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Abstract

This paper presents empirical evidence on the existence of structural breaks
in the fundamentals process underlying US stock prices. We develop an asset
pricing model that represents breaks in the context of a Markov switching
process with an expanding set of non-recurring states. Different hypotheses
on how investors form expectations about future dividends after a break are
proposed and analyzed. A model in which investors do not have full infor-
mation about the parameters of the dividend process but gradually update
their beliefs as new information arrives is shown to induce skewness, kurtosis,

volatility clustering and serial correlation in stock returns after a break.
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1. Introduction

Is the fundamentals process underlying US stock prices stable over several decades?
This stability assumption is implicitly made in the vast majority of papers in the
empirical asset pricing literature that tests present value models. Recent studies
have questioned this assumption, however. Discussing the mean return on US
stocks since 1926, Brennan (1997) argues that ”... there are good reasons to doubt
that this parameter has remained constant for almost three quarters of a century
which has witnessed the most dramatic economic, technological and social change
of any comparable period in history” (Brennan, page 5). Observations like these
suggest that a full understanding of asset prices requires careful consideration of
the stability of the underlying fundamentals process.

This paper proposes a new approach to modeling stock market prices which
links structural breaks in the underlying dividend process with the assumption
that investors have imperfect information about the new dividend growth rate
after a break. Our approach is based on new empirical tests which suggest that
there are multiple breaks in the fundamentals process underlying US stock prices
and the paper considers their importance in the context of an asset pricing model.

Structural breaks in the dividend process, if present, can affect stock prices in
two important ways. First, like any shock to the endowment process, breaks will
affect future dividends. The main difference between breaks and ordinary shocks to
dividends is that the former are low frequency events that lead to rare level shifts
in dividends which remain in effect for a long time. This is the 'persistence’ effect
of breaks.

Breaks also give rise to an information effect which concerns how much informa-
tion investors have and how they revise their expectations about future dividends
following a structural break. Under full information, investors instantaneously ob-
serve the new parameters of the dividend process after each break. While this is an
important benchmark, it seems far from empirically plausible. Episodes linked to
breaks in the dividend process, such as the Great Depression or the two world wars,
were associated with substantial uncertainty over future prospects of the economy.
Such uncertainties, we argue, can better be modeled by assuming that investors
have incomplete knowledge of the new dividend growth rate and undertake a re-
cursive updating process which gradually provides them with more precise growth

estimates as new data emerges.



This imperfect information hypothesis has important empirical implications. In
the period following a structural break investors cannot rely on historical data to
produce an estimate of the new mean dividend growth rate. Large revisions in in-
vestors’ parameter estimates are more likely to occur immediately after such breaks
since the ’learning clock’ runs fast and this produces a clustering in the volatility of
asset prices through their dependence on investors’ beliefs. Under full information
a break in the dividend process will only show up as a single outlier in the return
distribution in the period where the break occurs. The combination of multiple
breaks in the fundamentals process and endogenous learning effects is important.
Genotte (1986) calls for a model where the market’s learning affects the underly-
ing return process, while Lewis (1989) conjectures that multiple break points are
needed to better explain movements in asset prices. Our analysis incorporates both
of these elements.

Earlier studies such as Cecchetti, Lam & Mark (1990) and Veronesi (1999) have
modeled instabilities in the fundamentals process in the context of switches between
two recurring states in the drift of US dividends. By assuming that states repeat
and that switches do not represent clean breaks with the past, investors in these
models can use historical information to update their beliefs, although they face the
filtering problem associated with identifying the underlying, but unknown, state.
Our approach models the dividend process as a Markov switching model with an
expanding set of non-recurring states. Each time a break occurs, the new state
is characterized by a different set of parameter values. Consequently, revisions
in investors’ parameter estimates and the volatility of asset prices will be greater
immediately after a break.

The two approaches are not mutually exclusive. The assumption of repeated
states is particularly appealing at the business cycle frequency, c.f. Perez-Quiros &
Timmermann (2000) and Veronesi (1999). But this does not rule out the presence
of breaks in the underlying dividends that occur at a much lower frequency. Indeed
while there are eight official post-war recessions, our empirical analysis only identi-
fies one or two post-war breaks. However, although structural breaks are rare, we
find that they can have very important effects on the moments of stock returns.

The plan of the paper is as follows. Section 2 presents empirical evidence on
breaks in the dividend process underlying US stocks while Section 3 develops an as-

set pricing model under such breaks. Incomplete information and recursive learning



effects are introduced in Section 4. Section 5 reports results from simulations of the
model under complete and incomplete information and compares the simulations

to actual data on US stock returns. Section 6 concludes.

2. Structural Breaks in Fundamentals: Empirical Evidence

To formally test for breaks in the endowment process we present the outcome of two
different econometric approaches. The first approach considers breaks as determin-
istic events and hence does not make any assumptions about the distribution from
which the breaks were drawn. The advantage of not imposing a probability model
for the breaks is the resulting robustness with respect to possible misspecification
of such a ”"meta model”.

We also consider a Markov switching approach to break point estimation. In
contrast to the nonstationary model which regards breaks as deterministic events,
this approach views breaks as draws from a stationary meta distribution. This
distinction is very important from a theoretical perspective. Stock prices depend
on expectations of all future dividend growth rates. Therefore they can only be
modeled under some assumption about the distribution from which the new growth
rate after a break is obtained.

We apply both breakpoint methods to investigate the presence of breaks in
the US dividend series provided by Shiller (2000). This data consists of monthly
dividends from 1871-1999 giving a total of 1548 observations. Dividends are scaled
by the consumer price index to get real dividends, D;, and we model the change in

the logarithm of these to get real dividend growth rates, d; = Alog(D,).

2.1. Deterministic Breaks

First consider the procedure for consistent estimation of multiple breakpoints in
linear regression models developed by Bai & Perron (1998). Let x; be a vector of
factors whose coefficients in the linear regression of d; on x; change at m discrete

(break) points in time:



d; = x,01 + uy t=1,2,..T,
dt :X;(SQ—FUt t:Tl—I—l,TQ (1)

di = X 0ms1 +uy  t=Tp+1,..T.

Here T' is the sample size, T7 < 15 < ... < T, < T and u; is a disturbance term. Bai
and Perron develop tests for the consistent estimation of the number and location
of breakpoints (77,...., T;,) and the parameters (87,..eey 6,4 1)-

Currently available econometric techniques do not facilitate consistent estima-
tion of multiple unknown breaks in the variance of a process. To capture a possible
break in the volatility of the dividend process we also consider the absolute value
of the dividend growth rate, |d;|.

Table 1 reports the number of break points identified by three separate criteria.
A Gauss program provided by Bai and Perron was used in the estimations. The
maximum number of breakpoints was set to eight and we allowed for heteroskedas-
ticity in the residuals. The sequential break point test uses a significance level of
five percent, while the two information criteria are based on the penalized likelihood
function. In the absence of a well established structural model for the dividend pro-
cess, we test for breaks in models with an intercept and a first-order autoregressive
representation. These capture the essential dynamics of the dividend growth pro-
cess. The number of breaks identified by the tests varies considerably depending on
which test is used. While the AIC always chooses the maximum number of breaks
permitted (eight), the sequential approach chooses between zero and six breaks.
However, even for the specifications without a lag where the sequential approach
chooses zero or one break, the battery of additional tests described by Bai and
Perron (1998) strongly indicate the presence of breaks. For instance, in the model
for d; with only an intercept term, the SupF test rejects the null of zero versus
seven breaks at the 1% level. When adopted sequentially it also rejects the null of
2 versus 3 breaks. Consistent with this, both the UD max and W D max tests are
significant at the 2.5% level.

The BIC results are somewhat more consistent across model specifications and
lead to four breaks for three of the four models. The break dates for the models
selected by BIC are identified around 1920, 1931, 1938 and 1950. Breaks are thus
associated with the period after WWI, the Great Depression, and the beginning



and end of WWII.

To illustrate the extent of the parameter variation, and to make our results com-
parable to those from the Markov switching specification, we report the parameter
estimates and their standard errors from the simplest model with an intercept, u,

in the dividend regression:

~

L s.e.) interval

(
0.19 (0.12) 1871:1 - 1911:5
071 (0.29) 1911:6 - 1920:5
d, = 0.71 (0.10) 1920:6 - 1930:11
-0.53  (1.32) 1930:12 - 1938:11
0.14 (0.07) 1938:12 - 1999:12

For the volatility proxy we have

1 (s.e.) interval

1.42 (0.07) 1871:1-1921:1

0.85 (0.06) 1921:2 - 1931:12 -
di| = 212 (0.43) 1932:1- 1939:11

1.11 (0.15) 1939:12 - 1951:11

0.39 (0.03) 1951:12 - 1999:12

Volatility is exceptionally high during the Great Depression and becomes far
smaller than at any other time during the post-war sample.

2.2. A Non-recurring State Model

An obvious alternative to the structural break interpretation of the dividend growth
series is to consider the data as the outcome of either a finite-state or an expanding
state Markov switching process. Recurring state models have been successfully
used to capture repeated patterns in asset returns at the cyclical frequency, c.f.
Veronesi (1999) and Perez-Quiros & Timmermann (2000), or at the somewhat
higher frequency of high and low volatility episodes.

In this paper we are instead concerned with modelling low frequency breaks in
the endowment process that are unlikely to be repeated and hence cannot be well
represented by a recurring state model. To represent breaks in the context of a
Markov switching model, we build on the approach of Chib (1998) towards change
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points. The mean and variance of the growth in the dividend process are driven

by a latent state variable, s;:

dy = i, + 0,50, sg=1,.....mn, (4)

where ng is the number of states. We do not include any lags in this specification
since we are interested in testing for breaks in the mean growth rate, while allowing
also its volatility to differ across regimes. This allows us to keep low the number of
parameters that have to be estimated, an important consideration for large values
of ns;. Movements across non-recurring states are controlled by the state transition

probability matrix

pu 0 0o .. 0
L—pu p2e 0 0
Mm=| : 1—py -, (5)
: 0 Dno—tne—1 0
0 0 o 1=ppy—ing—1 1

where pj; = Pr(si+1 = j|s¢ = i). Notice that s; can either remain at its current
value (i) or move to its subsequent value (i 4+ 1). Since we are conditioning on the
existence of n, states, the stayer probability of the terminal state is set to one.
However, unconditionally, as the sample size, T, goes to infinity, the number of
states will also increase. An advantage of this specification is that the number of
parameters that have to be estimated is 3n; — 1. This only grows linearly with n,.

With a recurring state specification II is given as

b1 P12 P13 .- Din,
b21 P22 P23 ... DP2n,
. . . . . , (6)
0 Prs—1ns—1  Pngns—1
Pna Png2 - 0O DPng g

so the number of parameters that have to be estimated, ng(ns+ 1), grows quadrat-
ically in n.

Conditional on being in a given state the density of the dividend growth process



is assumed to be Gaussian with state-specific mean (u;) and volatility (o)

, 1 —(de = p1)°
fldilsy = 7) = exp /
(o =5) = s (=

), J=1,..,n,

We estimate this model by maximum likelihood conditional on a given value
of ng, the number of states, and then apply BIC' to select the best model across
different values of ns. Panel A in Table 2 presents the outcome of this exercise.
A choice of ny = 7 maximizes the BIC. For this choice of n, the values of the
parameters estimates shown in Panel B of Table 2 are sufficiently different to justify
the use of a multi-state model. To facilitate interpretation of the states and to
identify the switches between them, Figure 1 plots the filtered probabilities of
being in states one to seven conditional on the full-sample parameter estimates and
period t information, Pr(s;|07, ). An even clearer separation of states occurs from
Figure 2 which plots the full-sample smoothed state probabilities, Pr(st|5T, Qr),
using the algorithm of Kim (1994). The identified states span the following periods:
1871-1919, 1919-1920, 1920-1931, 1931-1951, 1952-1966, 1966-1975, 1975-2000.

Since the two-state Markov switching model with recurring states has become
very popular in the empirical literature, it is also of interest to compare this model
with the results in Table 2 and Figures 1 and 2. In early work, Kandel & Stam-
baugh (1991) represent the mean and volatility of the logarithm of the consumption
growth rate as a recurring state model. The model analyzed by Cecchetti et al.
(1990) and Veronesi (1999) assumes two drift parameters and a single volatility
parameter. This restricted model generates values of the log-likelihood function
and the BIC of 4497.2 and -8957.8, respectively. These values are far below that
of the seven state model with non-recurring states. Allowing ¢ to vary with the
state does not change this conclusion. Another indication of the value of adopt-
ing a break point approach to identify a low frequency component in the dividend
growth process comes from the plot of the two-state model’s state probabilities
which are shown in Figure 3. The first state is predominantly a post-1960 state

and vice versa with state 2, indicating a fundamental change in the post-war data.



3. Stock Prices Under Breaks in the Dividend Process: A Theoretical
Model

The empirical evidence in Section 2 suggests that a model of US stock prices must
account for multiple breaks in fundamentals. Common to the Great Depression
and the world wars is that these events were rapidly recognized once they had
occurred. Furthermore, these events appear to be sufficiently unique to make it
unlikely that they are repeated draws from the same (two-state) switching process.

In this section we propose a simple asset pricing model based on the Markov
switching model with an expanding set of non-recurring states. To acknowledge the
uniqueness of the breaks we instead assume that, after each break, the parameters of
the dividend process are drawn from a continuous distribution. This also guarantees
that parameter uncertainty will not be eliminated even asymptotically. If the data
were generated by a finite state Markov process, investors would eventually learn
the parameter values arbitrarily well, although of course they need not know the
true state of the economy which gives rise to a filtering problem.

Stock prices, P;, are assumed to be determined by a present value relation based

on a representative investor with power utility

o1 a>0

Here C; is real consumption at time ¢, and « is the coefficient of relative risk

aversion. Standard equilibrium asset pricing models (e.g., Lucas (1978)) assume
that non-storable dividends from a single endowment source are the economy’s
only source of income, i.e., Ciy; = Di;. Subject to a budget constraint, the
representative agent chooses stock holdings to maximize the discounted value of

expected future utilities from consumption, F; {EZO:O ﬁku(DHk)}, where f = =

T+p
and p is the rate of impatience. This yields the following Fuler equation
Dy
P = BEI(Pes + Dut) (22) 1, ®)
t

where FE; is the expectation operator conditional on the information set at time
t. Fluctuations in stock prices are driven by shocks to dividends and revisions in
investors’ beliefs.

Real dividends (D;) are assumed to follow a geometric random walk process:



In(Dyy1) = In(Dy) + pty 1 + 0116041, (9)

where fi,,; is a drift term, 0,1, is the volatility parameter and €441 ~ N(0,1) is
a normally distributed innovation term. Consistent with the change point model
proposed in Section 2, let s;;; be a 'break indicator’ such that s;,; = s; implies
that there is no switch between states in the dividend process, while if s, =
st + 1, a break has occurred in period ¢t 4+ 1. Also let Pr(s;y1 = s¢|err1) = m¢ and
Pr(sis1 = s¢+ 1lety1) = 1 — my, be the probabilities of no switch and a switch from
the state prevailing at time ¢, respectively, for all possible realisations of €;,. 7 is
then the diagonal element of the transition probability matrix, IT in (5). Finally
assume that the process for s;;; is independently and identically distributed and

also independent of the e’s. The process for (u,,, 07,;) is given by

Pr(iycy = 02y = lscin = 51) =1 o break)
Pr(py <08 <0°sen=s,+1) = H(\,7°) (break)
where H(.,.) is the bivariate cumulative density function for the new values of 1,
and o7, ;. Under these assumptions we have E;[Dyy1/Dy|sei1 = si| = exp(p,+07/2)
= (1+ g¢), one plus the mean growth rate conditional on no break in the dividend
process.
To simplify, we assume that each time a break occurs, the new dividend growth
rate, g1 = exp(pyy1+07,1)—1, is drawn from a univariate density, G(g+1) defined
on the support [g,g]. For example, if the density is uniform, U(g;,1), equation (10)

becomes

0'2 0'2
Pr(exp(uy + ) = explp + Plsen =) =1 (obreak)
0'2 _
Pr(exp(py; +75%) <1+glsim=s+1) === (break)

I

for all g € [g,7]. Likewise, the persistence of the new regime, 7,1, is drawn from
a density F(m;1) defined on [m;7]. For simplicity we assume that F'(.) and G(.)
are independent. The possibility of breaks in the mean and persistence parameters
is the only non-standard part of the specification of the dividend process and the
innovation term is homoskedastic and serially uncorrelated. The changes in the
mean dividend growth rate that we have in mind with this dividend specification

are rare structural breaks like the ones identified in the empirical analysis. Breaks



in the discount rate will have a symmetric effect on asset prices and can be analyzed
accordingly. Alternatively, breaks can be thought of as occurring in the differential
between the discount rate and the growth rate, p — g.

Investors are assumed to observe if a break has occurred in a given period, so
their information set is & = {Dy, Dy 1, ...., P, P1, ..., S, 8¢ 1,..}. In practice in-
vestors may either have superior information that allows them to anticipate a break
or, conversely, only gradually realize that a break has occurred. The advantage of
our informational assumption is that it allows us to study the clean effect of a break
on stock prices.

In the appendix we prove that, under full information and with breaks in the

dividend process, the stock price is given by the following proposition:

Proposition

Suppose that with probability 1 — 7; the mean growth rate of the dividend process
breaks from the state prevailing at time ¢. After a break, the new mean growth
rate, gi 11, is drawn from a density G(.) with support [g,g] while the persistence

parameter, m;.1, is drawn from a density F(.) defined on [z, 7]. Then the full

information stock price (8) is given by

g
Dy 1— 1—
P = 1 @ 1-— 1 *dG 12
g
g
__ 7Tf,(1+9t)272(Y+(1*7Tt)f(1+9t+1)li(ydc(gt#»l)(l“"gt)li”
g
g
(1 —me) ff Trp—mi(ite) dG(ge)dF(m¢)
g
. _ )
_ e Nl—a
1 JT et i ar(r,)
g

In the special case where investors are risk neutral (o = 0), the density of the

dividend growth rate after a break is uniform and m; = 7 is constant, the stock

B a+7(1l+ g)
b= <1+p—w(1+gt)>Dt (13)

price simplifies to

where a is a constant defined by

(1-m) (1+50)G - g) +74)

a = )
g—g—(1—m)B

10



and

4. ZF-g+2-g) (+pE-9 (A+p? (ltp-—7(+g)
B o 2 I l+p—n(1+79)
1/, 1+p l+p—7m(1+g)\ _
B = ;(<T>ln(1+p_w<1+§>>+g_g>

Notice the tradeoff involved in the choice of 7, the parameter determining the
breakpoint frequency. If 7 is low, breaks occur frequently but their effect tends
to be smaller since they are expected to influence dividends over a shorter future
horizon. If 7 is close to one, breaks will be rare but they also have a much larger

effect when they do occur.

4. Stock Prices Under Incomplete Information and Recursive Learning

The solution to the stock price in Section 3 was derived under the assumption that,
at each point in time, investors know the true mean and persistence parameters
of the dividend growth rate (g, 7). This assumption becomes less plausible in
the presence of breaks in the dividend process. After a break investors no longer
have access to a large sample of historical data points that can provide them with
a precise estimate of the new parameters of the dividend process. If investors do
not know the true parameter values it is plausible to assume that they attempt to
learn them through efficient use of information after the break. To make investors’
estimation problem tractable we assume that only the drift of the dividend process
(p,) is unknown and subject to breaks, i.e. ¢? = ¢ and m, = 7 are constants
known by investors. As argued by Merton (1980) and Brennan (1997), the mean
parameter of the fundamentals process is typically imprecisely estimated in small
samples, while the volatility can be precisely estimated by more frequent data
sampling. Likewise, the variation in 7, documented in Section 2 is sufficiently
small that this is unlikely to be an important source of variation in stock prices.
Investors use a Bayesian updating procedure and are interested in calculating
the stock price as a function of p,, A\(u,|o, a, p, 7). The form of A follows from the
proposition and the mapping from g, to the growth rate, g;. Let &, = (&, §,_1, -+,
&i—ns+1), Where & = Alog(D;) and n is the number of observations of the dividend

process since the most recent break. Using the assumption that &, is normally

11



distributed, the likelihood function for u, conditional on &, is given by L(u;&,)
= (1/4/2m0?/n) exp( 2532/“7;) ), where &, = (1/n) X7 &,_,. Let p(u,) be the prior

distribution for s, ;. Then the stock price follows from Bayes’ rule:

E1)|€,] = J M) L €)p () dpy (14)
J L(p; €)p () dpsy

This expression accounts for investors’ estimation uncertainty. We set the prior in
our model equal to the unconditional density for the mean dividend growth rate,
i.e. the indicator function i,z scaled by 1/(g — g). The mean growth rate is
bounded between g and 7 ; 1_+£ < exp(py + 0%/2)< 1+ 7, so the true value of
the unknown drift, /1, lies between the following bounds: [ = In(1+ g) — ¢0?/2 <
p, <In(1+9)—0c%/2 = 1. Tt follows that the expression in the denominator of (14)
reduces to

IR S Pt R el 31
- oG ) 15)

The simplicity of the updating problem confronting investors is helpful in simula-
tions based on a large number of computations of the stock price.

Our model is closely related to the analysis of Lewis (1989) which considers the
market’s forecast error process arising from a one-off break in the drift parameter of
the first-differenced fundamentals process. Investors learn gradually about the shift
through a Bayesian updating rule and, as in our model, also know the time where
the fundamentals process may have changed. Lewis analyses separate scenarios
depending on whether the new drift parameter is known or unknown to investors.
Compared to the case where the market knows the drift after the switch, she
finds that learning evolves much more slowly when investors have to estimate this
parameter. This observation will be important to our simulation results.

It is possible to extend the setup to allow agents to use pre-break data when
estimating the new growth rate after a break or even when testing for a break in
the first instance. For example, agents could use a reverse ordered Cusum test
to detect the most recent break and then use a stopping rule to determine the

optimal estimation window. The cost of introducing these layers of complexity is,

12



however, that the learning problem becomes progressively more complicated and
the simulation results more difficult to interpret.

There is an alternative approach that does not condition on knowing the under-
lying state. Authors such as Cecchetti, Lam & Mark (1993) and Veronesi (1999)
have developed rational expectation equilibrium models to explain asset prices
when these are driven by dividends whose drift switches between two unobservable
states. These models give rise to a filtering problem that is closely related to the
recursive parameter estimation problem considered here, since the state probabili-
ties are also updated through Bayes rule. The vector of filtered state probabilities

under Markov switching follows from the updating equations

Ptt—1 © 1
V(Pep—1 ©my)’
Pt+1t = Hpt\ta

Pt (16)

where py; = Pr(s;[s;-1,d;,di—1, ...), © represents element by element multiplication

and 1, is the vector of state densities evaluated at the dividend growth realization:

L expl(—(d: — p)?/20)
n, = : (17)
\/#7”3 exp(—(d¢ — p,,)*/207,)

The stock price can be derived by summing the discounted value of future
expected dividends across the states weighted by the filtered state probabilities.
This probability weighting has the effect of smoothing the price series relative to
the full information case where the full impact of a switch in the state is immediately

incorporated into the stock price.

5. Simulations

Structural breaks introduce non-linearities in dividends and stock prices and re-
cursive learning effects introduce non-stationarities in returns. This rules out stan-
dard econometric tests of our model, c.f. Bossaerts (1995). Instead we evaluate the
model by simulating dividends and forming stock prices according to the formulae
in sections 3 and 4. The purpose of this analysis is not to calibrate the moments of

stock returns but rather to study some of the qualitative features associated with
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breaks and different models for investors’ expectation formation. The following set

of monthly dividend parameter values are assumed in the experiments

p =0.0062,7 = 0.0050, g = —0.0034, o = 0.015, 7 = 0.997. (18)

The annualized real discount rate is 7.5%, and the minimum and maximum values
of the dividend growth rate are -4% and 6%, respectively, yielding an average
growth rate of one percent per annum. These parameter values as well as the
monthly volatility of 1.5% match the real dividend growth data over the period
1871 - 1999. The choice of interval for the dividend growth rate is based on our
assumption that the dividend growth rate is drawn from a uniform distribution
with support [g;g], such that » < g. The value of 7 means that the drift of the
dividend process on average changes about once every thirty years. The historical
returns used as a benchmark for the simulations comprise 129 years of monthly
data or 1548 observations. We did not experiment with the parameters in order to

obtain the best fit to the actual return series.

5.1. Diagnostic Tests and Moments

Figure 4 plots the outcome of a particular simulation. The upper windows present
excess returns under full information, filtering and Bayesian learning. Since divi-
dends are identical for the return series, the difference between the plots reflects
differences in investors’ growth estimates, plots of which are provided in the sec-
ond row. For this particular simulation there were seven changes in the dividend
growth rate. The volatility in the growth estimate under Bayesian learning fol-
lowing a break and the subsequent gradual adjustment towards the true value is
clear from the middle picture. Under the filtering model, the dividend growth rate
adjusts more gradually. It increases initially in response to the high growth rate
prevailing between observations 200 and 300, only to decline gradually and increase
towards the end as a result of the higher terminal growth rate. Volatility clustering
in returns around the breaks is visibly present in the simulations under learning.
In contrast, under full information there is no tendency for outliers to carry over as
higher volatility in subsequent periods. The smoother adjustment under filtering
gives rise to a return series that more closely resembles white noise.

Figure 5 confirms that learning can give rise to ARCH effects and serial corre-

14



lation. For the simulation used to construct Figure 4, the upper row plots the time
series of a twelfth-order ARCH test. To track evicence of local volatility cluster-
ing in returns we use rolling regressions with a window length of 120 months, or
ten years of data. There is only weak evidence of ARCH effects in the simulated
returns from the full information model shown in the first window of Figure 5. A
very different picture emerges from the second window which plots the estimated
conditional volatility under Bayesian learning against the one percent critical value
of the test statistic. The large variations in the growth estimate between observa-
tions 400 and 700 give rise to high values of the ARCH test. Under filtering there
is no evidence of volatility clustering.

To measure local serial correlation in returns we calculate Ljung-Box statistics
for twelfth order serial correlation, again using rolling regressions with a window
length of 120 months. In this particular simulation local serial correlation never
occurs under full information while it shows up both under Bayesian learning and
under filtering.

Table 3 provides a more systematic set of results for the monthly S&P500
returns and the simulated data based on sample sizes of 1548 observations. As
documented in many previous studies, monthly stock returns are characterized by
skewness, fat tails, first order serial correlation and strong volatility clustering, c.f.
the significant ARCH effects. The strong evidence of first order serial correlation
in the actual returns data is likely to reflect non-synchronous trading effects as
opposed to genuine predictable patterns in returns. For this reason we do not
attempt to replicate this feature of the data.

Consider next the simulated data. Under full information and no breaks (7 = 1)
this model is unable to match the high volatility, skewness and fat tails observed
in the data. This simply reflects the common finding in the asset pricing literature
that - in the context of a stationary dividend growth model - dividend variations
alone do not fully explain movements in observed stock prices. These results are
identical for different values of the coefficient of risk aversion, «.

Introducing breaks, but maintaining the full information assumption and setting
a = 0, the volatility of stock returns increases from 1.5 to 2.9 percent and the
skewness and kurtosis also go up dramatically, exceeding the estimates for US
returns by an order of magnitude. This happens because of the outliers in stock

returns observed after a break in the dividend growth rate, c.f. Figure 4. Since
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isolated outliers is the opposite of volatility clustering, this model does not give
rise to the ARCH effects observed in the data. However, the comparison of the full
information model with and without breaks clearly demonstrates the importance to
the distribution of stock prices of allowing for breaks in fundamentals irrespective
of informational assumptions.

Next consider stock returns under Bayesian learning. This model generates
average volatility of 3.3 percent, close to the sample estimate of 4.1 percent. Com-
pared with the full information case, Bayesian learning decreases the skewness and
kurtosis to a level more closely in line with the data. It is easy to understand why:
Under full information a jump in the dividend growth rate is instantly recognized
by investors and shows up as a major revision in the stock price. In contrast, under
Bayesian learning, new dividend information after a break will only gradually be
incorporated into the price and is weighted against investors’ prior beliefs. This
gives rise to a more gradual price adjustment and hence decreases the skewness
and kurtosis of returns. Despite this gradual adjustment, the Bayesian learning
model does not seem to generate much full-sample serial correlation in the level of
returns.

The Bayesian learning model also produces volatility clustering. Close to 40
percent of the simulations generate significant ARCH effects when investors are
risk neutral. To measure the persistence in the conditional volatility of excess
returns we sum the coefficients of the squared residuals in an ARCH(12) regression
of squared residuals on a constant and twelve lags. Under either full information or
filtering the mean value of the persistence estimate is -0.01, while under Bayesian
learning this figure increases to 0.27. This compares with an estimated persistence
of the conditional volatility of the returns data of 0.59.

Increasing « to 0.5, the Bayesian learning model is still able to generate values
of the diagnostic tests that are not too far from those of the actual returns data.
However, once « increases to 2, the model becomes very similar to the full infor-
mation model with breaks taking the form of isolated outliers. Consequently, when
investors’ degree of risk aversion is too high and the mapping from the growth
estimate to the asset price is no longer convex, learning effects appear less able to
fit historical returns. As pointed out by Cecchetti et al. (1990), when o > 1, the
equilibrium price-dividend multiple is lower when the dividend growth rate is high

and agents’ intertemporal smoothing incentive leads them to sell out stocks and
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suppresses their price. The positive correlation between dividend shocks and the
price dividend ratio thus no longer prevails and the two effects tend to cancel out,
thereby removing the strong effects from learning. At any rate, such high values
of a do not appear to characterize the US stock returns data very well. Hansen &
Singleton (1982) report estimates of a around 0.8.

Under filtering, the return distribution is close to Gaussian, the main difference
being that there is significant evidence of serial correlation—though not of volatility
clustering—in the returns generated by this model. Naturally if we were to intro-
duce state dependence in the volatility parameter, o, then the filtering model would
give rise to ARCH effects. However, again such effects are concerned with volatility
clustering at the cyclical frequency as opposed to clustering around unique breaks

such as the Great Depression.

5.2. Tests of Fuler Fquation

Following Hansen & Singleton (1982), it has become standard to test intertemporal
restrictions implied by asset pricing models estimated by GMM. The present value

model (8) implies an Euler equation

E[(ﬁ(PtJrl ;Dtﬂ (Dl;:l)_a _ 1) Z; =0, (19)

where Z; is a vector of instruments known at time ¢. This methodology is based on

stationarity of the underlying return series. Asymptotically breaks therefore cannot
explain rejections of the moment condition. However, in samples with relatively
few breaks it is possible that these can distort the size of such tests. Similarly,
learning about the parameters or about the underlying state can also introduce
serial correlation in returns which could lead to more rejections of the moment
condition.

To explore the impact of breaks and incomplete information on tests of the Euler
equation, we undertook 500 simulations of the three models and estimated the
parameters (a, 3) by GMM. As instruments we use a constant, the dividend yield
and the lagged return. These are standard instruments and have been established
empirically to have reasonable power in testing moment conditions. With two
parameters to be estimated, there is one overidentifying restriction to be tested.

Table 4 reports the percentage of rejections at one, five and ten percent critical
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levels as well as the mean value of Hansen’s J test.

There is a systematic tendency for breaks to lead to overrejections irrespective
of the underlying model for agents’ expectation formation. For example, the rejec-
tion frequency at the 5% critical level is close to 10 percent in many cases. The
rejection rates are highest under the filtering model which introduces most serial
correlation in returns. These results lend some credibility to the notion that breaks
and learning effects may in part be responsible for rejections of moment tests of

the Euler equation.

5.3. Timing of the Breaks

Two conclusions can be drawn from the simulations in the previous section. First,
independent of how much information investors’ hold, breaks in fundamentals affect
the distribution of stock returns in important ways and may be helpful in under-
standing the kurtosis and fat tails in the observed data. Furthermore, imperfect
information and gradual updating of investors’ beliefs after a break seem plausible
candidates to an explanation of the clustering of volatility observed in US stock
returns.

Authors such as Veronesi (1999) have previously suggested that recursive up-
dating of the probability of the underlying state may give rise to volatility clustering
in returns. Our results add to this analysis by actually predicting the timing of
the volatility clustering in stock returns. It provides an ex ante identification of
the point in time, namely after a break in the dividend process, where ARCH ef-
fects can be expected to occur in stock returns. The model also predicts serially
correlated returns after a break.

It is instructive to compare our model to the dividend growth rate process and
the learning problem analyzed by Barsky & DeLong (1993). These authors argue
that long-run movements in the price-dividend ratio of US stocks can be explained
by investors’ projections of future dividends modeled as a long moving average of
their own past with geometrically declining weights. The magnitude of learning
effects does not change over time in this setup. In contrast, in our model learning
effects are far stronger in the periods right after a break.

To test these predictions on US data, Figure 6 plots the twelfth-order LM
and Ljung-Box statistics for ARCH and serial correlation based on a 120 month

rolling window adopted to the returns data. Again we use a high order (12) of the
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diagnostic test since in practice investors’ knowledge of breaks are likely to be less
precise than what was assumed in the theoretical model in Sections 3 and 4. The
conditional volatility of excess returns is very high around 1918-1920, 1929-1933
and in 1952. There is evidence of particularly strong serial correlation in excess
returns over the period 1922-52 and again in the early seventies. We would not
expect these points to coincide exactly with the break dates identified in Section
2 since investors could either have anticipated a breakpoint (if they have superior
information) or failed to immediately identify a break in real time since historically
they did not have access to the full sample information. Although the coincidence
of the two series is not perfect, it is nevertheless suggestive of the importance
of learning effects and structural breaks to an explanation of some of the most

important episodes for US stock prices in the twentieth century.

6. Conclusion

This paper has presented new empirical evidence on low-frequency breaks in the
fundamentals process underlying US stock prices. Through simulations of an asset
pricing model that accounts for such rare breaks, we showed that how much in-
formation investors possess about such breaks can strongly affect the dynamics of
asset prices. Our findings also suggest that although breaks may be drawn from a
stationary meta model, their rare occurrence and potentially large effect can lead
to small sample distortions of standard econometric tests of asset pricing models.

Dividend growth and discount rates are typically modeled as simple stationary
processes without breaks. However, mounting empirical evidence suggests that this
is too simple a representation. Donaldson & Kamstra (1996) provide an effective
demonstration of the importance of correctly modelling the dividend process. They
proxy investors’ beliefs about the dividend growth process by means of a neural
network and argue that the resulting nonlinearities in the dividend process could
have led to the 1929 stock market crash. Interestingly, our results justify their use
of 1920 as a starting point in the estimations since a dividend break is identified in
1919. Donaldson and Kamstra condition on the parameter estimates of their model
and hence do not consider investors’ uncertainty about their very complicated
nonlinear model, so it is hard to say how learning would affect their results. The
two approaches are closely related, nevertheless, since our approach concludes that

the dynamic specifications that ignore breaks are also likely to be misspecified.
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Many alternative explanations have been proposed for the the seemingly high
first and second moments of stock returns. Wang (1993) suggests asymmetry of
information between noise traders and rational investors which leads uninformed
traders to rationally behave like price chasers. This introduces serial correlation in
stock returns and increases volatility and risk premiums. Campbell & Cochrane
(1999) propose an asset pricing model in which consumption growth follows a
lognormal process but with habit formation effects. Their model fits both the
unconditional equity premium and the risk free interest rate as well as a range of
other moments. Cecchetti, Lam & Mark (2000) introduce belief distortions that
vary over expansions and contractions and leads to predictability in returns. These
models form an important part of a complete story for the variations in US stock
prices. For example, we have not attempted to address the equity premium puzzle
or explain the short-run dynamics of stock prices.

What this paper has suggested, is that episodes such as the Great Depression
and the world wars have fundamental effects on the statistical properties of funda-
mentals underlying US stock prices. This is consistent with Kim, Nelson & Starz
(1991) who find evidence of a fundamental change in the stock return process af-
ter WWII and go on to ”conjecture that it may be due to the resolution of the
uncertainties of the 1930’s and 1940s” (page 515). Attempts to model stock prices
over the last century should therefore pay careful attention to structural breaks

and their impact on investors’ expectations.
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Appendix

Proof of the Proposition
Suppose that the solution for P, takes the form P, = ~y(g, m¢)D; for some function

7(.). Taking expectations conditional on information at time t it follows from (9) that

1 D —Q . .
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o 2
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o
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g
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where G(gy11) is the cdf of g;11 which has support [g; Gl, F (1) is the cdf of 7myy1 with
support [m;7], @(.|o?) is the normal density function with mean zero and variance o2,
and the last equality follows by using the independence of £;11 and g¢11 and integrating

out €¢41. Dividing through by (D) in (A1) and simplifying we get

(1 +p—m(1+ gt)l_a) Y(ge,m) =m(1+g0) "+ (L =) | (14 ge1)' " *dG(grs1)

I S~——_ I

+(1—m) (1+ ger)" (g1, Ter1)dG(ges1)dF (m41). (A2)

3 S~ 3
I S~

Next multiply by (1+ g;)'~*dG(g,)dF (m;)/ (1 + p — (1 + g;)* ™) and integrate over
lg:9] and [m; 7]
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Under the assumption that the underlying densities F'(.), G(.) do not vary through time,

we must have
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This gives an equation which can be used to assess the integral in (A3):
)
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In the special case with risk-neutral agents, o = 0, constant break probability, 1 — 7,
and a uniform cdf, F' = U, we can use that [ dU(g;) = Eig (A5)
g =

_ 9 (714902 +0—m) (1+G+9)/2) (1+9¢)
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c.f. Gradshteyn & Ryzhik (1994). After some algebra we see that
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Figure 1: Filtered state probabilities from Markov switching model with seven

non-recurring states



Zo00
Zo00

950
7950

state 4
tate 6

940
1840

—
920

920

Filtered state probability, state 2
Filtered state probability,

Filtered state probability, state

Teso 900
900

1850

850
880

o
«
5

2000
2000
2000

980
—

880

7880

To50
To60
960

tate 3
tate 5

Filtered state probability, state 1
Toz0
Filtered state probability, state
Filtered state probabillly, state
.._
To20
Filtered state probability.
To20

~ state 7

T30
1940
1940

900
900
1800

3 8 8 g
7L oL w0 ®g  ¥D 7D 0D L ¢ g0 s¢  ¥0 D DO 7L oL ®0  s0  #D  Zo 0d 71 oL ®a  so ¥o o g0

27

Figure 2: Smoothed state probabilities from Markov switching model with seven

non-recurring states
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Figure 3: Smoothed state probabilities from Markov switching model with two

repeated states
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Figure 4: Returns and expected dividend growth under three assumptions on in-

vestors’ expectations
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window estimates



Table 1. Estimated number of break points, Bai-Perron Method.

Break point Break Dates (BIC)
criterion
Process  Sequential AlC BIC
Dividend growth 0 8 4 1911, 1920, 1930, 1938
Absolute dividend growth 1 8 4 1921, 1931, 1939, 1951
Dividend growth w. lag 3 8 1 1917
Absolute dividend growth w. lag 6 8 4 1920, 1931, 1938, 1950

Note: This table reports the number of break points detected by the Bai-Perron (1998) method
adopted to the logarithm of the monthly growth in real dividends. The results are based on
univariate specifications with an intercept term or an intercept term and a single lag of the
dependent variable as regressors.

The sequential approach to determining the number of breaks using a significance level of 5
percent. AIC and BIC are the Akaike and Bayesian penalized likelihood model selection criteria.



Table 2. Estimation Results for the Markov switching models with non-recurring states.
A. Likelihood function

Number of states Log-likelihood BIC

1 3534.5 -7054.3
2 4720.7 -9404.7
3 4751.6 -9444.4
4 4788.6 -9496.4
5 4798.0 -9493.2
6 4813.5 -9502.2
7 4870.4 -9593.9
8 4878.2 -9587.5

B. Fitted parameters for the seven state model

s=1 s=2 s=3 s=4 s=5 s=6 s=7
U 0.161 -2.327 0.688 -0.048 0.280 -0.254 0.121
(s.e.) (0.077) (0.226) (0.074) (0.131) (0.050) (0.035) (0.022)
o 1.825 1.214 0.816 2.071 0.661 0.364 0.374
(s.e.) (0.054) (0.16) (0.052) (0.093) (0.035) (0.025) (0.016)
p, 99.82 96.66 99.22 99.60 99.44 99.10 1.00
(s.e.) (0.18) (3.31) (0.79) (0.40) (0.56) (0.93) NA

Note: Panel A reports the outcome of fitting to the monthly dividend growth rate data a Markov switching
model with an expanding set of non-recurring states. Panel B reports the parameter estimates and their
standard errors for the selected seven state model.



Table 3. Statistical Properties of Monthly Stock Returns. US data (1871-1999) and simulations.

Moments of Excess S&P 500 Full Information

Returns

Standard deviation
Skewness
Kurtosis

Serial Correlation
R? in Yield
Regression
ARCH(1)
ARCH(4)
ARCH(12)

Serial Correlation
ARCH(1)
ARCH(4)

Data  Simulations
No Break Break
Full Info.
a=0
0.041 0.015 0.029 0.015
0.82 0.05 8.70 0.05
22.42 2.98 304.96 2.98
115.23 0.48 0.22 2.64
0.005 0.000 0.001 0.003
12.11 1.00 0.28 1.05
68.13 3.92 0.61 4.04
173.32 12.00 3.40 11.91
Percentage of Simulations with Significant Value of the Diagnostic Statistic
4.9 20 38.4
4.3 0.6 5.4
5.0 0.9 6.3
4.9 2.7 3.8

ARCH(12)

Filtering Bayesian

Learning

0.033
1.42
31.01
0.94
0.002

7.96
21.84
38.27

15.6
31.8
41.5
41.2

Full Info.  Filtering
a=05

0.019 0.015

1.22 0.05

62.42 2.98

0.43 1.18

0.003 0.004

0.55 1.03

1.50 4.03

5.65 11.90

3.9 21.7

0.8 4.9

1.6 6.5

3.2 4.1

Bayesian
Learning

0.022
0.24
8.54
0.66

0.002

6.79
20.82
41.00

8.8
42.5
61.6
67.1

Note: The first three rows (standard deviation, skewness and kurtosis of excess returns) give the estimates of the
first three (centered) moments of the actual and simulated data. Serial correlation is the estimate of the first order Ljung-Box test statistic.
R?in yield regression is the estimated R’ from a regression of excess returns on a constant and the lagged dividend yield. The ARCH statistics give
the values of the LM test for ARCH suggested by Engle (1982). These are chi-squared distributed with degrees of freedom equal to the order of the

ARCH test.

Full Info.

a=2
0.025 0.015
5.66 0.05
215.20 2.99
0.51 0.64
0.026 0.017
0.43 1.03
1.69 4.09
4.62 12.03
7.5 9.6
0.6 5.1
1.8 7.4
3.8 4.9

Filtering Bayesian

Learning

0.017
4.66
178.10
1.72
0.044

0.88
2.99
5.82

31.2
4.2
55
6.1

The last four rows provide the percentage of simulations that generated values of a given diagnostic test that were significant at the 5 percent critical

level.

The following annualized parameter values were used in the (1000) simulations:
n=.997,g=-.04, g= .06, p=.075, 0 =.015.



Table 4. Method of Moments test of Euler equations

Full Bayesian Filtering Full Bayesian
Information learning information  learning
a=0 a=05
Rejection rates
1% 2.8 3.8 7.6 0.6 2.8
5% 104 11.6 13.2 6.0 7.0
10% 19.0 16.0 19.0 13.2 13.4
15 3.0 1.2 14

Mean value of J-test 1.6

Filtering

3.6
9.8
17.0

1.6

Full
information

2.8
9.2
16.2

15

Bayesian
learning

a=2.0
3.2
8.4
14.6

15

Filtering

9.6
17.4
24.8

4.6

Note: This table reports the outcome of 500 Monte Carlo simulations of the three asset pricing models under full information, Bayesian learning and filtering. Each

set of simulations tests the Euler equation using a constant, lagged return and dividend yield as instruments.





