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Abstract Networks are being increasingly used to represent relational data. As the
patterns of relations tends to be complex, many probabilistic models have been pro-
posed to capture the structural properties of the process that generated the networks.
Two features of network phenomena not captured by the simplest models is the vari-
ation in the number of relations individual entities have and the clustering of their
relations. In this paper we present a statistical model within the curved exponen-
tial family class that can represent both arbitrary degree distributions and an average
clustering coefficient. We present two tunable parameterizations of the model and
give their interpretation. We also present a Markov Chain Monte Carlo (MCMC)
algorithm that can be used to generate networks from this model.

Keywords Random graph models · Markov chain Monte Carlo · Statistical
exponential families

1 Introduction

The characterization of structural properties of network data is of great interest. Net-
work data arise in many fields of study and the traditional methods of statistical sum-
marization struggle to capture the observed complexities. The phenomena we study
are mainly from the social sciences and the forms of relations are social. In these so-
cial networks the nodes represent individual people and the relations represent some
form of social contact or partnership. Here we assume that the network is a realiza-
tion of a stochastic process and am primarily interested in those characterized by ran-
dom mixing between individuals conditional on the individual activity levels (i.e., the
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nodal degrees) and clustering (Newman 2002; Dezső and Barabási 2002). One pop-
ular class of models are those that exhibit power-law behavior, often loosely referred
to as “scale-free” distributions. We also consider models for the network degree dis-
tributions in which the variance can greatly exceed the mean. Our model generalizes
models based solely on the degree distribution.

In Sect. 2 we develop the general form of the structural model and specific models
for the degree distribution. In Sect. 3 we give a simple algorithm for the generation of
random networks from the model. In Sect. 4, we discuss generalizations of the model
for more complex structures.

2 Models for social networks

We first review the (linear) exponential family class of models, then we introduce the
sub-class that is the focus of this paper. We then review the specification of the model
that corresponds to the degree distribution of the network.

2.1 Exponential family models

Let the random matrix Y represent the adjacency matrix of an unvalued network on n

individuals. We assume that the diagonal elements of Y are 0—that self-partnerships
are disallowed. Suppose that Y denotes the set of all possible networks on the given
n individuals. The multivariate distribution of Y can be parameterized in the form:

Pη,Y(Y = y) = exp[η · Z(y)]
c(η,Y)

y ∈ Y (1)

where η ∈ ϒ ⊆ R
q is the model parameter and Z:Y → R

q are statistics based on the
adjacency matrix (Frank and Strauss 1986; Handcock 2002). There is an extensive
literature on descriptive statistics for networks (Wasserman and Faust 1994; Bor-
gatti et al. 1999). These statistics are often crafted to capture features of the network
(e.g., centrality, mutuality and betweenness) of primary substantive interest to the
researcher. In many situations the researcher has specified a set of statistics based
on substantive theoretical considerations. The above model then has the property of
maximizing the entropy within the family of all distributions with given expectation
of Z(Y ) (Barndorff-Nielsen 1978). Paired with the flexibility of the choice of Z this
property does provide some justification for the model (1) that will vary from appli-
cation to application.

The denominator c(η,Y) is the normalizing function that ensures the distribution
sums to one: c(η,Y) = ∑

y∈Y
exp[η · Z(y)]. This factor varies with both η and the

support Y and is the primary barrier to simulation and inference under this modeling
scheme.

The most commonly used class of random network models exhibit Markov de-
pendence in the sense of Frank and Strauss (1986). For these models, dyads that do
not share an individual are conditionally independent; this is an idea analogous to the
nearest neighbor concept in spatial statistics. Typically a homogeneity condition is
also added: all isomorphic networks have the same probability under the model. It is
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shown in Frank and Strauss (1986) that the class of homogeneous Markov undirected
networks is exactly those having the degree parameterization:

dk(y) = the proportion of nodes with degree exactly k k = 0, . . . , n − 1

T�(y) = 1

6

∑

i,j,k

yij yjkykl

where dk(y) counts the proportion of individuals with degree k and T�(y) is a count
of the complete triads. Throughout we consider undirected networks, although the sit-
uation for directed networks is very similar. This model can be reexpressed in the no-
tation of model (1) by setting Zk(y) = dk(y), k = 1, . . . , n − 1, Zn = T�(y), q = n,
η ∈ ϒ = R

n. This parameterization has the advantage that it is directly interpretable
in terms of concurrency of partnerships (i.e. dm(y) for m > 0 is the proportion of
individuals with exactly m concurrent partners).

A popular variant of the statistic T�(y) is the clustering coefficient defined as

C(y) = 3T�(y)

S2(y)

where S2(y) is the number of connected triples of nodes (i.e., 2-stars, Frank and
Strauss 1986). This describes the proportion of complete triads in the networks out
of a total number of possible triads.

2.2 A model for the degree distribution and clustering

In the remainder of this paper we focus on the sub-class of the exponential family
given by the model:

log[Pθ(Y = y)] = η(φ) · d(y) + νC(y) − log c(φ, ν,Y) (2)

where y ∈ Y, θ = (φ, ν),� ⊂ R
n, d(y) = {d1(y), . . . , dn−1(y)}. The parameters φ

and ν represent the network degree distribution and clustering, respectively. Specifi-
cally, the ratio of the probability of a given network to a network with the same de-
gree distribution and correlation coefficient 1% less is 0.01 × exp(ν). Alternatively,
consider the conditional probability of a partnership existing given the rest of the
network. If the formation of the partnership increases the correlation coefficient by
α% (relative to the same network without the partnership) then the log-odds of the
partnership existing is αν%. The degree distribution parameters have similar inter-
pretations: ηk(φ) is the ratio of the log-probability of a given network to a network
with the same clustering coefficient and one less node of degree k and one more
isolate. An important property of the model is the variational independence of the
parameters (Barndorff-Nielsen 1978).

This model is a curved exponential family if � is a smooth curve in ϒ = R
n

(Hunter and Handcock 2006; Handcock 2003a). Any degree distribution can be spec-
ified by n − 1 or less independent parameters. Typically the number of parameters is
small. As we shall see, this is true for the models considered below.
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If ν = 0 the model corresponds to random networks with arbitrary degree distri-
butions, as considered by many researchers (Newman et al. 2001). If ηk(φ) = φk,
k = 1, . . . , n − 1 the value of φ is interpretable as the log-probability of a given
network to a network with one less partnership and the same clustering coefficient
(Hunter and Handcock 2006). If both ν = 0 and ηk(φ) = φk, k = 1, . . . , n − 1 it is
the classical random network model of Rényi and Erdös (Bollobas 1985).

The model (1) has a generative interpretation, which we illustrate with model (2).
Consider a dynamic process for the network {Y(t): t ≥ 0} developing according to
the local rules

logit[P(Yij (t) = 1|Yij (t
−) = yij )] = η(φ) · [d(y+

ij ) − d(y−
ij )] + ν[C(y+

ij ) − C(y−
ij )]

where y+
ij is the network with a partnership between i and j and the rest of the net-

work equal to yij . y−
ij is similar with no partnership between i and j. Based on the

theory of continuous-time Markov Chains, the equilibrium distribution is model (2).
Ties are formed (or broken) based on their propensity to change the network charac-
teristics. This also provides another interpretation of the parameters φ and ν and their
joint effects.

An alternative parameterization that is usually more interpretable is: (φ,ρ) where
the mapping is:

ρ = Eφ,ρ[C(Y )] =
∑

y∈Y

C(y) exp[η(φ) · d(y) + νC(y)] ≥ 0 (3)

Thus ρ is the mean clustering coefficient over networks in Y. Thus models with
higher ρ have higher clustering coefficients on average. Note that models with ρ = 0
will not have any complete triads. The range of ρ is a subset of [0,1] and depends on
the other parameters and Y.

The two parameterizations represent the same model class (Handcock 2003a).
Translating between equivalent parameters is achieved using the MCMC algorithm
given in Sect. 3 (Handcock 2003a; Hunter and Handcock 2006).

2.3 Models for degree distributions

Let Pθ(K = k) be the probability mass function of K, the number of partnerships
that a randomly chosen node in the network has. Based on the model (2)

Pθ(K = k) = Eθ [dk(Y )] k = 0, . . . , n − 1

Clearly for a given network of size n nodes, the distribution of K has finite range
with upper bound n − 1. In some cases this distribution is approximated by an ide-
alized distribution with infinite range. Let K∗ be the degree of a node in a (possibly
hypothetical) infinite population of nodes. Then K can be thought of as the degree of
the node restricted to nodes in the network. In cases where this conceptualization is
used we will consider the case

Pθ(K = k) = P(K∗ = k|K∗ < n) k = 0, . . . , n − 1
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While the model (2) has arbitrary degree distribution, of particular interest are the
various “scale-free,” preferential attachment and power-law models popular in the
physics literature (see, e.g., Newman 2003). These models assume that all networks
with the same degree distribution are equally likely. We say P(K∗ = k) has power-
law behavior with scaling exponent φ > 1 if there exist constants c1, c2, and M such
that 0 < c1 ≤ P(K∗ = k)kφ ≤ c2 < ∞ for k > M .

We focus on a stochastic mechanisms for the formation of the social networks that
is a variation on a preferential attachment process, such as those advocated by several
recent authors (Barabási and Albert 1999; Pastor-Satorras and Vespignani 2001). The
limiting distributions of this mechanism can be characterized by long tails.

2.4 Simple preferential attachment models

A mechanism that has been suggested for the formation of power-law social networks
is preferential attachment (Albert and Barabási 2000; Liljeros et al. 2001; Dezső and
Barabási 2002). This and related stochastic processes have a long history in applied
statistics (Simon 1955; Kendall 1961; Irwin 1963). Consider the formation process
of partnerships within an infinite population of people. The partnerships form so that:
(1) there is a constant probability p that the r + 1st partnership in the population
will be initiated from a randomly chosen person to a person with zero partnerships,
and (2) otherwise the probability that the r + 1st partnership will be to a person with
exactly k partnerships is proportional to kf (k|r), where f (k|r) is the frequency of
people with exactly k partnerships out of the r total partnerships in the population.
The limiting distribution of the (marginal) number of partnerships from this process
is known as the Waring distribution (Irwin 1963). The Yule distribution discussed by
Simon (1955) and used by Jones and Handcock (2003) to model degree distributions
is a special case of the Waring distribution with p = (φ2 − 2)/(φ2 − 1).

The probability mass function (PMF) of the Waring distribution (Johnson et al.
1992) is:

P(K∗ = k) = (φ2 − 1)�(φ2 + φ1)

�(φ1 + 1)
· �(k + φ1)

�(k + φ1 + φ2)

φ1 > −1, φ2 > 2 (4)

where �(·) is the Gamma function and the mixing parameter φ1 is related to p via:

p = φ2 − 2

φ2 + φ1 − 1
(5)

The Waring distribution has power-law behavior with scaling exponent φ2. The
mean and variance of the Waring distribution are:

E(K∗) = 1

p
, V(K∗) = (1 − p)(φ2 − 1)

p2(φ2 − 3)
, φ2 > 3

Thus, the expected value of the Waring distribution is simply the inverse of the
probability of forming a partnership to an individual lacking existing partnerships.
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3 Generating random networks with specified structure

In this section we review Markov Chain Monte Carlo (MCMC) algorithms for net-
work generation and present a two-stage variant algorithm that may be more efficient.

MCMC algorithms for generating from the model (1) have a long history and
been well studied (see Geyer and Thompson 1992 for a review). The basic idea is to
generate a Markov chain whose stationary distribution is given by (1). The simplest
Markov chain proceeds by choosing (by some method, either stochastic or determin-
istic) a dyad (i, j) and then deciding whether to set Yij = 1 or Yij = 0 at the next step
of the chain. One way to do this is using Gibbs sampling, whereby the new value of
Yij is sampled from the conditional distribution of Yij conditional on the rest of the
network. Denote “the rest of the network” by Y c

ij . Then Yij |Y c
ij = yc

ij has a Bernoulli
distribution, with odds given by

P(Yij = 1|Y c
ij = yc

ij )

P (Yij = 0|Y c
ij = yc

ij )
= exp{η·�(Z(y))ij }

where �(Z(y))ij denotes the difference between Z(y) when yij is set to 1 and Z(y)

when yij is set to 0. A simple variant to the Gibbs sampler (which is an instance of
a Metropolis-Hastings algorithm) is a pure Metropolis algorithm in which the pro-
posal is always to change the value of yij . This proposal is accepted with probability
min{1,π}, where

π = P(Yij = 1 − yij |Y c
ij = yc

ij )

P (Yij = yij |Y c
ij = yc

ij )

=
{

exp{η·�(Z(y))ij } if yij = 0

exp{−η·�(Z(y))ij } if yij = 1
(6)

The vector �(Z(y))ij used by these MCMC schemes is often much easier to calculate
directly than as the difference of two separate values of Z(y). For instance, if one of
the components of the Z(y) vector is the total number of partnerships in the network,
then the corresponding component of �(Z(y))ij is always equal to 1.

The Metropolis scheme is usually preferred over the Gibbs scheme because it
results in a greater probability of changing the value of yij , a property thought to
produce better-mixing chains. However, it is well known that these simple MCMC
schemes often fail for various reasons to produce well-mixed chains (Snijders 2002;
Handcock 2000; Snijders et al. 2006). More sophisticated MCMC schemes have been
developed and are a topic of ongoing research (Hunter and Handcock 2006).

A variant of this algorithm proceeds in two steps:

1. Generate dk
i.i.d.∼ Pθ(K = k), k = 0,1, . . . , n − 1.

2. Generate a random network conditional on this degree distribution:

Pν(Y = y|dk(Y ) = dk) = exp[νC(y)]
c(ν, dk,Y)

y ∈ Y(dk)

where Y(dk) = {y ∈ Y:dk(y) = dk}.



300 M.S. Handcock, M. Morris

Fig. 1 An example network
generated from model (2) with
n = 50 and degree distribution
draw from the Yule model (4)
with scaling exponent φ2 = 3.

The random network is drawn
from the model with mean
clustering coefficient ρ = 3%.

The network has clustering
coefficient C(y) = 2%

Fig. 2 An example network
generated from model (2) with
n = 50 and degree distribution
draw from the Yule model (4)
with scaling exponent φ2 = 3.

The random network is drawn
from the model with mean
clustering coefficient ρ = 15%.

The network has clustering
coefficient C(y) = 18%

The first generates individual degrees from an arbitrary distribution, and the sec-
ond generates networks conditioned on those degrees. Note that the structure of
the exponential family in (1) ensures that the samples are from the correct distrib-
ution (Barndorff-Nielsen 1978). The first step can be simulated easily as we know
Pθ(K = k). Note that not all degree sequences will be consistent with a network of
size n. For example, sequences with an odd total number of partnerships are not real-
izable. However we can construct a compatible sequence {dk}n−1

k=0 via a simple rejec-
tion algorithm. The second step is also straightforward: we can conditionally simulate
values using a MCMC holding the degree distribution fixed by using a Metropolis
proposal consistent with this restriction. It is convenient for this algorithm to have a
starting network with the given degree distribution. This network is easy to construct
by a finite algorithm (as it need not be a draw from a random distribution) or using
sequential importance sampling. An important property of this second step is the in-
dependence of the distribution from φ. It is a simple parameter distribution depending
only on ν (Barndorff-Nielsen 1978).

As an application of this algorithm, consider a network model for n = 50 nodes.
We choose a degree distribution which is Yule with scaling exponent φ2 = 3. This
corresponds to a “scale-free" degree model. If ν = 0 the network is random with the
given degree distribution. This corresponds to a mean clustering coefficient ρ = 3%.

A realization of this model is given in Fig. 1. The clustering coefficient for this net-
work is 2%. Figure 2 is a realization from the model with mean clustering coefficient
ρ = 15% (corresponding to a clustering parameter of ν = 0.46). The centralization
of the clustering is apparent relative to the network in Fig. 1.
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An R package called statnet has been written to implement the procedures in
this paper (Handcock et al. 2003). statnet is an open-source software suite for
network modeling and is written in the R statistical language (R Development Core
Team 2008).

4 Discussion

Models that represent the degree distribution of a network often fail to adequately
represent the level of clustering in network phenomena. We have presented a simple
stochastic model for random networks that has arbitrary degree distribution and av-
erage clustering coefficient. The clustering component of the model is directly inter-
pretable via the clustering coefficient of the realizations from the model. The model
places positive probability over the set of possible networks. Conditional on the de-
gree sequence, the clustering coefficient covers the full range of values possible. The
distribution over this range is tuned as a monotone function of the clustering parame-
ter.

We note that the model form (1) is very general, and can incorporate general so-
cial structure (Frank and Strauss 1986; Strauss and Ikeda 1990; Handcock 2003a;
Hunter and Handcock 2006). For example, in disease epidemiology, the two-sex ran-
dom network epidemic model is a commonly used to represent the contact structure
of pathogens transmitted by intimate contact. This model is the model (2) with ρ = 0
and Y is restricted to heterosexual networks. However, this model contains a major
weakness which ultimately limits its utility. Specifically, it assumes random mixing
conditional on degree. The model (2) is a simple extension of that allows tunable cor-
relation coefficient. More generally, (1) can be used to include nodal attributes and
other structural characteristics. Such models have proven to be valuable in epidemi-
ology (Morris 2003; Handcock 2003b).
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