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ABSTRACT OF THE DISSERTATION

Improving Clinical Practices in the Neonatal Intensive Care Unit: A
Bioengineering Approach

by

Mridu Bhashini Sinha

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2017

Professor Todd P. Coleman, Chair

The greatest risk of childhood deaths occurs in the first few weeks of life.

Two of the major concerns, birth asphyxia, and sepsis are responsible for the loss of

over 2.5 million infants in this vulnerable period. Worse, the survivors are at a high

risk for long-term morbidity. This doctoral research work focuses on developing

screening tools to influence timely clinical decision-making for targeted treatment

for such high risk-infants. First, we developed a web-based decision support tool to

encourage timely initiation of therapeutic hypothermia, the only available therapy

for infants at risk for brain injury due to birth asphyxia. This tool provides access

to widely accepted clinical guidelines and strategies in a simplified way which can

be easy to follow and access in clinical settings. Such a clinical decision support tool

xii



can obviate some of the time and effort needed for rigorous training and refresher

sessions for providers at low acuity, low volume birthing centers. Second, we

developed a platform for rapid, reliable and automated identification of bloodborne

pathogens responsible for neonatal sepsis using DNA melting analysis directly after

digital PCR amplification. Specifically, we designed a high resolution digital melt

platform with precise thermal control to accomplish reliable, high-throughput heat

ramping of microfluidic chip digital PCR reactions. We characterized the sources of

variability to minimize run to run variations with the system using synthetic DNA

oligos. We also demonstrate the use of novel rate-dependent melt signatures for

enhancing automated melt genotyping. Further, we developed software for analysis

to classify melt curves and identify novel pathogens. Our hope is that in future,

this platform can translate into a near-point of care, cost-effective technology for

screening for sepsis.
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Chapter 1

Introduction

1.1 Neonatal Mortality: Overview

Majority of under-five deaths occur in the neonatal period (0-27 day of

life). In 2015, this amounted to 2.6 million deaths [1]. Globally, intrapartum

complications at birth (birth asphyxia) and infection are responsible for the vast

majority of these deaths [2] as shown in Figure 1.1.

Figure 1.1: Global causes for neonatal mortality.

1
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For both these conditions, timely identification is crucial to inform clinical

decision-making. For birth asphyxia, in the event of a hypoxic-ischemic injury

to the brain, therapeutic hypothermia must be provided in the first few hours

of life for neuronal rescue [3]. Similarly, in the case of neonatal sepsis, targeted

antimicrobial therapies must be started within few hours of contracting infection

either during birth or later from the environment [4]. Failure to receive appropriate

therapy leads to significant risk of morbidity and mortality. Therefore, to facilitate

timely delivery of these therapies, it is crucial to have diagnostics and screening

technologies that help in the early identification of at-risk infants. Further, these

technologies must have the potential to scale up in low-resource settings in the

low and middle-income countries where the burden of neonatal mortality is most

severe. Any developmental delays and any physical and cognitive impairments

among the survivors may have a higher impact on the quality of life and survival

in developing countries than in the developed world, leading to significant societal

and economic burden.

1.2 Understanding Hypoxic-Ischemic

Encephalopathy(HIE)

Birth asphyxia or intrapartum hypoxia may interrupt the blood flow and

oxygen supply to the fetal brain. This acute or intermittent insult can damage the

brain tissue making the neonatal brain most important concern while managing

infants with birth asphyxia [5]. Hypoxic-Ischemic Encephalopathy or HIE is used

to describe such subset of cases of neonatal encephalopathy following such an in-

trapartum, hypoxic-ischemic event. The diagnosis of HIE relies on clinical markers

such as Apgar score, labs to assess the acid-base status and clinical history of sen-

tinel events along with the use of the Sarnat exam to assess altered consciousness,

muscle tone, reflexes and seizure [6, 7]. Hypoxic Ischemic Encephalopathy(HIE)

occurs in 1-3 per 1000 live births in the US [2, 8] and is one of the leading causes

of neonatal mortality across the globe. HIE results in the death of 10-60% of af-

fected infants, while 1 in 4 survivors will suffer debilitating neuro-developmental
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impairment [9, 10]. These numbers are even more staggering in low and middle-

income countries. The management of HIE due to perinatal asphyxia is far from

satisfactory and is the single most important cause of neonatal mortality among

hospital delivered infants in regions such as India and Africa. With significant as-

sociated morbidity, it adds to the socio-economic burden of proving for a disabled

child which is much heavier in the developing world. The only available treatment

for infants with moderate to severe HIE besides supportive care is Therapeutic

Hypothermia (cooling) [11]. Meta-analysis of cooling trials indicates a reduction

in adverse outcome including death or major neuro-developmental disability with

a relative risk of 0.75 (95% CI 0.68-0.83) with a number needed to treat of 6-8

infants [12]. However, it is yet to be adopted in routine care most low-resource

settings and remains to be a challenge even in the US, despite evidence-based

medicine supporting this treatment as the standard of care for neonatal HIE. A

recent study reported that 22% candidates that met treatment criteria in Califor-

nia were not cooled [13]. Remarkably, the risk for birth asphyxia was significantly

higher and associated with around the clock, in-house pediatric or neonatology

coverage, suggesting under-recognition of symptoms [14]. Therefore, timely and

appropriate administration of cooling remains a challenge for skilled first respon-

ders to neonatal emergencies [15].

1.2.1 Challenges in proving Therapeutic Hypothermia for

HIE

First, a majority of the birthing hospital do not provide cooling and the

infants require screening and transfer to a regional cooling center within the first

few hours of life. The current consensus advocates a short six-hour window of

opportunity after birth for initiation of cooling. This is crucial, as the degree of

energy failure in the second phase of brain injury post the hypoxic-ischemic insult,

is predictive of neurodevelopmental outcome [16]. Therefore, to be beneficial,

cooling must be administered after resuscitation before the beginning of second

phase of brain injury [17]. Unfortunately, this six-hour window for therapy does

not fit the community staffing model which lacks 24-hour extensive ob-gyn and
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pediatric coverage for swift assessment and transfer. Moreover, the recognition

of HIE can be challenging for birthing hospitals amidst the time pressures in the

clinic as the signs and symptoms of HIE are often subtle and are somewhat similar

to other likely conditions at birth, such as sepsis. Moreover, due to low incidence

rates, birthing hospitals are not accustomed to performing detailed screening and a

neurologic exam to identify infants who may benefit from cooling. The difficulty in

acquiring new skills and going through refresher training to cater to this relatively

small population at the birthing hospitals adds to the challenges. Unfortunately,

infants born outside of regional cooling center account for the majority of HIE

case presentations and are often associated with higher time to therapy and worse

outcomes [15,18].

1.3 Understating Sepsis

Sepsis is a serious and life-threatening clinical condition that generally re-

sults from a primary bacterial infection, or less frequently from, a fungal and/or

viral infection. Septic patients usually present with malaise, fever, chills, and

leukocytosis, which often prompts care providers to evaluate for the presence of

bacteria in the bloodstream (bacteremia) using blood culture analysis. Considered

a medical emergency, bacteremia can rapidly progress to organ dysfunction and

death despite immediate and aggressive medical therapies [19]. Because of the

high mortality rate associated with bacteremia, the dangers of undertreating some

infections, or concerns about using inappropriate antibiotics, physicians tend to

order blood cultures liberally [19]. However, bacteria are isolated in only 4-12% of

processed blood culture tests, and this occurs days to weeks after the patient has

been treated [19–22] Alarmingly, the incidence of bloodstream infections (BSI) is

increasing, with a rise of 17% in documented cases between 2000 to 2010 [23], while

sepsis-related deaths have surged 31% between 1999 and 2014 [24]. In the United

States, the incidence of adult bacteremia is approximately 10 per 1000 hospital ad-

missions [25–27]. Mortality rates are associated with approximately 30,000 deaths

annually with particularly high rates in critically ill patients admitted to intensive
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care units (ICU) [19,23,28]. Septicemia, a severe form of bacteremia, affects nearly

1 out of every 23 hospitalized patients and is the sixth most common reason for

hospitalization [23, 29]. At present, septicemia is the most expensive condition

treated in U.S. hospitals with an aggregate cost of $15.4 billion in 2009, whereas

non-specific diagnoses of sepsis account for another $23.7 billion each year [30,31].

Almost two-thirds of patients will contract their primary infection outside the

hospital and the majority will have one or more pre-existing comorbidities [19].

Additionally, survivors of sepsis may experience substantial long-term complica-

tions including prolonged length of stay, discharge to a long-term care setting, or

death [30]. Neonates, or infants within 28 days of life, comprise an additional

at-risk group for infection due to the relative deficiency of their adaptive immune

responses from lack of antigen exposure in utero as well as immaturity of innate

immune responses, impairments which are directly related to their gestational age

at birth. Worldwide, infectious disease is the second leading cause of neonatal

mortality and results in the loss of one million newborns annually (half in the

first week of life) [32, 33]. In the United States, sepsis is the fifth leading cause

of neonatal mortality, surpassed only by complications related to prematurity and

pregnancy [34]. Low birth weight premature infants have a 10-fold increased risk

of serious infection or sepsis compared to their full-term counterparts, with a 30%

mortality rate [34–36]. Devastatingly, 25% of all neonates in the U.S. admitted

to the Neonatal Intensive Care Unit (NICU) will be diagnosed with sepsis and

18-35% (21,000/year) will die from their infection [32, 37, 38]. Pathogen detection

by blood culture methods is, unfortunately, worse in this vulnerable patient pop-

ulation when compared to older children and adults. Although more than 60% of

sepsis evaluations occur in the first three days of life, less than 1% of blood culture

tests detect an organism. Even in symptomatic neonates, blood culture method-

ologies can detect the offending microorganism in only 10-15% after contaminants

are excluded [39, 40]. This burden is worse in underserved communities. For ex-

ample, in the U.S., black preterm neonates have the highest incidence of and case

fatality from neonatal sepsis [41]. Around the world, neonates born in low and

middle-income countries suffer the greatest rates of sepsis [42]. Critically, in low
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and middle-income countries, resistant bacterial strains are implicated in the ma-

jority of the cases, highlighting the need for rapid susceptibility testing. Survivors

of neonatal sepsis are at an increased risk for poor neurodevelopmental outcomes,

including cerebral palsy, deafness, blindness, and cognitive delays [32,43]. A recent

meta-analysis involving 977 infants reported decreased cognition, general develop-

mental delay, and/or learning difficulties in 74% of newborns diagnosed with sepsis.

Survivors of sepsis were at risk of developing cerebral palsy (36%), hearing impair-

ments (10%), and vision impairments including blindness (32%) [44].

1.3.1 Sepsis: Challenges in the Clinics

Under-recognition of illness in addition to the emergence of resistant pathog-

ens, delay in diagnosis, and the inability to access or afford specialized medical care

contribute to the high mortality and morbidity associated with sepsis [45]. For each

hour that a patient goes undiagnosed and/or is inadequately treated for sepsis, the

likelihood of survival dramatically decreases [46]. For example, a 5-fold reduction in

survival has been reported as a consequence of inappropriate antimicrobial therapy

in the first 6 hours of recognition of septic shock [47]. Unfortunately, findings from

standard diagnostic tests are not available within the critical time frame to allow

focused, effective, and potentially life-saving medical interventions. Routine blood

cultures can take up to one to two days to identify the offending organism but up to

five days to finalize results and report antibiotic sensitivities. Other faster adjunct

standard hematological analyses used in routine clinical practice have low sensitiv-

ity and specificity, particularly in neonatal patients [48]. Recently, biomarkers such

as C-reactive protein, procalcitonin, and the neutrophil marker CD64 have made

their way into sepsis evaluations, with limited success. Clinically, sepsis presents

as a complex multifactorial syndrome, yet most diagnostic approaches that are

currently employed rely on individual biomarkers, with binary yes or no answers.

A diagnostic strategy that incorporates multiple biomarkers capable of signifying

the host response to a pathogen, as well as pathogen and resistance identification,

is greatly needed to distinguish patients who are truly septic and will benefit from

antibiotic therapy. The absence of robust diagnostic tests fosters the use of broad-
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spectrum antibiotics based on a clinicians best judgment and historic use instead

of evidence-based medicine. In the neonatal population, clinical signs related to

sepsis are similar to other non-infectious life-threatening conditions, such as perina-

tal asphyxia, respiratory distress syndrome, and symptoms associated with severe

prematurity. Hence, the accurate diagnosis of infectious disease is imperative to

limit antibiotic exposure. The reflexive utilization of broad spectrum and highly

potent antibiotic treatment in patients suspected of having sepsis has contributed

to the emergence of drug-resistant organisms and atypical pathogens. The correct

initial choice of antibiotic therapy alone has been shown to save more lives than

any other medical intervention [4, 49–51]. For these reasons, the Surviving Sepsis

Campaign advocates for diagnostic identification of the pathogen within one hour

of the patients presentation to the care facility and prior to the administration

of antibiotics. Additionally, integrating diagnostics that can profile antimicrobial

resistance markers into the clinical workflow can assist with the appropriate use

of antibiotics and hence, antibiotic stewardship. To be useful in a wide variety

of clinical settings, sepsis diagnostics should also be easy to use and require low

technical expertise to process samples and interpret results.

1.3.2 Limitation of Gold Standard Diagnostic Blood Cul-

ture Methodologies

Robert Koch first described the use of agar culture plates for the purifica-

tion and identification of disease-causing bacteria in the early 1880s, forming the

foundation of modern blood culture technology [52]. Today, the use of standard

culture techniques for the detection and isolation of pathogenic organisms from

a sterile body fluid is still considered the Gold Standard for the diagnosis of in-

fection and sepsis. However, this technology can take up to five days to finalize

results and is plagued by many complicating factors. First, the quantity of mi-

crobes present in circulation during a bloodstream infection is usually low, ranging

only from 1 to 1 X 104 CFU/mL [43,53–55]. In older children and adults, routine

blood culture tests are drawn in timed sequences of up to four separate replicates

comprising of approximately 20 to 30 mL of blood volume each. This repeat blood
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sampling improves pathogen detection to capture the causative organism in 73 to

95% of cases [55–59]. Small sample volumes can, therefore, lead to false-negative

results with conventional practices [60–62]. Unfortunately in neonates, especially

in very low birth weight premature infants (VLBW, birth weight ¡ 1500 grams),

blood collection is restricted to a single sample with minimal volume (1 mL), which

can further hinder pathogen capture, particularly when bacteremia is low [63–65].

False-negative results can also occur due to infectious etiologies not readily re-

covered by routine blood culture techniques after initiation of antibiotic therapy,

which affects 28-63% of adults with suspected sepsis [55, 62, 66, 67]. Exposure to

antimicrobials prior to blood culture testing is magnified in neonatal patients, as

an estimated 30-35% of laboring women receive empiric intrapartum antibiotics

for the prevention of neonatal Group B Streptococcus (GBS) disease [36]. Subse-

quently, compliance with the Centers for Disease Control and Prevention (CDC)

GBS guidelines exposes an estimated 65% of VLWB infants to antibiotics prior to

birth [68–70]. Prolonged delays in pathogen identification and antibiotic sensitiv-

ity testing, which can take up to 4-5 days, also cause neonates to be unnecessarily

exposed to broad-spectrum antibiotics, leading to bacterial antibiotic resistance

in non-infected neonates while preventing targeted antimicrobial therapy in septic

neonates. Additionally, prolonged broad-spectrum antibiotics exposure in neonates

can lead to invasive fungal (Candida) infection, necrotizing enterocolitis, and/or

death [37,38,71]. Failure to adhere to standard antiseptic procedures during sam-

ple collection can also lead to contaminated, or false-positive, blood culture results.

In 2005, The College of American Pathologists reported an overall mean blood cul-

ture contamination rate of 2.89% in 356 institutions, with 2.08% noted in neonatal

and 2.92% for non-neonatal patients [72]. Contamination rates for individual insti-

tutions in this study ranged from 2.15% to 3.67% and contributed to an additional

estimated cost of $5506 per patient [72]. Thus, contaminated samples can have

enormous financial and clinical ramifications in adult populations in the U.S. in-

cluding 1,372 to 2,200 extra hospital days and an extra $1.8 to $1.9 million in

medical costs each year [73, 74]. In pediatric patients, these tainted samples are

associated with readmission rates of 14 - 26% [62, 75, 76] and increased length of
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stay from 1 to 5.4 days [62,74,77]. In low and middle-income countries, where there

is a dearth of trained medical staff and quality health care services, blood culture

contamination is not uncommon and can have grave consequences. Notably, almost

half of patients with false-positive blood cultures are treated with antimicrobials as

compared to those with true positive test results [26,62,78,79]. Additionally, 40 -

50% of adult patients with bacteremia (and 70% with fungemia) received incorrect

antimicrobial therapy during their empiric treatment period before microbiology

culture results were available [23, 25, 80]. This misuse of antimicrobial agents and

delays in pathogen identification cause prolonged exposure to broad-spectrum an-

tibiotics, which can also result in an increased number of Clostridium difficile

infections, antibiotic allergic reactions and drug toxicity, antimicrobial-resistant

bacterial strains, prolonged length of stay, and medical costs [23, 62, 81–83]. In

summary, routinely used blood culture methods are not an ideal Gold Standard,

as the results often come too late, are incomplete or not sensitive enough, and

can be misleading and relatively labor-intensive. There is a crucial unmet need

to shorten as well as improve current laboratory procedures for the detection and

identification of microorganisms.

1.4 Thesis

This doctoral work focuses on addressing the gaps in timely identification of

at-risk newborn. In chapter 2, we discuss the development of a web-based decision

support tool to encourage timely identification of neonates who may benefit from

cooling. In subsequent chapters we discuss emerging technologies for screening

for neonatal sepsis followed by development of one such promising technology,

the universal digital high melt platform(U-dHRM). Specifically, in chapter 3, we

motivate our work for developing the U-dHRM platform by including discussions

on emerging technologies in light of the characteristics for an ideal sepsis diagnostic.

This is followed by design and characterization of the hardware platform for our

technology using synthetic DNA in Chapter 4. In the last chapter we discuss the

development of software platform for identification of pathogens samples.



10

1.5 Acknowledgements

Disclaimer: all figures in Chapter 1 consist of at least one image, which were

found through Google image search of relevant term, and were modified slightly for

the purposes of this dissertation. They are not property of the dissertation author

or his co-authors. Chapter 1, in part has been submitted for publication as it may

appear in Clinical Microbiology Review 2017. Sinha, Mridu; Jupe, Julietta; Mack,

Hannah; Coleman, Todd; Lawrence, Shelly; Stephanie,Fraley. The dissertation

author was the primary investigator and author of this paper.



Chapter 2

Web-Based Decision Support

Tool for Identification of potential

candidates for Neonatal

Hypothermia

2.1 Introduction

Hypoxic Ischemic Encephalopathy(HIE) occurs in 1-3 per 1000 live births

in the US [2, 8] and is one of the leading causes of neonatal mortality across the

globe. HIE results in the death of 10-60% of affected infants, while 1 in 4 survivors

will suffer debilitating neuro-developmental impairment [9,10]. The only available

treatment for infants with HIE, besides supportive care, is therapeutic hypothermia

(cooling therapy) [11]. Despite evidence-based medicine supporting this treatment

as the standard of care for neonatal HIE, a recent study reported that 22% of

neonates in California who qualified for therapeutic hypothermia did not receive

it [13]. Another study paradoxically found a higher risk for birth asphyxia associ-

ated with around the clock, in-house pediatric or neonatology coverage, suggesting

under-recognition of symptoms in the absence of specialty care [14]. Therefore,

timely and appropriate administration of cooling remains a challenge for skilled

11
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first responders to neonatal emergencies [15]. Many challenges may explain delays.

First, cooling therapy must be initiated within 6-hour window after birth with best

neurologic outcomes occurring in those with short intervals to therapy. Second,

most of the birthing hospitals do not provide cooling. Hence, ill newborns must

be transferred to regional cooling center if established [84]. Timely identification

of neonates at risk for HIE can be challenging for the birthing hospital, since it

can present with subtle signs and symptoms similar to other likely conditions at

birth, such as sepsis. Moreover, due to low incidence rates, birthing hospitals are

not accustomed to performing detailed screening and neurologic exam to identify

infants who may benefit from cooling. The difficulty in acquiring new skills and

going through refresher training to cater to this relatively small population at the

birthing hospitals adds to perceived challenges. The California Perinatal Quality

Care Collaborative(CPQCC) recently published the Early Screening and Identifi-

cation of Candidates for Neonatal Therapeutic Hypothermia Toolkit to advocate

accurate neurologic assessments and timely consultations with regional cooling

centers [85]. This toolkit provides a strategic approach and reliable tools to assist

birth hospitals in the timely identification of newborns that are potential candi-

dates for therapeutic hypothermia. However, routinization of these strategies at

low volume and non-tertiary birthing centers requires familiarity of current recom-

mendations, which can be inconvenient to remember or access. Hence, we created

a web-based clinical decision support tool (CoolTool) to complement the CPQCC

toolkit and provide tools to assist birthing hospitals to routinize these strategies

for timely and appropriate initiation of cooling. This can facilitate early screening,

consultation, and initiation of cooling by providing: (1) recommendations to con-

sult cooling center, (2) access to a database with cooling centers, (3) management

guidelines, and (4) instructions for targeted neuro exam and tools for appropriate

documentation. Such a clinical decision support tool can obviate some of the time

and effort needed for rigorous training and refresher sessions. Moreover, CoolTool

supports the goal of the CPQCC toolkit in influencing the standardization of care

by promoting the use of evidence-based guidelines to facilitate timely consultation

and initiation of cooling in a consistent fashion.
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2.2 Methodology

We adopted a user-centered approach to developing the tool in partnership

with the community [86]. Health care providers providing for newborns in com-

munity and academic birthing centers were approached for voluntary participation

in the development of the tool. This included physicians and nurses in family

medicine, pediatrics, neonatology, and ob-gyn across the state of California. We

interviewed and observed the clinical workflow to identify the ideal target behav-

ior and barriers to cooling. In parallel, providers were engaged through interviews

and focus groups to understand the barriers to these ideal behaviors. To do so, we

explored this ideal target behavior in relation to capability, opportunity and moti-

vational components under the premise of the behavioral change wheel to develop

our tool [87].

2.2.1 Prototype Development

• Paper prototype: The initial prototype was developed on paper for internal

purposes and were discussed as a class project.

• Web prototype: Multiple web prototypes were developed to explore various

input-output configurations and layout of the design. These were discussed at

a focus group with fellows (n=12) and interviews with attendings at cooling

centers (n=4). We also conducted focus groups with researchers in biomedical

engineering (n=10) to get feedback on the layout.

• Neurologic assessment module was incorporated into the tool based on feed-

back from user interviews.

• The prototype was then iteratively modified to include protocols and guide-

lines with feedback from physician interviews (n=15) across five cooling cen-

ters in California. In addition, we reached out to four community centers to

further iterate through the design features. Changes were made to the design

based on learning from observing new users (n=15) in an iterative manner

(Figure 2.1).
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• Intermittently, the work was presented at local collaboratives and confer-

ences including the Bay Area Cooling Summit Conferences, The California

Association of Neonatologists Annual Cool Topics in Neonatology Meeting,

and the Pediatric Academic Society (PAS) Annual Meeting [88]. At the PAS

conference, the poster session allowed us to collect feedback from users from

outside California (n=15) who were willing to try the tool poster-side and

provide feedback.

Figure 2.1: Iterative design methodology

2.2.2 Design Consideration

Ease of use with minimal training was prioritized as design criteria. Script-

ing for data validation and tooltips were included along with features to encourage

implicit learning of initial screening criteria. Through the development process,

users were observed to understand if users could navigate the tool without any

prompts and recognize the design features. These guided the iterative design of

the tool (Figure 2.1).

2.2.3 Surveying Intent for Adoption

To understand sentiments for adoption, we sampled cross-section of providers

that were new to the Cool Tool. Users were invited by sending out a link to tool
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via email.

2.3 Results

2.3.1 Interface Design

The tool breaks down the workflow into a series of checklist-like steps to

standardize behavior by promoting the use of scientific knowledge correctly and

consistently [89] (Figure 2.2).

Figure 2.2: Interpretation of ideal behavior of a birthing center provider based
on CPQCC toolkit

CoolTool requires users to input: (1) gestational age, (2) time of life (in

hours), (3) blood gas values, and (4) history of sentinel event and resuscitation,

which are routinely recorded and accessible to healthcare providers. The results

are displayed in a single response screen to indicate whether the infant is at risk

for HIE, is a potential cooling candidate, and suggests next steps for the patients

management (Figure 2.3). If the infant is at risk, the tool highlights input variables

with significant values and suggests additional lab test and neurologic assessment,

as appropriate. This module guides users through the neurologic examination

via an interactive tool with short example videos for assessment of consciousness,

spontaneous activity, posture, tone and reflexes (gag, suck, and moro) (Figure 2.4).

CoolTool also provides specific management guidelines, protocols, list of cooling

center and options to include any center specific guidelines along. The interface
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has tool-tips to explain the variables along with links to provide the rationale for

recommendations provided by the tool (Figure 2.5). As appropriate, it presents

the option to generate printable reports that can be faxed to or sent with the infant

to the regional cooling center or, alternatively, for inclusion into the birth hospital

chart to document initial care. Additional tabs to host resources for parents and

providers were created. The tool is hosted on a domain name that is easy to

remember (cooltool.info) and will be maintained by CPQCC with support from

the Bay Area Cooling Summit.

Figure 2.3: Data entry and recommendation Screen

Figure 2.4: Additional features (A) Map with list of all cooling centers. (B)
Protocols and management guidelines.
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Figure 2.5: Neurologic assessment Tool. (A) Short Version (B) Long version
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Figure 2.6: Flow chart for decision support

2.3.2 Early Adoption Survey Results

We collected survey results from 21 users from southern California across 2

cooling centers and their referring centers and 2 birthing centers in northern Cali-

fornia (Table 2.1). The surveys collected characteristic and practice information of

respondents along with ease of use of the tool and relevance and perceived impact

on liability with the tool (Figure 2.7-2.9). As shown in figure 7, most users found

the tool very easy (13/21) or fairly easy (6/21) to use and rated the tool good

(7/21)or Very good(14/21) for utility and relevance for the tool. Interestingly

most providers supported our hypothesis that Cool Tool may decrease liability

for birthing center providers (13/21), however few believed that it would increase

the risk/liability for birthing centers(4/21) (Figure 2.8). 71% recorded the neuro

assessment tool as a useful feature.
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Figure 2.7: Survey results.(A)Ease of Use and (B) Over all relevance of Cool Tool

Figure 2.8: Perception of impact on liability for birth center providers



20

Figure 2.9: Familiarity and use of CPQCC toolkit

Table 2.1: Practice information of respondents
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2.4 Discussion

The algorithm was largely derived from the existing CPQCC toolkit(Fig 6).

However, few changes were made based on feedback from target users. Changes

were made to the definitions of sentinel events for HIE based on [reference]. A

neurologic assessment tool was added with options to go through a more extensive

questionnaire or a simpler one screen layout based on Sarnat staging to cater to

different levels of expertise/comfort with neonatal neuro exam [6]. Additionally,

management guidelines were created for providers to use while waiting to establish

communication with the cooling center and after establishing candidacy for cooling

with the cooling center. In addition, considering the recent late hypothermia trials,

we also incorporated delayed cooling in the recommendations. If any infant meeting

criteria by history but is older than 6 hours, the tool advises to perform neuro

exam and contact a cooling center that provides late cooling. In comparison to

paper guidelines, computerized guidelines have been shown to improve adherence.

In neonatology, web tools such as BlliTool [90] and Kaiser sepsis calculator [91]

have shown increased adherence to the clinical guidelines and improved outcomes.

Likewise, the web-based tool we developed can aid the uptake of widely accepted

clinical guidelines disseminated by the CPQCC Toolkit. Here, we demonstrate that

CoolTool presents the clinical guidelines in a simplified way which can be easy to

follow and access in clinical settings. Since the historic randomized controlled trials

that established therapeutic hypothermia as the standard of care in the mid-2000s,

the clinical practice for administering cooling has changed. The inclusion criteria

for therapy has broadened and often relies on clinical judgement [92]. Therefore,

it is critical to balance the standardization of care and freedom to exercise clinical

judgment. The CPQCC toolkit does so by providing lower acuity birthing centers

with a broader criterion to screen potential cooling candidates while entrusting the

final decision in the hands of the regional cooling centers. The screening criteria

is based on lab values and clinical history that are routinely available, followed

by a physical exam for neurologic assessment. CoolTool supports this strategy by

providing a calculator for lab values, perinatal history, and neurologic assessment

module to help the birthing center perform accurate neurologic examinations for
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documentation and discussion with cooling centers.

The current consensus is to cool within 6 hours, however, considering the

late hypothermia trials, some centers have decided to cool infants beyond six hours

of age [93]. We are also now cooling more infants with mild HIE. Liberalizing lab

values and cooling criterion over recent years has led to a higher emphasis on

the performance of an accurate neurological exam to adequately diagnose hypoxic

ischemic encephalopathy after birth. Concerns for medical-legal implication with

HIE also often prevents providers from collecting cord blood gas values in at-risk

infants, increasing the importance of thorough neurological exam in identifying

newborns at a risk for brain injury. The module for neurologic assessment presented

here can also be a valuable standalone tool for the neurologic exam of any newborn

for educational purposes. Interestingly, the neuro assessment module was perceived

as the most useful feature of the cool tool. Access to specific procedures and videos

may improve efficacy and confidence associated with the neurologic examination.

We must continue to develop these procedural instructions and help videos and

evaluate their ability to improve provider skill and confidence.

CoolTool provides a general protocol for passive cooling that can be initi-

ated at the birth hospital while awaiting transport to a higher level of care. It also

provides the option to include center-specific passive cooling protocols for referral

centers. Research indicates that access to specific management and transfer pro-

tocols improve infant safety and long-term outcomes [94]. Moreover, options to

generate printable reports allow a more comprehensive medical chart to be com-

plied and transferred with the patient to a regional cooling center. The consistent

use of scientific knowledge and proper documentation may also decrease liability

for the birthing center. The survey suggest that the use of the tool may reduce the

liability. These features of the CoolTool need to be investigated further after its

dissemination, though, to determine if it performs similarly. An unintended use of

this tool is for teaching the novice physician. Fellows and residents may benefit the

most from the tool by referring to the standardized procedures. It has been shown

that while checklist help streamline the workflow, they also help in skill building

of novice users.
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Lastly, dissemination of the CoolTool through the CPQCC website allows

for the evaluation and validation of this tool with continual improvement based on

advancement in the scientific literature. With CPQCC, we can leverage existing

partnership with community centers to track outcomes. The platform can be ex-

panded to add teaching tools and resources for sharing protocols and data among

centers. It is important to highlight the need for continued development of this

procedural workflow and education for familiarity with HIE. Awareness about cur-

rent gaps in cooling, benchmarking to track outcomes, educational program and

clinical vignettes for training and skill improvement are warranted.

2.5 Future work

The tool is currently in review by the CPQCC to align the paper toolkit

and web-based CoolTool. Recommendations beyond those published in the early

screening toolkit will be approved by the quality improvement committee before

being published online for clinical use. Additionally, a web link may be enabled to

pop up in the EMR system - suggesting the health care provider to screen for HIE

based on variables routinely entered in the EMR. However, the utility of linking

to the EMR remains to be evaluated. Currently, most of the birthing centers may

not have access to EMR and even when present, the providers may populate the

notes in EMR after a considerable amount of time. None the less, by linking to

the EMR, a standard template for documentation can be provided which will help

with data abstraction in future. Long-term follow-up to study changes in rates of

referral is warranted. We will develop clinical vignettes for continued education

and skill building along with tool dissemination. Resources for parents will be

further developed to include what to expect and what to watch for to empower

parents to take charge of their childs treatment and development.



24

2.6 Acknowledgements

Chapter 2, in part is currently being prepared for submission for publication

of the material. Sinha, Mridu; Glass, Hannah; Shelly, Lawrence; Verma, Prachi;

Bohn, Roger; Lee, Henry; Wusthoff, Courtney; Shimotake, Tom. The dissertation

author was the primary investigator and author of this material. Authors would

like to extend thanks to the Bay Area Cooling Summit, Dr. Yao Sun, Dr. Priya

Jegatheesan, Dr. James McGuire, Dr. Katey Hoffman, Dr. Dawn Gano, UCSF

Bridge Team, Dr. Jeff Gold, and UCSD residents for discussions and inputs on

the tool design. Additional thanks to Prof. Todd Coleman,Dr. Mary J Harbert

and Dr. Sheila Rosenberg.This work was supported by the Science Policy Fellows

Program by the school of Global Policy and Strategy, UCSD.



Chapter 3

Emerging Technologies for Sepsis

Diagnostics

3.1 Abstract

Rapid and accurate profiling of infection-causing pathogens remains a sig-

nificant challenge in modern health care. Despite advances in molecular diagnostic

techniques, blood culture analysis remains the gold standard for diagnosing sepsis.

Yet, this method is too slow and cumbersome to significantly influence the initial

management of patients. Swift initiation of precise and targeted antibiotic thera-

pies depends on the ability of a sepsis diagnostic to capture clinically relevant or-

ganisms along with antimicrobial resistance within 1-3 hours. The administration

of appropriate, narrow spectrum antibiotics demands that such a test be extremely

sensitive with high negative predictive value. In addition, it should utilize small

sample volumes and detect polymicrobial infections and contaminants. All of this

must be accomplished in a platform that is easily integrated into the clinical work-

flow. In this review, we outline the limitations of routine blood culture testing

and discuss how emerging sepsis technologies are converging on the characteristics

of the ideal sepsis diagnostic. We include seven molecular technologies that have

been validated in clinical blood specimens or mock samples using human blood. In

addition, we discuss advances in machine learning technologies that use electronic

25
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medical record data to provide contextual evaluation support for clinical decision

making.

3.2 Ideal Sepsis Diagnostics

Considering the current clinical challenges and the need to impact clinical

management by informing targeted treatment, the ideal technology should include

the following characteristics [95, 96]:

(a) Rapid detection, the pathogen needs to be identified in less than 3 hours [4,46].

(b) Broad-based detection, including bacteria, viruses, and fungi.

(c) Minimally invasive, utilizing clinical samples with low specimen volumes. Pe-

diatric patients including neonates: under 1mL blood [63–65].

(d) High sensitivity and specificity for the initiation of targeted antibiotic use in

the presence of signs and symptoms of systemic inflammation. The diagnostics

should not compromise on sensitivity with low pathogen levels in the specimen.

(e) Polymicrobial detection of pathogens in the presence of contaminants across a

wide range of pathogen loads ( 1-100,000 CFU/ml blood).

(f) Detection of drug resistance.

(g) Integration into the clinical workflow. The process should be easy and require

minimal technical expertise to process samples and interpret test results. For

greatest impact, the technology must be usable in non-centralized low-resource

settings.

(h) Ability to detect unknown and emerging pathogens. Detection capabilities

must be able to easily expand without compromising robustness of detection and

required specimen volume.

(i) Ability to distinguish inflammatory response as host or pathogen driven [97,98].

3.3 Detection from whole blood

In the United States today, nearly all sepsis molecular diagnostics are post-

culture technologies, meaning that a blood sample must be cultured to allow mi-
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crobes to increase in number before the diagnostic test can be conducted. This

initial growth-based amplification ensures sensitive detection, but extends the diag-

nostic timeline such that test results do not effectively impact patient management.

It also restricts the breadth of organisms detected by relying on a single culture

medium formulation, which cannot support the growth of all organisms. While

molecular diagnostic tests are completed within 20 minutes to 2 hours, the initial

step of blood culture takes days to weeks and may not be successful. Likewise, de-

termining the antibiotic sensitivity of the pathogen also depends first on additional

culture methods. Current technologies do not benefit antibiotic stewardship pro-

grams aimed at de-escalating empiric antibiotic therapy and encouraging timely

targeted treatment. Recent reviews by Opota et al. [55, 99], Kothari et al. [100],

Afshari et al. [101] and Ecker et al. [102], describe the state of the art for such BSI

diagnostics in more detail. In this review, we will focus on emerging technologies

that are not dependent upon initial microbial growth. All technologies described

in the following paragraphs are summarized in Table 3.1 and their time to result

in Figure 3.1.

Figure 3.1: Sepsis detection technologies time-to-results compared to blood
culture



28

Table 3.1: Emerging technologies for rapid diagnosis of infections from whole
blood

3.3.1 Modern Nucleic Acid Amplification Technologies

For several years, Nucleic Acid Amplification technologies (NAATs) have

promised to circumvent the need for bacterial growth. These technologies func-

tion by rapidly creating copies of DNA or RNA originating from pathogen or host

cells through biochemical reactions, amplifying the nucleic acid sequences to a de-

tectable level. The sequences are then used to identify the infecting agent or the

status of the immune response. However, the promise of NAATs for revolutioniz-
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ing sepsis diagnosis has yet to be realized. This can be attributed to challenges

in reliably capturing and amplifying pathogen nucleic acids from complex samples

like blood, where the infecting agents are present at low levels or as polymicro-

bial mixtures within a high background of human DNA. In this sample context,

traditional NAATs cannot simultaneously satisfy the need for sensitive, specific,

and broad-based detection. The emerging technologies discussed herein represent

novel integrations of NAATs with other cutting edge techniques that together are

capable of overcoming many current diagnostic limitations. We also discuss the

exciting promise that further synergistic integration holds for producing the ideal

sepsis diagnostic.

IRIDICA PLEX ID (Abbott Molecular)

The IRIDICA platform boasts the most broad-based detection of any direct-

from-blood emerging technology, identifying an impressive 780 bacteria and Can-

dida species, as well as four antimicrobial resistance markers (mecA, vanA/B,

and blaKPC) with a turnaround time of six hours [55, 103, 104]. IRIDICA ac-

complishes this by integrating multiplexed PCR amplification of pathogen DNA

with electrospray ionization mass spectrometry (ESI-MS) for sequence identifica-

tion. The process starts with automated DNA extraction from a 5ml whole blood

sample. The extracted DNA is distributed across several PCR reactions contain-

ing different primers targeting conserved regions of pathogen genomes, including

the16S and 23S rRNA genes for bacteria and Candida, respectively. These primers

and reaction components have been optimized to limit interference due to human

DNA, which can otherwise lead to non-specific amplification or poor amplifica-

tion efficiency. Amplified copies from each reaction are selectively enriched by

removing over 98% of human DNA. Then, they are assessed by ESI-MS, which

generates nucleotide base composition data. Finally, the data from each amplicon

is compared to a library of all expected base compositions and used to triangu-

late the pathogen species [Figure 3.4]. [54, 105] While this approach achieves a

wide breadth of detection, clinical studies show that IRIDICAs sensitivity, speci-

ficity and negative predictive value (NPV) vary widely from 45%- 83%, 69%-94%,
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and 80%-97% respectively against conventional culture methods [Table 3.2, Figure

3.2]. After exclusion of possible contaminant bacteria and estimating true positives

rates based on PCR test replicates or clinical chart and culture results for patient-

matched specimens, sensitivity and specificity values can be improved from 77%

to 91% and 87% to 99% respectively [54, 104]. Improvement with multiple test

replicates suggests that sample heterogeneity and sampling error remain problem-

atic. For the case of a low level pathogen, sampling error occurs first at the point

of the blood draw, is combined with any inefficiency in nucleic acid extraction,

and then occurs again when the sample is split across multiple distinct amplifi-

cation reactions targeting different genes on the IRIDICA platform. Improving

sensitivity and reliability of detection will require circumventing these sources of

error. For the same reasons plus amplification competition, polymicrobial sam-

ples may present another challenge for this approach. Some evidence suggests that

IRIDICA can detect mixed pathogen populations, but its utility in clinical samples

is currently inconclusive. We found only one study that investigated polymicrobial

specimens. Here, IRIDICA identified only one causative organism in four out of

nine cases of blood culture positive polymicrobial infection [106]. IRIDICA has

been evaluated in a limited number of clinical studies across patients with sus-

pected sepsis, systematic inflammatory respiratory syndrome (SIRS) and febrile

neutropenia [54,104–107]. Interestingly, significant differences have been reported

in sensitivity across ICU and ER patients (p=0.005) with higher sensitivity seen

in ICU patients [104]. This may derive from higher pathogen loads in this pa-

tient population, which would have the effect of reduce sampling error. Limits of

detection on the IRIDICA platform range from 0.25-128 CFU/mL for bacteria, de-

pending on the target species, and 4 CFU/mL for Candida species [54, 105]. This

broad-based semi-quantitative technology shows promise for use on whole blood

samples (sterile or non-sterile) to detect a wide variety of pathogens. The use of

5 mL blood is promising for adult patients but limits feasibility for use in pedi-

atric patients [108]. It can detect four antibiotic resistance markers, to date, and

benefits from the ability to expand this in the future. IRIDICA is an end-to-end

diagnostic solution with a structured and easy to use workflow. Individual steps
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are automated, thus reducing labor and increasing efficiency. Time to detection

ranges between six and eight hours with only 30 minutes of hands-on time for a

batch of 6 samples [105, 106]. However, this technology fails to meet the ideal

turnaround time of 1-3 hours. This technology is not yet approved by the U.S.

Food and Drug Association (FDA) but is Conformit Europenne (CE) marked,

meaning that it complies with the European In-Vitro Diagnostic Devices Directive

and is commercially available in Europe [?,55,102,103]. However, it may fall short

in non-centralized clinical settings due to dependence on multiple bulky devices

and high upfront costs of about US$200,000 [101].

Table 3.2: Characteristics of studies reviewed for IRIDICA

ICU=Intensive Care Unit, ER=Emergency Room, SIRS=Systemic Inflammatory Response Syndrome,

NPV=Negative Predictive Value

SeptiFast (Roche Diagnostics)

SeptiFast is a commercially available (in the EU), broad-based microbe

identification test for whole blood [109]. It can identify over 16 bacteria, five Can-

dida species, and Aspergillus fumigates fungi using a 1.5 mL whole blood sample

within six hours. In addition, it can detect the mecA antibiotic resistance gene after

a sample tests positive for Staphylococcus aureus. The technology is CE-marked

but not yet FDA approved. The SeptiFast test integrates multiplexed real-time

PCR with probe hybridization and DNA melting analysis. The test begins with nu-

cleic acid extraction from whole blood under a contamination-controlled workflow.

This is followed by real-time PCR amplification using a combination of universal
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and specific primers in three parallel reactions for Gram-positive bacteria, Gram-

negative bacteria, and fungi [110]. The primers target the internal transcribed

spacer (ITS) regions between the 16S and 23S genes for bacteria and between

the 18S and 5.8S genes for fungi. PCR products are detected using species-specific

probes that fluoresce in one of the four detection channels. Species identified in the

same detection channel are subsequently differentiated using melting temperature

analysis [Figure 3.4] [110,111]. SeptiFast has a reported sensitivity between 3 and

100 CFU per mL, depending on the microorganism [110]. A meta-analysis of 41

studies reported a summary sensitivity and specificity of 68% (95 % CI 63%73%)

and 86% (95 % CI 84%89%) on a total of 10,493 SeptiFast tests compared against

blood culture [112]. Another meta-analysis that included only journal publica-

tions reported slightly better overall sensitivity and specificity of 75% (95 % CI

65%83%) and 92% (95 % CI 90%95%) based on 8438 tests [113]. Recent studies

show similar heterogeneous results [Table 3.3, Figure 3.2] [41,111,114–151]. These

numbers improved when studies incorporated clinical markers along with blood

culture results [135,136,148,152]. However, as much as 35% of the SeptiFast posi-

tive episodes were not supported by any microbiological or clinical data [120,131].

On the other hand, low sensitivity prevented SeptiFast from identifying culture-

positive organisms in 20-30% of the cases [153]. SeptiFast has been reported to

resolve polymicrobial infections with higher detection rates (2 = 4.50, P = 0.0339)

than blood culture [143, 144, 154–156]. However, detection of mixed pathogens

may be hindered by competing amplification due to the use of multiple specific

primes and needs further investigation [148]. In summary, SeptiFast may be con-

sidered broad-based, with coverage of the 25 most relevant pathogens for sepsis,

and incorporates the ability to detect mixed pathogen populations. However, it

is missing pathogens that are highly relevant in neonatal sepsis. The technology

considerably lowers the blood volume needed for testing compared to conventional

technologies, which could be beneficial for pediatric patients [111]. However, 1.5

mL of blood is excessive for neonates, for whom samples are limited to 1mL. Septi-

Fast, when used with MagNA Pure (Roche) automated DNA extraction, shortens

the complete workflow to 3.57 hours for eight parallel loads [126]. The diagnostic
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may be of added value in the management of patients with suspected sepsis who

are SeptiFast positive but blood culture negative [117,132,140,157,158]. However,

low sensitivity deems negative results non-actionable. Other limitations include

incomplete antibiotic resistance information and the inability to expand due to a

limited number of detection channels.

Table 3.3: Characteristics of studies reviewed for SeptiFast. PCR test was com-
pared to blood culture by identified organisms. Comparison was made by samples
if data by identified organism was unavailable

ICU=Intensive Care Unit, ER=Emergency Room, SIRS=Systemic Inflammatory Response Syndrome,

NPV=Negative Predictive Value
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Table 3.3: Characteristics of studies reviewed for SeptiFast,Continued

ICU=Intensive Care Unit, ER=Emergency Room, SIRS=Systemic Inflammatory Response Syndrome,

NPV=Negative Predictive Value
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Table 3.3: Characteristics of studies reviewed for SeptiFast,Continued

ICU=Intensive Care Unit, ER=Emergency Room, SIRS=Systemic Inflammatory Response Syndrome,

NPV=Negative Predictive Value

SepsiTest (Molzyme)

SepsiTest is a commercially available (in the EU) broad-based microbial

identification test with whole blood. It can identify over 345 bacteria and 13 fungi

in eight to ten hours from a 1 mL whole blood sample [159]. The technology is

CE-marked and commercially available in Europe, but not yet FDA approved.

SepsiTest integrates universal PCR with Sanger sequencing after a unique sam-

ple preparation step, whereby selective lysis and human DNA degradation is used

to improve sensitivity [160]. After DNA is isolated, PCR is performed with a

universal primer targeting the 16S and 18S rRNA genes for bacteria and fungi,

respectively. Bacteremia or fungemia is reported in under four hours. Further

purification followed by Sanger sequencing accomplishes species detection, which
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takes an additional 4-6 hours [Figure 3.4]. SepsiTest can detect as low as 10-80

CFU/mL with some organism bias [161, 162]. It has a reported sensitivity rang-

ing from 11% to 87% and higher specificity from 85% to 96% when compared to

blood culture in adult and pediatric patients with SIRS, sepsis, febrile neutrope-

nia and infectious endocarditis [Table 3.4, Figure 3.2]. Multiple studies report

promising NPV close to 97% against blood culture with detection of multiple fas-

tidious organisms [141,163,164]. Similar sensitivities ranging from 37.5% to 78.6%

and specificity from 86.8% to 94.4% were observed in studies adjusting for clini-

cal context by excluding contaminants [141, 165]. Additionally, as many as 45%

of PCR positive tests were reported as contaminants [165]. Pathogens detected

in the mixed populations were often identified as contaminants [163, 166]. In one

reported study, only one organism was identified in three of four blood culture

positive polymicrobial specimens [163].

SepsiTest is a broad-based test that requires a small amount of blood, ap-

propriate for both adult and pediatric patients. It can, in principle, detect polymi-

crobial infections; however, its ability to inform clinical decision making needs

further study. SepsiTest provides the option to automate DNA extraction (Se-

lectNA plus, Molzyme) and process up to 12 samples in one run, making it easy to

integrate into the clinical workflow. However, it does not provide any information

on antibiotic sensitivity. In addition, it still requires multiple steps that are not

integrated into one platform, increasing the risk of contamination and turnaround

time. This limits its utility for informing clinical decisions regarding targeted an-

timicrobial therapy. The use of Sanger sequencing is the time-limiting step for

SepsiTest. In the future, massively parallelized next generation sequencing tech-

nologies may enhance this approach and provide antibiotic resistance information.

In the next paragraph, we provide a short summary of such an emerging sequencing

technology.
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Table 3.4: Characteristics of studies reviewed for SepsiTest

Figure 3.2: Summary sensitivity, specificity of emerging PCR based methods.
Figure shows sensitivity plotted against specificity of test results compared against
gold standard blood culture for IRIDICA, SeptiFast and SepsiTest. Marker/symbol
area is proportional to number of paired blood tests in the study. Darker shades of
color signify larger blood volume used for the test. Clinical context is color coded as
per the legend on bottom right. (A) For IRIDICA we included 6 publications found
using literature search PubMed. (B) For SeptiFast we included paper publications
from 2 meta-analysis (summary statistics from analysis shown in black, along with
the confidence interval) in addition to 8 new relevant studies. (C) For SepsiTest
we included 5 publications found using literature search PubMed.
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Nanopore Sequencing, MinION

The MinION by Oxford Nanopore Technologies (UK) is a portable, real-

time, USB powered DNA/RNA sequencer with a 10 to 50 min library preparation

step. The main advantages of the MinION platform over other Next-Generation se-

quencing technologies are (i) rapid turnaround; (ii) low capital cost; and (iii) small

size. This technology was released to researchers for alpha testing as part of an

early access program in 2014 [167,168]. It is a generic sequencing system, that has

shown the potential for rapid identification of pathogens (under four hours [169])

directly from blood when combined with a PCR amplification step using the 16S

Rapid Amplicon Sequencing kit [167]. Because it sequences at the single-molecule

level, it offers new possibilities to study microbial diversity in clinical samples and

also allows for multiplexing of samples. The technology has been validated for

viral pathogen identification from 140uL whole blood in under 40 mins with 100%

sensitivity and specificity [170, 171]. For bacteria, it has only been validated in

clinical urine and feces samples [169, 171]. Polymicrobial pathogen identification

has been demonstrated using genomic DNA mixtures of 20 bacterial strains in

equal amounts (100,000 copies per organism per L) [172–174]. By using specific

primers that amplify a wide range of bacterial 16S rRNA gene, 90% of the full-

length 16S rRNA could be reconstructed with the MinION Nanopore technology.

However, pathogen assignment could be completed for only 8 of the pathogens from

the DNA mixture due to low sequencing coverage. This was attributed to non-

optimized 16S PCR amplification, despite the use of universal primers [172]. This

points to the need for optimization and validation of this technology as a complete

system in whole blood. Other improvements are needed to transition MinION into

the clinic. These include automation and standardized external and internal spike-

in controls that run in parallel to prevent carryover contamination [175], as well

as optimization of the bioinformatic pipeline used to identify organisms, resistance

genes, and/or mutations [169,176,177].
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Universal digital High Resolution Melt (U-dHRM)

The Universal-digital High Resolution Melt (U-dHRM) platform is a broad-

based microbial identification technology used with whole blood samples. It can

currently detect 37 bacterial pathogens with single organism and single genome

sensitivity, as well as resolve polymicrobial infections in under four hours using

less than 1 mL whole blood [178, 179]. This technology is in the validation phase

and is not yet commercially available. U-dHRM integrates universal digital PCR

(dPCR) with high resolution melt (HRM) on a microfluidic chip to enable probe-

free differentiation and quantification of bacteria within a sample [179]. The test

procedure begins with DNA extraction followed by sample digitization, which sep-

arates all pathogen genomes into their own PCR reaction by spreading the sample

across a microfluidic chip containing 20,000 picoliter-sized reactions. In each re-

action, universal dPCR amplification takes place targeting the 16S rRNA gene.

Subsequently, precise heating and simultaneous imaging are performed on all re-

actions to generate HRM melt curve fingerprints for each pathogens 16S gene

sequence [Figure 3.2]. HRM generates sequence specific melt curves by unwind-

ing DNA amplicons in the presence of a fluorescent double-stranded intercalating

dye [180–183]. Each distinct DNA sequence melts uniquely, generating a loss of

fluorescence signature as a function of temperature that is then used for species

identification [Figure 3.4]. A supervised machine learning algorithm automatically

identifies the microbial species by its melt curve. U-dHRM has reported a classifi-

cation accuracy of 99.9% for the 37 pathogens tested, with load quantification for

individual pathogens [178]. The technology was validated in mock blood samples,

demonstrating its ability to identify pathogens in the presence of excessive human

DNA [179].
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Figure 3.3: U-dHRM process schematic

U-dHRM is rapid, broad-based test to detect multiple organisms in a blood

sample of less than 1mL, which is suited for pediatric patients and neonates. While

it is currently limited to 37 bacteria relevant to neonatal sepsis, it has the potential

to expand to include additional bacteria, fungi, and viruses in the future. Since

this technology is probe-free and digitized, it has the potential to detect all sepsis-

causing organisms contained in a single sample, including polymicrobial infections.

Early studies show promising single genome sensitivity and 99.9% specificity, but

further evaluation with clinical blood samples is needed. In addition, automation

is required to accomplish a sample-to-answer time under 3 hours. The system is

easy to use and can incorporate detection of antibiotic resistance determinants.

Its machine learning framework provides the potential identification of new and

unknown pathogens and allows for an expanding library. The speed and simplicity

of U-dHRM along with its integrated technology platform suggest a promising first-

pass screening method for neonatal sepsis. The technology also shows the potential

to deliver at or near the point-of-care diagnosis. The possibility to move U-dHRM

towards a portable, inexpensive system can be of immense value to non-centralized

systems in low resource settings.
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Summary of Modern Nucliec Acid Amplification Technologies

In summary, the results of clinical studies using PCR-based technologies

are heterogeneous. For the most part, these results are reported in comparison

with the gold standard blood culture, which is far from ideal and may contribute

significantly to this heterogeneity. Blood may be drawn with varied timing, at dif-

ferent bodily locations, and in varying amounts for blood culture. This contributes

to the challenge of validating emerging technologies against blood culture. Hence,

it is important to interpret diagnostic results in conjunction with clinical context.

(i) Interpreting false positives against blood culture.

One of the major advantages of a PCR-based technology is its ability to

detect non-viable, fastidious and unculturable organisms that would otherwise be

missed by blood culture. A PCR-positive, blood culture negative specimen may

reflect a real pathogen, yet leads to a biased lower sensitivity and specificity value

of the PCR test. It should be noted that false positives could also be due to

cell-free pathogen DNA circulating in the blood originating from an old or con-

trolled infection or contamination [184]. Both IRIDICA and SepsiTest have re-

ported higher rates of contamination than blood culture [107, 165]. This is to

be expected, since PCR tests that accomplish broad range detection capability by

using universal primers are able to amplify non-viable organisms. In addition, Sep-

siTest and IRIDICA involve more sample transfers steps in comparison to SeptiFast

and U-dHRM [Figure 3.4]. This further increases the risk of contamination [165].

Both SeptiFast and IRIDICA use semi-quantitative methods to detect contami-

nants and limit false positives. SeptiFast uses a cut-off value that represents the

number of PCR cycles at which DNA is adequately amplified to identify contam-

inants [185, 186]. IRIDICA also uses similar thresholds based on the number of

genomes per well to limit contaminant and reduce false positives. However, these

techniques may need further optimization as they can conversely lead to false nega-

tives [104,186]. Absolute load quantification in conjugation with clinical character-

istics may improve diagnostic accuracy as well [185]. An emerging theme is a need

for integrating quantitative results with clinical context, potentially provided by a
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machine learning framework. For example, a diagnostic algorithm has been pro-

posed that uses a patients CD64 index to determine whether to perform SepsiTest.

This approach showed improved detection of pathogens in patients with suspected

BSI [187]. A similar approach has been suggested in conjunction with neutrophil-

lymphocyte count ratio and levels of presepsin and procalcitonin [188, 189]. U-

dHRM manages contamination through the use of small reaction volumes, which

keeps contaminants from overwhelming low level pathogen DNA in the amplifica-

tion step. This also enables absolute quantification, since each organisms genome

is amplified individually, without affecting detection sensitivity [190]. It also inte-

grates the amplification (dPCR) and detection (HRM) steps into a single closed

system, which eliminates contamination due to sample transfer and reduces hands-

on time [178]. Importantly, the ease of use, speed, and quantitative power of this

technology could enable repeated testing to track the appearance and removal of

bacterial DNA in the blood during antibiotic treatment. In combination with host

inflammatory markers, such repeated testing could lend deeper insights into the

progression of sepsis. Having the ability to conduct repeated testing over time

could reveal novel disease dynamics that may contribute further understanding of

pathogen detection inconsistencies that often arise in technology comparison stud-

ies. U-dHRM also holds promise to address the need for point of care diagnostics,

whereas other commercially available PCR tests typically need bulky and expen-

sive equipment that are not feasible for use in non-centralized systems. Advertised

turnaround times for such commercially available technologies are optimistic for

non-centralized and low resources settings, where sample to result time can be as

high as 15.9 hours [146].



43

Figure 3.4: Comparison of the processes of the pathogen-targeted PCR-based
technologies

(ii) Interpreting false negatives against blood culture.

While false positives may result in the inaccurate overuse of antibiotics and

contribute to the generation of resistant organisms, false negatives and the in-

accurate withholding of antibiotic treatment are more immediately threatening to

patient welfare [191]. Accurately withholding empiric antibiotic use will require an

improved sensitivity of PCR technologies (>98% negative predictive value). PCR

tests can be limited in their ability to detect pathogens for a variety of reasons [191],

including the need for effective lysis across a broad range of microbes, the inter-

ference of human DNA or other inhibitory substances carried over from blood into

the assays, the effect of off-target interactions, and amplification bias [192,193]. It

is interesting to note that even though all the above technologies rely on an initial

PCR amplification step for microbe detection followed by a secondary step for

species identification, they differ in their diagnostic sensitivities. The two major

contributors to these differences are 1) the approach used for reducing interfer-

ence from human DNA, and 2) the amplification strategy using either a single

universal primer (SeptiTest, U-dHRM) or multiple broad range or species specific
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primers (IRIDICA, SeptiFast), which may suffer from amplification competition

[Figure 3.4]. All commercially available PCR tests have optimized their workflow

to improve pathogen DNA amplification, yet none show promise to replace blood

culture due to limited sensitivity in clinical specimens [Figure 3.2]. The IRIDICA

platform has recently increased sample volume five-fold, from 1 mL to 5 mL, under

the assumption that poor sensitivity arises from inefficient capture of pathogen in

low volume blood samples. The enhanced sensitivity of U-dHRM is attributed

to the diluting effect of the digital reaction format on inhibitory substances and

the optimized dPCR reaction conditions ensuring amplification of single copies of

bacterial DNA. U-dHRM has been shown to significantly reduce false negative er-

ror rates compared to traditional dPCR, indicating that amplification errors can

be reliably identified and accounted for [178]. In addition, U-dRHM is the only

test that provides absolute load quantification, to enable resolution of polymicro-

bial infections and contamination. Further investigation in clinical samples will

determine how this approach compares with commercially available technologies.

3.3.2 Host-targeted technologies

SeptiCyte LAB (Immunexpress Inc, Seattle, Washington).

SeptiCyte LAB is the first RNA-based technology that targets specific hu-

man inflammatory markers using 2.5 mL whole blood for sepsis determination in

4-6 hours [194]. It has 510(k) clearance from U.S. Food and Drug Administration

(FDA) for use as an aid in differentiating infection-positive (sepsis) from infection-

negative (SIRS) systemic inflammation in critically ill patients on their first day of

ICU admission. SeptiCyte LAB is a host response, reverse transcription quantita-

tive polymerase chain reaction (RT-qPCR) based test that quantifies the relative

expression levels of four RNA biomarkers (CEACAM4, LAMP1, PLA2G7, and

PLAC8) known to be involved in innate immunity and host response to infection.

In the discovery phase, microarray analysis was used to identify RNA biomark-

ers that could differentiate patients with sepsis from patients with post-surgical

infection-negative systemic inflammation [195]. These biomarkers were then con-

verted to a RT-qPCR format and used to develop the Septicyte LAB test for sep-
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sis(108). SeptiCyte Lab is rapid, robust and accurate for classifying patients with

infection-related sepsis across gender, race, age and date of ICU admission [195].

It is suggested to be an indicator of the probability and not the severity of sep-

sis [196, 197]. In a pilot study using 2.5 mL of blood, SeptiCyte LAB effectively

discriminated between two groups of critically ill pediatric patients (40 children

with clinical severe sepsis syndrome versus 30 children with congenital heart dis-

ease). Area-under-curve (AUC) in receiver operating characteristic (ROC) curve

analysis, which describes the probability that a test will rank a positive incident

higher than a negative one when chosen at random, was used to discriminate be-

tween the two cohorts. Even for different RNA analysis techniques an AUC value

¿ 0.9 was obtained (0.99 vs 0.95), indicating high accuracy. In another prospective

observational study with 129 adult ICU patients, AUC of 0.88 was obtained to dis-

criminate SIRS from sepsis. SeptiCyte Lab scores have shown the ability to classify

sepsis better than individual or a combination of other clinical, demographic, and

laboratory markers [198]. SeptiCyte is a promising, novel, broad-based diagnostic

for sepsis. The current 4-6 hours of turnaround time can potentially be reduced

to a targeted 1.5 hours by optimizing the RT-qPCR platform on which the test is

implemented. One drawback is the requirement of 2.5 mL of blood, which is not

feasible for use in pediatric and neonatal populations. Additionally, this test does

not provide any information about the pathogen or its antibiotic resistance. More

clinical studies across different patient populations are needed to confirm Septi-

Cytes ability to improve outcomes in the clinic. Nonetheless, it has the potential

to play a role in reducing inappropriate empirical antibiotic use, which could be

of tremendous value in light of recent antibiotic resistance epidemic. Combining

SepticCyte with pathogen and resistance targeted tests that work within the same

critical timeframe could generate significant synergy with the potential to enhance

the overall negative predictive value of these diagnostics and their impact on an-

tibiotic use. Further, such combined approaches may deepen our understanding of

the progression of infection related sepsis.
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3.3.3 Amplification-Free Technology

Droplet digital detection technology.

An emerging technology termed Integrated Comprehensive Droplet Digital

Detection (IC 3D) claims to selectively detect individual bacterial species directly

from small quantities of whole blood within 1-4 hours [199]. In a one-step, culture-

and amplification-free process, the IC 3D method provides quantitative bacterial

detection with single-cell sensitivity. IC 3D combines DNAzyme-based sensors with

real-time droplet microencapsulation and a particle counter. First, blood samples

are directly partitioned into billions of micrometer-sized droplets containing bacte-

ria and a solution containing a fluorescent DNA sensor. The sensor is a DNA probe

conjugated to a fluorescent reporter. Upon hybridizing to the target sequence, the

probe is cleaved and generates a fluorescent signal. Thus, droplets containing

bacterial genetic material can be identified by fluorescence. A three-dimensional

particle counter is then used to rapidly, robustly, and accurately quantify the flu-

orescent droplets containing bacteria(113,114). Distribution of the blood sample

into many small droplets minimizes the interference from components of blood,

making it possible to directly detect target bacteria without sample preparation

and purification [200]. In a proof-of-concept study, where blood was infused with

E. coli, the IC 3D confirmed the presence or absence of this target bacteria within

an hour. Quantitative measurement of the amount of E. coli was accomplished in

about 3.5 hours. In samples containing 1 cell per mL, the assay detected bacteria

about 77% of the time [199]. This technology accomplishes rapid pathogen detec-

tion with a small blood volume at single-cell sensitivity in a relatively easy to use

format. Additional probes could be added to detect antibiotic resistance markers.

However, the current system design is limited by its ability to detect only one

bacteria species (e.g. E. coli) per analysis. There is potential to expand the sensor

set and develop a multiple-wavelength detection system for multiple bacteria or

pathogen detection [199]. However, the extent of this expansion would be limited

by a small number of fluorescent channels and would not be able to incorporate

detection of emerging pathogens. Further, the specificity of this technology has not

yet been determined and this technique has not yet been validated using clinical
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samples.

3.3.4 Machine Learning Applied to Molecular Detection

Patterns and Clinical Data for Diagnosis

The predictive power of machine learning techniques applied to the clinical

data gathered for patients can be a valuable tool to improve diagnosis and man-

agement of sepsis. Even though it is difficult to discuss purely electronic medical

record (EMR) based machine learning algorithms in the light of the characteristics

for ideal sepsis diagnostics, we think it is worth summarizing some of the promis-

ing machine learning approaches that have been evaluated in a clinical cohort.

The combination of molecular diagnostics with EMR machine learning approaches

could provide valuable synergy to impact the clinical management of sepsis.

HeRO score (MPSC)

Recently, heart rate characteristics (HRC) have been used in clinics to pro-

vide an early warning of patient distress. Available commercially as the HeRO

score algorithm [201], the technology uses signal processing and machine learning

to identify subtle irregularities in heart rate variability. The HRC index used by

HeRO was shown to reduce mortality from 10% to 8% in an industry sponsored

randomized controlled clinical trial of 3,003 VLBW infants [202]. However, the

mechanisms for mortality reduction remain unclear. An independent, academic

study of HRC monitoring in VLBW infants reported a higher utilization of antibi-

otics and more sepsis evaluations in a cohort with HRC monitoring as compared

to controls without monitoring. This study also determined that no differences

existed in the rates of blood culture positive sepsis or clinically suspected sepsis

as a function of HeRO index [203]. An additional single-center retrospective study

reported that elevated HRC scores had limited ability to detect bloodstream in-

fection among neonates in the NICU, emphasizing that HRC alone may not be

adequate [204]. Thus, HeRO may represent another technology that could provide

synergy in an integrated format with other diagnostic measures.
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Other machine learning approaches for sepsis diagnostics. Unlike the HeRO

score, which uses a single modality, heart rate variability, a machine learning frame-

work also allows the incorporation of multiple diagnostic markers from large clinical

datasets. One study reported the use of canonical correlation analysis (CCA) and

sparse support vector machine (SSVM) classifiers to select the best subset biomark-

ers, such as band neutrophils, platelets, neutrophil CD64, white blood cells, and

segmented neutrophils in a dataset of 1,383 sepsis evaluations from 749 neonates

with suspected sepsis in the NICU [205]. Another research group developed predic-

tive models for late-onset neonatal sepsis using EMR data from 1,826 NICU infants

with 299 sepsis evaluations [206]. This group developed a variety of machine learn-

ing algorithms and their models matched the treatment sensitivity and specificity

of clinicians in blood culture positive cases. These algorithms need to be validated

in a prospective study, but present a promising opportunity for improving early di-

agnosis and antibiotic management practices in the NICU. The recently developed

targeted real-time early warning score, which incorporates continuous sampling

of variety of physiological inputs including platelets, ratio of blood urea nitro-

gen (BUN) to creatinine, arterial pH, temperature, bicarbonate, respiratory rate

(RR), white blood cell count, systolic blood pressure (SBP), heart rate, and heart

rate/SBP (shock index), was able to predict the development of septic shock in

adult ICU patients 28 hours before the clinical onset [207]. This machine learning

technique allows for the use of heterogeneous datasets to inform clinical decisions.

The future may see the use of Bayesian statistical methods to enable incorporation

of EMR data with broad-based molecular detection technologies, thus providing

significant potential to increase the reliability of these technologies. In this era

of large-scale data integration, combining broad-based techniques with the EMR

presents tremendous opportunities for timely and accurate diagnosis and manage-

ment of sepsis.
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3.4 Conclusion

An exciting new era of molecular diagnostics for bloodstream infections

is emerging through innovations in sample preparation, single-molecule detection

methods, sequencing, and applications of machine learning. Yet each emerging

technology harbors unique benefits and drawbacks. For example, U-dHRM ad-

dresses the challenge of detecting in low blood volume with high sensitivity while

resolving polymicrobial infections, all in a potentially portable format and clini-

cally actionable timeframe. However, sample preparation and handling are still

required which increases the time and may lead to some loss of sensitivity. Like-

wise, SeptiCyte provides a robust way to detect whether a pathogen is present

based on host response and provides this information in a similar timeframe as

U-dHRM, but requires a higher volume of blood and initial sample preparation.

The IC3D technology is limited in the number of targets it can detect in a single

sample but is capable of skipping sample preparation entirely to accomplish the

simplest and most direct testing from blood samples. This may be of significant

value for rapidly tracking the spread of individual organisms in the context of out-

breaks and hospital acquired infections. Further, in the era of big data, advances

in the field of machine learning can add patient-specific contextual information to

each diagnostic test to potentially increase their sensitivity. The integration of host

and pathogen targeted diagnostic technologies and their combination with EMR

datasets using machine learning constitutes a promising new frontier. Combining

diagnostic technologies that build on distinct approaches could be a rapid way to

improve positive and negative predictive power and truly impact antibiotic usage

in the clinic. Together, these emerging technologies have the potential to identify

microorganisms and provide relevant subspecies and antibiotic resistance informa-

tion in a clinically relevant timeframe that is much shorter than that currently

required for blood culture. Such an integrated approach may overcome the limi-

tations of each technology individually to facilitate targeted and precise antibiotic

use.

In the next chapters, we focus on optimizing the U-dHRM platform, dis-

cussed above as an emerging technology. As explained previously, the U-dHRM
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has several advantages that make it one of the more promising technologies for

neonatal sepsis (Figure 3.4). For successful implementation in the clinic, we set

out to design a system for generation of reliable melt curves with minimal run to

run variation and develop algorithms to identify pathogens using these melt curves.
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Chapter 4

Development of Universal Digital

High-Resolution Melt Device

4.1 Abstract

DNA melting analysis provides a rapid method for genotyping a target

amplicon directly after PCR amplification. To transform melt genotyping into

a broad-based profiling approach for heterogeneous samples, we previously pro-

posed the integration of universal PCR and melt analysis with digital PCR. Here,

we advanced this concept by developing a high resolution digital melt platform

with precise thermal control to accomplish reliable, high-throughput heat ramp-

ing of microfluidic chip digital PCR reactions. Using synthetic DNA oligos with

defined melting temperatures, we characterized sources of melting variability and

minimized run-to-run variations. Within-run comparisons across a 20,000 reaction

chip revealed that high melting temperature sequences were significantly less prone

to melt variation. Further optimization using bacterial 16S amplicons revealed a

strong dependence of the number of melting transitions on heat ramping speed

during curve generation. These studies show that reliable high resolution melt

curve genotyping can be achieved in digital, picoliter-scale reactions and demon-

strate that rate-dependent melt signatures may be useful for enhancing automated

melt genotyping.

51
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4.2 Introduction

A technology that accomplishes fast, easy, inexpensive, and sensitive DNA

screening is an attractive way to profile samples prior to or in lieu of deeper se-

quencing investigations. The increased availability of deep sequencing facilities

to identify low-level genotypes in complex samples has made deep sequencing an

increasingly common research tool. However, the cost, time, computation, and

expertise required to carry out deep sequencing still represent significant hurdles

for use in many applications [208–210]. High resolution DNA melting analysis,

wherein double stranded DNA is heat denatured into its single stranded form in

the presence of fluorescent intercalating dyes is capable of rapidly genotyping se-

quences. This closed-tube method is performed directly after PCR amplification

of specific targets and has traditionally been used for 1) mutation or single nu-

cleotide variation (SNV) detection based on melting temperature (Tm) shifts or

2) heterozygote detection based on a curve shape change when aligned to the ho-

mozygous sequence melt curve [211, 212]. In combination with machine learning

algorithms and universal primers or adapters, we and others have proposed that

high resolution melt analysis could be extended to accomplish broad-based se-

quence identification tasks such as microbial or microRNA profiling [178,213–221].

However, in its traditional PCR well-plate format, melt analysis of heterogeneous

samples precludes detection of low level genotypes and generates complex melt

curves that are difficult to interpret [218,222,223].

We conceived digital melt analysis to overcome these limitations. It involves

partitioning a heterogeneous sample into many small volume PCR reactions, such

that each contains zero or one target molecule, and subsequently conducting uni-

versal PCR and melt analysis on all reactions. Since each reaction amplifies from

a single target molecule, each digital melt curve is a sequence fingerprint of only

one sequence within the heterogeneous sample. Subsequently, machine learning

algorithms are used to automatically identify melting curve signatures and quan-

tify the number of reactions containing each signature. This form of melt analysis

distinguishes itself from previous forms by relying not only on Tm or aligning melt

curve shapes, but on all the temperature points encompassed by the curve. Like-
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wise, digital melt analysis distinguishes itself from digital PCR (dPCR) by virtue

of its goal to amplify an entire class of sequences through universal priming for

subsequent identification, as opposed to the amplification of a specific sequence by

targeted priming for quantification purposes only.

Commercially available digital PCR systems accomplish sample partition-

ing that can effectively isolate sequences from a mixture into homogeneous digital

reactions. However, these systems cannot be extended to accomplish high resolu-

tion digital melt analysis, as nearly all have heating and imaging components that

are physically separated into individual pieces of equipment [190,224]. Microfluidic

droplet-based digital PCR devices (Bio-Rad) perform endpoint PCR detection in

a continuous flow format without temperature control, one droplet at a time, pre-

venting in-situ, real-time monitoring of fluorescence in droplets needed for digital

melting. A microvalve-based digital PCR devices by Fluidigm is the only system

with integrated heating and imaging; however the capabilities of this system for

performing high resolution melt is unclear and the cost per sample associated with

the system limits our ability to test [190]. Therefore, we developed a dedicated

digital melt analysis platform [224]. Demonstrating proof-of-principle of digital

melt analysis required integration of a dPCR chip to partition the sample, with

sensitive optics to capture dim intercalating dye fluorescence from picoliter scale

reactions, and a chip-heating device. Further, to achieve fully digital partitioning,

a dPCR chip with 20,000 partitions was desired [178,222]. Although our integrated

device showed the capability of capturing digital melt curves, a significant limi-

tation remained due to the poor reproducibility of the temperature ramp, which

altered the shape and melting temperature (Tm) of the amplicons from run-to-

run. This limitation hampers the ability of melt curve database matching through

machine learning to reliably recognize sequence melt fingerprints and also severely

restricts the scalability of the database, limiting the breadth of detection available

for profiling. Well-to-well variations in loading, heating, and evaporation could

also negatively impact the ability of dPCR to quantify and digital melt analysis

to profile, but these have not been characterized.

Commercial melt curve analysis instruments, designed for traditional large
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volume reactions, suffer from similar melt curve reliability issues depending on

sample format and heat transfer methods. A recent study found that nine melt

instruments vary significantly in melt precision, offer limited ability to achieve user-

defined heating and imaging rates, and struggle to accurately collect fluorescence

data from multiple wells [225]. An earlier study also found that instruments that

accommodated high-throughput 96-well sample formats produced Tm differences

as large as 1.24◦C across the plate, forcing comparison of melting curve shapes to

often require shifting and alignment of curves at the users discretion [226]. Further

complicating matters is the fact that different instruments use different ways of

specifying the melting and imaging rates that require complex conversions and

empirical measurements to estimate the melt rate [227]. Melt curve resolution

relies on matching an imaging rate to a heating rate, both of which are presumed

to be constant. Imaging rates are more easily controlled than heating rates, and

the presumption of a constant heating rate (linear with constant slope) cannot be

taken lightly. Manufacturers typically focus optimization on a single melting rate

for the highest quality of data, which limits the flexibility of their system [179].

There remains a significant need for improved uniformity and linearity of thermal

control during melting analysis in general, and especially if melt analysis is to

achieve the goal of broad-based melt genotyping in a higher-throughput format.

The aim of the current study was to design and characterize a robust high

resolution digital melt heating device to minimize melt curve variation across

20,000 reactions and across runs for reliable automated identification. Heating

rate linearity and reproducibility were controlled and characterized using contin-

uous two-point physical temperature measurements. Further characterization and

optimization of well-to-well and run-to-run variations was carried out using DNA

oligos as Tm calibrators and amplicons from the bacterial 16S gene. The devices

ability to precisely control various user-defined heating rates revealed a novel de-

pendence of melt curve dynamics on melting rate that was independent of imaging

rate (fluorescence measurement/◦C), or melt curve resolution. Within-run com-

parisons across the 20,000 picoliter scale reactions also revealed that high Tm

sequences were significantly less prone to melt variability.
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4.3 Results

System Design.To optimize the heat ramp control of the microfluidic

chip for identification of sequence-specific melt curve signatures, we redesigned the

thermal control system of our previously described digital high resolution melt

platform. Previously, the chip was housed in a copper block, which was heated

or cooled by a thermoelectric (TEC) device. To precisely control the TEC, we

added a proportional-integral-derivative (PID) controller with temperature feed-

back from the copper block. The feedback was provided by a highly accurate

resistance temperature detector (RTD) sensor that was embedded in the middle

of the copper block. As described previously, a thin layer of thermal grease was

added between the chip, copper block, and the TEC device to ensure efficient heat

transfer. Heating dissipation from the reverse side of TEC was enhanced by at-

taching a fan to the aluminum heat sink. The speed of the fan was also controlled

by the PID controller, commensurate with the sink temperature, using a negative

temperature coefficient thermistor (NTC). The addition of the fan improved our

ability to precisely heat to higher temperatures and allowed us to rapidly cool the

chip back to room temperature, decreasing the wait-time between two consecutive

runs. The use of an off-the-shelf digital PCR chip did not allow us to place a

temperature probe inside the chip in use. Therefore, to ensure that the thermal

control achieved for the copper block efficiently transferred to the chip, we placed

a surrogate chip with a temperature sensing thermocouple embedded at its center

next to our test chip on the copper block. The entire chip-heating device assembly

was held in place inside a custom designed 3D printed stage adaptor to securely

mount the device on a microscope for imaging (Figure 4.1). While the copper block

was independently controlled by standalone software, the proxy temperature mea-

surement from the surrogate chip was synchronized with fluorescent imaging by

the microscope control software (NIS-Elements). However, synchronizing imaging

with temperature measurement required the use of an NIS-Elements compatible

temperature acquisition system (Tokai Hit Co., Japan) using a K-type thermocou-

ple probe. This integrated imaging and temperature acquisition system limited the

resolution of temperature measurement to 0.1◦C with a temperature sampling rate
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of 0.2Hz irrespective of the imaging rate. Therefore, our strategy was to precisely

control the copper block temperature, establish a repeatable relationship between

the copper block-embedded RTD and the surrogate chip-embedded thermocou-

ple, and then use the integrated thermocouple temperature data and fluorescence

imaging data to plot melting curves.

Figure 4.1: Schematic of U-dHRM platform

Thermal Profile Characterization. The PID controller provided tem-

perature control of the copper block as per the desired ramp rate of 0.1◦C/s. The

maximum difference in the expected block temperature and observed tempera-

ture recorded using the RTD embedded within the block was measured as 0.004◦C

(Figure 4.2A). Across all runs, the expected ramp rate of 0.1◦C/s was observed

with maximum root mean squared error (RMSE) of 0.001◦C (Figure 4.2B). This

confirmed that precise temperature control of the copper block was achieved by

our new heating system.
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Figure 4.2: Controller performance.(A)Box plot of error (observed - expected
temperature) for the copper block across all runs with temperature calibrator at
a ramp rate of 0.1◦C/s. Red crosses denote outliers that are larger than the 75th
percentile plus 1.5 the interquartile range or smaller than the 25th percentile minus
1.5 the interquartile range. This corresponds to approximately ±2.7σ and 99.3%
coverage assuming normal distribution of the data. At least 2000 wells were chip
were used per run. (B) Table with slope and root mean square error for each run
shows the highly reproducible ramp rate of 0.1◦C/s across runs with average root
mean squared error of 0.001◦C.

Next, we investigated the relationship between the block temperature and

surrogate digital chip temperature. Figure 4.3 shows temperature ramp measure-

ments taken using the surrogate chip-embedded thermocouple for the same runs

as depicted in Figure 4.2A for the copper block-embedded RTD. Across all runs,

the thermocouple measured a ramp rate of approximately 0.98◦C/s on the chip, as

compared to 0.1◦C/s measured with the RTD in the block. The relationship be-

tween the thermocouple and RTD was highly repeatable across seven runs (Figure

4.2B and Figure 4.3A). To test the linearity of the slope, we analyzed different tem-

perature ranges of the thermocouple readings and found the slope to be consistent.

This justified the use of a straight-line fit for the thermocouple data, revealing a

maximum RMSE of 0.05◦C across runs (Figure 4.3A). Instantaneous heating rates

on the chip were also analyzed and showed no significant deviation (R2 = 1) from

linearity due to heat transfer losses from block to chip (Figure 4.3B) to achieve

precise and linear heating control on the digital PCR chip.
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Figure 4.3: Surrogate chip behavior.(A) Slope and RMSE of fitted thermocouple
temperature for each run. The slope of entire run is close to the slope for data in
three sections, justifying the use of straight-line fit. Root mean squared error was
calculated by comparing the polynomial fit with degree 1 and observed data. (B)
Instantaneous ramp rate of acquired thermocouple measurements.

Melt Characterization with Temperature Calibrator sequences.

In theory, if heat ramping is linear and heat transfer is efficient, any inaccuracies

in the absolute temperatures measured during the melting process could be reli-

ably removed using temperature calibrator sequences. Such control DNA oligos of

known Tm can be included in all reactions and designed so that they melt outside

of the amplicons melting temperature range [228]. As long as the heat ramping

rate is linear and of a constant slope, the distance between the calibrator Tm

and the amplicon Tm is reliably maintained. Therefore, temperature offset errors

occurring from run-to-run or well-to-well because of imperfections in temperature

control or uniformity can be removed by simply shifting each melt curve to align the

calibrator Tm peaks to their correct melting temperature. Therefore, to further

characterize the reliability of melting behavior on the chip, we used three syn-
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thetic oligo sequences with predicted Tm ranging from 57-93◦C to generate melt

curve data for run-to-run and well-to-well variability analysis. These temperature

calibrator sequences varied in GC content and length to achieve a high( 92.9◦C),

mid( 62.8◦C) and low( 57.3◦C) melting temperatures. For this analysis, melt curves

were generated on-chip at a heating rate of 0.1◦C/s across seven replicate runs over

several days. Figure 4.4A shows plots of derivative melt curves across the runs.

Figure 4.4: Derivative melt-curves.Negative derivative of melt (EvaGreen normal-
ized by ROX) with respect to temperature for temperature calibrator sequence.
The figure shows difference between Tm-interval and their denotation.

Run-to-run variation. First, we applied a peak detection algorithm to

the derivative melt curves (Figure 4.4) to find the Tm melting peaks in a +/-3C

region around the predicted Tm for each calibrator sequences (uMelt(26): Tm-low

57.3◦C, Tm-mid 62.8◦C, and Tm-high 92.9◦C). Then, we calculated the difference

between the Tm of each calibrator to characterize run-to-run variations in linear-

ity. Linearity differences among runs would be expected to produce stretching or

compression of the melting curves along the temperature axis that would change

the interval between Tm peaks. However, if linearity is consistent, calibrator Tm

peaks can be shifted to match their predicted values to overcome offset errors.

Thus, the high, mid, and low Tm-intervals were calculated as the difference between
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Tm-high and Tm-low (Tm-interval-HL), Tm-high and Tm-mid (Tm-interval-HM),

and lastly Tm-mid and Tm-low (Tm-interval-ML). The mean of these Tm-intervals

within runs is shown in Figure 4.5A. To compare across runs, we calculated the

standard deviation of these mean Tm-intervals. The Tm-intervals varied across

runs with a standard deviation less than 0.1◦C for all the three intervals, showing

run-to-run-repeatability within the accuracy and precision limits of the combined

temperature acquisition system (see System Design) and imaging system. Next,

to quantify the spread of the data across runs, we calculated the median absolute

deviation (MAD) for the difference of the Tm-intervals of each well to the mean

Tm-interval that is representative of the chip. Figure 4.5B shows similar magni-

tudes of spread in well-to-well variation across runs. These run-to-run variability

results are within the expected error limits of the system. However, the spread

was slightly higher in magnitude for the Tm-interval-ML data.

Figure 4.5: Controller performance using three temperature calibrators with
known melting temperatures (A) Mean of difference in Tm-intervals are shown.
(left) Difference between Tm-High and Tm-Low (Tm-interval-HL) (middle) Tm-
High and Tm-Mid (Tm-interval-HM), (right) Tm-Mid and Tm-Low (Tm-interval-
ML). (B) Intra-run variability associated with each run. Median absolute deviation
(MAD) for (left) Tm-interval-HL (middle) Tm-interval-HM, (right) Tm-interval-
ML. The MAD varied from 0.1 to 0.11, 0.09 to 0.12 and from 0.11 to 0.14 for
Tm-interval-HL, Tm-interval-HM, and Tm-interval-ML, respectively.
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Well-to Well variation. Once we established that the repeatability of

Tm-intervals between runs were within expected error limits of the system, we

sought to characterize the intra-run variability. This variability does not depend

on the heat ramp, but rather the thermal gradient, loading differences, and evap-

oration anomalies across the chip. Interestingly, when we then investigated vari-

ability in Tm peak values across the chip by plotting the difference of the Tm

peaks of each well to the corresponding mean Tm for the chip, we found a lower

intra-run variability in Tm-High as compared to Tm-Mid and Tm-Low (Figure

4.6A). The largest median absolute deviation for Tm-High was 0.1◦C, in compari-

son to the higher values of 0.13◦C, and 0.14◦C observed for Tm-Mid and Tm-Low,

respectively. Scatter plots for the difference in Tm-High and Tm-Mid from their

representative mean-Tm values for each chip revealed higher variability in the Tm-

Mid (Figure 4.6B). Further, Tm-Low behaved similar to Tm-Mid. To investigate

the location of wells with higher variability, we plotted the difference of Tm of each

well from the mean value (Figure 4.6C). This showed higher variability in Tm-Low

and Tm-Mid as compared to Tm-High throughout the chip reactions, with the

majority of outliers ( +/-2.7 SD) located around the edges and corners of the dig-

ital chip. Analysis of the ROX reference dye intensity across the chip also revealed

wells with significantly lower intensity located at the edges and corners; however,

this pattern was not highly correlated with the Tm variability (Figure 4.6C). These

results suggest that the high calibrator sequence is inherently less susceptible to

variability in melting than the low and the mid calibrator sequences, and further

that there is a spatial dependence of variability coinciding with the well location

on the chip.
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Figure 4.6: Intra-run variability.(A) Variation in (left) Tm-High (middle) Tm-
Mid (right) Tm-Low. Variation was calculated as difference in Tm for each well
about the mean Tm of the chip. Red crosses denote outliers that are larger than the
75th percentile plus 1.5 the interquartile range or smaller than the 25th percentile
minus 1.5 the interquartile range. This corresponds to approximately±2.7σ and
99.3% coverage assuming normal distribution of the data. At least 2000 wells were
chip were used per run. (B) Variation in Tm-Mid plotted against variation in
Tm-High. Figure shows a greater variation in Tm-Mid as compared to Tm-High
(C) Variability in (left) Tm-High, (middle) Tm-Mid and (right) Tm-Low with
respect to spatial location of wells on the chip for a characteristic run. Absolute
temperature difference about the mean Tm of the chip is shown in false color as
indicated in the key to the right.
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Ramp Rate Dependence of Melt Curves. Having fully characterized the reli-

ability of our melting device hardware and validated its performance biochemically,

we next sought to investigate the dependence of the melt curve characteristics on

ramp rate. Since our goal is to use melt curves to profile heterogeneous samples

for multiple genotypes, we wanted to understand whether ramp rates could be op-

timized to enhance the effect of sequence differences on melt curve features. As a

model genotyping task, we performed these experiments with bacterial DNA am-

plified from the 16S rRNA gene that included the hypervariable regions 1-6 ( 1kb

in length). We chose Acinetobacter, Moraxella, and Salmonella genomic DNA as

our templates because we have previously observed that their 16S sequences melt

uniquely with either one or two transitions at ramp rate of 0.1◦C/s in bulk qPCR

reactions [215,216].

First, we generated 16S amplicons on 3 independent chips for each bac-

terium. These chips were then used to generate melt curves at ramp rates of

0.01◦C/s, 0.05◦C/s, 0.1◦C/s and 0.2◦C/s. We adjusted our imaging settings to

maintain 0.1◦C resolution in fluorescence measurement by matching the imaging

rate to heating rate. To ensure that our thermal control was accurate for varying

ramp rates, we observed the temperature profile in the proxy chip and in the cop-

per block. These profiles were similar to what was seen for a ramp rate of 0.1◦C/s,

reported above. The slopes of the block temperature and fitted chip temperature

were repeatable across all ramp rates, and there were negligible deviations in in-

stantaneous rates throughout the runs (copper block and surrogate chip behavior

for all ramp rates are shown in Figure 4.7 and Figure 4.8).
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Figure 4.7: Controller performance for different ramp rates (A) Box plot of error
(observed - expected temperature) for the copper block across all runs with tem-
perature calibrator at a ramp rate of 0.01◦C/s, 0.05◦C/s, 0.1◦C/s, 0.2◦C/s. (B)
Slope of straight line fit for RTD temperature for each run.



65

Figure 4.8: Surrogate chip behavior. Slope and RMSE of fitted thermocouple
temperature for each run at different heating rates.

The 16S amplicons for Acinetobacter baumanii revealed multiple melt do-

mains for higher ramp rates of 0.1◦C/s and 0.2◦C/s. However, a single melting

domain was observed for 0.01◦C/sec as seen in Figure 4.9A. The second deriva-

tives of the melt curves further highlight the difference in curve shape at different

rates (Figure 4.9B). Similar rate dependent melting (RDM) behavior was seen

with Moraxella catarrhalis (Figure 4.9 C and D.) However, Salmonella enterica

serovar Heidelberg amplicons showed no significant RDM (Figure 4.9 E and F),

and neither did Salmonella enterica serovars Enteritidis and Typhimurium for 2

chips (Figure 4.10). Statistically significant differences in curve shape (skewness)

were observed for A. baumanii (p.005) between the melt rates of 0.01◦C/s and

0.2◦C/s but not for S. enterica Heidelberg (p=0.6). Interestingly, our previously

published machine learning algorithm for automated melt curve genotyping was

able to differentiate between melt curves generated at 0.01◦C/s and 0.2◦C/s for

A. baumanii with 97% accuracy, but failed to do so for S. enterica Heidelberg

( 60% accuracy). The sequence specificity of the RDM phenomenon could be an

additional feature used for melt-based sequence identification.
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Figure 4.9: Rate dependent melt curves (A) Negative first order derivative of
melt with respect to temperature for Acinetobacter baumanii. (B) Second order
derivative of melt with respect to temperature. (C) Negative first order derivative
of melt with respect to temperature for Moraxella catarrhalis. (D) Second order
derivative of melt with respect to temperature. (E) Negative first order derivative
of melt with respect to temperature for Salmonella enterica serovar Heidelberg.
(F) Second order derivative of melt with respect to temperature
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Figure 4.10: Rate dependence of melt curves in bacteria with one melt transition.
Negative derivative of melt with respect to temperature for Salmonella enterica
serovars (A) Enteritidis (B) Typhimurium

4.4 Materials and Methods

Sample Preparation for Temperature Calibrator Sequences. Three temper-

ature calibrator sequences with varying GC content and known melting tempera-

tures were used to optimize the heating of our system: 0% GC (TTAAATTATAAA

ATATTTATAATATTAATTATATATATATAAATATAATA-C3), 12% GC (TTAAT

TATAAAGGTATTTATAATATTGAATTATACATATCTAATATAATC-C3), and
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76% GC (GCGCGGCCGGCACCCGAGACTCTGAGCGGCTGCTGGAGGTG

CGGAAGCGGAGGGGCGGG-C3) (Integrated DNA Technologies, Coralville, IA).

The master mix containing the three temperature calibrators was created as fol-

lows: 1X Phusion HF Buffer containing 1.5 mM MgCl2 (Thermo Fisher Scientific,

Waltham, MA), 4 M of equal mixtures of the three temperature calibrator se-

quences, 1X ROX (Bio-Rad Laboratories, Hercules, CA), 2X EvaGreen (Biotium,

Freemont, CA) and Ultra Pure PCR water (Quality Biological Inc., Gaithers-

burg, MD) to bring the total volume to 15 L. A volume of 14.5 L of the 15 L

master mix was then loaded onto a commercially available dPCR chip containing

20,000 picoliter-sized reaction wells, the QuantStudio 3D Digital PCR 20K Chip

V2 (Applied Biosystems, Foster City, CA), as described in Ortiz et al. The chips

were filled with a PCR-grade oil, QuantStudio 3D Digital PCR Immersion Fluid

(Applied Biosystems, Foster City, CA), to prevent sample evaporation during ther-

mocycling and sealed with an adhesive lid which contained an optical window for

imaging (included in 3D Digital PCR 20K Chip V2 Kit, Applied Biosystems, Foster

City, CA).

Sample Preparation for Bacterial Samples. Bacterial gDNA was isolated

from an overnight culture of bacteria using the Wizard Genomic DNA Purifica-

tion Kit (Promega Corporation, Madison, WI). The stock DNA concentration was

determined by the biospectrometer absorbance readings. Next, the desired DNA

concentration was achieved through serial dilutions and added to the master mix

which contained the following concentrations: 1X Phusion HF Buffer containing 1.5

mM MgCl2 (Thermo Fisher Scientific, Waltham, MA), 0.15 M forward primer 5-

GyGGCGNACGGGTGAGTAA-3 (Integrated DNA Technologies, Coralville, IA),

0.15 M reverse primer 5-AGCTGACGACANCCATGCA-3 (Integrated DNA Tech-

nologies, Coralville, IA), 0.2 mM dNTPs (Invitrogen, Carlsbad, CA), 2.5X Eva-

Green (Biotium, Freemont, CA), 2X ROX (Thermo Fisher Scientific, Waltham,

MA), 2X ROX (Bio-Rad Laboratories, Hercules, CA), 0.02 U/L Phusion HotStart

Polymerase (Thermo Fisher Scientific, Waltham, MA), 0.3 M temperature calibra-

tor sequence with 0% GC-content (see above) and Ultra Pure PCR water (Quality

Biological Inc., Gaithersburg, MD) to bring the total volume to 15 L. A reaction
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volume of 14.5 L was spread onto the dPCR chip (see above). A flatbed thermo-

cycler was used to amplify the hypervariable regions, V1 to V6, of the 16S rRNA

gene using the following PCR cycle: 1 cycle of 98C for 60 s; 70 cycles of 95C for

15s, 58C for 30s, 72C for 60s.

Cell Culture. Clinically isolated Moraxella, Acintobacter, and Salmonella

Enterica were grown separately overnight in Luria-Bertani (LB) broth. Sterile

conditions were used to ensure uncontaminated growth of each bacteria.

Chip Heating Device. The thermoelectric heating/cooling (TEC) device

was purchased from TE Technology, Inc. (Traverse City, MI). The Proportional-

Integral-Derivative (PID) controller was purchased from Meerstetter Engineering

GmbH (Rubigen, Switzerland). RTD (Class 1/3B) and thermocouple (K type)

sensors were purchased from Heraeus (Hanau, Germany) and OMEGA Engineering

(Stamford, CT), respectively. Medium to high amount to thermal paste gave the

most repeatable results (data not shown).

Fluorescent Imaging. Nikon Eclipse Ti (Nikon, Tokyo, Japan) platform

is customized to accomplish imaging for the dHRM system, as described in our

earlier work. Fluorescent images are captured with a melt curve intercalating

dye, EvaGreen, and a control dye, ROX, at 488/561 nm and 405/488 nm exci-

tation/emission filters, respectively, with an exposure time of 100 ms at a LED

intensity of 40%. The microscope is interfaced with Hamamatsu digital camera,

C11440 ORCA-Flash4.0 for image acquisition at a rate commensurate with the

heat ramp. The imaging rate is adjusted based on the heat ramping to maintain

a resolution of 0.1C between images. NIS-Elements software is programmed to

automatically image the chip as the heating device ramps by running a time lapse

to image for every specified time point. For every image, the microscope automati-

cally records the temperature of the surrogate chip registered by the thermocouple

temperature probe within the metadata of the image. For this experiment, we used

Nikon Plan/Fluor 4X objective with a numerical aperture of 0.13 and a working

distance of 16.5X, to image a corner of the chip. Hence, every section of the chip

was imaged as a part of separate run with simultaneous heating of the entire chip.

This allowed us to maximize the number of runs/data per chip to characterize our
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heating system. For an ideal use case, as described in our previous publication, we

can sweep imagining location to image the entire chip for all runs.

Image analysis. Melt curve data generation. First the acquired fluorescence

images are aligned using a template matching plugin in ImageJ. Then, melt curves

are then generated using an automated image processing algorithm implemented

in MATLAB. The algorithm applies median filter to remove salt and pepper noise

in the images. It then generates a binary mask for each well on the chip and tracks

them on all images. Pixels within 80% of the detected well radius are recorded and

averaged to generate the fluorescence value in both ROX and EvaGreen channels

for the specified well. The fluorescence values are tracked for each well across all

images to generate curves for both EvaGreen and ROX channels. Filter (EvaGreen)

curves generated are normalized against filter (ROX) values to account for any

localized errors/noise due to bubbles in the chip or any abrupt change in ambient

light as described in our previous publication(20).

Temperature Measure. Imaging software records the temperature corre-

sponding to each image from the surrogate chip. However, the temperature ac-

quisition rate is limited to an approximate 0.20Hz. Line fitting is performed using

the unique temperature, time pair acquisitions to estimate temperature for each

acquired image for faster imaging rates (Figure 4.11). A melt curve for each well is

plotted against this estimated temperature. The negative derivative is taken with

respect to temperature. Normalization and smoothing is performed as described

in previous publications. To studying rate dependence of melt curves, bacterial

melt curves generated were aligned the curves to their Tm. accuracy, but failed to

do so for S. enterica Heidelberg ( 60% accuracy). The sequence specificity of the

RDM phenomenon could be an additional feature used for melt-based sequence

identification.
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Figure 4.11: Line fitting to estimate chip temperature. Asterisk shows unique
temperature-time pairs acquired by the NIS-Elements software. Solid line shows
estimated temperature using line fitting for a characteristic run

4.5 Discussion

We have successfully designed and characterized a high resolution digital

melt platform. Our design achieves highly repeatable temperature profiles for a

range of melt rates and commensurate imaging frequencies. The run-to-run errors

we observed were similar to the expected theoretical error limits of our system,

approximately 0.14◦C. Precision in temperature control is an important factor in

being able to resolve melt curves. However, imaging systems can contribute to melt

errors as well. The resolution of our imaging system is one image per 0.1◦C. Thus,

the minimum total RMSE error due to imaging (+/-0.05) and heating (+/-0.05)

for our system is expected to be +/-0.07◦C. These error limits can be improved

with the development of a custom optical system with integrated and tunable

image and temperature acquisition capabilities. Such design improvements would

allow us to integrate a chip temperature probe with better accuracy and resolution

into the imaging system. This, in addition to increasing our sampling rate for

fluorescent data acquisition, would enhance the devices ability to resolve smaller

Tm differences. Beyond hardware limitations, other potential sources of variation
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could arise due to interactions in AT-GC content and the length of amplicons

[211, 229] slight differences in salt environments [229, 230] or DNA concentrations

[183,231,232], concentration and stability of DNA saturating dye [233]and reference

ROX dye [234], pipetting errors, differential evaporation across reactions, and data

processing methods [225].

The reliability and performance of our heating and hardware system enabled

us to identify and characterize other sources of melt variation. Understanding

well-to-well variation across the chip is crucial for absolute load quantification and

sequence profiling at single genome sensitivity. We observed that wells producing

outlier Tm peaks are typically present at the corners and along the edges of the

chip, as shown in Figure 4.6C. These outliers could represent reactions where

evaporation has altered the chemistry of the reaction, specifically the concentration

of ions, which can shift Tm [229,230]. Analysis of the ROX reference dye intensity

across the chip revealed a somewhat similar pattern of outliers with significantly

lower intensity located at the edges and corners. It is known that thermal cycling

and heating causes the ROX dye to become insoluble in water and precipitate out of

solution, which leads to a slight drop in fluorescence at high temperatures. But this

cannot account for the spatial pattern we observed, which was present even before

heating. During melting, we did note a drop in ROX fluorescence and variations

from well-to-well. This could introduce errors during the processing of the image

data, since we normalize EvaGreen dye intensity to ROX as a loading control and to

account for localized errors due to air bubbles released at high temperatures. In the

future, we may benefit from either using other more thermally stable referencing

dye, or including mathematical methods for error correction.

As compared to conventional PCR, the smaller reaction volumes of digital

PCR could be expected to lead to larger variations in Tm due to evaporation. On

the other hand, the small form factor of the digital chip is expected to maintain

a more uniform thermal gradient across the chip, leading to smaller variations in

Tm. A previously published study reported Tm differences ranging from 0.35◦C

to 1.24◦C across 32-96 well plate melt instruments with standard deviations of

0.018◦C to 0.274◦C [226]. In comparison, after excluding the outliers due to evap-
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oration at the corners and edges of our chips, differences in the high temperature

calibrator Tm on our digital melt platform were observed to vary from 0.22◦C to

0.6◦C. This represents a significant improvement in heating uniformity compared

to the standard well-plate format. Even with evaporation outliers included, me-

dian absolute deviation ranging from 0.05◦C to 0.1◦C and standard deviation of

0.06◦C to 0.13◦C were observed across the chip, which is less than that of the well-

plate format. Optimizing for loading errors and evaporation would be expected to

further improve performance. For example, the application of oil onto the loaded

reaction wells could be sensitive to timing and amount deposited, and automation

would ensure that the corner wells are covered as quickly as the central wells to

minimize evaporation.

Our observation that the Tm -Low and Tm-Mid for the temperature cal-

ibrator sequences were more variable than the Tm-High calibrator is somewhat

expected. Unfortunately, our high-throughput platform revealed that the Tm

variations of these low and mid calibrators were large enough to prevent their

utility for melt curve normalization across runs. It is important to note that their

variability was not correlated within individual wells or regions, indicating that

it is not a function of location on the chip or differences in reaction conditions

from well-to-well. Kinetic binding rates of DNA are known to vary based on GC

content, as association rates of GC-rich oligomers are higher than rates of AT-rich

equivalents [235]. Here, the low and mid calibrators have lower GC content (0%

and 12% respectively) and are also shorter in length compared to the high cali-

brator (76% GC) [235, 236]. DNA dissociation rates are also known to increase

exponentially with temperature. Further, physical models of DNA melting behav-

ior predict that AT duplexes go through several cycles of hydrogen bond breakage

and reformation, often involving an overall shift by one or more bases along the

helix, before fully and finally disassociating. In contrast, the corresponding GC

duplexes usually come apart only once [237].Taken together, this suggests that it

may be possible to design more reliable low and mid temperature calibrators by

using very short GC-rich sequences.

It is generally thought that heating rate changes only result in shifts in
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melt curve Tm, whereas the dynamic melting characteristics of a PCR product

are thought to be primarily determined by GC content, sequence length, and nu-

cleotide order [238, 239]. However, our study revealed that some long amplicons

are highly sensitive to melting ramp rate, which not only shifts their Tm, but also

changes the number and size of distinct melting transitions present. Our ability to

identify a heating rate dependence of melt curve shape is in large part due to the

tunability, uniformity, and throughput of the digital melt platform. For the long

amplicon sequences, we studied, slower heating rates resulted generally in a single

melt transition, whereas faster rates generated multiple melting domains. Interest-

ingly, though, this response to heating rate was highly sequence dependent. Some

long amplicon sequences maintained the same melt curve shape for multiple heat-

ing rates, while others do not. Thus, the response of a long amplicon to heating

rate changes provides additional sequence-specific information that could enhance

the specificity of melt curve-based sequence profiling. That is, where one ramp rate

cannot discriminate two sequences by their melt curve, a combination of multiple

ramp rates may reveal distinct melt responses. The mechanism underlying these

differences may involve kinetic sampling of transition states. For example, slower

rates would be expected to enable amplicons to sample a wider range of transi-

tion states, where shifting, re-organized binding, or secondary structure formation

could effectively average out the fluorescence decay across the bulk population of

amplicons. Faster rates may induce more uniform transition behavior involving

abrupt local DNA bubbles that melt separately at a different temperature than

the remainder of the sequence. Indeed, faster rates of melting have previously been

associated with higher Tm accuracy in homozygous melt analysis [183]. Alterna-

tively, since heteroduplex melting has been found to be more apparent at faster

heating rates, the multiple melt domains we observe at faster ramp rates may be

the result of distinct heteroduplex binding transition states induced in homoduplex

molecules [183].

In conclusion, our novel digital melt analysis platform with well-controlled

and well-characterized heating across 20,000 reactions advances the concept of

digital melt curve-based sequence profiling and could also support fundamental
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studies of DNA dissociation kinetics.
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Chapter 5

5 Software Platform for

Classification and Anomaly

Detection

5.1 Abstract

U-dHRM platform presents a promising molecular approach for a first pass

screening technology for sepsis. Our previous work focused on developing a plat-

form for reliable melt curve generation with minimal run-to-run and well-to-well

variation. We have shown that the ability to control ramp rates for digital melt

curve generation revealed rate dependent melt curves. Here, we propose a frame-

work for melt curve analysis for pathogen profiling. Previous work has used support

vector machines to classify bacteria from a pre-defined library of melt curve sig-

natures. However, classification with respect to a pre-defined library may not be

enough for clinical decision support. Statistical information is more relevant to

clinical decision makers over a hard yes-no decision. There is also a need to iden-

tify new organisms that are not a part of our library. To address these challenges,

we developed a framework to enable identification of novel melt profiles that are

not included in the training set, followed by a classification methodology that also

generates a measure for uncertainty using Shannon entropy.
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5.2 Introduction

The U-dHRM platform relies on high resolution melt analysis post digital

amplification of nucleic acid sequences. In high resolution melt (HRM), a double

stranded binding dye is introduced into the sample and heated. As the tempera-

ture increases, the double-stranded DNA denatures into single strands, releasing

the intercalating dye. This loss in fluorescence with heating is recorded as a func-

tion of temperature. This generates a characteristic loss-in-fluorescence curve that

is unique to the DNA sequence in question and is then used to fingerprint the se-

quence. HRM is a quick, cheap and powerful characterization technique that can

be used for profiling pathogen [211, 212]. However, not much effort has been put

into fully automated phenotyping using melt curves [213, 224]. Typically, either

the melting point (Tm) or difference curve created with respect to a standard tem-

plate is used for discrimination. However, both approaches have their limitations.

A single melt point Tm does not provide sufficient information to discriminate

more than a few species. The difference curve, on the other hand, typically relies

on temperature shifting and visual inspection at users discretion to account for

run-to-run or well-to-well variations. While this may suffice in some experimen-

tal and lab settings, it falls short in pathogen identification for clinical settings.

Moreover, application of HRM with digital PCR for our platform generates a large

number of melt curves. Thus, our platform requires the characterization of over

20, 000 curves per sample as individual melt curves are generated for every genome

to achieve single genome sensitivity which enables absolute load quantification of

DNA in the sample [178,224]. This requires an objective and automated approach

to parse individual curve generated by the U-dHRM platform, as subjective meth-

ods get too time-consuming and are no longer feasible.

In the previous chapter, we demonstrated optimization of U-dHRM plat-

form to minimize run-to-run and melt-to-melt variation for reliable and repeatable

melt curve generation. We demonstrated linearity in heating rate, eliminating any

warping in the melt curve along temperature axis. Any offset or shift in the melt

curves can now either be corrected using a calibrator sequence or an off the shelf ac-

curate temperature measurement system integrated with our platform. The ability
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to precisely control temperature also showed the presence of rate-dependent melt

curves. These improvements and novel findings can allow us to develop robust

classification algorithm for identification of pathogens using the U-dHRM plat-

form. Here, we present preliminary results to show that classification for bacteria

with melt curves similar in shape at a particular ramp rate, can be enhanced by

including curves from a different ramp rate.

In addition, previous work has demonstrated the use of SVM to classify melt

curves either in small or large reaction format. However, a probabilistic model is

needed to identify pathogens that are not present in the library. We explored the

use of Gaussian Nave Bayes(NB), multinomial Logistic regression(LR) and Multi-

layer Perceptron (MLP). We also explored dynamic time warping as a distance

measure for outlier detection. In addition, we investigated Shannon entropy as a

measure of uncertainty in the posterior probability. We propose a framework to

identify new curves and perform classification along with generating an uncertainty

score.

5.3 Results

5.3.1 Ramp rate dependent melt curves for enhanced clas-

sification

We generated melt curves from 4 different homogeneous DNA samples at

two heat ramp rates of 0.01◦C/s and 0.2◦C/s. Out of the 4 pathogens, two belonged

to different subspecies for the same species(Salmonella) an other two were from

Acinetobacter and Moraxella.

Classification with supervised learning suggests differential discriminatory

power at different melting rates of our long amplicon sequences. The class accuracy

for Moraxella was 92% for classification of melt curves generated at 0.01◦C/s and

8% of Moraxella curves were misclassified as Acinetobacter (Figure 5.1). This

compared to a class accuracy for 98% for Moraxella with melt curves generated at

0.2◦C/s. For other classes of pathogen, the accuracy was similar at both ramp rates.
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The Tm of Moraxella and Acinetobacter are less than 0.5◦C apart. Therefore, the

presence of double peaks in the melting curves of these organisms at ramp rate of

0.02C/s provides additional features in comparison to relying on the only the Tm

for classification of melt curves generated at 0.01C/s(Figure 5.2).

Figure 5.1: Difference in classification accuracy.Confusion matrix for classify-
ing melt curves from Salmonella, Acinetobacter and Moraxella and Calibrator
sequences generated at (A) ramp rate of 0.01◦C/s and (B) 0.2◦C/s

Figure 5.2: Differences in melt curves at different temperature ramp rates. Char-
acteristics curve for Acinetobacter and Moraxella generated at (A) ramp rate of
0.01◦C/s and (B) 0.2◦C/s
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5.3.2 Framework for Melt Curve Identification and Classi-

fication

Here, we propose a framework for anomaly detection using Dynamic Time

Warping measure along with a supervised learning model for classification. In

addition, Shannon entropy is used as a confidence measure on the prediction.

Figure 5.3: Framework for phenotyping using melting curves.

Dynamic Time Warping for Anomaly Detection

Dynamic temperature warping (DTW) as a method to calculate a distance-

from-class measure for outlier detection. DTW is typically a measure for estimating

the similarity between two temporal sequences. For our system, temperature se-

quences replace temporal sequences. By sweeping one melt curve over the other,

DTW calculates the optimal match between the sequences, by trying to explain

any fluctuations in the y-axis of melt curve by warping the temperature axis. We

developed a model for the distribution of DTW measure for each class of pathogen

on the training set. For each new test data, we calculate the likelihood for be-

longing to every class. As explained in the methods, if the likelihood probability

is near zero across all classes, we label the curves as an outlier. Figure 5.4 shows

the empirical CDF calculated for each class along with the estimated cut offs for



81

DTW (µc + τc) that were used for labeling curves as outliers. With this thresh-

old, we were able to correctly identify 80/99 (81%) melt curves belonging a small

test data set from a bacterial species (Staphylococcus) noval to our database as

anomalies. Remarkably, 1352/1379 (98%) melt curves from Salmonella enterica

serovars Typhimurium (not in our library) were not identified as outlier and later

identified as either of two Salmonella labels present in our training label but with

a high uncertainty score using methods described in the following section.

Figure 5.4: Estimated Cumulative density function for Dynamic Time warping
measure for all classes
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Table 5.1: Cut-offs calculated from statistical model for dynamic time warping
to assign outlier

5.3.3 Classification Algorithm

Data from four bacteria DNA and one synthetic oligo generated at ramp

rate of 0.2C/s was used to train the Gaussian NB, NB with Dynamic Time warping,

multinomial LR, and MLP for classification. Table 5.2 shows the number of melt

curves available per class. Our goal was to classify the bacteria from unknown

sample using the posterior probabilities. Figure 5.5 shows the confusion matrices

to compare the classification accuracy achieved by the different methods. Both the

discriminative models (LR and MLP) outperform the generative models (Gaussian

NB and classification with Dynamic Time Warping).

Table 5.2: Data set
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Figure 5.5: Confusion matrix for classifying melt curves from Salmonella, Acine-
tobacter and Moraxella and Caliberator sequences using (A) Nave Bayes (B) Dy-
namic Time Warping Metric (C) MLP (D) multinomial LR with 10-fold cross
validation.

5.3.4 Uncertainty measure and outlier detection

Shannon entropy

To develop measures for uncertainty in classification, we selected the LR

model. We calculated the Shannon entropy across the posterior probabilities as

explained in the previous section. Figure 5.6 shows violin plots for the entropy

values for each of the class (per row) that were classified incorrectly(Figure 5.6A)

and correctly(Fig 5.6B). The misclassified melt curves have a higher entropy in

comparison to the correctly classified melt curves. This suggests that Shannon
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entropy measure of the posterior probability can be used along with the predic-

tion class as measure of confidence of the classification. Interestingly, the entropy

associated with Salmonella is higher. High degree of similarity between the two

salmonella subspecies in our database does not allow classification of Salmonella

melt curves to either class with high confidence. These preliminary results validate

the usefulness of the uncertainity score.

Figure 5.6: Shannon Entropy measure for melt curves that were (left)misclassified
(rght)classified correctly. The shape of the violin plot represents the probability
density of data at different values. The dashed lines signify the lower percentile,
median and upper percentile for each plot.

5.4 Materials and Methods

5.4.1 Data Generation and Signal Processing

The U-dHRM platform generates a curve of change in fluorescence versus

temperature by sequentially melting conserved regions of the 16S gene at con-

trolled temperatures and measuring the samples fluorescence. Images acquired
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while melting the DNA are first aligned using normalized cross correlation (ImageJ

Implementation) to remove any shifting throughout the melting process. Then cus-

tom software is used to correct salt and pepper noise from the image by applying

median filtering. Binary masks are created for tracking the wells across the images

in temperature. The mask is used to extract fluorescence data from the image for

EvaGreen and ROX channels. The EvaGreen channel tracks the loss in fluores-

cence due to denaturing of DNA and the ROX channel tracks our control dye. Melt

curves are generated by normalizing fluorescence in EvaGreen channel by ROX,

followed by taking negative derivative with respect to temperature.

Measures for uncertainty and new species identification

Shannon Entropy

Entropy measures can estimate the amount of information produced. Here,

we explore the use of Shannon entropy specified by:

H(P ) = −
M∑
k=1

pklog(pk) (5.1)

Where p is the posterior probability estimated using previously defined

classification methods. Higher magnitude of Shannon entropy is associated with

more uncertainty with the classification decision made. This allows us to find

empirical thresholds on the entropy measure to minimize the miss classifications. In

other words the framework can abstain from making a decision for any classification

with high associated entropy and instead provide information about the classes of

pathogen that the curve is closest to.

Dynamic Time Warping(DTW) Measure

DTW is a measure for estimating the similarity between two temporal se-

quence. By sweeping one melt curve over the other, DTW tries to calculate the

optimal match between the sequences, independent of any shifts and non-linearity

along the temperature axis under certain constraints. It does so by trying to ex-

plain any fluctuations in the y axis of melt curve by warping the temperature axis.
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We build a statistical model on the DTW measure for each class to identify melt

curves with DTW measures that are unlikely.

For all classes in the training set c = 1, 2...M we first generate µc which

is the mean of all xj in class c. Then we define d(µc, xi) for all xi that belong

to class c. This is used to estimated the cumulative density function(CDF) for

the dynamic time warping measure for each class c. To We try to estimate a τc

associated with each class c so that:

P (X − µc > τc) = 0.03) (5.2)

The threshold of 0.03 is empirically selected to minimize and type I and type II

errors for all classes. To solve for τ we use the CDF:

P (X > µc + τc) = 0.03 (5.3)

1 − Fx(µc + τc) = 0.03 (5.4)

Fx(µc + τc) = 0.97 (5.5)

τc = F−1
x (0.97) − µc (5.6)

The τc, µc is calculated for all classes c = 1, .2...M .

For an unlabeled xj, d(µc, xj) is calculated for c = 1...M . The observation

is declared as an outlier if P (X − µc > τc) ≤ 0.03 for all c. This framework labels

observations as outliers if it is sufficiently farther way from the distribution mean.

5.5 Discussion

We anticipate the optimal framework will consist of first applying DTW

to identify any melt curves that are highly anomalous followed by classification

using LR or MLP modeled on our database, then calculation of SE as a confidence

measure on the prediction. Previous work has demonstrated the use of OVO

SVM. However, absence of a probabilistic model does not allow us to separate a

weak yes from a strong yes. Available methods for generating probabilities from

SVM, are typically very expensive for a large dataset. Moreover, the probabilities

generated by mapping SVM to a probabilistic framework may not correlate with
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the classification results. We are not surprised that Naive Bayes doesnt work

as well in comparison to Logistic regression and MLP for classification. NB is

a generative model that learns a likelihood function based only from the train

data of the particular class, blinded to other data. On the other hand, LR is

based on a discriminate model which optimizes the weights to be separate all the

classes. Moreover, NB assumes independence and calculates the joint probability

distribution across all features, where as LR can handle correlation among features.

Typically, for a small number of data sets, Naive Bayes is expected to perform well.

However, as the size of the training data increases, LR is expected to outperform

NB for classification.

In conclusion, we demonstrate a promising framework for automatic anomaly

detection and classification with confidence measure for detection and identifica-

tion of meltcurves.
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Chapter 6

Conclusion

Many advances have been made to improve neonatal care in the last two

decades, yet significant gaps remain. A collaborative approach between sciences,

engineering, medicine and sociology is needed to identify these gaps and tailor user

centered solutions which can be effectively implemented in the clinics. The goal

of this PhD was to identify challenges in the clinics pertaining to neonatal care

in the first few hours of life and develop solutions that can be integrated into the

work flow of providers.

First, careful user centered approach enabled development of decision sup-

port tools that can be integrated into the work-flow of community providers. This

tool can assist the providers in skill building and supporting them to practice ev-

idence based medicine in caring for infants with birth asphyxia. In this era of

digital health, we leveraged computerized decision support to reduce inefficiencies

and cost while improving the quality of care provided for a very niche undeserved

population. In future, tools such as this can be integrated on to a single platform to

enhance usability and encourage collaborative data sharing among providers and

policy makers. Second, careful clinical needs assessment, and engineering design

spanning across molecular biology, device development, machine learning allowed

us to create a platform that can detect and identify pathogen in clinically relevant

time-line to facilitate the diagnosis of sepsis and encourage targeted antibiotic

treatment. Our hope is that both these platforms can be translated for use in the

clinics in the near future.
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[166] C. Kühn, C. Disqué, H. Mühl, P. Orszag, M. Stiesch, and A. Haverich, “Eval-
uation of Commercial Universal rRNA Gene PCR plus Sequencing Tests for
Identification of Bacteria and Fungi Associated with Infectious Endocardi-
tis,” Journal of Clinical Microbiology, vol. 49, no. 8, pp. 2919–2923, 2011.

[167] Y. Wang, Q. Yang, and Z. Wang, “The evolution of nanopore sequencing,”
Frontiers in Genetics, vol. 5, no. JAN, p. 449, 2015.

[168] “Oxford Nanopore Technologies 2017.”

[169] K. Schmidt, S. Mwaigwisya, L. C. Crossman, M. Doumith, D. Munroe,
C. Pires, A. M. Khan, N. Woodford, N. J. Saunders, J. Wain, J. O’Grady,
and D. M. Livermore, “Identification of bacterial pathogens and antimicro-
bial resistance directly from clinical urines by nanopore-based metagenomic
sequencing,” Journal of Antimicrobial Chemotherapy, p. dkw397, 2016.

[170] “DNA extraction and library preparation for rapid genus- and species-level
identification, with or without PCR.”



108

[171] J. Quick, P. Ashton, S. Calus, C. Chatt, S. Gossain, J. Hawker, S. Nair,
K. Neal, K. Nye, T. Peters, E. D. Pinna, E. Robinson, K. Struthers, M. Web-
ber, A. Catto, T. J. Dallman, P. Hawkey, and N. J. Loman, “Rapid draft
sequencing and real-time nanopore sequencing in a hospital outbreak of
Salmonella,” Genome Biology, pp. 1–14, 2015.

[172] A. Benitez-Paez, K. Portune, and Y. Sanz, “Species-level resolution of 16S
rRNA gene amplicons sequenced through MinIONTM portable nanopore
sequencer,” GigaScience, vol. 5, p. 4, 2015.

[173] S. Mitsuhashi, K. Kryukov, S. Nakagawa, J. S. Takeuchi, Y. Shiraishi,
K. Asano, and T. Imanishi, “A portable system for metagenomic analy-
ses using nanopore-based sequencer and laptop computers can realize rapid
on-site determination of bacterial compositions,” bioRxiv, 1 2017.

[174] “BEI Resources Web Portal &gt; Home.”

[175] A. L. Greninger, S. N. Naccache, S. Federman, G. Yu, P. Mbala, V. Bres,
D. Stryke, J. Bouquet, S. Somasekar, J. M. Linnen, R. Dodd, P. Mulem-
bakani, B. S. Schneider, J.-J. Muyembe-Tamfum, S. L. Stramer, and C. Y.
Chiu, “Rapid metagenomic identification of viral pathogens in clinical sam-
ples by real-time nanopore sequencing analysis.,” Genome medicine, vol. 7,
no. 1, p. 99, 2015.

[176] P. M. Ashton, S. Nair, T. Dallman, S. Rubino, W. Rabsch, S. Mwaigwisya,
J. Wain, and J. O’Grady, “MinION nanopore sequencing identifies the po-
sition and structure of a bacterial antibiotic resistance island,” Nat Biotech,
vol. 33, pp. 296–300, 3 2015.

[177] P. Bradley, N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang,
S. Earle, L. J. Pankhurst, L. Anson, M. de Cesare, P. Piazza, A. A. Vot-
intseva, T. Golubchik, D. J. Wilson, D. H. Wyllie, R. Diel, S. Niemann,
S. Feuerriegel, T. A. Kohl, N. Ismail, S. V. Omar, E. G. Smith, D. Buck,
G. McVean, A. S. Walker, T. Peto, D. Crook, and Z. Iqbal, “Rapid antibi-
otic resistance predictions from genome sequence data for S. aureus and M.
tuberculosis.,” bioRxiv, vol. 6, p. 018564, 2015.

[178] S. I. Fraley, J. Hardick, B. Jo Masek, P. Athamanolap, R. E. Rothman,
C. A. Gaydos, K. C. Carroll, T. Wakefield, T.-H. T.-H. H. Wang, S. Yang,
B. J. Masek, P. Athamanolap, R. E. Rothman, C. A. Gaydos, K. C. Carroll,
T. Wakefield, T.-H. T.-H. H. Wang, and S. Yang, “Universal digital high-
resolution melt: a novel approach to broad-based profiling of heterogeneous
biological samples,” Nucleic Acids Research, vol. 44, p. 508, 1 2016.

[179] D. O. Velez, H. Mack, J. Jupe, S. Hawker, N. Kulkarni, B. Hedayatnia,
Y. Zhang, S. Lawrence, and S. I. Fraley, “Massively parallel digital high



109

resolution melt for rapid and absolutely quantitative sequence profiling,”
Scientific Reports, vol. 7, p. 42326, 2 2017.

[180] M. Erali, R. Palais, and C. Wittwer, “SNP genotyping by unlabeled probe
melting analysis,” Methods in Molecular Biology (Clifton, N.J.), vol. 429,
pp. 199–206, 2008.

[181] M. Erali, K. V. Voelkerding, and C. T. Wittwer, “High resolution melting
applications for clinical laboratory medicine.,” Experimental and molecular
pathology, vol. 85, pp. 50–58, 8 2008.

[182] C. N. Gundry, J. G. Vandersteen, G. H. Reed, R. J. Pryor, J. Chen, and
C. T. Wittwer, “Amplicon melting analysis with labeled primers: a closed-
tube method for differentiating homozygotes and heterozygotes.,” Clinical
chemistry, vol. 49, pp. 396–406, 3 2003.

[183] Z. Dwight, R. Palais, and C. T. Wittwer, “uMELT: prediction of high-
resolution melting curves and dynamic melting profiles of PCR products
in a rich web application,” vol. 27, pp. 1019–1020, 4 2011.

[184] S. D. Vernon, S. K. Shukla, J. Conradt, E. R. Unger, and W. C. Reeves,
“Analysis of 16S rRNA gene sequences and circulating cell-free DNA from
plasma of chronic fatigue syndrome and non-fatigued subjects,” BMC mi-
crobiology, vol. 2, no. 1, p. 39, 2002.

[185] I. Ziegler, P. Josefson, P. Olcén, P. Mölling, and K. Str̊alin, “Quantitative
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