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Organic matter in extraterrestrial water-bearing
salt crystals
Queenie H. S. Chan,1*† Michael E. Zolensky,1 Yoko Kebukawa,2 Marc Fries,1 Motoo Ito,3

Andrew Steele,4 Zia Rahman,5 Aiko Nakato,6 A. L. David Kilcoyne,7 Hiroki Suga,8

Yoshio Takahashi,9 Yasuo Takeichi,10,11 Kazuhiko Mase10,11

Direct evidenceof complexprebiotic chemistry fromawater-richworld in theouter solar system is providedby the4.5-
billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first compre-
hensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals
containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body.
Associatedwith these trapped brines are organic compounds exhibitingwide chemical variations representing organ-
ic precursors, intermediates, and reaction products that make up life’s precursor molecules such as amino acids. The
organic compounds also contain amixture of C-, O-, andN-bearingmacromolecular carbonmaterials exhibiting awide
range of structural order, as well as aromatic, ketone, imine, and/or imidazole compounds. The enrichment in 15N is
comparable to the organic matter in pristine Renazzo-type carbonaceous chondrites, which reflects the sources of in-
terstellar 15N, such as ammonia and amino acids. The amino acid content of the Zag halite deviates from the meteorite
matrix, supporting an exogenic origin of the halite, and therefore, the Zag meteorite contains organics synthesized on
twodistinctparentbodies.Our study suggests that the asteroidal parent bodywhere thehalite precipitated, potentially
asteroid 1 Ceres, shows evidence for a complex combination of biologically and prebiologically relevant molecules.
INTRODUCTION
The study of the chemical and organic compositions of ancient [4.5 bil-
lion years old (1–3)] salt crystals in the Monahans and Zag ordinary
chondrites provides key information about the raw materials present
in the early solar system and clues for how solar system dynamics could
have facilitated organic redistribution among various solar system
bodies. Direct samples of early solar system fluids are present in these
two ordinary chondrite regolith breccias [Monahans (1998) (H5), here-
after referred to as “Monahans,” and Zag (H3-6)], which were found to
contain brine-bearing halite (NaCl) and sylvite (KCl) crystals (hereafter
collectively called “halite”) that have been added to the regolith of an
S-type asteroid following the latter’s thermal metamorphism (Fig. 1)
(1, 4). Halite’s typical association with water as an evaporite mineral
underscores its importance from the origin and detection of life per-
spective, in terms of the development of life via offering crystalline
surfaces as adsorption sites for catalytic synthesis, concentration, po-
lymerization, and organization of prebiotic molecules (5). Further-
more, inclusions in halite crystals raise the possibility of trapping
life and/or biomolecules from the evaporating aqueous phase (6).
The brine solutions in Zag and Monahans halite are samples of exog-
enous liquid water that record primitive aqueous processes on early
planetesimals, and the halite hosts of the brines retain clues to the lo-
cation and timing of the aqueous alteration event and capture an in-
ventory of associated organic species.

Alongside the 1- to 10-mm-sized fluid inclusions in the halite are solid
inclusions that comprise organic solids (7) andmineral components that
are almost identical to the reported mineralogy of the Ceres regolith,
having an affinity to the Mighei-type (CM)/Ivuna-type (CI) chondrites
(Fig. 1) (8). Furthermore, interpretation of the Dawn mission data for
Ceres also suggests the presence of a mixture of chloride salts and water
ice (9). Ceres is aC-type asteroid located in themiddlemain asteroid belt
[semimajor axis (a) = 2.767 astronomical units (AU), inclination (i) =
9.73°, eccentricity (e) = 0.097] (10). Asteroid 6 Hebe, a proposed parent
body of H chondrites, is located in the inner asteroid belt (a = 2.426 AU,
i = 14.8°, e = 0.203) close to the 3:l motion resonance with Jupiter at
2.50 AU (11), and similarities between the orbits of Hebe and Ceres per-
mit exchange of material between these bodies today and possibly in the
past (12). Solar system dynamics elucidate large-scale mixing of C-
and S-type asteroidal bodies and facilitatedmaterial exchanges between
different asteroidal bodies in the early solar system (13). Continuous
dynamics influenced by a smaller-scale Yarkovsky-O’Keefe-Radzievskii-
Paddack (YORP) effect (14, 15) permitted further fragmentation of
smaller materials to ultimately deliver H chondrites to Earth.

Halite easily dissolves under humid conditions; hence, only the
Monahans and Zag meteorite fragments that were carefully kept in
desiccated environments, such as under dry nitrogen in a laboratory,
have preserved abundant blue/purple halite crystals (Fig. 1). The abun-
dance of surviving halite in Monahans and Zag suggests that the S-type
asteroid was mostly anhydrous after the capture of the halite crystals,
which is supported by the paucity of hydrousmineral phases inH chon-
drites (4, 16). The host lithologies are H3-6, suggesting significant
thermal metamorphism up to 700°C. However, the presence of aque-
ous fluid inclusions indicates that the halite was formed and main-
tained at low temperatures (25° to 50°C) during its entire lifetime or
else the fluids would have escaped from the halite (1), and thus, thermal
1 of 10
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metamorphism on the S-type asteroid ceased before the capture of the
halite crystals. These halite crystals are the only available direct samples
of a hydrovolcanically active, C-type asteroid, which previous studies
have proposed to be asteroid 1 Ceres (7, 12). Because the S-type asteroid
was unaltered and unheated after the deposition of halite, it preserves a
mixture of organic material produced by distinctive synthetic processes
on both asteroidal bodies. With the use of two-step laser desorption/
laser ionization mass spectrometry (L2MS), Raman spectroscopy,
scanning transmission x-ray microscopy (STXM) using x-ray absorp-
tion near-edge structure (XANES) spectroscopy, nanoscale secondary
ion mass spectrometry (NanoSIMS), and ultra-performance liquid
chromatography fluorescence detection and quadrupole time-of-flight
hybrid mass spectrometry (UPLC-FD/QToF-MS) techniques, we ana-
lyzed the compositions of the organic solids and the amino acid content
of millimeter-sized halite crystals hosted in theMonahans and Zagme-
teorites (<1 volume % of the meteorite) in detail.
RESULTS AND DISCUSSION
AZag halite crystal was pressed flat onto annealed high-purity gold foils
and analyzed with the m-L2MS instrument located at NASA’s Johnson
Space Center (JSC), whichwas optimized to detect aromatic/conjugated
organic molecules at the micrometer scale and the subattomole level
(1 amol = 10−18 mol) (17). The m-L2MS uses separate laser sources to
nonthermally desorb molecules from the sample surface as neutral
species and to “soft”-ionize selective compounds. Energy in excess of
that needed for ionization is transferred to the kinetic energy of the lib-
Chan et al., Sci. Adv. 2018;4 : eaao3521 10 January 2018
erated photoelectron, thereby allowing us to detect intact positive
molecular ions with virtually no fragmentation (18). Ionization with
~10-eV photons covers essentially all organic compounds because
their first ionization potentials lie in the range of 5 to 10 eV. The
m-L2MS spectra show signatures of low-mass C5 to C10 hydrocarbons
at around 70 to 200 atomicmass units (amu; Fig. 2). Eachmolecular ion
in the m-L2MS spectra can indicate the presence of different isomers or
any molecules with the samemolecular mass; hence, proper interpreta-
tion of the m-L2MS spectra relies on the elucidation of perceivable struc-
tural patterns indicating functionalities. The sequence of peaks separated
by 14 amu in the range of 70 to 140 amu due to successive addition of
methylene (CH2) groups indicates alkylated derivatives (19), suggest-
ing the presence of monounsaturated alkenes. The high signal inten-
sity at 112 amu suggests the presence of octene and other compounds,
whereas chlorobenzene is a probable candidate, which can be formed by
the reactionof oxidants (for example, Cl2, SO2) or brinewith benzene. The
low abundance of benzene (78 amu) indicates their consumption via
chemical reactions to form larger polyaromatic hydrocarbons (PAHs),
such as chlorobenzene, naphthalene (128 amu), acenaphthene (154 amu),
and fluorene (166 amu). The presence of SO2 (64 amu) is accompanied
by a lower abundance of SO (48 amu; Fig. 2), suggesting a significant
proportion of sulfur-containing material on the C-type asteroid. Both
volatile sulfur and graphitized carbon were shown to be present on
Ceres (20). The reaction of sulfur with benzene can produce diphenyl
sulfide (186 amu) via synthesis at elevated or low temperatures with the
presence of aluminum chloride as catalyst (21). Zag halite organics are
composed predominantly of smaller molecules with an absence of
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Fig. 1. Zag/Monahansmeteorites and their halite crystals. (A) Diagram showing the lithologies of the Zag and Monahans meteorites, their dark (carbonaceous) clasts, the
halite crystals, and the fluid and solid inclusions within the halite crystals. (B) Halite crystals hosted in the matrix regions of the Zag meteorite. The arrow marks one of the
several halite crystals shown in this photo. (C) A microphotograph showing a halite crystal subsampled from the Zag meteorite. (D) Halite crystals subsampled from the Zag
meteorite contained in a pre-sterilized glass ampoule before hot-water extraction.
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larger PAHs that are common in chondritic material [for example,
phenanthrene (178 amu) and pyrene (202 amu)] (22, 23).

We directly compared the insoluble organic contents of Zag halite,
their solid inclusions, and an associated, carbonaceous, halite-bearing
clast in Zag (24) using Raman spectroscopy. Raman spectra collected
on the dark clast in the Zag meteorite show peaks around the ~1350
to 1600 cm−1 spectral region, which are typical of the first-order defect
(D) and graphite (G) bands of carbonaceous materials (Fig. 3A). Prop-
erties of the Raman bands describe the thermally induced crystalline
ordering of macromolecular carbon (MMC) (25–27). We used a two-
Gaussian peak-fitting model to decompose the peaks so that the results
can be comparable to the published data (28).

We performed high-resolution Raman imaging on selectedMonahans
halite residues using aWITec a-scanning near-field optical microscope
(SNOM), which has been customized to incorporate confocal Raman
spectroscopy imaging. Although theRaman spectra of the halite crystals
are featureless in the first-order spectral region, spectra of abundant
micrometer-sized solid inclusions revealed that they consist largely of
highly variable organic matter (OM) that includes a mixture of poorly
ordered MMC and graphitic carbon. The Monahans MMC shows var-
iability, indicating a complex formation and alteration history (Fig. 3B).
Spectra collected from the Monahans halite show multiple populations
of MMC. One subset (Fig. 3B, pink circle) shows an affinity with type 3
Vigarano-type (CV3)–like MMC. Other MMC inclusions in the halite
residues and Zag matrix (cyan circles) exhibit structural similarity with
carbon from CI, Renazzo-type (CR), CM, and/or Ornans-type (CO)
chondrites. Several points lie along a line trending between crystalline
graphite (Fig. 3B, lower left) and the other MMC that is best explained
by partial amorphization of crystalline graphite, probably by shock (28).
Chan et al., Sci. Adv. 2018;4 : eaao3521 10 January 2018
The Monahans halite incorporates MMC with a varied and complex
formation and alteration history. Raman analysis ofMonahans halites
also revealed two instances of chloromethane dissolved in the halite
matrix adjacent to the MMC inclusions (29), probably generated by
evolution of methane from the MMC via ultraviolet (UV) photolysis
(30) coupled with halogenation and partial dissolution in the halite.

We further analyzed the solid inclusions in halites by dissolving a
2-mmMonahans halite crystal in deionized water and concentrating the
residues by filtering the solution through a 1-mmmesh filter membrane.
We subsampled the halite residues by the focused ion beam (FIB) tech-
nique. Preliminary data from the ~100-nm-thick FIB sections obtained
by transmission electron microcopy revealed that these grains include
MMCsimilar in structure toCV3 chondritematrix carbon, aliphatic car-
bon compounds, olivine of widely varying composition (Fo99-59), high-
and low-Ca pyroxene, feldspars, phyllosilicates (mainly saponite),
magnetite, sulfides, metal, lepidocrocite (rust), carbonates, diamond,
apatite, and zeolites (7). We further analyzed newly prepared FIB
sections by STXM-XANES to locate C-rich areas and investigate the
chemical structure of the carbonaceous material. Figure 4A shows an
STXM image of the FIB section. C-rich areas were observed in the
corresponding carbon map (Fig. 4B). On the basis of the method
provided byCody et al. (31), the atomicN/C ratio of the C-richmaterial
is 0.076 ± 0.004, which lies between that of the insoluble OM (IOM) in
primitive CI, CR, and CM chondrites (~0.04) (32) and organic come-
tary samples from the Stardust collection (~0.1) (31). The C-XANES
spectrum of the C-rich areas (Fig. 4C) showed a peak at 285.0 eV
(aromatic carbon) and 286.6 eV [ketone (C==O)], but the aliphatic
feature was not present (at ~287.3 to 288.1 eV; Fig. 4D). N-XANES
(Fig. 4E) showed a small peak at 398.7 eV [imine (C==N)] and 400.3 eV
(protonated imine and/or imidazole). The C-XANES of the residue
is dominated by aromatic structures with a feature indicatingO-bearing
functional groups, which is comparable to the IOM in typical primitive
chondrites (CM/CI/CR) (33). There is no 1s-s* exciton peak (at 291.7 eV)
that is indicative of the development of a graphene structure (34), which
suggests that most of the OM did not experience temperatures higher
than ~200°C, and significant graphitization did not take place. An
observation that marries well with the Raman data is shown in Fig. 3.
Furthermore, some (but not all) organic nanoglobules found in the
Murchison meteorite and cometary (Comet Wild 2) particles are
known to be dominated by aromatic structure, but the ketone (C==O)
feature at 286.6 eV is less prominent in these materials when com-
pared to the halite residues (33). Hence, the organic structure can be
explained by a significant abundance of bridging ketones, which in-
dicates a highly primitive nature for the halite residue organics. The
wide range of organic features picked up by Raman spectroscopy and
STXM-XANES suggest that the organics hosted in the halites are
compositionally diverse.

Weused the isotopic compositions of the halite residues inMonahans
to interpret the synthetic origin of the halite organic residue. We took
isotopic images for C, N, H, and O with the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC) NanoSIMS 50L ion micro-
probe at a spatial resolution of 100 nm (C, O, and N isotopes) and
200 nm (H isotopes; Fig. 5), and the isotopic ratios are listed in Table 1.
NanoSIMS elemental images are shown in Fig. 5 (B, C, E, and F), and
the O isotopic ratios are plotted on an oxygen three-isotope diagram
(Fig. 5I). The NanoSIMS C elemental map shares similar features with
the STXM-XANES data. The C-rich area (Fig. 5B) is depleted in
13C[d13C=−37.6 permil (‰)] andmoderately enriched in 15N (d15N=
+164.5‰). These isotopic characteristics are broadly consistent with
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(66 amu) and its fragment SO at a lower abundance (48 amu). The spectrum is
dominated by low-mass C5–C10 hydrocarbons, such as alkenes (as shown by
sequence of peaks separated by 14 amu), and PAHs/heterocycles, such as triazine
(81 amu), chlorobenzene (112 amu), chloroaniline (127 amu), naphthalene (128 amu),
acenaphthene (154 amu), and fluorene (166 amu). The potential assignments of
N-bearing compounds such as triazine and chloroaniline account for the odd-
mass peaks.
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those of the IOM in unweathered CR chondrites and unequilibrated
meteorites (32), which show typical enrichments in 15N that likely re-
flect sources of interstellar 15N such as ammonia (35) and not terrestrial
contamination. High d15N values suggest the presence of organic N
compounds such as hydrocarbons and amino acids that are hosts to
heavy N (for example, d15N of polar hydrocarbons = +102‰ and
d15N of amino acids = +94‰) (36). The dD in the C-rich area shows
a terrestrial value (+42.5 ± 54.3‰). The low dDvalues contrast with the
high dD values of chondritic IOM [for example, ~600 to 1000‰ in CIs
andCMs and~3000‰ in CRs (32)]. Thewater onC-type parent bodies
is typically D-poor (37); therefore, the OM synthesized in and/or pro-
cessed by the D-poor water on Ceres would also be D-depleted.
Assuming that Ceres had a larger water fraction than CI/CM, the asso-
ciated OM would have low dD values provided that the time was suf-
ficient for D/H exchange between OM and the D-poor water during a
prolonged aqueous event. Alternatively, the low dD values might have
been contributed by terrestrial water incorporated during the extraction
of the halite residues in the laboratory. However, because halites rapidly
dissolve in water, the organic residues were only in contact with the wa-
ter for a few seconds; thus, this contamination is unlikely.

The Dawn spacecraft at Ceres reported extensive surficial carbo-
nates accompanied by phyllosilicates and ammonium-bearing species,
requiring substantial aqueous alteration (38). The organic analyses un-
dertaken in this study indicate the presence of a wide range of highly
primitive organic compoundswith ketone features possibly contributed
by organic solids originating from formaldehyde. IOM (or MMC) and
amino acids can be synthesized from formaldehyde, glycolaldehyde,
and ammonia under hydrous conditions at temperatures as low as
Chan et al., Sci. Adv. 2018;4 : eaao3521 10 January 2018
90°C (39). Kinetic experiments predict that organic solids could be
synthesized on the order of 100 to 104 years even at temperatures as
low as 0°C (40). We envision that similar organic synthetic processes
could have occurred on Ceres that synthesized organic solids and other
crucial biomolecules including amino acids. To investigate the amino
acid composition of the halite, we carefully opened a pristinely preserved
Zag meteorite stone (~500 g) in a class 10 cleanroom, subsampled the
newly revealed halite crystals (~3 mg; Fig. 1D) with handling tools that
had been heated in air at 500°C for 24 hours, and studied the amino acid
content of the halite and compared this to that of the matrix of the Zag
meteorite using the UPLC-FD/QToF-MS technique.

The Zag meteorite is a matrix-supported regolith breccia com-
posed of H3-4 matrix, H4-5 light-colored metamorphic lithologies,
H5-6 silicate-darkened clasts, impact-melt clasts (4), and carbona-
ceous (CI-like) clasts (24, 41). The matrix is shocked [stage S3, weakly
shocked up to 15 GPa (4, 42)] and thermally metamorphosed to 600°
to 950°C (16), all predating incorporation of the halite andC chondrite
clasts. Although amino acids (for example, isovaline) have been
synthesized in the laboratory under simulated ice/rock impact
conditions (43), the low shock level would not have provided sufficient
energy for shock-driven organic reactions to occur. The total amino
acid distribution and abundance of thematrix [~1940 parts per billion
(ppb); table S1] are comparable to those of other ordinary chondrites
(60 to 3330 ppb; figs. S1 and S2) (44, 45) and include amino acids (for
example, glycine, a-alanine, and b-alanine; Fig. 6) that are typical
products of the mineral-catalyzed Fischer-Tropsch–type (FTT)/
Haber-Bosch–type gas-grain reactions at elevated temperatures
(150° to 700°C) in the presence of CO, H2, and NH3 gases and mineral
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catalysts (46–48). The high enantiomeric ratio [D/L ≈ 0.95; that is,
small L-enantiomeric excesses (Lee) = −9.77 to 2.31%] of alanine sug-
gest that it is indigenous to the meteorite (table S2). Racemic alanine
accompanied by large Lee for glutamic acid have been reported formete-
orites exhibitinghigh degrees of aqueous alteration due to the differences
in their solid-solution phase behaviors (49). These amino acids could
have been synthesized on the S-type asteroid before the material ex-
change between the C- and S-type parent bodies because the latter was
maintained at low temperatures (≤50°C) after the deposition of halite
Chan et al., Sci. Adv. 2018;4 : eaao3521 10 January 2018
crystals, and hence, the physical conditions would then be unfavorable
for FTT reactions to occur.

The abundances of the small straight-chain, amine-terminal (n-w-
amino) amino acids [for example, g-amino-n-butyric acid (g-ABA) and
e-amino-n-caproic acid (EACA)] in the Zag matrix are notably lower
than those in the thermally altered meteorites (48, 50, 51). Whereas the
Zag matrix is g-ABA– and EACA-deficient, the halite is shown to ex-
hibit an opposite trend and is enriched in g-ABA and EACA (Fig. 6 and
table S1). The total amino acid concentration in halite (~510 ppb) is also
significantly lower than that in theZagmatrix. Themarked difference in
the amino acid contents between the halite and matrix indicates their
separate synthetic origins (Fig. 6). This agrees with the Raman imaging
and XANES analyses in this study, which indicate the presence of
organic-rich solid inclusions that are composed of C chondrite–like
MMCand other organic compoundswith aromatic and ketone structures,
which are incongruent with the organic content of the thermallymeta-
morphosedH-type lithology. Also, the halite crystals are hosted as dis-
crete grains (no reaction rims between the halite and surrounding
silicate) within an H-chondrite matrix, and their mineral inclusions
are incompatible with H chondrites (16). The continued presence of
fluid inclusions in the halite is further evidence that the incorporation
of the halites into the H chondrite postdates the metamorphic epoch
(1, 2). These observations support the hypothesis that the halite is
derived from an exogenic source, possibly a hydrovolcanically active
C-type parent body (7, 52). Our coordinated organic analyses con-
verge into the same conclusion that halite in Zag and Monahans is
host to a wide range of OM, which probably facilitated amino acid
synthesis through aqueous alteration on the C-type parent asteroid.
The disparities in the amino acid contents between halite in H chon-
drites and matrix account for material mixing between the two aster-
oidal bodies and explain the complex suite of meteoritic organic
compositions that can only be contributed by distinctive reaction
pathways.

We propose the following sequence of events for Zag andMonahans
and the halite. The halite originated from hydrovolcanism on a C-type
parent body (probably asteroid 1 Ceres). IOM and amino acids were
produced by aqueous alteration in the presence of formaldehyde and
ammonia (39). The halite formed as surficial evaporate deposits at
Table 1. Carbon, nitrogen, hydrogen, and oxygen isotopic compositions of the C-rich and N-rich area in the halite residues of the Monahans
meteorite. Errors are reported as 1s. Isotopic data of CI, CM, and CR chondrites and terrestrial organic matter are available in the studies of Alexander et al. (32)
and Epstein et al. (68).
Meteorite class
 Samples

Isotopic compositions (‰)
d13C
 d15N
 dD
 d17O
 d18O
H5
 Monahans halite residues
C-rich area
 −37.6 ± 4.6
 +164.5 ± 14.4
 +42.5 ± 54.3
 +90.8 ± 37.1
 +18.1 ± 20.9
N-rich area
 −56.1 ± 14.7
 +106.1 ± 14.7
 +50.5 ± 27.2
 +28.1 ± 11.8
CI
 Orgueil
 17.05 ± 0.04
 +30.7 ± 0.2
 +972 ± 2
 +14.5 ± 0.6
CM
 Murchison
 18.91 ± 0.01
 −1.0 ± 0.4
 +777 ± 27
 +13.2 ± 0.6
CR
 EET92042
 −22.19 ± 0.1
 +184.1 ± 1.4
 +3002 ± 12
 +14.2 ± 0.3
CR (weathered)
 El Djou
 −23.18
 +44.5
 +223
 +12.5
Terrestrial organic matter
 −60 to −25
 −10 to +20
 −350 to +50
Fig. 6. Relative amino acid abundances (total amino acid abundance = 1) of the
6MHClacid-hydrolyzedaminoacidextractof theZagmatrix ( ), thenon-hydrolyzed
amino acid extract of the Zag matrix ( ), and the acid-hydrolyzed amino
acid extract of the Zag halite ( ). Although the Zag matrix is g-ABA–, b-ABA–,
a-aminoisobutyric acid (a-AIB), and EACA-deficient, the halite is shown to exhibit an
opposite trend and is enriched in these amino acids. The marked difference in the
amino acid contents between the halite and matrix indicates their separate synthetic
origins. The abbreviations of the amino acids are defined in table S1.
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the end of the hydrothermal activity, approximately 4.5 billion years old
(1–3), trapping brines as well as organic and inorganic solids and other
soluble organic compounds. Subsequent large-scale hydrovolcanism
had sufficient escape velocity (53) to expel surficial halite and some in-
organic stones into space. It was probably during surface exposure or
inter-asteroidal transit that the halite gained the blue-purple coloration
from electrons trapped in anion vacancies through exposure to ionizing
radiation, at which time some trapped carbon generated UV-photolysis–
derived chloromethane. The halites and other stones were then deposited
into the regolith of an S-type parent asteroid (possibly Hebe), which had
already experienced thermal metamorphism that yielded its own dis-
tinctive suite of amino acids. Regolith evolution buried the halite and
associated stones (the latter becoming the CI-like clasts found in Zag
and otherH chondrites), incorporating them into a fine-grainedmatrix.
Themeteorite was later stripped from the S-type parent body via a gen-
tle process, possibly by the YORP effect (14, 15), and was eventually
delivered to Earth.
CONCLUSION
The halite crystals and the organics contained within them provide a
unique window into the early history of astromaterials and their mobi-
lization across the early solar system. This model describes the
brecciated nature of chondrites and elucidates the complex suite of or-
ganics, which could only be synthesized through individual processes
with different physicochemical conditions. The extensive variety of or-
ganics hosted in the halite suggests that the original parent asteroid,
where the halite precipitated, plausibly Ceres, contains a combination
of precursor molecules for complex chemical reactions to occur. Fur-
thermore, in the context of understanding moons such as Enceladus
and Europa, halite crystals formed from cryovolcanism and ejected into
space represent an ideal sample to study prebiotic and possibly biotic
processes on these bodies.
MATERIALS AND METHODS
L2MS
The m-L2MS was used for the detection and identification of organic
molecules in lunar samples. The JSC m-L2MS instrument was equipped
with a vacuum UV (VUV) ionization source capable of nonresonant
single-photon soft ionization enabling the in situ detection of virtually
any organic molecular system at high sensitivity in the subattomole
range (>10−18 mol) and spatial resolution (~5 mm). The generation of
coherent VUV radiation was achieved by the nonlinear frequency
tripling of the third harmonic (355 nm) of a mode-locked Q-switched
picosecond Nd:YAG (neodymium-doped yttrium aluminum garnet)
laser in a Xe–Ar gas cell to produce 118.2 nm (~10.5 eV) radiation. Be-
cause the first ionization potentials for nearly all organicmolecules lie in
the range of 5 to 10 eV, effectively all organic species can be photo-
ionized with 10.5-eV photons.

Raman spectroscopy
The halite-bearing clast and halite grains were analyzed using a Jobin-
Yvon Horiba LabRAM HR (800 mm) Raman microprobe at NASA
JSC. The excitation source was a 514.53-nm (green) laser. The slit width
and the confocal pinhole aperture were set at 150 and 400 mm, respec-
tively. The laser beamwas focused through amicroscope equippedwith
a 50× objective (short working distance; numerical aperture = 0.75), and
the Raman backscattered light was collected from the same objective. At
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this magnification and for the laser used, the Raman probe spatial res-
olution at the analyzed spot was ~0.8 mm, and the laser power at the
sample surface was ~60 mW, leading to an intensity of approximately
110 mW mm−2. The spectral range of 100 to 4000 cm−1 included the first-
and second-order Raman bands of carbon. The exposure time for each
spectrum was 5 s, and three accumulations were obtained for each an-
alytical spot to identify and discard spurious signals, such as those from
cosmic rays. Spectral peak identification and methods used in the pres-
ent study were the same as outlined by Chan et al. (54). Graphite
standards were commercially obtained.

We collectedRaman spectra and images of the halite residues using a
WITec a-SNOM at the Carnegie Institution of Washington, custo-
mized to incorporate confocal Raman spectroscopic imaging. The exci-
tation source is a frequency-doubled solid-state YAG laser (532 nm)
operating between 0.3 and 1 mW output power (dependent on objec-
tive). Objective lenses used included a ×100 long working distance
(LWD) and a ×20 LWD with a 50-mm optical fiber acting as the con-
focal pinhole. For the collection of multispectral images, Raman spectra
were collected (0 to 3600 cm−1 using the 600 linesmm−1 grating) at each
pixel using an integration time of between 1 and 6 s per pixel. The effects
of interfering peaks were removed by phase-masking routines based on
multiple single-peak fits that were compared to standardized mineral
spectra. Spectral peak identification and methods used in the present
study were the same as outlined by Steele et al. (55).

STXM-XANES
C,N-XANES microspectroscopy was performed using the STXM at
beamline 5.3.2.2 of the Advanced Light Source, Lawrence Berkeley Na-
tional Laboratory (56) and BL-13A of the Photon Factory (PF), High
Energy Accelerator Research Organization (KEK) (57). Soft x-rays gen-
erated by a bending magnet provided a useful photon range spanning
from 250 to 780 eV with a photon flux of 107 photons s−1. Energy se-
lection was performed with a low-dispersion spherical grating mono-
chromator, affording an energy resolution (E/DE) of 5000, with most
of our data taken at an energy resolution of ~3000, that is, at ~0.1 eV.
Beam focusing used Fresnel zone plate optics for a theoretical spot size
of 31nm.TheBL-13Aof the PF is anAPPLE-II undulator–based beam-
line covering photon energies of 50 to 2000 eVwith variable polarization.
A variable-included-angle Monk-Gillieson mounting monochromator
with varied-line-spacing plane gratingswas used to achieve a high photon
flux of 1011 photons s−1with a high resolution (E/DE) of 10,000 at 400 eV.
The spatial resolution of the compact STXM in BL-13A is about 40 nm,
and the photon intensity at the sample is 107 photons s−1 (58). Most of
our data were obtained at E/DE of ~3000.

The C,N-XANES spectra were acquired using a multispectral imag-
ingmethod [“Stacks”method (59)]. For C-XANES, in the fine structure
portions of the near-edge region (283 to 295.5 eV), the energy step size
(DE) was 0.1 eV; in the less featured pre-edge (280 to 283 eV) and post-
edge (295.5 to 301.0 eV) regions, DE was 0.5 eV; and in the extended
x-ray absorption fine structure (EXAFS) region (301 to 310 eV),DEwas
1 eV. For N-XANES, in the fine structure portions of the near-edge
region (395 to 406 eV), DE was 0.2 eV; in the less featured pre-edge
(385 to 395 eV) and post-edge (406 to 410 eV) regions, DE was 0.5 eV;
and in the EXAFS (410 to 430 eV) region, DE was 2 eV. The acquisition
time per energy step varied from 3 to 5 ms.

NanoSIMS analysis
The H, C, O, and N isotopic compositions of the samples were ana-
lyzed by isotopic imaging with the JAMSTEC NanoSIMS 50L ion
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microprobe (Ametek CAMECA Inc.). A focused primary Cs+ beam of
approximately ~1.6 pA for C, O, andN isotopic analysis and 4 pA forH
isotopic analysis was rastered over 10 mm × 10 mm areas on the sam-
ples. For C, O, andN isotopic analysis, images of 12C−, 13C−, 16O−, 17O−,
18O− 12C14N−, and 12C15N− were acquired simultaneously in multi-
detection with seven electron multipliers (EMs) at a mass resolving
power of approximately 9500, sufficient to separate all relevant iso-
baric interferences (that is, 12C1H on 13C and 16OH on 17O). For H iso-
topic analysis, imagesof 1H, 2D, and 12C−were acquiredusing threeEMs in
multidetection at amass resolving power of approximately 3000. Each run
was initiated after stabilization of the secondary ion beam intensity
following presputtering of approximately <2 min with a relatively strong
primary ion beam current (~20 pA). Each imaging run was repeatedly
scanned (10 to 20 times) over the same area, with individual images con-
sisting of 256 × 256 pixels. The dwell timeswere 5000 ms per pixel forC,O,
and N isotopic measurements (total acquisition time, ~55 min) and
5000 ms per pixel for H isotopic measurement (total acquisition time,
~110min). The isotopic imageswere processed using the custom-written
software “NASA JSC imaging software forNanoSIMS” developed in the
Interactive Data Language program (60). The methods outlined above
were previously discussed by Ito et al. (61).

Nearby grains of 1-hydroxybenzotriazole hydrate with known iso-
topic compositions of H, C, O, andNwere used for standards to correct
for instrumental mass fractionations. Isotopic compositions are re-
ported as d values, representing the deviation of the measured isotopic
ratios with reference terrestrial standards in per mil

dR ¼ Rmeasured

Rreference
� 1

� �
� 1000

Reference values forH,C, andN isotopic ratios are 0.00015576 for the
D/H ratio of the standard mean ocean water (SMOW) (62), 0.0112372
for the 13C/12C ratio of the PeeDee Belemnite standards (63), and
0.003676 for (15N/14N)Air (64).

Amino acid analysis with UPLC-FD/QToF-MS
The meteorite sample (selected from the matrix) was powdered and
transferred to individual glass ampoules in a Class 100 Labconco lam-
inar flow hood under high-efficiency particulate air (HEPA)–filtered
positive pressure. Halite crystals were subsampled from the meteorite
with pre-sterilized tools in a Class 10 clean laboratory at NASA JSC.
Sterilized (500°C, 24 hours) laboratory halite and alumina samples were
subjected to the same procedures and analyzed as procedural blanks.

Porcelainmortars and pestles were scrubbed andwashedwith dilute
soap solution, rinsed with Millipore Integral 10 UV (18.2 megohm-cm,
<3 ppb total organic carbon) ultrapure water (hereafter referred to as
water), immersed in 20% citric acid, and sonicated at room temperature
for 60 min. All tools, glassware, and ceramics were rinsed with water,
wrapped in aluminum foil, and sterilized by heating in air at 500°C for
24 hours. Volumetric flasks were only rinsed with copious water.
Amino acid standards and other laboratory chemicals such as ammo-
nium hydroxide (NH4OH) (28 to 30 weight %), sodium hydroxide
(NaOH), hydrochloric acid (HCl; 37%), methanol, hydrazine monohy-
drochloride, o-phthaldialdehyde (OPA), and N-acetyl-L-cysteine
(NAC)were purchased fromFischer Scientific, Sigma-Aldrich, orAcros
Organics. Poly-Prep prepacked ion exchange columns (AG 50W-X8
resin, 200 to 400 mesh, hydrogen form) were purchased from Bio-Rad.
Solutions of sodium borate were prepared from solid sodium tetraborate
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decahydrate (Sigma Ultra, 99.5 to 100% purity) that was heated in air at
500°C for 24 hours before dissolution in water. Amino acid standard solu-
tions were made by dissolving individual amino acid solutes in water and
were combined into a standardmixture analyzed byUPLC-FD/QToF-MS
on a daily basis.

One milliliter of water was added to each glass ampoule containing
separate samples, and the ampoules were flame-sealed and heated to
100°C for 24 hours in an oven. After the hot-water extraction, the
samples were cooled to room temperature and centrifuged for 5 min
to separate water supernatant from solid particulate. Exactly half of the
water supernatant (500 ml) was transferred to a small test tube (10mm×
75mm), dried under vacuum (Savant SPD131DDASpeedVac Concen-
trator), flame-sealed in a larger test tube (20mm× 150mm) containing
6MHCl, and then subjected to acid vaporhydrolysis for 3 hours at 150°C
to liberate amino acids in bound or precursor forms. After the vapor hy-
drolysis procedure, the test tubes were rinsed with water, and the bottom
of the test tubes were opened to retrieve the inner small test tubes, and
this portion of the sample is hereafter referred to as the “hydrolyzed ex-
tract,” representing the total amino acid contents of the samples. The re-
maining hot-water extract was rinsed with 2 × 1 ml of water, and the
supernatant was transferred to individual test tubes; this portion of the
sample is hereafter referred to as the “non-hydrolyzed extract,” containing
only the free amino acids. Both hydrolyzed and non-hydrolyzed samples
were then brought up in 3 × 1 ml of water and desalted on a cation ex-
change resin. Amino acids were eluted with 2 × 3.5 ml of 2 M NH4OH.
The eluates were collected in small test tubes and evaporated to dryness.
The samples were transferred to small sample vials, redissolved in 100 ml
of water, and stored at −20°C. Immediately before UPLC-FD/QToF-MS
analysis, the samples were derivatized with OPA/NAC fluorescent deriv-
atization (65). Twenty-five microliters of the thawed sample was dried
under vacuum, resuspended in 20 ml of 0.1 M sodium borate buffer
(pH 9), and derivatized with 5 ml of OPA/NAC in 1-ml autosampler
glass vials. The derivatization reaction was then quenched after 15 min
at room temperature with 75 ml of 0.1 M hydrazine hydrate.

The amino acid abundances and distributions were measured by
UPLC-FD/QToF-MS at NASA JSC, using a Waters ACQUITY ultra-
high performance LC and a Waters ACQUITY fluorescence detector
connected in series to aWaters LCTPremier ToF-MS.Twenty-fivemicro-
liters of the derivatized samples was separated using a Waters ethylene
bridged hybrid (BEH) C18 column (2.1 mm × 50 mm; particle size,
1.7 mm) followed by a second Waters BEH phenyl column (2.1 mm
× 150 mm; particle size, 1.7 mm). Chromatographic conditions were
as follows: column temperature, 30°C; flow rate, 150 ml min−1; solvent
A [50 mM ammonium formate and 8% methanol (pH 8.0)]; solvent B
(methanol); gradient, time inminutes (%B): 0 (0), 35 (55), 45 (100). The
electrospray and mass spectrometer conditions have been described by
Glavin et al. (65). Amino acids in meteorite bulk, halite, and control
samples were identified by correlating sample compounds with known
standards using the representativemasses and fluorescence responses of
the OPA/NAC amino acid derivatives at the expected chromatographic
retention times.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao3521/DC1

fig. S1. The 4- to 40-min region of the UPLC-FD chromatograms obtained for the OPA/
NAC-labeled (15-min derivatization) 6 M HCl acid-hydrolyzed amino acid extract and the
non-hydrolyzed amino acid extract of the Zag matrix, acid-hydrolyzed amino acid extract
of the Zag halite, and the amino acid standard solution.
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fig. S2. An overview of the amino acid compositions of Zag matrix and halite compared to
chondrites from different meteorite classes.
fig. S3. C-XANES spectra used to compose the false color map in Fig. 4C.
fig. S4. Representative UPLC-ToF-MS combined ion chromatograms of selected masses.
fig. S5. Representative UPLC-ToF-MS ion chromatograms.
table S1. Summary of the average blank-corrected amino acid abundances (in parts per billion
by weight).
table S2. Amino acid enantiomeric ratios (D/L) of the 6 M HCl acid-hydrolyzed amino acid
extract (total) and the non-hydrolyzed amino acid extract (free) of the Zag matrix, acid-
hydrolyzed amino acid extract of the Zag halite.
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