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Early theoretical work on disease invasion typically assumed large and well-mixed host
populations. Many human and wildlife systems, however, have small groups with limited
movement among groups. In these situations, the basic reproductive number,R0, is likely to be a
poor predictor of a disease pandemic because it typically does not account for group structure
and movement of individuals among groups. We extend recent work by combining the
movement of hosts, transmission within groups, recovery from infection and the recruitment of
new susceptibles into a stochastic model of disease in a host metapopulation. We focus on how
recruitment of susceptibles affects disease invasion and how population structure can affect the
frequency of superspreading events (SSEs). We show that the frequency of SSEs may decrease
with the reduced movement and the group sizes due to the limited number of susceptible
individuals available. Classification tree analysis of themodel results illustrates the hierarchical
nature of disease invasion inhostmetapopulations.First, thepathogenmust effectively transmit
within a group (R0O1), and then the pathogenmust persist within a group long enough to allow
for movement among the groups. Therefore, the factors affecting disease persistence—such as
infectious period, group size and recruitment of new susceptibles—are as important as the local
transmission rates in predicting the spread of pathogens across a metapopulation.

Keywords: disease; invasion; metapopulation; SIR model; superspreader
1. INTRODUCTION

Early epidemiological models typically assumed that
host populations were large and well-mixed (e.g.
Kermack & McKendrick 1927). Many human, wildlife
and livestock populations, however, are structured into
small groups with limited movement among the groups
(Altizer et al. 2003; Kao et al. 2006). For example,
communities of people that remain unvaccinated for
religious or philosophical reasons constitute isolated
and weakly linked patches of susceptible hosts for
diseases such as measles and pertussis (Salmon et al.
1999; Feikin et al. 2000). Similarly, the ongoing spread
of H5N1 influenza among wild birds underscores the
need to understand whether insights derived from the
theory of epidemics in large human populations can be
pplementary material is available at http://dx.doi.org/
006.0185 or via http://www.journals.royalsoc.ac.uk.
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applied accurately to diseases in wildlife. A number of
studies have considered the effects of spatial or social
group structures on disease invasion and persistence
(e.g. Hess 1996b; Swinton 1998; Keeling 1999; Keeling &
Gilligan 2000a,b; Thrall et al. 2000; Park et al. 2001,
2002; Fulford et al. 2002; Keeling & Rohani 2002; Cross
et al. 2004; Hagenaars et al. 2004). Of particular
importance is the research investigating the effects of
population structure in the form of households on
disease invasion and dynamics (e.g. Becker & Dietz
1995; Andersson 1997; Becker & Starczak 1997;
Andersson & Britton 1998; Schinazi 2002). In this
study, we take a novel approach to investigating disease
invasion. Rather than analytically determining when a
large outbreak is possible, we use hierarchical statistical
methods to determine what criteria predict successful
disease invasion most accurately. We then compare
these results to more traditional thresholds to
determine the amount of prediction error arising from
the different approaches.
J. R. Soc. Interface (2007) 4, 315–324
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The basic reproductive number, R0, is the expected
number of infections caused by a typical infectious
individual in a completely susceptible population.
R0O1 is the threshold condition traditionally applied
for successful disease invasion (Anderson & May 1991;
Heesterbeek 2002; Heffernan et al. 2005). R0, as it is
commonly used, assumes that the host population size
is sufficiently large that the depletion of susceptible
individuals through death or infection is negligible, and
that the population is homogeneous or well-mixed
(Anderson & May 1991; Keeling & Grenfell 2000). The
R0 metric has been widely studied and refined to
address more complex situations (e.g. multiple classes
of host: Diekmann et al. 1990; spatial structure: Keeling
1999; depletion of the susceptible pool: Keeling &
Grenfell 2000). Although some formulations of R0 use a
matrix-based approach to account for spatial or group
structure (e.g. Diekmann et al. 1990), R0 is, by
definition, an individual-based rather than group-
based metric. In this usage R0 may be high, reflecting
within-group transmission, while the probability of
between-group transmission remains low (Ball et al.
1997; Cross et al. 2005; Watts et al. 2005). When social
groups are small, understanding the processes affecting
within-group invasion becomes less important than
understanding the processes regulating the spread of
disease among groups.

The natural invasion metric for disease in a
metapopulation is R�, defined as the number of groups
infected by individuals from the initially infected group
(and hence the group-level analogue of R0; Ball et al.
1997). A similar metric, RH0, was developed by
Becker & Dietz (1995) to assess the propagation of
infection among households of variable sizes. In an
idealized metapopulation, analytic theory has proven
that must be greater than 1 for a pandemic to occur
(Becker & Dietz 1995; Ball et al. 1997); under less
restrictive assumptions, this same threshold has been
demonstrated by simulation (Cross et al. 2005).
Unfortunately, R� is difficult to calculate analytically
for any but the simplest metapopulation structures.
Empirical estimation of R� from outbreak data would
require contact tracing data at a group level, a
formidable challenge for wildlife or human diseases.
Thus, while R� brings conceptual clarity to the study of
disease in metapopulations, its immediate utility in
applied settings is limited. Therefore, we investigate
the constituent parts of R� to help focus field research
on those parameters most important to disease invasion
in structured populations.

Many studies addressing R0 in structured popu-
lations incorporate host movement via a phenomen-
ological mixing approach, whereby hosts do not move
among groups but simultaneously infect others locally
and at a distance (Ball et al. 1997; Keeling 1999;
Dobson & Foufopoulos 2001; Park et al. 2001; Fulford
et al. 2002). Phenomenological mixing models are often
analytically tractable, but they overlook the fact that
between-group movements are discrete (and possibly
rare) events, which can be crucial to understanding the
stochastic dynamics of disease invasion (Cross et al.
2005) and the role of superspreaders in fuelling an
epidemic (Lloyd-Smith et al. 2005b). An alternative
J. R. Soc. Interface (2007)
approach is to model host movement mechanistically,
explicitly tracking the movement of individuals
between groups (e.g. Hess 1996a; Thrall et al. 2000;
Keeling & Rohani 2002; Cross et al. 2005).

Previously, we used mechanistic models to show that
disease invasion across a metapopulation depends
crucially on the relative time-scales of host movement
and recovery from disease (Cross et al. 2005). We
showed that R0O1 was insufficient for disease invasion
when the product of the average group size and the
expected number of between-group movements made
by each individual while infectious (i.e. the ratio of
movement rate to recovery rate) was less than 1 (Cross
et al. 2005). This previous study addressed settings
where the rate of host population turnover was
negligible relative to the rate of disease processes of
infection and recovery.

Here, we expand the earlier analysis to a much
broader set of disease–host relationships, exploring
settings where the duration of immunity ranges from
transient to lifelong or where the demographic pro-
cesses occur on comparable (or faster) time-scales to
disease processes. Rapid replenishment of susceptibles
allows qualitatively different dynamics compared to the
earlier study, including the possibility for diseases to
remain endemic within a local group even if movement
is infrequent. Given R0O1, we investigate additional
factors that help to explain the remaining variation
in whether or not a disease will become a pandemic. We
also examine how these additional factors alter the
structure of epidemics through their effect on the
frequency of superspreading events (Lloyd-Smith
et al. 2005b).
2. METHODS

2.1. Model structure

We use two individual-based, stochastic, discrete-time
SIR models that extend our previous work (Cross et al.
2005). These models differ from each other and our
previous analyses only in the mechanism by which the
susceptible pool is replenished. In the SIRS model
immunity is transient, so recovered individuals can
return to the susceptible state, and in the SIR_BD
model immunity is permanent but births introduce new
susceptibles, while deaths keep the population size
constant. In simulations of each model, we track each
individual’s spatial position (group membership) and
disease class (S-susceptible, I-infected, R-recovered).

In each model four processes occur: infection,
recovery of infected hosts, creation of new susceptibles
and movement among groups. We take disease trans-
mission to be frequency-dependent (Getz & Pickering
1983), whereby the instantaneous rate of infection for
each susceptible individual in group i is bIi/ni, where b is
the transmission coefficient; Ii is the number of infected
individuals in group i; and ni is the total number of
individuals in group i. Because our models operate in
discrete time, the expression 1Kexp(Kb(Ii/ni)) is used
to depict the saturating probability of infectionper time-
step for each susceptible individual (implicitly assuming
that the force of infection is constant within each
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time-step). All disease transmission is assumed to occur
within local groups and contact among groups occurs
only by movement of individual hosts. We assume that
infected individuals recover from infection to an immune
class with a constant probability g per time-step. We
model movement among groups in a density-indepen-
dent fashion such that all individuals have a constant
probabilitym of leaving their current group in each time-
step. In the SIRSmodel, recovered individuals lose their
immunity with probability r per time-step and births
and deaths do not occur. In the SIR_BD model, all
individuals have probability d of dying and being
replaced by a susceptible individual in the same group.

Groups are organized on a square lattice with periodic
boundary conditions (i.e. movement is on a torus), where
individuals move to one of their four nearest-neighbour-
ing groups, chosen at random. Each simulation starts
with one infected individual and all groups begin with the
same number of individuals. Except where otherwise
noted, we ran simulations on a 11!11 array of groups.
Since our spatial model was symmetric, group sizes
remained relatively constant during the course of each
run. Therefore, our assumption of frequency-dependent
transmission is approximately equivalent to a rescaling of
density-dependent transmission.

In the continuous-time analogues of our models,
R0Zb 0/g0 for SIRS and R0Zb 0/(g 0Cd0) for SIR_BD
(Anderson & May 1991; McCallum et al. 2001). The
prime indicates that, in continuous time, these vari-
ables are rates rather than probabilities. For the
discrete-time models used here, the ratio of b/g is an
approximation of R0 that works well when the time-
step is small and group sizes are relatively large. These
slight approximations do not change our qualitative
conclusions, so for succinctness we refer to these ratios
as R0. Note that in the SIR_BD model, increasing d

reduces R0 because death removes individuals from the
infectious class. To allow full comparison of the SIRS
and SIR_BD models while varying r or d, we present
SIR_BD results for scenarios both where b is fixed (so
R0 changes with d) and where b is adjusted so that R0

remains constant.
2.2. Simulations and analyses

Using the models described above, we explore how
different parameter interactions affect the outcome of
disease introductions. Past studies of this model
structure indicate that, for the parameter ranges we
explore, most introductions result in extinction within
the initial group or relatively complete invasion of the
entire metapopulation, i.e. a ‘pandemic’ (Cross et al.
2005). As a binary measure of invasion success, we
declare an invasion to be successful if more than 90% of
groups are ever infected following a single disease
introduction. This definition of a pandemic does not
count disease persistence within a single patch as
successful invasion, because we are focused on disease
spread at the broader metapopulation scale.

To capture the effect of a finite, diminishing pool of
susceptibles, we calculate empirical R̂0 and R̂� values
during the simulations. In contrast to the theoretical R0

values calculated from model parameters, these
J. R. Soc. Interface (2007)
estimates are based upon individual simulation results.
For each simulation, we calculate the individual
reproductive number, n (Lloyd-Smith et al. 2005b), by
tracking the number of infections caused by the index
case and then averaging n over many simulations to
calculate R̂0 (Cross et al. 2005). Similarly, to calculate
R̂� we take the average over n�, which in turn is
calculated by tracking the number of groups infected by
individuals from the index group. As estimates from
model output, n, n�, R̂0 and R̂� all incorporate the effects
of spatial structure, stochasticity, host movement and
depletion of the susceptible pool within the infectious
period of the index case (or group). We consider n, n�,
R̂0 and R̂� to be ‘emergent’ quantities since they can
only be estimated once the initial generations of a
disease invasion have occurred. Following Lloyd-Smith
et al. (2005b), we assess the frequency of SSEs in
different population structures by constructing a
histogram of infections caused by each index case to
calculate the proportion of the distribution beyond the
point corresponding to the 99th percentile of a Poisson
distribution with the same mean. Since the distribution
is not Poisson this tail will not necessarily contain 1% of
individuals, but rather y%. The superspreading load
(SSL) is the observed number of SSEs divided by the
expected based upon a Poisson distribution that, when
greater than one, predicts reduced invasion rates but
more intense epidemics once invasion occurs (Lloyd-
Smith et al. 2005b; Getz & Lloyd-Smith 2006).

We used classification and regression tree analyses to
explore which factors influence the variation in disease
invasion outcomes (Breiman et al. 1984). Classification
tree analyses have been used extensively in clinical risk
assessments (e.g. Begg 1986; Steadman et al. 2000) and
are becoming more common in the ecological literature
(e.g. De’ath & Fabricius 2000; Karels et al. 2004; Brose
et al. 2005; Usio et al. 2006). Classification trees divide
data in a hierarchical manner using binary rules based
upon single predictor variables. Threshold criteria are
then chosen to partition the response variable into
groups that are as homogeneous as possible. We used
the Gini index as the splitting criterion. Since larger
trees will always predict the learning dataset better, we
used 10-fold cross-validation and the 1Ks.e. rule to
guide in the choice of the ‘best’ tree size. This is a
method to minimize the amount of prediction error on
testing data (not used in the construction of the tree)
while also incorporating a penalty for increasing tree
size (Breiman et al. 1984). Since the classification
analysis is intended to be heuristic, for clarity of
presentation we present trees that are slightly simpler
than those trees chosen according to the 1Ks.e. rule,
but resulted in only a minor increase in misclassification
(details on alternative trees are presented in the
electronic supplementary material). We explored
three different sets of explanatory variables for the
classification analysis: (i) six raw model parameters
(b, g, r, d, m and n), (ii) five aggregate model parameters
(b/g, rn/g, mn/g, r/g and rn), and (iii) the five aggre-
gate model parameters as well as n and n�. Although we
report results for all analyses in table 1, only the
classification tree using the aggregate model



Table 1. The proportion of SIRS model simulations where the disease invades the metapopulation and whether that invasion was
predicted by theoretical thresholds or the classification tree analyses

rules for invasion

correctly
predicted
invasions

correctly
predicted
extinctions

false-
positivea

false-
negativeb

total
misclassified

cross-validated
misclassificationc s.d.c

R0O1 0.411 0.240 0.353 0 0.353 — —
mn/gO1 0.390 0.174 0.416 0.020 0.436 — —
R0O1 and mn/gO1 0.390 0.366 0.224 0.020 0.244 — —
best classification treed 0.383 0.485 0.104 0.028 0.132 0.141 0.0045
reduced classification treee 0.390 0.469 0.120 0.021 0.141 0.144 0.0045
raw parameter treef 0.327 0.485 0.105 0.084 0.188 0.205 0.0052
nO1, emergent g 0.355 0.444 0.145 0.056 0.201 — —
n�O1, emergent g 0.352 0.551 0.039 0.059 0.097 — —

a Rules predicted invasions when the disease actually went extinct.
b Rules predicted extinctions when the disease actually invaded.
c Average and standard deviation of error rates on test data not used in the construction of the classification tree using ten-fold
cross-validation.
d Using aggregate parameters not including n and n�. The best tree had four nodes, further subdividing the 257/165 branch of
the reduced tree (figure 3a), but this did little to improve accuracy. See figure 2 of electronic supplementary material.
e Using the aggregate parameters not including n and n�. See figure 3.
f Using raw parameters not including n and n�. See figure 1 of electronic supplementary material.
g n and n� are considered emergent because they can only be estimated after the epidemic has begun and thus have an
advantage over other metrics included in the table.
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parameters is shown in the main text; the others are
illustrated in the electronic supplementary material.

We compare the criteria for invasion from the
classification tree analysis with more traditional
thresholds using a vocabulary taken from literature
on diagnostics, where one assesses the utility of a
diagnostic tool according to the proportion of times it
yields false-positive and false-negative results. In the
case presented here, false-positives occur when the
criteria for invasion are met but the disease does not
actually invade. False-negatives occur when the criteria
for invasion are not met and yet the disease does invade
(recall that a successful invasion is defined as the
disease infecting individuals in over 90% of the groups
of the metapopulation). Note that R0O1 and R�O1 are
theoretical thresholds determining when disease inva-
sions are possible; in stochastic models (or a stochastic
world), satisfying these criteria does not guarantee that
invasion will occur. The misclassification rate sum-
marizes how well these thresholds work when used to
predict invasion.

We generated simulation data for the classification
tree analyses using a range of parameter values chosen
to reflect a diversity of disease/host systems. The
length of the time-step in the model is arbitrary, but
with a time-step of 1 day in mind the average infectious
periods, 1/g, ranged from 10 days to 2.7 years
(gZ0.001–0.1) Group sizes were relatively small
(nZ3–300), and rates of movement between groups
ranged from once every 10 days to once (or less) in a
lifetime (mZ0.0001–0.1). The theoretical R0 (as
described in §2.1) ranged from 0 to 19, while the
probability of losing immunity (r) or dying (d) ranged
from 0.0001 to 0.1. All parameters were sampled on a
log scale to emphasize low parameter values, where the
disease is more likely to be near the invasion threshold.
We simulated each model with 6000 different
J. R. Soc. Interface (2007)
parameter sets and ran each until the disease went
extinct or every group of the metapopulation had been
infected.

Because the model was stochastic, we conducted
many runs of each parameter set for most analyses to
determine average behaviour. For the classification tree
analysis, however, we conducted only one run of each
parameter set. We chose this approach to highlight the
binary and stochastic nature of the invasion process; for
real disease outbreaks, it is very rare to have sufficient
replicates of an invasion process to estimate the
probability of success. Rather, we were interested in
the accuracy of different predictors in the stochastic
context of single outbreaks. This strategy also allowed
us to sample the parameter space more intensively since
we ran each parameter set only once. Classification
trees based on half as many runs were identical in
structure and similar in threshold values to those
presented, so we feel confident that this sampling
approach was sufficient to yield robust results. All
model simulations were run in MATLAB v. 7.2 (Math-
works, Inc. 2006), which called spatial models written
in C. Classification tree analyses were conducted in R
using the Rpart package (R Core Development Team
2005; Therneau & Atkinson 2005).
3. RESULTS

Successful invasion of a disease into a host metapopula-
tion is determined by many factors in addition to the
necessary, but not sufficient, threshold of R0O1. As in
our earlier study (Cross et al. 2005), we find that the
likelihood of a pandemic exhibits a clear threshold in
the ratio of movement rate to recovery rate (corre-
sponding to the expected number of between-group
movements during each individual’s infectious period).
However, the location of this threshold depends upon
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the recruitment of new susceptibles to the population
(r/g in the SIRS model and d/g in the SIR_BD model),
whereby faster recruitment of susceptibles results in
lower movement thresholds because the disease persists
longer in each group (figure 1, top row). When b is fixed
for the SIR_BD model, the probability of a pandemic is
influenced by d via its effect upon R0, but d does not
alter the movement threshold (figure 1, second
column). Results are generally similar between the
two model structures (SIRS and SIR_BD) when b is
scaled so that R0 values are equal between the models
(figure 1, first and third columns). The SIRS and
SIR_BD models also yield similar results for the
classification tree analyses. Thus, we present only the
SIRS model results, but provide the SIR_BD model
results in the electronic supplementary material.

Inspection of figure 1 illustrates that R̂0 is not a
reliable predictor of pandemics when group sizes are
small and movement between groups is limited,
regardless of susceptible replenishment rate. In many
cases R̂0O1, but the disease invasion fails because
movement among groups is too infrequent compared to
the infectious period of the disease (Cross et al. 2005).
J. R. Soc. Interface (2007)
The quantity R̂�, on the other hand, is strongly
associated with successful disease invasions across
the metapopulation, for all levels of susceptible
recruitment (figure 1). Note in figure 1 that R̂0 is less
than R0 (i.e. b/(gCd) or b/g), primarily due to
susceptible depletion effects that become important in
small groups. In the first and third columns of figure 1,
R0 predicts that the index case will infect five others, on
average, but the realized number of infections (R̂0) is
lower owing to competition among infectors for the
limited pool of susceptibles. Depletion of the susceptible

pool also affects R̂�. When m/g is small, movement
among groups is the limiting factor for R̂�, and R̂�
increases with m/g (figure 1). As m/g approaches 10,
however, R̂� declines due to competition among groups
to infect other groups.

Although R� may not be analytically tractable, we
can consider its constituent parts. The probability that
a disease propagates through a structured population
depends upon at least two factors: the frequency of
between-group movements and the total duration that
the disease persists within a given group. The total
infectious time (i.e. the sum of infectious host days in a
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single isolated group) increases with group size and
with susceptible recruitment (figure 2a). If immune
individuals are replaced by susceptibles sufficiently
quickly, the disease can become endemic even in small
groups. In figure 2, the average infectious period per
individual (1/g) is 100 time-steps. When the per capita
infectious time is 1000 time-steps, each individual has
been infected 10 times on average, which we use as an
indication that the disease is endemic within a single
group (though note that the choice of 10 infections is
somewhat arbitrary; figure 2b).

The total infectious time within a group determines
the threshold movement rate for a pandemic. For
example, when nZ10 and r/g is low (say, 10K3), the
total infectious time is roughly 800 time-steps
(figure 2a). In order for the expected number of
between-group movements of infectious individuals to
exceed 1, the movement probability per time-step for
each individual (m)must exceed 1/800 or 0.00125.When
the recovery rate (g) is 0.01, a threshold of m/gO0.125 is
J. R. Soc. Interface (2007)
predicted, exactly as seen in figure 1 for an SIRS model
with low r/g. Similarly, when nZ10 and r/g is high
(say, 10), the total infectious time is approximately 105

time-steps, so the predicted threshold for m/g is 10K5/
0.01Z10K3, again corroborated by figure 1.

The classification tree analysis (figure 3a) indicates
that disease–host combinations must satisfy several
criteria for a pandemic to be likely. First, the disease
must be able to spread successfully within the initially
infected group. Traditionally this is assessed using
the theoretical threshold R0O1, above which inva-
sion occurs with non-zero probability (Diekmann &
Heesterbeek 2000). In the statistical context, however,
a higher threshold of R0R2 minimizes the amount of
misclassification error, although it increases the prob-
ability of a false-negative result where disease extinc-
tion is predicted but the disease actually invades
(figure 3a, table 1). If R0 is sufficiently high to favour
within-group transmission, then the disease still needs
to propagate between groups, a process that depends
upon group size, movement and the length of the
infectious period (yielding a threshold of mn/gR2.7).
Similar to R0, the classification threshold for mn/g
exceeds the criterion mn/gO1 that we proposed in an
earlier simulation study (Cross et al. 2005). If the
relative amount of movement between groups is low,
then the disease may still be able to invade the entire
metapopulation if the recruitment of new susceptibles
(rn or dn) scaled by the recovery rate (g) is high. For
the case we present, the classification threshold for
rn/g is approximately 7.2; this can be considered a
loose statistical criterion for endemicity, above which
the disease persists long enough in each group that even
infrequent between-group movements are sufficient to
maintain the disease.

The specific thresholds presented here are likely to
depend upon the model structure and parameter ranges
used. Similar to previous work (Cross et al. 2005), we
also simulated the disease model using a ‘non-spatial’
array of groups where individuals could move to any
other group in one step (see electronic supplementary
material). We found that the statistical threshold of
mn/g in the classification tree was lower (1.8 compared
to 2.7) for the non-spatial array compared with the
nearest-neighbour movement model, but the structure
of the classification tree was the same (compare
figure 3a and figure 1 of electronic supplementary
material). In addition, we simulated the SIRS model
with only one group and conducted a classification
analysis on whether greater than 90% of that group was
ever infected. The best statistical threshold for disease
invasion was R0R2.4, which is similar to the criteria for
the multi-group metapopulation model.

To investigate the effect of different parameters on
the classification tree analysis, we constructed new
classification trees using subsets of the data correspond-
ing to particular ranges of certain parameter values.
The relative amount of error explained by different
variables depend upon the parameter space used, but
the overall classification tree structure and threshold
values were very similar. For example, in all 6000 runs
of the SIRS model the disease invaded the metapopula-
tion in 41.1% of the simulations. This percentage
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represents the total amount of error associated with a
classification tree with no nodes. Inclusion of the first
node, R0R2, decreases the error rate to 25%, for a
relative error rate of 0.62 (i.e. 0.25/0.41). Adding the
second node, mn/gR2.7, reduces the relative error rate
to 0.38. The length of each branch of the classification
tree is proportional to the reduction in prediction error
associated with that node (figure 3). When we analysed
only the subset of the data where group sizes were
greater than 100, the first node alone, R0R1.9, became
a more important predictor, reducing the error rate
from 0.46 to 0.16 (relative errorZ0.34 compared to
0.616 with all group sizes) and the second node,
mn/gR3.8, only led to a marginal improvement
(figure 3b). Thus, loosely stated, the predictive ability
of R0 increased with larger group sizes while the
importance of movement decreased. Note, however,
that the threshold values remained similar (figure 3a,b).
When we analysed the subset of the dataset with
shorter infectious periods (gO0.01), the predictive
power of R0 decreased while the importance of mn/g
increased (data not shown). Thus, for acute diseases
movement becomes a more important predictor of
disease invasion (Cross et al. 2004, 2005).

The theoretical threshold of R0O1 determines when
a disease invasion is possible in an infinite population.
In a large, but finite, population this threshold holds to
close approximation (Lloyd-Smith et al. 2005a), which
makes it unsurprising that R0O1 resulted in no false-
negatives in our simulations. However, at least for the
parameter ranges we explored, the disease did not
invade in 35% of the simulations where R0 was greater
than one. These invasion failures correspond to
stochastic extinctions of the disease, but are counted
as false-positive predictions when R0O1 is interpreted
as a predictor. Our previous rule of thumb, mn/gO1,
also resulted in few false-negatives (2%) but many false-
positives (42%). The false-positive rate is reduced when
using R0O1 and mn/gO1 in combination, but these
rules still do not account for the recruitment of new
susceptible individuals (table 1).
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All the classification trees we analysed yielded lower
misclassification rates on test data (13–18%) than either
R0O1 or mn/gO1 (24–44%, table 1). The ‘best’ classi-
fication tree, as determined by the ‘1Ks.e. rule’, was only
marginally better at predicting disease invasion than the
reduced tree shown in figure 3a (13 versus 14%, table 1).
The classification tree based upon the raw model
parameters b, g, m, and n did not perform quite as well
as those based on aggregate parameters b/g, mn/g and
rn/g (19 versus 14%, table 1). Threshold criteria based
on the emergent quantities n and n� produced the lowest
misclassification rate, and n� was twice as good as n (10
versus 20%, table 1). Our counting rules for n� did not
account for the possibility that the index group could
lose the infection (all infected members moving out) and
then become re-infected (those same infected members
moving back in, without having transmitted in their new
group) before finally going on to spread the infection. As
a result, a few simulations led to invasions when n�Z0,
which is at odds with the theoretical definition on n�, but
this low probability event (33 out of 6000 simulations)
does not change our overall conclusions (figure 1, table 1)

The analysis of individual reproductive numbers
(figure 4) illustrates the strong influence of population
structure on SSEs. Owing to the constant recovery
probability assumed in our model, there is substantial
individual variation in infectious periods. In a single
large population, this leads an overdispersed distri-
bution of n and numerous SSEs (31 SSEs out of 500
simulations). Compared to an expected five SSEs out of
500 individuals for a homogeneous population, by our
definition of an SSE, this yields a SSL of 31/5 or 6.2. In a
metapopulation of small populations (nZ10), the
frequency of SSEs depends upon the movement of
hosts among groups. When movement rates are high
(m/gZ10), there were 56 SSEs for a SSL of 11, whereas
when m/g equalled 0.001 there were 12 SSEs, represent-
ing an SSL of just 2.4. The recruitment rate of new
susceptibles did not have significant impact upon SSEs
(data not shown).
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4. DISCUSSION

In socially or spatially structured host populations,
R0O1 is a necessary but not sufficient condition for a
pandemic. As R0 increases beyond 1, the probability of
disease invading the initially infected host group
increases, but additional criteria are important to
determining the probability that the disease spreads
to other groups. Disease transmission among groups
depends on the transmission rate among individuals
(b), the frequency of individual host movement (m) and
the duration of time (measured cumulatively over all
infected hosts) the disease persists within each group.
Within-group persistence times increase due to longer
individual infectious periods (1/g), greater group sizes
(n) or faster replenishment of the susceptible pool
(Bartlett 1957; Bjornstad et al. 2002; Grenfell et al.
2002; Lloyd-Smith et al. 2005a). To synthesize, the
disease is increasingly likely to invade the entire
J. R. Soc. Interface (2007)
population for increasing R0O1 and mn/gO1; when
movement is infrequent relative to host recovery (mn/
gO1), a pandemic requires that the recruitment of
susceptible individuals is sufficiently fast to allow the
disease to persist endemically in infected groups
(figures 1 and 3).

To our knowledge, classification and regression tree
analyses have not been used to understand disease
invasions, yet we found that the method was naturally
suited to analysing simulation results and illustrating
the hierarchical nature of disease invasion criteria.
After experimenting with many combinations of pre-
dictor variables (see electronic supplementary
material), we focused on a set of aggregate parameters
that were most informative, hence resulting in small
trees, and corresponded to relevant biological pro-
cesses: within-group transmission, R0 (b/g in SIRS or
b/(gCd) in SIR_BD); movement, mn/g; and recruit-
ment of new susceptibles, rn/g and dn/g. The
classification tree analyses corroborated our previous
rule of thumb (Cross et al. 2005) that when trans-
mission and recovery processes are fast relative to the
recruitment of new susceptibles, mn/gmust exceed 1 for
a pandemic to occur (figure 3a). Our expanded models,
however, revealed that the effects of low movement
rates can be compensated for by faster susceptible
recruitment (e.g. rn/gO7, figure 3a).

Theoretical ecologists often search for thresholds or
bifurcation points where system behaviour quali-
tatively changes. The threshold R0O1 demarcates
when a disease outbreak is possible, but as a predictor
will lead to false-positives when the disease is predicted
to invade but goes extinct due to initial stochastic
events. Thus, R0O1 is a conservative threshold for
predicting disease outbreaks and circumstances exist
where more accurate (but less conservative) predictions
of invasion are useful. In 35% of simulations we
conducted, the R0O1 criterion was satisfied but the
disease failed to invade (table 1). The combined
threshold of R0O1 and mn/gO1 resulted in fewer
misclassifications (24%) but the classification tree
criteria were more reliable, misclassifying only 14G
0.5% (s.d.) of all simulations that were not used in
the tree construction (table 1). We emphasize, though,
that all the ‘thresholds’ we describe are necessarily
fuzzy due to the stochastic nature of disease invasion
(Lloyd-Smith et al. 2005a).

All the criteria we applied, with the exception of
n�O1, resulted in more false-positives than false-
negatives due to the high probability of stochastic
extinction in the early generations of disease invasion.
The n� metric was the best predictor because it includes
information on initial stochastic events as well as the
movement of infectious individuals among groups.
Predictions based on real empirical data are likely to
suffer greater misclassification error rates than the
simulated data we present due to process-based
variation and sampling error. Despite these difficulties,
our results emphasize the importance of understanding
host movement and those processes that allow diseases
to persist for longer in spatially or socially structured
host populations.
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Superspreading events (SSEs) result from heterogene-
ities in host, environment and parasite factors (Lloyd-
Smith et al. 2005b). Our analysis focuses on the
interaction between heterogeneity in the host factor of
infectious period and in the environmental factor of
contact with susceptible individuals. In our simulations,
all infectious individuals had constant and identical
probabilities per time-step of recovering from disease, as
well as moving between groups, resulting in geometric
distributions for the duration of infectiousness and the
number of groups visited while infectious. The hetero-
geneities embodied by these geometrically distributed
quantities create the conditions necessary for SSEs; that
is, they lead to distributions of individual reproductive
numbers that are overdispersed relative to the Poisson
distribution predicted when all infectious individuals
(and their environments) are identical. Given these
individual heterogeneities, the frequency of SSEs may
be constrained or facilitated by the population structure
where the individual resides. In a large or panmictic
population, transmission is not constrained by the supply
of susceptible individuals. In contrast, when groups are
small and movement is infrequent, the number of
potential contacts is limited and the opportunity for
SSEs is reduced even for individuals with extraordinarily
long infectious periods. The same qualitative effect would
arise for individualheterogeneity in transmission rates, as
access to susceptibles is a prerequisite for transmission.
The potential for superspreading in structured popu-
lations would be amplified if positive correlations existed
between movement rates (and hence access to more
susceptibles) and high transmissibility or slow recovery.
Further subtleties may arise if movement itself is linked
to transmission (as in SSEs aboard airliners) or increased
risk of death (as in some wildlife systems).

The utility of simple, within-group calculations of R0

as a predictive measure of disease invasion is limited in
systems where transmission between groups may be the
primary factor regulating the probability of a pan-
demic. Examples include many wildlife populations
(Woolhouse et al. 2001), livestock based on smallhold-
ings (Keeling et al. 2001; Woolhouse et al. 2005), and
human populations with small, weakly connected
groups of susceptible individuals (Salmon et al. 1999;
Feikin et al. 2000). While further research should aim to
advance analytic theory, classification trees provide an
effective means of connecting real-world, measurable
variables to the likelihood of invasion, particularly in
structured populations where system dynamics are
governed by the hierarchy of contributing factors. Our
analyses have focused on a relatively idealized system of
equal group sizes and simplistic movement rules. Future
work should aim to extend our findings to more realistic,
heterogeneous settings and to link the ideas presented
here with empirical evidence from the field.
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