger Fletcher and Michael J. D. Powell. A rapidly convergent descent method for minimiza-
tion. Computer Journal, 6:163–168, 1963.

[33] Anders Forsgren. Inertia-controlling factorizations for optimization algorithms. Appl. Numer.
Math., 43:91–107, 2002.

[34] Anders Forsgren and Philip E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM J. Optim., 8:1132–1152, 1998.

[35] Anders Forsgren, Philip E. Gill, and Walter Murray. Computing modified Newton directions
using a partial Cholesky factorization. SIAM J. Sci. Comput., 16:139–150, 1995.

[36] Anders Forsgren, Philip E. Gill, and Joseph R. Shinnerl. Stability of symmetric ill-conditioned
systems arising in interior methods for constrained optimization. SIAM J. Matrix Anal. Appl.,
17:187–211, 1996.

[37] Anders Forsgren, Philip E. Gill, and Margaret H. Wright. Interior methods for nonlinear
optimization. SIAM Rev., 44:525–597, 2002.

[38] Anders Forsgren and Walter Murray. Newton methods for large-scale linear equality-
constrained minimization. SIAM J. Matrix Anal. Appl., 14:560–587, 1993.

[39] Robert Fourer and Sanjay Mehrotra. Performance of an augmented system approach for solving
least-squares problems in an interior-point method for linear programming. Math. Program.,
19:26–31, 1991.

[40] Robert Fourer and Sanjay Mehrotra. Solving symmetric indefinite systems in an interior-point
method for linear programming. Math. Programming, 62(1, Ser. B):15–39, 1993.

[41] Robert M. Freund. Theoretical efficiency of a shifted-barrier-function algorithm for linear
programming. Linear Algebra Appl., 152:19–41, 1991.

167

[42] David M. Gay, Michael L. Overton, and Margaret H. Wright. A primal-dual interior method
for nonconvex nonlinear programming. In Ya-Xiang Yuan, editor, Advances in Nonlinear
Programming (Beijing, 1996), pages 31–56. Kluwer Acad. Publ., Dordrecht, 1998.

[43] E. Michael Gertz and Philip E. Gill. A primal-dual trust-region algorithm for nonlinear pro-
gramming. Numerical Analysis Report NA 02-1, University of California, San Diego, 2002.

[44] E. Michael Gertz and Philip E. Gill. A primal-dual trust-region algorithm for nonlinear pro-
gramming. Math. Program., Ser. B, 100:49–94, 2004.

[45] N. Ghosh and William W. Hager. A derivative-free bracketing scheme for univariate minimiza-
tion. Computers Math. Applic., 20(2):23–24, 1990.

[46] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A shifted primal-dual penalty-
barrier method for nonlinear optimization. SIAM J. Optim., 30(2):1067–1093, 2020.

[47] Philip E. Gill and Michael W. Leonard. Limited-memory reduced-Hessian methods for large-
scale unconstrained optimization. SIAM J. Optim., 14:380–401, 2003.

[48] Philip E. Gill, Walter Murray, Dulce B. Ponceleón, and Michael A. Saunders. Primal-dual
methods for linear programming. Report SOL 91-3, Department of Operations Research,
Stanford University, Stanford, CA, 1991.

[49] Philip E. Gill, Walter Murray, Dulce B. Ponceleón, and Michael A. Saunders. Preconditioners
for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl., 13:292–311, 1992.

[50] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM J. Optim., 12(4):979–1006, 2002.

[51] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. A note on a
sufficient-decrease criterion for a nonderivative step-length procedure. Math. Programming,
23(3):349–352, 1982.

[52] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. Shifted barrier
methods for linear programming. Report SOL 87-9, Department of Operations Research,
Stanford University, Stanford, CA, 1987.

[53] Philip E. Gill and Daniel P. Robinson. A primal-dual augmented Lagrangian. Comput. Optim.
Appl., 51:1–25, 2012.

[54] Philip E. Gill and Margaret H. Wright. Computational Optimization: Nonlinear Programming.
Cambridge University Press, New York, NY, USA, 2023. To be published in 2023.

[55] Philip E. Gill and Minxin Zhang. Numerical results for a projected-search path-following
method for nonlinear optimization. Center for Computational Mathematics Report CCoM
22-03, Center for Computational Mathematics, University of California, San Diego, La Jolla,
CA, 2022.

[56] Donald Goldfarb, Roman A. Polyak, Katya Scheinberg, and I. Yuzefovich. A modified barrier-
augmented Lagrangian method for constrained minimization. Comput. Optim. Appl., 14(1):55–
74, 1999.

168

[57] A. A. Goldstein. Convex programming in Hilbert space. Bulletin of the American Mathematical
Society, 70(5):709–710, 1964.

[58] Nicholas I. M. Gould, D. Orban, and Philippe L. Toint. CUTEr and SifDec: A constrained
and unconstrained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–394,
2003.

[59] Nicholas I. M. Gould, Dominique Orban, Annick Sartenaer, and Philippe L. Toint. Superlinear
convergence of primal-dual interior point algorithms for nonlinear programming. SIAM J.
Optim., 11(4):974–1002, 2001.

[60] William W. Hager. A derivative-based bracketing scheme for univariate minimization and the
conjugate gradient method. Computers Math. Applic., 18(9):779–795, 1989.

[61] M. R. Hestenes. Multiplier and gradient methods. J. Optim. Theory Appl., 4:303–320, 1969.

[62] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Lecture
Notes in Econom. Math. Syst. 187. Springer-Verlag, Berlin, 1981.

[63] C. A. Johnson and Ariela Sofer. A primal-dual method for large-scale image reconstruction in
emission tomography. SIAM J. Optim., 11:691–715, 2000/01.

[64] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon. Tackling box-constrained optimization via
a new projected quasi-Newton approach. SIAM J. Sci. Comput., 32(6):3548–3563, December
2010.

[65] Donald Knuth. The Art of Computer Programming, 3. Addison-Wesley Publishing Company,
Redwood City, third edition, 1997.

[66] M. W. Leonard. Reduced Hessian Quasi-Newton Methods for Optimization. PhD thesis, De-
partment of Mathematics, University of California, San Diego, 1995.

[67] E. S. Levitin and B. T. Polyak. Constrained minimization methods. U.S.S.R. Comput. Math.
and Math. Physics, 6(5):1–50, 1966.

[68] José Luis Morales and Jorge Nocedal. Remark on “Algorithm 778: L-BFGS-B: Fortran subrou-
tines for large-scale bound constrained optimization”. ACM Trans. Math. Softw., 38(1):7:1–7:4,
December 2011.

[69] Jorge J. Moré. Recent developments in algorithms and software for trust region methods. In
A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming: the State of the
Art (Bonn, 1982), pages 258–287. Springer, Berlin, 1983.

[70] Jorge J. Moré and Danny C. Sorensen. Newton’s method. In Gene H. Golub, editor, Studies
in Mathematics, Volume 24. MAA Studies in Numerical Analysis, pages 29–82. Math. Assoc.
America, Washington, DC, 1984.

[71] Jorge J. Moré and David J. Thuente. Line search algorithms with guaranteed sufficient decrease.
ACM Trans. Math. Software, 20(3):286–307, 1994.

169

[72] Stephen G. Nash, Roman Polyak, and Ariela Sofer. Numerical comparison of barrier and
modified-barrier methods for large-scale bound-constrained optimization. In D. W. Hearn and
P. M Pardalos, editors, Large-Scale Optimization: State of the Art, pages 319–338. Kluwer,
Dordrecht, 1994.

[73] Q. Ni and Ya-Xiang Yuan. A subspace limited memory quasi-Newton algorithm for large-scale
nonlinear bound constrained optimization. Math. Comput., 66:1509–1520, 10 1997.

[74] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

[75] James M. Ortega and Werner C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
Reprint of the 1970 original.

[76] Todd Plantenga. A trust region method for nonlinear programming based on primal interior-
point techniques. SIAM J. Sci. Comput., 20(1):282–305, 1998.

[77] Roman A. Polyak. Modified barrier functions (theory and methods). Math. Program., 54(2,
Ser. A):177–222, 1992.

[78] Dulce B. Ponceleón. Barrier methods for large-scale quadratic programming. PhD thesis,
Department of Computer Science, Stanford University, Stanford, CA, 1990.

[79] Michael J. D. Powell. A method for nonlinear constraints in minimization problems. In Roger
Fletcher, editor, Optimization, pages 283–298, London and New York, 1969. Academic Press.

[80] David F. Shanno and Robert J. Vanderbei. Interior-point methods for nonconvex nonlinear
programming: orderings and higher-order methods. Math. Program., 87(2, Ser. B):303–316,
2000.

[81] D. Siegel. Modifying the BFGS update by a new column scaling technique. Math. Program.,
66:45–78, 1994. Ser. A.

[82] André L. Tits, Andreas Wächter, Sasan Bakhtiari, Thomas J. Urban, and Craig T. Lawrence.
A primal-dual method for nonlinear programming with strong global and local convergence
properties. Technical Report 2002–29, Institute for Systems Research, University of Maryland,
College Park, 2002.

[83] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear programming:
motivation and global convergence. SIAM J. Optim., 16(1):1–31 (electronic), 2005.

[84] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program., 106(1, Ser. A):25–57,
2006.

[85] J. W. J. Williams. Algorithm 232 - Heapsort. Communications of the Association for Com-
puting Machinery, 7:347–348, 1964.

[86] Philip Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11:226–235, 1969.

170

[87] Philip Wolfe. On the convergence of gradient methods under constraint. IBM J. Res. Dev.,
16:407–411, 1972.

[88] Margaret H. Wright. Some properties of the Hessian of the logarithmic barrier function. Math.
Program., 67(2, Ser. A):265–295, 1994.

[89] Margaret H. Wright. Ill-conditioning and computational error in interior methods for nonlinear
programming. SIAM J. Optim., 9(1):84–111, 1998.

[90] Stephen J. Wright. Stability of linear equations solvers in interior-point methods. SIAM J.
Matrix Anal. Appl., 16:1287–1307, 1995.

[91] Stephen J. Wright. Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

[92] Hiroshi Yamashita and Hiroshi Yabe. A primal-dual interior point method for nonlinear op-
timization: global convergence, convergence rate and numerical performance for large scale
problems. In Parametric Optimization and Related Topics, V (Tokyo, 1997), pages 213–250.
Lang, Frankfurt am Main, 2000.

[93] Yin Zhang, Richard Tapia, and Florian Potra. On the superlinear convergence of interior-point
algorithms for a general class of problems. SIAM J. Optim., 3(2):413–422, 1993.

[94] Yin Zhang and Richard A. Tapia. A superlinearly convergent polynomial primal-dual interior-
point algorithm for linear programming. SIAM J. Optim., 3(1):118–133, 1993.

[95] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-
B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math.
Software, 23(4):550–560, 1997.

171

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Introduction
	Overview
	Contributions of This Dissertation
	Notation

	Background
	Line-Search Methods
	Fundamentals of unconstrained optimization
	Choices of the step length
	Implementing the Wolfe line search
	Choices of the search direction

	Interior Methods
	Inequality-constrained optimization
	Barrier methods
	Primal-dual interior methods
	Treatment of equality constraints

	Projected-Search Methods for Bound-Constrained Optimization
	Introduction
	The Quasi-Wolfe Search
	The quasi-Wolfe step
	Derivatives of the search function
	Computing a quasi-Wolfe step

	Projected-Search Active-Set Methods
	The general framework
	Convergence analysis

	A Limited-Memory Reduced-Hessian Method
	Background: an L-RHR method for unconstrained optimization
	UBOPT: an L-RHR method for bound constraints

	Projected-Search Interior Methods
	The general framework
	Convergence analysis

	A Projected-Search Interior Method for Nonlinear Optimization
	Introduction
	Background: A Primal-Dual Method Based on Shifting the Slacks
	An All-Shifted Primal-Dual Penalty-Barrier Function
	Minimizing the Merit Function using Projected Search
	The algorithm
	Convergence analysis

	Solving the Nonlinear Optimization Problem
	The algorithm
	Convergence Analysis

	Numerical Results
	A Projected-Search Active-Set Method for Bound Constraints
	The implementation
	Numerical results

	A Projected-Search Interior Method for Bound Constraints
	The implementation
	Numerical results

	The Projected-Search Interior Method for Nonlinear Optimization
	The implementation
	Numerical results

	Equations of an All-Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization
	Introduction
	Optimality Conditions
	The Path-Following Equations
	A Shifted Primal-Dual Penalty-Barrier Function
	Derivation of the Primal-Dual Line-Search Direction
	The Shifted Primal-Dual Penalty-Barrier Direction
	Summary

	Bibliography

