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Dynamic Mesh Processing on the GPU
AHMED H. MAHMOUD, University of California, Davis, USA and Autodesk Research, Canada
SERBAN D. PORUMBESCU, University of California, Davis, USA
JOHN D. OWENS, University of California, Davis, USA

We present a system for dynamic triangle mesh processing entirely on the
GPU. Our system features an efficient data structure that facilitates rapid
updates to mesh connectivity and attributes. By partitioning the mesh into
small patches, we enable the processing of all dynamic updates for each
patch within the GPU’s fast shared memory. This approach allows us to
utilize speculative processing for conflict handling, minimizing rollback costs
while maximizing parallelism and reducing locking overhead. Additionally,
we introduce a novel programming model for dynamic mesh processing.
This model provides concise semantics for dynamic updates, freeing users
from concerns about conflicting updates in parallel execution. Central to our
model is the cavity operator, a general mesh update operator that handles
any dynamic operation by removing a set of mesh elements and inserting
others into the resulting void. We have applied our system to various GPU
applications, including surface tracking, isotropic remeshing, and Delaunay
edge flips. Our system demonstrates a 2–86× speedup on large models
compared to multithreaded CPU solutions and is more than two orders
of magnitude faster than state-of-the-art single-threaded CPU solutions.
Despite the additional dynamic features, our data structure outperforms state-
of-the-art GPU static data structures in terms of both speed and memory
requirements.

CCS Concepts: • Computing methodologies→Massively parallel algo-
rithms; Mesh geometry models.

Additional Key Words and Phrases: mesh, data structure, GPU, parallel
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1 INTRODUCTION
The field of 3D geometric data processing, traditionally applied
to simulation, visualization, and computer-aided design (CAD), is
witnessing a surge in interest thanks to the demand for systems
that manipulate unstructured meshes. Geometry processing appli-
cations include shape analysis and synthesis, computational design,
virtual reality, and 3D printing. Moreover, the growing influences
of machine learning and data-driven algorithmic design have led to
breakthrough developments in the field as well as applications to
computer vision and AI-driven design of virtual assets. Despite the
growing influence of geometric data processing and recent coupling
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Fig. 1. Our system casts local, dynamic mesh operations as cavity operators
which provide intuitive semantics for mesh updates (e.g., edge collapse
here, during one iteration of isotropic remeshing). With the cavity oper-
ator, the user defines mesh updates by creating cavities and then fills in
these cavities with new elements while our system handles potential con-
flicts. Additionally, we have designed a data structure for updating triangle
meshes that primarily uses the GPU’s shared memory for better locality.
Our approach significantly speeds up dynamic mesh processing compared
to multi-threaded CPU solutions and also results in better performance on
static mesh processing tasks over existing state-of-the-art GPU solutions.

to machine learning tools, most geometry processing algorithms
are implemented using serial processes on the CPU.
In computational modeling and simulation, there is an ongoing

demand for dynamic mesh processing. The importance of having
meshes that can adapt in real-time, altering their structures in re-
sponse to the stimuli of the operation or simulation, can be seen in
many applications. For example, to simulate complex turbulence
or multiphase flow phenomena, adaptive mesh refinement locally
refines and coarsens the mesh as needed. This adaptability ensures
that transient features are captured accurately, without burdening
the computational resources [Antepara et al. 2021]. Similarly, in
materials science, simulations that deal with crack propagation or
material failures often hinge on the ability of the mesh to refine
around the evolving crack tip, ensuring that the details of the propa-
gation pathway are well-represented [Pfaff et al. 2014]. In topology
optimization [Li et al. 2021], where material distributions within a
design space evolve to meet performance metrics, the underlying
mesh must dynamically adjust to these innovative configurations.
Other domains that require dynamic mesh processing include real-
time interactive applications like surgical simulation [Zhu and Gu
2012] and cloth manipulation [Narain et al. 2012]. This situation
explains the multitude of libraries for dynamic mesh processing
(e.g., CGAL [Kettner 2019], OpenMesh [Botsch et al. 2002], and
VCGlib [Cignoni et al. 2023]) that have significantly lowered the
entry bar to facilitate efficient geometric data processing.
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2 • Mahmoud, Porumbescu, and Owens

However, existing libraries are predominantly single-core CPU-
based. With the increase in size of geometric data, CPU/serial solu-
tions for processing geometric data are no longer sufficient to meet
the needs of performance and interactivity. One notable exception
is the Wild Meshing Toolkit (WMTK) [Jiang et al. 2022], which
leverages the parallelism of multi-threaded CPU systems. However,
even multicore CPUs cannot leverage the full parallelism in mesh
processing applications. Complex highly-detailed meshes contain
millions of mesh elements, while the most powerful CPU offers only
a few hundreds of parallel threads (e.g., AMD EPYC 9004 Series
offers 128 cores leading to 256 threads with hyperthreading [Ad-
vanced Micro Devices, Inc. (AMD) 2023]). Thus, the limited parallel
processing power in multithreaded CPUs is insufficient for handling
the increasingly complex and large-scale meshes required in modern
computational applications, necessitating the exploration of more
powerful and parallel computing architectures.
The inherent data-parallel nature of mesh processing makes it

perfectly suited for execution on the GPU. GPUs offer a vast number
of processing cores that can concurrently execute computations,
allowing for significant acceleration in mesh processing tasks. With
a more principled design and implementation, the latent parallelism
in mesh processing algorithms can be unlocked, enabling dramatic
acceleration on highly parallel hardware such as the GPU. This
principled approach has been successfully applied in at least two
recently introduced systems: RXMesh [Mahmoud et al. 2021] and
MeshTaichi [Yu et al. 2022]. These systems offer general-purpose
solutions for mesh processing by designing efficient data structures
and generic programming models that cover a large set of applica-
tions. However, these systems are limited to static mesh processing
where the mesh topology does not change.

Current solutions for dynamic mesh processing on the GPU are
application-specific. Examples of these applications include surface
tracking [Chentanez et al. 2016], mesh simplification [Koh et al. 2018;
Papageorgiou and Platis 2014], mesh subdivision [Kuth et al. 2023],
and Delaunay refinement [Chen and Tan 2019]. Solutions within
these applications do not generalize well to other applications; e.g.,
a GPU data structure that is tailored for mesh simplification cannot
be used for refinement as each poses different challenges. A possible
solution—albeit hypothetical—is to serialize dynamic updates on the
CPU. This would leave the GPU underutilized for the duration of
memory transfer and serialized update operations on the CPU. Such
a solution will not scale well as the mesh size increases since the
transfer of increasingly large amounts of data between the CPU and
GPU becomes a significant bottleneck, severely limiting the overall
efficiency and scalability of the process in handling extensive mesh
datasets.
While processing unstructured meshes has ample latent paral-

lelism across the millions of geometric elements in a detailed mesh,
that processing involves complex dependencies, synchronization,
and many levels of memory reference indirections, potentially lead-
ing to inefficient utilization of massively parallel hardware. More
specifically, building dynamic unstructured mesh processing on the
GPU requires tackling the following challenges:

(1) Locality: The majority of dynamic mesh operations change
a local neighborhood in the mesh. The ideal implementation

Edge Collapse Vertex Split

Face Collapse Edge Split

Edge Flip Face Split

Fig. 2. Examples of dynamic triangle mesh local operators

will take advantage of the locality of accessing and changing
the mesh data structure on the GPU.

(2) Conflict Handling: Conflict handling involves two related
challenges. First, we need a data structure that can detect if
two (or more) operations conflict, i.e., applying them simulta-
neously will lead to an invalid mesh. Second, we need a data
structure that can resolve conflicts, i.e., given two (or more)
conflicting operations, the data structure should decide on
which subset of these operations should proceed and how.

(3) Compactness: A mesh data structure must satisfy two con-
flicting demands. On one hand, the limited GPU memory
favors lightweight data structures, since manipulating such a
data structure requires fewer memory transactions. On the
other hand, lightweight data structures offer limited informa-
tion about conflict detection and resolution.

(4) Scheduling: With serial execution, conflict resolution is
straightforward. However, high performance requires max-
imizing parallelism, and thus the need to process conflicts
in parallel. Our philosophy is that the data structure is re-
sponsible for detecting and resolving conflicts, maintaining a
valid mesh at all times, and the scheduler maximizes paral-
lelism given the correctness constraints imposed by the data
structure.

In this paper, we propose a new dynamic mesh processing sys-
tem that operates entirely on the GPU. Our system leverages the
GPU’s parallelism for high-performance generic dynamic triangle
mesh updates and operations by tackling the above challenges. In
summary, our system achieves the following design goals:

(1) Efficient Incremental Mesh Updates: Our system’s pri-
mary goal is enabling high performance for incremental trian-
gle mesh updates on large meshes on the GPU. We do this by
avoiding CPU-GPU data transfer, maximizing GPU memory
locality, improving load balance, and reducing thread diver-
gence. Our system sets the bar for dynamic mesh processing
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on the GPU and delivers an order-of-magnitude better per-
formance compared to state-of-the-art multithreaded CPU
alternatives.

(2) Efficient Static Performance: Our system does not com-
promise the performance of static applications for the benefit
of dynamic applications. On static applications, our system
delivers better performance to state-of-the-art GPU static
mesh systems, e.g., RXMesh [Mahmoud et al. 2021].

(3) Intuitive Semantics: Our system provides intuitive con-
cise semantics for mesh updates and for resolving conflicts.
Our design considers both the topology and geometry (i.e.,
attributes) of the mesh, liberating the user from low-level
intricate implementation details.

(4) Robust Update Operations: Our system handles generic
triangle meshes without hard requirements on mesh quality,
i.e., non-manifoldness or orientability. Our system does not
impose any requirements on the type of dynamic operations—
so long as they have a local area of impact. We support almost
all common mesh operators found in open-source libraries
(see Figure 2 for examples). Our system is also extensible and
allows the user to implement new operations.

(5) Compact Mesh Data Structure: The data structure used in
our system is compact to ensure that users are not limited
to small input meshes due to limited GPU memory. Our data
structure needs 2x less memory than RXMesh [Mahmoud
et al. 2021]. This compact data structure requires less book-
keeping and exhibits greater locality, both leading to higher
performance.

Using our system, we implemented three dynamic geometry pro-
cessing applications, i.e., surface tracking, uniform isotropic remesh-
ing, and Delaunay edge flip. In comparison with the state-of-the-art
multithreaded CPU framework, our system speedup is between 2–
86x on large meshes with millions of faces and more than two order
of magnitude faster than single-threaded CPU solutions. Besides
memory efficiency, our data structure outperforms state-of-the-art
GPU static mesh data structure with a geometric mean speedup of
1.5x.

Mesh zippering

Non-goals. Our system supports ap-
plications that rely on incremental mesh
updates and aims to set the baseline for
enabling such applications fully on the
GPU in a generic way. However, our sys-
tem does not support applications that
alter the whole mesh in one step, e.g.,
mesh subdivision [Mlakar et al. 2020], nor does it support operations
with non-topologically local area of impact for update operations,
e.g., mesh “zippering” [Brochu and Bridson 2009] (see inset). Addi-
tionally, our system does not have inherent support for (partially)
ordered update operations and relies on the user to manage the
order of updates. Finally, while we have implemented our system
using CUDA and use CUDA terminology throughout, the concepts
presented are general and are applicable to any GPU architecture
and GPU programming language. We will release our code as an
open source upon acceptance.

2 RELATED WORK

2.1 Mesh Data Structures
Efficient mesh data structures enable faster processing, reduced
memory usage, and enhanced accuracy in the representation and
manipulation of complex 3D geometries in computer graphics. Here
we focus on data structures of mesh topology (i.e., connectivity in-
formation) which is distinguished from the mesh geometry (i.e., geo-
metric attributes on the mesh elements). The study and development
of efficient mesh data structures, an area as old as the inception of
personal computers [Baumgart 1972], have been a significant focus
in computer graphics research. We still rely on this early work on
mesh data structures even with the massive evolution of computer
hardware architecture. The Winged Edge data structure [Baum-
gart 1972] stores adjacency information, enabling efficient naviga-
tion across the mesh by linking faces and vertices to edges. The
Halfedge data structure [Mäntylä 1988]—one of the most widely
used data structures for polygonal meshes—splits each edge into
two half-edges with opposite directions, facilitating the traversal
and manipulation of mesh surfaces with mature, well-maintained
implementations in various libraries, e.g., CGAL [Kettner 2019]. The
Quad-edge structure [Guibas and Stolfi 1985] extends this concept
by efficiently representing the topology of non-manifold surfaces.
The Cell-tuple [Brisson 1989] is used for higher-dimensional meshes,
providing a more flexible representation for complex geometries.
Recently, Linear Algebraic Representation (LAR) [DiCarlo et al.
2014] was introduced as an alternative representation for polygonal
meshes. Departing from the graph-like representation, LAR repre-
sents meshes as sparse matrices while query and update operations
are sparse matrix multiplication or matrix transpose. In this work
we adopt LAR, in part, as described by Mahmoud et al. [2021] in
RXMesh due to its compactness and suitability for the GPU, but
with modifications that further reduce memory use over RXMesh
by 50% (see Appendix A).

2.2 Parallel Mesh Processing
Due to the limited processing and memory capacity of a single-core
system, researchers and practitioners have long sought to process
meshes more quickly and efficiently through distributed and muli-
core systems. The data structures used in parallel systems are gen-
erally the same as those used in sequential processing systems but
with modifications to facilitate and reduce communication across
partitioned mesh boundaries, deal with attributes, and to maintain
correspondence between the geometric representation and its dis-
cretized mesh representation [Cirrottola and Froehly 2019; Ibanez
et al. 2016].
In an effort to leverage existing codes, Cirrottola and Froehly

[2019] design a system and algorithm where existing sequential
remeshers are used within a parallel framework. They also describe
a repartitioning algorithm to more easily move interfaces between
parallel regions. As we see in Section 4, we do not repartition our
mesh, but rather modify our patch boundaries as necessary to ensure
all mesh operations occur within a single patch.
Creating new parallel applications, improving performance, or

porting parallel systems to new hardware is often difficult because
of the tight coupling of code responsible for functionality with
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code responsible for achieving performance. Tsolakis et al. [2022]
breaks this coupling by creating a tasking framework for speculative
mesh operations based on a separation of concerns, i.e., function-
ality vs. performance. Our work is similar in this regard and we
seek to abstract away mesh operations from how those operations
are performed in parallel on the GPU. Jiang et al. [2022] address
many of these issues through a declarative programming approach
where users focus on their desired mesh processing steps by speci-
fying invariants and desiderata and where the underlying system
deals with the necessary scheduling and parallelization of low-level
mesh operations. PUMI [Ibanez et al. 2016] focuses on alleviating
the bottleneck (i.e., geometry and mesh processing) in end-to-end
simulation runtime on massively parallel computers through infras-
tructure that provides a link between the mesh and the original
domain, a partitioning model that facilitates interactions across
nodes, and load balancing.

2.3 GPU Mesh Data Structures
The recent development of GPU mesh data structures aims to pro-
vide the same level of ease as CPU-based data structures while also
exploiting the GPU’s massive parallelism. Mesh Matrix [Zayer et al.
2017] is built upon the foundation of the LAR representation for
surface meshes. In Mesh Matrix, the relationship between faces and
vertices is captured through a sparse matrix, This method achieves a
compact form by utilizing a singular array complemented by an ac-
tion map, a concise local structure detailing vertex interactions. This
configuration of Mesh Matrix forgoes the necessity of generating
intermediate data.

RXMesh [Mahmoud et al. 2021] subdivides the mesh into patches
and prioritizes efficient utilization of the GPU’s memory hierarchy
by capturing most data accesses within the GPU’s limited, but fast,
on-chip shared memory. RXMesh extends each patch with ghost
cells, called “ribbons”, to improve data locality when accessing out-
of-patch neighbor mesh elements. In RXMesh, each patch is then
represented independently using two compact sparse matrices: one
for incident information from faces to edges and another for inci-
dent relation from edges to vertices. To achieve load-balanced query
computation within the patch, RXMesh maps the whole patch to
a single CUDA block, where threads collaborate to maximize per-
formance and reduce thread divergence. While our data structure
design overlaps with RXMesh in certain aspects, we discuss the key
differences in Section 5.

For patch construction, RXMesh uses amodified version of Lloyd’s
𝑘-means clustering algorithm [1982]. By considering mesh faces as
vertices and assigning a weight of 1 to all edges, the patch construc-
tion algorithm iterates between assigning vertices to the nearest
seed and updating each partition’s seed with its centroid, aiming to
equalize the partition weights. This process continues until seeds
stabilize or a maximum number of iterations is reached. To address
the issue of overly large patches, RXMesh inserts additional seeds
in these patches to reduce their sizes in subsequent iterations. The
patching process concludes once the largest patch size is less than a
specified threshold, ensuring that the largest patch would fit in the
shared memory. Due to its efficiency and simplicity, we adapted the
same patch construction algorithm in our work.

2.4 Domain Specific Languages (DSL)
DSL and compiler techniques can be used to improve portability
across different architectures. For example, MeshTaichi [Yu et al.
2022] takes the idea of partitioning the mesh and implements a
compiler and DSL for mesh-based operations with an intuitive pro-
gramming model. The user writes a single code that is deployed on
either GPU or CPU. By inspecting the user code during compilation,
MeshTaichi can precompute the “wanted” queries during compile
time, allowing them to leverage the GPU’s shared memory to cache
mesh attributes. Liszt [DeVito et al. 2011] is a DSL designed for
building mesh-based PDE solvers, featuring specialized language
statements for interacting with unstructured meshes and managing
data. Its compiler leverages program analysis to uncover parallelism,
locality, and synchronization in Liszt programs, enabling the gen-
eration of applications optimized for various platforms, including
clusters, SMPs, and GPUs. Ebb [Bernstein et al. 2016] is a DSL for
simulation that is efficiently executable on both CPUs and GPUs,
distinct from prior DSLs due to its three-layer architecture that
separates simulation code, data structure definitions for geomet-
ric domains, and runtimes for parallel architectures. This structure
allows for the easy addition of new geometric domains through
a unified relational data model, enabling programmers to focus
on simulation physics and algorithms without the complexities of
parallel computing implementation.
While compiler-based techniques could deliver state-of-the-art

results for static meshes, their main disadvantage is the need for rel-
atively time-consuming static analysis of the input data. These com-
piler techniques are not easily amenable to dynamic mesh updates,
which generate their workloads at runtime. Additionally, static anal-
yses are unable to reveal the parallelism in dynamic mesh update
applications, as the parallel schedule is heavily reliant on runtime
data and cannot be determined at the time of compilation [Kulkarni
et al. 2007].

2.5 Dynamic Mesh Processing Programming Model
While DSLs are restricted to static mesh processing, different run-
time libraries expose different programming models for manipu-
lating meshes. The most widely used approach for exposing mesh
manipulation is through local operators, e.g., edge flip [Botsch et al.
2010, 2002; Cignoni et al. 2023; Dawson-Haggerty et al. 2019; Kettner
2019]. These operators are inherently linked to the underlying data
structures, leading to an inseparable intertwining of the user inter-
face and the implementation details. The cavity operator [Loseille
and Löhner 2013] was introduced for anisotropic mesh adaptation
as a generic operator for implementing mesh updates. With the
cavity operator, every operation creates a hole in the mesh and
then fills it with a different set of mesh elements. A similar idea
was used for mesh improvement [Abdelkader et al. 2017] where the
cavity could shrink or expand to meet different objectives for mesh
improvement e.g., non-obtuse triangulation. While not extensively
explored in prior work, the cavity operator offers an elegant and
generic programming model for mesh updates, distinguished by its
independence from specific data structures.
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Input Cavity creation Cavity fill in

Fig. 3. An example of edge collapse, cast as a cavity-based operator.

3 PROGRAMMING MODEL
Goals. We begin by describing what we believe are the impor-

tant attributes of a programming model for GPU dynamic mesh
processing:

• Allow generic mesh update operations that have local area of
impact.

• Separate operations on meshes (the “what”) from the imple-
mentations of those operations (the “how”). The program-
ming model should hide internal data structure details.

• Have an intuitive interface for the user to reason about con-
flicting operations.

• Propagate dynamic topological changes to mesh attributes.
These attributes could be associated with vertices, edges, or
faces.

Next, we will discuss different alternative designs for such a
programming model to better motivate our programming model.

Alternative design: A collection of low-level operations. The pre-
dominant programming model for dynamic mesh updates relies
on defining local operations, e.g., half-edge data-structure-based
systems such as PMP [Botsch et al. 2010] and CGAL [Kettner 2019].
These systems offer the user a set of basic dynamic operators (e.g.,
edge flip, vertex split) that the user could compose to implement a
dynamic application. However, the user here is limited to the set of
operators offered by these systems. We surveyed all major dynamic
mesh processing libraries (PMP [Botsch et al. 2010], CGAL [Kettner
2019], OpenMesh [Botsch et al. 2002], WMTK [Jiang et al. 2022],
libigl [Jacobson et al. 2018]) and found no consistency in the set
of operators that they offer—each library is missing at least one
core operator offered by another. This inconsistency argues against
implementing a similar programming model on the GPU because
of the lack of portability to other existing (CPU-based) systems.

While the two green edges
could be flipped concur-
rently, Jiang et al. [2022]
locks the one-ring of the
edge’s vertices leading to
serializing these two inde-
pendent edge flips.

Another problem with building a
system that relies on a fixed set of
dynamic operators is conflict han-
dling. These operators do not provide
an out-of-the-box conflict handling
mechanism because they did not tar-
get parallel processing in their design.
The straightforward solution to en-
abling parallelism is to lock a local
neighborhood during processing. For
example, WMTK [Jiang et al. 2022]
locks the entire two-ring neighbor-
hood of an edge for any edge-based operation, e.g., edge flip (see

Vertex Edge

Edge & its incident vertices Face & its incident edges

Fig. 4. Examples of cavity templates provided by our system. The seed for
each cavity is highlighted in yellow and the deleted neighborhood is shown
in brown.

the inset). This approach might be justified for a limited-parallelism
environment like a multithreaded CPU. However, on the GPU, with
its many thousands of parallel threads, the extensive locking of
neighborhoods for each update operation significantly restricts the
potential for parallelism, leading to severe underutilization of the
GPU and hence lowered performance.

To mitigate the contention problems from overlocking, we could
consider a system where the user implements different local oper-
ators where the locking region is user-defined. For example, not
all dynamic mesh libraries offer 1→3 triangle split operations, but
a user (who knows the details of the underlying data structure)
could implement it. The main issue with such a design is the locking
region must be defined based on the internal data structure. For
example, in the 1→3 triangle split operator, users might assume that
they do not need to lock the vertices of the split triangle. However,
if the data structure stores topological information per vertex, not
locking those vertices may lead to race conditions and result in an
invalid mesh. Thus, such a system requires exposing its internal
data structure implementation details to the user, violating our de-
sign goal of separating the concerns of mesh operations from the
underlying implementation.

Our programming model. Given these difficulties, we choose a dif-
ferent abstraction for our programming model. To support dynamic
operations, we choose the cavity operator [Loseille and Menier 2014]
as our fundamental abstraction. A cavity is a set of vertices, edges,
and faces that forms a single connected component such that remov-
ing this set creates a single hole in the mesh. The cavity operator
is a universal operator that encompasses all local dynamic mesh
operators (Figure 2). The cavity operator defines any mesh update
operation as element reinsertion by removing a set of mesh elements
and inserting others in the created void. The cavity operator splits
a local mesh update into two operations: cavity creation and cavity
fill-in. First, cavity creation removes a mesh element and its inciden-
t/adjacent elements effectively creating a hole/cavity in the mesh.
Then, cavity fill-in covers the cavity by optionally adding mesh
elements inside the hole. Figure 3 shows an example of edge col-
lapse operations cast as a cavity-based operation. While the cavity
operator was originally proposed for metric-based anisotropic mesh
adaption on serial and multithreaded CPUs, we generalize it and
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use it as the basis of our programming model. More importantly,
we use the cavity operator as an intuitive interface for conflict de-
tection. Cavities create a simple mental model that a user can use
to reason about conflicts: overlapping cavities lead to conflicting
operations. We further use cavities to resolve conflicts (Section 5).
The cavity-based operator provides the right ingredients for an
extensible framework, lowering the cost of maintaining the sys-
tem without limiting the user to a predefined set of operators. It is
possible to easily cast all major local operators (e.g., edge collapse,
vertex split, edge split, edge flip, face collapse, face split, and delete
vertex/edge/face) as cavity-based operations. Cavity fill-in allows
the user to expand beyond the traditional dynamic operator, e.g.,
instead of adding a single vertex during Figure 3’s cavity fill-in, the
user may instead add three vertices to create a more refined mesh.

Separating the update operation into two steps allows the system
to present an intuitive model of conflicting operations to the user.
The user first declares a set of cavities. Then the underlying system
detects conflicting cavities and only proceeds with a subset of the
cavities that are conflict-free. The user, then, fills in this subset of
cavities. Our system maximizes the set of conflict-free cavities, e.g.,
the two edge flips in the inset above can be done concurrently since
their cavities do not overlap. Thus, separating update operations into
two steps allows us to have a simple interface for conflict handling
without exposing any internal data structures or requiring the user
to reason about locking.
To create a cavity, the user needs to add one or more mesh ele-

ments to the cavity. For example, for a vertex split operation, the
cavity will be the vertex and all its incident edges and faces. A single
cavity could be declared by a single or multiple threads; however,
commonly it is easier to declare a single cavity using a single thread.
To facilitate cavity declaration, our system optionally offers a set of
predefined templates that resemble the common mesh update oper-
ations. Each template consists of a seed and a neighborhood around
it that will be deleted. The seed could be any type of mesh element,
i.e., vertex, edge, or face. The neighborhood to be deleted is defined
in terms of incidence/adjacency relation on the seed. For example,
a template used for edge flip has the edge as a seed and the faces
incident to the edge as the neighborhood. With these templates, the
user can create a cavity by only specifying the seed and our system
handles assigning the local neighborhood to the cavity. Figure 4
shows a subset of templates that our system offers. Note that using
these templates is entirely optional.
After the underlying system resolves conflicts, it returns a set

of conflict-free cavities to the user. This set can be processed in
parallel. For each cavity in the set, our system offers an iterator to
retrieve the edges and vertices of the cavity’s boundary. Using this
iterator, the user can iterate over the cavity boundary edges/vertices
and connect them with new vertices, edges, or faces that the user
adds into the interior of the cavity. Additionally, the user can access
the old connectivity of the created cavity. This aids the user in
creating fill-in that may require old information from the cavity
(e.g., calculating the mid-point of a collapsed edge). Our system also
handles attribute allocation and facilitates accessing attributes of
deleted cavities during fill-in.

4 DESIGN PRINCIPLES
The core of our system is the combination of data structure and
scheduler that together allow us to implement the programming
model (Section 3) while achieving our design goals (Section 1). Here
we discuss the design principles we followed in designing the data
structure (Section 4.1) and the scheduler (Section 4.2). Finally, we
discuss how the whole system works (Section 4.3).

4.1 Data Structure
Maximize Locality. In a design where all mesh data is stored

in global GPU memory, mesh-based operations are mostly out-of-
cache. Topological query operations involve multiple levels of mem-
ory indirection, frustrating attempts at exploiting locality. Geometric
information (i.e., mesh attributes) is hard to coalesce when neighbor
attributes are accessed, leading to irregular memory accesses. To
mitigate this problem, state-of-the-art unstructured GPU mesh data
structures [Mahmoud et al. 2021; Yu et al. 2022] rely on partitioning
the mesh into small patches that fit into the GPU’s small but fast
shared memory, which additionally does not require coalesced ac-
cess to achieve high bandwidth. In this work, we follow a similar
approach, which helps localize both query (static) and update (dy-
namic) mesh operations. For static operations, our system is similar
to RXMesh, except for how we access ribbon information and how
we localize accessing geometric attributes (see Section 5.1 for more
details). With this design, once a CUDA block is assigned to a patch,
the block operates on the patch and performs all update operations
by reading from/writing to shared memory. Once complete, the
block commits the updated patch to global memory. This way, read-
ing and writing the patch requires only one coalesced patch-sized
read and write to global memory. The majority of update opera-
tions that require irregular memory access happen in low-latency,
high-bandwidth shared memory.

Optimistic Parallelism. Processing patches from shared memory
creates two copies of the patch: a working copy in shared memory
and the original in global memory. This opens the door for optimistic
parallelism [Kulkarni et al. 2007], as we will discuss in Section 4.2.
From a data-structure perspective, optimistic parallelism requires
that the data structure has a cheap way to roll back its updates
when the scheduler detects a conflict. Since all updates happen in
shared memory, rollback is simple and no-cost: discard the changes
in shared memory. This strategy is enabled by CUDA’s explicit
programmer-controlled shared memory. Such a design principle
is unique to our data structure and system that, to the best of our
knowledge, has not been exploited in other optimistic parallelism
systems (e.g., Galois [Kulkarni et al. 2007]).

Trading global memory writes for reads. In our design, conflicting
updates within the patch can be easily detected and resolved. At any
instant in time, a mesh element may be part of no more than one
cavity. If more than one cavity aims to incorporate one particular
element, this causes a conflict and one cavity must be deactivated.
The restriction that each mesh element must belong to a single
cavity is enforced by our system. This constraint can be managed
either by the system itself or by the user (see Section 5.2).
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Cavities that cross a patch boundary pose a challenge since de-
tecting and resolving their potential conflicts requires coordination
across patches and thus global memory accesses. To maximize per-
formance, these memory accesses should be kept to a minimum, and
to be as coalesced as possible. Consider a patch 𝑝 with a cavity that
has an imprint on a neighbor patch 𝑞. We considered an approach
that resolves possible conflicts by locking 𝑞 while processing 𝑝 and
then re-applying the cavity fill-in on both 𝑝 and 𝑞 (Figure 5, middle).
This approach had the disadvantage of locking 𝑞 for an extended
period, which limits parallelism. More importantly, applying fill-in
led to more writes to global memory. We instead chose to expand
𝑝 such that the entire cavity falls inside 𝑝 and has no imprint on
𝑞. Compared to the first approach, our choice reduces write opera-
tions and increases reads. Expanding a patch simply deletes a few
mesh elements from 𝑞, which amounts to flipping bits in a bitmask
(see Section 5), and can be easily coalesced. In contrast, the first
approach required writing topological information (i.e., face and
edge connectivity) which requires more memory transactions.
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Strong scaling of WMTK [Jiang et al.
2022] onDelaunay Edge Flip application

Amortized Locking: The
above strategy for inter-
block cavities localizes all
changes for any cavity
within the patch that con-
tains that cavity. Patches
are large enough, and cav-
ities are small enough,
that one patch may con-
tain multiple cavities that
require cavity operations
within a single patch. In
this case, we can aggregate all requests to modify a neighbor patch,
lock the neighbor patch, and then satisfy all these requests at once,
thus amortizing the cost of locking the neighbor patch. This de-
sign prioritizes throughput over latency, which is a good match for
the throughput-oriented GPU hardware. In contrast, locking small
neighborhoods around each operator/cavity scales poorly even for
hardware with more limited parallelism like a multithreaded CPU.
The inset shows the result of running the Delaunay Edge Flip appli-
cation (Section 6.2) on a model with 2M faces on a 64-Core AMD
EPYC 7742 while varying the number of threads (i.e., strong scaling).
As the number of threads increases, locking and unlocking becomes
the dominant cost, overshadowing any benefits of increased paral-
lelism. A GPU requires considerably more parallelism than hundreds
of threads; reducing the cost of locking is critical to achieve good
performance.

4.2 Scheduler
In the following discussion, we use CUDA terminology, but we be-
lieve our scheduler design will be applicable to other programming
languages that offer a similar level of flexibility as CUDA, i.e., access
to the GPU’s shared memory. The main responsibility of a scheduler
in our system is to manage how and when patches are assigned to
compute resources. Static GPU mesh processing systems rely on
the GPU hardware scheduler, i.e., they assign each patch to one
thread block and then the hardware scheduler assigns thread blocks

Fig. 5. Illustrating inter-patch conflicts between two patches (top 𝑞, bottom
𝑝), where ribbon elements are shown in a lighter color. Note the bottom
row of the top patch (the ribbon) represents the same mesh elements as
the top row of the bottom patch. Potential conflicts occur when a cavity
(bottom blue) has an imprint on a neighbor patch (top). One way to resolve
the conflict is to lock 𝑞 and update both patches (middle). We choose to
instead remove the imprint from 𝑞 (right) by deactivating some of its mesh
elements, leading to reduced memory accesses because we don’t need to
write cavity fill-in in 𝑞. Our solution also maximizes parallelism, as we
lock 𝑞 for a shorter time, allowing other blocks to process 𝑞 afterward and
concurrently while we perform cavity fill-in on 𝑝 .

to the GPU’s streaming multiprocessors (SMs). Once an SM finishes
processing one thread block (patch), the hardware scheduler assigns
another thread block (patch) to it, continuing until all patches have
been processed.

As we noted above, our system processes cavities that may cross
patch boundaries. In this case, we expand one patch to remove the
dependence on the other patch, but this requires coordinating across
both patches. This strategy is potentially problematic if both patches
are simultaneously scheduled and are executing on different GPU
SMs (the resulting conflicts may result in incorrect output). Because
the hardware scheduler has no knowledge of patch dependencies,
we have no easy way to avoid this situation. Thus we turn to im-
plementing our own scheduler and next we discuss four potential
design choices.

(1) Serialization. One potential scheduler-based solution to con-
flicts is to serialize conflicting updates. Such a solution might be
fine for limited-parallelism environments such as a desktop multi-
threaded CPU, where a relatively few number of patches can be exe-
cuted concurrently. However, a modern GPU features more than 100
independently running SMs. Thus, serializing conflicting patches
will lead to idle SMs and a loss of performance.

(2) Two-Phase Approach. All cavities that are wholly within the
interior of a single patch can be processed concurrently. Thus we
can consider a scheduler that alternates between processing interior
cavities and boundary elements. In such a two-phase approach, the
first blocks process elements in the deep interior of the patch (i.e.,
those not incident to the ribbon elements). Then, in the second
phase, ribbon-element processing is done serially after a global
synchronization. This approach works well for large coarse-grained
partitions/patches that are suitable for CPUmulticores [Loseille et al.
2017] where the interface between partitions is relatively small. In
our system, however, the patch size is small enough to fit in shared
memory, thus the interface between patches is correspondingly
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Fig. 6. Wemeasure the cost of speculative processing by measuring the ratio
of rolled-back work (due to conflict) with respect to scheduled work, i.e.,
work that has been done in shared memory but not saved in global memory
yet. Here we assume that every patch must lock all its neighbor patches
(e.g., to update them). The overhead of wasted work decreases significantly
as the size of the mesh increases.

larger, and this approach serializes a large fraction of the work. Thus,
this approach has the same disadvantage as serializing conflicting
updates.

(3) Graph coloring. Since conflicts are only between neighbor
patches, we could potentially use graph coloring to generate an
independent set of patches that can be processed concurrently. We
could define a graph where each patch is a node and neighboring
patches share an edge. After coloring this graph, we could process
all patches of one color in parallel without any conflicts, and se-
quentially process colors. However, such an approach becomes too
expensive in dynamic workloads where we update the connectivity
of the patches, which would require a new coloring on each update.

(4) Speculative Processing. Our final alternative, and the one we
chose, is speculative processing, which Kulkarni et al. [2007] called
“the only plausible approach to parallelizing many, if not most, irreg-
ular applications”. This strategy allows processes/threads to execute
independently without synchronization with other threads. If a con-
flict is detected, the process/thread rolls back to a conflict-free state
and then continues execution. Since we process patches in shared
memory, we require no synchronization for processing, i.e., two
possibly conflicting operations in two different patches could both
proceed since they both operate in separate shared memories. In-
stead, synchronization is only necessary before committing updates
to global memory (and then only for updates that impact both a
patch and its neighbor). Of all alternatives above, this design has
the least overhead for synchronization, and thus has the potential
to exploit the most parallelism.

Speculative processing, however, has three costs. The first is
the cost of detecting conflicts, which happens whenever a cavity
crosses the patch boundary, requiring that the neighbor patch not

be processed concurrently. However, this cost is inevitable and
would be paid for other alternative designs as well. The second is
the cost of rolling back. In our design, this cost is low, as it only
requires discarding changes in shared memory (Section 4.1) for
conflicting updates without any impact on the global state of the
data structure. The third cost is the work that must be discarded.
The ample computational resources of a modern GPU, in general,
motivate reducing synchronization costs (that limit parallelism)
even at the cost of more work. While we do not have a theoretical
bound on the latter cost, we show empirically in our system that
discarding work is infrequent, and decreases proportionally with
larger meshes. Figure 6 shows the ratio of discarded patches vs. the
number of scheduled patches for different input meshes. We use
a pathological corner case representing the worst-case scenario,
where each patch depends on all of its neighboring patches. With
the smallest meshes, the cost is high (∼60%) since the number of
patches that can be executed concurrently is low. As the mesh size
increases, the fraction of wasted work becomes negligible (less than
2%) and thus, the overall cost of speculation is low.

4.3 Putting it All Together
Finally, we discuss the high-level architecture of our system and
how we implement the aforementioned design principles, deferring
detailed implementation aspects to the next section. The main con-
troller of our system is the scheduler, which operates in a loop on
the CPU. In each iteration, the scheduler launches a GPU kernel
with as many blocks as possible to maximize GPU occupancy while
avoiding the simultaneous processing of neighboring patches. This
strategy minimizes the cost of speculative processing. The loop
terminates when all patches in the mesh have been processed.
Within each iteration, the scheduler assigns blocks to patches.

Figure 7 provides an overview of the tasks performed by each CUDA
block during an iteration. Each block attempts to acquire the lock
for its assigned patch. If unsuccessful, the block exits. Once the
lock is acquired, the block reads the patch information from global
memory to shared memory. This information can also be used for
static query operations necessary for evaluating predicates, e.g.,
checking if an edge is short enough for an edge collapse.

The threads within the block then call a user-defined (or system-
defined for predefined cavity templates) function to create cavities
within the patch. Our system first resolves intra-patch conflicts by
ensuring that a mesh element belongs to a single cavity by creating
a maximal independent set of conflict-free cavities within the patch.
Unsuccessful cavities are marked accordingly, allowing the user to
attempt them in subsequent iterations.
Next, our system resolves inter-patch conflicts by checking for

cavities that imprint on neighboring patches. If at least one cavity
has an imprint on a neighboring patch, the entire block cooperates
to expand the patch. Expanding a patch requires locking the neigh-
boring patches before reading from them. If locking fails, the patch
is discarded and rescheduled for subsequent iterations. If successful,
the patch is expanded, and the information is written in shared
memory. After a successful expansion, the neighboring patches are
unlocked, allowing them to be processed by other blocks. Finally, the
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Fig. 7. An overview of our system. On the CPU, we iteratively launch kernels until all patches are processed, indicated by an empty (queue-based) scheduler
(𝑞). The flowchart illustrates the operations performed by a single CUDA block on the GPU. Red blocks represent memory operations on global memory, while
blue blocks represent memory operations on shared memory, and gradient blocks are for memory transfers from/to global memory to/from shared memory.
Double-boundary blocks indicate user code (i.e., Create Cavities and Cavity fill-in); other blocks are within our system and are not user-visible. The process
begins with fetching a patch (𝑝) from the scheduler. If the block successfully acquires 𝑝’s lock, it proceeds by transferring 𝑝’s information from global memory
to shared memory. Otherwise, we reschedule 𝑝 and exit. Next, the user initiates cavity creation. If at least one cavity is created within 𝑝 , we form a maximal
independent set (MIS) of conflict-free cavities. If a cavity necessitates expanding 𝑝 to prevent inter-patch conflicts, we try to acquire the neighbor patch lock.
If successful, 𝑝 is expanded; otherwise, 𝑝 is re-added to the scheduler, and we exit. During the expansion of 𝑝 , if slicing is required, we mark 𝑝 for slicing, we
release its lock, and we exit. If no slicing is needed, the user proceeds with cavity fill-in. Finally, we write 𝑝 back to global memory, release its lock, and exit.

block performs the user-specified cavity fill-in before committing
the patch to global memory.

5 IMPLEMENTATION DETAILS

5.1 Patch Data Structure
Mesh Topology. As mentioned in Section 4.1, we partition the

mesh into small patches that fit in shared memory. Here, we dis-
cuss how we represent patch information and how we perform
operations on it. Similar to RXMesh, we store for each patch the
connectivity from face to edges (FE) and from edges to vertices
(EV). Storing this incidence information allows us to represent and
operate on meshes without restrictions on mesh connectivity, mean-
ing we can handle non-manifold meshes. Since the patch is small,
we can use 16-bit indices to index and enumerate all mesh elements,
which saves memory allocation and, more importantly, reduces the
amount of needed shared memory per patch. For static query op-
erations, our implementation is similar to RXMesh (see Mahmoud
et al. [2021] for more details). In addition, we store a bitmask that
indicates if a mesh element is active or not. Thus, deleting elements
amounts to changing their bit in the active bitmask. Adding new
elements requires knowing their top-down connectivity, i.e., inci-
dent edges for faces, and incident vertices for edges. Adding new
vertices requires only incrementing the number of vertices since
we do not store any per-vertex connectivity information.

Mesh Geometry. RXMesh stores mesh attributes as a single array
in global memory. These attributes could be associated with vertices,

edges, or faces. To access this array, RXMesh requires mapping
per-patch local indices to global ones to index the attribute array.
In dynamic settings, resizing a patch would necessitate updating
this global index space, leading to costly synchronization across all
patches. Instead, we make a different choice, inspired by MeshTaichi.
We localize mesh attributes by allocating them on a per-patch basis.
With per-patch allocation, we eliminate the need for the local-to-
global mapping (Figure 8). We essentially rely on the GPU’s L1/L2
to cache accesses to the mesh attributes. Topology queries and
updates are instead cached in shared memory since mesh queries
and updates require extra temporary buffers that can be allocated
in shared memory.

Ribbons. Ribbon elements require special treatment for dynamic
changes since they duplicate mesh elements that reside in neigh-
boring patches. For example, during a query, we do not return the
ribbon elements themselves but instead the owner patch of the
ribbon elements so that the user can subsequently access their at-
tributes. To store the ribbon elements, we first classify the mesh
element as either owned by the patch or a ribbon element (not owned
by the patch). For any mesh element, we need to (1) check if it is
classified as a ribbon element and (2) store the corresponding owner
patch and its local index within the owner patch. During dynamic
updates, an owned mesh element may become a ribbon and vice
versa. So, the storage for ribbon elements changes over time.

Ideally, we would like to allocate just enough memory for the
ribbon elements to store their information without extra storage.
Since RXMesh is a static data structure, it divides mesh elements
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(a) RXMesh’s approach: accessing attributes allocated as a single array

(b) Our approach: accessing attributes allocated per patch

Fig. 8. Allocating attributes as a single array requires mapping local indices
to their global ones (top). Localized attribute allocation eliminates the need
to map indices and leads to better caching and overall higher performance
(bottom). Here we assume attributes associated with vertices. However, in
our system, attributes could be associated with vertices, edges, or faces

into owned and ribbon elements, and that status never changes
during computation. Consequently, ribbon elements can be assigned
consecutive indices and their storage can be contiguous and compact.
But in a dynamic scenario, an internal element may become a ribbon
element after topology changes.

Local Index 
Stash 
Index 

Index in Owner
 Patch

13 bits 6 bits 13 bits

ValueKey

The key-value of our hash table.

Given the above require-
ments on storing ribbon el-
ements, we store them in a
simple GPU-based dynamic
cuckoo hash table [Awad
et al. 2023]. Hash tables are
an excellent choice to meet our requirements because (1) they allow
compact data storage (i.e., their load factor can be as high as 0.9)
and (2) they have constant-time insertion and deletion. First, every
patch stores all its neighbor patches in a small array called a patch
stash. Since a patch is surrounded by very few patches, the size
of the patch stash is restricted to 64 (26) patches, and so we only
need 6 bits to store this index. While we do not have a theoretical
guarantee of the upper bound of the neighbor patch count, we have
not found any realistic scenario (based on our experiments) where a
patch is surrounded by more than 64 patches. We then use the mesh
element index (represented using 13 bits) within the patch as a key
in the hash table. The value stored per key is a 19-bit concatenation
of the index in the patch stash (6 bits) and the local index in the
owner patch (13 bits) (see the inset). The hash table allows us to
add/remove mesh elements to/from the ribbon in constant time
without excessive memory allocation, which is critical for perfor-
mance given the limited shared memory resources and its impact
on GPU occupancy. Finally, we also use a bitmask to check if an
element is a ribbon or owned to save accesses into the hashtable
when the mesh element is owned, i.e., optimizing for the common
case.

Memory Allocation. Since patches dynamically grow and shrink
in size, we pre-allocate all necessary memory in advance to avoid

costly memory allocation during application execution. Two factors
control this pre-allocation: (1) the number of patches that will be
added as a function of the initial number of patches, and (2) the
maximum size a patch can grow to as a function of its initial size.
Both are user-defined runtime parameters to maximize flexibility
depending on the application’s behavior. For example, in static
applications, these parameters are set to 1 as patches do not change.

If a patch grows beyond its predefined maximum size, we slice the
patch into two patches. This ensures that the patch will always fit
into shared memory. To slice a patch 𝑝 into two patches, 𝑞 and 𝑟 , we
create only one new patch 𝑞, while 𝑝 remains the same with some
mesh elements deleted. We achieve this by running 10 iterations of
Lloyd’s 𝑘-means clustering algorithm (see Section 2.3) on 𝑝 . Next,
we copy the connectivity from 𝑝 to 𝑞 for the elements that belong to
𝑞 and delete the unnecessary elements from 𝑝 . The ribbon informa-
tion of 𝑝 is also copied to 𝑞, including additional ribbon elements at
the interface between 𝑝 and 𝑞. All these memory operations occur
in shared memory before being written back to global memory, re-
sulting in minimal overhead compared to the application’s runtime.
Finally, when a patch is sliced, we transfer all attributes for vertices,
edges, and faces now owned by 𝑞 from 𝑝 to 𝑞.

5.2 Cavity Operations
As mentioned, our system first automatically assigns CUDA blocks
to patches and then performs the cavity operations. From the user’s
perspective, cavity operations can be divided into three stages:
(1) register a new cavity, (2) process the cavity, and (3) fill in the
cavity. Internally, the first stage collects all the cavities that the user
created on the given patch. The second stage ensures that there
is a (sub)set of conflict-free cavities available for the next stage.
The third stage finalizes the operation by (optionally) filling in the
cavities before writing everything to global memory. Conflicting
cavities will be attempted in subsequent iterations (Section 4.3).

Cavity Registration. Our system provides predefined templates
that cover a wide range of cavity configurations (Figure 4). A tem-
plate consists of a seed element and a local neighborhood that will
be deleted. It is possible to add a user-defined template by specifying
these two requirements. Note that deleting a mesh element leads
to deleting all upward elements incident to it, e.g., deleting an edge
leads to deleting its incident faces. To register a new cavity, the
user calls a cavity template on a specific mesh element. Our system
atomically increments the number of cavities associated with the
patch and stores the seed’s cavity ID in the shared memory.

Cavity Processing. We first detect intra-patch conflicting cavities
before attempting to resolve inter-patch conflicts. We detect con-
flicting cavities within the patch by propagating the cavity ID from
the seed to its adjacent/incident elements as described by the cavity
template. Propagating information from an 𝑛-dimensional element
to an𝑚-dimensional element is a gather operation if 𝑛 < 𝑚, and an
atomic operation if 𝑛 > 𝑚. For example, a face checks the cavity ID
of its three edges if the edge is the seed (i.e., propagating informa-
tion from edges to face) while a seed edge atomically sets the cavity
ID of its two vertices (i.e., propagating information from edges to
vertices). In both cases, we can detect if two cavities write to the
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same element. Then, we construct a graph where cavities represent
the vertices of this graph and two vertices are connected with an
edge if their corresponding cavities overlap. Now, in order to maxi-
mize the number of non-conflicting cavities that we can process in
parallel, we compute Blelloch et al’s greedy maximal independent
set algorithm [Blelloch et al. 2012] on this graph in parallel. Then,
we use an atomically updated bitmask in shared memory to indicate
if the cavity is deactivated. This helps inform the user which cavity
is successful. This approach guarantees that we process as many
cavities concurrently as possible.
As we mentioned in Section 4.1, cavities that cross the patch

boundaries must ensure that their changes are not visible to other
patches. We do this by expanding one patch so that such cavities
are fully contained in the patch. To do this, we first attempt to lock
the neighbor patches that may be impacted by these cavities. If we
cannot acquire the lock on these neighbor patches, we discard this
patch and schedule it to be processed later. If we successfully acquire
the lock, then we can read from the neighbor patch and change the
ownership of some of its elements. If a mesh element (i.e., vertex,
edge, or face) change its ownership from one patch to another, we
also move all its attributes to the new owner patch. The whole block
is engaged in this process: all threads within the block collaborate
to expand the patch, which maximizes the memory throughput and
reduces thread divergence.
A patch may have too many cavities along its boundaries and

expanding the patch may require more memory than what we can
store in shared memory. In such cases, we slice the patch into two
patches. We schedule all patches that need to be sliced at the end of
every update iteration.

Cavity Fill-in. For each active cavity, our system provides an iter-
ator over the cavity boundary edges and vertices. Using this iterator,
the user can add new mesh elements by connecting them to the
cavity boundary edges or vertices. Internally, we create these new
elements by appending to FE and EV connectivity information.
Thus, during cavity fill-in, the user can query the cavity’s old/deleted
topology as well as access their deleted-element attributes. After
committing the patch to global memory, the deleted topology can
be re-written in subsequent update operations.

5.3 Queue-based Scheduler
Our system design requires a scheduler that can dynamically assign
blocks to patches such that each patch is assigned at least once. If a
patch fails to be processed (e.g., is not able to acquire the lock of a
neighbor patch), the scheduler must schedule that block at a later
time. The scheduler should also issue locking requests and maintain
information about if a patch is locked.

We use a simple parallel array-based queue [Gottlieb et al. 1983]
to coordinate assigning patches to blocks. Every block declares a
leader thread that tries to dequeue a patch from the queue. If the
leader thread is successful in reading a patch, it communicates the
assigned patch to the other threads via shared memory. Queue-
based processing allows failed patches to be enqueued for future
processing. Additionally, it improves load balance since blocks that
complete their work can dequeue another patch to process. This
simple design also maximizes GPU utilization since both control

(the scheduler) and processing (patch computation) is local to the
GPU.

Locking Algorithm. Locking patches in our system to allow mu-
tual exclusion to read/update neighbor patches must satisfy two
challenging requirements. First, we need to make sure that attempt-
ing to lock a patch does not lead to a deadlock. For example, using
spin locks [Herlihy et al. 2021], patch 𝑝0 may spin waiting to lock
𝑝1 while 𝑝1 is also spinning waiting to lock 𝑝0. Second, we must
guarantee forward progress in the case of contention, i.e., in a sce-
nario where multiple blocks try to lock the same patch at the same
time, at least one block must be able to lock the patch and make
progress. In our implementation we allow the locking algorithm to
trade off fairness in favor of quick response time since it might be
beneficial to rollback updates (which is cheap) rather than waiting
to acquire the lock of a neighbor patch, which would leave the SM
idle for an extended period. Finally, we can and do optimize for a
scenario with only modest contention since any patch is a neighbor
of at most 64 other patches.
While many mature libraries implement locking mechanisms

for multithreaded CPU applications (e.g., Intel Threading Building
Blocks [Pheatt 2008] or Boost [organization 2023]), there are no
similar standards on the GPU and CUDA does not offer out-of-the-
box locking mechanisms that can be used inside the kernel. Thus,
we implemented a simple spinlock locking algorithm with a backoff
strategy [Herlihy et al. 2021] that achieves our design goals. To
reduce contention on the atomic operations used in the spin lock,
threads within a block elect a single thread to attempt locking the
desired patch. Upon return, the result is broadcast to all threads in
the block.

6 APPLICATIONS
We demonstrate the effectiveness of our design decisions on a set
of common geometry processing applications. We first ensure that
the changes in our data structure improve static application per-
formance by comparing against RXMesh [Mahmoud et al. 2021].
Then, we assess the efficacy of our system through three dynamic
applications, each targeting a specific aspect of our system’s capabil-
ities. The first application, Delaunay edge flip, maintains a constant
mesh size but requires potential expansion of patches for conflict
handling. This application serves as a benchmark to evaluate our
system’s ability to maximize parallelism and to determine the im-
pact of altering patch sizes on the overall performance. The second
application, isotropic remeshing, challenges our system with fluc-
tuating workloads, which include both increasing and decreasing
mesh sizes, alongside other dynamic operations that maintain mesh
consistency and static operations. Surface tracking, our third appli-
cation, involves a spectrum of dynamic operators over an extended
duration, challenging our system to sustain optimal performance
over prolonged periods. Collectively, these applications offer a com-
prehensive insight into our system’s performance across a range
of scenarios commonly encountered in dynamic mesh processing
applications.
For dynamic applications, which lack a GPU comparison, we

compare against WMTK [Jiang et al. 2022], as it is the only modern

Submission ID: xxx. 2024-06-20 11:42. Page 11 of 1–17. , Vol. 1, No. 1, Article . Publication date: June 2024.



12 • Mahmoud, Porumbescu, and Owens

# F = 7.7M # F = 16.2M # F = 6.1M

Fig. 9. Examples of geodesic distance computation of large models

system for dynamic triangle mesh processing that leverages the par-
allelism of multi-core CPU systems. In all experiments, input meshes
are collected from the Smithsonian [2023], ThreeDScans [Laric 2023],
and Thingi10K [Zhou and Jacobson 2016] repositories since they
feature meshes with millions of faces. We conduct all experiments
on an A100 GPU with 80 GB of memory using CUDA 12.2 on a
machine featuring an AMD EPYC 9124 16-core 3.7 GHz Processor
with 270 GB main memory. For all applications, we report only the
application runtime—excluding any preprocessing time, e.g., our
system’s patch construction and WMTK’s data structure initializa-
tion.

Parameters. As mentioned in Section 4, we avoid inter-patch
conflicts by ensuring that cavities do not imprint on other patches.
If a cavity contains mesh elements that reside on other patches, we
expand the patch and delete these elements from the neighboring
patches. Thus, after transferring the patch from global memory to
shared memory, the patch may increase in size. To prevent patches
from becoming too large too frequently, we set the patch size to 256
faces during patch construction (Section 2.3), which is smaller than
RXMesh’s default patch size of 512 faces. This allows us to operate
on a patch multiple times, potentially expanding it before it needs to
be sliced. Since patch size is a runtime parameter, for purely static
applications (e.g., computing geodesic distance), we revert to a 512
faces patch size as it provides optimal performance (see Mahmoud
et al. [2021]). Additionally, a patch is allowed to grow up to two
times its initial size before slicing it.
In all applications, we use a CUDA block size of 512 threads.

The number of blocks launched in a single kernel is automatically
calculated based on the remaining number of patches in the queue.
Similarly, we calculate the amount of shared memory needed to
store patch information, i.e., connectivity information (FE and EV)
and the ribbon elements hashtable.

6.1 Comparison against static-only GPU system
We begin with a static geodesic distance computation (Figure 9) to
compare our system performance against RXMesh. Geodesic dis-
tance refers to the shortest path between a source vertex and all
other vertices, traversing across the surface of a given mesh. For this
computation, we employ a minimalistic parallel algorithm [Romero
Calla et al. 2019], which approximates geodesic distances. This algo-
rithm operates by sequentially computing geodesic distance, starting
from vertices nearest to the source and progressively reaching those

Table 1. Time and speedup of our system against RXMesh running geodesic
distance computation [Romero Calla et al. 2019].

# F (×106) RXMesh (s) Our (s) Speedup

5.2 1.1 0.85 1.32
6.1 1.0 0.86 1.17
7.7 2.4 1.4 1.65
16.2 5.5 2.9 1.90
19.9 6.4 3.6 1.75

Table 2. Time and speedup of our system on the Delaunay edge flip appli-
cation against Wild Mesh Toolkit (WMTK) [Jiang et al. 2022] using 32 CPU
threads.

# F (×106) WMTK (s) Our (s) Speedup

0.006 0.217 0.582 0.373
0.064 2.088 1.523 1.372
2.53 70.483 0.959 73.513
3.154 168.744 1.959 86.129
5.486 233.323 4.678 49.876
9.474 556.927 13.964 39.882
11.318 490.455 7.22 67.932
26.063 1444.971 31.241 46.253

farther away. The algorithms first compute the topological level sets
surrounding the source vertex, essentially calculating the number
of hops required to reach each vertex. Subsequently, on the GPU,
we process these vertices in batches, based on their topological dis-
tance, to calculate their geodesic distances and associated errors, all
performed in parallel. This process involves activating a new group
of vertices at each level and deactivating those that have completed
their calculations, allowing for data propagation through the mesh.
Our system outperforms RXMesh in this static application with
an average geometric mean speedup of 1.53× (Table 1). The major
difference in the query pipelines between our system and RXMesh
is how ribbon element information is accessed. While RXMesh maps
all elements to global indices, we use a hash table (within the shared
memory) to map ribbon elements to their corresponding elements
in the owner patch. Compared to RXMesh, we require more com-
putation but obtain better locality, and this tradeoff results in an
overall performance speedup. In addition, our system localizes geo-
metric information better, since allocating geometric data is done
per patch. Thus, in our system, accessing geometric data will re-
sult in better memory coalescing. In addition, our data structure
for static applications requires half the memory vs. RXMesh (see
Appendix A for details) using the same patch size. In contrast, when
our system addresses dynamic applications, we must allocate (ahead
of time) more memory to permit us to add more elements to patches
and more patches to the mesh to prevent allocating memory while
processing (see Section 5.1). Thus, for dynamic applications, our
data structure may require more memory than the (static) RXMesh.
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Table 3. Assessing the impact of altering the patch layout by measuring
time (in seconds) per iteration for the conjugate gradient-based Mean Cur-
vature Flow computation before and after Delaunay edge flip. Slowdown
is measured as the ratio between the time after Delaunay edge flip to the
time before, i.e., lower is better.

# F (×106) Time Before (s) Time After (s) Slowdown

0.006 0.134 0.153 1.142
0.064 0.18 0.187 1.039
2.53 3.435 3.547 1.033
3.154 4.097 6.036 1.473
5.486 6.698 6.836 1.021
9.474 11.747 15.931 1.356
11.985 14.301 14.515 1.015
26.063 38.274 40.065 1.047

6.2 Delaunay Edge Flip
A Delaunay mesh is one where the sum of two opposite angles of an
edge is less than 180◦. Flipping the edges of an input mesh to meet
the Delaunay criterion is an easy way to improve the mesh quality,
i.e., improving the minimum and maximum angles. To achieve the
Delaunay criterion, we iteratively attempt to flip an edge if it is not a
Delaunay edge until all non-Delaunay edges have been flipped. This
algorithm is guaranteed to terminate for surface meshes [Cheng and
Dey 2008]. Here, to create cavities, the user simply checks the two
opposite angles of an edge. If their sum is greater than 180◦, then
the edge and its two incident faces form a cavity. To fill in a cavity,
the user connects the two opposite vertices and creates two new
faces. Figure 10 shows the result of flipping non-Delaunay edges
and how it improves the mesh quality. Table 2 compares our system
implementation against WMTK’s best configuration (32 threads,
see Section 4.1). In both systems, we terminate when no further
edges can be flipped to meet the Delaunay criterion. Our system
performance is lower for smaller meshes due to limited parallelism
in these models, which may be better processed serially. On the
larger meshes that we target, our system achieves an order of mag-
nitude speedup thanks to maximizing parallelism. Our performance
advantage is due to increased parallelism (we can flip more edges
concurrently) and due to the better memory locality in our data
structure.

We use the Delaunay edge flip application to assess the impact of
changing the patch layout. Moving mesh elements from one patch
to another to avoid inter-patch conflicts and slicing patches (see
Section 4.1) might diminish the quality of the patches, leading to
imbalanced patches. Here, we measure this impact by timing a static
application before and after the dynamic changes (Delaunay edge
flip). Our static application here is mesh smoothing 1 (Figure 11).
We first measure the time of smoothing the input mesh. Then, we
run the Delaunay edge flip application on the same input mesh and
the same input vertex position (not the smoothing vertex position).

1Our mesh smoothing is based on the mean curvature flow (MCF) [Desbrun et al.
1999] which effectively removes the high-frequency noise from the mesh. In our
implementation, we use the matrix-free un-preconditioned conjugate gradient (CG)
solver [Shewchuk 1994] using cotan weights which requires computing the vertex
one-ring on the fly [Mahmoud et al. 2021].

Non-delaunay input mesh Delaunay output mesh

Fig. 10. Example of input/output of the Delaunay edge flip application on a
model with ∼1M faces where color indicates the face patch ID.

After turning the mesh into a Delaunay one, we use the same input
vertex position to re-run the smoothing again. Table 3 shows the
time per iteration for the non-Delaunay mesh (before dynamic
changes) and the Delaunay mesh (after dynamic changes) along
with the slowdown. The slowdown is calculated as 𝑇𝑎

𝑇𝑏
, where 𝑇𝑎 is

time after and 𝑇𝑏 is time before the Delaunay flip. Here we report
the time per iteration since the number of CG iterations changes
due to changes in the mesh connectivity. However, the computation
cost is the same per iteration since the mesh size (i.e., number of
vertices) is the same for both the non-Delaunay and Delaunay mesh.
While the patches undergo several changes in this application, this
has a small impact on performance for the static application (i.e.,
local query operations) as the geometric mean of the slowdown
is 1.101 with a maximum slowdown of 1.473. This suggests that
while the patch quality might degrade due to dynamic changes, this
has a very small impact on the runtime of the static operations.
This slowdown is because patches might become imbalanced or
degenerate after several dynamic modifications. In cases where the
static mesh processing performance after dynamic changes is more
important, it may be effective to re-patch the output of the dynamic
application. We leave this for future exploration.

6.3 Isotropic Remeshing
Isotropic remeshing [Botsch and Kobbelt 2004] improves the quality
of an input mesh by making the output triangles as equilateral as
possible (Figure 12). The algorithm consists of four phases; each does
a full pass over the mesh before starting the next phase. The four
phases are (1) split long edges, (2) collapse short edges, (3) equalize
vertex valence via edge flip, and (4) vertex smoothing. The first
two phases are guided by user input, specifically target edge length,
which here we set to the average edge length of the input mesh.
Unlike the Delaunay edge flip application, remeshing can either
increase or decrease the mesh size while alternating between dif-
ferent phases. With these different dynamic operations, remeshing
becomes challenging to run in parallel due to the many conflicting
updates it generates. Implementing such an application in our sys-
tem shows our system’s flexibility in handling such a workload. In
our tests, we run three iterations of the remeshing algorithm. Table 4
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Input Output

Fig. 11. Example of input/output of smoothing via mean curvature flow
application on a model with 2.3M faces where high frequency features are
smoothed out.

Fig. 12. Example of input (top) and output (bottom) of our implementation
of the uniform isotropic remeshing after three iterations.

compares our implementation against the WMTK implementation;
our system achieves a 1.85–8× speedup. Our system yields denser
results. This is primarily attributed to the tendency for many edge
split operations (which increases mesh size) to encounter conflicts
in WMTK. This arises from WMTK’s wider neighborhood locking
approach around each edge-based operation, i.e., the locking of the
one-ring of the edge’s two end vertices. In contrast, our system
allows edge splits to proceed concurrently as long as the edge’s
incident faces are in separate cavities. The slight variation observed
in the final output mesh can be attributed to differences in operation
scheduling between our system and WMTK.

6.4 Surface Tracking
Dynamic surface motion is prevalent in various computer graphics
applications, e.g., motion through geometric flow or physical simu-
lation where the surface serves as the interface in multi-phase flow
simulation. Implicit methods for surface tracking may encounter
numerical dissipation and often require very high resolution to cap-
ture fine surface details. Brochu and Bridson [2009] introduced a
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Fig. 13. Scalability test of our system vs. El Topo [Brochu et al. 2018] on
surface tracking of curl noise advection of a 2D grid. Every frame is a single
advection step followed by mesh improvement step.

robust explicit surface tracking method that involves collision de-
tection to prevent mesh intersections. In essence, following each
step of surface advection, the method enhances mesh quality before
checking for collisions. Mesh improvement entails a combination
of edge split, edge collapse, edge flip, and null-space vertex smooth-
ing, each utilizing different criteria to maintain high-quality mesh
during progressive surface evolution. For further details, readers
are directed to the works of Brochu and Bridson [2009] and the
open-source El Topo software [Brochu et al. 2018].
We implemented explicit surface tracking with mesh improve-

ment but without collision detection. Our implementation faithfully
mirrors the behavior of the El Topo software when collision detec-
tion and topology changes are disabled. We employed an example
of surface advection using a curl noise velocity field on a 2D square
grid embedded in 3D space. The grid’s dimension is defined by the
number of vertices along one direction. We run 100 iterations of
surface tracking to illustrate how our system could sustain good
performance over a large number of update iterations. Figure 13
shows a scalability comparison between our GPU implementation
and El Topo’s single-thread implementation. Notably, unlikeWMTK,
El Topo does not provide a multithreaded implementation. While
El Topo might exhibit faster performance for small meshes (≈20K
faces), our GPU implementation surpasses it by more than two or-
ders of magnitude for larger meshes (≈2M faces). In this particular
example, over 99% of the runtime is attributed to mesh improve-
ment, underscoring the advantages of GPU acceleration for dynamic
changes. Such substantial speedup potentially paves the way for
broader adoption of explicit surface tracking to mitigate the draw-
backs of implicit methods.

6.5 Performance Discussion
Here we address two key aspects concerning the performance of
our system. We begin by examining the common bottleneck we
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Table 4. Mesh statistics and timing for the uniform remeshing application for WMTK and our system. For each input, our system’s output and WMTK’s
output, we report the number of faces (# F); minimum and maximum edge length as a function of the average edge length (L); minimum, maximum, and
average vertex valence (V); timing in seconds for our system and WMTK (T); and our system speedup.

Input WMTK Ours Speedup

# F (×106 ) L V # F (×106 ) L V T # F (×106 ) L V T

min max min max avg min max min max avg min max min max avg

0.91 0.0033 7.6 3 14 6 0.80 0.274 2.024 3 8 6 59.2 1.07 0.268 2.9 3 9 6 17.4 3.4

1.4 0.00031 5.346 3 24 6 1.2 0.099 1.89 3 9 6 86.3 1.4 0.135 2.57 3 9 6 36.8 2.34

2.3 0.641 1.57 3 8 6 1.9 0.332 1.85 3 9 6 155.2 3.04 0.21 2.69 3 9 6 50.8 3.05

2.4 0.767 38.4 4 7 6 1.9 0.0399 9.12 3 10 6 117.7 2.5 0.0324 13.6 3 8 6 48.8 2.41

2.5 0.000037 1.8 3 12 6 1.87 0.158 1.862 3 9 6 138.8 3.9 0.2 2.1 3 8 6 74.7 1.85

11.9 0.311 1.341 3 9 6 9.6 0.312 1.784 3 9 6 759.14 11.3 0.301 2.65 3 9 6 94.4 8.04

identified across all applications, followed by an exploration of
failure cases or instances where our system falls short of optimal
performance.

Bottleneck. Our system’s design aims to confine all computation
and memory accesses within the GPU’s shared memory. We achieve
this by initially reading patch information from global memory into
shared memory, processing the patch within shared memory, and
then writing it back to global memory. These accesses to global
memory are coalesced and effectively utilize global memory band-
width. However, other operations require accessing non-contiguous
memory, e.g., reading neighbor patch topology information. These
reads inevitably require global memory access. Due to the limited
size of shared memory, we cannot read an entire neighbor patch into
shared memory. Instead, threads load the necessary neighbor-patch
data directly and in a non-coalesced manner since we only need to
read the connectivity or individual elements (faces/edges). However,
only when we must resolve inter-patch conflicts do we have the
need to read neighbor patch information.

We evaluated the impact of resolving inter-patch conflicts which
include locking and reading these neighbor patches. We measure
this impact by deactivating any cavity triggering the reading of
neighbor patch information in the Delaunay edge flip application
on the mesh depicted in Figure 10. Our experiments showed that the
cost of resolving neighbor patches accounted for 3/4 of the overall
runtime. Although this latter scenario does not produce a Delaunay
mesh, it sheds light on the location of an inherent bottleneck, i.e.,
uncoalesced global memory read due to non-local element access.

Limited Parallelism. Our system aims to maximize parallelism in
dynamic mesh processing and assumes an abundance of concur-
rent operations in such applications. However, if this assumption
does not hold true, our system may deliver subpar performance,
resulting in serial processing of dynamic operations. Small meshes,
for instance, simply do not exhibit enough parallelism to fill the
GPU. Our results (see Table 2 and 4, as well as Figure 13) illustrate
instances where systems with limited or no parallelism (e.g., WMTK
and El Topo) outperform ours on small meshes. The applications
we studied generally require operations spread across the entire
mesh. If other applications are characterized by dynamic operations
concentrated in a small region of the mesh, our system may have
limited parallelism to leverage.

7 CONCLUSION AND FUTURE WORK
In this paper, we present the first system for dynamic mesh process-
ing entirely on the GPU, broadening the number of applications
that can now run a dynamic workload on the GPU (e.g., graph data
structures [Awad et al. 2020] and hash tables [Ashkiani et al. 2018]).
While our system focuses on dynamic mesh processing, it also im-
proves the performance of the static case. In our implementation
and applications, we constrained ourselves to follow the descrip-
tion of the algorithms, which is often a serial description. For a
few applications, this constraint does not impose any restriction
on exploiting parallelism, e.g., Delaunay edge flips. However, since
many algorithms depend on priority-based processing (e.g., mesh
simplification [Garland and Heckbert 1997], spherical parameteri-
zation [Hu et al. 2018], or Delaunay refinement [Shewchuk 2002]),
this limits the amount of parallelism the applications expose, which
subsequently limits the amount of parallelism that our system can
exploit. Our system facilitates exploring relaxing the priority in
geometry processing applications in favor of speedup on massively
parallel hardware like the GPU. We plan to explore this trade-off in
future work. Such a tradeoff was previously explored for multicore
systems, e.g., Delaunay refinement [Pingali et al. 2011], where it was
shown that in practice Delaunay refinement does not have to follow
the priority as described in the serial implementation. We plan to
expand this study into more geometric data processing applications
specifically on the GPU.
Currently, we rely on pre-allocating all the memory needed for

application execution in advance. This approach can lead to un-
necessary allocation of memory that may not be used. Conversely,
under-allocation can result in application failure. To address these
issues, we plan to integrate a mesh-specific garbage collection sys-
tem in the future. This will help optimize memory usage and enable
the application to run on even larger meshes.
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A MEMORY FOOTPRINT:
We use a similar simplified manifold mesh for calculating memory
footprint as done in RXMesh [Mahmoud et al. 2021]. For such a
model, RXMesh requires 37.4 bytes/face. Using the Euler-Poincaré
characteristic, our data structure stores for each patch the connec-
tivity from face to edges (FE) and from edges to vertices (EV)
which requires 3𝐹𝑝 , where 𝐹𝑝 is the average number of owned faces
in a patch. We also store a bitmask for vertices, edges, and faces
that indicate if the mesh element is owned and if it is active (which
requires 0.75𝐹𝑝 ). Finally, we store the owner patch and local in-
dex within the owner patch for each not-owned mesh element in a
hashtable as a 32-bit unsigned integer. This requires 12𝑅𝐹𝑝

𝐿
, where

𝑅 is the ratio of the ribbon elements, and 𝐿 is the load factor of the
hashtable. Thus, the total memory requirement in our data structure
is 12.75 + 12𝑅

𝐿
bytes/face. Using the same patch size as in RXMesh,

the ribbon ratio is 𝑅 ≈ 0.4. The load factor in our hashtable is 0.8.
Thus, our data structure requires 18.75 bytes/face, which is 1.994x
less memory than RXMesh.
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