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Caudate Microstimulation Increases Value of Specific Choices

Samantha R. Santacruz1,2, Erin L. Rich1,3, Joni D. Wallis1,3, and Jose M. Carmena1,2

1Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA

2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 
CA, 94720 USA

3Department of Psychology, University of California, Berkeley, CA, 94720 USA

SUMMARY

Value-based decision-making involves an assessment of the value of items available and the 

actions required to obtain them. The basal ganglia are highly implicated in action selection and 

goal-directed behavior [1–4], and the striatum in particular plays a critical role in arbitrating 

between competing choices [5–9]. Previous work has demonstrated that neural activity in the 

caudate nucleus is modulated by task-relevant action values [6,8]. Nonetheless, how value is 

represented and maintained in the striatum remains unclear since decision-making in these tasks 

relied on spatially lateralized responses, confounding the ability to generalize to a more abstract 

choice task [6,8,9]. Here, we investigate striatal value representations by applying caudate 

electrical stimulation in macaque monkeys (n=3) to bias decision-making in a task that divorces 

the value of a stimulus from motor action. Electrical microstimulation is known to induce neural 

plasticity [10,11] and caudate microstimulation in primates has been shown to accelerate 

associative learning [12,13]. Our results indicate that stimulation paired with a particular stimulus 

increases selection of that stimulus, and this effect was stimulus-dependent and action-

independent. The modulation of choice behavior using microstimulation was best modeled as 

resulting from changes in stimulus value. Caudate neural recordings (n=1) show that changes in 

value-coding neuron activity is stimulus value-dependent. We argue that caudate microstimulation 

can differentially increase stimulus values independent of action, and unilateral manipulations of 

value are sufficient to mediate choice behavior. These results support potential future applications 

of microstimulation to correct maladaptive plasticity underlying dysfunctional decision-making 

related to neuropsychiatric conditions.

RESULTS

Reward contingencies guide choices in a probabilistic reward choice task

To assess effects of microstimulation on the value of stimuli and actions, three rhesus 

macaques (Monkeys L, M, and P) were trained in a probabilistic reward choice task, in 
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which they learned to choose between colored targets associated with unique reward 

probabilities using different actions. In choice trials, the subject selects one of two presented 

colored targets (Figure 1A). In each session, new target colors were selected and arbitrarily 

assigned reward probabilities (STAR Methods). In each trial, targets were presented 

randomly on the left or right of the screen, requiring the subjects to execute different actions 

to make their choice. Therefore, subjects were required to learn the abstract association 

between the target color, not position, and its reward likelihood.

Subjects quickly learned the reward probability contingencies and selected the higher-value 

target color with greater frequency. No subject exclusively selected the higher-value target 

color after initial learning, but rather their decision policies tended to track local fluctuations 

in reward (Figure 1B). To verify that subjects indeed developed a decision-policy 

independent of spatial location, we calculated the likelihood of higher-value target color 

selection after initial learning in sham sessions conditioned on target presentation side 

(Figure 1C), and found there was no significant difference in position choice (F1,18 = 2.818, 

p = 0.110 for Monkey L; F1,22 = 4.225, p = 0.052 for Monkey M; F1, 24 = 0.139, p = 0.712 

for Monkey P; one-way ANOVA). This indicates that all subjects successfully acquired a 

value representation associated with target color that was used to guide their decision-

making policies independent of action.

High-frequency microstimulation biases target selection in free-choice trials

In each session, trials where organized in 3 blocks. The first block, Block A, consisted of 

100–150 free-choice and instructed trials, randomly interleaved, over which reward 

contingencies were learned. In Block B, the subject completed 100 instructed trials where 

target colors were presented with equal probability. During microstimulation sessions, 

stimulation was applied during the center hold period of instructed trials to a particular target 

color in Block B. The third block, Block A’, was identical to Block A except that all 

instructed trials were to the target paired with stimulation and stimulation was delivered 

during these trials.

High-frequency microstimulation was delivered in the anterior caudate (Figure 1D) during 

the center hold period of instructed trials to the low-value (two-color task) or the medium-

value target (three-color task) during Blocks B and A’. Stimulation was administered during 

instructed trials so that it was selectively associated with one of the two targets. 

Microstimulation had a significant impact on the monkeys’ decision-making policy (F2,28 = 

6.515, p = 0.005 for Monkey L; F2,33 = 7.811, p =0.002 for Monkey M; F2,37 = 4.784, p = 

0.014 for Monkey P; one-way ANOVA). All subjects showed an increased preference for the 

lower-value target when microstimulation was delivered relative to sham stimulation (p < 

0.01 for Monkey L, p < 0.05 for Monkey M, p < 0.05 for Monkey P; post-hoc Tukey’s HSD 

test, Figure 2A).

To further characterize this effect and its time course, we examined whether this tendency 

was more pronounced on choice trials immediately following an instructed trial with 

stimulation. We found that all subjects maintained a significantly increased preference for 

the lower-value target for 5 or more consecutive free-choice trials following a trial with 

stimulation. For all monkeys, the main effect of stimulation was significant (F > 4.9, p < 
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0.01 in all three subjects), but latency and the interaction were not (two-way ANOVA, 

Figures 2D–F). Consistently we found that microstimulation paired with a lower-value target 

resulted in an increased preference which persisted for multiple successive choices. These 

data suggest that caudate microstimulation can impact ongoing decision-making processes 

in behaving animals.

Caudate microstimulation increases stimulus, not action, value

To verify that stimulation did not simply inject noise into decision-making processes, we 

analyzed control data from Monkeys L and M in which the stimulation was paired with the 

higher-value target. For Monkey L, this involved performing an additional set of experiments 

in which stimulation was paired with the high-value target (n = 11 sessions), while for 

Monkey M we considered the choice behavior on trials in which the low-value and medium-

value target colors were presented together, making the medium-value the higher-value color 

in this context. Stimulation paired with the higher-value target significantly decreased the 

probability of selecting the lower-value target color relative to stimulation paired with the 

lower-value target color (p < 0.05; post-hoc Tukey’s HSD test, Figure 2A). This 

demonstrates that caudate stimulation does not add noise to learned associations and 

supports the hypothesis that stimulation increases stimulus value in a target-specific manner.

We also looked at whether the action associated with choices following an instructed trial 

with stimulation in Block A’ (Figure 2B) and whether receiving a reward changed the effects 

of stimulation on the subsequent choice (Figure 2C), and hence performed a two-way 

MANOVA analysis using target location and reward during the trial with stimulation as the 

independent variables, and target location and target color choice on the subsequent trial as 

the dependent variables. Stimulation was equally effective regardless of target location and 

did not preferentially bias the subjects toward selecting a target on a particular side (main 

effect of target side: F2,36 = 0.571, p 0.45 for Monkey L; F2,43 = 0.278, p = 0.759 for 

Monkey M; F2,60 = 0.507, p = 0.48 for Monkey P; two-way MANOVA). We also found no 

significant difference in the fraction of free-choice trials in which the lower-value target 

color was selected following a rewarded or unrewarded stimulation trial (main effect of 

reward: F2,36 = 2.776, p = 0.1 for Monkey L; F2,43 = 1.040, p = 0.362 for Monkey M; F2,60 

= 0.627, p = 0.43 for Monkey P; two-way MANOVA, Figure 2C). This demonstrates that the 

change in stimulus value caused by microstimulation was not significantly modulated by 

reward and, therefore, we conjecture it is unlikely to operate by directly changing prediction 

error signaling.

Stimulation modulates value updates in a stimulus-specific manner

The mechanism by which stimulation introduces the observed bias in the decision-making 

process remains to be determined. To address this, we fit the subjects’ behavior using a RL 

approach known as Q-learning [14]. The standard Q-learning algorithm consists of a value 

update function which includes a learning rate parameter, α, which dictates how much the 

subject “learns” from error. The values are used in a decision rule to determine the 

probability of selecting a given stimulus. This rule contains an inverse temperature 

parameter, β, which indicates how random choice behavior is (STAR Methods). Using this 

model and the ML parameter fits, we find that the learning rate is unchanged, but that the β 
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parameter changes across conditions (Figures 3C,D). A lower β value corresponds to greater 

exploratory behavior, which is how this model explains the increase in lower-value target 

selection when stimulation is paired with this target. Conversely, a higher β value 

corresponds to greater exploitation, which is how the model explains a decrease in lower-

value target selection when stimulation is paired with the higher-value target.

Although this change in β does reflect the behavioral trends, it is counterintuitive that 

stimulation would induce opposite effects in the exploration-exploitation tradeoff simply by 

changing which stimulus it is coupled with. The regular Q-learning model is limited in how 

it can explain the effects of stimulation since it does not explicitly account for what is 

essentially a new input in the decision making process. Thus, we propose four candidate 

models that explicitly include an additional parameter, λ, to explore different ways in which 

stimulation could modify the stimulus value updates or decision rule (STAR Methods; 

Figure 3A). We computed the Bayesian Information Criterion (BIC) for each model [15,16]. 

The BIC includes a penalty for models with more parameters, thus ensuring that our 

proposed models are not quantified to be better by simply being more complex. We found 

that the multiplicative Q parameter candidate model is the best fit (Figure 3B, F). The 

average BIC values were found to be significantly different (F4,55 = 2.736 for Monkey L, 

F4,55 = 2.61 for Monkey M, F4,85 = 2.520 for Monkey P; one-way ANOVA), with the 

average BIC value for the model with a multiplicative Q parameter significantly smaller than 

for all other candidate models (p < 0.05; post-hoc Tukey’s HSD).

We find the ML parameter values for the best-fitting model which includes a multiplicative 

parameter in the value update equation. The learning rate, α, and the multiplicative gain 

parameter, λ, differ depending on whether stimulation is paired with the lower- or higher-

value target, whereas the β remains fixed (Figures 3C–E). These changes suggest that 

changes in behavior are reflected in changes the value update process rather than directly 

through the decision policy, which is consistent with the stimulus-specific behavioral effects 

observed.The difference the multiplicative gain parameter, λ, likely reflects the fact that 

there is a different amount of modulation required on the perceived value of the lower-value 

and higher-value target color options in order to sway decision-making.

Caudate neurons encoding stimulus value are modulated by microstimulation

We recorded neural activity in the caudate nucleus of Monkey M during the choice task and 

isolated individual phasically active neurons (PANs; n = 131 for stimulation sessions, n = 

135 for sham sessions; Figure 4A). To determine the neural representation of stimulus values 

in this population, we performed multiple linear regression of neural firing rates around the 

colored targets’ presentation time with stimulus values derived from the Q-learning model as 

regressors. Additionally, we included choice (i.e. chosen-value) and motor covariates, 

namely reaction time and movement time, in the regression. Roughly the same percentage of 

neurons exclusively co-varied with the stimulus value of only one of the stimulus colors, 

though many neurons co-varied with the values of multiple stimuli (Figure 4B).

We hypothesized that value-coding during the deliberation hold time was modulated by 

stimulation. We found that spiking activity of value-coding neurons changed following 

stimulation and that these changes related to stimulus value (Figure 4C). Firing rates in the 
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400 ms following target presentation typically were increased in neurons that co-varied with 

Qmed, as shown for a representative neuron in Figure 4D (F1,232 = 4.899, p = 0.028, 

ANCOVA with stimulus value as a covariate), whereas there was little to no change for 

neurons that did not encode value, as shown for non-value coding neuron in Figure 4E 

(F1,174 = 0.281, p = 0.597, ANCOVA). The amount of change tended to be stimulus value-

dependent and this was true of peak firing rates as well (Figure 4F). To compare firing rate 

changes between stimulation and sham conditions, we pooled all Qmed-coding neurons from 

these sessions and examined the difference in peak firing rates after stimulation was 

administered (Block A’) relative to before stimulation was administered (late trials in Block 

A). For larger stimulus values, we found significant increasing differences in peak firing rate 

during stimulation sessions (Figure 4G; main effects of stimulation condition and stimulus 

value: p < 0.05; interaction effect: F5,69 = 4.98, p < 0.01; two-way ANOVA). This stimulus 

value-dependent effect supports the best fitting Q-learning model that indicates that 

stimulation modulates stimulus value.

DISCUSSION

Here we have shown that caudate microstimulation can alter value-based choice behavior 

and that this causal bias results from a selective change in the subjective value of a target 

stimulus. The effects cannot be explained by changes in action values, stimulus-action 

associations, nor stimulus-reward associations. Unilateral striatal manipulations can impact 

lateralized motor movements [17,18] and striatal medium spiny neurons encode actions for 

such movements [19–21]. In this work, we developed a choice task where optimal decisions 

were not spatially lateralized and asked how microstimulation would alter behavior. This 

approach allowed us to precisely decouple whether stimulation drove an action-specific or 

stimulus-specific behavioral responses. Indeed, we found that the latter was the case. For all 

three subjects we found that target location during stimulation did not significantly impact 

subsequent stimulus or action choice.

In previous studies, the action of choosing a target on the left or right side of the screen was 

associated with reward, in contrast to our task design. As such, we hypothesize that stimulus 

values may also be represented during the pre-response hold period if they are used to guide 

the upcoming action and thus that stimulation delivered coincident with this activity could 

modulate striatal encoding of stimulus value. Previous work conjectured that high-frequency 

stimulation of the caudate might lead to long-term potentiation (LTP) in particular 

corticostriatal synapses [13]. In striatal slice preparations it has been demonstrated that LTP 

is governed in part by dopaminergic activity [22,23]. Given that high-frequency stimulation 

can enhance dopamine release [24,25], caudate stimulation may result in LTP of particular 

corticostriatal synapses, positively reinforcing stimulus-specific activity.

The results also demonstrate that the change in behavior due to microstimulation was 

independent of reward. However, there is a question of whether microstimulation itself is 

perceived as rewarding. Stimulation of several brain regions, including the orbitofrontal 

cortex, amygdala, nucleus accumbens, ventral tegmental area, and lateral hypothalamus, can 

be perceived as rewarding and reinforce behavior [26–29]. However, in a similar choice task 

as used here there was no bias for a particular choice for trials in which reward alone versus 
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reward with caudate microstimulation was delivered, suggesting that caudate stimulation 

itself does not increase saliency [13]. Since mediation of choice behavior through caudate 

stimulation was not significantly modulated by reward, it follows that caudate stimulation is 

neither perceived as rewarding nor causes biased decision making by directly modulating 

response to reward.

The use of an RL framework enabled us to differentiate between different sources of value 

and decision biases that could account for choice behavior changes. Animals respond to 

changing reward contingencies by altering their behavior and repeating actions with 

rewarding outcomes [14,30,31]. We found that stimulation preferentially biased the subjects 

towards the target it was paired with in the absence of any reward contingency change. The 

model that best explained this bias indicated that stimulation changed stimulus value. Our 

behavioral evidence indicates that these effects persisted for multiple trials, supporting the 

notion that it is a modification of an underlying representation, rather than a transient biasing 

effect. Indeed, the neural data shows that there are changes in the neural activity of value-

coding neurons and that these changes are stimulus value-dependent.

Overall, we have demonstrated that high-frequency stimulation delivered to the caudate can 

modulate decision-making processes, and we speculate that the mechanism by which this is 

accomplished involves changes in striatal value representations of stimuli. An inability to 

appropriately evaluate stimuli and use these values to inform decisions lies at the core of 

neuropsychiatric disorders like anxiety, depression and addiction. Our results suggest that 

electrical stimulation may offer a novel therapeutic approach to help regulate these 

valuations of actions in patients with impaired decision-making abilities. Hence, our results 

not only demonstrate how electrical stimulation can change choice behavior but are also 

suggestive of future therapies for neuropsychiatric diseases.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Jose M. Carmena (jcarmenaberkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three male rhesus macaques were used in these experiments. All experiments were 

performed in compliance with the regulations of the Animal Care and Use Committee at the 

University of California, Berkeley. The three subjects weighed roughly 11.5 kg, 9.1 kg, and 

10.2 kg at the time of the study, and were approximately 7 – 9 years of age at the time of the 

study. All subjects were healthy and housed in pairs.

METHOD DETAILS

Surgery—Three rhesus macaques were implanted with recording chambers. For Monkeys 

L and P, we used standard methods for acute neurophysiology that have been described in 

detail elsewhere (Lara, Kennerley, & Wallis, 2009). For Monkey M, we used a custom 

semichronic microdrive array to record from moveable single microelectrodes that were 
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chronically implanted (Gray Matter Research, Bozeman, MT). Chamber positions were 

calculated based on images obtained from 1.5-T magnetic resonance imaging (MRI) scans 

of each subject’s brain. Monkey P was implanted bilaterally with cylindrical chambers 

centered above lateral orbital regions, allowing access to the anterior caudate. Monkeys L 

and M were implanted unilaterally with a custom-machined chamber enabling access to 

anterior and posterior caudate.

Stimulation—Microstimulation pulse trains consisted of biphasic pulses with no inter-

pulse interval and a cathodal leading phase. Each phase was 200 us in duration and the pulse 

frequency was 200 Hz. Stimulation was either constant-current, with a current amplitude in 

the range of 10 – 50 uA, or constant-voltage, with an amplitude of 1 V. These stimulation 

parameters are consistent with previous studies using electrical stimulation in non-human 

primates (Afraz et al., 2006; Amemori & Graybiel, 2012; Ditterich et al., 2003; Hanks et al., 

2006; Nakamura & Hikosaka, 2006; Williams & Eskandar, 2006). Stimulation trains lasted 

1000 ms and coincided with the center-hold period of the task. This design ensured that the 

subject had negligible movement during the stimulation epoch. Two Platinum-Iridium 

microelectrodes (Alpha Omega; Microprobes) with an impedance in the range of 100 – 300 

kOhm were used to administer stimulation in a bipolar manner. For Monkeys L and P, on 

each experimental day electrodes were lowered manually using custom-built microdrives to 

a target depth in the head of the caudate. For Monkey M, electrodes were positioned in the 

caudate chronically.

Behavioral Task—Three macaque monkeys were trained in a probabilistic reward free-

choice joystick task. Briefly, the subjects were trained to use a joystick to control a cursor on 

a computer screen and select colored circular targets that each had a probability of reward 

associated with the color of the target. The joystick was affixed to the front of the primate 

chair and subjects were free to use either hand at any point in the task to control the joystick. 

This task consisted of two types of trials: (1) free-choice trials and (2) instructed trials. In 

free-choice trials, the subject was trained to hold the cursor at the center target for 1000 ms. 

During this center-hold period, two peripheral circular targets of different colors were 

simultaneously shown on the screen. At the end of the hold, cued by the removal of the 

center target from the screen, the subject freely moved the cursor to one of the two 

peripheral targets to select it by holding the cursor inside the target for 1000 ms. During 

instructed trials, only one peripheral target was presented. In a given session, two or three 

colors from a set of 12 colors were chosen and arbitrarily assigned values. Two subjects 

(Monkeys L and P) were trained in a task with two targets and one subject (Monkey M) was 

trained in a task with three target colors. If two colors were used, then each was assigned to 

be either the low-value (40% reward probability) or high-value (80% reward probability) 

target color. With three colors, each was assigned to be the low-value (35% reward 

probability), medium-value (60% reward probability), or high-value (85% reward 

probability) target color. During training each subject was tested with different color-

pairings in the probabilistic reward choice task and the same task with a reward-contingency 

reversal, to ensure that the colors were distinguishable to the subject. Reward schedules for 

each target were pseudo-random across blocks of 100 trials, meaning that the reward 

assignments were random but a fixed number of rewards were allocated over the block. For 
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example, an 80% reward probability corresponded to 80 trial indices in a block of 100 trials 

being uniformly selected without replacement to have a reward associated with the 

respective target in that trial. This pseudo-random reward schedule ensured that the 

empirical reward likelihood for small numbers of trials was close to the true reward 

probability. On trials with microstimulation administered, the reward schedule remained 

unchanged for the associated target so that the subject’s experience of reward for the target 

was no different than on trials without intervention. When administered, stimulation was 

delivered coincident with the center-hold period and lasted the duration of the hold. A trial 

was considered to be successful if the subject completed the 1000 ms center-hold followed 

by holding at a peripheral target for 1000 ms within a 10 s period. If a reward was scheduled 

to be allocated with the selected peripheral target, a custom-programmed Arduino triggered 

a solenoid reward system to deliver a small amount of juice to the subject. The same trial 

was repeated up to 10 times until it was successfully completed and the subject advanced to 

the next trial.

Behavioral Manipulations—Since we aimed to preferentially increase the value of one 

of two alternative targets, stimulation was only delivered during instructed trials to that 

target. After an initial learning block (Block A) of 100 or 150 trials, depending on whether 

two or three colors were used, consisting of 70% free-choice trials with 30% instructed trials 

randomly-interleaved, we exposed the subject to a priming block (Block B) of all instructed 

trials. In Block B, the subject was equally likely to be instructed to any target color. On trials 

where the instruction was to the low-value target in the two-color task or the medium-value 

target in the three-color task, stimulation was administered during the center-hold period. 

The causal effects of stimulation were then assayed in a third block, Block A’, of which 70% 

of trials were free-choice and 30% were instructed to the target paired with stimulation. 

Microstimulation was also paired with the hold period of the instructed trials in Block A’. If 

stimulation had no effect on the value of the target, we would expect that the forced-

exploration of both targets during Block B would result in a similar or stronger preference 

for the high-value target during Block A’. If stimulation did change the value of the target, 

we would expect to see increased preference for the low-value target and this is indeed what 

we find. Control experiments with one subject were also performed in which 

microstimulation was paired with the high-value target instead of the low-value target and 

the opposite behavioral bias was found. In sham sessions, an identical block structure was 

utilized but stimulation was not administered during Blocks B and A’. Monkey L performed 

11 sham sessions and 12 stimulation sessions, Monkey M performed 12 sham sessions and 

12 stimulation sessions, and Monkey P performed 14 sham sessions and 18 stimulation 

sessions.

Behavior Data Models—Analyses were performed in Python with custom-written 

routines utilizing publicly available Python libraries. Only sessions in which the subject 

learned well during Block A and completed at least 100 trials in Block A’ were included in 

the analysis. Monkey L completed 12 sessions with constant-current stimulation, 11 control 

sessions (constant-current stimulation associated with the high-value target), and 11 sham 

sessions. Monkey M performed 12 sham sessions and 12 stimulation sessions. Monkey P 

completed 18 sessions with constant-current stimulation, 11 sessions with constant-voltage 
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stimulation, and 14 sham sessions. Q-learning, a model-free RL algorithm, was used to fit 

the subjects’ free-choice behavior and modified to included explicit parameters modeling the 

effects of stimulation on decision-making. The learning rate, α, determines how much the 

value of a choice is updated by new information in each time step, and the inverse 

temperature, β, indicates how much expected rewards affect the probability of selecting a 

stimulus. The standard Q-learning algorithm (Sutton & Barto, 1998) consists of the 

following value update equations:

[1]

[2]

Using a soft-max decision rule, the probability of selecting the lower-value (aLV) target over 

the higher-value (aHV) target is:

[3]

The variables QLV(t) and QHV(t) represent the values of the lower-value and higher-value 

targets at time t, respectively. The parameter α is the learning rate and the parameter β is 

known as the inverse temperature. When compared with alternative approaches, this set of 

equations will be referred to as the “regular” model. Maximum likelihood (ML) estimates 

for the model parameters were found for sham, stimulation, and control sessions. Parameters 

were found for Block A’ using the ML parameters fit separately from behavior in Block A 

as initial estimates. For sham sessions, behavior was modeled with the standard Q-learning 

algorithm with average accuracy of 85.7 ± 0.6%, 84.2% ± 0.6%, and 88.4 ± 0.7% for 

Monkeys L, M, and P, respectively.

We tested four modified versions of this framework that explicitly include a parameter for 

stimulation. The first two approaches included modifications to the value update equations 

in either an (1) additive or (2) multiplicative manner. A parameter, λ, in both cases captures 

the magnitude of the stimulation effect on value and the term S(t) is a binary indicator of 

stimulation being administered on trial t. In the first case, Q(t − 1) → Q(t − 1) + λS(t) is 

used to replace the term for the value at time t – 1. In the second case, Q(t − 1) → Q(t − 1) + 

λQ(t − 1)S(t) is used to replace the previous value term. This updated equation equals Q(t 
− 1) when there is no stimulation (S(t) = 0) and (1 + λ)Q(t − 1) when there is stimulation 

(S(t) = 1).

The second set of approaches considered alternatively supposed that the decision rule was 

directly affected by stimulation. Again, we consider both additive and multiplicative effects 

of stimulation. An additive parameter in the decision rule was modeled as
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[4]

Alternatively, a multiplicative scaling factor in the decision rule induced by stimulation was 

modeled as

[5]

For the standard and modified Q-learning strategies, all parameters used to model the 

subjects’ behavior were maximum likelihood estimates. The value update equation was 

updated on both instructed and free choice trials, but the decision rule was only simulated 

for free-choice trials. The ability of each of these models to fit the behavioral data was 

assessed using the Bayesian Information Criterion (BIC), which is defined as (Neath & 

Cavanaugh, 2012; Schwarz, 1978)

where L̂ is the maximum of the likelihood function, n is the number of parameters in the 

model, and T is the number of trials.

Neural Data Analysis—In analyzing the neural activity, our goal was to determine which 

neurons co-varied with stimulus value and how the activity of these neurons changed with 

stimulation. We used multiple linear regression to determine how the activity of all well-

isolated units co-varied with value, as well as movement variables and choice. The responses 

of individual neurons were fit using the following multiple linear regression,

where y is the firing rate in the window [0,400) ms following target presentation, C is the 

chosen target color, MT is the movement time, and RT is the reaction time. The variables 

Qlow, Qmed, and Qhigh represent the dynamic stimulus values estimates for the low-value, 

medium-value, and high-value target colors as determined by the best-fitting Q-learning 

model. Statistical significance of regressors was determined using incremental F-statistic 

with a significance level of 0.05. Neurons were classified as “value” neurons if their activity 

co-varied with any Q value, regardless of whether they also co-varied with other regressors. 

Choice, movement time, and reaction time neurons were categorized as exclusively co-

varying with the associated regressor. Neurons that did not significantly co-varying with any 

of these regressors were labeled as non-responsive.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were parametric and were performed using IBM SPSS, as well as 

custom-written Python routines. Python code utilized the numpy, scipy, statsmodels and 

sklearn libraries which are publically available. For behavioral analyses, one-way ANOVA, 

two-way ANOVA, and two-way MANOVA statistical tests were performed. For these 

analyses, the sample sizes correspond to the number of behavioral sessions. For neural 

analyses, an ANCOVA and two-way ANOVA were performed. In this case, the sample sizes 

correspond to the number of trials considered in the analysis. For all analysis of variance 

statistics, the F-test value is reported with the first subscript indicating the between groups 

degrees of freedom and the second subscript indicating the within groups degrees of 

freedom. Tukey’s HSD was used for post-hoc statistical analysis only when F-tests were 

associated with significant p-values (p < 0.05).
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Figure 1. Experimental setup and behavioral task
(A) Cartoon depicting the two different trial types encountered by the subject in the 

probabilistic reward choice task. Note that the target colors randomly alternate sides of 

presentation, so that the subjects must learn to associate color, not spatial location, with 

reward probability. (B) Representative choice behavior during free-choice trials. The main 

plot shows the empirical probability of selecting each target over a sliding window of 20 

trials. The small bars on the top and bottom portions of the screen indicate whether a reward 

was give or not when each target was chosen. Short bars indicate the absence of reward and 

long bars indicate presence of reward. (C) Conditional probabilities of selecting the higher-

value (HV) target given that it was presented on either the left or right side of the screen. 

Selection agnostic to spatial location would lie on the identity line, shown as a dashed line in 
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the plot. Results shown are from sham sessions for all subjects. (D) Microelectrode positions 

superimposed on MR images for each subject. The caudate is outlined in magenta and 

microelectrode trajectories are marked in white.
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Figure 2. Microstimulation results
(A) The probability of selecting the lower-value target on free-choice trials. (B) Fraction of 

times of target presentation on a given side during the instructed trial with stimulation and 

the selection of a target on the same or opposite side in the subsequent free-choice trial. (C) 
Fraction of lower-value target choices on free-choice trial following a stimulation trial that 

was either rewarded or unrewarded. (D) The probability of selecting the lower-value target 

on free-choice trials aligned to their latency following the forced-choice trial with 

stimulation for Monkey L (interaction effect: F8,135 = 0.507, p = 0.849, main effect of 

stimulation condition: F2,135 = 4.959, p = 0.008, main effect of trial latency from 
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stimulation: F4,135 = 1.535, p = 0.196; two-way ANOVA), (E) for Monkey M (interaction 

effect: F8,161 = 0.470, p = 0.876, main effect of stimulation condition: F2,161 = 21.798, p < 

0.001, main effect of trial latency from stimulation: F4,161 = 0.453, p = 0.770), and (F) for 

Monkey P (interaction effect: F8,185 = 0.281, p = 0.972, main effect of stimulation condition: 

F2,185 = 12.125, p < 0.001, main effect of trial latency: F4,185 = 0.490, p = 0.743; two-way 

ANOVA). Significant differences are indicated as: n.s. (not significant), ** (p < 0.01), and * 

(p < 0.05).
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Figure 3. Computational model fitting
(A) Representative model fits for the regular and adjusted Q-learning algorithms with a soft-

max decision rule. Results are plotted along with the raw behavior of the subject which is 

averaged over a sliding window of 20 trials. (B) Session-averaged BIC values for the regular 

and adjusted Q-learning candidate models. (C)–(E) Average Q-learning parameters averaged 

across sessions. The inverse temperature, β, was significantly different across conditions for 

the regular Q-learning model (main effect of stimulation condition: F2,27 = 6.247, p < 0.01 

for Monkey L; F2,21 = 9.563, p< 0.01 for Monkey M; F2,30 = 7.379, p < 0.01 for Monkey P; 

one-way MANOVA). (F) The difference between BIC values per session for the various 

adjusted models (including the regular unadjusted model) and the model with the value 

update equation modified to include a multiplicative parameter capturing the effect of 
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stimulation. Gray shadings indicate preference for the multiplicative Q parameter 

modification, with a BIC difference in the range 2 – 6 indicating a positive preference, 6 – 

10 indicating a strong preference, and > 10 indicating a very strong preference. Significant 

differences are indicated as: n.s. (not significant), ** (p < 0.01), and * (p < 0.05) using post-

hoc Tukey’s HSD.
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Figure 4. Neural correlates of value changes
(A) Recording locations for Monkey M and stimulation locations for all subjects. A totally 

of 266 task-related caudate neurons were recorded. Medial-lateral coordinate values are 

presented from midline, while Anterior-Posterior coordinates are presented relative to the 

interaural line. The marker size indicates the number of neurons sampled per site, while the 

marker outline indicates if any neuron recorded at the location significantly co-varied with 

stimulus value. The shading of the marker indicates the proportion of neurons that 

particularly co-varied with the value Qmed. (B) Pie chart on left shows the neurons (n = 266) 

categorized into five main types based on the linear regression analysis. The pie chart on the 
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right expands upon the number of Value neurons to demonstrate the frequency in which 

neurons were responsive to three different values, Qlow, Qmed, and Qhigh, and combinations 

thereof. (C) Average firing rate of a representative Qmed-value coding caudate neuron during 

Blocks A and A’. Activity is taken only from trials in which Qmed was associated with the 

lower-value target, i.e. when the medium-value and high-value targets were presented 

together. Only the last 100 trials in Block A, after initial learning, are considered so that 

firing rate changes are not dominated by effects of learning. (D) The firing rate during 

picture onset as a function of the modeled value Qmed is shown for the same representative 

neuron. Each marker represents the per trial firing rate in the window [0,400) ms from when 

the targets are presented, while the lines represent the linear fit of firing rate as a function of 

value given by the linear regression. The slopes of the linear regression fits were not 

significantly different (mBlock A = 6.279, mBlock A’ = 8.573, t-value = 1.263, p = 0.21), but 

there was a significant difference of 0.962 in the y-intercept (t-value = 2.213, p = 0.028). 

This suggests that there is a significant increase in firing rate during Block A’ for all Q-

values. Circles with error bars represent the trial-averaged firing rates for each of 5 equally 

populated stimulus value bins. Again, only the last 100 trials in Block A are used for 

comparison so that firing rate changes are not dominated by effects of learning. (E) Similar 

data as shown in Figure 2D for a representative non-value coding neuron from the same 

recording session. The linear regression coefficients were not significant (p > 0.05 for both 

blocks), indicating firing rate was not significantly modulated by stimulus value in either 

block. (F) The peak firing rate during picture onset as a function of the modeled value is 

shown for the same representative stimulus value-coding neuron for Blocks A (late trials 

only) and A’. (G) The difference in peak firing rate between Blocks A’ and A averaged 

across all value-coding neurons (n = 64). The peak firing rate was taken from the window 

[0,400) ms from target presentation. Only the last 100 trials in Block A are used for 

comparison so that firing rate changes are not dominated by effects of learning. A two-way 

ANOVA finds that there are significant main effects (stimulation condition: F1,69 = 4.17, p < 

0.05; stimulus value: F5,69 = 2.53, p < 0.05), as well as a significant interaction effect 

between stimulation condition and value (F5,69 = 4.98, p < 0.01).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Nonhuman primate (Rhesus macaque) UC Davis California National Primate 
Research Center

Oligonucleotides

Recombinant DNA

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Python (Analysis of behavior and neural 
data; reinforcement learning model 
implementation)

Python Software Foundation https://www.python.org

SPSS (Analysis of behavior and neural 
data)

IBM https://www.ibm.com/analytics/us/en/technology/spss/

Other
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