UCSF UC San Francisco Previously Published Works

Title

Autoantibodies neutralizing type I IFNs are present in \sim 4% of uninfected individuals over 70 years old and account for \sim 20% of COVID-19 deaths

Permalink

https://escholarship.org/uc/item/1sp3z9cj

Journal Science Immunology, 6(62)

ISSN

2470-9468

Authors

Bastard, Paul Gervais, Adrian Le Voyer, Tom et al.

Publication Date

2021-08-10

DOI

10.1126/sciimmunol.abl4340

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

HHS Public Access

Author manuscript *Sci Immunol.* Author manuscript; available in PMC 2022 February 19.

Published in final edited form as:

Sci Immunol. 2021 August 19; 6(62): . doi:10.1126/sciimmunol.abl4340.

Autoantibodies neutralizing type I IFNs are present in \sim 4% of uninfected individuals over 70 years and account for \sim 20% of COVID-19 deaths

A full list of authors and affiliations appears at the end of the article.

Abstract

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10ng/mL, in plasma diluted 1 to 10) of IFN- α and/or - ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN- α and/or - ω (100pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN- β . We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN- α and/or - ω are present in 0.18% of individuals aged between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% > 80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals < 70 years, 2.3% between 70 and 80 years, and 6.3% > 80 years. By contrast, auto-Abs neutralizing IFN- β do not become more frequent with age. Auto-Abs neutralizing type I

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; authorization from the rights holder before using such material. For patients enrolled in the Italian cohort, patient specimens may be available from Monza, subject to approval by their local IRB, through an MTA.

[®] corresponding authors: jean-laurent.casanova@rockefeller.edu; paul.bastard@institutimagine.org.

[&]amp; These authors contributed equally to this work.

[#]These authors contributed equally to this work.

[£]These authors contributed equally to this work.

[†]These authors contributed equally to this work.

[‡]These authors contributed equally to this work.

^{*}These authors contributed equally to this work.

[§]All collaborators and their affiliations appear at the end of this paper.

Author contributions: P.B., A.G., T.L.V., J.R., Q.P., E.M., H.-H.H., S.E., L.H., M.G.P., L.B., A.P.M., R.Y., M.M., P.P., K.S., J.M., S.T.-A., A.B., K.S., E.S., L.B.R., M.M., A.A., B.C. A.F., S.M.H., O.M.D., Y.Z., B.B., V.B., S.-Y.Z., L.D.N., H.C.S., K.K., S.O., A.P., E.J., C.M.R. and Q.Z. performed or supervised experiments, generated and analyzed data, and contributed to the manuscript by providing figures and tables. J.M., A.C., and L.A. performed computational analyses of data. P.B., N.D.-P., Y.T.L., C.-E.L., B.A.-B., A.G., J.P., P.M., P.R., F.C., J.T., J.R., L.L., J.-C.L., S.G., S.T.-A., A.B., K.S., P.G., D.D., P.-L.T., D.S., A.S., B.M., V.T., J.R.H., J.C.F., J.-M.A., A.C.-N., L.I., A.B., R.C., P.Bo., A.B., A.L.S., A.M.P., F.H., S.D., R.L.N., T.M., A.A.B., T.O., S.K., C.R., S.P., P.Q.H., L.H., A.D., A.K., C.N.M., A.A., G.C., V.L.L, F.C., L.A.B., E.D.-G. L.V., D.V.D.B., S.G.T., S.B., D.D., L.Q.-M., M.C.N., R.A., D.A., I.B., H.B.-F, J.W., I.M. D.H., N.S.S.-A., R.H., K.D., J.S., S.M.S., L.G., A.K., F.M., Y.N., J.S.-V, A.H.D., S.P.K, N.M.B., S.A.A.A.-K, Y.S., J.T., O.B., N.Y.K., Y.-L., D.L., M.C., J.M., R.K., L.F.R., C.B., M.S.A., R.R.-B., R.M., M.V., M.Z., A.C.G., F.V., G.M., D.C.V., L.R., S.R., O.A., S.E., N.S., R.C., G.G., X.S.M., S.S., J.M., S.B., V.V., O.H., A.P.O., T.H.M., L.R., J.M., S.D., X.D.L., X.D., F.M., M.Z., P.S.-P., R.C., G.G., X.S.M., S.J., M.P., D.R., M.V., P.K.G., L.P., C.R.-G., L.D.N., H.C.S., P.T., Q.Z., and J.-L.C. evaluated and recruited patients to COVID and/or control cohorts of patients, and/or cohorts of individuals from the general population. P.B. and J.-L.C. wrote the manuscript. J.-L.C. supervised the project. All the authors edited the manuscript.

IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.

One-sentence summary

Autoantibodies neutralizing type I IFNs increase in prevalence over 60 years of age and underlie about 20% of all fatal COVID-19 cases.

Introduction

Since the start of the COVID-19 pandemic in December 2019, more than 200 million people have been infected with SARS-CoV-2, resulting in at least 4 million deaths, and probably closer to 7 to 9 million deaths worldwide. Interindividual clinical variability in the course of acute infection is vast, extending from silent or mild infection in about 90% of subjects to pneumonia and respiratory failure, both requiring hospitalization, in less than 10% and 2% of cases, respectively. Age is the major epidemiological risk factor for hospitalization or death from pneumonia, the risk doubling with every five years of age (1, 2). The frequencies of critical disease and death from COVID-19 are higher in men than in women (3–5). With the COVID Human Genetic Effort (6), we previously reported that inborn errors of TLR3- and IRF7-dependent type I IFN induction and amplification can underlie lifethreatening COVID-19 pneumonia in a small subset of patients (7, 8). Autosomal dominant disorders were found in 19 patients, but our cohort also included four previously healthy unrelated adults aged 25 to 50 years with autosomal recessive, complete IRF7 (N=2) or IFNAR1 (N=2) deficiency. These findings indicated that type I IFN immunity is essential for protective immunity to respiratory infection with SARS-CoV-2 but surprisingly redundant otherwise. We also reported that an autoimmune phenocopy of inborn errors of type I IFNdependent immunity can underlie critical COVID-19 pneumonia (9). Indeed, autoantibodies (auto-Abs) neutralizing 10ng/mL IFN- α 2 and/or - ω were found in the blood of at least 10% of an international cohort of patients with life-threatening COVID-19 pneumonia, but in none of the tested individuals with asymptomatic or paucisymptomatic infection (9). These auto-Abs were detected in serum or plasma diluted 1/10. The auto-Abs in the patients' undiluted blood can therefore probably neutralize as much as $100 \text{ ng/mL IFN-}\alpha2$ and/or - ω . The 17 subtypes of type I IFNs, including 13 IFN- α subtypes, IFN- ω , IFN- β , IFN- ϵ , and IFN- κ , bind to the same heterodimeric receptor (IFNAR1 and IFNAR2). (10). The 13 IFN- α subtypes and IFN- ω are closely related phylogenetically, while IFN- β , IFN- ϵ , and IFN- κ are more distant (9). The auto-Abs to IFN- $\alpha 2$ and/or - ω were mostly found in men (95%) and in the elderly (half the patients with antibodies being over the age of 65 years) (9). These findings were later replicated in independent cohorts from Amsterdam, Lyon, Madrid, New Haven, and San Francisco (11–16).

These auto-Abs against type I IFNs were found in about 0.3% of a general population sample of 1,227 subjects collected before the pandemic and aged 20 to 69 years, suggesting that they predated SARS-CoV-2 infection and caused critical COVID-19 rather than being triggered by it (9). Moreover, production of these antibodies can be genetically driven, and can begin during early childhood, as attested by their presence in almost all patients

with autoimmune polyendocrine syndrome type-1 (APS-1) due to germline mutations of AIRE (17-19). APS-1 patients are, indeed, at very high risk of developing severe or critical COVID-19 pneumonia (20, 21). These auto-Abs are also found in patients with combined immunodeficiency and hypomorphic mutations of RAG1 or RAG2 (22), in men with immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) and mutations of FOXP3 (23), and in women with incontinentia pigmenti and heterozygous null mutations of X-linked NEMO (9). They are also seen in patients treated with IFN- α or IFN- β (24, 25), in patients with systemic lupus erythematosus (26, 27), thymoma (28), or with myasthenia gravis (29, 30). Finally, they underlie a third of adverse reactions to the 17D live attenuated vaccine against yellow fever virus (YFV), further suggesting that they were present in these patients, as in patients with critical COVID-19, before viral infection (31). Remarkably, for all patients tested, the auto-Abs neutralized the protective effect of ~400 pg/mL IFN-a2 against SARS-CoV-2 or YFV-17D in vitro, even when the plasma was diluted by >1/1,000 (9). As blood IFN-a concentrations during acute asymptomatic or paucisymptomatic SARS-CoV-2 infection typically range from 1 to 100pg/mL (32, 33), and IFN- α levels in the respiratory tract might be even lower vet protective, we hypothesized that auto-Abs neutralizing concentrations of type I IFNs below 10ng/mL may underlie life-threatening COVID-19 pneumonia in more than 10% of cases. We also hypothesized that the prevalence of auto-Abs against type I IFNs in the general, uninfected, population may increase with age and that these antibodies may be more common in men than in women.

Results

High and intermediate levels of IgG auto-Abs against IFN- α 2 and/or IFN- ω in ~20% of patients with critical COVID-19

We recruited a cohort of 3,595 patients hospitalized with critical COVID-19 pneumonia (hereafter referred to as "critical patients", and defined as pneumonia in patients with critical disease, including (i) pulmonary, with high-flow oxygen (> 6L/min) or mechanical ventilation (continuous positive airway pressure, bilevel positive airway pressure, intubation), (ii) cardiovascular shock, or (iii) any other organ failure requiring admission to an intensive care unit), including 566 patients of our previously described cohort of 987 patients with critical COVID-19 pneumonia for whom residual samples were available (9), 623 individuals with severe COVID-19 pneumonia (with less than 6 L of oxygen supplementation, hereafter referred to as "severe patients"), and 1,639 individuals with asymptomatic or paucisymptomatic (mild) upper respiratory tract SARS-CoV-2 infection (the "controls", infected with SARS-CoV-2 (as demonstrated by a positive PCR and/or serological test and/or displaying typical manifestations, such as anosmia/ ageusia after exposure to a confirmed COVID-19 case) who remained asymptomatic or developed mild, self-healing, ambulatory disease with no evidence of pneumonia), including 427 samples from the initial control cohort of 663 individuals (9). The patients originated from 38 different countries, across all continents. We did not include patients with moderate pneumonia, who did not receive oxygen therapy (7, 9). We searched for auto-Abs against IFN- $\alpha 2$ and $-\omega$, by establishing novel, sensitive, and robust assays for the detection of circulating IgG auto-Abs. We used Gyros technology (34), a high-throughput automated

enzyme-linked immunosorbent assay (ELISA)-like assay capable of detecting a large range of auto-Ab levels (Fig. S1A). We confirmed that the Gyros technique was as sensitive as the techniques previously used (ELISA and Luminex), and that all tested patients with high levels of anti-IFN- α 2 and/or anti-IFN- ω auto-Abs on ELISA, as reported in our previous studies (defined as an optical density > 0.5) had high levels of auto-Abs when assessed with Gyros (defined as levels >100) (Fig. S1B). We then screened newly recruited critical or severe patients and controls from our COVID-19 cohort (Fig. 1A). We found high levels of anti-IFN-α2 and/or anti-IFN-ω auto-Abs in 6.9% of critical patients, 3.4% of patients with severe COVID-19, and only 0.6% of the asymptomatic or paucisymptomatic controls (Figure 1A). We also found that another 12.7% of patients with critical COVID-19 had intermediate levels of anti-IFN-α2 and/or IFN-ω auto-Abs in Gyros assays (defined as levels >30 and <100, based on the distribution observed in healthy controls), whereas this was the case for 8.6% of patients with severe COVID-19 and 11% of the individuals in our control cohort. Collectively, these findings replicate and extend our previous results and those of other groups (9, 11-15, 35), while suggesting that intermediate levels of auto-Abs against type I IFNs might be neutralizing and underlie critical disease.

Auto-Abs neutralizing 10ng/mL IFN- α 2 and/or - ω in almost 10% of the critical patients

We investigated the ability of these auto-Abs to neutralize high concentrations of type I IFNs, as defined in our previous reports (10ng/mL IFN- α 2 or IFN- ω in medium containing 1/10 plasma or serum, the equivalent of 100 mg/mL IFN- α 2 or IFN- ω in undiluted plasma). We tested not only the patients with high levels of auto-Abs, as in our previous study (9), but all the available patients with critical COVID-19 (N=3,136), or severe COVID-19 (N=623), and controls (N=1,076) from our expanded cohort. We designed a high-throughput luciferase assay in which we transfected human embryonic kidney (HEK)293T cells with i) a plasmid containing five IFN-stimulated response element (ISRE) repeats and a firefly luciferase reporter, and ii) a plasmid encoding the *Renilla* luciferase. We stimulated these cells with an individual recombinant type I IFN (IFN-a2 or IFN-w), in the presence of plasma diluted 1/10 (plasma 1/10) from patients or controls. We then measured firefly luciferase induction, normalized against *Renilla* luciferase activity (Fig. 1B). We confirmed the robustness of this assay by comparing the results with our previous pSTAT1 flow cytometry data (9). Consistent results were obtained for all 50 patients tested with both techniques (Fig. S1C, D). We then tested all patients and controls. Most plasma samples with high auto-Ab levels (>100) against IFN-a2 according to the Gyros assay were neutralizing (Fig. S1E). We found that 9.8% (307 of 3,136) of the critical patients tested and 3.53% (22 of 623) of the severe patients had auto-Abs neutralizing IFN- α 2 and/or IFN- ω , versus only 0.37% (4 of 1,076) controls (Fig. 1C) (Table 1 and Table S1). In the patients with neutralizing auto-Abs, these auto-Abs were able to neutralize both IFN-a2 and IFN- ω in 175 of the 307 critical patients (57%), 6 of the severe patients (27%), and none of the controls; IFN- α 2 alone in 106 critical patients (34.5%), 11 severe patients (50%), and only one of the controls (25%); IFN- ω alone in 26 of critical patients (8.5%), 5 severe patients (22%), and 3 controls (75%) (Table S1). None of the patients with these auto-Abs had inborn errors of TLR3- or TLR7-dependent type I IFN immunity (7, 36).

Auto-Abs neutralizing 100pg/mL IFN- α 2 and/or - ω in at least 13.6% of critical patients and 6.8% of severe patients

As the amounts of circulating type I IFNs in infected individuals are 100 to 1,000 times lower than the amounts tested previously (32, 33), we investigated the neutralization of more physiological concentrations of type I IFNs, by performing assays with 100pg/mL type I IFN. We observed a robust response in our luciferase system, in the presence of 1/10 dilutions of control plasma (Fig. S1F). The plasma or serum was diluted 1/10, so the concentration neutralized corresponds to 1ng/mL IFN in circulating whole blood. With diluted plasma samples from a positive control, we gained at least two orders of magnitude of sensitivity in terms of neutralizing activity, providing proof-of-concept that these auto-Abs can neutralize lower, more physiological, amounts of type I IFNs (Fig. 1D, Fig. S1G), lower than the concentrations previously tested by a factor of 100 (9). We then retested all available samples from our extended cohort. Overall, 13.6% of all critical patients tested (N=489 of 3,595), 6.5% (N=34 of 522) of the severe patients, and 1% of the controls (N=17 of 1,639) had circulating auto-Abs that neutralized 100pg/mL IFN-a2 and/or IFN- ω in plasma 1/10 (Fig. 1E–G) (Table 1 and Table S1). In the patients with neutralizing auto-Abs, these auto-Abs were able to neutralize both IFN- α 2 and IFN- ω in 256 of the 489 positive critical patients (52%), 18 of the 34 severe patients (53%), and 1 of the 17 controls (6%); IFN- α 2 alone in 104 critical patients (21%), 14 severe patients (41%), and 4 of the controls (23.5%); IFN- ω alone in 129 critical patients (26%), 2 severe patients (6%), and 12 controls (70%) (Table S1). Further dilution of a plasma sample from one patient neutralizing 100pg/mL of type I IFNs led to a loss of neutralizing activity (Fig. 1D, Fig. S1G). Importantly, for four unrelated patients, all of whom suffered from critical COVID-19, including one who died, samples collected before COVID-19 were available and tested positive for neutralizing auto-Abs against type I IFNs. One neutralized IFN-a2 and IFN- ω at a concentration of 10ng/mL, two neutralized both cytokines at 100pg/mL and one IFN- ω only at 100pg/mL (Fig. S1H). The four patients tested therefore had auto-Abs neutralizing 10ng/mL or 100pg/mL IFN-a2 and/or - ω before infection with SARS-CoV-2. These four patients, and another two reported in our previous study (9) all, therefore, had auto-Abs neutralizing type I IFNs before infection with SARS-CoV-2. We then assessed the risk, adjusted for age and sex, of having critical or severe disease for subjects carrying auto-Abs against each individual IFN and the different possible combinations. We found that all auto-Abs, except those neutralizing only IFN- ω at a concentration of 10ng/mL, were highly significant risk factors in comparisons of patients with critical or severe COVID-19 with controls (Table 1 and Table S2). The strongest association was with auto-Abs against both IFN-a2 and IFN- ω neutralizing concentrations of 10ng/mL (OR=67, P=8x10⁻¹³) and 100pg/mL (OR=54, $P < 10^{-13}$), followed by those against IFN-a2 +/- IFN- ω neutralizing 10ng/mL (OR=45, P<10⁻¹³) and 100pg/mL (OR=23, P<10⁻¹³) (Table 1). As the serum/ plasma samples were diluted 1/10 in these assays, these findings suggest that more than 13.6% of patients with life-threatening COVID-19 have circulating auto-Abs neutralizing $\ln g/mL$ IFN- $\alpha 2$ and/or IFN- ω in vivo, a greater proportion than the 10% of patients with auto-Abs neutralizing 100ng/mL reported in previous studies (9, 11-15, 35).

Auto-Abs neutralize low concentrations of IFN-a2 protective against SARS-CoV-2

We previously reported that plasma diluted 1/100 from patients with auto-Abs against type I IFNs neutralized the ability of IFN-a2 (at a concentration of 20 pM, approximately 400pg/mL) to block SARS-CoV-2 and YFV-17D replication in Huh-7.5 cells (9, 31). Strikingly, this neutralization was seen in all patients tested, even for a 1,000-fold dilution, and, in most patients, it was more potent than the neutralizing effect of a commercially available neutralizing monoclonal Ab (mAb) against IFN-a2. These auto-Abs against type I IFNs were, therefore, able to neutralize IFN- $\alpha 2$ at concentrations well beyond physiological levels. We therefore hypothesized that patients with lower titers of auto-Abs against type I IFNs, which can neutralize 100pg/mL but not 10ng/mL in plasma diluted 1/10, would also neutralize the protective effect of IFN-a2 against SARS-CoV-2. We therefore performed our SARS-CoV-2 assay with 5 pM (~100pg/mL) or 20 pM (~400pg/mL) IFN-a2, on five samples from patients with life-threatening COVID-19 and two samples from uninfected elderly individuals with auto-Abs neutralizing 100pg/mL but not 10ng/mL IFN-a2. As controls, we tested a commercial mAb against IFN- α 2, a sample from a patient with auto-Abs neutralizing 10 ng/mL IFN- $\alpha 2$, and samples from three patients with life-threatening COVID-19 and three healthy controls without detectable auto-Abs against type I IFNs. We found that the 1/100 dilutions of plasma from four of the five critical COVID-19 patients and one of the two elderly individuals with auto-Abs neutralizing 100pg/mL IFN-α2 were able to neutralize the protective effect of ~400 pg/mL IFN-a2 against SARS-CoV-2, whereas samples from all these individuals fully or partially neutralized ~100pg/m IFN-a2 (Fig. 2A). No such neutralizing effect was observed for any of the auto-Ab-negative controls. Overall, our findings indicate that auto-Abs against type I IFNs capable of neutralizing 100pg/mL IFN in 1% plasma can block the protective effect of ~100pg/mL or ~400pg/mL IFN-a2 against SARS-CoV-2. These findings raise the possibility that even 100-fold lower levels of auto-Abs against type I IFNs, capable of neutralizing lower, physiological concentrations of 10pg/mL IFN-α2, may be present in an even larger proportion of patients. The testing of this hypothesis will require the development of new, more sensitive methods to screen for neutralization.

Neutralization of type I IFNs in the absence of detectable auto-Abs against IFN- α 2 or - ω

The neutralization assays performed on all patients and controls revealed that some patients with neutralizing activity against 10ng/mL IFN- α 2 and/or IFN- ω , as shown in luciferase assays, did not have high, or even intermediate levels of IgG auto-Abs in Gyros assays (Fig. S1E). We also observed that some patients with neutralizing auto-Abs had low or undetectable levels of auto-Abs in Luminex assays (Fig. S1I). For these individuals, we assessed the prevalence of IgA and IgM auto-Abs against type I IFNs; we found that none of the patients tested (*N*=12) had detectable titers of IgA or IgM auto-Abs (Fig. S1J). We then tested the alternative hypothesis that these auto-Abs were directed against the IFNAR1 or IFNAR2 chain of type I IFN receptors, assessing the ability of plasma samples from these patients to neutralize IFN- β . None of the samples from these patients neutralized IFN- β , suggesting that the auto-Abs in these patients were not directed against IFNAR1 or IFNAR2 (Fig. S1K). An alternative plausible hypothesis is that the epitope recognized by the auto-Abs might be concealed by the binding of the cytokine to the plate (ELISA), biotinylation of the cytokine (Gyros), or covalent coupling of the cytokine to magnetic beads

at lysine residues (Luminex) (19). This observation has important clinical implications, suggesting that a lack of detection of auto-Abs against type I IFNs does not rule out the possibility of such antibodies being present and having neutralization capacity.

Auto-Abs typically neutralize the 13 IFN-a subtypes and/or IFN-w

In six patients with auto-Abs neutralizing 100pg/mL but not 10ng/mL IFN-α2 and/or IFN- ω , we tested the reactivity of the antibodies against the 17 type I IFNs (the 13 IFN-a forms, IFN- ω , IFN- β , IFN- ϵ , and IFN- κ). Like patients with auto-Abs neutralizing 10ng/mL type I IFNs (9), those capable of neutralizing only 100pg/mL had detectable auto-Abs against most of the 13 IFN- α forms and/or IFN- ω , albeit at lower levels (Fig. 2B). Of the six patients with auto-Abs against IFN-a and/or IFN-w tested, only one also had auto-Abs against IFN- β and none had detectable auto-Abs against IFN- ϵ or IFN- κ . Overall, the patients with auto-Abs against IFN-a2 and/or IFN-w capable of neutralizing 100pg/mL IFN displayed patterns of reactivity to the 17 type I IFNs similar to those reported in previously described patients with auto-Abs neutralizing 10ng/mL (9). We then set up an assay for assessing neutralization of the 13 IFN-a forms, using our luciferase-based assay. We tested two patients with auto-Abs neutralizing IFN- α 2 and IFN- ω , two patients with auto-Abs neutralizing only IFN- α 2, and two patients with auto-Abs neutralizing only IFN-ω. Interestingly, we found that the APS-1 patient, and the two patients with auto-Abs neutralizing 10 ng/mL IFN- α 2 and IFN- ω were able to neutralize all 13 IFN-a subtypes, as were the two patients with neutralizing auto-Abs against IFN- α 2. Conversely, in the conditions tested, the two patients with auto-Abs neutralizing IFN- ω only, but not IFN- α 2, were not able to neutralize any of the 13 IFN-a subtypes (Fig. 2C). In addition, to confirm that the IgG auto-Abs detected were indeed the cause of the neutralization activity observed, we performed an IgG depletion experiment and found that the removal of the IgG fraction abolished the neutralizing activity, whereas the purified IgG fraction had full neutralizing activity (Fig. S2A). Thus, patients with neutralizing auto-Abs against only IFN- ω do not seem to neutralize any of the 13 IFN- α subtypes, whereas patients with auto-Abs neutralizing IFN- α 2 neutralize all these subtypes.

Auto-Abs neutralizing IFN-β in 1.3% of critical patients

We previously reported that auto-Abs neutralizing IFN- β were detected in only two of 101 critical patients with auto-Abs neutralizing 10ng/mL IFN- α 2 and/or IFN- ω (9). Given the potential therapeutic use of IFN- β (37, 38), and the absence of IFN- β -neutralization data for COVID-19 patients, we tested a larger number of patients and controls, including patients without auto-Abs against IFN- α or IFN- ω , for auto-Abs against IFN- β , assessing the levels and neutralizing activity of auto-Abs against 10ng/mL IFN- β . We screened 1,773 patients with critical COVID-19 pneumonia, and found that 1.3% (*N*=23) had neutralizing auto-Abs against IFN- β ; by contrast, such antibodies were present in none of the 187 severe patients tested and in only two of the 1,044 controls tested (0.18%) (Fig. 2D, S2B and Table S3). Interestingly, only six of the 23 (21.7%) critical patients also had auto-Abs neutralizing IFN- α 2 and/or IFN- ω at 100pg/mL, and none of the controls had such antibodies. Of note, five of these six patients had auto-Abs neutralizing all three cytokines. All the other critical patients and controls had only neutralizing auto-Abs against IFN- β . The presence of neutralizing auto-Abs against IFN- β was significantly associated with critical, but not

severe, disease relative to the controls (Table 1, Tables S2–3). Interestingly, Gyros did not appear to be able to detect auto-Abs against IFN- β , perhaps because of the biotinylation of the cytokine hiding the epitope recognized by the auto-Abs. As most (78.3%) of the patients with neutralizing auto-Abs against IFN- β did not have neutralizing auto-Abs against IFN- α 2 or IFN- ω , this suggests that auto-Abs against IFN- β alone may also underlie life-threatening COVID-19 (Table 1).

Neutralizing auto-Abs against type I IFNs in at least 20% of critical patients over 80 years of age

We further assessed the percentage of critical COVID-19 patients positive for neutralizing auto-Abs per decade of life and by sex (Fig. 3A-J, S3A-W) (Tables S1-4). In our previous report, we found that critical COVID-19 patients with auto-Abs neutralizing IFN- $\alpha 2$ or IFN- ω at 10ng/mL were older (more than half the patients with auto-Abs were over the age of 65 years) and more likely to be male (95% of the antibody carriers were men) (9). These results have been confirmed by other groups, albeit with a smaller proportion of men (11-14, 35). In our expanded cohort of patients with critical COVID-19 pneumonia (N=3,595), the mean age was 61 years and 73% of the patients were men (Fig. 3A, Table S4). We confirmed that critical patients with auto-Abs neutralizing IFN-a and/or IFN-w at 10ng/ml were significantly older than those not carrying auto-Abs (mean age [SD] 65.8 years [14.1] versus 61.6 years [15.5], Firth's multivariable logistic regression, $P=3x10^{-6}$) and more likely to be male (78.5% versus 71%, Firth's multivariable logistic regression, P=0.003). The proportion of critical COVID-19 patients with auto-Abs neutralizing 10ng/mL IFN-a2 and/or IFN- ω increased continuously, with auto-Abs detected in 5% of patients under the age of 40 years, 6.8% of those between 40 and 49 years of age, 7.1% of those between 50 and 59 years of age, 10.7% of those between 60 and 69 years of age, 12.3% of those between 70 and 79 years, and almost 14% in those over 80 (Fig. 3C-F, S3B-I). In severe patients, the proportion of auto-Abs was much more stable with age (Fig. S3T-W, Firth's multivariable logistic regression P=0.16) and sex (Firth's multivariable logistic regression P=0.44). Similar results were obtained for critical COVID-19 patients with auto-Abs neutralizing 100pg/mL IFN- $\alpha 2$ and/or IFN- ω , but with even higher proportions (Fig. 3G–J, S3L–S) (Table S1). Indeed, the proportion of patients with auto-Abs ranged from 9.6% of patients below the age of 40 years, to more than 21% of those over 80 (Fig. 3G–J, S3L–S). In men, the proportion of critical COVID-19 patients carrying auto-Abs neutralizing 100pg/mL IFN- α 2 and/or IFN- ω increased to up to 23% over 80 years of age. A very different pattern was seen for auto-Abs neutralizing 10ng/mL IFN-B, with a more stable proportion of auto-Abs carriers according to age (Fig. S3J, K, Firth's multivariable logistic regression, P=0.68) (Table S3). Overall, the prevalence of auto-Abs neutralizing 10ng/mL and/or 100pg/mL IFN-α2 and/or IFN-ω increased sharply with age in critical patients. A striking enrichment in patients with neutralizing auto-Abs against IFN- α 2 and/or IFN- ω was observed in the elderly, with more than 20% of patients, and 23% of men, over the age of 80 years with critical COVID-19 having neutralizing auto-Abs against these type I IFNs.

Neutralizing auto-Abs against type I IFNs in at least 18% of deceased patients

The prevalence of auto-Abs against type I IFNs in patients dying from COVID-19 pneumonia is unknown. For the 3,595 patients with critical COVID-19, we analyzed data for the 1,124 who died. These patients were aged 20 days to 99 years (mean age: 71 years), 73% were male, and all had confirmed SARS-CoV-2 infection and critical COVID-19 pneumonia before death (Fig. 4A). In these patients, we analyzed the presence of neutralizing auto-Abs against type I IFNs at concentrations of 10ng/mL and 100pg/mL for IFN- α 2 and IFN- ω , and at 10ng/mL for IFN- β (Fig. 4B–J, S4A–K). We found that 13.3% of the deceased patients carried auto-Abs neutralizing 10 ng/mL IFN- $\alpha 2$ and/or IFN- ω (Fig. 4B-F, S4A-E). Strikingly, 18.5% carried auto-Abs neutralizing 100pg/mL of either or both cytokines (Fig. 4G–J, S4F–I). In addition, 0.9% had auto-Abs neutralizing IFN-β (Fig. S4J-K). An analysis of the prevalence of neutralizing auto-Abs against type I IFNs in these patients who died of COVID-19 by decade of age revealed a moderate increase with age for auto-Abs neutralizing 10ng/mL (Firth's multivariable logistic regression P=0.03) or 100pg/mL (Firth's multivariable logistic regression P=0.01) (Table S1-2). For a type I IFN concentration of 100pg/mL, the prevalence of auto-Abs neutralizing IFN- α 2 and/or IFN- ω was 20% below the age of 40 years, 14% for individuals between 40 and 49 years old, 12.5% for those between 50 and 60 years old, 16.3% for those between 60 and 69 years old, 17.9% for those between 70 and 79 years old, and greater than 23% for those over the age of 80 years. Overall, at least 18% of patients dying from COVID-19 pneumonia have auto-Abs capable of neutralizing 100pg/mL type I IFNs in plasma 1/10.

Auto-Abs capable of neutralizing IFN- α 2 and/or IFN- ω at 10ng/mL in 0.53%, and at 100pg/mL in 2.3% of individuals from the general population

We previously tested a sample of 1,227 individuals aged 20 to 65 years from the general population collected in 2015-2017. This sample had an equal sex distribution, and we identified four individuals with auto-Abs against type I IFNs among the 1,227 tested (0.3%), suggesting that the auto-Abs pre-dated COVID-19 (9). These findings were replicated at the University of California San Francisco (UCSF) in a sample of 4,041 subjects aged 4 to 90 years (0.32%) (16). In the current study, we tested a much larger cohort of 34,159 individuals aged 20 to 100 years from the general population, with an equal distribution between the sexes (Fig. 5A). Samples were collected before 2018 for blood donors at the French blood bank (19,966 individuals), the 3C cohort (801) and in 2019 for participants in the French CONSTANCES cohort (8,850) and Cerba HealthCare (4,542). We performed serological tests for SARS-CoV-2 on the samples collected in 2019, and included only the individuals who had not been infected with SARS-CoV-2 in the sample. We used Gyros to screen this whole cohort for IgG auto-Abs against IFN-α2 and IFN-ω (Fig. 5B, S5A). We did not measure auto-Abs against IFN- β by Gyros. We found that only 0.05% and 4.2% had anti-IFN-a2 and/or anti-IFN-w auto-Abs above the thresholds of 100 and 30, respectively (Fig. 5B, S5A). We then assessed the ability of these antibodies to neutralize 10ng/mL IFN-α2 or IFN-ω, for all individuals with a high or intermediate level of IgG auto-Abs against IFN- $\alpha 2$ or IFN- ω . We found 181 individuals with neutralizing auto-Abs, for whom 1/10 dilutions of plasma neutralized 10ng/mL IFN-α2 and/or IFN-ω, giving an overall prevalence of 0.53% (Fig. 5C-F, S5B-I) (Table S5-6), consistent with our two previous reports (9, 16). We may have slightly underestimated the number of positive individuals, as

some may have had neutralizing auto-Abs at too low a titer for detection. Next, we assessed the prevalence of auto-Abs neutralizing 10ng/mL of IFN- β in 9,583 individuals, and found an overall prevalence of 0.26% (Fig. 5G–H) (Table S5–6). Finally, for a subset of 10,778 samples, we further assessed the ability of plasma/serum samples (diluted 1/10) to neutralize 100pg/mL IFN- α 2 and/or IFN- ω in the luciferase assay (Fig. 5I–J, 6A–H). The prevalence of auto-Abs neutralizing 100pg/mL IFN- α 2 and/or IFN- α 2 and/or IFN- ω was 2.3% (Table S1).

Sharp increase in the prevalence of auto-Abs against IFN- α 2 and/or IFN- ω after the age of 70 years in the general population

We then assessed the percentage of individuals from the general population positive for neutralizing auto-Abs per decade of life and by sex. Strikingly, we noted that the prevalence of auto-Abs neutralizing 10ng/mL type I IFN was more than 10 times higher in individuals over the age of 70 years than in those below this age (Firth's multivariable logistic regression, $P < 10^{-13}$) (Fig. 5C–F, S5B–I) (Table S5–6). The prevalence of auto-Abs capable of neutralizing 10ng/mL IFN- α 2 and/or IFN- ω was 0.17% in individuals below 70 years of age, 0.9% in individuals between 70 and 75 years of age, 1.6% between the ages of 75 and 80 years and more than 4% between the ages of 80 and 85 years. Intriguingly, after 85 years, the prevalence of these antibodies decreased to about 2.6%. These findings were replicated independently in two cohorts of 703 and 376 elderly individuals from Estonia and Japan, tested with Luciferase-based immunoprecipitation assay (LIPS) and ELISA assays, respectively (Fig. S5J, K). A strong increase in the prevalence of auto-Abs neutralizing 100 pg/mL IFN- α 2 and/or IFN- ω was observed with age (Fig. 6A–H, S6A–D), with the prevalence almost doubling with every five years from 65 to 85 years of age. Indeed, 0.87% of individuals between the ages of 65 and 70 years, 1.73% of those between 70 and 75 years, and 7.1% of those between 75 and 80 years were positive for auto-Abs. Interestingly, there was an overall decrease in the prevalence of auto-Abs after 85 years of age, especially in men. By contrast, the prevalence of auto-Abs neutralizing IFN- β did not vary significantly with age (Fig. 5G, H) (Table S4). We then assessed the risk, adjusted for age and sex, of having critical or severe disease, for subjects carrying auto-Abs against each individual IFN and the different possible combinations, relative to the general population. We also found that all auto-Abs were highly significant risk factors in comparisons of patients with critical or severe COVID-19 with the general population (Table 1 and Table S2). The strongest association was again that for auto-Abs neutralizing both IFN-a2 and IFN-w at 10ng/mL (OR=30, $P < 1 \times 10^{-13}$), followed by those neutralizing IFN- $\alpha 2 + /-$ IFN- ω at 10ng/mL (OR=20, $P < 10^{-13}$), and IFN- $\omega + /-$ IFN- $\alpha 2$ at 10ng/mL (OR =15, $P < 10^{-13}$) (Table 1). Auto-Abs neutralizing both IFN- α 2 and IFN- ω at 100pg/mL were also highly significant risk factors (OR [95% CI]=12 [9-16], P<10⁻¹³) (Table 1). Overall, these findings indicate that there is a sharp increase in the prevalence of auto-Abs neutralizing type I IFNs with age in elderly uninfected individuals, with at least 4% of those over the age of 70 years positive for auto-Abs against IFN- α 2 and/or IFN- ω , and that these auto-Abs pre-date COVID-19.

Discussion

We report that at least 20% of patients over 80 years of age with life-threatening COVID-19 pneumonia carry circulating auto-Abs neutralizing 100pg/mL IFN- α 2 and/or IFN- ω , and

that such antibodies are present in more than 13.6% of patients of all ages with this condition. Some of these auto-Abs are not identified by immunoassays and are only detectable by a neutralization assay. In addition, at least 18% of deceased individuals in most age groups were found to have such auto-Abs. We also report that auto-Abs against IFN- β are found in about 1.3% and 0.9% of critical and deceased patients, most of whom do not have auto-Abs against IFN- α 2 and/or IFN- ω . In all four patients tested for whom pre-COVID-19 samples were also available, the auto-Abs against IFN- α 2 and/or IFN- ω were clearly present before SARS-CoV-2 infection, as in patients with APS-1 (9, 20), and in two other previously described patients (9). Importantly, auto-Abs capable of neutralizing high concentrations of type I IFNs have been found in patients without inborn errors of TLR3- or TLR7-dependent type I IFN immunity (7, 36), suggesting that both inborn errors and auto-Abs are independently causal of critical disease. It is also striking that inborn errors are more common in patients under the age of 60 years, whereas auto-Abs are more common in patients over the age of 70 years. We also report that the prevalence of auto-Abs neutralizing 10ng/mL (and 100pg/mL) type I IFNs, except for IFN- β , increases significantly with age in the general population, with 0.17% (1.1%) of individuals positive for these antibodies before the age of 70 years, and more than 1.4% (4.4%) positive after the age of 70 years, with a prevalence of 4.2% (7.1%) between the ages of 80 and 85 years.

These auto-Abs provide an explanation for the major increase in the risk of critical COVID-19 in the elderly. This increase with age is consistent with studies of various auto-Abs since the 1960s (39-43). These auto-Abs appear to have remained clinically silent in these individuals until SARS-CoV-2 infection. Our results also suggest that the neutralization of only one type I IFN (IFN-α2, IFN-ω, or IFN-β) can underlie lifethreatening COVID-19 (Table 1, Tables S1–S3). Auto-Abs neutralizing 10ng/mL IFN-β have a frequency only about one tenth that of auto-Abs neutralizing the same concentrations of IFN- α 2 and/or IFN- ω (Table 1, Table S3). We have shown that auto-Abs neutralizing 100pg/mL type I IFN in plasma diluted 1/10, corresponding to the neutralization of 1ng/mL IFN in vivo, can account for at least 18% of deaths and more than 20% of critical cases in the elderly >80 years of age. It is tempting to speculate that an even greater proportion of life-threatening COVID-19 cases are due to auto-Abs neutralizing lower, physiological concentrations of type I IFNs. In vitro, concentrations of type I IFN as low as 100pg/mL can impair SARS-CoV-2 replication in epithelial cells (Fig. 2A). Moreover, the levels of type I IFN detected in the blood of patients with acute and benign SARS-CoV-2 infections are in the range of 1 to 100pg/mL (32, 33).

Our findings have immediate clinical applications. First, it is quick and easy to test for auto-Abs against type I IFNs in patients infected with SARS-CoV-2. Screening for these antibodies is even possible in the general population before infection. The type I IFN-neutralizing activity of these antibodies is a better read-out than their mere detection, which can be falsely negative. Tests should be performed for auto-Abs against at least three individual IFNs: IFN- α 2, IFN- ω , and IFN- β . Particular attention should be paid to elderly individuals, and patients with known autoimmune or genetic conditions associated with auto-Abs against type I IFNs (17–20, 22, 23, 26–29). Second, patients with auto-Abs against type I IFN should be vaccinated against COVID-19 as a priority. Third, live

attenuated vaccines, including YFV-17D and vaccines using the YFV-17D backbone against SARS-CoV-2, should not be given to patients with auto-Abs (31, 44). Fourth, these patients appeared to be healthy before SARS-CoV-2 infection, but they should also be carefully followed for other viral illnesses, as exemplified by adverse reactions to YFV-17D (31). Fifth, in cases of SARS-CoV-2 infection in unvaccinated individuals with auto-Abs against type I IFNs, the patients should be hospitalized for prompt management. Early treatment with monoclonal antibodies (45, 46) can be administered in patients without symptoms of severe COVID-19 pneumonia, and IFN- β can be administered in the absence of both pneumonia and auto-Abs against IFN- β (37, 38). Rescue treatment by plasma exchange is another therapeutic option in patients who already have pneumonia (47).

Sixth, blood products, especially plasma, should be screened for anti-IFN auto-Abs and any products containing such antibodies should be excluded from donation (13). Plasma from donors convalescing from COVID-19 should be tested for such auto-Abs (13). Seventh, given the documented innocuity and potential efficacy of a single injection, early therapy with IFN- β may be considered for the contacts of contagious subjects or during the first week after infection, even in the absence of, or before the documentation of auto-Abs against type I IFNs, in elderly patients, who have a higher risk of critical pneumonia and auto-Abs against IFN- α 2 and IFN- ω , but not IFN- β (48). Another possibility would be the administration of monoclonal antibodies that can neutralize SARS-CoV-2 (45, 46). Finally, it will be important to decipher the mechanism underlying the development of these auto-Abs, which may differ in patients over and under 65 years of age. Overall, our findings show that auto-Abs neutralizing concentrations of type I IFN lower than previously reported (9, 11–16), but still higher than physiological concentrations, are common in the elderly population. Their prevalence increases with age in the uninfected general population, reaching more than 4% of individuals after the age of 70 years. They underlie about 20% of cases of critical COVID-19 pneumonia in patients over the age of 80 years, and about 20% of total COVID-19 deaths. We previously reported that they can underlie severe adverse reactions to the yellow fever live attenuated virus (31). It is tempting to speculate that they may also underlie other severe viral diseases, especially in the elderly.

Materials and methods

Study design

We enrolled, from 38 countries across all continents, 3,595 patients with proven critical COVID-19, 623 with severe COVID-19 and 1,639 asymptomatic or paucisymptomatic individuals with proven COVID-19, and 34,159 healthy controls in this study. We collected plasma or serum samples for all these individuals. All subjects were recruited according to protocols approved by local institutional review boards (IRBs).

COVID-19 classification

The severity of COVID-19 was assessed for each patient as follows (7, 9). "Critical COVID-19 pneumonia" was defined as pneumonia developing in patients with critical disease, whether pulmonary, with high-flow oxygen, mechanical ventilation (Continuous positive airway pressure, bilevel positive airway pressure, intubation), septic shock, or

with damage to any other organ requiring admission to the intensive care unit. "Severe COVID-19" was defined as pneumonia developing in patients requiring low-flow oxygen (<6L/min). The controls were individuals infected with SARS-CoV-2 (as demonstrated by a positive PCR and/or serological test and/or displaying typical symptoms, such as anosmia/ ageusia after exposure to a confirmed COVID-19 case) who remained asymptomatic or developed mild, self-healing, ambulatory disease with no evidence of pneumonia.

Detection of anti-cytokine autoantibodies

Gyros—Cytokines, recombinant human (rh)IFN- α 2 (Milteny Biotec, ref. number 130-108-984) or rhIFN- ω (Merck, ref. number SRP3061), were first biotinylated with EZ-Link Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific, cat. number A39257), according to the manufacturer's instructions, with a biotin-to-protein molar ratio of 1:12. The detection reagent contained a secondary antibody (Alexa Fluor 647 goat anti-human IgG (Thermo Fisher Scientific, ref. number A21445) diluted in Rexip F (Gyros Protein Technologies, ref. number P0004825; 1/500 dilution of the 2 mg/mL stock to yield a final concentration of 4 µg/mL). Buffer PBS-T 0.01% and Gyros Wash buffer (Gyros Protein Technologies, ref. number P0020087) were prepared according to the manufacturer's instructions. Plasma or serum samples were then diluted 1/100 in PBS-T 0.01% and tested with the Bioaffy 1000 CD (Gyros Protein Technologies, ref. number P0020520). Cleaning cycles were performed in 20% ethanol.

Multiplex particle-based assay—Serum/plasma samples were screened for autoantibodies (auto-Abs) against IFN- α 2 and IFN- ω in a multiplex particle-based assay, in which magnetic beads with differential fluorescence were covalently coupled to recombinant human proteins (2.5 µg/reaction). Beads were combined and incubated with 1/100-diluted serum/plasma samples for 30 minutes. Each sample was tested once. The beads were then washed and incubated with PE-labeled goat anti-human IgG (1 µg/mL) for an additional 30 minutes. They were then washed again and used for a multiplex assay on a BioPlex X200 instrument.

Enzyme-linked immunosorbent assays (ELISA)—ELISA was performed as previously described. In brief, 96-well ELISA plates (MaxiSorp; Thermo Fisher Scientific) were coated by incubation overnight at 4°C with 2 µg/mL rhIFN- α 2 (Milteny Biotec, ref. number 130-108-984), and rhIFN- ω (Merck, ref. number SRP3061). Plates were then washed (PBS 0.005% Tween), blocked by incubation with 5% nonfat milk powder in the same buffer, washed, and incubated with 1:50 dilutions of plasma from the patients or controls for 2 h at room temperature (or with specific mAbs as positive controls). Each sample was tested once. Plates were thoroughly washed. Horseradish peroxidase (HRP)– conjugated Fc-specific IgG fractions from polyclonal goat antiserum against human IgG, IgM or IgA (Nordic Immunological Laboratories) were added to a final concentration of 2 µg/mL. Plates were incubated for 1 h at room temperature and washed. Substrate was added and the optical density (OD) was measured. A similar protocol was used to test for antibodies against 12 subtypes of IFN- α , except that the plates were coated with cytokines

from PBL Assay Science (catalog #11002-1), or IFN- β (Milteny Biotech, ref. number: 130-107-888).

Functional evaluation of anti-cytokine autoantibodies

Luciferase reporter assays—The blocking activity of anti-IFN- α 2 and anti-IFN- ω auto-Abs was determined with a reporter luciferase activity. Briefly, HEK293T cells were transfected with a plasmid containing the firefly luciferase gene under the control of the human ISRE promoter in the pGL4.45 backbone, and a plasmid constitutively expressing Renilla luciferase for normalization (pRL-SV40). Cells were transfected in the presence of the X-tremeGene9 transfection reagent (Sigma-Aldrich, ref. number 6365779001) for 24 hours. Cells in Dulbecco's modified Eagle medium (DMEM, Thermo Fisher Scientific) supplemented with 2% fetal calf serum (FCS) and 10% healthy control or patient serum/ plasma (after inactivation at 56°C, for 20 minutes) were either left unstimulated or were stimulated with IFN-α2 (Milteny Biotec, ref. number 130-108-984), IFN-ω (Merck, ref. number SRP3061), at 10ng/mL or 100pg/mL, or IFN-B (Milteny Biotech, ref. number: 130-107-888) at 10ng/mL, for 16 hours at 37°C. Each sample was tested once for each cytokine and dose. Finally, cells were lysed for 20 minutes at room temperature and luciferase levels were measured with the Dual-Luciferase® Reporter 1000 assay system (Promega, ref. number E1980), according to the manufacturer's protocol. Luminescence intensity was measured with a VICTOR-X Multilabel Plate Reader (PerkinElmer Life Sciences, USA). Firefly luciferase activity values were normalized against Renilla luciferase activity values. These values were then normalized against the median induction level for non-neutralizing samples, and expressed as a percentage. Samples were considered neutralizing if luciferase induction, normalized against Renilla luciferase activity, was below 15% of the median values for controls tested the same day.

A similar protocol was used to test for auto-Abs against 12 subtypes of IFN- α , except that we used cytokines from PBL Assay Science (catalog #11002-1) at 1ng/mL for stimulation.

pSTAT1 induction in PBMC—The blocking activity of anti-IFN- α 2 and anti-IFN- ω auto-Abs was determined by assessing STAT1 phosphorylation in healthy control cells following stimulation with the appropriate cytokines in the presence of 10% healthy control or patient serum/plasma. Surface-stained healthy control PBMCs (350,000/reaction) were cultured in serum-free RPMI medium with 10% healthy control or patient serum/plasma and were either left unstimulated or were stimulated with IFN- α 2 or IFN- ω (10 ng/mL) for 15 minutes at 37°C. Each sample was tested once. Cells were fixed, permeabilized, and stained for intranuclear phospho-STAT1 (Y701). Cells were acquired on a BD LSRFortessa cytometer with gating on CD14⁺ monocytes and the data were analyzed with FlowJo software.

Luciferase-based immunoprecipitation assay (LIPS)—Levels of autoantibodies against IFN-a subtypes were measured in luciferase-based immunoprecipitation assay (LIPS), as previously described. IFNA1, IFNA2, IFNA8, and IFNA21 sequences were inserted into a modified pPK-CMV-F4 fusion vector (PromoCell GmbH, Germany), in which the firefly luciferase replaced the *NanoLuc* luciferase (Promega, USA). The resulting

constructs were used to transfect HEK293 cells and the IFNA-luciferase fusion proteins were collected in the tissue culture supernatant. For autoantibody screening, we combined $2x10^6$ luminescence units (LU) of IFNA1, IFNA2, IFNA8 and IFNA21 in a single IP reaction mixture (pool 1), and IFNA4, IFNA5, IFNA6 and IFNA7 in another IP reaction mixture (pool 2). Serum samples were incubated with Protein G agarose beads (Exalpha Biologicals, USA) at room temperature for 1 h in a 96-well microfilter plate (Merck Millipore, Germany), and we then added $2x10^6$ luminescence units (LU) of antigen and incubated for another hour. Each sample was tested once. The plate was washed with a vacuum system and Nano-Glo® Luciferase Assay Reagent (Promega, USA) was added. Luminescence intensity was measured with a VICTOR X Multilabel Plate Reader (PerkinElmer Life Sciences, USA). The results are expressed in arbitrary units (AU), as a fold-difference relative to the mean of the negative control samples.

IgG purification

We demonstrated that the IFN- α 2 or IFN- ω neutralizing activity observed was due to auto-Abs and not another plasma factor, by depleting IgG from the plasma with a protein G buffer (PierceTM Protein G IgG Binding Buffer, 21011) and column (NAbTM Protein G Spin Columns, 89953). All buffers were homemade: glycine 0.1 M pH=2.7, Tris 1.5 M pH = 8. Total plasma was loaded onto the column. Each sample was tested once. Purified IgG were then concentrated (PierceTM Protein Concentrators PES, 50K MWCO, 88504). Without eluting the IgG, the flow-through fraction (IgG-depleted) was then collected and compared to total plasma in the luciferase neutralization assay.

Statistical analysis

Odds ratios (OR) and P-values for the effect of auto-Abs neutralizing each type I IFN on critical or severe COVID-19, using asymptomatic/mild patients or the general population as controls and adjusted on age in years and sex, were estimated by means of Firth's bias-corrected logistic regression (49, 50) as implemented in the "logistf" R package (https://rdrr.io/cran/logistf/). Effect of age (quantitative in years or binary +/- 65 years) and sex on the presence of neutralizing auto-Abs in each cohort (critical, severe, deceased and general population) was tested by multivariable Firth's bias-corrected logistic regression. The standard error of the prevalence of neutralizing auto-Abs to each type I IFN per age groups and sex were estimated using the Agresti-Coull approximation (51).

Schematic representation

Schematic representations (Fig. 1B) were created with BioRender.com.

SARS-CoV-2 experiment

SARS-CoV-2 strain USA-WA1/2020 was obtained from BEI Resources and amplified in Caco-2 cells at 37°C. Viral titers were measured on Huh-7.5 hepatoma cells in a standard plaque assay. Caco-2 (*H. sapiens,* sex: male, colon epithelial) and Huh-7.5 cells (*H. sapiens,* sex: male, liver epithelial) were cultured in DMEM supplemented with 1% nonessential amino acids (NEAA) and 10% fetal bovine serum (FBS) at 37°C, under an atmosphere containing 5% CO₂. Both cell lines have been tested negative for contamination with

mycoplasma. SARS-CoV-2 experiments were performed as follows. Huh-7.5 cells were used to seed 96-well plates at a density of 7.5×10^3 cells/well. The following day, plasma samples or a commercial anti-IFN-a2 antibody (catalog number 21100-1; R&D Systems) were diluted to 1% and incubated with 5 pM (~100 pg/mL) or 20 pM (~400 pg/mL) recombinant IFN-α2 (catalog number 11101-2; R&D systems) for 1 h at 37°C (dilutions: plasma samples = 1/100 and anti-IFN- α 2 antibody = 1/1,000). Molar ratio was calculated according to the manufacturer's datasheet and with http://molbiol.ru/eng/scripts/01 04.html. Following this incubation period, the cell culture medium was removed from the 96-well plates by aspiration and replaced with the plasma/anti-IFN- α 2 antibody and IFN- α 2 mixture. Each sample was tested once, in triplicate. The plates were incubated overnight and the plasma/anti-IFN- α 2 antibody plus IFN- α 2 mixture was removed by aspiration. The cells were washed once with PBS to remove potential anti-SARS-CoV-2-neutralizing antibodies and fresh medium was then added. Cells were then infected with SARS-CoV-2 by directly adding the virus to the wells. Cells infected at a MOI of 0.05 PFU/cell and incubated at 33°C for 48 hours. The cells were fixed with 7% formaldehyde, stained for SARS-CoV-2 with an anti-N antibody (catalog no. GTX135357; GeneTex), imaged and analyzed as previously described (9).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Paul Bastard^{1,2,3,@}, Adrian Gervais^{1,2,&}, Tom Le Voyer^{1,2,&}, Jérémie Rosain^{1,2,&}, Quentin Philippot^{1,2,&}, Jérémy Manry^{1,2,#}, Eleftherios Michailidis^{4,#}, Hans-Heinrich Hoffmann^{4,#}, Shohei Eto^{5,£}, Marina Garcia-Prat^{6,£}, Lucy Bizien^{1,2,£}, Alba Parra-Martínez^{6,£}, Rui Yang^{3,£}, Liis Haljasmägi^{7,£}, Mélanie Migaud^{1,2,£}, Karita Särekannu^{7,£}, Julia Maslovskaja^{7,£}, Nicolas de Prost^{8,9}, Yacine Tandjaoui-Lambiotte¹⁰, Charles-Edouard Luyt^{11,12}, Blanca Amador-Borrero¹³, Alexandre Gaudet^{14,15,16,17,18}. Julien Poissv^{14,15,16,17,18}. Pascal Morel^{19,20}. Pascale Richard¹⁹, Fabrice Cognasse^{21,22}, Jesus Troya²³, Sophie Trouillet-Assant²⁴, Alexandre Belot^{25,26}, Kahina Saker²⁵, Pierre Garcon²⁷, Jacques G. Rivière⁶, Jean-Christophe Lagier^{28,29}, Stéphanie Gentile^{30,31}, Lindsey B. Rosen³², Elana Shaw³², Tomohiro Morio³³, Junko Tanaka³⁴, David Dalmau³⁵, Pierre-Louis Tharaux³⁶, Damien Sene¹³, Alain Stepanian³⁷, Bruno Megarbane³⁸, Vasiliki Triantafyllia³⁹, Arnaud Fekkar^{1,40}, James R. Heath⁴¹, José Luis Franco⁴², Juan-Manuel Anaya⁴³, Jordi Solé-Violán^{44,45}, Luisa Imberti⁴⁶, Andrea Biondi⁴⁷, Paolo Bonfanti⁴⁸, Riccardo Castagnoli^{32,49}, Ottavia M. Delmonte³², Yu Zhang^{32,50}, Andrew L. Snow⁵¹, Steven M. Holland³², Catherine Biggs⁵², Marcela Moncada-Vélez³, Andrés Augusto Arias^{3,53,54}, Lazaro Lorenzo^{1,2}, Soraya Boucherit^{1,2}, Boubacar Coulibaly^{1,2}, Dany Anglicheau⁵⁵, Anna M. Planas^{56,57}, Filomeen Haervnck⁵⁸, Sotirija Duvlis^{59,60}, Robert L. Nussbaum⁶¹, Tayfun Ozcelik⁶², Sevgi Keles⁶³, Ahmed A. Bousfiha⁶⁴, Jalila El Bakkouri⁶⁴, Carolina Ramirez-Santana^{42,43}, Stéphane Paul⁶⁵, Qiang Pan-Hammarström⁶⁶, Lennart Hammarström⁶⁶, Annabelle Dupont⁶⁷, Alina Kurolap⁶⁸, Christine N. Metz⁶⁹, Alessandro Aiuti⁷⁰, Giorgio Casari⁷⁰, Vito Lampasona⁷¹,

Fabio Ciceri⁷², Lucila A. Barreiros⁷³, Elena Dominguez-Garrido⁷⁴, Mateus Vidigal⁷⁵, Mayana Zatz⁷⁵, Diederik van de Beek⁷⁶, Sabina Sahanic⁷⁷, Ivan Tancevski⁷⁷, Yurii Stepanovskyy⁷⁸, Oksana Boyarchuk⁷⁹, Yoko Nukui⁸⁰, Miyuki Tsumura⁵, Loreto Vidaur^{81,82}, Stuart G. Tangye⁸³, Sonia Burrel⁸⁴, Darragh Duffy⁸⁵, Lluis Quintana-Murci^{86,87}, Adam Klocperk⁸⁸, Nelli Y. Kann⁸⁹, Anna Shcherbina⁸⁹, Yu-Lung Lau⁹⁰, Daniel Leung⁹⁰, Matthieu Coulongeat⁹¹, Julien Marlet^{92,93}, Rutger Koning⁷⁶, Luis Felipe Reves^{94,95}, Angélique Chauvineau-Grenier⁹⁶, Fabienne Venet^{97,98,99}, Guillaume Monneret^{97,99}, Michel C. Nussenzweig^{100,101}, Romain Arrestier^{8,9}, Idris Boudhabhay⁵⁵, Hagit Baris-Feldman^{68,102}, David Hagin^{102,103}, Joost Wauters¹⁰⁴, Isabelle Meyts^{105,106}, Adam H. Dyer¹⁰⁷, Sean P. Kennelly¹⁰⁷, Nollaig M. Bourke¹⁰⁸, Rabih Halwani¹⁰⁹, Narjes Saheb Sharif-Askari¹⁰⁹, Karim Dorgham¹¹⁰, Jérome Sallette¹¹¹, Souad Mehlal Sedkaoui¹¹¹, Suzan AlKhater^{112,113}, Raúl Rigo-Bonnin¹¹⁴, Francisco Morandeira¹¹⁵, Lucie Roussel^{116,117}, Donald C. Vinh^{116,117}, Sisse Rye Ostrowski¹¹⁸, Antonio Condino-Neto⁷³, Carolina Prando¹¹⁹, Anastasiia Bonradenko⁷⁸, András N. Spaan^{3,120}, Laurent Gilardin^{121,122}, Jacques Fellay^{123,124,125}, Stanislas Lyonnet¹²⁶, Kaya Bilguvar^{127,128,129,130}, Richard P. Lifton^{127,131,132}, Shrikant Mane¹²⁸, HGID Lab[§], COVID Clinicians[§], COVID-STORM Clinicians[§], NIAID Immune Response to COVID Group[§], NH-COVAIR Study Group[§], Danish CHGE[§], Danish Blood Donor Study[§], St. James's Hospital, SARS CoV2 Interest group[§], French COVID Cohort Study Group[§], Imagine COVID-Group[§], The Milieu Intérieur Consortium[§], CoV-Contact Cohort[§], Amsterdam UMC Covid-19 Biobank Investigators[§], COVID Human Genetic Effort[§], CONSTANCES cohort§, 3C-Dijon Study§, Cerba Health-Care§, Etablissement du Sang study group[§], Mark S. Anderson¹³³, Bertrand Boisson^{1,2,3}, Vivien Béziat^{1,2}, Shen-Ying Zhang^{1,2,3}, Evangelos Vandreakos^{134,†}, Olivier Hermine^{2,135,†}, Aurora Pujol^{136,†}, Pärt Peterson^{7,†}, Trine H. Mogensen^{137,138,†}, Lee Rowen^{41,†}, James Mond^{139,†}, Stéphanie Debette^{140,141,†}, Xavier de Lamballerie^{142,†}, Xavier Duval^{143,144,145,146,†}, France Mentré^{143,144,145,†}, Marie Zins^{147,†}, Pere Soler-Palacin^{6,†}, Roger Colobran^{148,†}, Guy Gorochov^{110,149,†}, Xavier Solanich^{150,†}, Sophie Susen^{67,†}, Javier Martinez-Picado^{151,152,153,†}, Didier Raoult^{28,29,†}, Marc Vasse^{154,†}, Peter K. Gregersen^{69,†}, Lorenzo Piemonti^{71,†}, Carlos Rodríguez-Gallego^{155,156,†}, Luigi D. Notarangelo^{32,‡}, Helen C. Su^{32,157,‡}, Kai Kisand^{7,‡}, Satoshi Okada^{5,‡}, Anne Puel^{1,2,3,‡}, Emmanuelle Jouanguy^{1,2,3,‡}, Charles M. Rice^{4,‡}, Pierre Tiberghien^{19,20,‡}, Qian Zhang^{1,2,3,‡}, Aurélie Cobat^{1,2,3,‡}, Laurent Abel^{1,2,3,*}, Jean-Laurent Casanova^{1,2,3,101,*,@}

Affiliations

¹Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France

²University of Paris, Imagine Institute, Paris, France

³St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA

⁴Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA

⁵Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

⁶Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain

⁷Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia

⁸Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP)

⁹Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, 51, Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil Cedex, France

¹⁰Avicenne Hospital, Assistance Publique Hôpitaux de Paris, Bobigny, INSERM U1272 Hypoxia & Lung, Bobigny, France

¹¹Sorbonne Université, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié– Salpêtrière, Médecine Intensive Réanimation, AP-HP, Paris, France

¹²INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, Paris, France

¹³Internal Medicine Department, Lariboisière Hospital, AP-HP, Paris University, Paris, France

¹⁴University of Lille, U1019-UMR9017-Center for Infection and Immunity of Lille, Lille, France

¹⁵CNRS, UMR9017, Lille, France

¹⁶INSERM, U1019, Lille, France

¹⁷Institut Pasteur de Lille, Lille, France

¹⁸CHU Lille, Pôle de Réanimation, Hôpital Roger Salengro, Lille, France

¹⁹Etablissement Français du Sang, La Plaine-St Denis, France

²⁰UMR 1098 RIGHT, Inserm, EFS, Université de Franche-Comté, Besançon, France

²¹SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne

²²Etablissement Français du Sang, Auvergne Rhône-Alpes, St-Etienne, St-Etienne, France

²³Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain

²⁴Hospices Civils de Lyon, Lyon, France; International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France

²⁵Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France

²⁶CNRS UMR 5308, ENS, UCBL, Lyon, France; National Referee Centre for Rheumatic, and Autoimmune and Systemic Diseases in Children (RAISE), Lyon, France; Lyon; Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France

²⁷Intensive Care Unit, Grand Hôpital de l'Est Francilien Site de Marne-la-Vallée, Jossigny, France

²⁸Institut Hospitalo-Universitaire Méditerranée Infection , Marseille, France

²⁹Aix Marseille Université, IRD, APHM, MEPHI, Marseille, France

³⁰Service d'Evaluation Médicale, Hôpitaux Universitaires de Marseille Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France

³¹Aix Marseille University, School of Medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, Marseille, France

³²Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA

³³Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan

³⁴Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

³⁵Hospital Universitari Mutua Tarrassa, Tarrasa, Spain

³⁶Paris Cardiovascular Center, PARCC, Inserm, Université de Paris, Paris, France

³⁷Service d'Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris and EA3518, Institut Universitaire d'Hématologie-Hôpital Saint Louis, Université Paris Diderot, Paris, France

³⁸Réanimation Médicale et Toxicologique, Hôpital Lariboisière (AP-HP), Université Paris-Diderot, INSERM Unité Mixte de Recherche Scientifique (UMRS) 1144

³⁹Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece

⁴⁰Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, AP-HP, Paris, France

⁴¹Institute for Systems Biology, Seattle, WA 98109, USA

⁴²Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellín, Colombia

⁴³Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia

⁴⁴Critical Care Unit , University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain

⁴⁵CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain

⁴⁶CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy

⁴⁷Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy

⁴⁸Department of Infectious Diseases, San Gerardo Hospital–University of Milano-Bicocca, Monza, Italy

⁴⁹Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy

⁵⁰NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, USA

⁵¹Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

⁵²Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada

⁵³Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia

⁵⁴School of Microbiology, University of Antioquia UdeA, Medellin, Colombia

⁵⁵Department of Nephrology and Transplantation, Necker University Hospital -APHP, Paris, France; INEM INSERM U 1151 - CNRS UMR 8253, Paris University, Paris, France

⁵⁶Institute for Biomedical Research, Spanish Research Council, Barcelona, Spain

⁵⁷Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

⁵⁸Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium

⁵⁹Faculty of Medical Sciences, University "Goce Delchev", Stip, Republic of Northern Macedonia

⁶⁰Institute of public health of Republic of North Macedonia

⁶¹Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, USA

⁶²Department of Molecular Biology and Genetics, Bilkent University, Bilkent - Ankara, Turkey

⁶³Meram Medical Faculty, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey

⁶⁴Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco

⁶⁵Department of Immunology, CIC1408, GIMAP CIRI INSERM U1111, University Hospital of Saint-Etienne, Saint-Etienne, France

⁶⁶Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden

⁶⁷Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France

⁶⁸The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel

⁶⁹Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA

⁷⁰Pathogenesis and Therapy of Primary Immunodeficiencies Unit, San Raffaele, Milano, Italy

⁷¹Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy

⁷²Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy

⁷³Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

⁷⁴Fundación Rioja Salud - Centro de Investigación Biomédica de La Rioja, Logrono, Spain

⁷⁵University of Sao Paulo, Sao Paulo, Brazil

⁷⁶Department of Neurology, Amsterdam Neuroscience, Amsterdam, The Netherlands

⁷⁷Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria

⁷⁸Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine

⁷⁹Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

⁸⁰Department of Infection Control and Prevention, Medical Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan

⁸¹Intensive Care Department, Donostia University Hospital, San Sebastian, Spain

⁸²Centro de Investigación en Red de Enfermedades Respiratorias-CIBERES -Instituto de Salud Carlos III, Madrid, España

⁸³Garvan Institute of Medical Research, Sydney, Australia

⁸⁴Sorbonne Université, INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Service de Virologie, Paris, France

⁸⁵Translational Immunology Lab, Institut Pasteur

⁸⁶Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, Paris, France

⁸⁷Chair of Human Genomics and Evolution, Collège de France, Paris, France

⁸⁸Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic

⁸⁹Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

⁹⁰Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong, China

⁹¹Division of Geriatric Medicine, Tours University Medical Center, Tours, France

⁹²INSERM U1259, MAVIVH, Université de Tours, Tours, France

⁹³Service de Bactériologie-Virologie-Hygiène, CHU de Tours, Tours, France

⁹⁴Department of Microbiology, Universidad de La Sabana, Chia, Colombia

⁹⁵Department of Critical Care Medicine, Clinica Universidad de La Sabana, Chia, Colombia

⁹⁶Service de Biologie Médicale, CHI Robert Ballanger, Aulnay sous Bois, France

⁹⁷Laboratoire d'Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France

⁹⁸Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France

⁹⁹EA 7426 « Pathophysiology of Injury-Induced Immunosuppression », Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Hôpital Edouard Herriot -BioMérieux, Lyon, France

¹⁰⁰Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA

¹⁰¹Howard Hughes Medical Institute, New York, NY, USA

¹⁰²Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

¹⁰³Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

¹⁰⁴Medical Intensive care Unit, University Hospitals Leuven, Leuven, Belgium

¹⁰⁵Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium

¹⁰⁶Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium

¹⁰⁷Department of Age-Related Healthcare, Tallaght University Hospital & Department of Medical Gerontology, School of Medicine, Trinity College Dublin

¹⁰⁸Department of Medical Gerontology, School of Medicine, Trinity College Dublin

¹⁰⁹Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates

¹¹⁰Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, (CIMI- Paris), Paris, France

¹¹¹Cerba Health Care, Issy-les-Moulineaux, France

¹¹²Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia

¹¹³College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

¹¹⁴Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain

¹¹⁵Department of Immunology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain

¹¹⁶Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada

¹¹⁷Infectious Disease Susceptibility Program, Research Institute-McGill University Health Centre, Montréal, Québec, Canada

¹¹⁸Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

¹¹⁹Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil

¹²⁰Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands

¹²¹Service de Médecine Interne, Hôpital universitaire Jean-Verdier, AP-HP, Bondy, France

¹²²INSERM U1138, Centre de Recherche des Cordeliers, Paris, France

¹²³School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

¹²⁴Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

¹²⁵Swiss Institue of Bioinformatics, Lausanne, Switzerland

¹²⁶Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France

¹²⁷Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA

¹²⁸Department of Genetics, Yale University School of Medicine, New Haven, CT, USA

¹²⁹Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA

¹³⁰Department of Medical Genetics, Acibadem University School of Medicine, Istanbul, Turkey

¹³¹Department of Genetics, Yale University School of Medicine, New Haven, CT, USA

¹³²Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY

¹³³Diabetes Center, University of California, San Francisco, CA, USA

¹³⁴Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

¹³⁵Department of Hematology, Necker Hospital, AP-HP, Paris, France

¹³⁶Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain

¹³⁷Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark

¹³⁸Department of Biomedicine, Aarhus University, Aarhus, Denmark

¹³⁹ADMA Biologics Inc., Ramsey NJ

¹⁴⁰University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, F-33000 Bordeaux, France

¹⁴¹Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, F-33000 Bordeaux, France

¹⁴²IHU Méditerranée Infection, Unité des Virus Émergents, UVE: Aix Marseille University, IRD 190, INSERM 1207, Marseille, France

¹⁴³Inserm CIC 1425, Paris, France

¹⁴⁴Université de Paris, IAME UMR-S 1137, INSERM, Paris, France

¹⁴⁵AP-HP, Département Epidémiologie Biostatistiques et Recherche Clinique, Hôpital Bichat, Paris, France

¹⁴⁶AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France

¹⁴⁷Université de Paris, Université Paris-Saclay, UVSQ, Inserm UMS11, Villejuif, France

¹⁴⁸Immunology Division, Genetics Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, UAB, Barcelona, Catalonia, Spain

¹⁴⁹Département d'Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP),Hôpital Pitié-Salpétrière, Paris, France

¹⁵⁰Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain

¹⁵¹IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain

¹⁵²Infectious Diseases and Immunity, Center for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain

¹⁵³Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

¹⁵⁴Service de Biologie Clinique & UMR-S 1176, Hopital Foch, Suresnes, France

¹⁵⁵Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Canary Islands, Spain

¹⁵⁶Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Canary Islands, Spain

¹⁵⁷Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

Acknowledgments:

We thank the patients and their families for placing their trust in us. We warmly thank the members of both branches of the Laboratory of Human Genetics of Infectious Diseases. We warmly thank Y. Nemirovskaya, M. Woollett, D. Liu, S. Boucherit, C. Rivalain, M. Chrabieh and L. Lorenzo for administrative assistance. We also thank the staff of the Imagine facilities: C. Bureau, L. Colonna, S. Paillet, N. Ghouas, M. Sy. We are also grateful to the legal team and technology transfer staff of the Imagine Institute: M. Pilorges, R. Marlanges, E. Rubino, W. Loewen, D. Beudin, N. Wuylens. We thank all the staff of the Imagine Institute, Necker Hospital and Necker sorting center for their help. We warmly thank S. Nagashima (Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan).

Funding:

The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Yale High Performance Computing Center (S100D018521), the Fisher Center for Alzheimer's Research

Foundation, the Meyer Foundation, the JPB Foundation, the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project (ANR-20-COVI-0003), ANRS Nord-Sud (ANRS-COV05), ANR GENVIR (ANR-20-CE93-003) and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the European Union's Horizon 2020 research and innovation programme under grant agreement No 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, Institut National de la Santé et de la Recherche Médicale (INSERM) and the University of Paris. PB was supported by the French Foundation for Medical Research (FRM, EA20170638020). PB, JR and TLV were supported by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the NIAID and NIDCR, NIH (grants ZIA AI001270 to LDN and 1ZIAAI001265 to HCS). This program is supported by the Agence Nationale de la Recherche, reference ANR-10-LABX-69-01. K. Kisand's group was supported by the Estonian Research Council grant PRG117 and PRG377. R. Halwani is supported by a grant from Al Jalila Foundation Seed Grant (AJF202019), Dubai, UAE, and a COVID-19 research grant (COV19-0307) from University of Sharjah, UAE. L. Imberti reported funding from Regione Lombardia, Italy (project "Risposta immune in pazienti con COVID-19 e co-morbidità"). L. Imberti and G.L. Marseglia reported funding from Regione Lombardia, Italy (project "Risposta immune in pazienti con COVID-19 e co-morbidità"). This research was partially supported by the Instituto de Salud Carlos III (COV20/0968). J. R. Heath reported funding from Biomedical Advanced Research and Development Authority HHSO10201600031C. S. Okada reports funding Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and development, AMED (Grant Number: JP20fk0108531). G. Gorochov was supported by ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University ICOViD programs. The Three-City (3C) Study was conducted under a partnership agreement among the INSERM, the Victor Segalen-Bordeaux II University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l'Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research-INSERM Programme "Cohortes et collections de données biologiques". S. Debette was supported by the University of Bordeaux Initiative of Excellence. P. K. Gregersen reports funding from the National Cancer Institute, NIH, under Contract No. 75N91019D00024, Task Order No. 75N91021F00001. J.W. is supported by an FWO Fundamental Clinical Mandate (1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d'Hebron was also partly supported by research funding from Instituto de Salud Carlos III grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF). C.R.G. and colleagues of the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (COV20_01333 and COV20_01334, Spanish Ministry of Science and Innovation RTC-2017-6471-1; AEI/FEDER, UE); from Grupo DISA (OA18/017 and OA20/024); and Cabildo Insular de Tenerife (CGIEU0000219140 and "Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19"). CMB is supported by a MSFHR Health Professional-Investigator Award. PQH and LH were funded by the European Union's Horizon 2020 research and innovation program (ATAC, 101003650). Work at Y.-L. Lau's laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. Leung in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Coopération Scientifique France-Colciencias (ECOS-Nord/COLCIENCIAS/MEN/ICETEX (806-2018) and Colciencias contract 713-2016 (code 111574455633). A.K. was in part supported by grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation - Flanders, and is supported by the CSL Behring Chair of Primary Immunodeficiencies, by the KU Leuven C1 Grant C16/18/007, by a VIB GC PID Grant, by the FWO Grants G0C8517N, G0B5120N and G0E8420N and by the Jeffrey Modell Foundation. IM has received funding under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 948959)". E.A. received funding from the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574). M.V. received funding from the Sao Paulo Research Foundation (FAPESP) [grant number: 2020/09702-1] and JBS S.A [grant number 69004]. The NH-COVAIR was supported by a grant from the Meath Foundation.

Competing interests:

J.-L. C.reports 2 patents pending, application number 63/055,155 filed July 22, 2020 and application number 63/141,669 filed January 26, 2021 pending. M. Nussenzweig reports being an inventor on a patent, submitted by The Rockefeller University, that covers on anti-SARS-CoV-2 antibodies. R. P. Lifton reports being a non-executive director of Roche. France Mentré receives fees for consulting from IPSEN and Da Volterra. Her research group

receives research grant from Roche, Sanofi and Da Volterra. M. Nussenzweig reports being on the Scientific Advisory Board of: Celldex, and Waking Fish; Frontier Bio.

Data and material availability:

All the data are available in the manuscript or in the supplementary materials. Plasma, cells, and genomic DNA are available from J.-L.C. under a material transfer agreement with The Rockefeller University or the Imagine Institute. Huh-7.5 cells are available on request from C.M.R. under a material transfer agreement with The Rockefeller University and Apath, LLC. The materials and reagents used are almost exclusively commercially available and nonproprietary. Materials derived from human samples may be made available on request, subject to any underlying restrictions concerning such samples.

Consortium co-authors

HGID Lab

Benedetta Bigio¹, Soraya Boucherit^{2,3}, Aliénor de la Chapelle², Jie Chen¹, Maya Chrabieh^{2,3}, Boubacar Coulibaly^{2,3}, Dana Liu¹, Yelena Nemirowskaya¹, Inés Marín Cruz², Marie Materna^{2,3}, Sophie Pelet², Yoann Seeleuthner^{2,3}, Chloé Thibault^{2,3}, Zhiyong Liu¹.

¹St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. ²Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France. ³University of Paris, Imagine Institute, Paris, France.

COVID Clinicians

Jorge Abad¹, Giulia Accordino², Cristian Achille³, Sergio Aguilera-Albesa⁴, Aina Aguiló-Cucurull⁵, Alessandro AIUTI⁶, Esra Akyüz Özkan⁷, Ilad Alavi Darazam⁸, Jonathan Antonio Roblero Albisures⁹, Juan C Aldave¹⁰, Miquel Alfonso Ramos¹¹, Taj Ali Khan¹², Anna Aliberti¹³, Seyed Alireza Nadji¹⁴, Gulsum Alkan¹⁵, Suzan A. AlKhater¹⁶, Jerome Allardet-Servent¹⁷, Luis M Allende¹⁸, Rebeca ALONSO-ARIAS¹⁹, Mohammed S Alshahrani²⁰, Laia Alsina²¹, Marie-Alexandra Alyanakian²², Blanca Amador Borrero²³, Zahir Amoura²⁴, Arnau Antolí²⁵, Romain Arrestier²⁶, Mélodie Aubart²⁷, Teresa Auguet²⁸, Iryna Avramenko²⁹, Gökhan Aytekin³⁰, Axelle Azot³¹, Seiamak Bahram³², Fanny Bajolle³³, Fausto Baldanti³⁴, Aurélie Baldolli³⁵, Maite Ballester³⁶, Hagit Baris Feldman³⁷, Benoit Barrou³⁸, Federica BARZAGH⁶, Sabrina Basso³⁹, Gulsum Iclal BAYHAN⁴⁰, Alexandre Belot⁴¹, Liliana BEZRODNIK⁴², Agurtzane Bilbao⁴³, Geraldine Blanchard-Rohner⁴⁴, Ignacio Blanco⁴⁵, Adeline Blandinières⁴⁶, Daniel Blázquez-Gamero⁴⁷, Alexandre Bleibtreu⁴⁸, Marketa Bloomfield⁴⁹, Mireia Bolivar-Prados⁵⁰, Anastasiia BONDARENKO⁵¹, Alessandro Borghesi³, Raphael Borie⁵², Elisabeth Botdhlo-Nevers⁵³, Ahmed A Bousfiha⁵⁴, Aurore Bousquet⁵⁵, David Boutolleau⁵⁶, Claire Bouvattier⁵⁷, Oksana Boyarchuk⁵⁸, Juliette Bravais⁵⁹, M. Luisa Briones⁶⁰, Marie-Eve Brunner⁶¹, Raffaele Bruno⁶², Maria Rita P Bueno⁶³, Huda Bukhari⁶⁴, Jacinta Bustamante³³, Juan José Cáceres Agra⁶⁵, Ruggero Capra⁶⁶, Raphael Carapito⁶⁷, Maria Carrabba⁶⁸, Giorgio CASARI⁶, Carlos Casasnovas⁶⁹, Marion Caseris⁷⁰, Irene Cassaniti³⁴, Martin Castelle⁷¹, Francesco Castelli⁷²,

Martín Castillo de Vera⁷³, Mateus V Castro⁶³, Emilie Catherinot⁷⁴, Jale Bengi Celik⁷⁵. Alessandro Ceschi⁷⁶, Martin Chalumeau⁷⁷, Bruno Charbit⁷⁸, Matthew P. Cheng⁷⁹, Père Clavé⁵⁰, Bonaventura Clotet⁸⁰, Anna Codina⁸¹, Yves Cohen⁸², Roger Colobran⁸³, Cloé Comarmond⁸⁴, Alain Combes⁸⁵, Patrizia Comoli³⁹, Angelo G Corsico², Taner Co kuner⁸⁶, Aleksandar Cvetkovski⁸⁷, Cyril Cyrus⁸⁸, David Dalmau⁸⁹, François Danion⁹⁰, David Ross Darley⁹¹, Vincent Das⁹², Nicolas Dauby⁹³, Stéphane Dauger⁹⁴, Paul De Munter⁹⁵, Loic de Pontual⁹⁶, Amin Dehban⁹⁷, Geoffroy Delplancq⁹⁸, Alexandre Demoule⁹⁹, Isabelle Desguerre¹⁰⁰, Antonio Di Sabatino¹⁰¹, Jean-Luc Diehl¹⁰², Stephanie Dobbelaere¹⁰³, Elena Domínguez-Garrido¹⁰⁴, Clément Dubost¹⁰⁵, Olov EKWALL¹⁰⁶, efika Elmas Bozdemir¹⁰⁷, Marwa H Elnagdy¹⁰⁸, Melike Emiroglu¹⁵, Akifumi Endo¹⁰⁹, Emine Hafize Erdeniz¹¹⁰, Selma Erol Aytekin¹¹¹, Maria Pilar ETXART LASA¹¹², Romain Euvrard¹¹³, Giovanna Fabio⁶⁸, Laurence Faivre¹¹⁴, Antonin Falck¹¹⁵, Muriel Fartoukh¹¹⁶, Morgane Faure¹¹⁷, Miguel Fernandez Arquero¹¹⁸, Ricard Ferrer¹¹⁹, Jose Ferreres¹²⁰, Carlos Flores¹²¹, Bruno Francois¹²², Victoria Fumadó¹²³, Kitty S C Fung¹²⁴, Francesca Fusco¹²⁵, Alenka Gagro¹²⁶, Blanca Garcia Solis¹²⁷, Pascale Gaussem¹²⁸, Zeynep GAYRETLI¹²⁹, Juana Gil-Herrera¹³⁰, Laurent Gilardin¹³¹, Audrey Giraud Gatineau¹³², Mònica Girona-Alarcón¹³³, Karen Alejandra Cifuentes Godínez¹³⁴, Jean-Christophe Goffard¹³⁵, Nacho GONZALES¹³⁶, Luis I Gonzalez-Granado¹³⁷, Rafaela González-Montelongo¹³⁸, Antoine Guerder¹³⁹, Belgin Gülhan¹⁴⁰, Victor Daniel Gumucio¹⁴¹, Leif Gunnar Hanitsch¹⁴², Jan Gunst¹⁴³, Marta Gut¹⁴⁴, Jérôme Hadjadj¹⁴⁵, Filomeen Haerynck¹⁴⁶, Rabih Halwani¹⁴⁷, Lennart Hammarström¹⁴⁸, Selda HANCERLI¹⁴⁹, Tetyana Hariyan¹⁵⁰, Nevin Hatipoglu¹⁵¹, Deniz Heppekcan¹⁵², Elisa Hernandez-Brito¹⁵³, Po-ki Ho¹⁵⁴, María Soledad Holanda-Peña¹⁵⁵, Juan P Horcajada¹⁵⁶, Sami Hraiech¹⁵⁷, Linda Humbert¹⁵⁸, Ivan F N Hung¹⁵⁹, Alejandro D. Iglesias¹⁶⁰, Antonio Íñigo-Campos¹³⁸, Matthieu Jamme¹⁶¹, María Jesús Arranz⁸⁹, Marie-Thérèse Jimeno¹⁶², Iolanda Jordan¹³³, Saliha Kanık Yüksek¹⁶³, Yalcin Burak Kara¹⁶⁴, Aydın Karahan¹⁶⁵, Adem KARBUZ¹⁶⁶, Kadriye Kart Yasar¹⁶⁷, Ozgur Kasapcopur¹⁶⁸, Kenichi Kashimada¹⁶⁹, Sevgi Keles¹¹¹, Yasemin Kendir Demirkol¹⁷⁰, Yasutoshi Kido¹⁷¹, Can KIZIL¹⁷², Ahmet Osman Kılıç¹⁷³, Adam Klocperk¹⁷⁴, Antonia Koutsoukou¹⁷⁵, Zbigniew J. Król¹⁷⁶, Hatem Ksouri¹⁷⁷, Paul Kuentz¹⁷⁸, Arthur M C Kwan¹⁷⁹, Yat Wah M Kwan¹⁸⁰, Janette S Y Kwok¹⁸¹, Jean-Christophe Lagier¹⁸², David S Y Lam¹⁸³, Vicky Lampropoulou¹⁸⁴, Fanny Lanternier¹⁸⁵, Yu-Lung LAU¹⁸⁶, Fleur Le Bourgeois⁹⁴, Yee-Sin Leo¹⁸⁷, Rafael Leon Lopez¹⁸⁸, Daniel Leung¹⁸⁶, Michael Levin¹⁸⁹, Michael Levy⁹⁴, Romain Lévy³³, Zhi Li⁷⁸, Daniele Lilleri³⁴, Edson Jose Adrian Bolanos Lima¹⁹⁰, Agnes Linglart¹⁹¹, Eduardo López-Collazo¹⁹², José M. Lorenzo-Salazar¹³⁸, Céline Louapre¹⁹³, Catherine Lubetzki¹⁹³, Kwok-Cheung Lung¹⁹⁴, Charles-Edouard Luyt¹⁹⁵, David C Lye¹⁹⁶, Cinthia MAGNONE¹⁹⁷, Davood Mansouri¹⁹⁸, Enrico Marchioni¹⁹⁹, Carola Marioli², Majid Marjani²⁰⁰, Laura MARQUES²⁰¹, Jesus Marquez Pereira²⁰², Andrea Martín-Nalda²⁰³, David Martínez Pueyo²⁰⁴, Javier Martinez-Picado²⁰⁵, Iciar Marzana²⁰⁶, Carmen Mata-Martínez²⁰⁷, Alexis Mathian²⁴, Larissa RB Matos⁶³, Gail V Matthews²⁰⁸, Julien Mayaux²⁰⁹, Raquel McLaughlin-Garcia²¹⁰, Philippe Meersseman²¹¹, Jean-Louis Mège²¹², Armand Mekontso-Dessap²¹³, Isabelle Melki¹¹⁵, Federica Meloni², Jean-François Meritet²¹⁴, Paolo Merlani²¹⁵, Özge METIN AKCAN²¹⁶, Isabelle Meyts²¹⁷, Mehdi Mezidi²¹⁸, Isabelle Migeotte²¹⁹, Maude Millereux²²⁰, Matthieu Million²²¹, Tristan Mirault²²², Clotilde Mircher²²³, Mehdi Mirsaeidi²²⁴, Yoko Mizoguchi²²⁵, Bhavi P Modi²²⁶, Francesco Mojoli¹³, Elsa MONCOMBLE²²⁷, Abián Montesdeoca Melián²²⁸, Antonio

Morales Martinez²²⁹, Francisco Morandeira²³⁰, Pierre-Emmanuel Morange²³¹, Clémence Mordacq¹⁵⁸, Guillaume Morelle²³², Stéphane J Mouly²³³, Adrián Muñoz-Barrera¹³⁸, Cyril Nafati²³⁴, Shintaro Nagashima²³⁵, Yu Nakagama¹⁷¹, Bénédicte Neven²³⁶, João Farela Neves²³⁷, Lisa FP Ng²³⁸, Yuk-Yung Ng²³⁹, hubert Nielly¹⁰⁵, Yeray Novoa Medina²¹⁰. Esmeralda Nuñez Cuadros²⁴⁰, J. Gonzalo Ocejo-Vinyals²⁴¹, Keisuke Okamoto¹⁰⁹, Mehdi Oualha³³, Amani Ouedrani²², Tayfun Özçelik²⁴², Aslinur Ozkaya-Parlakay¹⁴⁰, Michele Pagani¹³, Oiang Pan-Hammarström¹⁴⁸, Maria Papadaki²⁴³, Christophe Parizot²⁰⁹, Philippe Parola²⁴⁴, Tiffany Pascreau²⁴⁵, Stéphane Paul²⁴⁶, Estela Paz-Artal²⁴⁷, Sigifredo Pedraza²⁴⁸, Nancy Carolina González Pellecer¹³⁴, Silvia Pellegrini²⁴⁹, Rebeca Pérez de Diego¹²⁷, Xosé Luis Pérez-Fernández¹⁴¹, Aurélien Philippe²⁵⁰, Quentin Philippot¹¹⁶, Adrien Picod²⁵¹, Marc Pineton de Chambrun⁸⁵, Antonio Piralla³⁴, Laura Planas-Serra²⁵², Dominique Ploin²⁵³, Julien Poissy²⁵⁴, Géraldine Poncelet⁷⁰, Garyphallia Poulakou¹⁷⁵, Marie S Pouletty²⁵⁵, Persia Pourshahnazari²⁵⁶, Jia Li Qiu-Chen²⁵⁷, Paul Quentric²⁰⁹, Thomas Rambaud²⁵⁸. Didier Raoult²¹², Violette RAOULT²⁵⁹, Anne-Sophie Rebillat²²³, Claire Redin²⁶⁰, Léa Resmini²⁶¹, Pilar Ricart²⁶², Jean-Christophe Richard²⁶³, Raúl Rigo-Bonnin²⁶⁴, Nadia rivet⁴⁶, Jacques G Rivière²⁶⁵, Gemma Rocamora-Blanch²⁵, Mathieu P RODERO²⁶⁶, Carlos Rodrigo²⁶⁷, Luis Antonio Rodriguez¹⁹⁰, Carlos Rodriguez-Gallego²⁶⁸, Agustí Rodriguez-Palmero²⁶⁹, Carolina Soledad Romero²⁷⁰, Anya Rothenbuhler²⁷¹, Damien Roux²⁷², Nikoletta Rovina¹⁷⁵, Flore Rozenberg²⁷³, Yvon Ruch⁹⁰, Montse Ruiz²⁷⁴, Maria Yolanda Ruiz del Prado²⁷⁵, Juan Carlos Ruiz-Rodriguez¹¹⁹, Joan Sabater-Riera¹⁴¹, Kai Saks²⁷⁶, Maria Salagianni¹⁸⁴, Oliver Sanchez²⁷⁷, Adrián Sánchez-Montalvá²⁷⁸, Silvia Sánchez-Ramón²⁷⁹, Laire Schidlowski²⁸⁰, Agatha Schluter²⁵², Julien Schmidt²⁸¹, Matthieu Schmidt²⁸², Catharina Schuetz²⁸³, Cyril E Schweitzer²⁸⁴, Francesco Scolari²⁸⁵, Anna Sediva²⁸⁶, Luis Seijo²⁸⁷, Analia Gisela Seminario⁴², Damien Sene²³, Piseth Seng²²¹, Sevtap Senoglu¹⁶⁷, Mikko Seppänen²⁸⁸, Alex Serra Llovich²⁸⁹, Mohammad Shahrooei⁹⁷, Anna Shcherbina²⁹⁰, Virginie Siguret²⁹¹, Eleni Siouti²⁹², David M Smadja²⁹³, Nikaia Smith⁷⁸, Ali Sobh²⁹⁴, Xavier Solanich²⁵, Jordi Solé-Violán²⁹⁵, Catherine Soler²⁹⁶, Pere Soler-Palacín²⁹⁷, Betül Sözeri⁸⁶, Giulia Maria Stella², Yuriy Stepanovskiy²⁹⁸, Annabelle Stoclin²⁹⁹, Fabio Taccone²¹⁹, Yacine Tandjaoui-Lambiotte³⁰⁰, Jean-Luc Taupin³⁰¹, Simon J Tavernier³⁰², Loreto Vidaur Tello¹¹², Benjamin Terrier³⁰³, Guillaume Thiery³⁰⁴, Christian Thorball²⁶⁰, Karolina THORN³⁰⁵, Caroline Thumerelle¹⁵⁸, Imran Tipu³⁰⁶, Martin Tolstrup³⁰⁷, Gabriele Tomasoni³⁰⁸, Julie Toubiana⁷⁷, Josep Trenado Alvarez³⁰⁹, Vasiliki TRIANTAFYLLIA³¹⁰, Sophie TROUILLET-ASSANT³¹¹, Jesús Troya³¹², Owen T Y Tsang³¹³, Liina Tserel³¹⁴, Eugene Y K Tso³¹⁵, Alessandra Tucci³¹⁶, adiye Kübra Tüter Öz¹⁵, Matilde Valeria Ursini¹²⁵, Takanori Utsumi²²⁵, Yurdagul Uzunhan³¹⁷, Pierre Vabres³¹⁸, Juan Valencia-Ramos³¹⁹, Ana Maria Van Den Rym¹²⁷, Isabelle Vandernoot³²⁰, Valentina Velez-Santamaria³²¹, Silvia Patricia Zuniga Veliz¹³⁴, Mateus C Vidigal³²², Sébastien Viel²⁵³, Cédric Vilain³²³, Marie E Vilaire-Meunier²²³, Judit Villar-García³²⁴, Audrey Vincent⁵⁷, Guillaume Vogt³²⁵, Guillaume Voiriot³²⁶, Alla Volokha³²⁷, Fanny Vuotto¹⁵⁸, Els Wauters³²⁸, Joost Wauters³²⁹, Alan K L Wu³³⁰, Tak-Chiu Wu³³¹, Aysun Yah i³³², Osman YESILBAS³³³, Mehmet Yildiz¹⁶⁸, Barnaby E Young¹⁸⁷, Ufuk Yükselmi ³³⁴, Mayana Zatz⁶³, Marco Zecca³⁹, Valentina Zuccaro⁶², Van Praet Jens³³⁵, Lambrecht Bart N.³³⁶, Van Braeckel Eva³³⁶, Bosteels Cédric³³⁶, Hoste Levi³³⁷, Hoste Eric³³⁸, Fré Bauters³³⁶, Jozefien De Clercq³³⁶, Heijmans Cathérine³³⁹, Slabbynck Hans³⁴⁰, Naesens Leslie³⁴¹, Benoit Florkin³⁴², Cécile Boulanger³⁴³, Dimitri Vanderlinden³⁴⁴

¹Germans Trias i Pujol University Hospital and Research Institute, Badalona, Barcelona, Spain. ²Respiratory Diseases Division, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy. ³Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. ⁴Navarra Health Service Hospital, Pamplona, Spain. ⁵Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain, Immunology Division, Genetics Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain. Catalonia, Barcelona, Spain. ⁶Immunohematology Unit, San Raffaele Hospital, Milan, Italy. ⁷Ondokuz Mayıs University Medical Faculty Pediatrics, Samsun, Turkey. ⁸Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ⁹Hospital Regional de Huehuetenango, "Dr. Jorge Vides de Molina", Guatemala. ¹⁰Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru. ¹¹Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat Spain. ¹²Khyber Medical University, Khyber Pakhtunkhwa, Pakistan. ¹³Anesthesia and Intensive Care, Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. ¹⁴Virology Research Center, National institutes of Tuberculosis and Lung diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ¹⁵Department of Pediatrics, Division of Pediatric Infectious Diseases, Selcuk University Faculty of Medicine, Konya, Turkey. ¹⁶College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia. ¹⁷Intensive care unit, Hôpital Européen, Marseille, France. ¹⁸Immunology Department, Hospital 12 de Octubre, Research Institute imas12, Complutense University, Madrid, Spain. ¹⁹Immunology Department, Asturias Central University Hospital, Biosanitary Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain. ²⁰Emergency and Critical Care Medicine Departments, College of Medicine, Imam AbdulRahman Ben Faisal University, Dammam, Saudi Arabia. ²¹Clinical Immunology and Primary Immunodeficiencias Unit, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona; Universitat de Barcelona, Barcelona, Spain. ²²Department of Biological Immunology, Necker Hospital for Sick Children, APHP and INEM, Paris, France. ²³Internal medicine department, Hôpital Lariboisière, APHP; Université de Paris, Paris, France. ²⁴Internal medicine department, Pitié-Salpétrière Hospital, Paris, France. ²⁵Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. ²⁶Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, AP-HP; Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, Créteil, France. 27 INSERM U1163, University of Paris, Imagine Institute, Paris, France & Pediatric Neurology Department, Necker-Enfants malades Hospital, APHP, Paris, France. ²⁸Hospital U. de Tarragona Joan XXIII. Universitat Rovira i Virgili (URV). IISPV, Tarragona, Spain. ²⁹Department of Propedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine. ³⁰Department of Immunology and Allergy, Konya City Hospital, Konya, Turkey. ³¹Private practice, Paris, France. ³²INSERM U1109, University of Strasbourg, Strasbourg, France. ³³Necker Hospital for Sick Children, AP-HP, Paris, France. ³⁴Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. ³⁵Department of Infectious Diseases, CHU de Caen, Caen, France. ³⁶Consorcio Hospital

General Universitario, Valencia, Spain. ³⁷The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. ³⁸Dept Urology, Nephrology, Transplantation, APHP-SU, Sorbonne Université, INSERM U 1082, Paris, France. ³⁹Cell Factory and Pediatric Hematology-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 40 Yildirim Bevazit University, Faculty of Medicine, Ankara City Hospital, Children's Hospital, Ankara, Turkey. ⁴¹University of Lyon, CIRI, INSERM U1111, National referee centre RAISE, Pediatric Rheumatology, HFME, Hospices Civils de Lyon, Lyon, France. ⁴²Center for Clinical Immunology, CABA, Buenos Aires, Argentina. ⁴³Cruces University Hospital, Bizkaia, Spain. ⁴⁴Paediatric Immunology and Vaccinology Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland. ⁴⁵University Hospital and Research Institute "Germans Trias i Pujol", Badalona, Spain. ⁴⁶Hematology, Georges Pompidou Hospital, APHP, Paris, France. ⁴⁷Pediatric Infectious Diseases Unit, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain. ⁴⁸Infectious disease Unit, Pitié-Salpêtrière Hospital, AP-AP, Paris, France. ⁴⁹Department of Pediatrics, Thomayer's Hospital, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Immunology, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic. ⁵⁰Centro de Investigación Biomédica en Red de Enfermedades Hepàticas y Digestivas (Ciberehd). Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain. ⁵¹Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. ⁵²Service de Pneumologie, Hopital Bichat, APHP, Paris, France. ⁵³Department of infectious diseases, CIC1408, GIMAP CIRI INSERM U1111, University Hospital of Saint-Etienne, Saint-Etienne, France. ⁵⁴Clinical immunology unit, pediatric infectious disease departement, Faculty of Medicine and Pharmacy, Averroes University Hospital. LICIA Laboratoire d'immunologie clinique, d'inflammation et d'allergie, Hassann Ii University., Casablanca, Morocco. 55 Bégin Military Hospital, St Mandé, France. 56 Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Service de Virologie, Paris, France. ⁵⁷Endocrinology unit, APHP Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France. ⁵⁸Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. ⁵⁹Pneumology Unit, Tenon Hospital, AP-HP, Paris, France. ⁶⁰Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain. ⁶¹Intensive care unit, Réseau Hospitalier Neuchâtelois, Neuchâtel, Switzerland. ⁶²Infectious Diseases Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. ⁶³Human Genome and stem-cell research center-University of São Paulo, São Paulo, Brazil. ⁶⁴Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. ⁶⁵Hospital Insular, Las Palmas de Gran Canaria, Spain. ⁶⁶MS Center, Spedali Civili, Brescia, Italy. ⁶⁷Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR S 1109, Faculté de Médecine, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France. ⁶⁸Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. ⁶⁹Neuromuscular Unit. Neurology Department. Hospital Universitari de Bellvitge - IDIBELL and CIBERER, Barcelona, Spain. ⁷⁰Hopital Robert Debré, Paris, France. ⁷¹Pediatric Immuno-hematology Unit, Necker Enfants Malades Hospital, AP-HP, Paris, France. ⁷²Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, Brescia,

Italy. ⁷³Doctoral Health Care Center, Canarian Health System, Las Palmas de Gran Canaria, Spain. ⁷⁴Hôpital Foch, Suresnes, France. ⁷⁵Selcuk University Faculty of Medicine, Department of Anesthesiology and Reanimation, Intensive Care Medicine Unit, Konya, Turkey. ⁷⁶Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale & Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland. ⁷⁷Necker Hospital for Sick Children, Paris University, AP-HP, Paris, France. ⁷⁸Pasteur Institute, Paris, France. ⁷⁹McGill University Health Centre, Montreal, Canada. ⁸⁰University Hospital and Research Institute "Germans Trias i Pujol", IrsiCaixa AIDS Research Institute, UVic-UCC, Badalona, Spain. ⁸¹Clinical Biochemistry, Pathology, Paediatric Neurology and Molecular Medicine Departments and Biobank, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Esplugues, Spain. ⁸²AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; University Sorbonne Paris Nord, Bobigny, France; INSERM, U942, F-75010, Paris, France. ⁸³Hospital Universitari Vall d'Hebron, Barcelona, Spain. ⁸⁴Pitié-Salpêtrière Hospital, Paris, France. ⁸⁵Service de médecine Intensive Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, France. ⁸⁶Umraniye Training and Research Hospital, Istanbul, Turkey. ⁸⁷Faculty of Medical Sciences at University "Goce Delcev", Shtip, North Macedonia. ⁸⁸Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. 89Fundació Docencia i Recerca Mutua Terrassa, Barcelona, Spain. ⁹⁰Maladies Infectieuses et Tropicales, Nouvel Hôpital Civil, CHU Strasbourg, Strasbourg, France. 91UNSW Medicine, St Vincent's Clinical School; Department of Thoracic Medicine, St Vincent's Hospital Darlinghurst, Sidney, Australia. ⁹²Intensive Care unit, Montreuil hospital, Montreuil, France. ⁹³CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium. ⁹⁴Pediatric Intensive Care Unit, Robert-Debré University Hospital, APHP, Paris, France. ⁹⁵General Internal Medicine, University Hospitals Leuven, Belgium. ⁹⁶Hôpital Jean Verdier, APHP, Bondy, France. ⁹⁷Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran. 98Centre de génétique humaine, CHU Besançon, Besançon, France. ⁹⁹Sorbonne Université médecine and APHP Sorbonne université site Pitié-Salpêtrière, Paris, France. ¹⁰⁰Pediatric Neurology Department, Necker-Enfants malades hospital, APHP, Paris, France. ¹⁰¹Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy. ¹⁰²Intensive Care unit, Georges Pompidou Hospital, APHP, Paris, France. ¹⁰³Department of Pneumology, AZ Delta, Roeselare, Belgium. ¹⁰⁴Molecular Diagnostic Unit, Fundación Rioja Salud, Logroño, La Rioja, Spain. ¹⁰⁵Bégin military Hospital, Saint Mandé, France. ¹⁰⁶Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ¹⁰⁷Bursa City Hospital, Bursa, Turkey. ¹⁰⁸Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. ¹⁰⁹Tokyo Medical and Dental University, Tokyo, Japan. ¹¹⁰Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey. ¹¹¹Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey. ¹¹²University Donostia Hospital, Gipuzkoa, Spain. ¹¹³Internal Medicine, University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France. ¹¹⁴Centre de Génétique, CHU Dijon, Dijon, France. ¹¹⁵Robert Debré Hospital, Paris, France. ¹¹⁶APHP Tenon

Hospital, Paris, France. ¹¹⁷Sorbonne Universités, UPMC University of Paris, Paris, France. ¹¹⁸Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain. ¹¹⁹Intensive Care Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain, Shock, Organ Dysfunction and Resuscitation Research Group. Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain. ¹²⁰Intensive Care Unit, Hospital Clínico v Universitario de Valencia, Valencia, Spain. ¹²¹Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain, Santa Cruz de Tenerife, Spain. 122CHU Limoges and INSERM CIC 1435 & UMR 1092, Limoges, France. ¹²³Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Spain; Universitat de Barcelona (UB), Barcelona, Spain. ¹²⁴Department of Pathology, United Christian Hospital, Hong Kong, ¹²⁵Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', IGB-CNR, Naples, Italy. ¹²⁶Department of Pediatrics, Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Josip Juraj Strossmayer University of Osijek, Medical Faculty Osijek, Osijek, Croatia. ¹²⁷Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. ¹²⁸Hematology, APHP, Hopital Européen Georges Pompidou and INSERM UMR-S1140, Paris, France. ¹²⁹Faculty of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Karadeniz Technical University, Trabzon, Turkey. ¹³⁰Division of Immunology, Hospital General Universitario and Instituto de Investigación Sanitaria "Gregorio Marañón", Madrid, Spain. ¹³¹Bégin military Hospital, Bégin, France. ¹³²Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France, French Armed Forces Center for Epidemiology and Public Health (CESPA), Marseille, France. ¹³³Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Barcelona, Spain. ¹³⁴Guatemala. ¹³⁵Department of Internal Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. ¹³⁶Immunodeficiencies Unit, Research Institute Hospital, madrid, Spain. ¹³⁷Primary Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain; School of Medicine Complutense University of Madrid, Madrid, Spain. ¹³⁸Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain. ¹³⁹Assistance Publique Hôpitaux de Paris, Paris, France. ¹⁴⁰Ankara City Hospital, Ankara, Turkey. 141 Department of Intensive Care, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. ¹⁴²Immunodeficiency Outpatient Clinic, Institute for Medical Immunology, FOCIS Center of Excellence, Charité Universitätsmedizin Berlin, Germany. ¹⁴³Surgical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium. ¹⁴⁴CNAG-CRG, Barcelona Institute of Science and Technology, Barcelona, Spain. ¹⁴⁵Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital Cochin, Paris, France. ¹⁴⁶Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, PID research lab, Ghent University Hospital, Ghent, Belgium.¹⁴⁷Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE, Sharjah, UAE. 148Department of Biosciences and Nutrition,

SE14183, Huddinge, Karolinska Institutet, Stockholm, Sweden.¹⁴⁹Department of Pediatrics (Infectious Diseases), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. ¹⁵⁰I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. ¹⁵¹Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey. ¹⁵²Health Sciences University, Darica Farabi Education and Research Hospital, Kocaeli, Turkey. ¹⁵³Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain. ¹⁵⁴Department of Paediatrics, Queen Elizabeth Hospital, Hong Kong. ¹⁵⁵IntensivenCare Unit. Marqués de Valdecilla Hospital, Santander, Spain. ¹⁵⁶Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), UAB, UPF, Barcelona. ¹⁵⁷Intensive care unit, APHM, Marseille, France. ¹⁵⁸ CHU Lille, unité de pneumologie et allergologie pédiatriques, Lille, France. ¹⁵⁹Department of Medicine, The University of Hong Kong, Hong Kong. 160Department of Pediatrics, Columbia University, New York, NY, USA. ¹⁶¹Centre hospitalier intercommunal Poissy Saint Germain en Lave, Poissy, France. ¹⁶²IHU Méditerranée Infection, Service de l'Information Médicale, Hôpital de la Timone, Marseille, France. ¹⁶³Health Science University Ankara Citv Hospital. Ankara, Turkey. ¹⁶⁴School of Medicine, General Surgery Department Fevzi Çakmak Mah, Marmara University, Istanbul, Turkey. ¹⁶⁵Mersin City Education and Research Hospital, Mersin, Turkey. ¹⁶⁶Division of Pediatric Infectious Diseases, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey. ¹⁶⁷Departments of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey. ¹⁶⁸Department of Pediatric Rheumatology, Istanbul University-Cerrahpasa, Istanbul, Turkey. ¹⁶⁹Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan. ¹⁷⁰Health Sciences University, Umranive Education and Research Hospital, Istanbul, Turkey. ¹⁷¹Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan. ¹⁷²Pediatric Infectious Diseases Unit of Osman Gazi University Medical School in Eski ehir, Turkey. ¹⁷³Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey. ¹⁷⁴Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic. ¹⁷⁵ICU, 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, Medical School, 'Sotiria' General Hospital of Chest Diseases, Athens, Greece. ¹⁷⁶Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland. ¹⁷⁷Clinique des soins intensifs, HFR Fribourg, Fribourg, Switzerland. ¹⁷⁸Oncobiologie Génétique Bioinformatique, PC Bio, CHU Besançon, Besançon, France. ¹⁷⁹Department of Intensive Care, Tuen Mun Hospital, Hong Kong. ¹⁸⁰Paediatric Infectious Disease Unit, Hospital Authority Infectious Disease Center, Princess Margaret Hospital, Hong Kong (Special Administrative Region), China. ¹⁸¹Department of Pathology, Queen Mary Hospital, Hong Kong. ¹⁸²Aix Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France. ¹⁸³Department of Paediatrics, Tuen Mun Hospital, Hong Kong. ¹⁸⁴Biomedical Research Foundation of the Academy of Athens, Athens, Greece. ¹⁸⁵Necker hospital, Paris, France. ¹⁸⁶Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China. ¹⁸⁷National Centre for Infectious Diseases, Singapore. ¹⁸⁸Hospital Universitario Reina Sofía, Cordoba, Spain. 189Imperial College, London, England. 190Hospital General San Juan de Dios, Ciudad de Guatemala, Guatemala.¹⁹¹Endocrinology and diabetes for children,

AP-HP, Bicêtre Paris-Saclay hospital, Le Kremlin-Bicêtre, France. ¹⁹²Innate Immunity group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. ¹⁹³Neurology unit, APHP Pitié-Salpêtrière Hospital, Paris University, Paris, France. ¹⁹⁴Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong. ¹⁹⁵Intensive care unit, APHP Pitié-Salpêtrière Hospital, Paris University, Paris, France. ¹⁹⁶National Centre for Infectious Diseases; Tan Tock Seng Hospital; Yong Loo Lin School of Medicine; Lee Kong Chian School of Medicine, Singapore. ¹⁹⁷Hospital de Niños Dr Ricardo Gutierrez, Buenos Aires, Argentina. ¹⁹⁸Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 199Neurooncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia, Italy. 200 Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. ²⁰¹Coordenadora da Unidade de Infeciologia e Imunodeficiências do Servico de Pediatria, Centro Materno-Infantil do Norte, Porto, Portugal. ²⁰²Hospital Sant Joan de Déu and University of Barcelona, Barcelona, Spain. ²⁰³Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain. ²⁰⁴Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain. ²⁰⁵IrsiCaixa AIDS Research Institute, ICREA, UVic-UCC, Research Institute "Germans Trias i Pujol", Badalona, Spain. 206Department of Laboratory, Cruces University Hospital, Barakaldo, Bizkaia, Spain, Bizkaia, Spain. 207 Intensive Care Unit, Hospital General Universitario "Gregorio Marañón", Madrid, Spain. 208 University of New South Wales, Australia. ²⁰⁹APHP Pitié-Salpêtrière Hospital, Paris, France. ²¹⁰Department of Pediatrics, Complejo Hospitalario Universitario Insular-Materno Infantil, Canarian Health System, Las Palmas de Gran Canaria, Spain. ²¹¹Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium, ²¹²Aix-Marseille University, APHM, Marseille, France. ²¹³Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris (AP-HP). Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, France. ²¹⁴APHP Cohin Hospital, Paris, France. ²¹⁵Department of Critical Care Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland. ²¹⁶Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Infectious Diseases, Konya, Turkey. ²¹⁷Department of Pediatrics, University Hospitals Leuven; KU Leuven, Department of Microbiology, Immunology and Transplantation; Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium. ²¹⁸Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Lyon, France. ²¹⁹Hôpital Erasme, Brussels, Belgium. ²²⁰Centre hospitalier de Gonesse, Gonesse, France. ²²¹Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France. 222 Vascular Medicine, Georges Pompidou Hospital, APHP, Paris, France. ²²³Institut Jérôme Lejeune, Paris, France. ²²⁴Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA. ²²⁵Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. 226BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada. ²²⁷Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris (AP-

HP), Créteil, France. ²²⁸Guanarteme Health Care Center, Canarian Health System, Las Palmas de Gran Canaria, Spain. ²²⁹Regional University Hospital of Malaga, Malaga, Spain. ²³⁰Department of Immunology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. ²³¹Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France. ²³²Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France. ²³³INSERM U1144, Université de Paris, DMU INVICTUS, APHP-Nord, Département de Médecine Interne, Lariboisière Hospital, Paris, France. ²³⁴CHU de La Timone, Marseille, France. ²³⁵Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. ²³⁶Pediatric Immunology and rhumatology Department, Necker Hospital, AP-HP, Paris, France. ²³⁷Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal. 238 Infectious Diseases Horizontal Technlogy Centre, A*STAR; Singapore Immunology Network, A*STAR, Singapore. ²³⁹Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong. ²⁴⁰Regional Universitary Hospital of Malaga, Málaga, Spain. ²⁴¹Department of Immunology, Hospital Universitario Marqués de Valdecilla, Santander, Spain. ²⁴²Bilkent University, Department of Molecular Biology and Genetics, Ankara, Turkey. 243BRFAA, Athens, Greece. 244IHU Méditerranée Infection, Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France. ²⁴⁵L'Hôpital Foch, Suresnes, France. ²⁴⁶Department of Immunology, CIC1408, GIMAP CIRI INSERM U1111, University Hospital of Saint-Etienne, St Etienne, France. ²⁴⁷Department of Immunology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. ²⁴⁸Mexico. ²⁴⁹Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy. ²⁵⁰APHP Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France. ²⁵¹AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; INSERM UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France. ²⁵²Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, Barcelona; CIBERER U759, ISCiii Madrid, Spain. ²⁵³Hospices Civils de Lyon, Lyon, France. ²⁵⁴Univ. Lille, INSERM U1285, CHU Lille, Pôle de médecine intensive-réanimation, CNRS, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France. ²⁵⁵Department of General pediatrics, Robert Debre Hospital, Paris, France. ²⁵⁶University of British Columbia, Vancouver, Canada. ²⁵⁷Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain, Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain. ²⁵⁸AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; University Sorbonne Paris Nord, Bobigny, France. ²⁵⁹Centre Hospitalier de Saint-Denis, St Denis, France. ²⁶⁰Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. ²⁶¹Paris Cardiovascular Center, PARCC, INSERM, Université de Paris, Paris, France. ²⁶²Germans Trias i Pujol Hospital, Badalona, Spain. ²⁶³Medical intensive care unit. Hopital de la Croix-Rousse. Hospices Civils de Lyon, Lyon, France. ²⁶⁴Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. ²⁶⁵Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. ²⁶⁶Université de Paris, CNRS UMR-8601; Team Chemistry & Biology,

Modeling & Immunology for Therapy, CBMIT, Paris, France. ²⁶⁷Germans Trias i Pujol University Hospital and Research Institute. Badalona, Badalona, Spain. ²⁶⁸Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain. ²⁶⁹Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat: University Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. ²⁷⁰Consorcio Hospital General Universitario, Valencia, Spain. ²⁷¹APHP Hôpitaux Universitaires Paris-Sud, Paris, France. 272Intensive Care Unit, Louis-Mourier Hospital, Colombes, France. ²⁷³Virology unit, Université de Paris, Cohin Hospital, APHP, Paris. France. ²⁷⁴Neurometabolic Diseases Laboratory and CIBERER U759, Barcelona, Spain. ²⁷⁵Hospital San Pedro, Logroño, Spain. ²⁷⁶University of Tartu, Institute of Biomedicine and Translational Medicine, Tartu, Estonia. 277Respiratory medicine, Georges Pompidou Hospital, APHP, Paris, France. ²⁷⁸Infectious Diseases Department, International Health Program of the Catalan Insitute of Health (PROSICS), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain. ²⁷⁹Hospital Clínico San Carlos and IdSSC, Madrid, Spain. ²⁸⁰Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil. ²⁸¹AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France. ²⁸²Service de Médecine Intensive Réanimation, Institut de Cardiologie, Hopital Pitié-Salpêtrière, Paris, France. ²⁸³Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. ²⁸⁴CHRU de Nancy, Hôpital d'Enfants, Vandoeuvre, France. ²⁸⁵Chair of Nephrology, University of Brescia, Brescia, Italy. 286Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic. ²⁸⁷Clínica Universidad de Navarra and Ciberes, Madrid, Spain. ²⁸⁸HUS Helsinki University Hospital, Children and Adolescents, Rare Disease Center, and Inflammation Center, Adult Immunodeficiency Unit, Majakka, Helsinki, Finland. ²⁸⁹Fundació Docencia i Recerca Mutua Terrassa, Terrassa, Spain. 290D. Rogachev National Medical and Research Center of Pediatric Hematology, Oncology, Immunoogy, Moscow, Russia. ²⁹¹Haematology Laboratory, Lariboisière Hospital, University of Paris, Paris, France. ²⁹²Biomedical Research Foundation of the Academy of Athens. ²⁹³INSERM U1140, University of Paris, European Georges Pompidou Hospital, Paris, France. ²⁹⁴Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt. ²⁹⁵Critical Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain. ²⁹⁶CHU de Saint Etienne, Saint-Priest-en-Jarez, France. ²⁹⁷Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus. Universitat Autònoma de Barcelona (UAB). Barcelona, Catalonia, Spain, EU., Barcelona, Spain. ²⁹⁸Department of pediatric infectious diseases and pediatric immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. ²⁹⁹Gustave Roussy Cancer Campus, Villejuif, France. ³⁰⁰Intensive Care Unit, Avicenne Hospital, APHP, Bobigny, France. ³⁰¹Laboratory of Immunology and Histocompatibility, Saint-Louis Hospital, Paris University, Paris, France. 302 Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium. ³⁰³Department of Internal Medicine, Université de Paris, INSERM, U970, PARCC, F-75015, Paris,

France. ³⁰⁴Service de médecine intensive réanimation, CHU de Saint-Etienne, France. ³⁰⁵Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ³⁰⁶University of Management and Technology, Lahore, Pakistan. ³⁰⁷Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark. ³⁰⁸First Division of Anesthesiology and Critical Care Medicine, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy. ³⁰⁹Intensive Care Department, Hospital Universitari MutuaTerrassa, Universitat Barcelona, Terrassa, Spain. ³¹⁰Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. ³¹¹International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France. ³¹²Infanta Leonor University Hospital, Madrid, Spain. ³¹³Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong. ³¹⁴University of Tartu, Institute of Clinical Medicine, Tartu, Estonia. ³¹⁵Department of Medicine, United Christian Hospital, Hong Kong. ³¹⁶Hematology Department, ASST Spedali Civili di Brescia, Brescia, Italy. ³¹⁷Pneumologie, Hôpital Avicenne, APHP, INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France. ³¹⁸Dermatology unit, Laboratoire GAD, INSERM UMR1231 LNC, université de Bourgogne, Dijon, France. ³¹⁹University Hospital of Burgos, Burgos, Spain. ³²⁰Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. ³²¹Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain. 322University of São Paulo, São Paulo, Brazil. ³²³CHU de Caen, Caen, France. ³²⁴Hospital del Mar - IMIM Biomedical Research Institute, Barcelona, Catalonia, Spain. 325Neglected Human Genetics Laboratory, INSERM, University of Paris, Paris, France. ³²⁶Sorbonne Université, Service de Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France. ³²⁷Pediatric Infectious Disease and Pediatric Immunology Department, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. ³²⁸Department of Pneumology, University Hospitals Leuven, Leuven, Belgium. 329 Laboratory for Clinical Infectious and Inflammatory Disorders, Departement of Microbiology, Immunology and Transplantation, Leuven, Belgium. ³³⁰Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong. ³³¹Department of Medicine, Queen Elizabeth Hospital, Hong Kong. ³³²Ankara City Hospital, Children's Hospital, Ankara, Turkey. ³³³Division of Pediatric Infectious Disease, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey. ³³⁴Health Sciences University, Lütfi Kırdar Kartal Education and Research Hospital, stanbul, Turkey. ³³⁵Department of Nephrology and Infectiology, AZ Sint-Jan, Bruges, Belgium. ³³⁶Department of Pulmonology, Ghent University Hospital. Belgium. ³³⁷Department of Pediatric pulmonology and immunology, Ghent University Hospital, Belgium. ³³⁸Department of Intensive Care Unit, Ghent University Hospital, Belgium. ³³⁹Department of Pediatric hemato-oncology, Jolimont Hospital; Department of Pediatric hemato-oncology, HUDERF, Brussels, Belgium. ³⁴⁰Department of Pulmonology, ZNA Middelheim, Antwerp, Belgium. ³⁴¹Department of Internal Medicine, Ghent University Hospital, Belgium. ³⁴²Department of Pediatric immuno-hémato-rhumatology, CHR Citadelle, Liége, Belgium. 343 Department of Pediatric hemato-oncology, UCL Louvain, Belgium. ³⁴⁴Department of Pediatrics, Saint Luc, UCL Louvain, Belgium.

COVID-STORM Clinicians

Giuseppe Foti¹, Giacomo Bellani¹, Giuseppe Citerio¹, Ernesto Contro¹, Alberto Pesci², Maria Grazia Valsecchi³, Marina Cazzaniga⁴

¹Department of Emergency, Anesthesia and Intensive Care, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. ²Department of Pneumology, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. ³Center of Bioinformatics and Biostatistics, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. ⁴Phase I Research Center, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.

NIAID Immune Response to COVID Group

Jeffrey J. Danielson¹, Kerry Dobbs¹, Anuj Kashyap¹, Li Ding¹, Clifton L. Dalgard², Alessandra Sottini³, Virginia Quaresima³, Eugenia Quiros-Roldan⁴, Camillo Rossi⁵, Laura Rachele Bettini⁶, Mariella D'Angio⁶, Ilaria Beretta⁷, Daniela Montagna⁸, Amelia Licari⁹, Gian Luigi Marseglia¹⁰

¹Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA. ²Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. ³CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy. ⁴Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy. ⁵Chief Medical Officer, ASST Spedali Civili di Brescia, Brescia, Italy. ⁶Pediatric Departement and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy. "7Department of Infectious Diseases, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. " ⁸Laboratory of Immunology and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy. ⁹Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy. ¹⁰Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.

NH-COVAIR Study Group

Isabella Batten¹, Conor Reddy¹, Matt McElheron¹, Claire Noonan¹, Emma Connolly¹, Aoife Fallon¹

¹Department of Age-Related Healthcare, Tallaght University Hospital & Department of Medical Gerontology, School of Medicine, Trinity College Dublin

Danish CHGE

Merete Storgaard¹, Sofie Jørgensen¹, Martin Tolstrup¹

¹Dept. Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.

The Danish Blood Donor Study (DBDS)

Christian Erikstrup¹, Ole Birger Pedersen², Erik Sørensen³, Susan Mikkelsen¹, Khoa Manh Dinh¹, Margit Anita Hørup Larsen³, Isabella Worlewenut Paulsen², Jakob Hjorth Von Stemann³, Morten Bagge Hansen³, Sisse Rye Ostrowski³

¹Dept. Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark. ²Dept. Clinical Immunology, Zeeland University Hospital, Køge, Denmark, ³Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

St. James's Hospital, SARS CoV2 Interest group

Liam Townsend¹, Cliona Ni Cheallaigh¹, Colm Bergin¹, Ignacio Martin-Loeches², Jean Dunne³, Niall Conlon³, Nollaig Bourke⁴, Cliona O'Farrelly⁵

¹Department of Infectious Diseases, St. James's Hospital; Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland. ²Department of Intensive Care Medicine, St James's Hospital, Dublin, Ireland. ³Department of Immunology, St. James's Hospital; Department of Immunology, School of Medicine, Trinity College Dublin, Ireland. ⁴Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland. ⁵School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin; School of Medicine, Trinity College Dublin, Ireland.

French COVID Cohort Study Group

Laurent ABEL¹, Clotilde ALLAVENA², Claire ANDREJAK³, François ANGOULVANT⁴, Cecile AZOULAY⁵, Delphine BACHELET⁶, Marie BARTOLI⁷, Romain BASMACI⁸, Sylvie BEHILILL⁹, Marine BELUZE¹⁰, Nicolas BENECH¹¹, Dehbia BENKERROU¹², Krishna BHAVSAR⁶, Laurent BITKER¹¹, Lila BOUADMA⁶, Maude BOUSCAMBERT-DUCHAMP¹³, Pauline CARAUX PAZ¹⁴, Minerva CERVANTES-GONZALEZ⁶, Anissa CHAIR⁶, Catherine CHIROUZE¹⁵, Alexandra COELHO¹⁶, Hugues CORDEL¹⁷, Camille COUFFIGNAL⁶, Sandrine COUFFIN-CADIERGUES¹⁸, Eric d'ORTENZIO⁷, Etienne DE MONTMOLLIN⁶, Alexa DEBARD¹⁹, Marie-Pierre DEBRAY⁶, Dominique DEPLANQUE²⁰, Diane DESCAMPS⁶, Mathilde DESVALLÉE²¹, Alpha DIALLO⁷, Jean-Luc DIEHL²², Alphonsine DIOUF¹⁶, Céline DORIVAL¹², François DUBOS²³, Xavier DUVAL⁶, Philippine ELOY⁶, Vincent ENOUF⁹, Olivier EPAULARD²⁴, Hélène ESPEROU¹⁸, Marina ESPOSITO-FARESE⁶, Manuel ETIENNE²⁵, Denis GAROT²⁶, Nathalie GAULT⁶, Alexandre GAYMARD¹³, Jade GHOSN⁶, Tristan GIGANTE²⁷, Morgane GILG²⁷, François GOEHRINGER²⁸, Jérémie GUEDJ²⁹, Alexandre HOCTIN¹⁶,

Isabelle HOFFMANN⁶, Ikram HOUAS¹⁸, Jean-Sébastien HULOT²², Salma JAAFOURA¹⁸, Ouifiya KAFIF⁶, Florentia KAGUELIDOU³⁰, Sabrina KALI⁶, Younes KERROUMI³¹, Antoine KHALIL⁶, Coralie KHAN²¹, Antoine KIMMOUN³², Fabrice LAINE³³, Cédric LAOUÉNAN⁶, Samira LARIBI⁶, Minh LE⁶, Cyril LE BRIS³⁴, Sylvie LE GAC⁶, Quentin LE HINGRAT⁶, Soizic LE MESTRE⁷, Hervé LE NAGARD³⁵, Adrien LEMAIGNEN²⁶, Véronique LEMEE²⁵, François-Xavier LESCURE⁶, Sophie LETROU⁶, Yves LEVY³⁶, Bruno LINA¹³, Guillaume LINGAS³⁵, Jean Christophe LUCET⁶, Moïse MACHADO³⁷, Denis MALVY³⁸, Marina MAMBERT¹⁶, Aldric MANUEL³⁹, France MENTRÉ⁶, Amina MEZIANE¹², Hugo MOUQUET⁹, Jimmy Mullaert⁶, Nadège NEANT³⁵, Duc NGUYEN³⁸, Marion NORET⁴⁰, Aurélie PAPADOPOULOS¹⁸, Christelle PAUL⁷, Nathan PEIFFER-SMADJA⁶, Vincent PEIGNE⁴¹, Ventzislava PETROV-SANCHEZ⁷, Gilles PEYTAVIN⁶, Huong PHAM⁶, Olivier PICONE⁸, Valentine PIQUARD⁶, Julien POISSY²³, Oriane PUÉCHAL⁴², Manuel ROSA-CALATRAVA¹³, Bénédicte ROSSIGNOL²⁷, Patrick ROSSIGNOL²⁸, Carine ROY⁶, Marion SCHNEIDER⁶, Richa SU⁶, Coralie TARDIVON⁶, Marie-Capucine TELLIER⁶, François TÉOULÉ¹², Olivier TERRIER¹³, Jean-François TIMSIT⁶, Christelle TUAL⁴³, Sarah TUBIANA⁶, Sylvie VAN DER WERF⁹, Noémie VANEL⁴⁴, Aurélie VEISLINGER⁴³, Benoit VISSEAUX⁶, Aurélie WIEDEMANN⁴⁵, Yazdan YAZDANPANAH⁶

¹INSERM UMR 1163, Paris, France. ²CHU Nantes, France. ³CHU Amiens, France. ⁴Hôpital Necker, Paris, France. ⁵Hopitâl Cochin, Paris, France. ⁶Hôpital Bichat, Paris, France. ⁷ANRS, Paris, France. ⁸Hôpital Louis Mourier, Colombes, France. ⁹Pasteur Institute, Paris, France. ¹⁰F-CRIN Partners Platform, Paris, France. ¹¹CHU Lyon, France. ¹²INSERM UMR 1136, Paris, France. ¹³INSERM UMR 1111, Lyon, France. ¹⁴CH Villeneuve Saint Georges, France. ¹⁵CHRU Jean Minjoz, Besançon, France. ¹⁶INSERM UMR 1018, Paris, France. ¹⁷Hôpital Avicenne, Bobigny, France. ¹⁸INSERM sponsor, Paris, France. ¹⁹CHU Toulouse, France. ²⁰Hôpital Calmette, Lille, France. ²¹INSERM UMR 1219, Bordeaux, France. ²²Hôpital Européen Georges Pompidou, Paris, France. ²³CHU Lille, France. ²⁴CHU Grenoble, France. ²⁵CHU Rouen, France. ²⁶CHU Tours, France. ²⁷F-CRIN INI-CRCT, Nancy, France. ²⁸CHU Nancy, France. ²⁹Université de Paris, INSERM, IAME, F-75018 Paris, France. ³⁰Hôpital Robert Debré, Paris, France. ³¹GH Diaconesses, Paris, France. ³²Université de Lorraine, CHRU de Nancy, Service de Médecine Intensive et Réanimation Brabois, INSERM U116, Nancy, France. ³³CHU Rennes, France. ³⁴CH Beziers, France. ³⁵INSERM UMR 1137, Paris, France. ³⁶Vaccine Research Insitute (VRI), INSERM U955, Créteil, France. ³⁷Grand Hôpital de l'Est Francilien, Marne-la-Vallée, France. ³⁸CHU Bordeaux, France. ³⁹CH Annecy, France. ⁴⁰RENARCI, Annecy, France. ⁴¹CH Métropole Savoie, Cambery, France. ⁴²REACTing, Paris, France. ⁴³INSERM CIC-1414, Rennes, France. ⁴⁴Hôpital la Timone, Marseille, France. ⁴⁵Vaccine Research Insitute (VRI), INSERM UMR 955, Créteil, France.

Imagine COVID-Group

Jean-Philippe Annereau¹, Luis Briseño-Roa¹, Olivier Gribouval², Anna Pelet²

¹Medetia Pharmaceuticals, Paris, France. ²Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France.

The Milieu Intérieur Consortium

Laurent Abel¹, Andres Alcover², Hugues Aschard², Philippe Bousso², Nollaig Bourke³, Petter Brodin⁴, Pierre Bruhns², Nadine Cerf-Bensussan⁵, Ana Cumano², Christophe D'Enfert², Ludovic Deriano², Marie-Agnès Dillies², James Di Santo², Françoise Dromer², Gérard Eberl², Jost Enninga², Jacques Fellay⁶, Ivo Gomperts-Boneca², Milena Hasan², Gunilla Karlsson Hedestam⁴, Serge Hercberg⁷, Molly A Ingersoll², Olivier Lantz⁸, Rose Anne Kenny³, Mickaël Ménager⁵, Frédérique Michel², Hugo Mouquet², Cliona O'Farrelly³, Etienne Patin², Sandra Pellegrini², Antonio Rausell⁵, Frédéric Rieux-Laucat⁵, Lars Rogge², Magnus Fontes⁹, Anavaj Sakuntabhai², Olivier Schwartz², Benno Schwikowski², Spencer Shorte², Frédéric Tangy², Antoine Toubert¹⁰, Mathilde Touvier¹², Marie-Noëlle Ungeheuer², Christophe Zimmer², Matthew L. Albert¹¹, Darragh Duffy², Lluis Quintana-Murci²

¹Hôpital Necker, Paris, France. ²Institut Pasteur, Paris, France. ³Trinity College, Dublin, Ireland. ⁴Karolinska Institutet, Stockholm, Sweden. ⁵INSERM U1163, Institut Imagine, Paris, France. ⁶EPFL, Lausanne, Switzerland. ⁷Université Paris ¹³, Paris, France. ⁸Institut Curie, Paris, France. ⁹Institut Roche, Paris, France. ¹⁰Hôpital Saint-Louis, Paris, France. ¹¹In Sitro, San Francisco, USA. ¹²Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center – University of Paris (CRESS), Bobigny, France.

CoV-Contact Cohort

Loubna Alavoine¹, Sylvie Behillil², Charles Burdet³, Charlotte Charpentier^{3,4}, Aline Dechanet⁵, Diane Descamps^{3,6}, Xavier Duval^{1,3}, Jean-Luc Ecobichon¹, Vincent Enouf⁸, Wahiba Frezouls¹, Nadhira Houhou⁵, Ouifiya Kafif⁵, Jonathan Lehacaut¹, Sophie Letrou¹, Bruno Lina⁹, Jean-Christophe Lucet¹⁰, Pauline Manchon⁵, Mariama Nouroudine¹, Valentine Piquard⁵, Caroline Quintin¹, Michael Thy¹¹, Sarah Tubiana¹, Sylvie van der Werf⁸, Valérie Vignali¹, Benoit Visseaux^{3,10}, Yazdan Yazdanpanah^{3,10}, Abir CHAHINE¹², Nawal WAUCQUIER¹², Maria-Claire MIGAUD¹², Dominique DEPLANQUE¹², Félix DJOSSOU¹³, Mayka Mergeay-Fabre¹⁴, Aude LUCARELLI¹⁵, Magalie DEMAR¹³, Léa Bruneau¹⁶, Patrick Gérardin¹⁷, Adrien Maillot¹⁶, Christine Payet¹⁸, Bruno Laviolle¹⁹, Fabrice Laine¹⁹, Christophe Paris¹⁹, Mireille Desille-Dugast¹⁹, Julie Fouchard¹⁹, Denis MALVY²⁰, Duc NGUYEN²⁰, Thierry PISTONE²⁰, Pauline PERREAU²⁰, Valérie GISSOT²¹, Carole LE GOAS²¹, Samatha Montagne²², Lucie Richard²³, Catherine Chirouze²⁴, Kévin Bouiller²⁴, Maxime Desmarets²⁵, Alexandre Meunier²⁶, Benjamin Lefévre²⁷, Hélène Jeulin²⁸, Karine Legrand²⁹, Sandra Lomazzi³⁰, Bernard Tardy³¹, Amandine Gagneux-Brunon³², Frédérique Bertholon³³, Elisabeth Botelho-Nevers³², KOUAKAM Christelle KOUAKAM Christelle³⁴, LETURQUE Nicolas LETURQUE Nicolas³⁴, Layidé Roufai³⁴, Karine Amat³⁵, Sandrine Couffin-Cadiergues³⁴, Hélène Espérou³⁶, Samia Hendou³⁴

¹Centre d'Investigation Clinique, INSERM CIC 1425, Hôpital Bichat Claude Bernard, APHP, Paris, France. ²Institut Pasteur, Paris, France. ³Université de Paris, IAME, INSERM U1137, Paris, France, Hôpital Bichat Claude Bernard, APHP, Paris, France. ⁴ Service

de Virologie, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France. ⁶IAME INSERM U1140, Hôpital Bichat Claude Bernard, APHP, Paris, France. ⁷Centre d'Investigation Clinique, INSERM CIC 1425, APHP, IAME, Paris University, Paris, France. ⁸Institut Pasteur, U3569 CNRS, Université de Paris, Paris, France. ⁹Virpath Laboratory, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS U5308, ENS, UCBL, Lyon, France. ¹⁰IAME INSERM U1138, Hôpital Bichat Claude Bernard, APHP, Paris, France. ¹¹Center for Clinical Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France. ¹²Centre d'Investigation Clinique, INSERM CIC 1403, Centre Hospitalo universitaire de Lille, Lille, France. ¹³Service des maladies infectieuses, Centre Hospitalo universitaire de Cayenne, Guyane, France.¹⁴Centre d'Investigation Clinique, INSERM CIC 1424, Centre Hospitalier de Cayenne, Cayenne, Guyane Française. ¹⁵Service Hôpital de jour Adulte, Centre Hospitalier de Cayenne, Guyane, France. ¹⁶Centre d'Investigation Clinique, INSERM CIC 1410, Centre Hospitalo universitaire de la Réunion, La Réunion, France. ¹⁷Centre d'Investigation Clinique, INSERM CIC 1410, CHU Reunion, Saint-Pierre, Reunion island. ¹⁸Centre d'Investigation Clinique, INSERM CIC 1410, Centre de Ressources Biologiques, Centre Hospitalo universitaire de la Réunion, La Réunion, France. ¹⁹Centre d'Investigation Clinique, INSERM CIC 1414, Centre Hospitalo universitaire de Rennes, Rennes, France. ²⁰Service des maladies infectieuses, Centre Hospitalo universitaire de Bordeaux, Bordeaux, France.²¹Centre d'Investigation Clinique, INSERM CIC 1415, CHRU Tours, Tours, France. ²²CRBT, Centre Hospitalo universitaire de Tours, Tours, France.²³Pole de Biologie Médicale, Centre Hospitalo universitaire de Tours, Tours, France. ²⁴Service des maladies infectieuses, Centre Hospitalo universitaire de Besançon, Besançon, France. ²⁵Service des maladies infectieuses, Centre d'investigation clinique, INSERM CIC1431, Centre Hospitalier Universitaire de Besançon, Besançon, France. ²⁶Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France. 27 Université de Lorraine, CHRU-Nancy and APEMAC, Infectious and tropical diseases, Nancy, France. ²⁸Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France. ²⁹INSERM CIC-EC 1433, Centre Hospitalo universitaire de Nancy, Nancy, France. ³⁰Centre de ressources Biologiques, Centre Hospitalo universitaire de Nancy, Nancy, France. ³¹Centre d'Investigation Clinique, INSERM CIC 1408, Centre Hospitalo universitaire de Saint Etienne, Saint Etienne, France. ³²Service des maladies infectieuses, Centre Hospitalo universitaire de Saint Etienne, Saint Etienne, France. ³³Service des maladies infectieuses, CRB⁴²-BTK, Centre Hospitalo Universitaire de Saint Etienne, Saint Etienne, France. ³⁴Pole Recherche Clinique, INSERM, Paris France. ³⁵IMEA Fondation Léon M'Ba, Paris, France. ³⁶INSERM Pôle Recherche Clinique, Paris, France.

Amsterdam UMC Covid-19 Biobank Investigators

Michiel van Agtmael², Anne Geke Algera¹, Brent Appelman², Frank van Baarle¹, Diane Bax³, Martijn Beudel⁴, Harm Jan Bogaard⁵, Marije Bomers², Peter Bonta⁵, Lieuwe Bos¹, Michela Botta¹, Justin de Brabander², Godelieve de Bree², Sanne de Bruin¹, David T.P. Buis¹, Marianna Bugiani⁵, Esther Bulle¹, Osoul Chouchane² Alex Cloherty³, Mirjam Dijkstra¹², Dave A. Dongelmans¹, Romein W.G. Dujardin¹, Paul Elbers¹, Lucas Fleuren¹,

Suzanne Geerlings² Theo Geijtenbeek³, Armand Girbes¹, Bram Goorhuis², Martin P. Grobusch², Florianne Hafkamp³, Laura Hagens¹, Jorg Hamann⁷, Vanessa Harris², Robert Hemke⁸, Sabine M. Hermans² Leo Heunks¹, Markus Hollmann⁶, Janneke Horn¹, Joppe W. Hovius², Menno D. de Jong⁹, Rutger Koning⁴, Endry H.T. Lim¹, Niels van Mourik¹, Jeaninne Nellen², Esther J. Nossent⁵, Frederique Paulus¹, Edgar Peters², Dan A.I. Pina-Fuentes⁴, Tom van der Poll², Bennedikt Preckel⁶, Jan M. Prins², Jorinde Raasveld¹, Tom Reijnders², Maurits C.F.J. de Rotte¹², Michiel Schinkel², Marcus J. Schultz¹, Femke A.P. Schrauwen¹², Alex Schuurmans¹⁰, Jaap Schuurmans¹, Kim Sigaloff¹, Marleen A. Slim^{1,2}, Patrick Smeele⁵, Marry Smit¹, Cornelis S. Stijnis², Willemke Stilma¹, Charlotte Teunissen¹¹, Patrick Thoral¹, Anissa M Tsonas¹, Pieter R. Tuinman², Marc van der Valk², Denise Veelo⁶, Carolien Volleman¹, Heder de Vries¹, Lonneke A. Vught^{1,2}, Michèle van Vugt², Dorien Wouters¹², A. H (Koos) Zwinderman¹³, Matthijs C. Brouwer⁴, W. Joost Wiersinga², Alexander P.J. Vlaar¹, Diederik van de Beek⁴.

¹Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands;
²Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands;
³Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; ⁴Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands;
⁵Department of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands;
⁶Department of Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands;
⁷Amsterdam UMC Biobank Core Facility, Amsterdam UMC, Amsterdam, The Netherlands;
⁸Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands;
⁹Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands;
¹⁰Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands; ¹¹Neurochemical Laboratory, Amsterdam UMC, Amsterdam, The Netherlands; ¹²Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands; ¹³Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands; ¹⁴Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands;

COVID Human Genetic Effort

Laurent Abel¹, Alessandro Aiuti², Saleh Al-Muhsen³, Fahd Al-Mulla⁴, Mark S. Anderson⁵, Evangelos Andreakos⁶, Andrés A. Arias⁷, Hagit Baris Feldman⁸, Alexandre Belot⁹, Catherine M. Biggs¹⁰, Dusan Bogunovic¹¹, Alexandre Bolze¹², Anastasiia Bondarenko¹³, Ahmed A. Bousfiha¹⁴, Petter Brodin¹⁵, Yenan Bryceson¹⁶, Carlos D. Bustamante¹⁷, Manish J. Butte¹⁸, Giorgio Casari¹⁹, Samya Chakravorty²⁰, John Christodoulou²¹, Antonio Condino-Neto²², Stefan N. Constantinescu²³, Megan A. Cooper²⁴, Clifton L. Dalgard²⁵, Murkesh Desai²⁶, Beth A. Drolet²⁷, Jamila El Baghdadi²⁸, Sara Espinosa-Padilla²⁹, Jacques Fellay³⁰, Carlos Flores³¹, José Luis Franco⁷, Antoine Froidure³², Peter K. Gregersen³³, Filomeen Haerynck³⁴, David Hagin³⁵, Rabih Halwani³⁶, Lennart Hammarström³⁷, James R. Heath³⁸, Sarah E. Henrickson³⁹, Elena W.Y. Hsieh⁴⁰, Eystein S. Husebye⁴¹, Kohsuke Imai⁴², Yuval Itan⁴³, Erich D. Jarvis⁴⁴, Timokratis Karamitros⁴⁵, Kai Kisand⁴⁶, Cheng-Lung Ku⁴⁷, Yu-Lung Lau⁴⁸, Yun Ling⁴⁹, Carrie L. Lucas⁵⁰, Tom Maniatis⁵¹, Davood Mansouri⁵², László Maródi⁵³, Isabelle Meyts⁵⁴, Joshua D. Milner⁵⁵, Kristina Mironska⁵⁶, Trine H. Mogensen⁵⁷, Tomohiro Morio⁵⁸, Lisa F.P. Ng⁵⁹, Luigi D. Notarangelo⁶⁰, Antonio Novelli⁶¹, Giuseppe Novelli⁶², Cliona O'Farrelly⁶³, Satoshi Okada⁶⁴, Tayfun Ozcelik⁶⁵, Qiang Pan-

Hammarström³⁷, Rebeca Perez de Diego⁶⁶, Anna M. Planas⁶⁷, Carolina Prando⁶⁸, Aurora Pujol⁶⁹, Lluis Quintana-Murci⁷⁰, Laurent Renia⁵⁹, Igor Resnick⁷¹, Carlos Rodríguez-Gallego⁷², Vanessa Sancho-Shimizu⁷³, Anna Sediva⁷⁴, Mikko R.J. Seppänen⁷⁵, Mohammed Shahrooei⁷⁶, Anna Shcherbina⁷⁷, Ondrej Slaby⁷⁸, Andrew L. Snow⁷⁹, Pere Soler-Palacín⁸⁰, András N. Spaan⁸¹, Ivan Tancevski⁸², Stuart G. Tangye⁸³, Ahmad Abou Tayoun⁸⁴, Sathishkumar Ramaswamy⁸⁴, Stuart E Turvey⁸⁵, K M Furkan Uddin⁸⁶, Mohammed J. Uddin⁸⁷, Diederik van de Beek⁸⁸, Donald C. Vinh⁸⁹, Horst von Bernuth⁹⁰, Mayana Zatz⁹¹, Pawel Zawadzki⁹², Helen C. Su⁶⁰, Jean-Laurent Casanova⁹³

¹INSERM U1163, University of Paris, Imagine Institute, Paris, France. ²San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, and Vita Salute San Raffaele University, Milan, Italy. ³Immunology Research Laboratory, Department of Pediatrics, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia. ⁴Dasman Diabetes Institute, Department of Genetics and Bioinformatics, Dasman, Kuwait. ⁵Diabetes Center, University of California San Francisco, San Francisco, CA, USA. ⁶Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. ⁷Group of Primary Immunodeficiencies, University of Antioquia UDEA, Medellin, Colombia. ⁸The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, ⁹Pediatric Nephrology, Rheumatology, Dermatology, HFME, Hospices Civils de Lyon, National Referee Centre RAISE, and INSERM U1111, Université de Lyon, Lyon, France. ¹⁰Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada ¹¹Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹²Helix, San Mateo, CA, USA. ¹³Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine. ¹⁴Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco. ¹⁵SciLifeLab, Department Of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden ¹⁶Department of Medicine. Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden. ¹⁷Stanford University, Stanford, CA, USA. ¹⁸Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA. ¹⁹Clinical Genomics, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University. Milan, Italy ²⁰Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA. ²¹Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Australia ²²Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. ²³de Duve Institute and Ludwig Cancer Research, Brussels, Belgium ²⁴Washington University School of Medicine, St. Louis, MO, USA. ²⁵Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. ²⁶Bai Jerbai Wadia Hospital for Children, Mumbai, India. ²⁷School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA. ²⁸Genetics Unit, Military Hospital Mohamed V, Rabat, Morocco. ²⁹Instituto Nacional de Pediatria (National Institute of Pediatrics), Mexico City,

Mexico. ³⁰School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. ³¹Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain, ³²Pulmonology Department, Cliniques Universitaires Saint-Luc ; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium. ³³Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA. ³⁴Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium. ³⁵The Genetics Institute Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. ³⁶Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates. ³⁷Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden, ³⁸Institute for Systems Biology, Seattle, WA, USA. ³⁹Department of Pediatrics, Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA ⁴⁰Departments of Pediatrics, Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, Colorado, USA ⁴¹ Department of Clinical Science and K.G. Jebsen Center for Auoimmune Diseases, University of Bergen, Bergen, Norway. ⁴²Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU) ⁴³Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 44Laboratory of Neurogenetics of Language and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA. ⁴⁵Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, Athens, Greece ⁴⁶Molecular Pathology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu Estonia. ⁴⁷Chang Gung University, Taoyuan County, Taiwan. ⁴⁸Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong, China. ⁴⁹Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. ⁵⁰Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. ⁵¹Columbia University Zuckerman Institute, New York, NY ⁵²Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ⁵³Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University. Budapest, Hungary. ⁵⁴Department of Pediatrics, University Hospitals Leuven; KU Leuven, Department of Microbiology, Immunology and Transplantation; Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium. 55 Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA. ⁵⁶University Clinic for Children's Diseases, Department of Pediatric Immunology, Medical Faculty, University "St.Cyril and

Methodij" Skopje, North Macedonia. ⁵⁷Department of Biomedicine, Aarhus University, Aarhus, Denmark ⁵⁸Tokyo Medical & Dental University Hospital, Tokyo, Japan. ⁵⁹A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore: Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore. ⁶⁰National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ⁶¹Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy. ⁶²Department of Biomedicine and Prevention. Tor Vergata University of Rome. Rome, Italy. ⁶³Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland. ⁶⁴Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. ⁶⁵Department of Molecular Biology and Genetics, Bilkent University, Bilkent, Ankara, Turkey. ⁶⁶Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. ⁶⁷IIBB-CSIC, IDIBAPS, Barcelona, Spain. ⁶⁸Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.⁶⁹Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain. ⁷⁰Human Evolutionary Genetics Unit, CNRS U2000, Institut Pasteur, Paris, France; Human Genomics and Evolution, Collège de France, Paris, France. ⁷¹University Hospital St. Marina, Varna, Bulgaria. ⁷²Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain ⁷³Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK. ⁷⁴Department of Immunology, Second Faculty of Medicine Charles University, V Uvalu, University Hospital in Motol, Prague, Czech Republic. ⁷⁵Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ⁷⁶Saeed Pathobiology and Genetics Lab, Tehran, Iran; Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium. ⁷⁷Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. ⁷⁸Central European Institute of Technology & Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. ⁷⁹Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. ⁸⁰Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. ⁸¹St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands ⁸²Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria. ⁸³Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia. ⁸⁴Al Jalila Children's Hospital, Dubai, UAE ⁸⁵BC Children's Hospital, The University

of British Columbia, Vancouver, Canada ⁸⁶Centre for Precision Therapeutics, Genetic and Genomic Medicine Centre, NeuroGen Children Healthcare, Dhaka, Bangladesh; Holy Family Red Crescent Medical College, Dhaka, Bangladesh 87College of Medicine. Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada ⁸⁸Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 89Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada; Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada. 90 Department of Pediatric Pneumology, Immunology and Intensive Care, Charité Universitätsmedizin, Berlin University Hospital Center, Berlin, Germany; Labor Berlin GmbH, Department of Immunology, Berlin, Germany; Berlin Institutes of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany. ⁹¹Biosciences Institute, University of São Paulo, São Paulo, Brazil. ⁹²Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Pozna, Poland. 93The Rockefeller University & Howard Hughes Medical Institute, New York, NY, USA: Necker Hospital for Sick Children & INSERM, Paris, France.

CONSTANCES cohort

Rachel Nadif¹, Marcel Goldberg², Anna Ozguler², Joseph Henny², Sylvie Lemonnier², Mireille Coeuret-Pellicer³, Stéphane Le Got², Marie Zins²

¹Université de Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, Inserm CESP, Villejuif, France. ²Université de Paris, Université Paris-Saclay, UVSQ, Inserm UMS11, Villejuif, France. ³Inserm U011 Constances cohort, Villejuif, France.

3C-Dijon Study

Christophe Tzourio¹, Stéphanie Debette², Carole Dufouil¹, Aïcha Soumaré¹, Morgane Lachaize², Nathalie Fievet³, Amandine Flaig³

¹University of Bordeaux; Bordeaux Population Health Center, INSERM U1219, Bordeaux, France. ²University of Bordeaux; Bordeaux Population Health Center, INSERM U1219; Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux, France. ³Laboratoire d'Analyses Génomiques - Centre de Ressources Biologiques; Institut Pasteur de Lille, Lille, France.

Cerba Health-Care

Fernando Martin¹

¹Cerba Health Care, Issy-les-Moulineaux, France.

Author Manuscript

Etablissement du Sang study group

Brigitte Bonneaudeau¹, Dorothée Cannet², Pierre Gallian³, Michel Jeanne⁴, Magali Perroquin⁴, Hind Hamzeh-Cognasse^{5, 6}

¹La Plaine St-Denis, France. ²Dijon, France. ³Marseille, France. ⁴Bordeaux, France. ⁵Saint-Etienne, France. ⁶ SAINBIOSE, INSERM, U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne.

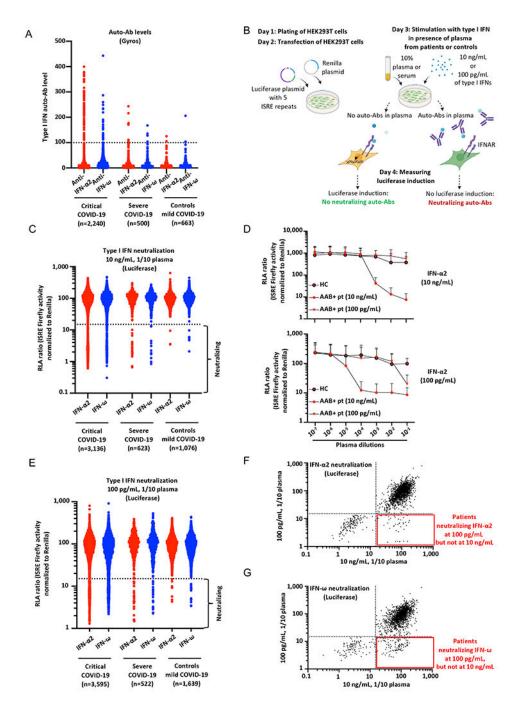
References and notes

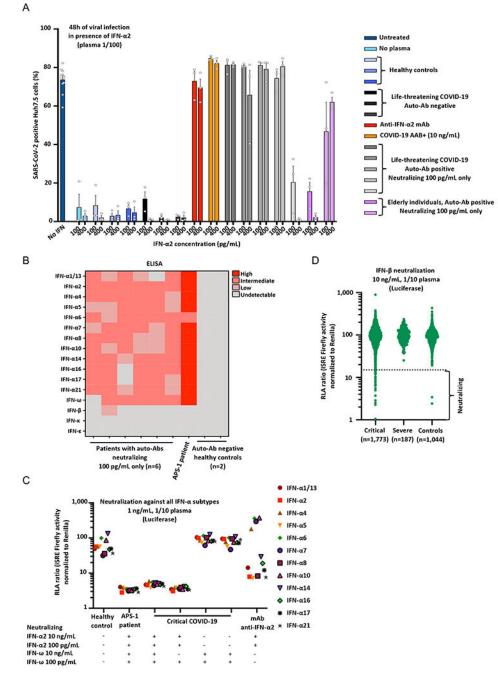
- Levin AT et al., Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol 35, 1123–1138 (2020). [PubMed: 33289900]
- 2. O'Driscoll M et al., Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021). [PubMed: 33137809]
- 3. Williamson EJ et al., Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020). [PubMed: 32640463]
- Brodin P, Immune determinants of COVID-19 disease presentation and severity. Nat Med 27, 28–33 (2021). [PubMed: 33442016]
- 5. Zhang Q et al. , Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med (N Y) 1, 14–20 (2020). [PubMed: 33363283]
- Casanova JL, Su HC, Effort CHG, A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell 181, 1194–1199 (2020). [PubMed: 32405102]
- 7. Zhang Q et al., Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, (2020).
- 8. Novelli G et al., COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genomics 15, 27 (2021). [PubMed: 33966626]
- 9. Bastard P et al., Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
- Lazear HM, Schoggins JW, Diamond MS, Shared and Distinct Functions of Type I and Type III Interferons. Immunity 50, 907–923 (2019). [PubMed: 30995506]
- 11. Koning R et al., Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med, (2021).
- 12. Troya J et al., Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J Clin Immunol, (2021).
- Vazquez SE et al., Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. J Clin Immunol, (2021).
- 14. Goncalves D et al., Antibodies against type-I Interferon: detection and association with severe clinical outcome in COVID-19 patients. medRxiv, (2021).
- 15. Wang EY et al., Diverse Functional Autoantibodies in Patients with COVID-19. Nature, (2021).
- van der Wijst MGP et al., Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. bioRxiv, (2021).
- 17. Levin M, Anti-interferon auto-antibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 3, e292 (2006). [PubMed: 16756392]
- Meager A et al., Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 3, e289 (2006). [PubMed: 16784312]
- Meyer S et al., AIRE-Deficient Patients Harbor Unique High-Affinity Disease-Ameliorating Autoantibodies. Cell 166, 582–595 (2016). [PubMed: 27426947]
- 20. Bastard P et al., Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med 218, (2021).

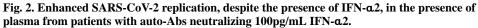
- 21. Meisel C et al., Mild COVID-19 despite autoantibodies against type I IFNs in autoimmune polyendocrine syndrome type 1. J Clin Invest 131, (2021).
- 22. Walter JE et al. , Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest 125, 4135–4148 (2015). [PubMed: 26457731]
- Rosenberg JM et al., Neutralizing Anti-Cytokine Autoantibodies Against Interferon-alpha in Immunodysregulation Polyendocrinopathy Enteropathy X-Linked. Front Immunol 9, 544 (2018). [PubMed: 29651287]
- Vallbracht A, Treuner J, Flehmig B, Joester KE, Niethammer D, Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 289, 496–497 (1981). [PubMed: 6162104]
- Rudick RA et al., Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 50, 1266–1272 (1998). [PubMed: 9595973]
- Panem S, Check IJ, Henriksen D, Vilcek J, Antibodies to alpha-interferon in a patient with systemic lupus erythematosus. J Immunol 129, 1–3 (1982). [PubMed: 6177744]
- 27. Gupta S et al., Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis Rheumatol 68, 1677–1687 (2016). [PubMed: 26815287]
- Shiono H et al., Spontaneous production of anti-IFN-alpha and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int Immunol 15, 903–913 (2003). [PubMed: 12882828]
- Bello-Rivero I et al., Characterization of the immunoreactivity of anti-interferon alpha antibodies in myasthenia gravis patients. Epitope mapping. J Autoimmun 23, 63–73 (2004). [PubMed: 15236754]
- Meager A et al., Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol 132, 128–136 (2003). [PubMed: 12653847]
- 31. Bastard P et al., Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med 218, (2021).
- 32. Hadjadj J et al. , Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020). [PubMed: 32661059]
- Trouillet-Assant S et al., Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol 146, 206–208 e202 (2020). [PubMed: 32360285]
- Honda N, Lindberg U, Andersson P, Hoffmann S, Takei H, Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. Clin Chem 51, 1955– 1961 (2005). [PubMed: 16081503]
- 35. Wijst M. G. P. v. d. et al., Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. Submitted (2021).
- Asano T, Boisson B, ..., Casanova J-L, X-linked recessive TLR7 deficiency in 1% of men under 60 years with life-threatening COVID-19. Science Immunology, (2021).
- 37. Bastard P et al., Interferon-beta Therapy in a Patient with Incontinentia Pigmenti and Autoantibodies against Type I IFNs Infected with SARS-CoV-2. J Clin Immunol, (2021).
- Monk PD et al., Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med 9, 196–206 (2021). [PubMed: 33189161]
- Hooper B, Whittingham S, Mathews JD, Mackay IR, Curnow DH, Autoimmunity in a rural community. Clin Exp Immunol 12, 79–87 (1972). [PubMed: 4563336]
- Shu S, Nisengard RJ, Hale WL, Beutner EH, Incidence and titers of antinuclear, antismooth muscle, and other autoantibodies in blood donors. J Lab Clin Med 86, 259–265 (1975). [PubMed: 1097549]
- 41. Potocka-Plazak K, Pituch-Noworolska A, Kocemba J, [Prevalence of autoantibodies in serum of healthy persons over 85 years of age]. Przegl Lek 52, 544–546 (1995). [PubMed: 8834631]

- 42. Parks CG et al., Reproductive and hormonal risk factors for antinuclear antibodies (ANA) in a representative sample of U.S. women. Cancer Epidemiol Biomarkers Prev 23, 2492–2502 (2014). [PubMed: 25086100]
- Myasoedova E, Davis J, Matteson EL, Crowson CS, Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985-2014. Ann Rheum Dis 79, 440– 444 (2020). [PubMed: 32066556]
- 44. Sanchez-Felipe L et al., A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 590, 320–325 (2021). [PubMed: 33260195]
- 45. Chen P et al., SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N Engl J Med 384, 229–237 (2021). [PubMed: 33113295]
- 46. Weinreich DM et al., REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 384, 238–251 (2021). [PubMed: 33332778]
- 47. de Prost N et al., Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J Clin Immunol, (2021).
- 48. Vinh DC, Abel L, Bastard P, JL C, Meyts I, Harnessing type I IFN immunity against SARS-CoV-2 with early administration of IFN-beta. JoCI In Press, (2021).
- 49. Firth D, Bias reduction of maximum likelihood estimates. Biometrika 80, 27-38, (1993).
- 50. Heinze G, Schemper M, A solution to the problem of separation in logistic regression. Stat Med 21, 2409–2419 (2002). [PubMed: 12210625]
- 51. Agresti A, Coull BA, Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician Vol. 52, No. 2, pp. 119–126 (1998).

Author Manuscript




Fig. 1. Neutralizing auto-Abs against IFN-a2 and/or IFN- ω in patients with life-threatening COVID-19.


(A) Gyros (high-throughput automated ELISA) results for auto-Abs against IFN- α 2 and/or IFN- ω in patients with critical COVID-19 (*N*=2,240), severe COVID-19 (*N*=500), or asymptomatic/mild SARS-CoV-2 infection (*N*=663). (B) Schematic representation of the neutralization assay developed in HEK293T cells, using a luciferase system. ISRE: interferon-sensitive response elements. (C) Results for the neutralization of 10ng/mL IFN- α 2 or IFN- ω in the presence of plasma 1/10 from patients with critical COVID-19

(N=3,136), severe COVID-19 (N=623), or controls with mild/asymptomatic infection (N=1,076). Relative luciferase activity is shown (ISRE dual luciferase activity, with normalization against Renilla luciferase activity) after stimulation with 10ng/mL IFN-a2 or IFN- ω in the presence of plasma 1/10. RLA: relative luciferase activity. (D) RLA after stimulation with IFN-a2 at a concentration of 10ng/mL or 100pg/mL, with various dilutions of plasma from a positive control (from 1/10 to 1/10⁷) neutralizing 10ng/mL of type I IFNs (AAB+ pt, 10ng/mL), a patient neutralizing 100pg/mL of type I IFNs but not 10ng/mL (AAB+ pt, 100pg/mL), and a healthy control (HC). AAB: auto-Ab. Pt: patient. (E) Neutralization of 100pg/mL IFN- α 2 or IFN- ω in the presence of plasma 1/10 from patients with critical COVID-19 (N=3,595), severe COVID-19 (N=522), or controls with asymptomatic/mild infection (N=1,639). (F) Plot showing luciferase induction after stimulation with 10 ng/mL or 100 pg/mL IFN-a2, in the presence of plasma from patients with critical COVID-19. Dotted lines indicate neutralizing levels, defined as induction levels below 15% of the mean value for controls tested the same day. Patients with antibodies neutralizing both 10ng/mL and 100pg/mL IFN-a2 are shown in the bottom left corner, whereas the patients in the bottom right corner had antibodies capable of neutralizing only 100pg/mL IFN-a2. (G) Plot showing luciferase induction after stimulation with 10ng/mL or 100pg/mL IFN-ω, for patients with critical COVID-19.

Author Manuscript

Author Manuscript

(A) SARS-CoV-2 replication in Huh-7.5 cells untreated (in dark blue), or treated with ~100 pg/mL or ~400 pg/mL IFN- α 2 in the presence of 1/100 plasma from healthy controls without auto-Abs (N=3, in blue), from patients with life-threatening COVID-19 but without auto-Abs against IFN- α 2 (N=3, in black), a commercial anti–IFN- α 2 antibody (mAb, in red); from a patient with life-threatening COVID-19 and auto-Abs neutralizing 10ng/mL IFN- α 2 in plasma 1/100 (COVID-19 AAB+, N=1, in orange), from patients with life-threatening COVID-19 and auto-Abs neutralizing 100pg/mL IFN- α 2 in plasma 1/100 (COVID-19 AAB+, N=1, in orange), from plasma 1/100

(*N*=5, in grey); elderly individuals with auto-Abs neutralizing 100pg/mL IFN-α.2 in plasma 1/100 (*N*=2, in purple). Each dot represents a technical replicate. All experiments were done in triplicate. (**B**) ELISA (enzyme-linked immunosorbent assay) for auto-Abs against the 13 IFN-α forms, IFN-ω, IFN-β, IFN-ε, and IFN-κ in patients with life-threatening COVID-19 and auto-Abs neutralizing 100pg/mL IFN-α2 (*N*=6), APS-1 patient with life-threatening COVID-19 and auto-Abs neutralizing 10 ng/mL IFN-α.2 and IFN-ω (*N*=1), and healthy controls (*N*=2). (**C**) RLA after stimulation with the all individual IFN-α at a concentration of 1ng/mL, with 1/10 plasma from a healthy control (negative control), an APS-1 patient (positive control), patients with life-threatening COVID-19 and neutralizing IFN-α.2 (**D**) Neutralization of 10ng/mL IFN-β in the presence of plasma 1/10 from patients with critical COVID-19 (*N*=1,773), severe COVID-19 (*N*=187), or asymptomatic/mild controls (*N*=1,044).

Author Manuscript

Author Manuscript

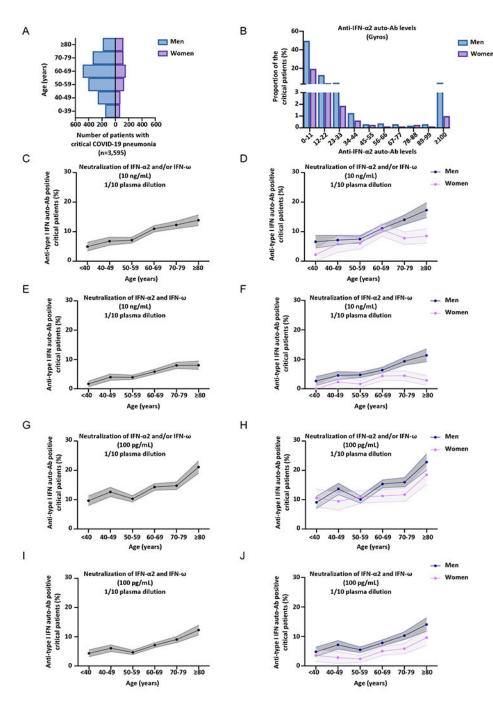


Fig. 3. Higher prevalence of neutralizing auto-Abs against type I IFNs in elderly patients with critical COVID-19.

(A) Bar plot of the age and sex distribution of the patients with life-threatening COVID-19 included in our expanded cohort (N=3,595). (B) Graph showing the anti-IFN- α 2 auto-Ab levels, assessed by Gyros, in patients with life-threatening COVID-19. Men and women are shown separately. The upper section of the Y-axis starts at 3%. (C-J) Proportion by decade of patients with critical COVID-19, and positive for neutralizing auto-Abs (in plasma 1/10) against (C) IFN- α 2 and/or IFN- ω , at 10ng/mL, for both sexes. (D) IFN- α 2 and/or

IFN- ω , at 10ng/mL, for men or women. (E) IFN- α 2 and IFN- ω , at 10ng/mL, for both sexes. (F) IFN- α 2 and IFN- ω , at 10ng/mL, for men or women. (G) IFN- α 2 and/or IFN- ω , at 100pg/mL, for both sexes. (H) IFN- α 2 and/or IFN- ω , at 100pg/mL, for men or women. (I) IFN- α 2 and IFN- ω , at 100pg/mL, for both sexes. (J) IFN- α 2 and IFN- ω , at 100pg/mL, for men or women.

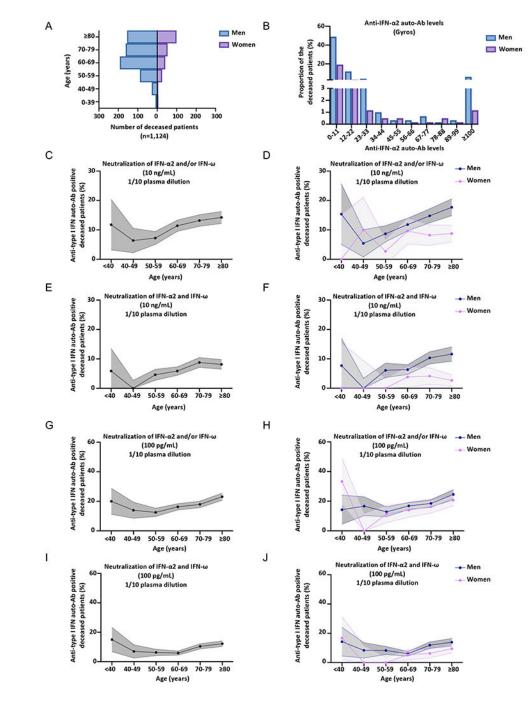


Fig. 4. Higher prevalence of neutralizing auto-Abs against type I IFNs in patients who died of COVID-19.

(A) Bar plot of the age and sex distribution of the patients who died of COVID-19 included in our cohort (N=1,124). (B) Graph showing the anti-IFN- α 2 auto-Ab levels, assessed by Gyros, in patients who died of COVID-19. Men or women are shown separately. The upper section of the Y-axis starts at 3%. (C-J) Proportion by decade of patients who died of COVID-19, and positive for neutralizing auto-Abs (in plasma 1/10) against (C) IFN- α 2 and/or IFN- ω , at 10ng/mL, for both sexes. (D) IFN- α 2 and/or IFN- ω , at 10ng/mL, for men

or women. (E) IFN- α 2 and IFN- ω , at 10ng/mL, for both sexes. (F) IFN- α 2 and IFN- ω , at 10ng/mL, for men or women. (G) IFN- α 2 and/or IFN- ω , at 100pg/mL, for both sexes. (H) IFN- α 2 and/or IFN- ω , at 100pg/mL, for men or women. (I) IFN- α 2 and IFN- ω , at 100pg/mL, for both sexes. (J) IFN- α 2 and IFN- ω , at 100pg/mL, for men or women.

Author Manuscript

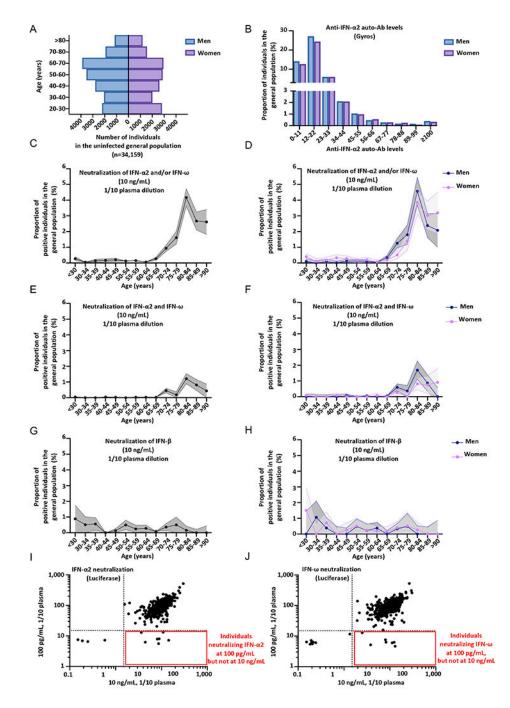


Fig. 5. Neutralizing auto-Abs against IFN-a2 and/or IFN- ω at 10ng/mL are more prevalent in the elderly, in the general population.

(A) Bar plot of the age and sex distribution of individuals from the general population (N=34,159). (B) Graph showing the IFN- α 2 auto-Ab levels, assessed by Gyros, in individuals from the general population. Men or women are shown separately. The upper section of the Y-axis starts at 3%. (C-H) Proportion by 5 years of individuals from the general population, and positive for neutralizing auto-Abs (in plasma 1/10) against (C) IFN- α 2 and/or IFN- ω , at 10ng/mL, for both sexes. (D) IFN- α 2 and/or IFN- ω , at 10ng/mL,

for men or women. (E) IFN- α 2 and IFN- ω , at 10ng/mL, for both sexes. (F) IFN- α 2 and IFN- ω , at 10ng/mL, for men or women. (G) IFN- β , at 10ng/mL, for both sexes. (H) IFN- β , at 10ng/mL or men or women. (I) Plot showing luciferase induction after stimulation with 10ng/mL or 100pg/mL IFN- α 2, in the presence of plasma from individuals from the general population. Dotted lines indicate neutralizing levels, defined as induction levels below 15% of the mean value for controls tested the same day. Individuals with antibodies neutralizing both 10ng/mL and 100pg/mL IFN- α 2 are shown in the bottom left corner, whereas the individuals in the bottom right corner had antibodies capable of neutralizing only 100pg/mL IFN- α 2. (J) Plot showing luciferase induction after stimulation with 10ng/mL or 100pg/mL IFN- ω , for individuals from the general population.

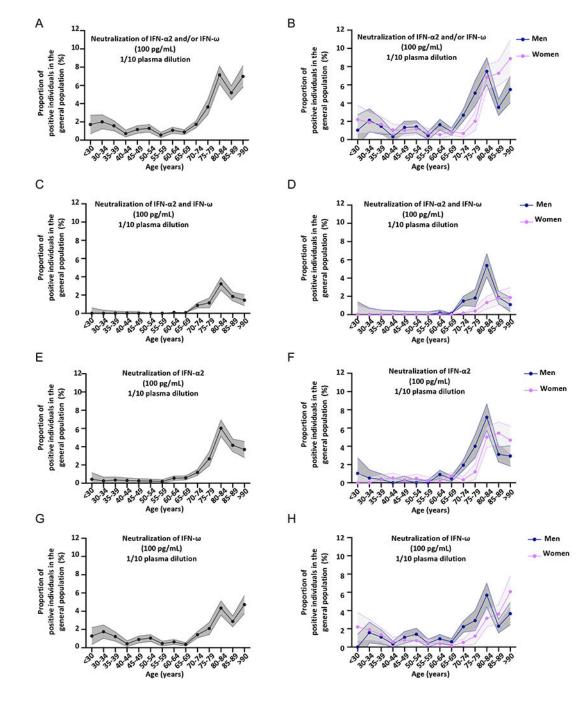


Fig. 6. Neutralizing auto-Abs against IFN-a2 and/or IFN- ω at 100pg/mL are more prevalent in the elderly, in the general population.

(A-H) Proportion, binned every 5 years, of individuals from the general population, and positive for neutralizing auto-Abs (in plasma 1/10) against (A) IFN- α 2 and/or IFN- ω , at 100pg/mL, for both sexes. (B) IFN- α 2 and/or IFN- ω , at 100pg/mL, for men or women. (C) IFN- α 2 and IFN- ω , at 100pg/mL, for both sexes. (D) IFN- α 2 and IFN- ω , at 100pg/mL, for men or women. (E) IFN- α 2, at 100pg/mL, for both sexes. (F) IFN- α 2, at 100pg/mL, for

men or women. (G) IFN- ω , at 100pg/mL, for both sexes. (H) IFN- ω , at 100pg/mL, for men or women.

Table 1:

Risk of critical COVID-19 pneumonia for subjects carrying auto-Abs to specific sets of type I IFNs, when compared with that of asymptomatic/mild infection, adjusted on age and sex. #.

Odds ratios (OR) and *P*-values were estimated by means of Firth's bias-corrected logistic regression. The numbers and proportions of subjects with critical COVID-19 pneumonia (patients) and asymptomatic or mild infection (controls) are shown in Figures 1 to 3. Two combinations are not shown due to insufficient number of individuals: anti-IFN- β (10ng/mL) and anti-IFN- α 2 (100pg/mL) auto-Abs only; anti-IFN- β (10ng/mL) and anti-IFN- ω (100pg/mL) auto-Abs only.

Anti-type I IFN auto-Ab positive (amount of type I IFN neutralized, in plasma diluted 1/10)	Proportion of critical patients with neutralizing auto-Abs	OR [95% CI]	P-value
anti-IFN- α 2 and anti-IFN- ω auto-Abs (10 ng/mL)	5.6%	67 [4-1109]	7.8x10 ⁻¹³
anti-IFN- α 2 and/or anti-IFN- ω auto-Abs (10 ng/mL)	9.8%	17 [7-45]	< 10 ⁻¹³
anti-IFN-a2 auto-Abs (10 ng/mL)	9%	45 [9-225]	< 10 ⁻¹³
anti-IFN-a2 auto-Abs only (10 ng/mL)	3.4%	21 [4-107]	1.8x10 ⁻⁰⁹
anti-IFN-ω auto-Abs (10 ng/mL)	6.4%	13 [4-38]	1.4x10 ⁻¹²
anti-IFN-w auto-Abs only (10 ng/mL)	0.8%	3 [0.9-10]	0.057
anti-IFN-α2 and anti-IFN-ω auto-Abs (100 pg/mL)	7.1%	54 [11-275]	< 10 ⁻¹³
anti-IFN-α2 and/or anti-IFN-ω auto-Abs (100 pg/mL)	13.6%	13 [8-21]	< 10 ⁻¹³
anti-IFN-a2 auto-Abs (100 pg/mL)	10%	23 [10-55]	< 10 ⁻¹³
anti-IFN-a2 auto-Abs only (100 pg/mL)	2.9%	10 [3-26]	2.8x10 ⁻⁰⁹
anti-IFN-ω auto-Abs (100 pg/mL)	10.7%	13 [7-23]	< 10 ⁻¹³
anti-IFN-ω auto-Abs only (100 pg/mL)	3.6%	6 [3-12]	3.9x10 ⁻¹⁰
anti-IFN-β auto-Abs (10 ng/mL)	1.3%	8 [2-36]	1.7x10 ⁻³
anti-IFN-β auto-Abs only (10 ng/mL)	0.96%	5 [1-25]	0.043
anti-IFN- β auto-Abs (10ng/mL) and, anti-IFN- $\alpha 2$ and/or anti-IFN- ω auto-Abs (100 $pg/mL)$	0.34%	16 [0.5-497]	0.018
anti-IFN- β (10 ng/mL) and, anti-IFN- $\alpha 2$ and anti-IFN- ω auto-Abs (100 pg/mL)	0.28%	16 [0.5-502]	0.019

Author Manuscript