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Abstract

Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, 

regeneration, and repair, and also for development of cell-based therapies to treat patients after 

tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to 

homeostasis, remodeling and repair. Multiple stem and progenitor cell populations in bone are 

found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing 

process after injury and are an important component in tissue engineering approaches for bone 

repair. This review focuses on current concepts in stem cell biology related to fracture healing and 

bone tissue regeneration, as well as current strategies and limitations for clinical cell-based 

therapies.
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Introduction

In orthopaedic surgery, stem cells present a number of clinical opportunities, from tissue 

regeneration and modulation of immune function, to modeling rare diseases. Stem cells can 

be broadly divided between totipotent cells that are capable of forming all of the tissues in 

the body (e.g. embryonic stem cells), or adult stem cells with more limited potential. Here, 

we discuss the sources, applications, and limitations of adult stem cell populations for bone 

repair.
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Adult stem cells are generally capable of forming one or more embryonically-related tissue 

types. Stem cells are technically different from progenitor cells, yet the term “stem cell” is 

commonly, and often incorrectly, used to encompass both classes of cells. Stem cells are 

defined by their capacity to “self-renew.” This occurs by asymmetric division of stem cells 

that results in generation of two different cells. One daughter returns to a resting (G0) state 

identical to the original stem cell, while the other cell gives rise to the rapidly proliferating, 

transit amplifying population of progenitor cells that generate the new tissues.

The term connective tissue progenitors (CTPs) is used to describe the heterogeneous system 

of stem cells and progenitor cells that are present in native tissues, which can proliferate and 

generate one or more connective tissues (e.g. bone, cartilage, fat, fibrous tissue, muscle, and 

blood).1, 2 The prevalence and biological potential of CTPs differ from one tissue to another. 

No single marker or set of markers exist that identify all CTPs in native tissues. However, 

the concentration, prevalence and biological potential of CTPs can be estimated using 

established in vitro 2D and 3D colony-forming assays, which are generally tissue type 

specific.

The term mesenchymal stem cell (MSC) is found widely in the musculoskeletal literature. In 

contrast to tissue resident colony founding CTPs, the term MSC refers to populations of 

culture-expanded cells that have biological potential that may be relevant to orthopaedic 

applications. The International Society for Cellular Therapy has defined MSCs as culture-

expanded cells that adhere to tissue culture plastic, retain the capability for tri-lineage (bone, 

cartilage, and fat) differentiate in vitro, express surface markers CD105, CD73, and CD90, 

and are negative for CD45, CD34, CD14 or CD11b, CD79a, or CD19, and HLA-DR.3

Stem Cells and Progenitor Cells: What are The Sources for Fracture 

Healing?

CTPs are resident in all musculoskeletal tissues, particularly bone and bone marrow.2, 33 

Work by Colnot has demonstrated that the periosteum and endosteum are rich sources of 

osteochondral progenitor cells during fracture healing.4 Grafting experiments revealed that 

the transplanted periosteum generates both osteoblasts and chondrocytes during fracture 

repair, while transplanted endosteum generates primarily osteoblasts. The differentiated cells 

are located directly adjacent to the grafted tissue, indicating that the cells differentiate 

locally and do not migrate widely within the fracture callus. Moreover, bone morphogenetic 

protein-2 (BMP-2) stimulates chondrogenesis within the periosteum but not the endosteum, 

indicating that cells within the periosteum and endosteum may differ with respect to 

activation factors. Marrow may also contain more than one CTP population. Marrow-derived 

cells expressing leptin receptor,5 gremlin,6 and hyaluronan36 give rise to bone that forms 

during repair. However, whether these cells are of the same populations is unknown.

While the origin of the CTPs that initially differentiate at the fracture site has been 

identified, the origin of later appearing cells is less well known. Most fractures heal through 

a combination of intramembranous and endochondral ossification. During endochondral 

ossification a cartilage template forms and is replaced by bone, and the osteoblasts that 

replace the cartilage are thought to be delivered to the fracture site by the invading blood 
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vessels.7 However, recent work has demonstrated that hypertrophic chondrocytes in the 

fracture callus may persist and transdifferentiate into osteoblasts.8 This is an under-

appreciated mechanism in fracture healing, and it introduces the potential to therapeutically 

stimulate the conversion of chondrocytes into osteoblasts (e.g. hypertrophic non-union) once 

the mechanisms are understood.

Circulating CTPs, or CTPs that are mobilized into circulation following injury, may also 

contribute to fracture repair. However, under normal circumstances, data to date suggests 

that circulating cells contribute only a small number of cells in the facture callus.9 Here 

again, therapeutic augmentation of this mechanism, by enhancing either mobilization or 

homing of circulating CTPs, represents a potential therapeutic opportunity.

CTPs and MSCs: How Can They Be Used to Influence Healing?

Due to the regenerative properties of CTPs and MSCs, there is great interest in developing 

therapeutic strategies to treat clinical conditions. Osteogenic cells constitute an important 

component of the ‘diamond concept,’ which illustrates the necessity for cells, growth 

factors, scaffolds, and the mechanical environment for bone regeneration.10 Several studies 

have shown that implantation of stem cells, either alone or with other biological materials, to 

the fracture site of a patient with a delayed or nonunion, can stimulate healing.11–13

The most common source of CTPs is a bone marrow aspirate from the iliac crest. In addition 

to CTPs, bone marrow aspirates and reamings from long bone also contain endothelial 

progenitors.14 With good technique, the concentration of CTPs will average about 1,000–

2,000 CTPs per ml of aspirate.15 Hernigou et al., processing marrow using density 

separation via centrifugation, has highlighted that successful treatment of atrophic 

diaphyseal nonunions with marrow-derived cells can be achieved as long as at least 50,000 

CTPs (measured using “colony-forming units”) are implanted at the site of the nonunion.16 

Other methods for CTP processing to enrich the desired cell type are also under 

development.36

Compared to the small number of CTPs in native tissues, the opportunity to use culture-

expanded autogenous MSCs for bone repair is immense. MSCs may contribute to bone 

repair by: 1) differentiating into osteoblasts; 2) triggering the division and differentiation of 

native CTPs;17 3) modulating cells of the immune system;18 4) secreting trophic molecules 

that inhibit apoptosis and fibrosis and/or promote angiogenesis; and 5) homing to the 

fracture site via chemokine receptors, such as CCR1, CCR7, CCR9, and CXCR4-619, 20 and 

other pathways. However, these potential benefits require clinical evidence through relevant 

animal models and clinical trials, and they need to offset the expenses and risks associated 

with culture expansion.

Adult Progenitor Cell Populations: Which Might be the Most Useful?

Several preclinical studies have demonstrated the ability of MSCs to accelerate fracture 

healing,21 or heal bone defects when combined with osteoconductive scaffolds22 or 

proteins.23 However, not all reports have demonstrated success,24 and clinical data is 
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limited. Several clinical series describe the use of MSCs for therapy, but these have been 

level 4 studies lacking appropriate control groups.25, 26

While MSCs are the most frequently studied and characterized, other stem cell populations 

may be useful for therapeutic applications. In particular, endothelial progenitor cells (EPCs) 

offer unique opportunities. EPCs have been shown to contribute to bone and vasculature in 
vitro,27 and in several preclinical studies the efficacy of EPCs in improving healing in bone 

defects has been demonstrated.28–30 One recent study suggested that EPC therapy was 

superior to MSC therapy in a bone defect model in the rat.31 Further, others have reported 

synergistic effects on angiogenesis and osteogenesis when EPCs and MSCs were combined 

in preclinical models,32 suggesting that EPCs may be an important cell type for tissue 

engineering applications.

Developing Clinical Progenitor Cell Approaches to Bone Defects

All cell-based bone regeneration strategies are based on the paradigm that clinical success is 

limited by a suboptimal incidence of CTPs, or a reduction in the local environmental factors 

that regulate CTP survival and/or function.33 Successful strategies must result in reliable 

bone formation in an acceptable time frame, while not resulting in undesired local or 

systemic consequences. While most engineering settings rely on highly purified and 

standardized reagents (e.g. titanium, polyethylene, and proteins), cell therapies do not have 

this luxury as the prevalence and potential of CTPs varies widely from patient to patient due 

to age, gender, genetic background, disease, or drug effects. Culture-expanded MSC 

populations also vary widely among tissues and batch, despite standardized nomenclature.3

There are many options for cell therapy, but these can be generally subdivided into therapies 

to target endogenous CTPs or to transplant CTPs.33 Endogenous CTPs can be targeted with 

biological and/or physical factors, such as allograft bone matrix, bone graft substitutes, 

hBMP-2, and electrical stimulation.34 Alternatively, the harvest and subsequent 

transplantation of the cells to sites requiring repair is being pursued for translational 

applications.33 Improving CTP transplantation may include new methods to increase the 

purity or number of cells for transplantation, through density separation,16 selective 

retention (using the tendency for CTPs to attach to bone or ceramic matrices),35 or magnetic 

separation36 based on surface markers.

Culture-Expanded Stem Cell Therapies: What Still Needs to be Overcome?

Despite significant theoretical advances, there are a number of barriers to translation before 

culture-expanded cells will be of clinical use in orthopaedics. Generating a reliably effective 

dose of cells that retain multi-lineage differentiation potential is a challenge. MSCs can be 

expanded in vitro. However, they have limited ability to proliferate beyond 20–40 doublings. 

Moreover, their differentiation potential is depleted during passage. Further, expanded cells 

may develop altered phenotypes, express aberrant markers or genes, or transition into 

senescence. Worse, they may develop genetic or epigenetic changes that impart undesired 

biological properties (e.g. transformation).
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Controlled and Robust Differentiation

Lineage-specific differentiation of stem cells can be achieved by providing a chemically 

defined media containing growth factors. Protocols for MSC expansion and differentiation 

into osteocytes and chondrocytes are established and repeatable. However, these protocols 

differ depending on the in vivo niche from which the founding CTPs were isolated. 

Consequently, improving the regenerative capacity of MSCs requires quality control of the 

source of upstream CTPs, as well as the specific culture environment.

Effect of Aging on Stem Cells

The concentration and prevalence of CTPs decrease in frequency and function with age.37 In 

theory, this may be partially overcome by rapid intraoperative processing to enrich for CTPs, 

or by in vitro expansion. Based on the concept that MSCs may be immunoprivileged, or 

hypo-immunogenic,38, 39 many companies have tried to capitalize on the concept of using 

MSCs as allografts from a ‘Universal MSC Donor.’ To date, clinical trials (~200) examining 

transplantation of allogenic MSCs have consistently shown these cells to be safe;40 however, 

contribution to formation of new tissue is limited.

Trophic Effect

The contribution of MSCs to new tissue formation is unclear, because long-term engraftment 

of transplanted MSCs has not been readily observed. Therefore, the effect of transplanted 

MSCs has largely focused on factors that MSCs may secrete. In concept, the secretome 

produced by MSCs may stimulate a regenerative response in injured tissue and modulates 

inflammation, possibly by suppressing an immune response and promoting an anti-

inflammatory environment.41 Even though the mechanisms are unclear, clinical trials have 

shown that MSCs reduce graft versus host disease.42, 43 However, immunomodulation by 

MSCs has not been established in orthopaedic applications.

Injection Technique

Therapeutically, stem cells are often injected systemically or locally, but engraftment of cells 

delivered by this mechanism is generally low. The process itself may contribute to poor 

survival due to the high sheer forces experienced by the cells. Reducing sheer strain by 

injecting cells at a slow rate, using a larger needle, or employing a viscous vehicle may 

improve cell viability.44 Thus, developing technologies to assist delivery of these cells may 

improve therapeutic outcomes.

Development and Testing of Cell-Scaffold Composites for Transplantation

A significant challenge to clinical application remains the optimization of scaffolds for 

delivery of stem cells. Scaffolds support attachment and retention of cells and provide a 

structure to guide cell migration and differentiation. The ideal scaffold would be resorbable 

and bioactive to accommodate tissue remodeling and presentation of factors that enhance 

CTP attachment, survival, proliferation, migration and differentiation. An extensive 

“toolbox” of sophisticated scaffolds has been developed, and optimizing these scaffolds 

demands rigorous, clinically relevant in vivo models to test these tissue-engineered 

composites.
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Manufacturing for Culture-Expanded Cell Therapies

Underlying every culture-expanded cell therapy is the challenge of scaling from feasibility 

testing in small animals to treating humans. Cell harvest, expansion, and processing must 

occur in facilities that are certified under GLP (Good Laboratory Practice) and GMP (Good 

Manufacturing Practices). All products used in generating culture-expanded cells must be 

free of animal products, and synthetic or human-derived proteins/serums must be made in 

GLP/GMP facilities. All culture-expanded cell therapies will require highly regulated 

manufacturing and processing controls along with successful clinical trials, before FDA 

approval and broad clinical adoption can be attained.

Conclusions

Our understanding of the stem cell and progenitor cell in the biological process of fracture 

healing continues to grow. Many cell populations contribute to the natural process of 

fracture repair and bone regeneration. Harnessing the potential of these cells using advanced 

tissue engineering approaches holds great promise for improving current methods and 

developing new orthopaedic therapies.
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