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Abstract 

Spatially Confined Reactions: 

Stochastic Effects in Signaling Reactions at the Membrane 

by 

Albert Alexander Lee 

Doctor of Philosophy in Molecular and Cell Biology 

University of California, Berkeley 

Professor Jay T. Groves, Co-Chair 

Professor John Kuriyan, Co-Chair 

 

Signaling reactions often originate at the membrane, where competing membrane reactions decide if 
and how the signal will be passed on to downstream signaling cascades. In some cases, membrane 
reactions can even lead to polarization of signaling molecules that convey spatial information to 
downstream pathways. Due to the microscopic size of cellular structures, reactions at the membrane are 
confined and limited to low molecular copy numbers. Signaling decisions are therefore subject to strong 
stochastic effects. Understanding how membrane reactions can be influenced by stochastic effects is an 
imperative step toward deciphering the molecular logic of cellular signaling. However, the space of 
possibilities remains sparsely mapped. In this dissertation, I aim to expand our understanding of this 
topic by studying two-dimensional confinement effects on phosphatidylinositol signaling and small 
GTPase signaling reactions, both of which are ubiquitous membrane signaling mediators. Reducing the 
size of the membrane can lead to two distinct types of stochastic effects: size-dependent reaction speed 
and stochastic bistability. The underlying physical mechanism is intrinsically stochastic and cannot be 
predicted by classical deterministic kinetics. The biochemical requirements and potential cellular 
regulation of these stochastic effects are further discussed. In membranes with asymmetric shapes, the 
difference in local stochastic effects that the reaction experiences could emerge as stochastic 
polarization. This stochastic polarization has no analog in continuum reaction-diffusion systems and 
exhibits a striking ability to polarize in a consistent direction when constrained to cellular shapes. The 
requirements of size-dependent reaction speed, stochastic bistability, and stochastic polarization are 
very basic, and largely met in cellular environments, such that many membrane signaling reactions may 
be subject to these effects. Overall, the discussions here provide a basis to understand how the size and 
shape of the membrane can be a regulating factor of biochemical reactions and further influence living 
phenomena. 
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Chapter 1 
INTRODUCTION 
 

ipid bilayer membranes are the barrier between living and non-living systems(1). In addition, 
eukaryotic membrane structures also segregate complex biochemical reactions with diverse roles 
into specialized compartments(1). As such, the membrane is the communication interface and many 
signaling reactions are thus initiated at the membrane(1, 2). Here, signals can undergo initial 

processing and be further distinguished to determine if the signal will continue on to elicit downstream 
responses. To understand how cells make logical decisions corresponding to received stimuli, it is 
imperative to study how signals are processed at the membrane interface. Fundamentally, the signal 
processing logic at the membrane is encoded by a network of biochemical reactions, often with competing 
activity. Nucleotide exchange and nucleotide hydrolysis in GTPase signaling(3), phosphorylation and 
dephosphorylation of tyrosines in EGFR signaling(4), and interconversion of phosphatidylinositol lipids(5) 
are all examples. According to each stimulus, the properties of these reactions can be fine-tuned to yield 
signaling molecules for appropriate decisions. In some cases, the reactions at the membrane can even 
establish patterns of signaling molecules that locate the signaling activity spatially.  

 

Although traditionally considered a passive reaction platform, the physical features of the membrane play 
a critical role in regulating signaling. For example, membrane curvature, membrane thickness and 
membrane tension can all alter signaling activity at the membrane. A more basic physical parameter of the 
membrane is its surface area. The stochasticity of the reaction is inevitably coupled with membrane size. It 
used to be thought that stochastic effects provided only fluctuations and modest refinements to the behaviors 
predicted by deterministic kinetics. Recently however, it was reported that the surface area of the membrane 
can completely change the reaction outcome in a model lipid kinase-phosphatase competition reaction(6). 
In cells, membrane reactions span a range of spatial dimensions, from the plasma membrane with a scale 
in microns to vesicles on the nanometer scale(1). Moreover, the cytoskeleton, membrane proteins, and 
membrane topographical features can all create dynamic physical barriers that can locally confine reactions 
on cellular membranes(7–9). To understand how cellular signaling is regulated in different subcellular 
compartments, it is necessary to study the effect of membrane size on the signaling reactions at the 
membrane. 

 

In this dissertation, I focus on discussing how stochastic effects originating from spatially confined 
membrane reactions can influence the signaling outcome. All conclusions are based on empirical results 
from in vitro reconstitution experiments. At the same time, an emphasis is made on rigorously validating 
the underlying physical mechanism using stochastic modeling. In Chapter 2, I will begin by describing a 
molecular mechanism, based on the discrete nature of low molecular copy reactions, that causes the average 
enzymatic catalytic rate at the membrane to exhibit reaction size dependency. The mechanism is universal 
across many types of enzymes, including kinases, phosphatases, and guanine nucleotide exchange factors. 

L 
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Subsequently, I will discuss the potential signaling consequence of such an effect, where the final signaling 
product in competitive enzymatic reaction cycles can depend on the size of the reaction system. In Chapter 
3, I will describe another type of molecular mechanism that allows a competitive enzymatic reaction to 
exhibit switch-like responses only when the reaction is confined to a microscopic scale. This is commonly 
described as stochastic bistability in signaling(10, 11). However, to this date stochastic bistability in 
signaling remains primarily a theoretical concept that has little experimental evidence to support it(12). 
Here in, I show clear experimental results demonstrating stochastic bistability in Ras signaling reactions at 
the membrane. A stochastic model was used to further reveal the physical mechanism behind the stochastic 
bistability. At the end of the chapter, I detail examples of how this stochastic switch-like response in Ras 
signaling can be regulated by the cell. Finally, Chapter 4 describes how the stochastic effects identified in 
Chapter 2 and Chapter 3 can lead to polarization in membrane reactions. The mechanisms are rooted in 
stochasticity and are different from the well-known Turing pattern(13). A distinct feature of these stochastic 
polarization activities is that the direction of the polarization can be determined by the shape of the 
membrane. Together, this dissertation aims to provide a physical understanding of membrane signaling 
logic in a stochastic environment and firmly establish membrane size as a non-negligible factor in cellular 
signaling.  
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Chapter 2 
STOCHASTICITY AND POSITIVE FEEDBACK 
ENABLE ENZYME KINETICS AT THE 
MEMBRANE TO SENSE REACTION SIZE 
 
(This Chapter is adapted with permission from A. A. Lee, W. Y. C. Huang, S. D. Hansen, N. H. Kim, S. Alvarez, J. T. Groves, 
Stochasticity and positive feedback enable enzyme kinetics at the membrane to sense reaction size. Proc. Natl. Acad. Sci. 118, 
e2103626118 (2021).) 

 

ere we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as 
well as Ras activating proteins, acting on their respective membrane surface substrates.  The 
results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong 
dependence on the size of the reaction system—in this case membrane area.  Experimental 

measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy 
numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as 
positive feedback.  For the competitive enzymatic cycles studied here, the final product—consisting of a 
specific lipid composition or Ras activity state—depends on the size of the reaction system.  Furthermore, 
we demonstrate how these reaction size dependencies can be controlled by engineering feedback 
mechanisms into the enzymes. 

 

2.1 Introduction 
 

Enzyme kinetic reactions are commonly described in terms of deterministic rate equations.  Within this 
type of mathematical analysis, reactant and product concentrations are treated as continuous variables and 
the state of a system at any point in time is a deterministic function of the starting conditions.  Even complex 
behaviors including bistability(14), sensitive dependence on initial conditions (e.g. chaos)(15), and 
spatiotemporal pattern formation (e.g. Turing instabilities)(16) can all be described with deterministic rate 
equations.  It is computationally efficient to simulate deterministic chemical kinetics and this method is 
widely used in biological sciences.  For example, more than 100 papers have been published in the last five 
years analyzing Ras activation using deterministic chemical rate equations, with many of these making 
predictions about disease mechanisms and therapeutic approaches(17, 18).  These mathematical methods, 
however, smooth over the fact that molecules and molecular reactions are intrinsically discrete.  Moreover, 
the small size of cellular structures often limits physiological biochemical reactions to low molecular copy 
numbers, where the effects of discreteness and stochasticity become prominent. 

 

H 
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How spatial confinement and low molecular copy numbers within cells and organelles might affect 
biochemical reactions has attracted significant interest over the years(19–23).  However, the space of 
possibilities remains sparsely mapped and surprising results continue to emerge.  For example, stochastic 
fluctuations can increase sensitivity in cellular signaling reactions(24) and they play an essential role in the 
bacterial chemotaxis molecular logic circuit(25).  They can also induce (stochastic) bistability in systems 
that lack this property according to continuous kinetic rate equations(26).  Recent experimental 
observations of a system of competing lipid kinases and phosphatases, driving interconversion between 
PI(4)P and PI(4,5)P2 in a lipid membrane, have revealed other types of macroscopic divergence from 
continuum kinetic predictions(6).  Specifically, this system was observed to deterministically reach a PI(4)P 
dominated state in large reaction systems.  Under spatial confinement, however, the same system could 
exhibit stochastic bistability or even deterministically reach a PI(4,5)P2 dominated state, depending only on 
the size of the reaction environment. Stochastic effects led to a deterministic alteration in the average 
behavior, not just an increase in variation. Although stochastic kinetic modeling was able to reproduce this 
basic behavior, the underlying physical mechanism remains obscure.  This stochastic geometry sensing 
mechanism also produces more elaborate pattern formations, including polarization, under different types 
of spatial confinement that exhibit marked similarity with living biological systems. 

 

A distinctive feature of the competing lipid kinase-phosphatase system is that the soluble enzymes act on 
substrates restricted to the membrane surface.  This basic reaction configuration is shared by broad classes 
of signal transduction enzymes in biology, including numerous protein or lipid kinases and phosphatases 
as well as GTPase-activating proteins (GAPs) and Guanine nucleotide exchange factors (GEFs)(3, 27–29). 
For these systems, the enzyme must first contact the membrane, then find the substrate and catalyze a two-
dimensional reaction at the membrane interface. This additional step offers many mechanisms for 
regulatory control of signaling reactions(30–32).  For example, positive feedback can be easily installed on 
enzymes by incorporating a product binding site, which localizes the enzyme on the membrane, without 
the need for structural allosteric mechanisms. Other physical properties such as curvature and membrane 
tension can alter the enzyme activity by changing the partitioning of enzymes from the solution to the 
reaction surface(33, 34).  Additionally, the cellular cytoskeleton and membrane topographical features can 
create dynamic physical barriers and confinement zones on cellular membranes(7–9).  While these 
membrane structures are all exposed to the same cytosolic solution, the differing sizes of their effective 
reaction environments offer another regulatory mechanism if signaling reactions exhibit scale sensitivity.   

 
Here we examine a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, 
acting on their respective membrane surface substrates.  Using micropatterned supported lipid membranes, 
liposomes, and membrane-coated microbeads, we perform detailed kinetic analyses of these enzymes as a 
function of reaction system size.  Results reveal that the mean catalytic rate of such interfacial enzymes can 
exhibit a strong dependence on the physical area of the membrane, which sets the copy number of enzymes 
within an interactive system.  We find that the size-dependence of the reaction rate is caused by positive 
feedback in the enzymatic mechanism.  Furthermore, we demonstrate that size-dependency can be deleted 
from or engineered into enzymes by deleting or adding specific lipid-binding domains.  A simple analytical 
model, as well as more detailed stochastic kinetic simulations, reveal how size-dependency of the reaction 
rate emerges from a coupling between positive feedback, nonequilibrium aspects of the enzymatic reaction 
cycle, and intrinsic stochasticity. 

 

These basic features that lead to the size-dependency of the enzymatic reaction rate are extremely common 
among native biological signaling enzymes.  We report here that Phosphatase and Tensin Homolog (PTEN), 
Phosphatidylinositol-4-Phosphate 5-Kinase (PIP5K), as well as the Ras activator Son of Sevenless (SOS) 
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all exhibit size-dependent reaction rates. Furthermore, when coupled in a competitive enzymatic cycle, 
subtle differences in size sensitivity of the competing reactions can completely change the final output in a 
system size-dependent manner.  While these experiments are done in reconstituted systems, we suggest that 
the underlying physical phenomenon of size-dependent enzymatic reaction rate is unavoidable in living 
cells.   

 

2.2 PTEN exhibits reaction system size-dependent catalytic 
activity 

 

Phosphatase and Tensin Homolog (PTEN) is a well-studied and important lipid-modifying enzyme(35, 36) 
that catalyzes the dephosphorylation of PI(3,4,5)P3 into PI(4,5)P2 and inorganic phosphate.  PTEN is a 
soluble enzyme, which must encounter the membrane for its catalytic reaction (Fig. 2-1A)(37).  PTEN 
contains an N-terminal PI(4,5)P2-binding domain (PBD), which creates a positive feedback loop in which 
PTEN catalyzed formation of PI(4,5)P2 on the membrane drives the recruitment of more PTEN to the 
membrane(36).    Membrane localization can also lead to processivity(38, 39), in which multiple catalytic 
events occur during a single membrane binding dwell cycle.   

 

We initially investigate PTEN catalytic activity on liposomes of different sizes.  Liposomes consisting 
primarily of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) with 2% molar fraction of PI(3,4,5)P3 were 
prepared by extrusion through polymer filter membranes of either 30 nm or 1000 nm pore size. While 
extrusion yields broadly dispersed liposome sizes, extrusion through 30 nm pores produces distinctly 
smaller liposomes than obtained from the 1000 nm pore size(40).  For the liposome assays, PTEN catalytic 
activity was monitored by detecting released inorganic phosphates from the reaction using a phosphate 
binding protein labeled with the environmentally sensitive fluorescence probe MDCC (N-[2-(1-
maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide), which increases fluorescence yield upon 
binding to inorganic phosphate(41). Kinetic traces of PTEN activity reveal that the reaction is slower in 30 
nm extruded liposomes compared to 1000 nm extruded liposomes (Fig. S2-1). By fixing both the PTEN 
solution concentration and the PI(3,4,5)P3 surface concentration in the membrane, but varying the total 
amount of liposomes, the reaction velocity was mapped to overall substrate concentration (Fig. 2-1B). The 
apparent enzyme catalytic efficiency can be obtained by fitting the resultant reaction velocity traces to a 
Michealis-Menten kinetic analysis (see Materials and Methods). The catalytic efficiency (kcat/KM) of PTEN 
is increased by 50% when reacting on 1000 nm pore extruded liposomes compared with liposomes obtained 
from 30 nm pore extrusion. The same size-dependent effect was also evident on membrane-coated 
microbeads(42), where PI(4,5)P2 production was monitored by imaging the binding of the fluorescently 
labeled PH domain of phospholipase C δ (PLCδ) to PI(4,5)P2 using confocal microscopy, normalized by 
the fluorescence from a lipid-linked Texas Red fluorophore (Texas Red 1,2-Dihexadecanoyl-sn-Glycero-
3-Phosphoethanolamine) present in the membrane at a fixed density (0.5%) (Fig. 2-1C).  Under these 
experimental conditions (both here on microbeads and in the supported membrane corral arrays described 
below), generally less than 0.1% of PI(4,5)P2 lipids are bound by the fluorescent probe at any given time(6).  
After PTEN is added, PI(4,5)P2 is produced at faster rates in membrane-coated microbeads with a larger 
diameter (Fig. 2-1D and 2-1E). The time to 95% completeness of reaction is 80% longer in 2.34 μm beads 
compared to 6.89 μm beads. 
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Figure 2-1. in vitro PTEN Phosphatase Reaction in Different Sizes of Membrane. (A) Kinetic scheme of a lipid-modifying 
enzyme performing reaction on the membrane surface. The enzyme can dynamically bind and unbind to the membrane surface. 
Once bound to the membrane, the enzyme can access the substrate at the membrane and catalyze product formation following the 
Michaelis–Menten kinetics. (B) Turnover of PI(3,4,5)P3 to PI(4,5)P2 by 10 nM PTEN was measured in various total solution 
concentrations of PI(3,4,5)P3 at a fixed 2% surface concentrations of PI(3,4,5)P3 on either 30 nm or 1000 nm diameter liposomes. 
Fitting the data to the Michaelis–Menten equation reveals kcat/KM values shown on the graph. (C) Schematic of the membrane-
coated microbeads experiment setup. Microbeads coated with supported lipid bilayer with 96.5% of DOPC, 2% PI(3,4,5)P3, 1% 
Biotin-PE, and 0.5% TR-DHPE were tethered to glass surface functionalized with Biotin-BSA using neutravidin. PTEN catalyzes 
the conversion of PI(3,4,5)P3 to PI(4,5)P2. Production of PI(4,5)P2 is monitored with Alexa488-PLCδPH. (D) Time sequence of 
images tracking 200 nM PTEN reaction on 6.89 μm beads and 2.34 μm beads. (E) Average kinetic traces of normalized PI(3,4,5)P3 
to PI(4,5)P2 conversion by 200 nM PTEN plotted against time (n=6). The inset shows time to 95% completeness of the reactions 
in 6.89 μm beads and 2.34 μm beads. 

 

Changing the diameter of liposomes or microbeads not only changes membrane surface area, but also 
curvature. Since membrane curvature can significantly change the reaction rate of some enzymes(21), we 
implemented the PTEN activity assays in a planar micropatterned supported lipid bilayer (SLB) format (Fig. 
2-2A)(43).  Grids of chromium metal lines, prefabricated onto glass coverslips, create barriers to supported 
membrane formation and effectively confine the membrane into two-dimensional corrals with micrometer-
scale dimensions(39, 44).  Lipids and membrane-associated proteins diffuse freely within each confined 
corral but cannot cross the barriers.  However, all corrals are in contact with the same bulk solution and the 
low vertical height of the metal lines (~9 nm in these experiments) has essentially no effect on the diffusion 
and flow of molecules in the bulk solution phase.  The SLB experimental system provides superior sub-
second time resolution and control of reaction size homogeneity compared to the liposome and bead 
assays(6). Moreover, the system is completely planar, leaving the surface area and shape to be the only 
geometrical variables.  

 

The catalytic activity of PTEN was observed in the unrestricted free lipid bilayer, with a scale on the order 
of millimeters, and in 5 μm × 5 μm corralled membrane arrays.  Confinement grids were patterned side-by-
side with the unrestricted regions, enabling simultaneous monitoring in both regions under identical 
reaction conditions (Fig. 2-2B).  PTEN and the lipid sensor were introduced into the system from the 
solution flowed into the flow cell. All regions of the supported membrane are in contact with the exact same 
solution above. Under these conditions, restricting the membrane surface reaction size from the free lipid 
bilayer to 5 μm × 5 μm corrals significantly slows down the mean reaction rate. This is evident in the 
fluorescence intensity plots — mapping PI(4,5)P2 membrane concentration—illustrated in Fig. 2-2B. At 4 
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min into the reaction, the bulk membrane area is nearly completely converted to PI(4,5)P2 while each of the 
corralled membrane regions lags significantly. This kinetic experiment is quantified in Fig. 2-2C where the 
mean normalized PI(4,5)P2 density is plotted vs. time for corralled and free membrane regions (replicates 
shown in Fig. S2-2A). The maximum difference in normalized reaction progress (Δx) across the reaction 
period can reach more than 0.2. Since all membrane regions in this experiment are entirely flat, membrane 
curvature is ruled out as a cause of the differential enzyme efficiency. Membrane surface area alone is 
sufficient to cause the difference in reaction speed. As will be discussed in further detail later, this size-
dependent enzymatic reaction speed is fundamentally the result of stochastic effects in enzyme copy 
number on the membrane surface.  However, it is important to note that observed reaction rates do not vary 
substantially from corral to corral in the 5 µm x 5 µm array.  Each corral confined reaction is consistently 
slower than the unrestricted membrane (Fig. S2-2A). 

 

Size-dependent reaction speed is a property of the enzyme and is not universal.  Similar experiments on 
another lipid phosphatase, phosphatidylinositol 5’-phosphatase domain of Lowe Oculocerebrorenal 
Syndrome Protein (OCRLPD), do not exhibit reaction size-dependent effects. Kinetic traces of OCRLPD 
catalyzed reactions on the bulk membrane and in 5 µm x 5 µm corral arrays are essentially identical, 
exhibiting Δx values below 0.05 throughout the reaction (Fig. 2-2D, 2-2E and S2-2B). 
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Figure 2-2. Kinetics of Enzymes on Confined Planar Lipid Bilayer. (A) Scheme of the supported lipid bilayer experimental 
setup. Nanofabricated chromium barriers partition a supported bilayer into micrometer-scale corrals, each containing identical 
composition. When the enzyme converts substrates to products at the membrane, the products can be monitored with a fluorescently 
labeled lipid binding domain that binds to the product. (B) Time sequence of images of 100 nM PTEN reaction on membrane 
containing 2% PI(3,4,5)P3 monitored by 20nM Alexa488-PLCδPH. Reactions in 5μm x 5μm membrane corrals were imaged 
alongside with reaction in free bilayer in the same experiment. (C) Dephosphorylation reaction of PI(3,4,5)P3 to PI(4,5)P2 by 100 
nM PTEN in 5μm × 5μm of membrane corrals and free bilayer plotted together. Top graph: The difference between the reaction 
trajectory in the free bilayer and 5μm × 5μm membrane corrals, Δx, at each time point. The inset shows time to 95% completeness 
of the reactions in free bilayer and 5μm × 5μm membrane corrals. (D) Time sequence of images of 50 nM OCRLPD reaction in 
membrane containing 4% PI(4,5)P2 monitored by 20nM Cy3-DrrA. (E) Dephosphorylation reaction of PI(4,5)P2 to PI(4)P by 50 
nM OCRLPD in 5μm × 5μm membrane corrals and free bilayer. 
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2.3 Positive feedback enables size-dependent catalytic activity 
 

We characterize the mechanistic origin of PTEN reaction size sensitivity by first removing its positive 
feedback.  In the PTEN domain structure, the PBD domain is followed by phosphatase, C2, and C-terminal 
domains(35).  We truncate the PBD domain to construct the PTENΔPBD variant, which lacks the PI(4,5)P2 
membrane binding-mediated positive feedback loop (Fig. 2-3A).  The activity of PTENΔPBD is significantly 
compromised and no activity was observable on 2% PI(3,4,5)P3 lipid membranes (Fig. S2-3).  Increasing 
the overall membrane negative charge by adding 5% PS, in addition to the 2% PI(3,4,5)P3, facilitated the 
reaction and revealed that PTENΔPBD does not exhibit size dependency (Fig. 2-3A and S2-2C). Control 
experiments including PS with full-length PTEN exhibit the same size-dependency observed on 2% 
PI(3,4,5)P3 membranes, confirming that PS is not responsible for inhibiting reaction size sensitivity  (Fig. 
S2-4). The PTEN PBD domain is essential for its reaction size-dependent catalytic activity. 

 

The apparent primary function of the PTEN PBD domain is to mediate membrane recruitment by binding 
PI(4,5)P2, providing a positive feedback loop.  However, it remains unclear if the inability of PTENΔPBD to 
exhibit size-dependent activity is solely caused by loss of positive feedback or other unknown functions of 
the PBD. To investigate this, we constructed a reaction system with native PTEN, but in which the PI(4,5)P2 
positive feedback loop is eliminated. PTEN phosphatase activity is promiscuous and it readily catalyzes 3’-
dephosphorylation of not only PI(3,4,5)P3, but also other phosphatidylinositols containing 3’-phosphate, 
such as PI(3,4)P2 to PI(4)P(45).  PBD binding, however, is quite specific and only PI(4,5)P2 strongly 
activates PTEN while other phosphatidylinositols, including PI(3,4)P2, either do not activate or only weekly 
activate PTEN(45, 46). Therefore, without any PI(4,5)P2-mediated activation, PTEN catalyzed 3’-
dephosphorylation of PI(3,4)P2 to PI(4)P cannot exhibit strong positive feedback.  As anticipated, kinetic 
analysis of PTEN catalyzed PI(3,4)P2 to PI(4)P reactions in the bulk membrane and in 5 µm x 5 µm corral 
arrays also do not exhibit any detectable size-dependent catalytic activity (Fig. 2-3B and S2-2D).  

 

By engineering a PI(4)P binding domain into PTEN, we construct a new variant with positive feedback in 
the PI(3,4)P2 to PI(4)P reaction.  DrrA is a GEF of Rab1 that contains a PI4P binding domain (DrrA 544–
647)(47). We refer to this fragment as DrrA hereafter. Kinetic traces from the PTEN-DrrA reaction on 2% 
PI(3,4)P2 membrane follow a strongly sigmoidal shape, indicating the reaction has positive feedback.  
Starkly contrasting PTEN, PTEN-DrrA shows strong reaction size-dependent catalytic activity in the 3’-
dephosphorylation of PI(3,4)P2 (Fig. 2-3C and S2-2E).  Using a similar strategy, the OCRLPD catalyzed 
PI(4,5)P2 to PI(4)P dephosphorylation reaction, which intrinsically lacks feedback, can be augmented with 
positive feedback by fusing OCRLPD with a DrrA domain. Kinetic traces of DrrA-OCRLPD shows both 
positive feedback and size-dependent reaction speed (Fig. 2-3D and S2-2F). Overall, these data illuminate 
a clear and causal relationship between membrane-binding mediated positive feedback and reaction size-
dependency of catalytic activity. 

 

Across the wide variety of chemical reactions catalyzed by interfacial enzymes, positive feedback through 
product binding is a common feature among many of them. In addition to lipid phosphatases such as PTEN, 
lipid kinases such as PIP5K and GEFs such as SOS have all been reported to natively possess such a 
mechanism(6, 48). We therefore posited that these enzymes all could exhibit reaction size-dependency in 
their catalytic activity and tested this with the kinase domain of PIP5K (PIP5KKD) and the catalytic N-
terminal fragment of SOS (SOSHDPC).  PIP5KKD catalyzes PI(4)P to PI(4,5)P2 reaction at the expense of an 
ATP, and separately binds PI(4,5)P2. SOSHDPC catalyzes nucleotide exchange, converting Ras-GDP to Ras-
GTP, and can bind Ras-GTP with a stronger affinity at an allosteric site(36). Both PIP5K and SOS showed 
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size-dependent catalytic activity (Fig. 2-3E, 2-3F, S2-2G and S2-2H).  Notably, while the catalytic domain 
of SOS, SOScat, contains the allosteric Ras-GTP (product) binding site and showed clear positive feedback 
in its catalytic activity, it is not size-sensitive under the conditions in our experiment (Fig. S2-5). As will 
be clarified in the following sections, this can be attributed to the fact that SOScat is distinctively less 
processive than either SOSHDPC or native full-length SOS(44, 49, 50). While strong processivity is neither 
a requirement nor sufficient for reaction size sensitivity, it is an amplifier of these effects. 

 

 

Figure 2-3. Biochemically engineering size-dependent reaction speed. (A) Dephosphorylation reaction of PI(3,4,5)P3 to 
PI(4,5)P2 by 23 μM PTENΔPBD in 5μm x 5μm membrane corrals and free bilayer. PBD: PIP2-binding domain; PPTase: Phosphatase 
domain. C-tail: C-terminal tail. (B) Dephosphorylation reaction of PI(3,4)P2 to PI(4)P by 3 μM PTEN in 5μm x 5μm membrane 
corrals and free bilayer. (C) Dephosphorylation reaction of PI(3,4)P2 to PI(4)P by 170 nM PTEN-DrrA in 5μm × 5μm membrane 
corrals and free bilayer. (D) Dephosphorylation reaction of PI(4,5)P2 to PI(4)P by 100 pM DrrA-OCRLPD in 5μm × 5μm membrane 
corrals and free bilayer. (E) Phosphorylation reaction of PI(4)P to PI(4,5)P2 by 2 nM PIP5KKD in 5μm × 5μm membrane corrals 
and free bilayer plotted together. (F) Nucleotide exchange reaction of Ras-GDP to Ras-GTP catalyzed by 20 nM SOSHDPC in 5μm 
× 5μm membrane corrals and free bilayer plotted together. The reaction is monitored by binding of a fluorescently labeled Ras-
binding domain. 
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2.4 Competitive enzymatic cycles amplify effects of reaction 
size dependency 

 

Native forms of all of the enzymes studied here operate in competitive reaction cycles under physiological 
conditions.  Kinases are opposed by phosphatases, Ras GEFs are opposed by GAPs, and this is a common 
theme across many biological signaling systems.  In such competitive reactions, small differences in 
reaction rate can determine what the final outcome is, and this can amplify the consequences of even small 
reaction size-dependencies among the competing enzymes.  As an example of this, we here study the 
competitive reaction between PIP5K and OCRL.  This system drives interconversion between PI(4)P and 
PI(4,5)P2, and is one of several similar competitive lipid kinase-phosphatase systems we have recently 
found to exhibit complex reaction size sensitivity and pattern forming tendencies(6). 

 

A time sequence of images following a reaction trajectory for the PIP5K:OCRL system on SLB corral 
arrays of various sizes is illustrated in Fig. 2-4A.  For these experiments, the supported membrane has an 
initial composition of 2% PI(4)P and 2% PI(4,5)P2 (in a DOPC background) and lipid sensors for PI(4)P 
(DrrA), in blue, and PI(4,5)P2 (PLCδ) in yellow track the composition over time, by TIRF imaging.  The 
reaction is initiated by injecting a solution of both enzymes, ATP, and lipid sensors into the imaging flow 
cell.  As can be seen in the image sequence, the larger area of the membrane is smoothly driven to a 
PI(4,5)P2-dominated state, indicating that the average balance between kinase and phosphatase in this 
particular experiment favors the kinase.  However, under the identical enzyme mixture in the solution, the 
system exhibits bistability in 5 µm x 5 µm corral arrays and is uniformly driven to a PI(4)P-dominated state 
in 2 µm x 2 µm corral arrays.  In this case, the net reaction outcome—a PI(4)P- or PI(4,5)P2-dominated 
state—depends on the size of the membrane reaction system.  This effect can drive reaction outcome with 
near certainty; note that there are no visible 2 µm x 2 µm corrals ending in the PI(4,5)P2-dominated state 
even though this is the kinetically favored state in the bulk average. 

 

The complete inversion in the outcome of the PIP5K:OCRL system, as a function of reaction size, is 
achieved based on differences in the size-dependency of the individual enzymatic reactions.  In this case, 
PIP5K has positive feedback and exhibits size-dependent reaction rates whereas OCRL does not.  The effect 
of reaction size on the balance between these two reactions is illustrated schematically in Fig. 2-4B.  For a 
given enzyme concentration in solution, the reaction rate for PIP5K increases with reaction size while that 
of OCRL is constant.  As such, it is possible to achieve a situation in which positive feedback in PIP5K 
provides it with a kinetic advantage in large systems, while OCRL can still dominate in sufficiently small 
systems.  We note that in our previous study of a similar system with PIP5K, many of the experiments 
utilized variants of OCRL with engineered positive feedback(6).  In those experiments, both enzymes 
exhibit positive feedback and size sensitivity. The particular balance between size sensitivity of the 
competing enzymes led to exactly the opposite size preference seen here: PIP5K selectively dominated in 
small corrals.  These contrasting results underscore how controllable the size-dependency of enzymatic 
reaction rates can be. 

 

Activation of membrane signaling in physiological systems often involves increasing the activity of a kinase 
to overcome the suppressing activity of phosphatases. Effects of reaction size confinement on this balance 
for the PIP5K:OCRL system are illustrated through a set of PIP5K titration experiments shown in Fig. 2-
4C.  The competitive reaction is run on a series of membrane corral arrays, spanning a factor of 100 in 
surface area (2 µm x 2 µm to 20 µm x 20 µm), at fixed OCRL concentration (1μM) and a series of PIP5K 
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concentrations ranging from 2 – 10 nM.  Although in all cases, the competitive reaction exhibits two well-
defined possible outcome states, the PIP5K concentration at which switching between these states occurs 
exhibits a sharp dependence on reaction size (Fig. 2-4D). The size range we tested here resembles the length 
scale of larger geometrical features in cellular systems, such as filopodia, lamellipodia, and polarization in 
the plasma membrane. The concentration range of PIP5K also falls within physiological expression 
levels(51). 

 

The competitive reaction between Ras activation by SOS and deactivation by the p120 Ras GAP exhibits a 
similar size-dependency of reaction outcome (Fig. S2-6).  This effect is observed for SOSHDPC but not SOScat 
(Fig. S2-7), and follows consistently with our observation that SOSHDPC exhibits substantially greater size-
dependent activity than SOScat.  Both of these SOS constructs have positive feedback, but their difference 
lies in the degree of processivity.  The lipid-binding properties of SOSHDPC enable it to linger at the 
membrane for longer dwell times than SOScat in these experiments.  As such, stochastic variation in 
enzymatic reaction rate resulting from enzyme binding and desorbing from the membrane is amplified for 
SOSHDPC relative to SOScat, and these stochastic fluctuations are key to the strength of reaction size-
dependency. Note that SOScat and SOSHDPC are truncated forms of SOS and that the native full-length SOS 
protein is extremely processive (44, 49, 50). 

 

 
Figure 2-4. Size-dependent reaction speed controls the reaction outcome in a competition reaction. (A) Time sequence of the 
competition reaction of 10 nM PIP5K and 700 nM OCRL monitored by 20 nM Alexa488-PLCδPH and 20 nM Cy3-DrrA in 2μm × 
2μm corrals, 5μm × 5μm corrals, as well as the unrestricted free bilayer. (B) Size-dependent reaction speed in a competition reaction 
can lead to a change of reaction outcome based on size. (C) Images of the final steady-state outcome for a series of 4% PI(4)P 
membrane with surface areas ranging from 400 μm2 to 4 μm2 when exposed to various concentrations of PIP5K and a fixed 1 μM 
OCRL. (D) The probability of the PI(4,5)P2 enriched reaction outcome for a series of 4% PI(4)P membrane with different 
dimensions at 1 μM OCRL and various concentrations of PIP5K. The data is fitted with a general sigmoidal equation.  
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2.5 Size-dependency of reaction rate arises from a stochastic 
mechanism 

 

We investigate the underlying mechanism of reaction size-dependence of catalytic activity with stochastic 
kinetic modeling of the basic Michaelis-Menten enzymatic process.  The reaction scheme for the interfacial 
enzymes considered here is depicted in Fig. 2-5A.  The enzyme in solution (E0) is recruited to and desorbs 
from a membrane-bound state (E1) via overall kinetic rate parameters (kon and koff), which are not necessarily 
constants since they may depend on membrane composition (e.g. concentration of the enzymatic product).  
On the membrane, the enzyme interacts with the substrate (S), forming an enzyme-substrate complex (E1:S) 
with overall kinetic rates (kf and kr), from which the product is formed with a catalytic rate constant (kcat).  
We perform stochastic kinetic modeling of this reaction scheme using a Gillespie algorithm(52), describing 
the state vector for the system in terms of discrete copy numbers of each species on the membrane (E1, S, 
E1:S, P).  The concentration of the solution species, E0, is fixed, reflecting the experimental condition where 
there is a large reservoir of enzymes in solution. Transitions between states are described with transition 
probabilities, corresponding with each of the kinetic rates, some of which are functions of the state of the 
system (full detail in Materials and Methods).  This modeling is spatially homogeneous (matching 
experimental conditions), and the system size in spatial dimensions maps to different overall molecular 
copy numbers in the simulations. 

 

Stochastic kinetic modeling readily reproduces the experimental observation of reaction size-dependent 
catalytic activity, while deterministic rate equations fail to predict such effects.  Sets of reaction trajectories 
for the same enzymatic system in differently sized membrane corral arrays are shown in Fig. 2-5B.  As 
expected, stochastic variation clearly becomes more pronounced in the smaller corrals.  More importantly, 
the mean catalytic activity also differs.  Mean reaction trajectories from these simulations on 1 µm2 and 
0.25 µm2 arrays are plotted in Fig. 2-5C in the same format used for the presentation of experimental data 
in Fig. 2-2, illustrating the substantial agreement between modeling and experiment results (see supporting 
information for discussion).  If membrane binding of the enzyme is decoupled from product density, 
effectively removing the positive feedback, size-dependency of the reaction rate is lost (Fig. 2-5D and S2-
8).  
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Figure 2-5. Size-dependent reaction speed modulated by reaction discreetness and enzyme processivity. (A) Kinetic scheme 
for stochastic kinetic modeling. The interfacial enzyme binds to a membrane from the solution and catalyzes a surface Michaelis-
Menten reaction at the membrane. Positive feedback is included by having the enzyme on rate dependent on σP (density of product 
on the membrane). (B) Kinetic traces from 1000 stochastic simulations plotted with their mean (colored lines) using the reaction 
mechanism described in panel A. Top: Simulation in 1 μm2 membrane. Middle: Simulation in 0.25 μm2 membrane. Bottom: 
Simulation in 0.16 μm2 membrane. t0.95 marks the time for the average to reach 95% completeness of reaction. (C) Average of 
kinetic traces from stochastic simulations in 1 μm × 1 μm (1 μm2) membrane and 0.5 μm × 0.5 μm (0.25 μm2) membrane plotted 
together. Simulation with deterministic rate equation was plotted in dashed line. The shaded area shows the standard deviation. The 
top graph shows the difference between the reaction trajectory in 1 μm2 and 0.25 μm2 arrays, Δx, at each time point. The difference 
of normalized product at max Δx is significant at p-value < 0.01. (D) Simulation with no positive feedback (on rate independent of 
σp). 
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To conceptually illustrate the underlying physical mechanism of size-dependency in reaction rate, we 
construct a highly simplified stochastic system that still exhibits the basic effect.  In this example, consider 
a molecule that binds to a surface in a one-way process with a kinetic rate that depends on the surface 
concentration of already bound molecules (positive feedback) (Fig. 2-6A).  We can examine the overall 
reaction rate by looking at the mean first passage time (MFPT) for the system to double the density of 
adsorbed molecules (𝜎𝜎). Fig. 2-6A depicts the density doubling process (copy number 𝑛𝑛 molecules goes to 
2𝑛𝑛) for several different sized systems, starting from 𝑛𝑛 = 1, 2, or 3 adsorbed molecules, at equivalent 
starting surface density. The number of individual molecular binding events required for density doubling 
goes as 𝑛𝑛 and the probability distribution for doubling time, 𝜏𝜏D, is given by successive convolution of the 
individual transition time distributions for each of the 𝑛𝑛 transitions: 𝑝𝑝(𝜏𝜏𝐷𝐷) = 𝑝𝑝1(𝜏𝜏1) ⊗𝑝𝑝2(𝜏𝜏2) ⊗
𝑝𝑝3(𝜏𝜏3)⋯⊗𝑝𝑝𝑛𝑛(𝜏𝜏𝑛𝑛). For this one-way adsorption process, the MFPT for doubling is simply the average 
doubling time, 〈𝜏𝜏𝐷𝐷〉, and since this is a Markov process, 〈𝜏𝜏𝐷𝐷〉 = ∑ 〈𝜏𝜏𝑖𝑖〉𝑛𝑛

𝑖𝑖=1 . 

 

For the case of simple binding, with no feedback, the overall rate of binding to a surface with area, 𝐴𝐴, is 
independent of the number of already adsorbed molecules and given by 𝑘𝑘𝐴𝐴. With this constant rate of 
binding, the delay time between each of the individual binding events follows an identical Poisson interval 
distribution, 𝑝𝑝(𝜏𝜏) = 𝑘𝑘𝐴𝐴𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘  and 𝑝𝑝(𝜏𝜏𝐷𝐷)  is the corresponding gamma distribution:  𝑝𝑝(𝜏𝜏𝐷𝐷) =
(𝑘𝑘𝐴𝐴)(𝑛𝑛+1)𝜏𝜏𝐷𝐷𝑛𝑛𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘/𝑛𝑛!.  In this case with zero-order feedback, the MFPT for doubling is independent of 
system size and identical to the value calculated from a continuum approach with deterministic rate 
equations (Fig. 2-6B; also see Materials and Methods). 

 

When there is positive feedback (of order 𝑚𝑚) affecting the adsorption process, the MFPT for density 
doubling is calculated as above, except now the intermediate transitions no longer occur with an identical 
rate. For a system starting with 𝑛𝑛 molecules, the 𝑖𝑖𝑡𝑡ℎtransition has rate 𝑘𝑘σ𝑚𝑚𝐴𝐴, where 𝜎𝜎 = (𝑛𝑛 + 𝑖𝑖 − 1)/𝐴𝐴 is 
the momentary density of adsorbed molecules while waiting for the 𝑖𝑖𝑡𝑡ℎ transition event.  The rate of each 
successive step now depends on 𝜎𝜎 and correspondingly increases, reflecting the positive feedback as a 
function of already adsorbed molecules. Plots of doubling MFPT vs. system size for feedback of order 𝑚𝑚 
= 1, 2, and 3 are shown in Fig. 2-6B. With the positive feedback, a system size dependence of the overall 
reaction rate is evident with the reactions going more slowly in smaller systems. At larger system sizes, the 
stochastic analysis converges on the same result (dashed lines) obtained from continuum deterministic rate 
equations. 

 

Fundamentally, stochastic effects originating from the discrete binding of molecules to the surface reduce 
the efficiency of the positive feedback.  In the extreme case of beginning with a single molecule, the MFPT 
for doubling essentially never experiences any effects of feedback since the process is finished with the 
first transition. As systems get progressively larger, and more individual steps are taken throughout the 
reaction trajectory to achieve the same density doubling, each successive step occurs faster as the system is 
able to respond to the now gradually increasing density (Fig. 6C).  Effects of feedback are maximized in 
large systems, where the surface density of adsorbed molecules essentially varies continuously. 
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Figure 2-6. Size-dependent reaction speed based on positive feedback through recruitment. (A) A kinetic model of a surface 
binding process. Surfaces with different areas start with the same density σ0 and can bind molecules with a defined kinetic rate to 
evolve to density state 2σ0. (B) Left: The kinetic scheme for direct positive feedback binding. kσmA is the binding rate. m is the 
order of positive feedback. In the case of m=0 there is constant membrane binding with no positive feedback. Right: The MFPT 
for different surface areas to reach σ=2 with direct positive feedback binding kinetics. (C) Membrane size alters the continuity of 
positive feedback. Discontinuity becomes more prominent in smaller system sizes. Deviation from continuous positive feedback 
leads to a weaker positive feedback and slower overall reaction. (D) Figure 5C plotted in reaction velocity vs. time. The shaded 
area shows the standard deviation. Top graph shows the reaction velocity difference (ΔV) between 1 μm2 and 0.25 μm2 arrays. The 
red arrow indicates the time point where ΔV is at maximum. (E) Stochastic simulations at a fixed substrate and product densities 
plotted in reaction velocity vs. time. The condition corresponds to the membrane composition at the red arrow in Fig. 2-6D. 

 

2.6 Size-dependency of reaction rate is a non-equilibrium effect 
 

In addition to the stochastic element, the mechanism of reaction size dependency is also intrinsically rooted 
in the fact that the system is changing.  This is clearly demonstrated by examining reaction velocities under 
steady-state conditions (e.g. as might be done in some classic Michaelis-Menten analyses).  Fig. 2-6D 
illustrates a plot of mean reaction velocity vs. reaction progress for the 1 µm2 and 0.25 µm2 corral arrays 
for the system computationally analyzed in Fig. 2-5B & 2-5C.  Marked on the plot is the system composition 
(substrate and product densities) at which the maximum difference in mean reaction velocity between the 
two corral sizes was observed.  Results from stochastic simulations on the two corral sizes at this 
composition, but now under steady-state conditions (with substrate and product densities fixed) are plotted 
in Fig. 2-6E.  As expected, reaction velocity variation is substantially larger in the smaller corrals.  However, 
under these steady-state conditions, there is no longer any size-dependency of the mean reaction rate.   

 

The reaction size-dependency effect stems from the enzyme-membrane binding reaction being out of 
equilibrium, and the way in which this binding reaction stochastically follows the changing membrane 
composition.  This can be shown by running stochastic simulations for the system depicted in Fig. 2-5C in 
which the positive feedback is preserved, but the individual kinetic rate constants for membrane binding 
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are allowed to be very fast compared to the catalytic rate (increasing both kon and koff or reducing kf and kcat).  
In these situations, the enzyme-membrane binding reaction is always near equilibrium (or quasi steady-
state), and the reaction size-dependency correspondingly vanishes (Fig. S2-9). In sufficiently small systems, 
where individual catalytic steps can appreciably change the system product density, non-equilibrium 
behavior is essentially assured since the enzyme-membrane binding reaction cannot synchronously follow 
the stochastic steps of the catalytic reaction. However, we also observe reaction size sensitivity in systems 
with relatively high substrate density (e.g. Fig. 2-5C). In these cases the enzymes are significantly 
processive, driving more than 100 catalytic cycles per binding event at the early stages of the reaction. This 
dramatically amplifies stochastic variation in the overall reaction velocity, and correspondingly amplifies 
size sensitivity. We note that positive feedback and a nonequilibrium reaction cycle are the necessary and 
sufficient conditions for reaction size sensitivity. Enzymatic processivity is an amplifier of these effects, 
but is not required. Reaction size sensitivity can be readily detected without any processivity at sufficiently 
low total substrate density (Fig. S2-10). 

 

2.7 Discussion 
 

The impacts of size and geometry of cellular structures on intracellular biochemical reactions and signaling 
processes have previously been considered in a variety of different contexts.  For example, cell shape has 
been shown to direct stronger cyclic adenosine monophosphate (cAMP) signaling in the dendrites of 
neuronal cells through the interplay between reaction-diffusion and changes in surface to volume ratios(53). 
In an analogous mechanism, mitogen-activated protein kinase (MAPK) phosphorylation level upon EGF 
stimulation can be enhanced in elliptic cells compared to circular cells(54). In these examples, where the 
reaction occurs at the membrane but the effector diffuses through solution, effective changes in local surface 
area to volume ratios caused by membrane bending and cell shape can establish zones of higher reactivity 
or depletion of the effectors and consequently alter local or global reaction outcome(19, 53–55). Size 
sensing behavior has also been reported in the depolymerization of microtubules(56) and actin 
filaments(57). In these cases, the size-dependent effects originate from a lower dimensional version of the 
surface area to volume ratio—the length to end-point ratio. Elongating filament length increases the number 
of available binding sites per filament and recruits more enzymes. Processive movement of the enzyme 
toward the end of the filament then leads to concentrated activity at the end of the filament that is 
proportionate with its length.  The size sensitivity in mean catalytic rate that we report here, however, is 
quite distinct from these other processes.  It is not dependent on an interdimensional ratio, such as surface 
area to volume, nor are there any requirements on diffusion or enzymatic processivity. Also, unlike the 
examples mentioned above, and the beautiful spiraling Turing patterns exhibited by the Min system(58), 
the size sensitivity we describe is not predictable by continuum mathematical descriptions of reaction 
kinetics: this size sensitivity is intrinsically stochastic. 

 

The patterned supported membrane experimental platform provides a unique way to isolate the effects of 
system size from other geometrical features, such as membrane curvature.  For the lipid kinase-phophatase 
reactions studied here, this resolving capacity confirms that it is size, not curvature, that led to the observed 
differential kinetic rates.  However, membrane curvature is a major aspect of physiological membrane 
systems and there is significant interest in curvature driven effects.  Studies on the regulation of lipase and 
phospholipase activity by curvature are notable examples. Classical as well as modern research performed 
on this topic mainly utilizes liposomes of different sizes to represent different curvatures, leading to 
discoveries of diverse curvature sensing mechanisms(33, 34). Depending on feedback characteristics of the 
enzymes(59), such experimental observations may also be influenced by size-dependent reaction effects as 
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described here.  Planar supported membrane microarrays could be useful in control experiments to 
distinguish these mechanistic details. 

 

We have demonstrated that even the extremely minimal system consisting of an ensemble of identical 
soluble enzymes acting on a membrane substrate can exhibit reaction size-dependent mean catalytic rate.  
For a pair of such enzymes in a competitive reaction, this effect can lead to complete reaction inversion, in 
which the final product depends on the system size.  Although these effects arise through a stochastic 
mechanism, the results are not random and can be achieved with almost complete certainty.  Reaction size-
dependency of an interfacial enzymatic reaction emerges when two conditions are met: i) the enzyme 
exhibits feedback, and ii) the intermediate binding interaction between enzyme and membrane is not well 
equilibrated with the changing membrane composition. Feedback is a genetically encodable (and 
engineerable) property of the enzyme while the non-equilibrium characteristic is a property of the reaction 
system.  These requirements are so basic, and simply met, that we suggest it is unavoidable that they occur 
within cells and possibly govern some biological functions. In addition to the enzymatic reactions studied 
here, many important signaling events that involve the activation of membrane substrate by soluble 
enzymes, such as activation of Cdc42(60, 61), RhoA((62), Rab-5(63), Arf-1 and Arf-6(64) have been shown 
to exhibit positive feedback. Vesicle budding and fusion processes(65), protrusion and retraction of 
membrane structures such as filopodia and lamellipodia(66), as well as the formation of receptor signaling 
domains and protein condensates at the membrane(67) all represent dramatic changes in spatial confinement 
coupled with membrane signaling activity.  All of these situations, and many others in cells, present viable 
opportunities for size-dependent reaction rates to be utilized in a regulatory mode. 

 
2.8 Supplemental text 
 

2.8.1 Hill equation fit 
 
An estimate of feedback strength can be obtained by fitting the kinetic data to a Hill equation. For 
the PTEN reaction data in Fig. 2-2C, fitting to a general sigmoidal function (Hill equation) reveals 
the Hill slope is higher for the mean reaction trace in a free lipid bilayer compared to that for the 
mean reaction trace in 5 μm × 5 μm corrals (Fig. S2-11). This suggests that the reaction exhibits 
stronger feedback in the larger size reaction. When fitting the maximum reaction velocity versus 
PTEN concentration plot to a Hill equation, a higher Hill slope is observed in a free lipid bilayer 
compared to 5 μm × 5 μm corrals as well (Fig. S2-12).  
 
 
2.8.2 Additional discussions on stochastic kinetic modeling 
 
The stochastic simulation model (Fig. 2-5) is a minimal model that can still capture the size sensing 
behavior experimentally observed. It is not, however, a literal attempt to model the data and some 
differences are noted.  Specifically, the simulations exhibit a noticeable spread in delay time before 
each trace starts to react, while in the experiment this is not observed. This results because, in the 
simple model, enzyme recruitment to the membrane is strictly through binding to its product at the 
membrane (see Material and Methods for further detail). In this case, the initial enzyme recruitment 
is limited by the low number of product molecules on the membrane, and will abruptly start the 
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reaction once the first enzyme binds. In the experimental conditions, however, enzymes can slowly 
catalyze the reaction directly from the solution by random collisions, without being strongly 
anchored to the membrane. This provides a steady slow reaction rate before the first enzyme binds 
and smooth out the delay. This is demonstrated in simulations that incorporate an additional 
catalytic mechanism for the enzyme directly from the solution (see Material and Methods for 
further detail). These simulation results exhibit a delay time spread more reminiscent of the 
experimental data (Fig. S2-13). The artificially wide spread in start times in the simple model, 
however, averages to essentially the same mean when a large number of statistics are collected 
(1000 traces) and has no effect on the overall results. Moreover, the observed size dependency in 
mean reaction speed in the minimal model (Fig. 2-5) is not caused by the larger spread of reaction 
traces in small sizes (Fig. S2-14). 
 
 
2.9 Supplemental figures 
 

 

Fig. S2-1. Kinetic traces of PTEN catalyzed PI(3,4,5)P3 reaction 
on 30 nm and 1000 nm liposomes. The reaction of 200 nM PTEN 
converting 10 µM of PI(3,4,5)P3 to PI(4,5)P2 monitored by phosphate 
release. Apparent rate constant k is obtained by fitting to 1-exp(-kx). 
30 nm: k = 0.012; 1000 nm: k = 0.025 
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Fig. S2-2. Replicates and individual kinetic traces of corral assay. Top: Replicates of the corral assay. Bottom: Individual 
kinetic traces from a corral assay plotted with the mean. 100 individual traces in 5μm × 5μm corrals are plotted in grey. (A) 
PI(3,4,5)P3 to PI(4,5)P2 reaction catalyzed by 100 nM PTEN. (B) PI(4,5)P2 to PI(4)P reaction catalyzed by 50 nM OCRLPD. 
(C) PI(3,4,5)P3 to PI(4,5)P2 reaction catalyzed by 23 μM PTENΔPBD. (D) PI(3,4)P2 to PI(4)P reaction catalyzed by 3 μM PTEN. 
(E) PI(3,4)P2 to PI(4)P catalyzed by 170 nM PTEN-DrrA. (F) PI(4,5)P2 to PI(4)P reaction catalyzed by 100 pM DrrA-OCRLPD. 
(G) Ras-GDP to Ras-GTP reaction catalyzed by 20 nM SOSHDPC. (H) PI(4)P to PI(4,5)P2 catalyzed by 2 nM PIP5KKD. 
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Fig S2-3. Reaction trace of PTENΔPBD in the absence of PS. 
PI(3,4,5)P3 to PI(4,5)P2 reaction catalyzed by 20 μM PTENΔPBD on free 
bilayer. Membrane composition is 98% DOPC. 2% PI(3,4,5)P3. 

 

 

 

 
  

 

Fig S2-4. Reaction traces of PTEN in the presence of PS. 
Dephosphorylation reaction of PI(3,4,5)P3 to PI(4,5)P2 by 23 μM 
PTEN in 5μm x 5μm of membrane corrals and free bilayer. Membrane 
composition is 93% DOPC. 2% PI(3,4,5)P3, and 5% PS. 

 
 

 

 

 

 

 

 

 

 

Fig S2-5. SOScat catalyzed Ras-GDP to Ras-GTP reaction. Nucleotide 
exchange reaction of Ras-GDP to Ras-GTP catalyzed by 2 nM SOScat in 
5μm × 5μm membrane corrals and free bilayer. 
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Fig S2-6. The steady-state level of Ras-GTP in SOSHDPC and p120GAP 
competition reaction. SOSHDPC competition with 200 nM p120GAP in1 
μm × 1 μm membrane and free bilayer. Smaller reaction size leads to lower 
Ras-GTP steady state in the competition reaction. 

 

 

 

 

 

Fig S2-7. The steady-state level of Ras-GTP in SOScat and p120GAP 
competition reaction. SOScat competition with 200 nM p120GAP in 1 
μm × 1 μm membrane and free bilayer. The Ras-GTP steady state of the 
competition reaction is independent of reaction size. 

 

 

 

 

 

Fig S2-8. Individual kinetic traces from Fig. 2-5D (reaction with no positive feedback). (A) Kinetic traces from 1000 stochastic 
simulations in 1 μm2 membrane plotted with their average. (B) Kinetic traces from 1000 stochastic simulations in 0.25 μm2 
membrane plotted with their average. 



23 
 
 

 

Fig S2-9. Stochastic simulation with near-equilibrium enzyme binding (non-processive enzyme catalysis) at high substrate 
density. (A) kon and koff were increased by 100 times, leading to a fast enzyme binding response to membrane composition change. 
(B) kf and koff were decreased by 50 times. Total substrate density is 28000/ μm2. 

 

 

 

Fig S2-10. Stochastic simulation with near-equilibrium enzyme binding (non-processive enzyme catalysis) at low substrate 
density. (A) kon and koff were the same in Fig. S10A. (B) kf and koff were the same in Fig. S10B. Total substrate density is 80/  
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Fig S2-11. Analysis of the kinetic traces of PTEN reaction in Fig. 2C. The maximum velocity is 208/um2/s in free lipid bilayer 
and 160/um2/s in 5μm × 5μm corrals. Hill slope is 2.2 for the reaction in free lipid bilayer and 1.9 for the reaction in 5μm × 5μm 
corrals. 

 

 

Fig S2-12. Maximum velocity versus PTEN concentration. Hill slope is 1.3 for the reaction in free lipid bilayer and 1.1 for the 
reaction in 5μm × 5μm corrals. 
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Fig S2-13. Stochastic simulation with the incorporation of additional catalysis mechanism from the enzyme, where the 
enzyme in the solution can randomly perform reaction without binding anchored to the product at the allosteric site. (A) 
Kinetic scheme for the stochastic kinetic modeling. In addition to the reactions described in Figure 5A, we have included the 
enzyme catalysis directly from the solution from random collision (see methods for details). (B) Average of kinetic traces from 
stochastic simulations using the reaction mechanism described in panel A in 1 μm × 1 μm (1 μm2) membrane and 0.5 μm × 0.5 μm 
(0.25 μm2) membrane. The shaded area shows the standard deviation. (C) Individual kinetic traces from 1000 stochastic simulations 
in 1 μm2 membrane plotted with their average. (D) Individual kinetic traces from 1000 stochastic simulations in 0.25 μm2 membrane 
plotted with their average. 

 

Fig S2-14. Cumulative distribution of time for simulated reactions in Fig. 5B to reach 95% reaction completeness. The 
median is at 0.5 cumulative fraction. Median: 92.1 a.u. for 1 μm2; 101.9 a.u. for 0.25 μm2; 107.2 a.u. for 0.16 μm2. 
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Chapter 3 
BIMODALITY IN RAS SIGNALING ORIGINATES 
FROM PROCESSIVITY OF THE RAS 
ACTIVATOR SOS WITHOUT CLASSIC KINETIC 
BISTABILITY 
 

as is a small GTPase that is central to important functional decisions in diverse cell types. In 
lymphocytes, Ras is activated in a bistable manner that enables decisive cellular responses. Such 
signaling behavior is controlled by competing activation-deactivation of Ras by guanine nucleotide 

exchange factors (GEFs) and GTPase activating proteins (GAPs), and the Ras activator Son-of-Sevenless 
(SOS) is critical for mediating the bistable Ras activation. Here, we describe the total reconstitution of 
receptor-mediated Ras activation-deactivation cycle catalyzed by SOS and p120-RasGAP on 
micropatterned supported lipid bilayers. Combining both experimental and in silico studies, we have 
revealed that the bistable response in Ras activation is originated from stochasticity. Such stochastic 
bistability is caused by the ability of SOS to enter a uniquely long-dwelling, highly processive state. 
Moreover, we demonstrated that the bistable response is dependent on the signaling environment, such as 
the density of Ras and LAT (linker for activation of T cells) at the membrane. These observations reveal a 
previously unanticipated mechanism of bimodal response in Ras signaling, and a possible explanation of 
how clustering of signaling molecules, such as forming LAT clusters or Ras clusters, can govern the 
response of Ras signaling in cells. 

 

3.1 Introduction 
 

The small GTPase Ras functions as a molecular switch, toggled between GTP- and GDP-bound states, 
where only the GTP bound state is able to interact with and activate downstream effector molecules(68). 
Ras activates a variety of signaling pathways, such as MAPK and PI3K, that affect cellular proliferation, 
survival, and differentiation(69, 70). The activation-deactivation cycle of Ras is dependent on regulatory 
enzymes that control Ras signaling according to upstream signals(3, 71). GEFs, such as SOS, promote the 
exchange of GDP for GTP to activate Ras (72, 73) while hydrolysis of GTP to GDP is promoted by 
GAPs(74). Under physiological conditions, Ras activation and deactivation reactions are in constant 
competition and must be tightly regulated; mis-regulation of Ras is a major cause of cancer(75). Decades 
of focused studies on the Ras signaling mechanism  have revealed many detailed biochemical insights(76), 
such as its interaction with various effectors (70, 73, 74), conformational dynamics(77, 78), and its potential 
to dimerize and form clusters(79–84). Despite this continuously improving understanding, the Ras signaling 
mechanism remains enigmatic and difficult to pharmacologically control(76, 85, 86).   

 

R 



27 
 
 

An important feature of physiological Ras-MAPK signaling is its apparent ability to signal in a bimodal 
manner(87–94). This has the effect of converting a continuously variable input to the signal pathway (e.g. 
the number of activated receptors) into a binary output response, and is of extremely general importance in 
biological information processing(95–97). In lymphocytes, this bimodal signaling behavior has been 
ascribed to the feedback kinetics of SOS(89, 90, 98, 99) —specifically a RasGTP-driven positive feedback 
loop.  However, this conjecture is based exclusively on computational modeling and indirect measurements 
in cellular systems: experimental observation of bimodality in the isolated Ras activation response has not 
previously been reported(100).  One contributing factor to the challenges presented by Ras is the surprising 
complexity that can emerge from competitive enzymatic reaction cycles, especially when a membrane is 
involved (6, 101–103). 

 

SOS is a ubiquitously expressed Ras GEF that resides in the cytosol and is recruited to the membrane to 
initiate Ras activation.  SOS is structurally organized with an N-terminal histone-fold (HF), pleckstrin 
homology (PH) and Dbl homology (DH) domains, a catalytic core that has a Ras exchanger motif (REM) 
and a Cdc25 domain, followed by a C-terminal proline rich (PR) domain(72). SOS is subjected to complex 
regulation, including autoinhibition(104), and allosteric activation by Ras(48). RasGTP-driven positive 
feedback in SOS activity has been observed in bulk experiments, and attributed to nucleotide selective 
allosteric activation of SOS by RasGTP(48). In earlier modeling studies, SOS was typically assumed to 
have conventional allosteric activation with different catalytic rates depending on whether RasGDP or 
RasGTP was bound to its allosteric site (39, 89, 105, 106).  When coupled with a competing reaction, this 
type of positive feedback can lead to kinetic bistability, in which two stable steady states of Ras activity 
level may exist(95, 107). Such a classic kinetic bistability in the activation of Ras by SOS has been 
presumed to underlie the bimodal signaling response observed at the cellular level in lymphocytes(89, 90, 
98, 99). The first direct single molecule studies of SOS activity on membranes, however, complicated the 
story by revealing essentially identical average catalytic rates of SOS with either RasGDP or RasGTP in 
the allosteric binding site—thus eliminating the possibility of a simple positive feedback mechanism based 
on allosteric enhancement of catalytic activity(39).  Further single molecule studies with the full-length 
SOS protein have gone on to resolve a complex autoinhibition release mechanism (50), which is coupled 
to the LAT(44) (or EGFR(108)) protein condensation phase transitions. Once activated, SOS is highly 
processive and can activate hundreds of Ras molecules during a single membrane binding event(39, 44, 50). 
Collectively, these more recent experimental studies reveal an entirely different activation process in the 
SOS-Ras system and motivate a comprehensive reevaluation of the mechanistic origins of its bimodal 
signaling response. 

 

Here, we employ a total reconstitution approach to study dynamics of Ras activity on a membrane. The 
experimental system includes the native machinery of receptor-mediated Ras activation by SOS in T cells, 
consisting of the phosphorylated LAT (pLAT) protein, PIP2 lipids, and Ras in a supported membrane along 
with Grb2, full-length SOS (SOSFL) or truncated constructs, p120Gap, and GTP in solution.  This system 
captures the Grb2-mediated recruitment of SOSFL to activated receptor scaffold (pLAT in this case), the 
membrane-mediated process of SOS autoinhibition release (including PIP2 and allosteric Ras binding), 
SOS-catalyzed nucleotide exchange in Ras, and the dynamic competition with GAP-mediated Ras 
deactivation.  The Ras activity state is read in real-time through binding of a fluorescently labeled Ras 
binding domain (RBD) of the downstream effector, Raf(44).  Experiments are run on supported membrane 
microarrays, enabling simultaneous measurement of thousands of Ras activation-deactivation reactions at 
the membrane, all exposed to the same signaling environment from the solution.  The microarray strategy 
also enables observation of stochastic effects in reaction systems of controlled, physiological sizes.   
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The experimental results reveal a distinctive scale-dependent bimodality in Ras activity state with SOSFL.  
The bimodal response is only observed in small corralled reaction systems, indicating that this effect does 
not originate from classic kinetic bistability(6).  The system becomes monostable at larger sizes, even while 
all other parameters are maintained identical.  We further observe that the truncated catalytic core of SOS 
(SOSCat) is incapable of driving a bimodal Ras activity response under any experimentally accessible 
conditions. SOSCat includes both the catalytic and allosteric Ras binding sites and exhibits Ras-GTP driven 
positive feedback, which nonetheless proved insufficient to establish kinetic bistability and is not the 
primary driver of the observed bimodal Ras signaling response.  Through a combination of studies using 
other SOS truncations, along with stochastic kinetic modeling, we establish that it is the extreme 
processivity of SOS that enables the bimodal signaling response through a stochastic mechanism.  
Individual molecular SOS activation events drive bursts of Ras activation, which locally overcome RasGAP 
activity even under strongly deactivating conditions.   This behavior contrasts that of bimodality driven by 
positive feedback, in which Ras activation is much more distributed. Processivity-driven stochastic 
bimodality is markedly insensitive to SOS inhibition, suggesting it could present challenges to the 
development of effective therapeutics to inhibit Ras activation by targeting SOS(76, 109–112).    We also 
observe that bimodal Ras activity is dependent on system size as well as local density of Ras or LAT, thus 
offering more degrees of control than would be available if it were rooted in a classic kinetic bistability.  
More broadly, these studies reveal how stochastic variation from single molecular SOS activation events 
can be amplified by the extreme processivity of SOS to drive a full cellular level bimodal Ras signaling 
response. 

 

3.2 Reconstitution of Ras activation-deactivation competition 
reaction 

 

The activity state of Ras is controlled by competing GEFs and GAPs that primarily interact with Ras on the 
cell membrane(71, 113). Many commonly used Ras biochemical assays utilize solubilized versions of Ras 
and are carried out as solution assays(48, 114). While such assay formats can be convenient, they also 
eliminate many important regulatory mechanisms(39, 44, 115). For example, the ubiquitous Ras GEF, SOS, 
in its full length form, is strongly autoinhibited and shows almost no activity from solution (44, 50).  SOS 
truncations with impaired autoinhibition must generally be used for observable activity in solution assays.  
Additionally, once activated, SOS is highly processive and can activate hundreds of Ras molecules during 
a single membrane binding event(39, 44, 50).  This processivity is only possible on membranes and 
furthermore requires an extended membrane format; conventional vesicles (typically around 100 nm in 
diameter) can be artificially limiting by allowing SOS to completely activate all available Ras 
molecules(116).  Here we seek to reconstitute the entire receptor-mediated recruitment and activation of 
SOS in a planar membrane format that includes receptor-mediated SOS recruitment via Grb2, lipid- and 
Ras-dependent autoinhibition release in SOS, as well as inclusion of competing GAP-driven Ras 
deactivation. 

 

We reconstituted Ras activation-deactivation competition reaction on a supported lipid bilayer (SLB) 
containing 92% DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), 2% PIP2, 2% MCC-DOPE (1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine-N-(4-(p-maleimidomethyl)cyclohexane-carboxamide)), and 
4% Ni–NTA-DOGS (1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic 
acid)succinyl] (nickel salt)). H-Ras(C118S, 1-181) (hereafter referred to as “Ras”) is linked to the SLB by 
coupling the Cys181 to the MCC-DOPE lipids through thiol-maleimide reaction, mimicking the native 
lipid-modification of Ras(115, 117). The resulting membrane-linked Ras is stably bound and fully 
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functional(39, 44, 115, 117). The cytoplasmic region of LAT, expressed along with an N-terminal His6 tag, 
is linked to the SLB through binding between its His tag and Ni-NTA lipid. (118–120). LAT is 
phosphorylated by a Src-family kinase protein, Hck, which is also tethered to the SLB. Although LAT is 
not the native substrate of Hck, Hck can fully phosphorylate LAT given sufficient time(121). The tethered 
proteins are laterally mobile, and their surface density on the membrane can be precisely measured by 
fluorescence correlation spectroscopy (FCS) (see Materials and Methods for detail). Typical densities used 
in the experiments described here are ~1500/µm2 for Ras and ~500/µm2 for LAT, both of which are 
comparable to physiological densities found in cells(122–124). 

 

Time evolution of the Ras activation state (here defined as the fraction of activated Ras: RasGTP/(total 
Ras)) can be measured by quantitative fluorescence imaging of the binding of a Ras binding domain (RBD) 
sensor to RasGTP using total internal reflection fluorescence (TIRF) microscopy (44).  Upon addition of 
SOS, Grb2, and GTP from the solution, robust Ras activation can be detected (Figure S3-1A).  Kinetic 
traces of Ras activation by SOSCat exhibit sigmoidal shapes, confirming that the catalytic core of SOS 
exhibits a RasGTP-driven positive feedback as reported previously(48, 103, 108). In order to examine 
steady-state Ras activation under competitive activating and deactivating reactions, we introduce the 
catalytic domain of p120RasGAP (hereafter referred to as “RasGAP”) from solution. RasGAP drives a 
simple, essentially bimolecular Ras deactivation reaction, with no evidence of feedback (Figure S3-1B).  
The combination of SOS and RasGAP establishes a continuously cycling Ras activation-deactivation 
competitive reaction (Figure S3-1C), which is drawn schematically in Figure 3-1. 

  

 

Fig. 3-1. Schematic of the reconstitution of a Ras activation-deactivation reaction. SOS can be recruited to the membrane by 
Grb2 mediated binding to pLAT and activate Ras. GAP from the solution can directly deactivate Ras. Ras activation can be detected 
by the binding of fluorescently labeled RBD. 
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3.3 Ras activity exhibits large fluctuations in microscopically 
confined reaction systems 

 

Ras signaling reactions under cellular conditions are intrinsically confined on microscopic length scales by 
the physiological geometry of the cell. Additionally, SOS is estimated to be expressed at only 2000-7000 
molecules per cell(125). In many cases, such as in T cell activation, signaling reactions are confined to 
localized signaling clusters on the membrane, further reducing the copy numbers of participating 
molecules(126, 127). Spatial confinement and low molecular copy numbers lead to substantial stochastic 
variation that effectively changes the laws of chemistry within the cell(128), sometimes enhancing 
sensitivity(24, 107), inducing bistability(10, 11, 98), or even changing the outcome of a competitive 
signaling reaction(6, 103).  

 

Here we adopt an experimental approach in which system size is a directly controllable parameter by using 
supported membrane microarrays(39, 43, 44) (Figure 3-2A). In this strategy, a supported membrane is 
formed on glass substrates prefabricated with arrays of metal lines. Lipids and membrane-bound 
components, such as Ras, diffuse freely within each confined corral but cannot cross the metal barriers, 
segregating each corral of membrane into an independent reaction system.  Each corral, however, is in 
contact with an identical bulk solution phase and the metal barriers (only ~10 nm in height) have no 
interference with diffusion and flow within the solution phase(129). Prior to any reaction process, the initial 
state of the membrane components exhibits minimal variability across corrals (Figure S3-2). With the 
membrane microarray, we are able to simultaneously track thousands of competitive Ras activity reactions, 
all of which experience essentially identical reaction conditions, with spatial resolution down to ~1 µm and 
temporal resolution to 100 ms (Figure 3-2B). 
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Fig. 3-2. Ras activation-deactivation reaction in membrane microarrays. (A) Schematic of the membrane microarray. (B) Time 
course images of Ras activation-deactivation reactions in membrane microarrays. Scale bar 10 µm. (C) Ras activation-deactivation 
reaction in a 2 µm × 2 µm corral. Scale bar 1 µm. (D) Reaction trajectories in 2 µm × 2 µm corrals (n = 400). Trajectories exceeded 
0.5 RasGTP/Ras are labeled red. Scale bar 10 µm. (E) Reaction trajectories in 10 µm × 10 µm corrals (n = 100). Scale bar 10 µm. 
 

Within smaller corral sizes (e.g. 2 μm × 2 μm), robust stochastic pulses of Ras activitation can be observed 
within individual corrals under steady-state conditions in the competitive activation reaction (Figure 3-2C).  
Such fluctuations can drive the Ras activation state far away from the mean and occur on the time scale of 
hundreds of seconds.  An ensemble of 400 steady-state reaction traces from a 2 μm × 2 μm corral array is 
plotted in Figure 3-2D.  Although the mean Ras activity (RasGTP/(total Ras)) is 0.079, many reaction traces 
(highlighted in red) cross the threshold of having more Ras-GTP than Ras-GDP (Ras activity = 0.50). This 
magnitude of stochastic variation cannot result from intrinsic stochasticity of individual Ras activation 
reactions. With thousands of Ras molecules in each corral, such intrinsic variation (which goes as 
√number of molecules ) would be limited to a few percent(130). Instead, it is caused by individual SOS 
molecules entering the highly processive state, where the high catalytic output from a single SOS molecule 
can locally overwhelm the opposing GAP-catalyzed Ras deactivation reaction.  This effect can be directly 
observed when simultaneously monitoring SOS binding to the membrane (with fluorescently labeled SOS 
constructs) and local Ras activation (Figure S3-3).  We suggest such temporal spikes in Ras activity in the 
competitive reaction, here observed to last for hundreds of seconds, could trigger downstream signaling 
activity even while the average Ras activation level may be insufficient.  In larger corrals, different behavior 
is observed. Reaction traces from an ensemble of 100 10µm x 10µm corrals are plotted in Figure 3-2E.  
Whereas the mean Ras activity (0.13) is similar to that observed in the 2µm x 2µm corrals, we now observe 
that none of the reaction traces exceed the Ras activity = 0.5 threshold at any point.  In these larger sized 
corrals, the concentrated activity from individual SOS molecules is effectively diluted out and the individual 
reaction traces track much closer to the mean.    



32 
 
 

 

3.4 Ras activation-deactivation reaction exhibits a size-
dependent bimodal response 

 

Evidence for bimodal signaling behavior through Ras-MAPK pathway has been observed in a number of 
cellular systems(87–94).  It has been proposed that RasGTP-driven positive feedback in SOS could lead to 
kinetic bistability in a competitive Ras activation-deactivation reaction system, and that this is the origin of 
cellular bimodal signaling behavior(89).  However, bimodal Ras signaling in reconstituted sytems has not 
previously been reported. Here we test this hypothesis by directly examining the steady-state Ras activity 
behavior in competitive SOS-RasGAP reactions under a wide range of conditions and reaction system sizes.  
Unique features in these experiments that enable complex Ras activity behavior include: i) Grb2-mediated 
recruitment of SOSFL to activated receptor scaffold (pLAT); ii) fluid movement of SOS on the membrane 
surface to processively activate many Ras molecules; and iii) control of reaction size with the 
micropatterned supported membrane system. 

 

We first performed Ras activation-deactivation reactions in SLB microarrays ranging from 1 μm × 1 μm 
up to 10 μm × 10 μm. The reaction systems were allowed to reach an apparent steady-state (after ~2 hr), at 
which point we examine the spectrum of corral-to-corral variability of the Ras activity state (Figure 3-3A).  
These reactions are run under conditions where the average Ras activity in macroscopic reactions is roughly 
0.5 (upper images in Figure 3-3A).  Probability distributions for the Ras activity state, derived from 
histograms of the observed activity on the corral arrays, are plotted below each image in Figure 3-3A.  We 
observe the steady-state Ras activity to be bimodally distributed in the 1 μm × 1 μm and 2 μm × 2 μm corral 
arrays while becoming unimodal in larger size arrays. This scale dependence of the observed bimodality is 
not consistent with classic kinetic bistability.  If there were a stable kinetic bistability underlying the 
bimodal signaling behavior, this would still be observed in the larger size corrals—appearing as 
spontaneously separating domains of Ras activity state (see, for example, the PIP1/PIP2 lipid patterns 
generated from kinetic bistability described in(6)).  Instead, the observation of robust bimodality in small 
corrals and unimodality in larger corrals indicates a stochastic origin to the bimodal behavior in a system 
that is intrinsically monostable(6, 103). 

 

We next examine the robustness of the bimodal Ras activity response over a range of SOS concentrations, 
focuing on the 1 μm × 1 μm corral size.  At the lowest solution concentration of SOS we examined (0.5 
nM), the majority of the reaction corrals have essentially no Ras activation but a rare subset with distinctly 
high Ras activation states are clearly resolved (Figure 3-3B). As the SOS solution concentration is titrated 
from 0.5 nM up to 10 nM, we observed a change in the ratio of low and high Ras activity states (Figure 3-
3B).  The data for this titration of SOS against a fixed RasGAP concentration in a competitive reaction at 
steady state are summarized in Figure 3-3C.  The system exhibits a bimodal response over the entire range 
of SOS concentrations.  The high Ras activity state is at essentially the same activity level in all conditions, 
but is observed with higher frequency at higher SOS levels.  The lower Ras activity state shifts to higher 
activity levels (but still firmly resolved from the high activity state) and lower frequency with increasing 
SOS concentration. 

 



33 
 
 

 

Fig. 3-3. Bimodal Ras activation in the Ras activation-deactivation reaction. (A) Distribution of Ras activation states in the 
Ras activation-deactivation reaction in corrals (n > 216). Conditions that are bimodal (based on the Hartigans’ dip test (p < 0.01)) 
are plotted in red. Scale bar 5 µm. (B) Images of the Ras activation-deactivation reaction in 1 μm × 1 μm corral with varying SOS 
concentration. Scale bar 10 µm. (C) Distribution of Ras activation states in Figure 3B. Each dot represents a single corral. Right: 
Histogram of the Ras activation state distribution. Conditions that are bimodal are plotted in red. 

 
3.5 The processivity of SOS is central to the bimodal response 
 

We hypothesize that the observed bimodality in Ras activity state is driven by the extreme processivity of 
SOS.  This hypothesis is partly motivated by the fact that bimodality is only observed in smaller reaction 
systems, which is suggestive of an underlying stochastic mechanism(6, 103).  SOS processivity is an 
intrinsic amplifier of stochasticity as it translates single molecular SOS activation events into bursts of 
hundreds of activated Ras molecules.  We test this hypothesis by examining three truncated SOS constructs 
(Figure 3-4A): (i) SOSCat, only the catalytic domains with both the N- and C-terminal regulatory domains 
truncated, (ii) SOScatPR, with the N-terminal regulatory domains truncated. and (iii) SOSHDPC, with the C-
terminal regulatory domains truncated (Figure 3-4A). All constructs, including SOSCat, have both allosteric 
and catalytic Ras binding sites and can exhibit RasGTP-driven positive feedback. The inclusion of the PR 
(SOSCatPR) or the N-terminal regulatory domains (SOSHDPC) domains adds autoinhibition as well as 
additional membrane binding interactions, which enhance SOS processivity. The C-terminal PR domain 
allows SOSCatPR to bind to the membrane through Grb2 and phosphorylated LAT. The N-terminal HF, PH, 
and DH domains allow SOSHDPC to bind to the membrane through lipids such as PIP2. 
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The SOS constructs exhibit different levels of processive activity due to the different types of membrane 
association, with SOSFL exhibiting the highest processivity(49, 50).  The truncated SOS constructs can also 
activate Ras in a non-processive manner, through transient collisions with the membrane.  This activity is 
most prominent in SOSCat, which lacks all autoinhibition, and is progressively lower for both SOSCatPR and 
SOSHDPC, each of which have some autoinhibition.  Transient activity is essentially unmeasurable in SOSFL, 
due to its thorough autoinhibition.  These different activity profiles for the SOS constructs can be resolved 
in an assay where SOS is allowed to catalyze Ras activation, in a one-way reaction without competing 
RasGAP, for a limited time (20 minutes) in SLB microarrays (Figure 3-4B).  Results comparing initial and 
final Ras activity states for the four SOS constructs in 1µm x 1µm microarrays are illustrated in Figures 3-
4C-F.  The distribution of the Ras activation states sampled from thousands of corrals are plotted to the 
right of each representative image of the corral array.  In the case of SOSCat (Figure 3-4C) , the Ras activity 
levels exhibit a Guassian distribution centered around a well-defined mean after 20 minutes of activation.  
There are no outlier high Ras activity corrals for SOSCat.  This behavior corresponds with primarily transient 
activity, which uniformly distributes the Ras activation events among the corrals.  For SOSCatPR (Figure 3-
4D) and SOSHDPC (Figure 3-4E), there is a primarily Guassian peak around a moderate Ras activity level 
(from transient activity) with a number of high Ras activity corrals far outside this distribution, which 
correspond to occasional SOS molecules entering the processive state.  SOSFL exhibits the most extreme 
behavior, with a Gaussian peak after 20 minutes centered at essentially zero Ras activity and a number of 
highly activated corrals from processive SOS molecules (Figure 3-4F).  These data confirm that the 
processive state is the only active state in native, SOSFL(44, 50, 131). 

 

In competitive reactions, we observe the processive activity of SOS is instrumental in overcoming the 
deactivating pressure from RasGAP to achieve high Ras activity states.  Titrating SOSCat solution 
concentration in the presence of RasGAP on 1µm x 1µm corral arrays (as done previously with SOSFL, see 
Figure 3-3) reveals a continuously shifting Ras activity level, with no evidence of bimodality at any SOSCat 
concentration (Figure 3-4G).  Similar titrations with SOSCatPR and SOSHDPC reveal weak bimodality in some 
conditions (Figure 3-4H and 3-4I).  Only SOSFL, which exclusively activates Ras through the processive 
state, exhibits clear bimodality over the entire range of concentrations sampled (see Figure 3-3C). 
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Figure 3-4 Reactions of truncations of SOS with varying processivity. (A) Domain organization of SOS. REM and CDC25 
domain form the catalytic core. The catalytic core is flanked by N- and C-terminus regulatory domains. (B) Schematic of the time 
limited one-way reaction by SOS in 3-3C~3-3F. (C) SOSFL reaction. Left: Image of the reaction at 20 min. Right: Distribution of 
Ras activation states. The black histogram is the distribution at 0 min. The orange histogram is the distribution at 20 min. Scale bar 
5 µm. (D) SOScat reaction. (E) SOScatPR reaction. (F) SOSHDPC reaction. (G) Distribution of Ras activation states in SOScat-p120GAP 
competition reaction. (G) Distribution of Ras activation states in SOScatPR-p120GAP competition reaction. (G) Distribution of Ras 
activation states in SOSHDPC-p120GAP competition reaction. Conditions that are bimodal based on the Hartigans’ dip test (p < 0.01) 
are labeled red. 

 

3.6 Stochastic simulations confirm bimodality results from 
processivity 

 

To further examine the connections between processivity and bimodality in Ras activation by SOS, we 
conducted a series of stochastic simulations. We used a simplified model that includes only the common 
processes among all SOS constructs.  In this model (Figure 3-5A), SOS in solution (SOSsol) can reversibly 
bind to either RasGDP or RasGTP through its allosteric site to become localized at the membrane; these 
membrane-associated species are labeled SOS:RasGDP and SOS:RasGTP, respectively. The binding 
affinity to the SOS allosteric site of RasGTP is stronger than RasGDP (16, 43) and this is reflected in the 
model. SOS:RasGDP or SOS:RasGTP catalyze the conversion of RasGDP to RasGTP with the same 
apparent rate constant, 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(1)  , which has been experimentally measured in single molecule membrane array 
experiments(39).  Although 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(1)  is independent of allosteric Ras nucleotide state, and therefore can make 
no contribution to positive feedback, this model still exhibits RasGTP-driven positive feedback through the 
differential binding of RasGTP vs. RasGDP at the SOS allosteric site.  RasGAP catalyzes RasGTP to 
RasGDP reaction with simple bimolecular kinetics at a constant rate 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(2) , experimentally determined from 
data shown in Figure S1B. Simulations were conducted using the Gillespie algorithm(44), and kinetic rate 
constants used in the simulation were derived from experimentally determined values (see Material and 
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Methods for detail). We first performed the stochastic simulation with slow 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1)  and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(2) , reflecting the 
experimental measurements, and which lead to processive Ras activation by SOS. Under this condition, the 
stochastic simulation is clearly reflective of the experimental results (Figure 3-5B), in which the Ras 
activation state is bimodally distributed only in small reaction systems. By contrast, when the same kinetic 
parameters and reaction scheme are modeled with deterministic rate equations and concentrations treated 
as continuous variables, the system has one unique steady-state solution—kinetic bistability is not achieved. 
Similarly, when the size of the reaction increases in the stochastic simulation, the Ras activation states 
become unimodally distributed around the deterministic solution. 

 

We can use the stochastic simulation to isolate the effect of SOS processivity by increasing both  𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 and 
𝑘𝑘𝑜𝑜𝑛𝑛 for Ras binding to the allosteric site, while preserving their ratio (𝐾𝐾𝐷𝐷 ).  Under these conditions, SOS 
dwells at the membrane so briefly that on average less than one Ras molecule is activated during an 
individual membrane binding event (no processivity). However, by preserving 𝐾𝐾𝐷𝐷 , the total amount of 
membrane recruited SOS and overall rate of Ras activation is maintained.  Modeling the system with 
deterministic rate equations yields identical results, irrespective of the degree of processivity of SOS.  
However, stochastic simulations yield drastically different behaviors. With processive SOS, the Ras 
activation state distribution responds to an increase in SOS concentration in a bimodal manner (Figure 3-
5C). Conversely, when SOS is non-processive, the Ras activation state distribution responds to an increase 
in SOS concentration in a unimodal and graded manner that centers around the deterministic solution 
(Figure 3-5D). The non-processive SOS behavior closely matches the experimental results for SOSCat 
(Figure 3-3B). 

 

Overall, these simulation results confirm SOS processivity is a key driver of the observed bimodal signaling 
response and that the system does not exhibit classic kinetic bistability.  Broadly speaking, this type of 
behavior has been termed stochastic bistability(10, 11, 107), referring to the fact that bimodal behavior can 
emerge as a result of stochastic effects in systems that lack intrinsic kinetic bistability according to 
deterministic rate equations.  There are different mechanisms by which stochastic effects can lead to 
bimodality.  One well-known stochastic bistability mechanism is driven by positive feedback(11). In this 
scenario, one of the states will be close to 0 while the other state is near the deterministic steady-state 
solution. This can be readily reproduced by simulating the reaction in Figure 3-5A with strong positive 
feedback and weak processivity (𝐾𝐾𝐷𝐷 for RasGDP >  𝐾𝐾𝐷𝐷 for RasGTP, 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 > 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 . See Material and 
Methods for detail) (Figure 3-5E). Compared with the deterministic solution, positive feedback-based 
stochastic bistability will stochastically deactivate the reaction, populating the 0 state. 

 

Another type of stochastic bistability is driven by processivity (equivalent to burst amplitude in gene 
expression) (132). In the case of processivity-based stochastic bistability (simulating with 𝐾𝐾𝐷𝐷 for RasGDP 
=  𝐾𝐾𝐷𝐷 for RasGTP, 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 < 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 . See Material and Methods for detail) the deterministic solution lies 
between the two modes (Figure 3-5F).  Our experimental observations that Ras activation state in small 
reaction sizes bifurcates into two modes with one higher and one lower than the Ras activation state in large 
reaction sizes is consistent with this later mechanism of stochastic bistability, driven by enzymatic 
processivity. 

 

The subtle differences between these two mechanisms of stochastic bistability can become paramount in a 
signaling context. Inhibiting SOS has been an important topic in treatment of Ras signaling related 
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diseases(76, 109–112). We simulated the effect of SOS inhibition on Ras signaling with the Ras signaling 
reaction exhibiting either a positive feedback-based or a processivity-based stochastic bistability (matching 
conditions in figure 3-5E and 3-5F with the addition of reversible inhibition of SOS catalysis, see Material 
and Methods for detail).  Since in positive feedback-based stochastic bistability, both modes are equal or 
lower than the deterministic solution, the Ras activity of the overall population becomes inhibited relatively 
easily as predicted by the deterministic solution (Figure S3-4A). However, in processivity-based stochastic 
bistability, even at a drug concentration where deterministic kinetics predict successful lowering of Ras 
activation, Ras can still be stochastically activated in sufficient small reaction systems (Figure S3-4B). 
Overtime, essentially every Ras reaction will experience activation well above the activation threshold, 
even while the overall mean of the population is highly inhibited. This may provide a hint as to why 
effective SOS inhibition strategies to control Ras activity have been challenging to develop(76, 112).  
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Fig. 5. Stochastic simulations of Ras activation-deactivation reactions. (A) Kinetic scheme for the stochastic kinetic modeling. 
(B) Simulated result of Ras activation-deactivation reaction in corrals (n>500). Conditions that are bimodal are plotted in red. (C) 
Simulated result of Ras activation-deactivation reaction with varying concentration of processive SOS and (D) non-processive SOS 
in 1 μm × 1 μm corrals. The red plane corresponds to the deterministic steady-state solution. (E) Simulation of Ras activation-
deactivation reaction with weakly processive SOS that has strong positive feedback and (F) with processive SOS that has no 
positive feedback. The histogram is fitted to two gaussian distribution. The purple line shows the peak of the high mode. The red 
dashed line shows the deterministic steady-state solution 
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3.7 Control points for bimodal Ras activation 
 

The bimodal Ras activation response is dependent on Ras density (Figure 3-6A).  The observations of 
bimodal Ras activity responses described throughout this study were observed at relatively high Ras 
densities 1500~2000/µm2.  Such high densities of Ras have been reportedly observed in Ras clusters in 
cells (122, 123), but are distinctly higher than the average Ras density in the plasma membrane (~400 
molecules/µm2)(89).  At a Ras density 400 molecules/µm2, we observe the steady-state Ras activity under 
a competitive SOSFL-RasGAP reaction is no longer bimodal, and exhibits a graded response with changing 
SOSFL solution concentration (Figure 3-6B).  When the density of Ras is increased to ~1800 molecules/μm2, 
the bimodal response is restored. These data indicate that increasing the local Ras density can alter the Ras 
signaling behavior from graded to switch-like.  We speculate that this is due to the elevated encounter rate 
of SOS and Ras at high Ras density, which effectively speeds up the kinetic transition to processive activity 
(Figure 3-6A). 

Bimodality in Ras activation is also controlled by LAT density (Figure 3-6A).  The scaffold protein LAT 
forms a two-dimensional protein condensate with Grb2 and SOS on the membrane surface under the control 
of T cell receptor activation(44, 119, 126, 133). A similar condensate has recently been reported with 
EGFR(108).  Both the LAT and EGFR condensates control the ability of SOS to activate Ras, through a 
kinetic proofreading mechanism that taps into the slow autoinhibition release process in SOS.  LAT (or 
EGFR) are effectively clustered in the condensed state and this facilitates multivalent engagement of SOS, 
which retains SOS at the membrane longer and facilitates autoinhibition release(44).  We examined the 
effects of LAT clustering on membranes with low Ras density (~400 molecules/μm2), such that the reaction 
does not show bimodality under lower LAT density (~500 molecules/μm2) (Figure 3-6C). However, at a 
higher LAT density (~2500 molecules/μm2, comparable to the density of LAT in the LAT-Grb2-SOS 
protein condensate(119)) , the Ras activity state exhibits a bimodal response, despite the low Ras density. 
In this case, we speculate that the increased activation of SOS into its processive state by the high density 
of LAT is responsible for the observed bimodality. 

 

Collectively, these results reveal that molecular clustering of LAT or Ras at the membrane can activate the 
switch-like response from bimodal Ras signaling. We note that this is only possible since the bimodality of 
Ras activity originates from a stochastic mechanism. If instead it had originated from classic kinetic 
bistability, the bimodality and switch-like activity would be robust and not sensitive to such subtle 
perturbations (Figure S5). 
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Fig. 3-6. Control points for bimodal Ras activation (A) Kinetic model for SOS activation. SOS needs to bind to the membrane, 
release autoinhibition, then bind to Ras at its allosteric site before it can become fully activated. These processes are competed by 
unbinding of SOS from the membrane. (B) Ras activation-deactivation reaction with low (~400 μm2) and high (~2000 μm2) Ras 
density. Scale bar 5 μm.(C) Ras activation-deactivation reaction with low (~500 μm2) and high (~2500 μm2) LAT density. Scale 
bar 5 μm. 

 

3.8 Discussion 
 

We have identified a stochastic mechanism that allows Ras signaling at the membrane to respond in a 
bimodal, switch-like manner. This is dependent on highly processive activity of SOS and is not the result 
of RasGTP-driven positive feedback and kinetic bistability. Given the low copy number of SOS(125), and 
the microscopic reaction scale in cells, a stochastic bimodal response should be readily achievable in Ras 
signaling in cells. Stochastic bistability can achieve similar behavior as kinetic bistability, but through a 
different physical mechanism.  

 

A unique feature of the stochastic bistability mechanism is that this allows additional avenues for the switch-
like response of Ras signaling to be regulated. We have demonstrated both Ras clustering and LAT 
clustering, as well as overall reaction size, can serve as control points to engage or disengage the bimodal 
signaling response. This is distinct from classic kinetic bistability, with two stable steady states, where the 
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switch-like response will always be present. While deterministic kinetic bistability is more robust over a 
wide range of conditions, stochastic bistability may be more accessible to regulatory control.  

 

A deeper examination of the origin of stochastic bistability mechanisms clarifies the difference between 
two types of driving forces: positive feedback and processivity. Stochastic bistability driven by positive 
feedback will stochastically deactivate compared to a macroscopic reaction. On the other hand, in SOS 
mediated Ras signaling, the stochastic bistability is driven by processivity and can stochastically activate 
Ras signaling compared to the macroscopic reaction. This feature may allow Ras signaling to be activated 
even under a globally inhibiting background of high GAP activity. However, by the same logic, this 
mechanism may also result in resistance to attempts to inhibit Ras with drugs. 

 

Despite numerous simulation and theoretical studies on stochastic bistability(10, 11, 107, 134, 135), there 
have been very few experimental reports that describe stochastic bistability in real biological signaling 
systems(132, 136). . In part, this is due to the difficulties in analyzing biological reactions in a controlled 
microscopic environment. The present study describes a systematic approach to studying stochastic effects 
in membrane signaling reactions.  Many signaling proteins exhibit complex regulation at the membrane, 
including phospholipase C-γ(137), phosphoinositide 3-kinases(138), N-WASP(139), and Vav(140). We 
speculate that many of the complex molecular features of these signaling proteins could induce bimodal 
responses in a cellular reaction environment even when classic kinetic bistability can be ruled out. 

 

3.9 Supplemental figures 
 

 
Fig S3-1. Reconstituted Ras activation and deactivation reaction. (A) Ras-GDP to Ras-GTP nucleotide reaction catalyzed by 
SOS (B) Ras-GDP to Ras-GTP nucleotide reaction catalyzed by RasGAP. (C) Steady state response of Ras activation-deactivation 
reaction with 200 nM RasGAP and varying concentration of SOS. 
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Fig S3-2. Density variation analysis in the micropatterned supported lipid bilayer. (A) Intensity distribution of 555-LAT 
across corrals (n>1000). Scale bar 5 μm. (B) Intensity distribution of Ras (measured by 647-RBD after Ras was fully activated by 
SOS to Ras-GTP) across corrals (n>1000). Scale bar 5 μm. 

 

 

 

 
Fig S3-3 Representative example of a burst in Ras activation caused by a single molecule SOS..  The images and plot are from 
a single 1 μm × 1 μm corral in a Ras activation-deactivation reaction performed with Alexa-555 labeled SOS. The step increase in 
the SOS intensity indicates the recruitment of a single SOS molecule to the membrane, as shown in the images above. This is 
followed by a rapid increase in RBD intensity, indicative of a burst in Ras activation. After SOS detached form the membrane, the 
Ras activation slowly decreases from the RasGAP activity. 
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Fig S3-4 Simulation of SOS inhibition. (A) Positive feedback-based stochastic bistability scenario with SOS inhibition. 
Distribution of Ras activation state with varying amount of SOS inhibitor in the stochastic simulation (red histogram) plotted with 
the deterministic steady state solution (dotted red line). At no inhibitor (0% SOS inhibited), Ras activation is 0.7 according to the 
deterministic steady state solution. At 90% SOS inhibited, both the stochastic simulation and deterministic steady state solution 
indicates successful inhibition of Ras activation. (B) Processivity-based stochastic bistability scenario with SOS inhibition. 
Distribution of Ras activation state with varying amount of SOS inhibitor in the stochastic simulation (red histogram) plotted with 
the deterministic steady state solution (dotted red line). At no inhibitor (0% SOS inhibited), Ras activation is 0.7 according to the 
deterministic steady state solution. At 90% SOS inhibited, while the deterministic steady state solution suggested successful 
inhibition (Ras activation lowered to 0.169) the stochastic simulation showed a fraction of the reactions still exhibits strong 
activation way above the mean. 

 

 

Fig S5 Ras activation reaction with kinetic bistability at varying Ras densities. Using kinetic parameters that leads to kinetic 
bistability, the deterministic steady state solution can be solved at reaction conditions with either high or low Ras densities. Left: 
Ras density at 100 μm2. Right: Ras density at 1000 μm2. The bistable response is robust across different Ras densities. 
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Chapter 4 
SHAPE-RESPONSIVE ENZYMATIC REACTION 
ESTABLISHES POLARITY ON THE CELLULAR 
MEMBRANE 
 

olarization, by asymmetric distribution of signaling molecules on the membrane, is a fundamental 
aspect of essentially all cellular life. Pattern-forming instabilities in reaction-diffusion systems are 
conventionally used to provide a conceptual framework for understanding such phenomena. 

However, the physical requirements to establish stable pattern formations in continuum reaction-diffusion 
systems are highly restrictive, drawing into question the extent to which such mechanisms actually control 
real-world systems. Here we demonstrate an intrinsically stochastic reaction mechanism that can drive 
polarization with near deterministic outcome by coupling to the shape of the cellular membrane. This 
alternative mechanism, which has no analog in continuum reaction-diffusion systems, has much less 
restrictive requirements to induce polarization.  We experimentally realize spontaneous reaction 
polarization in two ubiquitous competitive enzymatic systems: phosphatidylinositol phosphate (PIP) lipid 
phosphorylation-dephosphorylation and Ras activation-deactivation cycles. The observed polarization in 
these systems is not de novo, but rather is the result of coupling between intrinsic stochastic reaction 
fluctuations and the shape of the confining cell membrane. As such, the arising polarity is consistently 
aligned with cellular shape features in ways that conventional continuum reaction-diffusion descriptions of 
biological pattern formation do not predict. Through a series of mesoscopic experiments in shape-confined 
membrane systems and corresponding stochastic kinetic reaction-diffusion modeling, we elucidate the 
underlying physical mechanism as well as key control parameters. From the results emerges a surprisingly 
simple-to-achieve mechanism that drives robustly consistent symmetry breaking and polarization behavior. 
Many known biological signaling systems achieve the minimum requirements we identified, suggesting 
this mechanism may be widespread in biology. 

 

  

P 
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4.1 Introduction 
 

The establishment of cell polarity is necessary for critical cellular functions, such as cell migration(141–
143), division(144), transfer of information(145), and immune response(146).  Such spontaneous 
emergence of spatial patterns of molecules in the liquid milieu of a living cell is a hallmark of life.  By 
contrast, reconstituted biochemical reactions in a macroscopic test-tube format typically exhibit spatially 
homogeneous behavior, rigorously following the basic laws of chemical reaction-diffusion systems.  In a 
landmark paper, Alan Turing pointed how a wide range of spontaneous patterns can emerge in the 
mathematical solutions to basic continuum reaction-diffusion equations when certain requirements are 
met(13).  Now referred to as Turing instabilities, and resultant Turing patterns, this type of mathematical 
interpretation has formed the foundation for a vast array of largely theoretical studies on biological pattern 
forming processes.  Natural systems like fish skin pigmentation(147), bird feather buds(148), mouse hair 
follicles(149), and digit patterning(150, 151) all exhibit some characteristics that resemble Turing patterns, 
but we do not have in vitro experiments that can certify their mechanism. Experimentally, only a handful 
of (non-biological) chemical systems have been reconstituted that demonstrably meet the requirements for 
a Turing instability(152–154). Reconstitution of pattern-forming biological systems has proven almost 
unobtainable, with the spectacular Min oscillator offering a rare exception(155).  Physical realization of the 
mathematical conditions for a Turing instability, such as the significant difference in molecular diffusivity 
between competing species, are hard to reach in reality. For these reasons, it is still not yet possible to 
conclude that cell polarity and other biological patterns are actually formed through the Turing pattern 
mechanism.  

 

Theoretical studies of biological pattern formation have disproportionately emphasized a continuum 
description of reaction-diffusion processes. This continuum approach, in which concentration is treated as 
a continuously varying parameter, smooths over the fact that molecules are intrinsically discrete and cannot 
capture behaviors resulting from stochastic variation.  Several theoretical works have shown how 
stochasticity can broaden the pattern-permitting parameter space(156–159) or even enhance the speed or 
accuracy of the predicted pattern formation(160, 161). Recent experimental studies have also identified an 
intrinsically stochastic mechanism by which enzymatic reaction rates can become scale dependent(103). 
We posited that this stochastic scale-sensing mechanism might be an enabler of pattern forming behavior, 
in a reaction shape-responsive manner, under conditions where Turing patterns cannot form.  

 

Here, we examine two biologically distinct competitive enzymatic reaction cycles operating on the 
membrane surface that meet the basic conditions for stochastic scale sensitivity.  In both cases, a membrane 
substrate is toggled between two states by a pair of enzymes that reside in the solution phase.  One system 
consists of a variety of lipid kinases and phosphatases driving interconversion of phosphatidylinositol 
phosphate (PIP) lipids between the mono- and di-phosphorylated states (PIP1 and PIP2)(6).  The other 
system consists of the guanine nucleotide exchange factor (GEF) SOS driving nucleotide exchange to 
convert RasGDP to RasGTP working against the GTPase activating protein (GAP), which facilitates 
hydrolysis of RasGTP back to RasGDP.  Both of these reaction systems are of central importance in many 
biological signaling mechanisms and they both also exhibit positive feedback in a manner that enables the 
stochastic scale sensing mechanism(103).   

 

Experiments reveal that both systems spontaneously polarize in response to specific types of spatial 
confinement in a patterned supported membrane, while still exhibiting exclusively homogeneous behavior 
on unconfined membranes.  Neither system achieves a Turing instability nor does either exhibit intrinsic 
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kinetic bistability.  The observed behavior is dependent on spatial confinement of the reactions and the two-
dimensional shape of the membrane confinement determines the polarity direction with near deterministic 
outcome—qualitatively differing from the behaviors of other known pattern-forming mechanisms(13, 16). 
We further demonstrate that the direction of polarity can be switched by engineering positive feedback on 
the enzymes. Stochastic kinetic modeling of reaction-diffusion for minimal reaction mechanisms reveals 
how the stochastic binding and unbinding of enzymes to the membrane explicitly enables the observed 
behavior. Experiments are performed under geometrical confinement patterns resembling a variety of 
natural cellular shapes and molecular densities are also near physiological levels.  Thus spontaneous 
polarization we observe is thus likely to exist under natural physiological conditions and may be a 
contributing factor in known biological pattern forming processes in living cells. 

 
4.2 PIP Phosphatase and Kinase competition on shape-

controlled supported membrane shows near-deterministic 
polarization 

 
A previously reported lipid kinase-phosphatase competition system had briefly demonstrated that it could 
polarize on membranes in confinement, but the mechanism was not uncovered(6). Therefore, we decided 
to systematically study the system’s polarization under membrane confinement and reveal its core 
principles (Fig. 1a). In the system, the catalytic domains of kinase phosphatidylinositol-4-phosphate 5-
kinase (PIP5K) and the phosphatase Lowe oculocerebrorenal syndrome protein (OCRL) act on their 
substrate phosphatidylinositol phosphate (PIP) lipid on a supported lipid bilayer. OCRL and PIP5K oppose 
each other’s reaction: OCRL converts phosphatidylinositol-4,5-phosphate (PI(4,5)P2) to 
phosphatidylinositol-4- phosphate (PI4P), and PIP5K converts PI4P to PI(4,5)P2.  

 

PIP5K binds to the membrane via its PI(4,5)P2-binding sites, which is independent of its catalytic site, 
whereas OCRL does not bind to the membrane. Thus, PIP5K converts PI4P to PI(4,5)P2 mainly in its 
membrane-bound state, whereas OCRL converts PI(4,5)P2 to PI4P with transient contact to the membrane 
from the solution. The dependence of PIP5K membrane binding on PI(4,5)P2 results in positive feedback, 
a necessary feature for pattern-forming reactions(162). 

 

In order to study the two-dimensional membrane shape’s effect on polarization under the competition 
reaction, we created two-dimensional membranes of defined shapes and sizes by using a micro-patterned 
chromium layer on glass(43). Supported lipid bilayer (SLB) forms only on top of exposed glass laterally 
surrounded by the thin chromium. The metal’s low (~9 nm) height does not affect the movement of 
molecules introduced to the system from the solution. Lipids and lipid-bound proteins freely diffuse inside 
the enclosed region, but the movement lies inside the boundary(39, 43). Multiple membranes of different 
shapes interact with the shared bulk solution above, allowing us to observe an ensemble of reactions. We 
tracked the distribution of PI4P and PI(4,5)P2 lipids by a total internal reflection fluorescence (TIRF) 
microscope using previously developed fluorescent sensors(6). Defects in Rab recruitment protein A (DrrA) 
labeled with Cy3 (DrrA-Cy3), and pleckstrin homology (PH) domain of phospholipase C δ (PLCδ) labeled 
with Alexa Fluor 488 (PLCδ-Alexa488) provide high time and spatial resolution in imaging the distribution 
of PIP lipids.  
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Figure 4-1 PIP kinase-phosphatase competition reaction polarizes on pattered supported lipid bilayer. (a) Schematic of the 
PIP kinase-phosphatase competition reaction reconstituted on a patterned supported lipid bilayer. Kinase bind to the membrane in 
a PI(4,5)P2 dependent manner and can catalyze PI4P phosphorylation, while phosphatase catalyze PI(4,5)P2 dephosphorylation 
directly from the solution. Patterned metal defines the shape of the supported lipid bilayer. (b) Time sequence images of PIP kinase-
phosphatase competition reaction in a circular membrane or a circular membrane with protrusion. Top left: The shape of the 
membrane. Bottom left: Time sequence images with 30 sec intervals. Right: Enlarged view with 30 sec intervals. (c) FRAP 
experiment of TopFlour- PI4P. The label is on the lipid tail and represents all PIP lipids in the experiment. Time interval 40 sec. 
(d) Left: Definition of reaction coordinate and polarization. Right: Experimental polarization time trace of circular membrane with 
protrusion (n=9). 

 

First, we focused on the effect of cell protrusion because it is a fundamental process in numerous cellular 
behaviors including cell migration and invasion(163). Two differently shaped membranes were constructed, 
one mimicking a cell without a protrusion and the other mimicking a cell with a protrusion (Fig. 2b). The 
composition of all the membranes were identical, 96 mol% 1,2-dioleoyl-sn-glycero-3-phosphocholine 
(DOPC), 2 mol% PI4P, and 2 mol% PI(4,5)P2. The distribution of the PI4P and PI(4,5)P2 are homogeneous 
initially (Fig. 2b). However, when we introduced phosphatase, kinase, and ATP, the lipid composition 
changed over time. Notably, by adjusting the concentration of the enzymes, contrasting behaviors were 
observed under the same bulk solution. In circular membranes (60 µm in diameter), both PI4P and PI(4,5)P2 
levels changed without detectable spatial inhomogeneity (Fig. 1b). However, in circles with a protrusion, 
the membranes polarized into PI4P-rich and PI(4,5)P2-rich regions, creating distinct lipid composition 
between the protrusion tip and the main body (Fig. 1b). The polarization was not a result of lipid or protein 
phase separation, since fluorescence recovery after photobleaching (FRAP) experiment verified the fluidity 
of the lipids (Fig. 1c). The direction of the polarization axis was highly consistent, with the small protrusion 
in PI4P-dominant state and the larger circular body in PI(4,5)P2-dominant state, and never observed in the 
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opposite direction. To quantify this, we defined the reaction coordinate, 𝑥𝑥 ≡ 𝜎𝜎𝑃𝑃𝑃𝑃4𝑃𝑃/ (𝜎𝜎𝑃𝑃𝑃𝑃4𝑃𝑃 + 𝜎𝜎𝑃𝑃𝑃𝑃(4,5)𝑃𝑃2), 
where 𝜎𝜎𝑃𝑃𝑃𝑃4𝑃𝑃  and 𝜎𝜎𝑃𝑃𝑃𝑃(4,5)𝑃𝑃2  represents the surface density of PI4P and 𝜎𝜎𝑃𝑃𝑃𝑃(4,5)𝑃𝑃2  represents the surface 
density of PI(4,5)P2. Tracking the 𝑥𝑥-value at the center of the main body and the protrusion tip as 𝑥𝑥1 and 
𝑥𝑥2, we defined the difference 𝑥𝑥1 − 𝑥𝑥2 as the polarization. The polarization was consistent among multiple 
membranes and lasts for minutes (Fig. 1d).  

 
4.3 Stochasticity enables polarization 
 
Stochasticity has been shown to have strong influence on the kinase-phosphates competition reaction(6, 
103). Therefore, we constructed a simplified two-dimensional reaction-diffusion model to test whether 
stochastic enzyme binding is important for the observed polarization in our experiments (Fig. 4-2a). In our 
model, the kinase stochastically binds to and unbinds from the membrane following the kinetic rates 𝑘𝑘1+ 
and 𝑘𝑘−1+ , whereas membrane-bound kinases turn PI4P into PI(4,5)P2 following Michaelis-Menten kinetics 
with kinetic parameters 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡+  and 𝐾𝐾𝑀𝑀+. The phosphatase, without membrane-binding, turns PI(4,5)P2 into 
PI4P with 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡−  and 𝐾𝐾𝑀𝑀−  (Fig. 4-2a). Both the PIP lipids and membrane-bound enzymes diffuse on the 
membrane, with diffusion coefficients 𝐷𝐷𝑝𝑝𝑖𝑖𝑝𝑝 and 𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒 (for details, see Materials and Methods). We first 
simulated the reaction on a circular membrane using simulation parameters that predict a single stable 
steady-state (Fig. 4-2b). The PIP composition was homogeneous throughout the simulation, which reached 
and maintained a steady-state. However, when simulating the membrane in a circle with a protrusion, the 
protrusion tip achieved a high level of PI4P, whereas the main body reached a high level of PI(4,5)P2, 
similar to our experiment (Fig. 4-2c). The polarization was maintained against the homogenizing effect of 
lipid and protein’s lateral diffusion. Tracking the time-dependent evolution of the reaction coordinate 𝑥𝑥 at 
different position during the reaction showed that while 𝑥𝑥1 reached the predicted steady-state, 𝑥𝑥2 moved 
away from the steady-state and becomes PI4P enriched (Fig. 4-2d). The discrepancy in reaction kinetics 
between the main body and the protrusion originates from the difference in their effective area. Due to the 
larger area of the main body, the probability to recruit a kinase somewhere on its membrane is much higher. 
Thus recruited kinase increases the local PI(4,5)P2 density, increasing the probability of subsequent kinase 
binding (positive feedback). Collectively the kinases overcomes the phosphatase activity, dominating the 
main body with PI(4,5)P2. In contrast, the protrusion presents a much smaller area, and has a lower chance 
to recruit a kinase before the phosphatase dephosphorylates most of the PI(4,5)P2 into PI4P and diminishes 
kinase recruitment probability. Stochasticity is crucial in the process and polarization disappeared when the 
simulation was run on the geometry that is ten times bigger (Fig. 4-2e). 
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Figure 4-2 Stochastic simulation of PIP kinase-Phosphatase polarization reaction. (a) Schematic of the kinetic processes that 
are modeled in the two-dimensional reaction-diffusion stochastic simulation. (b) Reaction flux to reaction coordinate plot for the 
simulated parameters reveals a single stable steady-state. (c) Simulated PIP kinase-phosphatase polarization reaction in a circular 
membrane with protrusion. (d) Representative reaction coordinate time trace of the simulation. (e) Simulated polarization time 
trace of circular membrane with protrusion. Simulations in 1× length scale are plotted in red and simulations in 10 × length scale 
are plotted in black. The shaded area is the standard deviation. 

 

4.4 Engineering enzyme kinetics reverses the polarization 
 

Previously, it has been shown that engineering membrane enzymes with positive feedbacks would enable 
the enzymes to become size-sensing(103). The phosphatase OCRL can be fused with the PI4P binding 
domain (DrrA) to enable binding to the membrane via its product PI4P, establishing positive feedback. It 
has been shown that by engineering positive feedback to OCRL, the direction of size sensing in the PIP5K 
and DrrA-OCRL competition reaction can be reversed in relation to PIP5K and OCRL competition 
reaction(6, 103). We thus hypothesized that by replacing OCRL with DrrA-OCRL in PIP competition 
reaction, the direction of polarization could be reversed. In PIP competition reaction using DrrA-OCRL, 
both the phosphatase and the kinase exhibits positive feedback and catalyze PIP lipids mostly in membrane-
bound states with negligible contributions from direct catalysis from the solution (Fig. 4-3a). 

 

Strikingly, DrrA-OCRL and PIP5K polarized the membrane in the direction opposite to OCRL and PIP5K 
pair (Fig. 4-3b). Our simulation reproduced this behavior when configuring both phosphatase and kinase to 
convert between their solution and membrane-bound states, adhering to the law of mass action. The 
phosphatase converts with the kinetic rates {𝑘𝑘1−, 𝑘𝑘−1− } and the kinase with {𝑘𝑘1+, 𝑘𝑘−1+ }. When simulated on 
the membrane ten times bigger, the membrane did not polarize (Fig. 4-3c). 
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Figure 4-3 Stochastic simulation of PIP kinase-Phosphatase polarization reaction. (a) Schematic of the kinetic processes of 
the PIP5K and DrrA-OCRL competition reaction. (b) Enlarged time sequence images of PIP5K and DrrA-OCRL competition 
reaction in a circular membrane with protrusion with 30 sec intervals. (c) Simulated polarization time trace of PIP5K and DrrA-
OCRL competition reaction in a circular membrane with protrusion. Simulations in 1× length scale are plotted in red and 
simulations in 10 × length scale are plotted in black. The shaded area is the standard deviation. 

 

4.5 The effect of cellular geometries on the polarization 
 
To further address the relevance of the observed phenomena in cellular contexts, we created supported 
membranes of cell-like shapes using microfabrication on glass. Shapes of an actual cell presenting a large 
number of filopodia, an actual brain cell, and a representation of a migrating cell were patterned (Fig. 4-4). 
Remarkably, all these two-dimensional shapes had dramatic effects on the membrane polarization under 
the competition reaction. For the filopodia-rich cell-shaped membranes, under OCRL and PIP5K 
competition, the main body enriched in PI(4,5)P2, and the filopodia region enriched in PI4P. When DrrA-
OCRL and PIP5K were introduced, the main body enriched in PI4P, and the filopodia region enriched in 
PI(4,5)P2. 

 

The brain cell-shaped membranes enriched the dendritic region in PI4P and the cell body in PI(4,5)P2 under 
OCRL and PIP5K competition, but enriched the dendritic region in PI(4,5)P2 and the cell body in PI4P 
under DrrA-OCRL and PIP5K. Lastly, the migrating cell-shaped membranes enriched the leading edge in 
PI(4,5)P2 and the trailing edge in PI4P under OCRL and PIP5K competition, but enriched the leading edge 
in PI4P and the trailing edge in PI(4,5)P2 under DrrA-OCRL and PIP5K (Fig. 4-4a and 4-4b). The 
experiments showed that the two-dimensional shape of the membrane mimicking commonly observed cell 
shapes is enough to produce dramatic polarizations under the kinase-phosphatase competition. The 
polarization patterns were reproduced by our simulations using the same kinetic parameters used to simulate 
the reactions on the membranes of previously simulated shapes (circle, and circle with a protrusion) (Fig. 
4-4c and 4-4d). 
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Figure 4-4 Polarization of PIP kinase-Phosphatase reaction in cell-like shapes. (a) Polarization of OCRL and PIP5K 
competition reaction in cell-like shapes. Time interval 40 sec. (b) Polarization of DrrA-OCRL and PIP5K competition reaction in 
cell-like shapes. Time interval 40 sec. (c) Simulation of OCRL and PIP5K competition reaction in cell-like shapes. (d) Simulation 
of DrrA-OCRL and PIP5K competition reaction in cell-like shapes. 
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Figure 4-5 Hybrid Lysate experiment and SOS-p120GAP polarization. (a) Top: Schematic of the hybrid lysate experiment. 
Bottom: Time sequence images of the lysate and hybrid lysate competition reaction. (b) Schematic of the kinetic processes of the 
SOS-p120GAP competition reaction. (c) Examples of polarized SOS-p120GAP competition reaction in diverse geometries. Scale 
bar 20 μm. 
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4.6 Hybrid cellular extract polarizes the supported PIP 
membrane 

 
Next, we asked whether natural contents inside a cell will also manifest a similar effect when exposed to 
the in vitro membrane. To test this, we prepared pig leukocyte lysate and introduced it to an unconfined 
supported membrane to examine its activity on PIP lipids. The membrane composition was identical to the 
previous setup, 96 mol% DOPC, 2 mol% PI4P, and 2 mol% PI(4,5)P2. Treating the membrane with the 
lysate leads to an PI4P dominated state homogeneously across the membrane. This suggest that the lysate 
has a stronger phosphatase activity. To mimic the scenario of an upregulation of kinase activity in the cells, 
we added PIP5K to the lysate, creating a hybrid lysate. Introducing the hybrid lysate to filopodia-rich cell-
shaped membranes initially failed to produce polarization. However, when increasing the size by a factor 
of two (increasing the longest axis approximately from 120 µm to 240 µm), we observed polarization that 
resembles the polarization produced by purified OCRL and PIP5K. This suggests that the hybrid cell lysate 
has a slightly different characteristic length scale of polarization. The observation demonstrates that when 
presented to a two-dimensional membrane shape, natural cellular constituents exhibit the ability to polarize 
in response to geometry. 

 
4.7 SOS – p120GAP competition polarizes Ras functionalized 

membrane 
 
The simulation results demonstrate that the requirement for stochastic polarization to emerge is very simple, 
and exists in many naturally occurring membrane competition reactions. The interconversion of Ras-GTP 
and Ras-GDP by guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP) is one 
example. Ras is switched-on when guanine nucleotide exchange factor (e.g., Son of Sevenless; SOS) 
exchanges the Ras-bound GDP to GTP and switched-off when GTPase activating proteins (e.g., p120GAP) 
facilitate Ras to hydrolyze the bound GTP to GDP. We purified the catalytic domain of p120GAP (hereafter 
referred as p120GAP), which acts on its substrate (Ras-GTP) directly from the solution without feedback. 
On the other hand, SOS gets recruited to the membrane via Grb2, which binds to the scaffolding linker for 
activation of T-cells (LAT). Membrane-recruited SOS can bind to Ras via its allosteric site and enter a 
highly processive state(39, 48). The allosteric site has a higher affinity for Ras-GTP compared to Ras-GDP, 
leading to positive feedback in SOS reaction(164).   

 

We functionalized both Ras and LAT molecules on the supported lipid bilayer, on which the LAT was 
fluorescently labeled (Alexa555-LAT) to monitor its distribution. Grb2 is included in the experiments to 
recruit SOS to LAT(44). We used the previously developed Ras-binding domain of Raf1 (Alexa647-RBD) 
to monitor the distribution of activated Ras(44). Before the competition reaction, LAT was distributed 
evenly on the membranes, and Ras existed entirely in its inactive form. When we introduced the competing 
pair SOS and p120GAP for the reaction, a small number of membranes showed locally activated Ras 
molecules. The localization was markedly biased towards the narrow peripheral features of the membrane 
geometry (Fig. 5b). It is clear from the homogeneous distribution of the LAT on the membrane that the 
polarization did not occur through altered distribution of LAT but through the underlying kinetics of GEF-
GAP competition reaction. Therefore, this observation shows that the geometry-driven near-deterministic 
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polarizing influence is also present under the GEF-GAP competition, similar to the PIP kinase-phosphatase 
competition.   

 
4.8 Discussion 
 
Polarization of cellular signaling molecules is a well-observed, yet mechanistically poorly understood 
phenomenon. The interpretation of spontaneous polarization is largely dependent on Turing’s theory. 
However, Turing's theory may not be applicable to all polarization phenomena since it requires kinetic 
conditions that may be difficult to satisfy(13). Here, we have shown that reactions on the membrane can 
polarize through intrinsically stochastic mechanisms with very simple kinetic requirements. Reconstitution 
experiments and stochastic simulations unequivocally demonstrated that the polarization occurs only in 
systems with high stochasticity. Despite the stochastic nature of polarization, once the system is polarized, 
it will polarize in a direction near-deterministically. in which deterministic kinetics cannot accurately 
predict polarization, let alone near-deterministic directionality. These features cannot be explained by 
conventional theories that rely on deterministic kinetics. 

 

We observed two opposite directions of polarization in relation to the membrane binding property of the 
competing enzymes; In the small corners of the PIP competition reaction, the membrane-localizing PIP5K 
is weakened compared to OCRL. By contrast, in the Ras competition reaction, the membrane-localizing 
SOS dominated over GAP exclusively at the corners. It is possible that the opposite behaviors are due to 
differences in kinetic parameters; PIP5K has a strong, high-order positive feedback, while SOS has a much 
weaker feedback(103). However, SOS exhibits extreme processivity at the membrane that PIP5K lacks(34). 
Previous examples have shown that stochastic reactions with positive feedback will be disfavored in small-
scale reactions compared to larger-scale reactions(103). Independently, stochastic reactions with high 
processivity can activate and overcome the opposing reaction much more readily in small-scale reactions 
than in bigger reactions (Chapter 3). We thus speculate that the direction of stochastic polarizations may be 
controlled by the relative strength of the positive feedback and the processivity of the enzymes. 

 

It is well-known that polarized reactions often lead to asymmetric changes in cellular geometry. It has been 
shown that cellular geometry could potentially influence polarization reactions, achieving mutual regulation, 
but detailed mechanistic understanding is lacking. The unique features of stochastic polarization 
mechanisms are that polarization only emerges with the presence of two-dimensional geometrical 
confinements, and the localization of the signaling molecules strictly follows the geometrical feature in a 
near-deterministic manner, demonstrating a stark contrast to the behavior of Turing patterns. The influence 
of two-dimensional geometry in the Turing pattern is limited to aligning the pattern rather than precise 
localization. The potential of stochastic polarization to enable cells to polarize in a highly consistent manner 
with respect to cellular geometries could present benefits over Turing patterning does not in a scenario 
where directionality is important.  

 

Stochastic polarization is not the only mechanism that could respond to cellular geometries. Previously, the 
difference in the surface-to-volume ratio has been proposed to direct cyclic adenosine monophosphate 
(cAMP) signaling(53). Reaction-diffusion systems such as the Min system also respond to their surrounding 
geometry, although in an oscillatory manner(155). However, what is unique about stochastic polarization 
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lies in the simplicity of its requirements. It does not require any three-dimensional geometrical features or 
complex mechanisms, such as the molecular timing of nucleotide exchange programmed in the Min system. 
The major requirements —asymmetric membrane binding kinetics in the opposing enzymes, two-
dimensional membrane geometry with differential confinement, and stochasticity— are easily satisfied in 
the native reaction environment inside a cell. This is supported by the ability of hybrid cell lysates to exhibit 
characteristics of stochastic polarization. 

 

 

Our experiments have shown that stochastic polarization can be readily achieved in two types of ubiquitous 
membrane reaction: PIP phosphorylation-dephosphorylation and small GTPase activation-deactivation. 
Within these two types of membrane reactions, many are known to polarize. For example, PTEN and PI3k 
competition reaction can lead to PI(3,4,5)P3 polarization in motile cells(165), Cdc42 is well-known to 
polarize(166), competition between the GEF and GAP of Rab5 can polarize Rab5-GTP(31), PI(3,4)P2 has 
also been shown to polarize in apical-basal polarization(167).  In addition, signaling reactions such as 
tyrosine phosphorylation-dephosphorylation also exhibit the basic requirement for stochastic polarization 
to emerge and are thus likely subjected to stochastic polarizations in cells(4). Although the strength of 
stochastic polarization effects inside a living cell is yet to be discovered, the accessibility of the pre-
requisites suggests that the stochastic polarization mechanism could play a significant role in polarization 
reactions in cells. 
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Chapter 5 
FINAL REMARKS 
 

In this dissertation, I presented two types of stochastic effects that can deviate membrane reactions from 
the description of classical chemical kinetics. I first showed that the apparent speed of a reaction with 
positive feedback can be slower when reacting in small membrane areas, and I have demonstrated that this 
is due to the discrete nature of individual reactions (Chapter 2). The second effect presented (Chapter 3) is 
that the outcome of a competition reaction can be bistable only when reacting in a small membrane area. 
This is because of the fluctuations in the reaction generated by the strong out of equilibrium activity from 
a low copy number of enzymes. In Chapter 4, I have showed that in two-dimensional membranes mimicking 
the contours of various cell types, these stochastic effects can emerge into polarization of signaling 
molecules on the membrane. This demonstrated a broader consequence of the two stochastic effects 
introduced in Chapter 2 and 3. Although this dissertation only explored very simple competition reactions, 
such effects can potentially lead to cell level, or even system and organism level physiological 
consequences, as local dynamics can be propagated and amplified through signal transduction. 

 

While the stochastic effects described in this dissertation appear exotic since they cannot be explained by 
classical chemical kinetics, I would argue that such phenomena are likely commonplace in cellular signaling 
reactions. An interesting article by Peter J. Hailing in 1989 nicely explained why this might be the case(128). 
Fundamentally, chemical reactions are comprised of the random and discrete nature of individual molecular 
interactions. Thus, a stochastic model is intrinsically a more accurate description of molecular reaction 
systems. From statistical mechanics, we were able to derive the classical chemical kinetics with a set of 
limiting approximations. We are very accustomed to relying on classical chemical kinetics formalism 
(reaction rate equations or mass action kinetics) to describe signaling reactions in the cells. There is an 
important point to remember, however: classical chemical kinetic models are only approximations; they 
don’t accurately capture the random and discrete nature of the individual molecular reactions. Biochemical 
reactions in cells are inherently in a microscopic regime, where the small size of cellular structures make 
the reaction highly stochastic. Under such circumstances, the approximations of classical chemical kinetics 
often do not hold, and stochastic effects can emerge. 

 

In this dissertation, I have highlighted a few cases where a reaction can deviate substantially from the 
predictions of classical kinetics. The mechanisms are very simple and easily understood, sometimes thought 
of as trivial, but the consequences are undeniably surprising. I believe that this shows that we have only 
revealed the tip of the iceberg. Many more complex mechanisms that can lead to stochastic effects are yet 
to be discovered. However, I hope that this dissertation can serve as a reminder that all reactions in cells 
are fundamentally stochastic. To ensure that kinetic analyses or molecular models are faithfully capturing 
the dynamics of cellular reactions, it is important to not assume the reaction conforms to deterministic rules. 
One must either study the reaction in a scale that is reminiscent of the type found in cells or else rigorously 
confirm that there are no appreciable stochastic effects. I believe that this mindset will greatly propel our 
understanding of the complex biological reactions in cells. 
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APPENDIX A 
Material and Methods for Chapter 2 
 
Protein purification 

PTEN 

PTEN was cloned from PET30B-PTEN (PET30B-PTEN was a gift from Alonzo Ross (Addgene plasmid 
# 20741)(168). PTEN in-frame with a N-terminal his6-MBP-(Asn)10-TEV-GGGGG was transformed into 
BL21(DE3) expression cells, and these cells were grown overnight at 37⁰C in TB medium supplemented 
with kanamycin (50μg/mL). The overnight culture was then diluted 1:100 (v/v) into fresh TB medium 
supplemented with kanamycin (50μg/mL), and was allowed to grow to OD600 of 0.6~0.8. Protein 
expression was induced with 0.1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated at 18⁰C 
200rpm overnight. Bacterial cells were collected by centrifugation at 3000 rpm, resuspended in Lysis buffer 
(50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 0.4 mM BME, 1 mM PMSF, 100 µg/mL DNase) and 
homogenized using a microfluidizer. Cell debris was removed by centrifugation at 16,000 rpm at 4℃ for 
60 minutes, and the supernatant was incubated with Ni-nitrilotriacetate resin (Thermo Scientific HisPur Ni-
NTA Resin) at 4℃ for 1 hour. The resin was subsequently loaded into a gravity column, washed with Wash 
buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 20 mM imidazole), and eluted with Elution 
buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 500 mM imidazole). Peak fractions were 
pooled, combined with 200 µg/mL his6-TEV(S291V) protease, and dialyzed against 4 liters Dialysis buffer 
(20 mM Tris (pH 7.4), 200 mM NaCl, 1 mM BME) for 16-18 hours at 4℃. Precipitation was removed by 
centrifugation and 0.22 µm syringe filtration. The dialysate was then bound to a MonoQ anion exchange 
column (GE Healthcare) equilibrated in 20 mM Tris (pH 7.4), 100 mM NaCl, 1 mM BME.  Proteins were 
resolved over a 10-100% linear gradient (0.1-1 M NaCl, 45 CV, 45 mL total, 1 mL/min flow rate). The 
elution fractions containing the recombinant protein were combined and concentrated in a 5 kDa MWCO 
Vivaspin 20 centrifuge tube (GE Healthcare). The concentration of protein was determined by measuring 
OD280 (ext. coefficient 45270.00 M-1cm-1) using nanodrop, and the protein solution was flash-frozen in 
liquid nitrogen and stored at -80⁰C.  

 

PTENΔPBD 

PTEN(16-403) in-frame with an N-terminal his6-MBP-(Asn)10-TEV-GGGGG was transformed into 
BL21(DE3) expression cells, and these cells were grown overnight at 37⁰C in TB medium supplemented 
with kanamycin (50μg/mL). The overnight culture was then diluted 1:100 (v/v) into fresh TB medium 
supplemented with kanamycin (50μg/mL), and was allowed to grow to OD600 of 0.6~0.8. Protein 
expression was induced with 0.1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated at 18⁰C 
200rpm overnight. Bacterial cells were collected by centrifugation at 3000 rpm, resuspended in Lysis buffer 
(50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 0.4 mM BME, 1 mM PMSF, 100 µg/mL DNase) and 
homogenized using a microfluidizer. Cell debris was removed by centrifugation at 16,000 rpm at 4℃ for 
60 minutes, and the supernatant was incubated with Ni-nitrilotriacetate resin (Thermo Scientific HisPur Ni-
NTA Resin) at 4℃ for 1 hour. The resin was subsequently loaded into a gravity column, washed with Wash 
buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 20 mM imidazole), and eluted with Elution 
buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 500 mM imidazole). Peak fractions were 
pooled, combined with 200 µg/mL his6-TEV(S291V) protease, and dialyzed against 4 liters Dialysis buffer 
(20 mM Tris (pH 7.4), 200 mM NaCl, 1 mM BME) for 16-18 hours at 4℃. Precipitation was removed by 
centrifugation and 0.22 µm syringe filtration. The dialysate was then bound to a MonoQ anion exchange 
column (GE Healthcare) equilibrated in 20 mM Tris (pH 7.4), 100 mM NaCl, 1 mM BME.  Proteins were 
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resolved over a 10-100% linear gradient (0.1-1 M NaCl, 45 CV, 45 mL total, 1 mL/min flow rate). The 
elution fractions containing the recombinant protein were combined and concentrated in a 5 kDa MWCO 
Vivaspin 20 centrifuge tube (GE Healthcare), and subsequently pass through a 24 mL Superdex 200 10/300 
GL (GE Healthcare) size exclusion column equilibrated in 20 mM Tris [pH 8.0], 200 mM NaCl, 10% 
glycerol, 1 mM TCEP. Peak fractions were pooled and concentrated. The concentration of protein was 
determined by measuring OD280 (ext. coefficient 45270.00 M-1cm-1) using nanodrop, and the protein 
solution was flash-frozen in liquid nitrogen and stored at -80⁰C. 

 

PTEN-DrrA 

his6-MBP-(Asn)10-TEV-GGGGG-PTEN in frame with a C-terminal (GGS)3GG-DrrA(544-647) was 
transformed into BL21(DE3) expression cells, and these cells were grown overnight at 37⁰C in TB medium 
supplemented with kanamycin (50μg/mL). The overnight culture was then diluted 1:100 (v/v) into fresh 
TB medium supplemented with kanamycin (50μg/mL), and was allowed to grow to OD600 of 0.6~0.8. 
Protein expression was induced with 0.1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated 
at 18⁰C 200rpm overnight. Bacterial cells were collected by centrifugation at 3000 rpm, resuspended in 
Lysis buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 0.4 mM BME, 1 mM PMSF, 100 µg/mL DNase) 
and homogenized using a microfluidizer. Cell debris was removed by centrifugation at 16,000 rpm at 4℃ 
for 60 minutes, and the supernatant was incubated with Ni-nitrilotriacetate resin (Thermo Scientific HisPur 
Ni-NTA Resin) at 4℃ for 1 hour. The resin was subsequently loaded into a gravity column, washed with 
Wash buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 20 mM imidazole), and eluted with 
Elution buffer (50 mM Na2HPO4 (pH 8.0), 300 mM NaCl, 1 mM BME, 500 mM imidazole). Peak fractions 
were pooled, combined with 200 µg/mL his6-TEV(S291V) protease, and dialyzed against 4 liters Dialysis 
buffer (20 mM Tris (pH 7.4), 200 mM NaCl, 1 mM BME) for 16-18 hours at 4℃. Precipitation was 
removed by centrifugation and 0.22 µm syringe filtration. The dialysate was then bound to a MonoQ anion 
exchange column (GE Healthcare) equilibrated in 20 mM Tris (pH 7.4), 100 mM NaCl, 1 mM BME.  
Proteins were resolved over a 10-100% linear gradient (0.1-1 M NaCl, 45 CV, 45 mL total, 1 mL/min flow 
rate). The elution fractions containing the recombinant protein were combined and concentrated in a 5 kDa 
MWCO Vivaspin 20 centrifuge tube (GE Healthcare), and subsequently pass through a 24 mL Superdex 
200 10/300 GL (GE Healthcare) size exclusion column equilibrated in 20 mM Tris [pH 8.0], 200 mM NaCl, 
10% glycerol, 1 mM TCEP. Peak fractions were pooled and concentrated. The concentration of protein was 
determined by measuring OD280 (ext. coefficient 45270.00 M-1cm-1) using nanodrop, and the protein 
solution was flash-frozen in liquid nitrogen and stored at -80⁰C. 

 

OCRLPD & DrrA-OCRLPD 

OCRLPD (234-539aa) & DrrA-OCRLPD was purified as previously described(6). 

 

Alexa488-PLCδPH & Cy3-DrrA 

PLCδ PH domain (11-140) and DrrA(544-647) were purified as previously described. Sortase mediated 
protein labeling was performed with either NHS-Alexa488 labeled LEPTGG peptide and NHS-Cy3 labeled 
LEPTGG as previously described(6). 

 

PIP5KKD 

PIP5KKD (PIP5K1B 1-421aa) was purified as previously described(6). 
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Ras, SOScat, SOSHDPC and p120GAP 

H-Ras (1-181, C118S) (human H-Ras protein with residues 1-181 and a point mutation to serine at residue 
C118), SOScat (566-1049), SOSHDPC (1-1049), and the GAP domain of p120GAP (714-1047), were 
expressed and purified based on the protocols described in previous work(74, 115). 

 

Alexa647-RBD(K65E) 

RBD (56-131; K65E) derived from the Raf-1 human gene was purified and labeled with Alexa647-
maleimide using previously reported methods(44). 

 

Preparation of liposome 

Lipids used: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), L-α-phosphatidylinositol-4-phosphate 
(Brain PI(4)P), L-α-phosphatidylinositol-4,5-bisphosphate (Brain PI(4,5)P2), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-[4-(pmaleimidomethyl)cyclohexanecarboxamide] (MCC-PE), 1,2-dioleoyl-sn-
glycero-3-phospho-L-serine (DOPS), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) 
(Biotin-DOPE) were purchased from Avanti Polar Lipids. D-myo-Phosphatidylinositol 3,4,5-trisphosphate 
(PI(3,4,5)P3), D-myo-Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) were purchased from Echelon 
Biosciences Inc.. Texas Red 1,2-dihexadecanoylsnglycero-3-phosphoethanolamine (TR-DHPE) was 
purchased from Invitrogen. 

 

Lipids were mixed in a glass round bottom flask cleaned by piranha etching at the desired molar fraction. 
The solution was then evaporated using a rotary evaporator for 10 min at 35°C or until dried to a thin film. 
Dried lipid films were further blow-dried with N2 for at least 30 min. Lipids were resuspended in Milli-Q 
H2O by shaking and gently pipetting to form a solution with a final concentration of 1 mM total lipids. For 
liposome assays, the lipid solution was first freeze-thawed three times in liquid nitrogen. To generate small 
unilamellar vesicles (SUV) with the desired size, the solution was extruded through a polycarbonate 
membrane (Avanti Polar Lipids) with the desired pore size 11 times. The size distribution was checked by 
dynamic light scattering. SUV for the formation of supported lipid bilayer was prepared by sonication for 
100 sec (20 sec on, 30sec off for 5 times) in an ice-water bath.  

 

Phosphatase assay 

Phosphate Sensor (Thermo Fisher Scientific PV4406) was diluted to 2μM in TBS. 50 μL of liposomes were 
mixed with 25 μL of 2μM Phosphate Sensor in a 96-well plate. The background fluorescence of liposome 
mixed with phosphate sensor was taken as baseline. 25 μL of 40 nM PTEN was added into the 96-well 
plate to initiate the reaction. The fluorescent was detected in a microplate reader (BioTek) at excitation 485 
(10) nm and emission 530 (10) nm with 30 seconds intervals, including 5 seconds of shaking before reading. 
A calibration curve for phosphate concentration was established using a phosphate standard from 10 pM to 
100 nM and fitted to a binding curve. Initial velocity was obtained by fitting the initial linear region of the 
reaction trace. Initial velocity was plotted against SUV concentration, and fitted to Michaelis-Menten 
kinetics using 𝑣𝑣 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡[𝐸𝐸][𝑆𝑆]

𝐾𝐾𝑀𝑀+[𝑆𝑆]
 in Graphpad Prism. Apparent catalytic efficiency is obtained by 

calculating 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡/𝐾𝐾𝑀𝑀. 
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Microscope hardware and imaging acquisition 

Fluorescence confocal microscopy was performed on Nikon Eclipse Ti inverted microscope with 
Yokogawa CSU-X spinning disk module. The light sources were diode lasers at 488, 561, and 640 nm 
(Coherent, Santa Clara, CA), and imaged by EMCCD (Andor Technology Ltd., UK) using a 100x Nikon 
objective (1.49 NA) oil immersion TIRF objective. TIRF imaging experiments were performed on an 
inverted Nikon Eclipse Ti microscope using either a 100x Nikon objective (1.49 NA) oil immersion TIRF 
objective or a 60x Apo TIRF oil immersion objective (1.45 NA). The light sources were either a 488 nm, 
561 nm, or 637 nm diode laser (OBIS laser diode, Coherent, Santa Clara, CA) controlled with a custom 
built Solemere (Salt Lake City, Utah) laser driver with analog and digital modulation (0-5 volts). Images 
were acquired on an EMCCD camera (Andor Technology Ltd., UK). All microscope hardware was 
controlled using Micro-Manager v4.0(169). Samples were excited with 0.3~0.8 mW laser power at the 
objective. The exposure time is typically 100~200 ms. The imaging frame rate is typically 0.1 Hz. 

 

Membrane coated beads experiments 

200 uL of 10% slurry of Silica beads (Bangs Laboratories) were transferred to a glass vial. The beads were 
etched with piranha solution for 20 mins. The solution was diluted with water slowly on ice, then the beads 
were spun down by centrifugation in a swing bucket rotor at 1000 rcf for 5 min. The supernatant was 
removed by a glass pipette. The remaining beads were washed three times by water, then transferred to an 
Eppendorf tube. The beads were washed three times again in PBS. Finally, the beads were suspended in 
200 uL of TBS. 20 uL of beads were mixed with 200 uL of PBS and 200 uL of 1 mM SUV solution 
(containing 96.5% DOPC, 2% PI(3,4,5)P3, 1% Biotin-DOPE, 0.5% TR-DHPE) and incubated for 30 min 
with constant rotation. Then the beads were washed with PBS three times. Supported lipid bilayer coated 
beads were used for experiments immediately. 

25x75 mm glass coverslips (Ibidi 10812) were etched with piranha solution for 5 minutes and rinsed with 
water extensively. The coverslip were dried with blowing nitrogen gas and stick to a flow chamber (Ibidi 
µ-Slide 80608). 100 uL of 1 mg/ml Biotin-BSA was introduced into the flow channel. After 30 min, the 
remaining Biotin-BSA was washed out with 1 mL of PBS. Blocking was performed with 0.05 mg/ml 
neutravidin was subsequently added. After 30 min, the remaining Biotin-BSA was washed out with 1 mL 
of PBS. Membrane coated beads were added into the flow chamber and allowed to settle and bind to the 
neutravidin on the glass surface to achieve the desired density. Excessive beads were gently washed out 
using 1 mL PBS before imaging using a spinning disk confocal. Reaction was performed in a buffer 
containing 20 mM Tris (pH 7.4), 150 mM NaCl, 100 µg/mL beta casein, 5 mM BME, 2 mM UV-treated 
Trolox ((±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), 320 μg/mL glucose oxidase, 50 
μg/mL catalase, and 20 mM glucose. 

 

Microfabrication 

25x75 mm glass coverslips (Ibidi 10812) were cleaned in acetone by sonication, then washed with MilliQ 
water extensively. The coverslips were dried with nitrogen gas then baked on 120℃ hot plate for 5 minutes. 
S1805 positive photoresist (Dow Chemical)) was spin-coated on the coverslips by spinning for 2 seconds 
at 500 rpm (acceleration 440 rpm/s) then for 30 seconds at 4111 rpm (acceleration 3900 rpm/s). The 
photoresist on the edge of the coverslips was removed by cotton swab soaked with acetone, then baked on 
120℃ hot plate for 1 minute. Mask with the desired pattern was mounted on an OAI Series 200 Aligner. 
The photoresist coated coverslip was exposed for 0.6 sec with UV power around 30 mW/cm2, then 
developed with MicroPosit MF-321 Liquid Developr (Dow Chemical) for 40 sec with mild shaking. The 



73 
 
 

developed coverslips were rinsed with water and dried with nitrogen gas. ~9 nm thick chromium was 
subsequently deposited on the coverslips using an electron beam evaporator at 1x10-6 torr. The photoresist 
is lifted from chromium patterned glass substrates by bath sonication in MicroPosit Remover 1165 (Dow 
Chemical)  for 10 minutes for 2 times then washed with abundant water. 

 

Supported lipid bilayer experiments 

Glass coverslips with chromium patterns were etched with piranha solution for 5 minutes and then rinsed 
with water extensively. The coverslip was rapidly dried with nitrogen gas and stick to a flow chamber (Ibidi 
µ-Slide 80608). SLBs were formed on a glass substrate by flowing around 150 μL of 0.25 mM SUVs diluted 
in PBS (pH 7.2) into the chamber and incubated for at least 30 min. After incubation, the chambers were 
washed with 1 mL of PBS and then blocked with 1 mg/mL β-casein (Thermo Fisher Scientific 37528) for 
10 min. The chambers were then rinsed with 1 mL PBS buffer. PTEN reactions were performed in a buffer 
containing 20 mM Tris (pH 7.4), 150 mM NaCl, 100 µg/mL beta casein, 5 mM BME, 2 mM UV-treated  
Trolox, 320 μg/mL glucose oxidase, 50 μg/mL catalase, and 20 mM glucose, with the addition of 20 nM of 
either Alexa488-PLCδPH or Cy3-DrrA to monitor the reaction. Fitting to Hill equation is performed in 
GraphPad Prism with the equation form: 𝑌𝑌 =  𝐴𝐴 × 𝑋𝑋𝐻𝐻

𝐵𝐵𝐻𝐻+𝑋𝑋𝐻𝐻
. 

 

For PIP5K and OCRL reactions, SUV containing either 96% DOPC, 2% PI(4,5)P2, 2% PI(4)P, or 96% 
DOPC, 4% PI(4)P was used. Reactions were performed in a buffer containing 20 mM HEPES (pH 7.0), 
150 mM NaCl, 1 mM ATP, 5 mM MgCl2, 0.5 mM EGTA, 200 µg/mL beta casein, 20 mM BME, and 20 
mM glucose, with the addition of 20 nM Alexa488-PLCδPH and 20 nM Cy3-DrrA to monitor the reaction. 

 

For Ras reactions, SUV containing 96% DOPC, 2% PI(4,5)P2, 2% MCC-DOPE were used to form 
supported lipid bilayer. H-Ras was incubated at 1 mg/mL for 2 hr 30 min in PBS buffer at room temperature. 
After washing with 1 mL PBS, 5 mM BME was then added to quench the reaction. After 10 min, the flow 
channel was washed with 1 mL of PBS, and buffer exchanged into 40 mM HEPES (pH 7.4), 100 mM NaCl, 
5 mM MgCl2, 100 μM GDP. GDP was washed away with 40 mM HEPES (pH 7.4), 100 mM NaCl, 5 mM 
MgCl2, 10 mM BME immediately before reaction. Ras reactions were performed in a buffer containing 40 
mM HEPES (pH 7.4), 100 mM NaCl, 5 mM MgCl2, 10 mM BME, 100 μM GTP, 2 mM UV-treated Trolox, 
320 μg/mL glucose oxidase, 50 μg/mL catalase, and 20 mM glucose, with the addition of 10 nM Alexa647-
RBD(K65E) to monitor the reaction. 

 

Stochastic simulations 

The time evolution of all species in the reaction was simulated stochastically using the Gillespie algorithm. 
Within the reaction space, the membrane composition was approximated to be spatially homogeneous. The 
simulation was performed in MATLAB according to the kinetic scheme in Figure 5A. We approximated 
the solution concentration of E0, 𝜌𝜌𝐸𝐸0, be constant since in the experiment there is a large solution reservoir. 
Each molecular species is expressed as the exact number of molecules. The rate for each transition is 
calculated as: 

𝐸𝐸0  →  𝐸𝐸1;              𝑟𝑟1 = 𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 ∙ 𝜎𝜎𝑃𝑃 ∙ 𝐴𝐴. 

𝐸𝐸1  →  𝐸𝐸0;              𝑟𝑟2 =  𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 ∙ 𝐴𝐴. 

𝐸𝐸1 + 𝑆𝑆 →  𝐸𝐸1𝑆𝑆;     𝑟𝑟3 =  𝑘𝑘𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 ∙ 𝜎𝜎𝑆𝑆 ∙ 𝐴𝐴 
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𝐸𝐸1𝑆𝑆 →  𝐸𝐸1 + 𝑆𝑆 ;     𝑟𝑟4 =  𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆 ∙ 𝐴𝐴 

𝐸𝐸1𝑆𝑆 →  𝐸𝐸1 + 𝑃𝑃 ;     𝑟𝑟5 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆 ∙ 𝐴𝐴 

A is the area of the membrane in μm2, and the surface density of each membrane associated species, 𝜎𝜎𝑥𝑥, is 
expressed as discrete molecular copy number per unit area. We used the following rate parameters: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.0001 𝑡𝑡−1 (𝜌𝜌𝐸𝐸0 taken as constant for infinite solution reservoir.) 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜 = 0.005 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑟𝑟 = 1 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 50 𝑡𝑡−1  

The kinetic parameters used are within similar ranges with reported kinetic rate constants for PTEN (26). 
All simulations begin with 26600/μm2 substrate and 1400/ μm2 product (corresponding to 1.9% molar 
fraction of substrate and 0.1% molar fraction of product on the membrane) unless otherwise stated. This 
initial condition is used since in our simple model enzyme recruitment to the membrane is strictly through 
binding to product. For any enzyme to be recruited to the membrane, some product is required to “seed” 
the reaction in the simulation. This is to mimic the initial enzyme catalysis from the solution that starts the 
reaction, without introducing unnecessary complexity to the model.  Simulations of 1 μm2 and 0.25 μm2 
were used to mimic large- and small-scale membrane reactions, respectively. We note that a larger area 
difference amplifies any scale dependence in the simulations, though larger reactions require significantly 
more computation time. Statistics were collected from 1000 simulations.  

 

For the reaction case that has no positive feedback, the 𝐸𝐸0  →  𝐸𝐸1 rate is modified to be independent of 𝜎𝜎𝑃𝑃: 

𝐸𝐸0  →  𝐸𝐸1;              𝑟𝑟1 = 𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 ∙ 𝐴𝐴. 

The rate parameters used are: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 1.4 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜 = 0.005 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑟𝑟 = 1 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 50 𝑡𝑡−1  

 

For the reaction case that is fixed at steady state, the kinetic parameters used are: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.0001 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜 = 0.005 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑟𝑟 = 1 𝑡𝑡−1  



75 
 
 

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 50 𝑡𝑡−1  

Simulations begin with 14000/μm2 substrate and 14000/ μm2 product (corresponding to 1% molar fraction 
of substrate and 1% molar fraction of product on the membrane) and the densities are fixed. The formed 
product from the reaction is recorded separately to calculate the reaction velocity. The simulation was 
performed until the numbers reach a steady state. Then the reaction was allowed to run for an extended time 
and recorded. 

 

For the reaction case with near-equilibrium enzyme binding, either the 𝑘𝑘𝑜𝑜𝑛𝑛 and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 are changed to: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.01 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 10 𝑡𝑡−1  

Or 𝑘𝑘𝑜𝑜 and 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 are changed to: 

𝑘𝑘𝑜𝑜 = 0.0001 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 1 𝑡𝑡−1  

 

For the reaction case with near-equilibrium enzyme binding at low substrate density, simulations begin with 
76/μm2 substrate and 4/μm2 product. Either the 𝑘𝑘𝑜𝑜𝑛𝑛 and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 are changed to: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.01 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 10 𝑡𝑡−1  

Or 𝑘𝑘𝑜𝑜𝑛𝑛, 𝑘𝑘𝑜𝑜 and 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 are changed to: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.02 𝑡𝑡−1  

𝑘𝑘𝑜𝑜 = 0.0001 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 1 𝑡𝑡−1  

 

For the reaction case with the incorporation of catalysis from solution by random collision of the enzyme 
with the membrane, we have included additional reactions: 

𝐸𝐸0 + 𝑆𝑆 →  𝐸𝐸0𝑆𝑆;     𝑟𝑟6 = 𝑘𝑘𝑜𝑜2 ∙ 𝜌𝜌𝐸𝐸0 ∙ 𝜎𝜎𝑠𝑠 ∙ 𝐴𝐴 

𝐸𝐸0𝑆𝑆 →  𝐸𝐸0 + 𝑆𝑆 ;     𝑟𝑟7 =  𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝐸𝐸0𝑆𝑆 ∙ 𝐴𝐴 

𝐸𝐸0𝑆𝑆 →  𝐸𝐸0 + 𝑃𝑃 ;     𝑟𝑟8 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 ∙ 𝜎𝜎𝐸𝐸0𝑆𝑆 ∙ 𝐴𝐴 

𝑘𝑘𝑜𝑜2 ∙ 𝜌𝜌𝐸𝐸0 = 0.003 𝑡𝑡−1 (𝜌𝜌𝐸𝐸0 taken as constant for infinite solution reservoir.). 

Simulations begin with 28000/μm2 substrate and 0/μm2 product. 

 

Deterministic simulations 
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Deterministic simulations were done by numerically solving coupled kinetic equations in MATLAB. 
Densities are evaluated as number of molecules per μm2 and the solution enzyme concentration, 𝜌𝜌𝐸𝐸0, is 
constant.  The rate equations are:  

𝑑𝑑𝜎𝜎𝐸𝐸1
𝑑𝑑𝑡𝑡

=  𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 ∙ 𝜎𝜎𝑃𝑃  −  𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 − 𝑘𝑘𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 ∙ 𝜎𝜎𝑆𝑆  +  𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆  + 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆   

𝑑𝑑𝜎𝜎𝐸𝐸1𝑆𝑆
𝑑𝑑𝑡𝑡

=  𝑘𝑘𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 ∙ 𝜎𝜎𝑆𝑆 −  𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆  −  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆   

𝑑𝑑𝜎𝜎𝑃𝑃
𝑑𝑑𝑡𝑡

=  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆  −  𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 ∙ 𝜎𝜎𝑃𝑃  + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1   

𝑑𝑑𝜎𝜎𝑆𝑆
𝑑𝑑𝑡𝑡

=  −𝑘𝑘𝑜𝑜 ∙ 𝜎𝜎𝐸𝐸1 ∙ 𝜎𝜎𝑆𝑆  +  𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝐸𝐸1𝑆𝑆   

The rate constants are: 

𝑘𝑘𝑜𝑜𝑛𝑛 ∙ 𝜌𝜌𝐸𝐸0 = 0.0001 𝑡𝑡−1 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1 𝑡𝑡−1 

𝑘𝑘𝑜𝑜 = 0.005 𝜇𝜇𝑚𝑚2𝑡𝑡−1 

𝑘𝑘𝑟𝑟 = 1 𝑡𝑡−1 

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡 = 50 𝑡𝑡−1 

Simulations begin with 26600/μm2 substrate and 1440/μm2 product (corresponding to 1.9% molar fraction 
of substrate and 0.1% molar fraction of product on the membrane). 

 

Analytical model for surface adsorption 

In terms of a continuum description with deterministic chemical kinetic rate equations, the surface density 
of adsorbed molecules, σ, from an infinite solution reservoir follows the rate equation:  

 

𝑑𝑑σ
𝑑𝑑𝑡𝑡

=  𝑘𝑘σ𝑚𝑚 

 

where k is a constant and m represents the order of positive feedback (e.g. m = 0 for no feedback, m = 1 for 
linear feedback, etc.). In this continuum description, the time for density doubling from 𝜎𝜎0 to 2𝜎𝜎0 (𝜏𝜏𝐷𝐷) can 
be obtained by integrating the rate equation: 

 

𝜏𝜏𝐷𝐷 =
1
𝑘𝑘
�

1
σ𝑚𝑚

𝑑𝑑σ
2𝜎𝜎0

𝜎𝜎0
 

 

Taking a stochastic approach, the process of density doubling consists of a Markov chain of n molecular 
adsorption events (copy number n molecules goes to 2n), each with defined transition rates. We consider 
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systems with different initial copy numbers of molecules, n, and correspondingly different areas, An, at 
equivalent initial surface density to examine system size specific effects.  For a system starting with n 
molecules the ith transition has rate  𝑘𝑘𝜎𝜎𝑚𝑚𝐴𝐴𝑛𝑛 , where σ = (𝑛𝑛 + 𝑖𝑖 − 1)/𝐴𝐴𝑛𝑛  is the momentary density of 
adsorbed molecules while waiting for the ith transition event. The waiting time distribution at each step is 
given by 𝑝𝑝𝑖𝑖(𝜏𝜏𝑖𝑖) = 𝛽𝛽𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖𝑘𝑘𝑖𝑖  where 𝛽𝛽𝑖𝑖 ≡ 𝑘𝑘𝜎𝜎𝑚𝑚𝐴𝐴𝑛𝑛  and 〈𝜏𝜏𝑖𝑖〉 = ∫ 𝜏𝜏𝑖𝑖𝑝𝑝𝑖𝑖(𝜏𝜏𝑖𝑖)𝑑𝑑𝜏𝜏𝑖𝑖

∞
0 = 1 𝛽𝛽𝑖𝑖⁄   The full probability 

distribution for 𝜏𝜏𝐷𝐷 , resulting from successive convolution of the individual transition time probability 
distributions can be expressed in closed form as(170): 

 

𝑝𝑝(𝜏𝜏𝐷𝐷) =  �
𝛽𝛽1⋯  𝛽𝛽𝑛𝑛

∏ (𝛽𝛽𝑗𝑗 −  𝛽𝛽𝑖𝑖)𝑛𝑛
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑒𝑒−𝛽𝛽𝑖𝑖𝑘𝑘𝐷𝐷 

 

Since the delay time probability distributions for each of the transitions are independent, the mean doubling 
time, equivalent to MFPT for this one-way process, can be calculated directly from the individual mean 
delay times, 〈𝜏𝜏𝐷𝐷〉 = ∑ 〈𝜏𝜏𝑖𝑖〉𝑛𝑛

𝑖𝑖=1 , without need for the full distribution. 
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APPENDIX B 
Material and Methods for Chapter 3 
Materials and Methods 
 

Protein purification 

SOS and SOSCatPR (533–1333) were purified based on protocols described in previous work(44). H-Ras (1-
181, C118S) (human H-Ras protein with residues 1-181 and a point mutation to serine at residue C118), 
SOSCat (566-1049), SOSHDPC (1-1049) were purified based on previous reports(115). The GAP domain of 
p120GAP (714-1047), were expressed and purified based on the protocols described in previous work(74). 
RBD (56-131; K65E) derived from the Raf-1 human gene was purified and labeled with Alexa647-
maleimide using previously reported methods(44). LAT (30-233) and Grb2 were purified and labeled 
following previously described protocols(44, 171). Hck were purified based on published protocols(172). 

 

Preparation of liposome 

Lipids used: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), L-α-phosphatidylinositol-4,5-
bisphosphate (Brain PI(4,5)P2), 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic 
acid)succinyl] (nickel salt) (Ni-DGS), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-
(pmaleimidomethyl)cyclohexanecarboxamide] (MCC-PE) were purchased from Avanti Polar Lipids. 
Lipids were mixed in a glass round bottom flask cleaned by piranha etching at the desired molar fraction. 
The solution was then evaporated using a rotary evaporator for 10 min at 35°C or until dried to a thin film. 
Dried lipid films were further blow-dried with N2 for at least 10 min. Lipids were resuspended in Milli-Q 
H2O by shaking and gently pipetting to form a solution with a final concentration of 1 mM total lipids. 
Small unilamellar vesicles (SUV) for the formation of supported lipid bilayer was prepared by sonication 
for 100 sec (20 sec on, 30sec off for 5 times) in an ice-water bath.  

 

Microfabrication 

Chromium patterns (100 nm thick and 5 nm high) were fabricated onto 25x75 mm glass coverslips by the 
Pulsed Nanoimprint Lithography method (Pulsed NIL) (ThunderNIL Srl, Italy) (173). Briefly, a stamp with 
desired patterns was fabricated by electron beam lithography, and was treated with hydrophobic 
trichlorosilanes to make it non-adhesive. Pulsed NIL was performed on glass substrates, which were 
previously spin coated with 120 nm thick mr-l 7010 resist, using the stamp. Residual resist film on the glass 
substrate was etched off using oxygen plasma before the chromium lift-off process. 

 

Supported lipid bilayer experiments 

Glass coverslips with chromium patterns were etched with piranha solution for 5 minutes and then rinsed 
with water extensively. The coverslip was blow dried with nitrogen gas and immediately stick to a flow 
chamber (Ibidi µ-Slide 80608). SLBs were formed on a glass substrate by flowing around 150 μL of 0.25 
mM SUVs diluted in PBS (pH 7.2) into the chamber and incubated for at least 30 min. After incubation, 
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the chambers were washed with 1 mL of PBS and then blocked with 1 mg/mL β-casein (Thermo Fisher 
Scientific 37528) for 10 min. The chambers were then rinsed with 1 mL PBS buffer. H-Ras was incubated 
at 0.1~1 mg/mL for 2 hr 30 min in PBS buffer at room temperature. The chambers were then washed with 
1 mL PBS, and 5 mM BME was subsequently added to quench the reaction. After 10 min, the flow channel 
was washed with 1 mL of PBS, and buffer exchanged into reaction buffer (40 mM HEPES (pH 7.4), 100 
mM NaCl, 5 mM MgCl2) plus 100 μM GDP. 10~200 nM LAT and 12.5 nM Hck are introduced into the 
flow channel and incubated for 40 min. After washing with 1 mL reaction buffer, the flow channels were 
incubated with 1 mM ATP and 100 μM GDP to phosphorylate LAT and ensure nucleotide loading in Ras. 
ATP and GDP was washed away with reaction buffer plus 10 mM BME and used immediately for reaction. 
All Ras reactions were performed in a buffer containing 40 mM HEPES (pH 7.4), 100 mM NaCl, 5 mM 
MgCl2, 10 mM BME, 100 μM GTP, 2 mM UV-treated Trolox, with the addition of 20 nM Alexa647-
RBD(K65E) to monitor the reaction. For SOS and SOSCatPR reactions, 20nM Grb2 were included as well. 
In competition reaction with p120GAP, 200 nM p120GAP was used. 

 

 

Microscope hardware and imaging acquisition 

TIRF imaging experiments were performed on an inverted Nikon Eclipse Ti microscope using either a 100x 
Nikon objective (1.49 NA) oil immersion TIRF objective or a 60x Apo TIRF oil immersion objective (1.45 
NA). The light sources were either a 488 nm, 561 nm, or 637 nm diode laser (OBIS laser diode, Coherent, 
Santa Clara, CA) controlled with a custom built Solemere (Salt Lake City, Utah) laser driver with analog 
and digital modulation (0-5 volts). Images were acquired on an EMCCD camera (Andor Technology Ltd., 
UK). All microscope hardware was controlled using Micro-Manager v4.0(174). Samples were excited with 
0.3~0.8 mW laser power at the objective. The exposure time is typically 100~300 ms. In end point assays, 
imaging starts after 2hrs of incubation to avoid photobleaching. 

 

Surface Density Measurements 

Surface density of Ras and LAT were measured using fluorescence correlation spectroscopy (FCS) on a 
homebuilt setup based on a Nikon Eclipse TE2000-E inverted microscope. A pulsed white light laser source 
(SuperK Extreme EXW-12, NKT Photonics) was filtered by bandpass filters for desired excitation 
wavelengths and combined through a single-mode optical fiber. The excitation pulses enter the microscope 
via a multicolour dichroic cube (Di01-R405/488/561/635-25x36, Semrock). The fluorescence signal is 
collected by a ×100 high-numerical aperture oil-immersion objective, recorded by avalanche photodiode 
detectors (Hamamatsu), and directly converted into autocorrelation signal by a hardware correlator 
(Correlator.com). The resulting autocorrelation G(t) was fit to the two-dimensional Gaussian diffusion 
model to calculate surface density. Surface density calibration was achieved by fitting the FCS surface 
density measurement to TIRF intensity plot to a linear regression. LAT densities were measured by directly 
labeling LAT with Alexa-555 dye. Ras densities were measured by loading Ras with Atto-488-GDP (Jena 
Biosceince) using SOSCat. 

 

Stochastic Simulation 

The time evolution of all species in the reaction was simulated stochastically using the Gillespie algorithm 
in MATLAB, following the kinetic scheme in Figure 5A. Two assumptions were made: 1) The membrane 
compositions are spatially homogeneous within reaction space due diffusion. 2) the solution concentration 



80 
 
 

of 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠, 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,is constant since there is a large solution reservoir in the experiment. Each molecular 
species is expressed as the exact number of molecules. The rate for each transition is calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠  →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃;    𝑟𝑟1 = 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠  →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃;    𝑟𝑟2 = 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠;    𝑟𝑟3 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠;    𝑟𝑟4 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃   ;    𝑟𝑟5 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃  →  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃  ;     𝑟𝑟6 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

 

A is the area of the membrane in μm2, and the surface density of each membrane associated species, 𝜎𝜎𝑥𝑥, is 
expressed as discrete molecular copy number per unit area. We used the following rate parameters: 

 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 0.0000007 𝑡𝑡−1 (𝜌𝜌𝐸𝐸0 taken as constant for infinite solution reservoir.) 

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 (𝜌𝜌𝐸𝐸0 taken as constant for infinite solution reservoir.) 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.005 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.001 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1 

 

The kinetic parameters used reflect reported kinetic rate constants(39, 49, 115). All simulations begin with 
1000/μm2 RasGDP. Statistics were collected from 500 simulations. In concentration titration simulations, 
𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 varies from 0.0000003~0.00003 𝑡𝑡−1. 

 

For simulations with non-processive SOS, we used the following rate parameters: 

 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 0.00003~0.0003 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.5 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.1 𝑡𝑡−1  
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𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1 

 

For the simulations of Fig 5E and 5F, we modified the simulation parameters to facilitate comparison. 
Specifically, we used an adjusted 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  that leads to 0.5 RasGTP/Ras steady state response in 
deterministic kinetics. We also make the positive feedback strictly from the difference in 𝑘𝑘𝑜𝑜𝑛𝑛

(1) and 𝑘𝑘𝑜𝑜𝑛𝑛
(2), and 

leaving 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1)  and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(2)  the same to eliminate the dependence of processivity on changes in feedback 
strength. 

 

For Fig 5E, rates used are: 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 9.91100916786229 × 10−7 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1 

 

For Fig 5F, rates used are: 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 4.69366456778945e− 05 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.125 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.125 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 1 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.25 𝑡𝑡−1 

 

For the simulation in Figure S4A with no inhibitor, we used the following rate parameters: 

 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 2.51927828981377 × 10−6 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 100 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  
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𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1  

 

For the simulation in Figure S4B with no inhibitor, we used the following rate parameters: 

 

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 2.02450061053583 × 10−6 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.001 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.001 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1  

 

For simulation of Ras activation-deactivation reaction with SOS inhibitor, the following transitions are 
simulated: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠  →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃;    𝑟𝑟1 = 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠  →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃;    𝑟𝑟2 = 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖  →  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃;    𝑟𝑟3 = 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖  → 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃;    𝑟𝑟4 = 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠;    𝑟𝑟5 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠;    𝑟𝑟6 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖 ;    𝑟𝑟7 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖 ;    𝑟𝑟8 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃;    𝑟𝑟9 = 𝑘𝑘𝑜𝑜𝑛𝑛𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑜𝑜𝑟𝑟 ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃;    𝑟𝑟10 = 𝑘𝑘𝑜𝑜𝑛𝑛𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑜𝑜𝑟𝑟 ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃;    𝑟𝑟11 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 →  𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃;    𝑟𝑟12 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 :𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 →  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃   ;    𝑟𝑟13 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 ∙ 𝐴𝐴. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃  →  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃  ;     𝑟𝑟14 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ∙ 𝐴𝐴. 

 

SOS species with superscript “i” are bound to the inhibitor and are catalytically inactive. The solution 
concentration of the inhibitor, 𝜌𝜌𝑖𝑖𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑜𝑜𝑟𝑟, and the solution concentration of 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖 , 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 , are constant. 
This is assuming the inhibitor binding has reached equilibrium in the large solution reservoir. For the 
simulation in Figure S4A with no inhibitor, we used the following parameters: 

 

𝑘𝑘𝑜𝑜𝑛𝑛𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑜𝑜𝑟𝑟 = 0.0001~0.0009 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 0.0001 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 =

𝑘𝑘𝑠𝑠𝑜𝑜𝑜𝑜
𝑖𝑖

𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖 ∙𝜌𝜌𝑖𝑖𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖+𝑘𝑘𝑠𝑠𝑜𝑜𝑜𝑜
𝑖𝑖 ∙ 2.51927828981377 × 10−6 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 100 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖 ∙𝜌𝜌𝑖𝑖𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖

𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖 ∙𝜌𝜌𝑖𝑖𝑜𝑜ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖+𝑘𝑘𝑠𝑠𝑜𝑜𝑜𝑜
𝑖𝑖 ∙ 2.51927828981377 × 10−6 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 100 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖   

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.1 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.01 𝜇𝜇𝑚𝑚2𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.005 𝑡𝑡−1 

 

 

 

Deterministic Steady State Solution 

The deterministic steady state solution is obtained by solving the following equations using MATLAB. 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 = 0 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 = 0 



84 
 
 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 − 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃

+ 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 = 0 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 − 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃

+ 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 = 0 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅 = 1000  

 

For figure S3-5, the equations are modified to: 

 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 = 0 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 = 0 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃
𝑑𝑑𝑡𝑡

=
𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 

𝐾𝐾𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃 + 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 
−
𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 

𝐾𝐾𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 
− 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

(1) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 = 0 

𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃
𝑑𝑑𝑡𝑡

=
𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡

(1) ∙ (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 ) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 

𝐾𝐾𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝐷𝐷𝑃𝑃 
−

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) ∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 

𝐾𝐾𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 
− 𝑘𝑘𝑜𝑜𝑛𝑛

(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

∙ 𝜎𝜎𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) ∙ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑐𝑐𝑠𝑠𝑅𝑅𝑅𝑅𝑃𝑃 = 0 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅 = 1000  

𝑘𝑘𝑜𝑜𝑛𝑛
(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 =  0.00015 ~ 0.015 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑛𝑛
(2) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 × 𝑘𝑘𝑜𝑜𝑛𝑛

(1) ∙ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(1) = 3 𝑡𝑡−1  

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
(2) = 0.4 𝑡𝑡−1  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(1) = 0.03 𝑡𝑡−1  

𝐾𝐾𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑖𝑖
(1) +1
0.05

 𝜇𝜇𝑚𝑚−2  

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡
(2) = 0.1 𝑡𝑡−1  

𝐾𝐾𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑖𝑖
(2) +0.2
1.74

 𝜇𝜇𝑚𝑚−2  
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APPENDIX C 
Material and Methods for Chapter 4 
 

Protein Purification 
OCRL, DrrA-OCRL, and PIP5K 

OCRL (residues 234-539), DrrA-OCRL and PIP5K (residues 1-421) were purified as previously 
described(6). 

Alexa488-PLCδPH and Cy3-DrrA 

PLCδ PH domain (11-140aa) and DrrA (residues 544-647) were purified and labeled with fluorophores as 
previously described(6). 

Alexa555-LAT and Grb2 

Wildtype human LAT (cytosolic domain, residues 30-233) and Grb2 (full length) were purified following 
previously described protocols(171), using N-terminal 10- and 6- His tag for the LAT and Grb2, 
respectively. LAT was labeled by reacting with Alexa555-maleimide (Invitrogen) at 1:10 molar ratio at 
room temperature for 2 hours and subsequently quenched by adding 10 mM 2-mercaptoethanol. The labeled 
LAT was then purified by size exclusion chromatography (Superdex S75 10/300 GL, Cytiva). The His-tag 
attached to Grb2 was removed by Tobacco Etch Virus (TEV) protease. 

SOS 

Full-length SOS protein was purified as previously described(44). 

Ras and p120GAP 

H-Ras (residues 1-181, C118S) and the GAP domain of p120GAP (714-1047) was purified following a 
previously described protocol(74, 164), using the N-terminal 6-His tag. Then the His-tag was removed by 
TEV protease. 

Alexa647-RBD 

The Ras-binding domain (RBD, residues 56-131, K65E) of Raf1 was purified and labeled with Alexa Fluor 
647 maleimide dye as previously described(44). 

 

Pig leukocyte lysate 
The pig leukocyte lysate was prepared as described previously(175). The lysate was snap-frozen using 
liquid nitrogen and kept at -80 ̊C for storage. To increase the strength of the reaction, the lysate was 4x 
concentrated by spinning it down through a centrifugal filter (Amicon Ultra-4, 3 kDa MWCO, Merck 
Millipore) at 5,000 g using for 2 hours before the experiment. 
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Microfabrication of chromium patterns on glass coverslips 
A quartz/chromium photomask was designed using AutoCAD (Autodesk) and ordered through Front Range 
PhotoMask (Lake Havasu City, AZ). Photolithography was performed in the Biomolecular 
Nanotechnology Center at the University of California at Berkeley (QB3, California Institute of 
Quantitative Biosciences). Coverslips were first sonicated in acetone and rinsed extensively with Milli-Q 
water. The coverslips were then placed on hot plates at 120 ̊C for 5 minutes to vaporize any residual solvent. 
After coverslips were cooled down, the following procedure was applied for each coverslip: a coverslip 
was mounted on a spin coater (Laurell Tech. Co.), and the coverslip was covered with S1805 positive 
photoresist (MicroChem, 10018321) and spun at 500 rpm for 5 seconds (accelerated by 100 rpm/s for 5 
seconds), and 4000 rpm for 30.7 seconds (accelerated by 12000 rpm/s for about 0.3 seconds). Then the 
accumulated photoresist at the edge of the coverslip (edge bead) was removed by an acetone-applied cotton 
swab (this step enhances the contact with the photomask later). Then the coverslip was baked at 115 ̊C for 
1 minute (soft bake). After cool-down, the ordered photomask was mounted on an OAI 200 Aligner and 
brought the coverslip to hard contact, photoresist-side up to expose the coverslip with 30 mW/cm2 UV light 
for 0.6 seconds through the mask. The minimum amount of exposure time required for correct development 
was used to achieve high spatial resolution. Next, the coverslip was developed in MicroPosit MF-319 
Liquid Developer (MicroChem, 10018042) with mild shaking, such that the UV-exposed part dissolved 
away, resulting in a patterned photoresist. Then the coverslip was rinsed with water and dried with N2 gas. 
Next, using 10-6 torr e-beam evaporation, 9 nm of chromium was deposited on the top of the patterned 
photoresist. Then the photoresist was lifted by sonicating coverslip in MicroPosit Remover 1165 for 10 
minutes. The resulting coverslips had chromium left where there was no photoresist underneath. Finally, 
the coverslips were rinsed extensively with water and placed in a dust-free slide box until usage. 

 

Small Unilamellar Vesicles (SUV) Preparation 
Two different lipid compositions were used. For the PIP polarization experiments, 1,2-dioleoyl-sn-glycero-
3-phosphocholine (18:1 DOPC, Avanti 850375), L-α-phosphatidylinositol-4-phosphate (brain PI(4)P, 
Avanti 840045), and L-α-phosphatidylinositol-4,5-bisphosphate (brain PI(4,5)P2, Avanti 840046) in 
chloroform were used. The lipids were dispensed into a 35 mL round bottom glass flask in a 96:2:2 molar 
percent ratio, such that the resulting lipid concentration became 2 µmol. 

 

For the Ras polarization experiments, DOPC (Avanti 850375), 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-
carboxypentyl)iminodiacetic acid)succinyl] (nickel salt) (18:1 DGS-NTA(Ni), Avanti 790404), 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide] 
(sodium salt) (18:1 PE MCC, Avanti 780201), and PI(4,5)P2 (Avanti 840046) in chloroform were used. 
The lipids were dispensed into a 35 mL round bottom glass flask in 92:4:2:2 molar percent ratio, such that 
the resulting lipid concentration became 2 µmol. 

 

The mixed lipids were dried using a rotary evaporator to a thin film at 37 °C for 2 minutes, then at room 
temperature for 13 minutes. The dried film was further blown with nitrogen gas for 15 minutes and then 
resuspended in 2 mL Milli-Q water by pipetting to make 1 mM lipid in water. For making SUVs, the 
mixture was sonicated using a tip sonicator (Analis Scientific Instruments) for 4 minutes 20 seconds, 
repeating 20 seconds sonication and 20 seconds rest, while the lipid-containing tube was immersed in ice 
water to prevent heating up. The lipid water mixture became clear. The resulting SUV was used within two 
days and was kept at 4 ̊C until use. 
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Supported Lipid Bilayer (SLB) Preparation 
SLBs were formed on glass coverslips (25mm x 75mm, Ibidi 10812, micropatterned with chromium or not). 
The coverslips were sonicated for 10 minutes, rinsed in Milli-Q water, and then etched in piranha solution 
(hydrogen peroxide and sulfuric acid mixed with 1:3 ratio) for 5 minutes. After etching, the coverslips were 
immersed in Milli-Q water to preserve the hydrophilicity and used within two days. The flow chambers 
were made by first drying the coverslips with nitrogen gas and then attaching them to the sticky-side of six-
well flow chamber covers (Ibidi 80608). For SLB formation, 1 mM SUVs were diluted to 0.25 mM 
using PBS (pH 7.2) and dispensed 125 µL into each channel in the chamber. The SUV was 
introduced quickly enough following the chamber assembly to minimize the decay of 
hydrophilicity of the glass surface. After 30 minutes, each channel was washed with 3 mL of PBS 
and blocked with 1 mg/mL β-casein (Thermo Fisher Scientific 37528, 0.22 µm syringe filtered) 
for 10 minutes. Then the channels were washed with 1 mL of PBS. For PIP polarization 
experiments, this marked the end of preparation. 

 

For Ras polarization experiments, the following steps were further taken: 0.5 mg/mL H-Ras in 
PBS was incubated for 2 hours and 30 minutes for its attachment to the PE-MCC via maleimide 
reaction. Then the channels were incubated with 5 mM 2-Mercaptoethanol (BME) for 10 minutes 
to quench the reaction. Next, 40 nM LAT and 12.5 nM Hck were incubated for 40 minutes to 
attach to DGS-NTA(Ni). Then, 1 mM ATP and 100 µM GDP were added in Ras reaction buffer for 
40 minutes for LAT phosphorylation by Hck, GDP loading of Ras, and desorption of unstably 
bound proteins from the membrane. Then, 100 µM GDP in Ras reaction buffer was added and kept 
in the channels, in which GDP was washed away only immediately before the reaction using Ras 
reaction buffer. Between all incubation steps, the channels were washed with 1 mL PBS. 

 

Microscopy 
For TIRF imaging, an inverted Nikon Eclipse Ti-E microscope with Plan Apo TIRF 60x 1.45 N.A. oil 
immersion objective (Nikon) was used. 488 nm and 561 nm diode laser (OBIS laser diode, Coherent, Santa 
Clara, CA) were used as excitation light sources, driven by a custom-built Solemere laser driver (Salt Lake 
City, Utah). The laser powers were 0.2 - 1.0 mW at the objective. Exposure times were typically 50 ms to 
200 ms. We used ZT405/488/561/647rpc dichroic filter cubes (Chroma Technology Corp, Bellows Falls, 
VT) to filter excitation light and ET525/50M, ET600/50M emission filters (Semrock) to filter emission 
light. An EMCCD camera (iXon Ultra, Andor Technology Ltd., UK) was used for image acquisition. The 
stage was controlled with a motorized stage and joystick (ASI MS-2000, Eugene, OR), and the Nikon 
Perfect Focus System (PFS) was used. Micro-Manager v4.0(169) was used to control all hardware. Images 
were taken every 5 seconds, with 50 – 200 ms exposure. 

 

Reaction imaging 
For the PIP polarization experiment using purified phosphatase and kinase, the following reaction buffer 
was used: 20 mM HEPES (pH 7), 150 nM NaCl, 1 mM ATP, 5 mM MgCl2, 0.5 mM EGTA, 200 µg/mL β-
casein, 20 mM BME, 20 mM glucose, 20 nM Cy3-DrrA (PI4P sensor), and 20 nM Alexa488-PLCδPH 
(PI(4,5)P2 sensor). 
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For the cell lysate experiment the buffer consisted of 10 mM HEPES (pH 7), 75 nM NaCl, 1 mM ATP, 2.5 
mM MgCl2, 0.25 mM EGTA, 100 µg/mL β-casein, 10 mM BME, 10 mM glucose, 20 nM Cy3-DrrA (PI4P 
sensor), and 20 nM Alexa488-PLCδPH (PI(4,5)P2 sensor). 

 

For the Ras polarization experiment the buffer consisted of 40 mM HEPES (pH 7.4), 100 mM NaCl, 5 mM 
MgCl2, 10 mM 2-Mercaptoethanol (BME), 20 µg/mL β-casein, 2 mM UV-trated Trolox, 20 nM Grb2, 
20 nM Alexa647-RBD, and 100 µM GTP.  

 
Simulations 
NetLogo (Wilensky, U. 1999. NetLogo.) was used to simulate two-dimensional reaction-diffusion kinetics. 
For the PIP reactions, the reaction space was subdivided into small patches (0.36 µm2, unless stated 
otherwise), and within each patch, the lipid composition was approximated as homogeneous. Accordingly, 
a single reaction coordinate value, 𝑥𝑥, was assigned to each patch. Because the number of PIP lipids per unit 
area is substantial (~56000 per µm2) in the experiment, lipid conversions and lipid dispersion were 
adequately modeled as deterministic processes. In contrast, because the number of enzymes binding to the 
membrane is 3 to 4 orders of magnitude lower (initially, 1 – 10 per µm2)(6), enzyme binding, unbinding, 
and diffusion (random walk) on the membrane were modeled as stochastic processes. The solution above 
the membrane was modeled as a homogeneous reservoir of enzymes because the solution had 3 to 4 orders 
of magnitude more enzymes than the membrane and did not transmit a correlation or anti-correlation 
between membrane parts. Thus, phosphatase without membrane binding (i.e., solution phosphatase) was 
modeled as constant lipid converting pressure over the entire membrane following Michaelis-Menten 
kinetics. In contrast, membrane-binding enzymes were modeled with constant enzyme-binding rates per 
enzyme-recruiting lipid. 

 

More specifically, the conversion of PIP lipids per patch by solution phosphatase was modeled as  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  −𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑠𝑠𝑜𝑜𝑠𝑠
− ∙ 𝑥𝑥

𝐾𝐾𝑀𝑀
−� +𝑥𝑥

, 

and the conversion by membrane-bound kinase and phosphatase was modeled as  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡+ ∙ 𝜎𝜎𝐾𝐾 ∙
1−𝑥𝑥

𝐾𝐾𝑀𝑀
+� +1−𝑥𝑥

, and  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  −𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑚𝑚𝑒𝑒𝑚𝑚
− ∙ 𝜎𝜎𝑃𝑃 ∙

𝑥𝑥
𝐾𝐾𝑀𝑀
−� +𝑥𝑥

,  

where 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑠𝑠𝑜𝑜𝑠𝑠
− , 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡+ , and 𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑚𝑚𝑒𝑒𝑚𝑚

−  are the catalytic rate of solution phosphatase, membrane-binding kinase, 
and membrane-binding phosphatase. 𝐾𝐾𝑀𝑀−�  and 𝐾𝐾𝑀𝑀+�  are the Michaelis constants of the phosphatase and kinase 
(normalized to the reaction coordinate 𝑥𝑥), whereas 𝜎𝜎𝐾𝐾 is the surface density of the membrane-bound kinase 
and 𝜎𝜎𝑃𝑃 is the surface density of the membrane-bound phosphatase. 𝑥𝑥 is the reaction coordinate, defined as 
𝜎𝜎𝑃𝑃𝑃𝑃4𝑃𝑃/ (𝜎𝜎𝑃𝑃𝑃𝑃4𝑃𝑃 + 𝜎𝜎𝑃𝑃𝑃𝑃(4,5)𝑃𝑃2). At 𝑡𝑡0, all simulations had 𝑥𝑥 = 0.5 and no enzyme on the membrane as the 
initial condition.  

 

We used the following parameters for the simulation:  

𝑘𝑘𝑜𝑜𝑛𝑛+� = 0.1, 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜+ = 0.7, 

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡+ = 10, 
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𝐾𝐾𝑀𝑀+� = 2, 

𝑘𝑘𝑜𝑜𝑛𝑛−� = 0.02, 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜− = 0.1, 

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑠𝑠𝑜𝑜𝑠𝑠
− = 0.15, 

𝑘𝑘𝑐𝑐𝑐𝑐𝑡𝑡,𝑚𝑚𝑒𝑒𝑚𝑚
− = 15, and 

𝐾𝐾𝑀𝑀−� = 0.5. 

Note, 𝑘𝑘𝑜𝑜𝑛𝑛
±� , and 𝐾𝐾𝑀𝑀

±�  have units that are normalized to the reaction coordinate 𝑥𝑥 and thus are different from 
the usual definition of the kinetic on-rate and the Michaelis constant. 

The diffusion coefficients of enzymes and PIP lipids were set as 

𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒 = 0.2 𝜇𝜇𝑚𝑚2/𝑅𝑅, and 

𝐷𝐷𝑝𝑝𝑖𝑖𝑝𝑝 = 2 𝜇𝜇𝑚𝑚2/𝑅𝑅. 

For the PIP lipid dispersion, 𝑥𝑥 value of each patch was updated after each timestep as follows: 

𝑥𝑥𝑡𝑡+∆𝑡𝑡 = �1− �4𝛼𝛼 𝑛𝑛
4
�� 𝑥𝑥𝑡𝑡 +  𝛼𝛼∑  𝑥𝑥𝑡𝑡𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛ℎ𝑖𝑖𝑜𝑜𝑟𝑟𝑖𝑖𝑛𝑛𝑛𝑛 𝑝𝑝𝑐𝑐𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠 , 

where 𝛼𝛼 = 𝐷𝐷𝑝𝑝𝑖𝑖𝑝𝑝∆𝑡𝑡
∆𝐿𝐿2

 and 𝑛𝑛 is the number of neighboring patches (max 4). 

For modeling each enzyme diffusion on the membrane, a random walk on a two-dimensional lattice was 
simulated. Because only the tracking of which patch an enzyme is on was needed, the hopping distance was 
set identical to the patch length (Δ𝐿𝐿). Then, to model the enzyme diffusion on the membrane, an enzyme 
either hopped to a neighboring patch or stayed in the present patch, following the probabilities: 

𝑃𝑃ℎ𝑜𝑜𝑝𝑝 = 𝑛𝑛
4
∙ 4𝐷𝐷𝑒𝑒𝑜𝑜𝑒𝑒
Δ𝐿𝐿2

Δ𝑡𝑡,  

𝑃𝑃𝑠𝑠𝑡𝑡𝑐𝑐𝑠𝑠 = 1 − 𝑃𝑃ℎ𝑜𝑜𝑝𝑝. 

The time step was set as 0.01s unless stated otherwise. Von Neumann stability analysis (Δ𝑡𝑡 ≤ Δ𝐿𝐿2

4𝐷𝐷𝑝𝑝𝑖𝑖𝑝𝑝
) was 

always performed before the simulation to ensure the numerical stability of the forward time centered space 
(FTCS) scheme. 
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