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ABSTRACT: Non-targeted analysis (NTA) has made critical
contributions in the fields of environmental chemistry and
environmental health. One critical bottleneck is the lack of
available analytical standards for most chemicals in the environ-
ment. Our study aims to explore a novel approach that integrates
measurements of equilibrium partition ratios between organic
solvents and water (KSW) to predictions of molecular structures.
These properties can be used as a fingerprint, which with the help
of a machine learning algorithm can be converted into a series of
functional groups (RDKit fragments), which can be used to search
chemical databases. We conducted partitioning experiments using a
chemical mixture containing 185 chemicals in 10 different organic
solvents and water. Both a liquid chromatography quadrupole time-
of-flight mass spectrometer (LC-QTOF MS) and a LC-Orbitrap MS were used to assess the feasibility of the experimental method
and the accuracy of the algorithm at predicting the correct functional groups. The two methods showed differences in log KSW with
the QTOF method showing a mean absolute error (MAE) of 0.22 and the Orbitrap method 0.33. The differences also culminated
into errors in the predictions of RDKit fragments with the MAE for the QTOF method being 0.23 and for the Orbitrap method
being 0.31. Our approach presents a new angle in structure elucidation for NTA and showed promise in assisting with compound
identification.
KEYWORDS: non-targeted analysis, machine learning, physicochemical properties, structure elucidation

1. INTRODUCTION
Non-targeted analysis (NTA) and untargeted metabolomics
have made critical contributions to our understanding of
environmental chemical exposures and the development of
human disease.1−4 Despite these advancements, our under-
standing of the role of endogenous and exogenous small
molecules in the development of human disease remains
limited, especially in comparison to the great advances made in
characterizing the human genome and proteome.5 This gap in
understanding is in part due to limited analytical and
computational methods for studying the exposome and the
metabolome. However, recent technological advances in high-
resolution mass spectrometry (HRMS) with benchtop instru-
ments such as Orbitrap and quadrupole time-of-flight (QTOF)
mass spectrometers have sparked broad interest for their
potential to discover previously unknown chemicals and shed
light on the intricate relationship between environmental
chemical exposures and biological outcomes.
The application of HRMS instruments in the agnostic study

of environmental chemical exposures, commonly termed NTA,

enables us to capture new and lesser-known molecules that
would have previously remained undetected with conventional
targeted analytical techniques. However, the scope of main-
stream NTA is often limited, as unambiguous chemical
identification ultimately depends on the availability of
analytical standards for annotation confirmation. Nuñez et
al.5 estimated that out of about 1,000,000 chemical compounds
that are listed as chemicals of environmental importance on
EPA’s CompTox Chemicals Dashboard (from here on referred
to as the “Dashboard”), less than 2% are available as analytical
standards. This practically means that all chemical measure-
ments to date, including all environmental, human exposure,
and epidemiological studies, are concentrated in chemical
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space leaving out 98% of environmental chemicals that could
potentially have a negative impact on the environment and
human health.
One of the main reasons behind this discrepancy is that

chemical manufacturers in the U.S. are generally not required
to provide analytical standards for the chemicals that they
manufacture and release to the environment.6 The only
category of chemicals for which they are required to submit
analytical standards is pesticides, of which residues are
commonly found in foods.6 This constitutes a critical obstacle
in the study of the environmental chemistry of organic
contaminants and the study of the exposome and prevents
researchers from identifying and quantifying chemicals that
lack analytical standards in environmental and biological
samples. A change in the status quo would require major
policy changes, which, although necessary, are not expected to
occur any time soon.
As a result, while important advances have been made in the

field, the number of identified compounds in NTA studies
often does not exceed 5% of the number of detected chemical
features (masses and retention times) in environmental and
biological samples.1,7−9 There is thus a need to develop new
computational approaches that can provide structural
information about detected chemical features without com-
pletely relying on analytical standards. Importantly, while
identification with analytical standards remains the gold
standard, it cannot serve as a viable path for comprehensive
characterization of the chemical space. Computational
approaches have shown great promise in structure elucidation
through in silico structure predictions for NTA.10,11 With such
approaches, one could compose a diagnostic image for a
detected molecule by using information from multiple

independent sources as layers of evidence in place of analytical
standards.
In our previous study,11 we explored in silico the potential of

integrating physicochemical property measurements to pre-
dictions of molecular structures for chemical features detected
by NTA. These physicochemical properties were equilibrium
partition ratios between organic solvents and water (KSW). As
these properties, are often sufficiently different among different
isomers, each isomer has a unique combination of these
properties, which we refer to as the “physicochemical
fingerprint” (Figure 1). We evaluated the potential of the
physicochemical fingerprint to be used as a signal, which with
the help of a machine learning algorithm can be translated into
a series of molecular fragments or functional groups (e.g., OH,
benzene rings, ether groups, COOH etc.), which then in turn
can be used to search databases for molecules that match to
that series. Our previous study evaluated the computational
aspects of that method (model training and predictions) and
showed an average expected accuracy of about 70% at
predicting the right molecular structure.
In this study, we focused on evaluating both the computa-

tional and experimental aspects of the workflow. When
considering the experimental aspects of the workflow, we
need to note that different types of mass spectrometry
instrumentation may influence the accuracy of the method.
Two of the most common types of benchtop mass
spectrometers are quadrupole time-of-flight mass spectrometry
(QTOF MS) and Orbitrap MS. Two critical distinctions
between the two instruments are their mass resolution and
their dynamic range (defined as the ratio between the
minimum and the maximum concentration that can be
detected simultaneously in a sample). Based on data from
the manufacturers of the two instruments, Thermo Scientific12

Figure 1. Experimental and computational workflow for obtaining KSW measurements for detected chemical features through high-resolution mass
spectrometry and converting them into RDKit fragments with a machine learning model. The fragments can then be used to search chemical
databases for compounds that match the description, as one would when searching with MS/MS spectra.
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and Agilent,13 an Orbitrap is expected to have a mass
resolution of 200,000 at an m/z of 300, while a QTOF is
expected to have a mass resolution of 40,000 for the same m/z.
Differences in mass resolution could potentially affect our

calculations if the instrument is not able to distinguish between
chemicals with very similar masses. Overlap in detected
monoisotopic masses would result in overlapping peaks, which
would in turn result in erroneous calculations of KSW.

Figure 2. Flowchart diagram describing the experimental and data processing steps involved in this study.
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When discussing dynamic range, it is important to mention
that there are two types of dynamic range: the intrascan
dynamic range and the interscan dynamic range.14 The
intrascan dynamic range is defined as the abundance ratio
between the minimum and maximum detected abundance
within a specific spectrum.14 The interscan dynamic range is
defined as the abundance ratio between the minimum and
maximum detected abundance of all recorded scans across a
chromatogram.14 In a previous study, Kaufmann and Walker14

observed that Obritraps showed a narrower intrascan dynamic
range compared to QTOFs, likely due to the limited physical
capacity of the C-trap and Orbitrap components of the
instrument. Differences in the interscan dynamic range would
likely affect the peak areas of the detected chemical features,
which would in turn affect the calculations of KSW.
The aim of this study is to evaluate the feasibility of the

experimental and computational aspects of the method
(measurements of KSW) using a chemical mixture containing
185 chemicals and two different instruments an LC-QTOF MS
and an LC-Orbitrap MS, and to assess the accuracy of the
previously developed algorithm11 at predicting the correct
chemical structure. Employing two different instruments
helped us evaluate the reproducibility of the approach across
different platforms and assess whether the findings are
influenced by the instrument type.

2. MATERIALS AND METHODS
2.1. Workflow. The key components of the experimental

and computational aspects of our workflow are presented in
Figure 1 and the individual steps for each component are
present in the flowchart in Figure 2.
2.2. Experimental Section. 2.2.1. Equilibrium Partition-

ing. The equilibrium partitioning ratios were conducted using
the shake flask method following the OECD guidelines15 for
measuring partition ratios between organic solvents and water.
The organic solvents used in the partitioning experiments were
1-octanol, butyl acetate, chloroform, cyclohexane, dichloro-
methane, n-hexane, n-octane, oleyl alcohol, toluene, and n-
undecane (Sigma-Aldrich). All solvents were preconditioned
with water, and all water samples were preconditioned with
their corresponding solvents prior to the experiments. This is a
standard step in octanol−water experiments, and it is meant to
address any measurement uncertainties that can occur when
small amounts of minimally water-soluble solvents like octanol
dissolve in water and when small amounts of water dissolve in
the organic phase.15 This step is of smaller importance in
organic solvents such as hexane that are not at all miscible in
water. Briefly, 10 mL of solvent and 10 mL of HPLC water
were added to a small round flask (10 flasks in total), and the
flasks were gently mixed and were allowed to equilibrate for 24
h.
The analytes used in the partitioning experiments were

offered by the U.S. EPA for the purposes of this study and were
developed during the EPA’s Non-Targeted Analysis Collabo-
rative Trial (ENTACT). The preparation of the chemical
mixtures is described in detail in the study of Ulrich et al.16 For
the purposes of this study, we used mixture 504 which
contained 185 chemical compounds. The chemical structures
and the chemical identifiers of the compounds in the mixture
are presented in Supplemental Spreadsheet 1. The mixture was
diluted from 20 mM first with methanol and then with HPLC
water in a series of dilutions to a concentration of 10 μM and
was used as a spiking solution. Each partitioning system was

prepared by transferring 0.9 mL of water (preconditioned with
its corresponding organic solvent) and 1 mL of organic solvent
(preconditioned with water) to a test tube and adding 100 μL
of the spiking solution to the aquatic phase in order to reach a
starting concentration of 1 μM in water. The test tubes were
shaken using a vortex shaker for 2 min and then left to
equilibrate for 48 h. Alongside the 10 partitioning systems,
another set of 10 water samples were prepared by transferring
0.9 mL of water preconditioned with its corresponding organic
solvent to a test tube and spiking it with 100 μL of the spiking
solution, herein known as water controls. The purpose of the
water controls was 2-fold: (i) to determine the initial peak area
of the analyte in water prior to equilibration and (ii) to
account for differences in ionization efficiency due to the
presence of traces of organic solvents in the water. The
experiments were done in triplicates with varying ratios of
organic solvent to water as recommended by the OECD
guidelines,15 1:1, 2:1, and 0.5:1, respectively, for experiments 1,
2, and 3.
After equilibration, the 10 test tubes with the organic

solvents and water were centrifuged at 3000 rpm for 10 min at
room temperature to improve the separation of the two phases.
An aliquot of 500 μL was taken from the aquatic phase with a
Pasteur pipet and was transferred to an LC vial. Similarly, all
water controls were transferred to LC vials and stored at −20
°C prior to analysis. Each replicate experiment was
accompanied by one water blank (HPLC water) that followed
the same procedure as that of the samples. The total number of
samples was as follows: 10 samples from the partitioning
experiments × 3 replicates = 30, and 10 water controls × 3
replicates = 30, plus 1 water blank × 3 replicates = 3; total
number of samples = 63.
2.2.2. Instrumental Analysis. The instrumental analysis of

the samples was conducted in two different types of
instruments an Agilent 1290 ultrahigh-performance liquid
chromatography (UPLC) coupled to an Agilent 6550
quadrupole time-of-flight (QTOF) mass spectrometer and a
Thermo Scientific
RSLCnano UPLC system coupled to a Q Exactive HF high-

resolution mass spectrometry Orbitrap mass spectrometer.
2.2.2.1. Analysis Using LC-QTOF MS. Chromatography.

An Agilent 1290 UPLC with an Agilent Eclipse Plus C18
column (2.1 × 100 mm, 1.8 μm) was used for the
chromatographic separation of the analytes. The mobile
phase consisted of two solutions: (A) 5 mM ammonium
acetate (Sigma-Aldrich, ≥98%) in HPLC water (Sigma-
Aldrich, ≥99.5%) with 0.1% MeOH and (B) 5 mM
ammonium acetate in methanol (MeOH; Sigma-Aldrich,
≥99.9%) with 10% HPLC water, which were mixed under
the following gradient program: 0 min 10% B and 90% A, 0−
15 min gradual increase to 100% B, 16−20 min equilibration at
100% B. All samples were analyzed in duplicate injections, and
water blanks were analyzed in the beginning of each batch.
Mass Spectrometry. The Agilent 6550 QTOF was operated

in both positive and negative electrospray ionization modes
(ESI+ and ESI-) to acquire full scan mass spectra (MS) in the
range of 100−1000 Da with a resolving power of 40,000 and a
mass accuracy <5 ppm. The instrument was calibrated before
analyzing each batch and the mass accuracy was corrected with
reference standards using references masses 112.985587 and
1033.988109 for negative ionization mode and 121.050873
and 922.009798 for positive ionization mode.
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2.2.2.2. Analysis Using LC-Orbitrap MS. Chromatography.
A Thermo Scientific RSLCnano ultrahigh-performance liquid
chromatography system was used for analyte separation. The
mobile phase was 5 mM ammonium acetate (LC-MS grade,
Fisher) in Milli-Q water with 0.1% MeOH (LC-MS grade,
Fisher) (A) and 5 mM ammonium acetate in MeOH with 10%
Milli-Q water (B) mixed according to the following gradient
program: 0−1 min, 10% B; 1−16 min, 10−100% B; 16−21
min, 100% B; 21−30 min, 10% B. The column used was a
Zorbax RR Extend-C18 (Agilent) with 150 mm length, 1 mm
diameter, 3.5 μm particle size, and 80 Å pore size. The column
temperature was maintained at 35 ± 5 °C. Sequence injection
order for the samples was randomized, and all samples were
injected in duplicate.
Mass Spectrometry. A Thermo Scientific Q Exactive HF

high-resolution mass spectrometry Orbitrap system operated
with electrospray ionization in polarity switching mode with a
resolution of 60,000, an automatic gain control target of 3e6, a
maximum injection time of 200 ms, and a scan range of 100−
1,000 m/z. The instrument was calibrated weekly to ensure a
good performance.
2.3. Data Collection and File Processing. 2.3.1. LC-

QTOF MS Data Files. The collected datafiles with the total ion
chromatograms were processed with MS-DIAL17 which is an
open-source software that was developed by UC Davis and
RIKEN (Japan). The features were aligned across samples, and
they were matched to the monoisotopic masses of the
chemicals contained in the mixture (Supplementary Spread-
sheet 1) within a 10 ppm mass difference. Those chemical
features whose peak areas were at least 1.3 times higher in the
samples compared to the blanks were considered to be true
positives. All MS-Dial processing parameters are presented in
Supplementary Spreadsheet 3.
2.3.2. LC-Orbitrap MS Data Files. Data generated using the

Orbitrap method were also processed with MS-Dial. The
detected features were aligned across samples and matched to
the monoisotopic masses of the chemicals in the mixture
(Supplementary Spreadsheet 1) within a 5 ppm mass
difference. Those chemical features whose peak areas were at
least 1.3 times higher in the concentrated stock solution
compared to the peak areas in the samples were considered
true positives. All MS-Dial processing parameters are presented
in Supplementary Spreadsheet 3.
2.4. Calculation of KSW. Conventionally, KSW is calculated

as

=K
C

CSW
S

W (1)

where CS is the concentration of the analyte in the organic
solvent and CW is the concentration of the analyte in the
aquatic phase.18 Considering that the concentrations of
chemicals in NTA are unknown, we can rewrite the equation
in terms of peak areas:

= = =K
C

C
A
A

A

ASW
S

W

RRF

RRF

S

W

S

W
(2)

where AS is the peak area of the analyte in the organic solvent,
AW is the peak area of the analyte in the water, and RRF is the
relative response factor of the analyte. It is important to note
that this equation expressed in peak areas assumes that the

analytes in the sample are within the linear range of the
calibration curve.
In order to minimize matrix effects associated with the

organic solvents, in our study, we analyzed only the aquatic
phases, and we calculated AS as follows:

=A A AS T W (3)

where AT is the total area of the analyte measured in the water
controls. As described above, water control samples were
prepared using HPLC water saturated with its corresponding
solvent and spiked with the chemical mixture.
2.5. Read-Across Imputation. In cases where AS ≤ 0, we

applied a read-across imputation approach by inferring KSW for
a particular solvent from the KSW values of the other solvents
for the same analyte. This imputation step is necessary in order
for the data set to be used as input in the machine learning
model (described below) and in order for the model to make
structural predictions. Since the model is trained on 10 solvent
systems, all 10 values are required for each chemical for the
model to be able to make predictions. Missing values in one or
more of the solvent systems will result in Not a Number
(NaN) values for the RDKit fragments. This imputation
approach is based on the assumption that the KSW for one
solvent (e.g., hexane) can be described as a function of KSW
values from 3 or more other solvents (e.g., toluene, octanol,
and octane) for the same analyte by a multilinear regression
model:

= +
+ +

K aK bK

dK c
hexane water toluene water octanol water

octane water (4)

where c is a constant and a, b, and d are the weights of
Ktoluene−water, Koctanol−water, and Koctane−water, respectively.
Eq 4 can be written in its generalized form as

= + + +K aK bK dK csol1 water sol2 water sol3 water sol4 water
(5)

To apply the described approach in our study, we started by
utilizing the curated version of the Blood Exposome database19

that we published in our previous study11 which contained
18,973 compounds that have been previously reported in
human blood and their KSW values which we downloaded from
the UFZ-LSER database.20 The data collection and curation
process is described in detail in our previous study.11 In this
study, we enriched the database with additional chemicals from
the Dashboard to a final number of 32,191 chemical structures.
To do this, we searched the Dashboard for all chemical
structures that corresponded to the molecular formulas in the
mixture and all chemicals whose monoisotopic masses were
within 10 ppm of the chemicals in the mixture. The purpose of
this step is to enrich the database and, by extension, the
training set of the model so that it can make more accurate
predictions. The updated version of the database, referred to as
“TurboChemDB” here on, was used to build multilinear
regressions where each KSW is described as a function of three
other KSW. The database is provided in Supplementary
Spreadsheet 2. The process was automated using a Python
script, which (i) screened the experimental data set for missing
KSW, (ii) went back to TurboChemDB and constructed
multilinear regressions for that KSW by randomly selecting
three other KSW as described in eq 4 and determining the
coefficients (a, b, and d) and the constant (c) using least-
squares minimization. The responses (Ksol1−water) were

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03003
Environ. Sci. Technol. 2023, 57, 14827−14838

14831

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_004.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_004.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03003/suppl_file/es3c03003_si_003.xlsx
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


predicted 100 times after randomly sampling different
solvent−water equilibrium partitioning ratios (predictors;
Ksol2−water, Ksol3−water, and Ksol4−water). The predictions were
then averaged across the 100 iterations and were used to
impute the missing values in the data set. The script for the
regression model together with all the code developed in this
study are available on GitHub (https://github.com/
dimitriabrahamsson/turbo-chem).
2.6. Evaluating the Physicochemical Fingerprint

Measurements. We focused our evaluation on a subset of
chemicals whose physicochemical fingerprints showed good
agreement (Pearson R2 ≥ 0.8) between the QTOF and
Orbitrap methods, regardless of their agreement with the
theoretical values from the UFZ-LSER database. This allows us
to simulate how our approach would be applied in the real
world to a set of environmental or biological samples when we
would not know the chemical structures of the detected
chemicals. We then used a Pearson regression model to
compare the observed physicochemical fingerprints from both
experimental methods to the theoretical fingerprints from the
database. We calculated the coefficient of determination (R2)
between the experimental and theoretical KSW values and
evaluated the distribution of the R2 values. In this approach,
the experimentally determined physicochemical fingerprint of
each chemical is represented as a set of values (n = 11) stored
as an array (e.g., [2.4, 6.3, ... 5.9]) and it is used as the x
variable in the regression model. Similarly, the theoretical
fingerprint of each chemical is represented in the same way,
and it is used as the y variable.
At this stage, it is important to note that for ionic chemicals

in our samples what we actually measure in the partitioning
experiments is the distribution coefficient or distribution ratio
(DSW). Considering that the TurboChem database contains
only values for KSW and the machine learning model described
in the sections below is trained on KSW values, applying the
model directly to DSW would not be appropriate. In the section
below, we explain how we can utilize DSW measurements and
transform them in a way that they can be interpreted by the
model. DSW is defined as

= +
+

D
C C

C CSW
S
i

S
u

W
i

W
u (6)

where, Ci is the concentration of the ionized species of the
analyte and Cu is the concentration of the un-ionized species of
the analyte in the organic solvent (subscript S) and in the
aquatic phase (subscript W). Considering that the concen-
tration of ionic species in organic solvents is negligible
compared to the concentration in the aquatic phase, eq 6
can be simplified as

=
+

D
C

C CSW
S

W
i

W
u (7)

DSW can be described in terms of peak areas as follows:

=
+

D
A

A ASW
S

W
i

W
u (8)

As the concentration of ionized and un-ionized species
depends on the pH of the solution and on the dissociation
constant (pKa) of each molecule, DSW is different at different
pH values. For example, the DOW of molecule M will be
different at pH = 2 and at pH = 8. However, as the
concentration of the ionized species (M+ or M−) is controlled

only by the aquatic phase, the difference between Doctanol−water
and Dhexane−water should remain the same regardless of pH. So,
while the absolute values of D octanol−water and D hexane‑water are
going to be different at pH = 2 and pH = 8, the differences
between D octanol−water and D hexane‑water are going to be the same.
This can be described as

== = = =D D D Doctanol water
pH 2

hexane water
pH 2

octanol water
pH 8

hexane water
pH 8

(9)

By extension, following the same principle, we can assume
that these differences are also the same in Koctanol−water and
Khexane−water:

== =D D K Koctanol water
pH 2

hexane water
pH 2

octanol water hexane water
(10)

This is controlled in our algorithm by employing a standard
scaler that standardizes the KSW across all solvents by removing
the mean and scaling to unit variance. The scaler is applied to
both the experimental DSW and theoretical KSW values in the
database. This step ensures that, for the model training and
predictions, we are using the differences between the various
DSW and KSW, and not the absolute measurements. Thus, when
we refer to poststandardization DSW values, we use the notation
KSW.
2.7. Predictions of Molecular Fragments and Evalua-

tion. 2.7.1. Model Design and Implementation. A machine
learning model developed and evaluated in our previous
study11 was used to convert the physicochemical fingerprints
into molecular fragments. The model is built as an artificial
neural network (ANN) using TensorFlow21 as the machine
learning platform and Python22 as the programming language.
The model uses as inputs the physicochemical fingerprints
represented as arrays (e.g., [1.2, 0.4, −3.0, ... 3.1]) along with
the monoisotopic mass and the molecular formula for each
chemical, and outputs the presence and number of RDKit
fragments,23 which are functional groups and substructures,
such as benzene rings, ether groups, alcoholic groups, etc. The
network was composed of 1 input layer, 10 hidden layers with
500 nodes in each layer with a rectified linear unit (ReLu) as
the activation function, 1 dropout layer to control for
overfitting, 1 final hidden layer with 500 nodes using an
exponential activation function, and 1 output layer. The
optimizer was Adamax and the optimization step was set to
0.001. The model was trained using TurboChemDB for 200
epochs, and it was evaluated using an 80/20 split and a shuffle-
split 5-fold cross validation. The weights and biases of the
ANN were optimized by minimizing the mean absolute error
(MAE) for the predictions in the training set and testing them
on the testing set.
In this study, we modified the input parameters of the model

to also include a list of the most likely RDKit fragments for
each molecular formula. This was done by (i) searching the
Dashboard and collecting all available isomers for each
molecular formula that was present in TurboChemDB, along
with the metadata for each isomer using a parameter called
Data Sources,24 and their canonical SMILES; (ii) we then
collected all their RDKit fragments and ranked all isomers for
each formula by their Data Sources; (iii) we normalized the
number of Data Sources for each formula from 0 to 1 so that
each isomer had a corresponding number from 0 to 1
depending on the number of Data Sources; (iv) finally, we
multiplied the number of RDKit fragments for each isomer
with the normalized number for Data Sources and calculated
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the sum for each RDKit fragment per molecular formula. This
final number represents the likelihood of each RDKit fragment
being present in a molecular structure with a given formula.
This addition was done to focus the predictions of the model
on a reasonable range of values based on known molecular
structures.
The model was then used to make predictions for the set of

chemicals that was selected in the previous step. The predicted
RDKit fragments were compared against the true RDKit
fragments using a Pearson regression model and calculating the
R2 and MAE. To clarify, true RDKit fragments are the true
RDKit fragments (substructures) contained in molecule, for
example for 1,4-dichlorobenzene, 1 benzene ring, and 2
halogens; whereas, predicted RDKit fragments are the
substructures that are predicted from the machine learning
model for a detected chemical feature given a specific
monoisotopic mass and a physicochemical fingerprint. Finally,
we evaluated the distribution of R2 and MAE and examined
which chemicals were predicted with high accuracy and which
with poor accuracy.

3. RESULTS AND DISCUSSION
3.1. Compound Detection. Out of 185 compounds in the

mixture, 44 compounds were detected with the QTOF
method, and 113 were detected with the Orbitrap method
(Supplementary Spreadsheet 3). After calculating the log KSW
for all the compounds and all solvent systems, 16 compounds
showed an agreement of R2 ≥ 0.8 between the log KSW
measurements in the two data sets (Table S1). We should
note at this point that the number of detected compounds is
rather low compared with the number of compounds in the
mixture, especially for the QTOF method. However, it is worth
noting that these chemical mixtures were designed to be
challenging as part of the ENTACT trial to test the limits of
analytical methods. In addition, many of the compounds in the
mixture may not be LC-amenable as these mixtures were not

designed with a specific method in mind but rather to be
challenging and to cover as much of the chemical space and
analytical methods possible.16,25

3.2. Physicochemical Fingerprints. As described earlier
in the methods, our theoretical understanding of the
mechanisms controlling the partitioning of chemicals between
organic solvents and water led us to the conclusion that while
the absolute values of the distribution ratio of a chemical, e.g.,
Doctanol−water and Dhexane−water are going to be different at
different pH values, e.g., pH = 2 and pH = 8, the differences
between Doctanol−water and Dhexane−water are going to be the same
(eq 6 − 10). This hypothesis was confirmed in our
experimental observations (Figure 3). Figure 3 shows the
observed log DSW values for two examples, terbacil and
warfarin, and their theoretical KSW values before and after
standardization with a standard scaler. We observed that
standardizing did not affect the R2 between observed and
theoretical values, but it did drastically reduce the MAE from
1.39 to 0.21 for terbacil and from 1.28 to 0.18 for warfarin. We
also observed a change in the intercept of the trendline
between observed and theoretical data for both examples
(Figure 3), which dropped to 0 after standardization, and a
change in the slope, which increased from 0.64 to 0.97 for
terbacil and decreased from 1.30 to 1. In both cases, the
intercepts were reduced to 0 and the slopes approximated 1.
This observation could have important implications for future
measurements of DSW and KSW for environmental chemicals
when trying to evaluate their environmental behavior. For
example, let us assume that one is trying to characterize the
following physicochemical properties for a given chemical: the
octanol−water equilibrium partition ratio (KOW), the organic
carbon−water equilibrium partition ratio (KOC) and their
corresponding distribution ratios at pH = 5 (DOW

pH=5 and DOC
pH=5).

Since DOC
pH=5 can be described as

= + += =D K K DOC
pH 5

OW OC OW
pH 5 (11)

Figure 3. Observed log DSW and theoretical log KSW values for terbacil (A−D) and warfarin (E−H) for all 10 solvents before standardization (A
and B for terbacil and E and F for warfarin) and after standardization (C and D for terbacil and G and H for warfarin) with a standard scaler. The
standard scaler is described in the Materials and Methods section.
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one would only need to determine the KOW, KOC, and DOW
pH=5 to

calculate DOC
pH=5. To the best of our knowledge, this is the first

study to report this observation.
The log KSW values (DSW after standardization) that were

observed with the QTOF method generally showed better
agreement with the theoretical values from the UFZ-LSER
database (average R2 = 0.92) than the log KSW values from the
Orbitrap method with the theoretical values from the UFZ-
LSER database (average R2 = 0.85) (Table S1 and Figure 4).
This observation was also reflected in the absolute errors (or
absolute differences) between the QTOF log KSW values and
the theoretical values (average MAE = 0.22) and between the
Orbitrap log KSW values and the theoretical values (average
MAE = 0.33) (Figures S1A and S1B). The absolute errors (or
absolute differences) were shown to vary by partitioning
system (Figures S1C and S1D). Butyl acetate and oleyl alcohol
showed the largest errors (median values) in the QTOF
method, while n-hexane and n-octane showed the largest errors
(median values) in the Orbitrap method (Figures S1C and
S1D).
3.3. RDKit Fragments. During the training and testing of

the model, the cross-validation R2 for the predicted RDKit
fragments in the training set ranged from 0.78 to 1 and the
MAE ranged from 0.02 to 0.19 (Figure S2). The cross-
validation R2 for the predicted RDKit fragments in the testing

set ranged from 0.42 to 0.99 and the MAE ranged from 0.03 to
0.22 (Figures S3−S4).
When examining the predictions for the 16 chemicals in the

mixture (Table S1), the larger absolute errors in the KSW
calculated with the Orbitrap method also culminated in larger
errors in the predictions of RDKit fragments for the 16
chemicals (Figures S1E and S1F). The MAE for the RDKit
fragment predictions with the QTOF method was 1.93, while
with the Orbitrap method it was 3.62 (Figures S1E and S1F).
Among the RDKit fragments for which we observed the largest
errors in the QTOF method were aromatic N, amines, benzene
rings, and bicyclic groups (Figure S1E). These RDKit
fragments also showed large errors for the Orbitrap method
(Figure S1F) in addition to CO bonds, CO bonds but not in
the COO groups, and amides.
When comparing predicted RDKit fragments to true RDKit

fragments, it is important to note that while the true fragments
are expressed as integers (e.g., 2 amines and 1 benzene ring),
the predicted fragments are presented as decimals because they
represent probabilities (e.g., 2.2 amines and 0.3 benzene rings;
Figures 5 and 6). When matching to true fragments, it is thus
recommended to use decimals to calculate R2 as a metric of
similarity instead of rounding the predicted values to the
nearest integer. Rounding can introduce errors in the
predictions that ultimately can lead to unnecessarily erroneous
matches.

Figure 4. Four examples of the 16 chemicals whose log KSW that showed an agreement of R2 > 0.8 between QTOF and Orbitrap methods. The
black diagonal line is the 1-to-1 agreement line, and the two gray diagonal lines are the +1 and −1 log unit deviation lines. The figure shows log KSW
after standardizing with the standard scaler.
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The predicted RDKit fragments from the QTOF method
showed overall better agreement with the true RDKit
fragments compared with the predicted fragments from the
Orbitrap method. The calculated R2 between true and
predicted RDKit fragments showed an average of 0.71 for
the QTOF method and an average of 0.47 for the Orbitrap
method (Table S2). The MAE was on average 0.23 for the
QTOF method and 0.31 for the Orbitrap method (Table S2).
When comparing the predictions for four example chemicals

in Figures 5 and 6, we see that while both methods were in
relative agreement about the presence of a given RDKit
fragment, the QTOF method showed higher accuracy at also
predicting the right number of that fragment. Four additional
examples are presented in Figure S5 and S6. Similar
observations made for the chemicals in Figures 5 and 6 can
also be seen in Figure S5 and S6. The comparisons for all 16
chemicals are presented in Supplemental Spreadsheet 4.
For most chemicals, the predictions based on the Orbitrap

method were less accurate than the predictions based on the
QTOF method. As the differences between the QTOF and the
Orbitrap methods were consistent, one has to wonder what the
reason behind these discrepancies could be. Given that the
software that was used to process the raw datafiles from the
two instruments was the same (MS-Dial) with very similar
parameters for the two data sets (Supplementary Spreadsheet
3), it is unlikely that the observed differences in KSW and
RDKit fragments emerge as a result of the software processing.
Additionally, given that the machine learning algorithm is
agnostic as to the instrument type used for the analysis and
considering that the errors are already present in the

measurements of KSW, it is unlikely that these differences
come from this part of the workflow. The data processing
scripts after alignment with MS-Dial were the same for the two
instruments with the exception of the mass difference filter
between the detected monoisotopic mass and the theoretical
monoisotopic mass. The mass difference filter for QTOF was
set at 10 ppm whereas that for Orbitrap was set at 5 ppm. This
seemed to have little effect on the QTOF data, as for 41 out of
the 44 detected chemicals, the mass differences were already
below 5 ppm (Supplementary Spreadsheet 3). Considering all
these above-mentioned factors do not appear to constitute
significant sources of error, it seems that the observed
discrepancies are more likely due to differences on the
hardware side than on the software side.
On the hardware side, one potential source of error is in the

chromatography; however, given the similarity in the
chromatography columns used in the two methods and the
similarity in the gradient solvents, it is unlikely that the
observed differences originate on the chromatography side.
Considering the higher mass resolution and mass accuracy of
the Orbitrap, one would expect that the observed KSW values
and thus the predictions with the Orbitrap method would
show higher accuracies compared to those of the QTOF
method if the driving factor was mass resolution or mass
accuracy. Based on data from the manufacturers of the two
instruments, Thermo Scientific12 and Agilent,13 an Orbitrap
mass spectrometer is expected to have a mass resolution of
200,000 at an m/z of 300, while a QTOF is expected to have a
mass resolution of 40,000 for the same m/z. The analysis of the
samples with the Orbitrap method revealed more chemicals in

Figure 5. Examples of predicted and true RDKit fragments for four chemicals from the QTOF method. These four chemicals are a subgroup of the
16 chemicals whose log KSW showed an agreement of R2 > 0.8 between the QTOF and Orbitrap methods. The predicted RDKit fragments are
shown in gray and the true RDKit fragments are shown in red.
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the mixture compared to the QTOF method (113 vs 44)
which is in line with the higher mass resolution of the
Orbitrap; however, both the measurements of KSW and the
predictions of RDKit fragments contained larger errors in the
Orbitrap method compared to the QTOF method.
One of the most likely explanations that we arrived at was

that the observed differences stem from the differences in the
intrascan dynamic range of the two instruments. Orbitraps
have been previously shown to have a narrower intrascan
dynamic range compared to QTOFs14 likely due to the limited
physical capacity of the C-trap and Orbitrap components of
the instrument. A narrower intrascan dynamic range would
essentially mean a narrower range where the response of the
instrument is linear relative to the concentration of the
compounds in the solution. As mentioned earlier in our
methods, eq 2 assumes that the analytes are within the linear
range of the calibration curve. A narrower linear range would
lead to an increased likelihood of the analyte being in the
sigmoid edges of the calibration curve (lower or higher end).
This would, in turn, affect the numerator and/or the
denominator of eq 2 and would lead to erroneous calculations
of KSW and thus erroneous predictions of RDKit fragments.
Finally, another plausible reason behind the observed

differences could be the use of polarity switching. In the
Orbitrap method, we used polarity switching for positive and
negative ionization, whereas in the QTOF method, we had to
run the samples separately for each ionization mode, since the
instrument does not offer that functionality. Polarity switching
increases the cycle times of the instrument resulting in fewer
data points across chromatographic peaks.26 Less refined

chromatographic peaks can result in erroneous peak areas,
which would in turn affect the calculations of KSW and as a
consequence the predictions of RDKit fragments.
It should be noted at this point that the purpose of the study

is not to declare one method better than the other but to
understand the extent to which our approach is reproducible
across different platforms and which parameters may influence
its accuracy and reproducibility. Considering the observations
for the two methods, at this stage we can only recommend the
use of our method with a QTOF mass spectrometer.
3.5. Limitations and Future Considerations. One

limitation that needs to be acknowledged is that our
experiments use concentrations that are 10 or even 100
times higher than those found in biological or environmental
samples. The application of our method in real-world samples
would require a 10- or 100-fold concentration of the samples
and potentially a cleanup step with a solid phase extraction
(SPE) column to remove some of the matrix in order to reach
levels that are within the detectable range and within the linear
range of the calibration curve. Our follow-up study will focus
on evaluating the application of the method in environmental
and biological samples.
Another limitation is that our model is trained on

equilibrium partition ratios that are calculated using poly
parameter linear free-energy relationships (PP-LFERs).27,28

Uncertainties associated with these calculations can in some
cases exceed 1 log unit; however, the overall average errors
appear to be smaller. For instance, comparing experimentally
determined partition ratios between octanol and water (KOW)
to PP-LFER calculated values for a set of 75 chemicals, Tülp et

Figure 6. Examples of predicted and true RDKit fragments for four chemicals from the Orbitrap method. These four chemicals are a subgroup of
the 16 chemicals whose log KSW showed an agreement of R2 > 0.8 between the QTOF and Orbitrap methods. The predicted RDKit fragments are
shown in gray, and the true RDKit fragments are shown in red.
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al.28 observed a root-mean-squared error (RMSE) of 0.72 log
units.
While these errors are critical in determining the equilibrium

partition ratios of chemicals in order to understand their
environmental fate and behavior, for the purposes of our study,
these errors are of smaller importance. The purpose of our
workflow is not to provide a set of accurate measurements of
equilibrium partition measurements, but rather to utilize
hybrid measurements-predictions in order to propose
candidate structures for detected chemical features in NTA.
Misassigned structures is a logistical possibility that needs to be
considered; however, misassigned structures can also occur in
MS/MS spectra matching. Since confirmation requires addi-
tional information from analytical standards or other in silico
approaches, these misassignments are not deemed to be of
critical importance. We need at this point to clarify that our
workflow alone is not meant to replace analytical standards on
its own but rather to provide a layer of evidence, which in
combination with other layers of evidence from independent
sources can help elucidate the molecular structures of detected
chemical features in NTA. While analytical standards have long
been the gold standard of identification, it is important to also
acknowledge that there is a need to explore and deploy
alternative approaches when analytical standards are not
available. MS/MS fragmentation and matching with in silico
generated spectra is another approach aiming to tackle the lack
of analytical standards and can be combined with our approach
in order to support chemical identification.
All limitations considered, our approach, nevertheless,

showed great promise in characterizing molecular structures
of chemical features detected through NTA. Our approach
presents a new angle in structure elucidation for NTA that can
be combined with other computational approaches such as
MetFrag,29−31 CFM-ID,32 MS-DIAL,17 and MS-FINDER17 to
assist in deriving molecular structures.
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