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Abstract

Deformations of overconvergent isocrystals on the projective line

by

Shishir Agrawal

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

Let k be an algebraically closed field and Z an effective Cartier divisor in the projective
over kwith complement U. When k = C, a local system on the analytification of U is said
to be physically rigid when it is determined by the conjugacy classes of its monodromy
operators around the points ofZ. Katz proves a convenient cohomological characterization
of irreducible physically rigid local systems. Roughly, it arises from the observation that
irreducible physically rigid local systems are smooth isolated points in the moduli of local
systems on Uwith fixed local monodromy data along Z.

In this dissertation, we consider the situation where char(k) > 0 and local systems are
replaced with overconvergent isocrystals onU. The “moduli of overconvergent isocrystals”
is an elusive object, but we establish some results about the formal deformation theory
of overconvergent isocrystals with fixed “local monodromy” along Z. These results bear
strong resemblances to facts about the infinitesimal structure of the moduli of local systems
with fixed monodromy.

En route, we establish a general result which shows that a Hochschild cochain complex
governs deformations of a module over an arbitrary associate algebra. We also relate this
Hochschild cochain complex to a de Rham complex in order to understand the deforma-
tions of a differential module over a differential ring.
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हर कदम Ϧरी-ए-मंʄज़ल है नुमायाँ मुझसे
मेरी रǉार से भागे है बयाबाँ मुझसे

— गाʃलब
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Chapter 1

Introduction

1.A Punctured Riemann sphere
Let Z be an effective Cartier divisor on the complex projective line P1 and U = P1 \ Z.
Then Uan is the Riemann sphere with finitely many punctures. We choose a numbering
Z = {z1, . . . , zm} for the puncture points.

z1

z2

z3

Figure 1.1: Punctured Riemann sphere

A local system of rank n on U is any of the following types of objects:

(LS1) A locally constant sheaf of complex vector spaces on Uan of rank n.

(LS2) An n-dimensional representation of the fundamental group π1(U
an, ∗), where ∗ is

a basepoint in Uan.

(LS3) A list A1, . . . , Am of invertible n× nmatrices such that

A1 · · ·Am = 1.
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More precisely, the groupoids defined by these three types of objects are all equivalent.
Let us recount briefly how to go back and forth between these types of objects.

(LS1)⇝ (LS2) If L is a locally constant sheaf on Uan of rank n, then the stalk L∗ of L at the
basepoint ∗ is an n-dimensional vector space. Moreover, if we have a loop
γ : [0, 1] → Uan based at ∗, then the inverse image sheaf γ−1L on [0, 1] is
constant. In other words,

L∗ = Lγ(0) = (γ−1L)0 ≃ (γ−1L)1 = Lγ(1) = L∗

is an automorphism of the vector space L∗. It depends only on the homo-
topy class of the loopγ, and this construction defines an action ofπ1(U

an, ∗)
on L∗. In other words, L∗ is an n-dimensional representation of π1(U

an, ∗).

(LS2)⇝ (LS1) See [Sza09, section 2.5].

(LS2)⇝ (LS3) For each i = 1, . . . ,m, choose a loop γi based at ∗ that goes counterclock-
wise around zi and only zi (see figure 1.2). These loops generate π1(U

an, ∗).

z1

z2

z3

Figure 1.2: Loops around the punctures

Moreover, possibly after renumbering, the product loop γ1 · · ·γm is null-
homotopic (see figure 1.4). In fact, this turns out to be the only relation:

π1(U
an, ∗) = ⟨γ1, . . . , γm | γ1 · · ·γm = 1⟩. (1.3)

It follows that π1(U
an, ∗) is actually a free group on any m − 1 of the

generating loops.
If V is an n-dimensional representation of π1(U

an, ∗) and we choose a basis
(v1, . . . , vn), then the action of each loop γi on V determines an n × n

invertible matrix Ai. The fact that γ1 · · ·γm = 1 then tells us that

A1 · · ·Am = 1.
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z1

z2

z3

z1

z2

z3

z1

z2

z3

z1

z2

z3

z1

z2

z3

z1

z2

z3

Figure 1.4: The product γ1 · · ·γm is null-homotopic: we perturb the product to a loop
encircling all of Z, and then pull the loop all the way around the sphere.

(LS3)⇝ (LS2) Using the presentation of π1(U
an, ∗) in equation (1.3), we see that any list

A1, . . . , Am of n × n invertible matrices such that A1 · · ·Am = 1 defines a
group homomorphism π1(U

an, ∗) → GLn(C) given by γi 7→ Ai. Since Cn

has a canonical action of GLn(C) by left multiplication, we obtain an action
of π1(U

an, ∗) on Cn via this homomorphism.

Suppose L is a local system on U of rank n which corresponds to the list of matrices
A1, . . . , Am.

• L is irreducible if and only if no subspace of Cn is invariant under all of the Ai.

• If L ′ is another local system of rank n which corresponds to the list of matrices
A ′

1, . . . , A
′
m. Then L ≃ L ′ if and only if the two lists A1, . . . , Am and A ′

1, . . . , A
′
m are

simultaneously conjugate (that is, there exists a single matrix P ∈ GLn(C) such that
A ′

i = P
−1AiP).

Let us also make the following (slightly non-standard) definition.
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Definition 1.5 (Local monodromy). If L is the local system on U corresponding to a list
of matrices A1, . . . , Am, the local monodromy of L at zi is the conjugacy class of Ai (that is,
“the” Jordan form of Ai).

1.B Rigid local systems
Definition 1.6 (Physical rigidity). A local system L onU is physically rigid if it is determined
up to isomorphism by its local monodromies: that is, whenever there exists a local system
L ′ on U such that the local monodromies of L and L ′ along Z are equal, then L and L ′ are
isomorphic.

More concretely, the local system corresponding to a list of matrices A1, . . . , Am is
physically rigid if and only if, whenever there is a list of matrices A ′

1, . . . , A
′
m such that

A ′
1 · · ·A ′

m = 1 and Ai is conjugate to A ′
i for each i individually, then in fact the two lists

A1, . . . , Am and A ′
1, . . . , A

′
m are simultaneously conjugate.

In practice, it is difficult to check physical rigidity directly from the definition. It turns
out, however, that there is a simple characterization of irreducible and physically rigid
local systems.

Theorem 1.7 (Katz’s cohomological criterion for rigidity). Suppose L is an irreducible local
system on U. Then L is physically rigid if and only if H1(P1,an, j!+ End(L)) = 0.1

It follows from the Euler-Poincaré formula that, if a local system L of rank n on U
corresponds to the list of matrices (A1, . . . , Am) in GLn(C), then

dimH1(P1,an, j!+ End(L)) = 2(1− n2) +

m∑
i=1

codim z(Ai) (1.8)

where z(Ai) is the centralizer ofAi, regarded as a subspace of gln. In this way, theorem 1.7
makes it very easy to check rigidity of irreducible local systems.

Example 1.9. We have codim(z(A)) = 2 for any non-scalar A ∈ GL2(C). Thus an irre-
ducible local system of rank 2 on U, all of whose local monodromies are non-scalar, is
physically rigid if and only if we have preciselym = 3 punctures.

To explain where Katz’s cohomological criterion for rigidity comes from, let us first
give a moduli theoretic reinterpretation of physical rigidity.

1Note that, for a local system L on U, we have H1(P1,an, j!+L) = H1(P1,an, j∗L), where j∗ denotes the
usual underived direct image functor.
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Deligne-Simpson map
Consider the functor Hn which sends a commutative C-algebra R to the set

HomGrp(π1(U
an, ∗),GLn(R)).

For each i = 1, . . . ,m, we have a “image of γi” morphism πi : Hn → GLn. The product
(π1, . . . , πm) defines a closed embedding of Hn into them-fold product GLn × · · · × GLn,
with image the closed subscheme

R 7→ {A1, . . . , Am ∈ GLn(R) | A1 · · ·Am = 1}.

Thus Hn is an affine scheme.2 Observe that GLn acts on Hn on the left by conjugation.
The quotient stack

Locn := [Hn/GLn]

is the moduli of local systems of rank n onU.3 Taking an infinite coproduct, we obtain the
algebraic stack

Loc :=
⨿
n⩾1

Locn

which parametrizes all local systems on U.
Now GLn also acts on itself by conjugation, and the “image of γi” map πi : Hn → GLn

is GLn-equivariant. It therefore induces a morphism

Locn Jn := [GLn/GLn]

which we abusively denote πi again. The tuple (π1, . . . , πm) defines a morphism

Locn (Jn)
m. (1.10)

Now let J :=
⨿

n⩾1 Jn and take the infinite disjoint union of these maps as n varies.

Definition 1.11. The Deligne-Simpson map is the morphism

Loc Jm
π

defined by taking the infinite disjoint union of the map (1.10) over all n ⩾ 1. If L is a local
system of rank n on U, then π(L) is the local monodromy data of L along Z.

2Note that the projection (π2, . . . , πm) defines an isomorphism of Hn onto the (m − 1)-fold product
GLn × · · · × GLn. In particular, Hn is smooth.

3The algebraic stack Locn is quasi-separated of finite type over C, because Hn and GLn are both affine
of finite type over C. In fact, it is even smooth, since Hn is smooth.
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When M is a finite type point of Jm, we let ΓM be the residual gerbe of J at M and we
define LocM := π−1(ΓM).

LocM Loc

ΓM Jm

π (1.12)

This is a quasi-separated algebraic stack of finite type over C.4 Roughly speaking,M is an
m-tuple of conjugacy classes invertible matrices over C, and LocM is the moduli of local
systems on Uwhose local monodromy along Z isM.

Theorem 1.13. Let L be a local system on U and M := π(L) its local monodromy data. Then we
have

InfL(LocM) = EndC(L) and TL(LocM) = H1(P1,an, j!+ End(L)),

where j denotes the open embeddingUan ↪→ P1,an. The tangent spaceH1(P1,an, j!+ End(L)) carries
a natural symplectic form. Moreover, if L is irreducible, then LocM is smooth at L.

One can prove theorem 1.13 roughly as follows. We produce an exact sequence [Stacks,
07X2] using the cartesian diagram (1.12). This exact sequence identifies InfL(LocM) with
EndC(L) and TL(LocM) withH1(P1,an, j!+ End(L)).5 The trace pairing on End(L) induces a
symplectic form on this vector space.6 Obstructions to smoothness live inH2

c(U
an,End(L)),

and the obstruction classes vanish when L is irreducible.7

Sketch of a proof of Katz’s cohomological criterion
LetLbe an irreducible local system onU andM = π(L) its monodromy data. The proof that
H1(P1,an, j!+ End(L)) = 0 implies physical rigidity is an application of the Euler-Poincaré
formula; see the first part of the proof of [Kat96, theorem 1.1.2] for details.

Here, let us focus on the converse; let us give a slightly different argument than
that given in [Kat96, theorem 1.1.2]. More specifically, we will see that the fact that
physical rigidity implies H1(P1,an, j!+ End(L)) = 0 is a relatively formal consequence of
the infinitesimal structure of LocM near L as described by theorem 1.13, plus the fact that
LocM is a quasi-separated algebraic stack of finite type over C.

Notice that
InfL(LocM) = EndC(L) = C

since L is irreducible. We know from theorem 1.13 that LocM is smooth at L, so
dimL(LocM) coincides with the Euler characteristic of the tangent complex at L. In other

4Observe that LocM is empty unless M is a point of (Jn)m for some n, in which case the finite type
monomorphism LocM ↪→ Loc factors through Locn, which is quasi-separated of finite type over C.

5Cf. [BE04, theorem 4.10], [EG18, proposition 2.3 and remark 2.4], and theorem 6.1 below.
6Cf. [Kat96, page 3] and theorem 6.1 below.
7Cf. [BE04, theorem 4.10] and theorem 6.2 below.

http://stacks.math.columbia.edu/tag/07X2
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words, we have

dimL(LocM) = −dim InfL(LocM) + dim TL(LocM)

= −1+ dimH1(P1,an, j!+ End(L)).

Since H1(P1,an, j!+ End(L)) carries a symplectic form, its dimension must be even. We
conclude that H1(P1,an, j!+ End(L)) = 0 if and only if dimL(LocM) ⩽ 0.

By definition, L is physically rigid if and only if L is the unique finite type point of
LocM. Equivalently, L is physically rigid if and only if L is the unique point of LocM (cf.
lemma A.3), and this implies that dimL(LocM) ⩽ 0 (cf. lemma A.4).

1.C Simpson’s conjecture
Example 1.9 suggests that the physically rigid local systems form a somewhat sparse class
of local systems. Despite this, interest in this class of local systems stems in part from the
following result.

Theorem 1.14 ([Kat96, theorem 8.4.1]). Suppose L is an irreducible local system onU such that
π(L) is quasi-unipotent. If L is physically rigid, then it is motivic.

Example 1.15. Let U = P1 \ {0, 1,∞} and consider the local system on U whose sections
are local solutions on Uan to the hypergeometric differential equation

z(z− 1)f ′′ + (2z− 1)f ′ +
f

4
= 0.

It turns out that, up to simultaneous conjugation,

A0 =

(
2 1

−1 0

)
, A1 =

(
1 0

−3 1

)
, and A∞ =

(
0 −1
1 −2

)
.

All of these matrices are conjugate to Jordan blocks of size 2; the first two have eigenvalue
1, and the third has eigenvalue −1. The only nontrivial subspace that is invariant under
A0 is the one spanned by the eigenvector (−1, 1). This is not stable under either A1 or
A∞, so L is irreducible. It follows from example 1.9 that L is physically rigid, so Katz’s
motivicity theorem 1.14 guarantees that L is motivic.

In fact, this is recovering a classical result. Let f : E → U be the Legendre family of
elliptic curves: the fiber above any closed point u ∈ U is the projective closure of the affine
curve on U defined by the Weierstrass equation

y2 = x(x− 1)(x− u).

Then L ≃ R1f∗CEan .
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Suppose now that X is any smooth, connected, and projective scheme over C. Let Z
be a strict normal crossings divisor in X with irreducible components Z1, . . . , Zm and let
U = X \ Z. We can then form the algebraic stack Loc of local systems on U. Fix a rank
1 local system D and let LocD be the moduli of local systems L on U equipped with an
isomorphism D ≃ det(L). As before, there is a monodromy map

LocD Jm.
π

Choosing a finite type point M of Jm, the inverse image of the residual gerbe of Jm at M
defines a substack LocM

D ⊆ LocD.

Conjecture 1.16 (Simpson). Suppose L is an irreducible local system onU such thatD := det(L)
is torsion andM := π(L) is quasi-unipotent. If L is isolated in LocM

D , then it is motivic.

Katz’s motivicity theorem 1.14 is precisely the X = P1 case of Simpson’s conjecture;
it was not necessary to fix determinants in this case roughly because P1,an is simply
connected. Some evidence towards the general conjecture is provided in [EG18], where it
is proved that, under the same hypotheses as conjecture 1.16, Lmust be integral.8

1.D Positive characteristic
Suppose now that k is an algebraically closed field of characteristic p > 0. Let P1 be the
projective line over k and let Z = {z1, . . . , zm} be an effective Cartier divisor in P1 with
complement U = P1 \ Z. There are now several kinds of objects living on U that can
rightfully be called analogs of local systems, indexed by an auxiliary prime ℓ.

For any ℓ ̸= pwe can consider ℓ-adic local systems on U for some prime ℓ ̸= p, by which
we mean continuous finite dimensional representations of the étale fundamental group
πét
1 (U, ∗) over Q̄ℓ, where ∗ is a fixed basepoint in U. For every z ∈ Z, there is a natural

group homomorphism

Gz := Gal(Frac ÔP1,z) πét
1 (U, ∗).

If L is a ℓ-adic local system on U, the isomorphism class of the continuous representation
of Gz obtained by restricting along the above homomorphism plays the role of the local
monodromy of L around z. This lets us formulate a notion of physical rigidity for ℓ-adic local
systems on U. Katz proved that physical rigidity of an irreducible ℓ-adic local system L

is implied by the vanishing of H1(P1, j!+ End(E)) [Kat96, theorem 5.0.2]. The role of the
Euler-Poincaré formula in this situation is played by the Grothendieck-Ogg-Shafarevich
formula. More recent work of Fu proves that the converse implication is true as well
[Fu17].

8A local system L being integral means that L comes from base changing a local system of finite projective
modules over the ring of integers in a number field.
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When ℓ = p, there are “too many” continuous finite dimensional representations of
πét
1 (U, ∗) over Q̄p, because the image in GLn(Q̄p) of the “pro-ppart” ofπét

1 (U, ∗) can be quite
large. By requiring that the image of the “pro-p part” is not too large, we obtain a slightly
better behaved category, and we can “unsolve” these representation to obtain certain
kinds of modules with integrable connections. More precisely, a theorem of Tsuzuki’s
tells us that continuous finite dimensional representations of πét

1 (U, ∗) with finite local
monodromy are equivalent to overconvergent isocrystals on U equipped with unit-root
Frobenius structures [Tsu98]. But now, this category turns out to be too small to contain
all objects that can “come from geometry over U.”

A better category seems to be that of all overconvergent isocrystals on U. It seems
to contain objects that “come from geometry over U” [Ber86, théorème 5], though there
remain some open questions about its suitability as an analog of local systems [Laz16].
Hereafter, we will refer to overconvergent isocrystals simply as isocrystals; an overview
of these objects will be given in chapter 5. We will not insist that our isocrystals come
equipped with Frobenius structures, though at various points it will be necessary to
assume that some isocrystals in question can be equipped with a Frobenius structure (or
to assume some more technical hypothesis that is implied by the existence of a Frobenius
structure) in order to use some finite dimensionality results. In any case, the isocrystals
that “come from geometry over U” come naturally equipped with Frobenius structures,
so this will not be too serious an assumption when it does come up.

1.E Rigid isocrystals
Let K0 be the fraction field of the Witt vectors W(k) and K̄ an algebraic closure of K0. We
write K for finite extensions of K0 inside K̄, and we define

Isoc†(U/K̄) := colim
K

Isoc†(U/K).

Objects of Isoc†(U/K) are special kinds of modules with integrable connection on a lift of
U. Slightly more precisely, consider the adic projective line P over the ring of integers in
K. Objects of Isoc†(U/K) are modules with integrable connection on the tube ]U[K of U in
Pwhich satisfy a technical “overconvergence” condition; this condition ensures that these
objects are canonically attached to the geometry of U (as opposed to a lift of U).

The analog of the local monodromy at a point z ∈ Z of an E ∈ Isoc†(U/K) is played by
the isomorphism class of the “Robba fiber” Ez of E at z, which is a differential module over
a certain differential ring Rz, called the “Robba ring” at z. The overconvergence condition
on E mentioned earlier is equivalent to requiring that the Robba fibers are “solvable”
differential modules over the Robba rings along Z. It is worth emphasizing at this point
that overconvergence of E is entirely determined by properties of the tuple of Robba fibers
(Ez)z∈Z. We will return to this observation shortly.
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We can now formulate a notion of physical rigidity for isocrystals: we say that
E ∈ Isoc†(U/K) is physically rigid if it is determined up to isomorphism as an object
of Isoc†(U/K̄) by the isomorphism classes of its Robba fibers along Z.9

Crew proves that an absolutely irreducible E ∈ Isoc†(U/K) is physically rigid if a
certain “parabolic cohomology” spaceH1

p,rig(U,End(E)) vanishes [Cre17, theorem 1]. The
proof is similar to the ones given by Katz in the complex (resp. ℓ-adic) settings; the role
of the Euler-Poincaré formula (resp. Grothendieck-Ogg-Shafarevich formula) is played
by the Christol-Mebkhout index formula [CM00, théorème 8.4–1]. To strengthen the
analogy of Crew’s result with its analogs in the complex and ℓ-adic settings, we prove in
theorem 5.41 below that Crew’s parabolic cohomology H1

p,rig(U,End(E)) coincides with
H1(P1, j!+ End(E)), where j!+ is the middle extension operation in Berthehlot’s theory of
arithmetic D-modules.

The bulk of this dissertation is motivated by a search for the converse implication,
that physical rigidity of an absolutely irreducible E ∈ Isoc†(U/K) implies the vanishing
of H1

p,rig(U,End(E)). An approach like the one we described above in section 1.B above
cannot work verbatim: isocrystals on Uwith prescribed Robba fibers along Z seem not to
be the finite type points of an algebraic stack.

What can be made precise is a stack S over K0 whose K-points are modules with
integrable connections on ]U[K. Moreover, if we fix a tuple M of isomorphism classes of
differential modules over the Robba rings along Z, we can also form the substack SM ⊆ S
whose K-points are modules with integrable connection on ]U[ whose Robba fibers are
prescribed byM. These stacks are likely not algebraic (more on this shortly). Nevertheless,
we will see in theorems 6.1 and 6.2 below that the stack SM has the satisfying properties
infinitesimally, completely analogous to the infinitesimal properties of the stack LocM we
saw in theorem 1.13 above. For instance, ifM is the tuple of Robba fibers ofE ∈ Isoc†(U/K)
along Z, and we regard E as a finite type point of SM, we will show that the tangent space
to the stack SM at the point E is precisely Crew’s parabolic cohomologyH1

p,rig(U,End(E)),
and that this space carries a natural symplectic form, forcing its dimension to be even
(when it is finite).

We should note that the stack S has finite type points corresponding to modules with
integrable connection over K0 which do not satisfy the overconvergence condition. In
other words, the stack S is classifying objects that are not necessarily canonically attached
to U itself. Rather, it is classifying objects that are canonically related to the geometry of
the tube of U inside the adic projective line. In fact, the objects which are overconvergent
are somewhat sparse in S. For example, when U = P1 \ {0,∞} with coordinate t, the

9It is worth drawing attention to the fact that we are requiring that E be determined up to isomorphism
as an object of Isoc†(U/K̄) by its Robba fibers, not as an object of Isoc†(U/K). This condition is therefore
slightly stronger than the notion formulated by Crew [Cre17] in that we have forcibly stabilized Crew’s
definition under finite extensions of K. Since the goal we have in mind in this dissertation is a p-adic
analog of Katz’s cohomological criterion and since the condition that the the relevant cohomology space
H1

p,rig(U,End(E)) vanish is invariant under finite extensions of K, this notion seemed better suited for our
purposes.
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differential operators t∂ − λ for λ ∈ K̄ all determine finite type points of S, but these are
only overconvergent when λ ∈ Zp. However, ifM is a tuple of solvable differential modules
over the Robba rings along Z, then in fact all of the finite type points of SM do satisfy the
overconvergence property and define isocrystals on U.

The picture this suggests is something like figure 1.17. There is a “Robba fibers” map
from the moduli S of all modules with integrable connection on ]U[, down to the moduli
Rm of m-tuples of differential modules over the Robba rings along Z. The objects of
Isoc†(U/K̄) are precisely the ones living over solvable differential modules over the Robba
rings along Z.

Rm

S

E

Figure 1.17: The moduli S of modules with connections on ]U[. There is a natural “Robba
fibers” map S → Rm, and the preimage of the “solvable locus” of Rm (indicated by
the black dots) is the space of isocrystals on U (indicated by the black fibers). Given
E ∈ Isoc†(U/K̄), its tangent space in S isH1

rig(U,End(E)), and its tangent space in the fiber
is H1

p,rig(U,End(E)). Note that S is formally smooth, but the fibers need not be. However,
when E is irreducible, it is a formally smooth point of the fiber.

The attempt to make this picture precise takes us back to the comment we made earlier,
about the stacks S and SM likely not being algebraic stacks.

Musings
Recall that in the proof of Katz’s cohomological criterion we discussed above, we combined
the infinitesimal properties of LocM with global properties: more specifically, we used the
fact that it was a quasi-separated algebraic stack of finite type over C. On the other hand,
the objects parametrized by SM are inherently analytic in nature, which makes it seem
unlikely that it is an algebraic stack at all.

That said, it is likely that SM is an “analytic stack” in some suitable sense; it may, for
instance, have a presentation by a groupoid in the category of dagger spaces à la Grosse-
Klönne [Gro00]. The theory of such objects is not as well-developed as that of algebraic
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stacks, but it likely that establishing the existence of a suitable such presentation should
give us sufficient geometric control of the stack SM to prove that physical rigidity implies
the vanishing of H1

p,rig(U,End(E)). I hope to explore this in future work.

1.F Contents
Chapter 2 is background material on formal deformation theory. It is mostly expository,
though at a few points we categorify and slightly expand some results that exist in the
literature. This categorification makes for a cleaner story conceptually, and also permits
us to prove a certain algebraization theorem for infinitesimal deformations of isocrystals
later on (cf. theorem 6.3).

In chapter 3, we apply the background material on formal deformation theory to
studying deformations of a left module E over an arbitrary associative algebra D over a
field K of characteristic zero. The main result in this chapter is theorem 3.2, which shows
that the Hochschild cochain complex HochK(D,EndK(E)) governs the deformations E.
This categorifies observations of Yau [Yau05].

Then in chapter 4, we specialize further and study the deformations of a differential
module E over an arbitrary differential algebra O over a field K of characteristic zero.
The key here is theorem 4.13, which constructs an explicit quasi-isomorphism of differen-
tial graded algebras between the de Rham complex dR(O,EndO(E)) and the Hochschild
cochain complex HochK(D,EndK(E)), where D is the associated ring of differential oper-
ators.

Chapter 5 is mostly expository material on isocrystals on open subsets of the projec-
tive line, with some new results. Proposition 5.10, for instance, proves that the ring of
functions on the tube of an affine open subset of P1 is a principal ideal domain; this is
likely well-known to experts, but I know of no reference in the literature, and it has a
number of important consequences that are described in chapter 5. Also, theorem 5.41 is
the aforementioned comparison between Crew’s parabolic cohomology and the middle
extension operation in Berthelot’s theory of arithmetic D-modules. Note that chapter 5 is
largely independent of everything that precedes it; starting in section 5.C, we do use some
notation that is introduced in chapter 4, but we do not use any of the results of chapter 4.

Finally, we put everything together in chapter 6. Theorems 6.1 and 6.2 describe the
infinitesimal deformation theory of isocrystals; combined, they provide a p-adic analog
to theorem 1.13 above. Theorem 6.3 is a kind of “algebraization” theorem that falls out
almost automatically as a result of our categorified approach to deformation theory. We
conclude with a calculation in example 6.6 which is in analogy with example 1.9 above.
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Figure 1.18: Leitfaden
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Chapter 2

Formal deformation theory

We fix a field K of characteristic 0. In this chapter, we recount some generalities about
deformation theory. The foundational work here is due to Schlessinger [Sch68], but we
use here the categorified version of Rim [GRR06, Exposé VI], which uses opfibrations in
groupoids over ArtK in place of functors ArtK → Set, where ArtK denotes the category
of artinian local K-algebras with residue field K.

We generally10 follow terminology and notation set up for formal deformation theory
in the Stacks Project [Stacks, 06G7], and we provide references therein whenever possible.

2.A Hulls and prorepresentability
The definition of a deformation category is given in [Stacks, 06J9]. To any deformation
category F, one can associate a decategorified functor F : ArtK → Set [Stacks, 07W5], as
well as two vector spaces: its tangent space T(F) [Stacks, 06I1] and its space of infinitesimal
automorphisms [Stacks, 06JN]. Let us also draw attention to the fact that the 2-category
of deformation categories has 2-fiber products [Stacks, 06L4], as we will use this several
times.

The following theorem could be called the “fundamental theorem of deformation
theory.”

Theorem 2.1. Suppose F is deformation category.

(a) F has a hull if and only if its tangent space T(F) is finite dimensional.

(b) The decategorified functor F is prorepresentable if and only if T(F) is finite dimensional and
AutR ′(x ′) → AutR(x) is surjective whenever x ′ → x is a morphism in F lying over a
surjective homomorphism R ′ → R in ArtK.

10The only exceptions are that we use the slightly less sesquipedalian phrase opfibration in groupoids in
place of “category cofibered in groupoids,” and similarly hull in place of “miniversal formal object.”

http://stacks.math.columbia.edu/tag/06G7
http://stacks.math.columbia.edu/tag/06J9
http://stacks.math.columbia.edu/tag/07W5
http://stacks.math.columbia.edu/tag/06I1
http://stacks.math.columbia.edu/tag/06JN
http://stacks.math.columbia.edu/tag/06L4
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(c) F is prorepresentable if and only if T(F) is finite dimensional and Inf(F) = 0.

Proof. Since F is a deformation category, it satisfies the Rim-Schlessinger condition (cf.
[Stacks, 06J2] for a definition) and therefore also axioms (S1) and (S2) (cf. [Stacks, 06J7] for
a definition). Thus (a) is precisely [Stacks, 06IX], and (b) follows from [Stacks, 06JM] and
[Stacks, 06J8]. Finally, (c) follows from statement (b) together with [Stacks, 06K0].

2.B Residual gerbes
Definition 2.2. Suppose F is a predeformation category and fix an object x0 lying above K.
The residual gerbe of F is the full subcategory Γ of F spanned by objects x such that there
exists a morphism x0 → x.

In other words, the fiber of the residual gerbe Γ over R ∈ ArtK is a connected groupoid.
Moreover, if x ∈ Γ lies over R, then the automorphism group AutR(x) is the same when is
regarded as an object both of Γ(R) and of F(R). It is clear that Γ is also a predeformation
category.

Lemma 2.3. Let F be a deformation category and x0 an object lying above K. Suppose further
that, for any morphism x ′ → x in the residual gerbe Γ that lies above a surjective homomorphism
in ArtK, the map

Hom(x0, x
′) Hom(x0, x)

is surjective. Then Γ is a deformation category.

Proof. Suppose we are given a diagram
x2

x1 x

in Γ where x2 → x lies over a surjective homomorphism in ArtK. Since F is a deformation
category, we can form the fiber product x1 ×x x2 in F. Let us show that this fiber product
lies in Γ .

Since x1 is in Γ , there is a morphism τ1 : x0 → x1 in F. Composing with the map x1 → x

gives us a map x0 → x, which, by our hypotheses, we can lift to a morphism τ2 : x0 → x2
such that the following diagram commutes.

x0

x1 ×x x2 x2

x1 x

τ2

τ1

http://stacks.math.columbia.edu/tag/06J2
http://stacks.math.columbia.edu/tag/06J7
http://stacks.math.columbia.edu/tag/06IX
http://stacks.math.columbia.edu/tag/06JM
http://stacks.math.columbia.edu/tag/06J8
http://stacks.math.columbia.edu/tag/06K0
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Thus τ = (τ1, τ2) defines a morphism x0 → x1 ×x x2, proving that x1 ×x x2 is in Γ .

Remark 2.4. Observe that the hypothesis of the lemma is equivalent to the following: for
every surjective homomorphism R ′ → R in ArtK, there exist x ′ ∈ Γ(R ′) and x ∈ Γ(R) such
that, for every morphism x ′ → x, the induced group homomorphism AutR ′(x ′) → AutR(x)
is surjective.

2.C Obstruction theory
We also need some basic definitions about obstruction theory.

Definition 2.5. Suppose F is a deformation category. An obstruction space for F is a vector
space V over K equipped with a collection of obstruction maps o(π,−) : F(R) → ker(π)⊗KV

for every small extension π : R ′ → R in ArtK, subject to the following conditions.

(O1) Suppose we have a commutative diagram

R ′
2 R2

R ′
1 R1

π2

α ′ α

π1

in ArtK with π1 and π2 small extensions. Then for every x ∈ F(R2),

o(π1, α(x)) = (α ′ ⊗ 1V)(o(π2, x)).

(O2) Suppose π : R ′ → R is a small extension and x ∈ F(R). There exists a x ′ ∈ F(R ′) and
a morphism x ′ → x lying over π if and only if o(π, x) = 0.

Lemma 2.6. Any deformation category F has an obstruction space.

Proof. An obstruction space for F as we have defined it is the same as a “complete linear
obstruction theory” for the decategorified functor F in the sense of [FM98, definitions 3.1,
4.1, and 4.7].

Note that the natural map

F(R×K R
′) F(R)× F(R ′)

is bĳective for all R, R ′ ∈ ArtK. This is a consequence of the Rim-Schlessinger condition;
the proof is identical to the one in [Stacks, 06I0]. By [FM98, lemma 2.11], it follows that
F is a “Gdot functor” in the sense of [FM98, definition 2.10]. Combining [FM98, theorem
3.2, corollary 4.4, and theorem 6.11], we are done.

http://stacks.math.columbia.edu/tag/06I0
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Definition 2.7. Suppose thatϕ : F → G is a morphism of deformation categories, that V is
an obstruction space for F andW is an obstruction space for G. A K-linear map γ : V →W

is compatible with ϕ if o(π,ϕ(x)) = (1ker(π) ⊗γ)(o(π, x)) for all small extensions π : R ′ → R

and all x ∈ F(R).

Lemma 2.8 (Standard smoothness criterion). Supposeϕ : F → G is a morphism of deformation
categories such that

(i) T(F) → T(G) is surjective, and

(ii) there exists an injective compatible homomorphism γ : V →W of obstruction spaces, where
V is an obstruction space for F andW for G.

Then ϕ is smooth.

Proof. This is simply a rephrasing of [Man99, proposition 2.17] in the setting of deformation
categories. Suppose π : R ′ → R is a small extension, y ∈ G(R ′), x ∈ F(R) and y→ ϕ(x) is
a morphism in G lying over π. Then

0 = o(π,ϕ(x)) = (1ker(π) ⊗ γ)(o(π, x))

so injectivity of γ implies that o(π, x) = 0. Thus condition (O2) guarantees that there exists
a morphism x ′0 → x lying over π.

Observe that the morphismsϕ(x ′0) → ϕ(x) and y→ ϕ(x) in G lying over π both define
elements in the set Lift(ϕ(x), π) [Stacks, 06JE]. There is a free and transitive action of
T(G) ⊗K ker(π) = T(G) on Lift(ϕ(x), π) [Stacks, 06JI], so there exists w ∈ T(G) such that
(ϕ(x ′0) → ϕ(x)) ·w = (y→ x). Since T(F) → T(G) is surjective, we liftw to some v ∈ T(F)
and then define x ′ → x to be a representative of the isomorphism class (x ′0 → x) · v.
The functoriality of the action [Stacks, 06JJ] guarantees that the isomorphism classes of
ϕ(x ′) → ϕ(x) and y → ϕ(x) in Lift(ϕ(x), π) are equal. In other words, there exists an
morphism ϕ(x ′) → y in G lying over R and making the following diagram commute.

ϕ(x ′) y

ϕ(x)

This proves that ϕ is smooth [Stacks, 06HH].

Remark 2.9. For a deformation category F, consider the category whose objects are ob-
struction spaces for F and whose morphisms are linear maps amongst obstruction spaces
that are compatible with the identity on F in the sense of definition 2.7 above. This cate-
gory has an initial object OF and, for any obstruction space V , the unique map OF → V is
injective [FM98, theorems 3.2 and 6.6].

http://stacks.math.columbia.edu/tag/06JE
http://stacks.math.columbia.edu/tag/06JI
http://stacks.math.columbia.edu/tag/06JJ
http://stacks.math.columbia.edu/tag/06HH
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2.D Quotients by group actions
Definition 2.10. Suppose F : ArtK → Set and G : ArtK → Grp are deformation func-
tors in the sense of [Stacks, 06JA]. Note that this means that they satisfy Schlessinger’s
homogeneity axiom (H4) [Sch68, page 213]. Suppose further that G acts on F. Let [F/G]
be the category whose objects are pairs (R, x) where R ∈ ArtK and x ∈ F(R), and whose
morphisms (R ′, x ′) → (R, x) are pairs (π, g) where π : R ′ → R is a homomorphism in
ArtK, g ∈ G(R) and g · π(x ′) = x, where π(x ′) denotes the image of x ′ under the map
F(π) : F(R ′) → F(R). Composition is defined using the group operation on G. Specifically,
given another morphism (π ′, g ′) : (R ′′, x ′′) → (R ′, x ′), we define

(π, g) ◦ (π ′, g ′) = (π ◦ π ′, g · π(g ′)).

Evidently the functor (R, x) 7→ R presents [F/G] as an opfibration in groupoids over ArtK.

Lemma 2.11. [F/G] is a deformation category.

Proof. Since F and G are both deformation functors, F(K) is a singleton set and G(K) is
the trivial group. Thus [F/G](K) has just one object and no nontrivial morphisms, so
[F/G] is a predeformation category [Stacks, 06GS]. We need to verify the Rim-Schlessinger
condition [Stacks, 06J2]. This is straightforward once we recall that G must be smooth
[FM98, theorem 7.19]. Suppose we have a diagram as follows in [F/G], where π2 : R2 → R

is surjective.
(R2, x2)

(R1, x1) (R, x)

(π2,g2)

(π1,g1)

Since G is smooth, there exist g̃1, g̃2 ∈ G(R2) lifting g1, g2 ∈ G(R) respectively. Let
S = R1 ×R R2. Since F is a deformation category, we know that

F(S) F(R1)×F(R) F(R2)

is bĳective. The pair (x1, g̃
−1
1 g̃2 · x2) is an element of F(R1) ×F(R) F(R2), so let y be the

corresponding element of F(S). Then we have a commutative diagram as follows, where
ρi : S→ Ri are the canonical maps in ArtK.

(S, y) (R2, x2)

(R1, x1) (R, x)

(ρ2,g̃
−1
2 g̃1)

(ρ1,1) (π2,g2)

(π1,g1)

http://stacks.math.columbia.edu/tag/06JA
http://stacks.math.columbia.edu/tag/06GS
http://stacks.math.columbia.edu/tag/06J2
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To check that this square is cartesian, suppose we have a diagram of solid arrows as
follows.

(T, z)

(S, y) (R2, x2)

(R1, x1) (R, x)

(τ2,h2)

(τ1,h1)

(ρ2,g̃
−1
2 g̃1)

(ρ1,1) (π2,g2)

(π1,g1)

Since S = R1 ×R R2 in ArtK, there exists τ : T → S such that τ ◦ ρi = τi for i = 1, 2. The
commutativity of the large square tells us that g1π1(h1) = g2π2(h2), so

(h1, g̃
−1
1 g̃2h2) ∈ G(R1)×G(R) G(R2).

SinceG is a deformation functor, we let h ∈ G(S) be the corresponding element under the
bĳection

G(S) G(R1)×G(R) G(R2).

It is then easily verified that (τ, h) defines the desired dotted arrow (T, z) → (S, y).

Lemma 2.12. The natural morphism F → [F/G] is smooth. Moreover, every obstruction space
V for F is canonically an obstruction space for [F/G] in such a way that the identity map on V is
compatible with F→ [F/G].

Proof. Observe thatG is smooth [FM98, theorem 7.19] and [F/G] coincides with the functor
ArtK → Set that is denoted F/G in [FM98, page 570], so F → [F/G] is smooth [FM98,
proposition 7.5].

F [F/G]

[F/G]

Since F → [F/G] is essentially surjective and [F/G] → [F/G] is smooth [Stacks, 06HK], it
follows that F→ [F/G] is smooth [Stacks, 06HM].

If V is an obstruction space for F, there is a natural injective linear map OF ↪→ V as in
remark 2.9. The natural map OF → O[F/G] is an isomorphism [FM98, proposition 7.5], so
composing its inverse with OF ↪→ V yields an injective linear map O[F/G] ↪→ V . This map
makes V an obstruction space for [F/G].

Definition 2.13. Let 0 denote the unique element of F(K) and also its image in F(R) under
the map F(K) → F(R) for every R ∈ ArtK. The stabilizer of the action of G on F, denoted
StabG, is the subfunctor of G that associates to each R ∈ ArtK the subgroup

StabG(R)(0) := {g ∈ G(R) : g · 0 = 0}.

http://stacks.math.columbia.edu/tag/06HK
http://stacks.math.columbia.edu/tag/06HM
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Lemma 2.14. The stabilizer StabG is a deformation functor.

Proof. Observe that we have an “act on 0” map G→ F that carries g ∈ G(R) to g · 0 ∈ F(R)
for all R ∈ ArtK. Suppose we have homomorphisms

R2

R1 R

in ArtK with R2 → R surjective. We then obtain a commutative diagram as follows, where
we write S := StabG to ease notation.

S(R1 ×R R2) S(R1)×S(R) S(R2)

G(R1 ×R R2) G(R1)×G(R) G(R2)

F(R1 ×R R2) F(R1)×F(R) F(R2)

∼

∼

The lower two horizontal arrows are isomorphisms since F andG are deformation functors.
It is now an elementary diagram chase to prove that the horizontal arrow on top is

also an isomorphism. Indeed, it follows immediately from injectivity of G(R1 ×R R2) →
G(R1)×G(R)G(R2) that S(R1×RR2) → S(R1)×S(R)S(R2) is injective. Now suppose we have
(g1, g2) ∈ S(R1) ×S(R) S(R2). Then there exists g ∈ G(R1 ×R R2) which maps to (g1, g2).
Since g1 ∈ S(R1) and g2 ∈ S(R2), we know that the image of (g1, g2) in F(R1) ×F(R) F(R2)
is (0, 0). Thus the image of g in F(R1 ×R R2) is 0. It follows that g ∈ S(R1 ×R R2), proving
that S is a deformation functor.

Definition 2.15. We define BG := [hK/G], where G acts trivially on hK.

Lemma 2.16. The “pick out 0” morphism hK → [F/G] factors as

hK BStabG [F/G] ,

and BStabG → [F/G] is fully faithful with essential image the residual gerbe of [F/G].

Corollary 2.17. The residual gerbe of [F/G] is a deformation category.

Proof. StabG is a deformation functor by lemma 2.14, so B StabG is a deformation category
by lemma 2.11. Since the residual gerbe of [F/G] is equivalent to B StabG by lemma 2.16,
the result follows.



CHAPTER 2. FORMAL DEFORMATION THEORY 21

2.E Differential graded Lie algebras
A great deal of work has been done relating differential graded Lie algebras to defor-
mation theory. The underlying philosophy (due originally to Deligne, Drinfeld, Feigin,
Kontsevich, and others) is that “reasonable” deformation problems are governed by differ-
ential graded Lie algebras. Work of Lurie formalizes this philosophy in an ∞-categorical
framework (cf. [Lur10] for an overview of this work).

Here, we recall just a few relevant portions of this theory, avoiding words like “∞-
category.” To further simplify the exposition of the theory, we will assume that all
differential graded Lie algebras are concentrated in nonnegative degrees, as this is the
only case that will be relevant for us.

To lighten notation and decrease verbosity, all unadorned tensor products in this
subsection are assumed to be over K, and algebras, Lie algberas, differential graded Lie
algebras, etc, are also assumed to be over K, unless explicitly specified otherwise.

Fix a differential graded Lie algebra L concentrated in nonnegative degrees.

Definition 2.18 (Gauge group). If R ∈ ArtK, we can regard the nilpotent R-Lie algebra
GL(R) = mR ⊗ L0 as a group by defining a group operation ∗ using the Baker-Campbell-
Hausdorff formula: we set

η ∗ η ′ = log (exp(η) exp(η ′))

for all η, η ′ ∈ mR ⊗ L0. The formal power series on the right-hand side are computed
using the R-algebra structure on the universal enveloping R-algebra U(mR ⊗K L

0), and
[Ser92, theorem 7.4] guarantees that the result of these computations is actually in mR⊗L0.
Observe moreover that 0 is the unit element of this group structure, and that the additive
inverse −η of η is also the inverse of ηwith respect to this group structure.

This is all evidently natural in R, so we obtain a functor GL : ArtK → Grp, which is in
fact a deformation functor [Man99, section 3]. It is called the gauge group of L.

Remark 2.19. If L0 is itself an algebra (a special case which will be important for us), we
obtain a commutative diagram

mR ⊗ L0 U(mR ⊗ L0)

R⊗ L0

where the horizontal maps are the natural inclusions and the vertical map is the R-algebra
homomorphism induced by the universal property of the universal enveloping algebra.
Thus, the power series on the right-hand side of the Baker-Campbell-Hausdorff formula
can be computed using the natural R-algebra structure on R⊗ L0.
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Definition 2.20 (Gauge action). Let FL : ArtK → Set be the functor R 7→ mR⊗L. The gauge
action of GL on FL is defined by the formula

η ∗ x = x+
∞∑

n=0

[η,−]n

(n+ 1)!([η, x] − dη)

for η ∈ mR ⊗ L0 and x ∈ mR ⊗ L. Since mR is a nilpotent ideal in R, the endomorphism
[η,−] is nilpotent, so the sum in the above formula is finite. One checks that this is, in fact,
a group action: in other words, we have

η ′ ∗ (η ∗ x) = (η ′ ∗ η) ∗ x.
Definition 2.21 (Maurer-Cartan elements). For x ∈ mR ⊗ L1, we define

Q(x) := dx+
1

2
[x, x].

If Q(x) = 0, then x is a Maurer-Cartan element of mR ⊗ L1. We define MCL : ArtK → Set
to be the functor ArtK → Set sending R to the set of Maurer-Cartan elements of mR ⊗ L1.
This is a deformation functor [Man99, section 3].

Definition 2.22 (Deformation category associated to a differential graded Lie algebra).
The action of GL on FL stabilizes MCL [Man99, section 1], so we can define

DefL := [MCL /GL].

By lemma 2.11, this is a deformation category.

Remark 2.23. In some of the literature (e.g. [Yek12]), the deformation category DefL is
called the (reduced) Deligne groupoid of L.

Theorem 2.24 ([GM88, proposition 2.6]). The deformation category DefL has infinitesimal
automorphisms H0(L), tangent space H1(L), and obstruction space H2(L).

Definition 2.25. If F is a category over ArtK and L is a differential graded Lie algebra
such that there exists an equivalence DefL → F of categories over ArtK, we then say that
L governs F.

Example 2.26. Suppose V is a finite dimensional vector space and consider the differential
graded Lie algebra V[−1]. In other words, this is nonzero in only degree 1, where it is V ,
and the Lie bracket is necessarily trivial. It is then straightforward to construct a natural
equivalence DefV[−1] = hP̂ where P̂ denotes the completion of P = Sym(V∨) along the
maximal ideal generated by V∨.

Example 2.27. The residual gerbe Γ of DefL is also a deformation category by corollary 2.17.
In fact, it is easy to see that

StabGL(R)(0) = mR ⊗ Z0(L) = mR ⊗H0(L)

for every R ∈ ArtK, so there is a natural equivalence DefH0(L) ≃ Γ . In other words, Γ is
governed by H0(L).
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2.F Homomorphisms of differential graded Lie algebras

Functoriality
The construction L 7→ DefL is functorial: i.e., any homomorphism L → M of differential
graded Lie algebras concentrated in nonnegative degrees induces a natural functor DefL →
DefM [GM88, paragraph 2.3].

Lemma 2.28. The identifications of theorem 2.24 fit into commutative diagrams as follows.

Inf(DefL) Inf(DefM) T(DefL) T(DefM)

H0(L) H0(M) H1(L) H1(M)

Moreover, the map of obstruction spaces H2(L) → H2(M) is compatible with DefL → DefM in
the sense of definition 2.7.

Proof. The identifications of the infinitesimal deformations and of the tangent space in the-
orem 2.24 are given by “deleting ϵ.” More precisely, they are induced by the isomorphism
mK[ϵ] ≃ K given by ϵ 7→ 1. The commutativity of the two squares follows from this. The
fact that H2(L) → H2(M) is compatible with DefL → DefM follows from the construction
of obstruction classes; see [Man99, section 2].

Quasi-isomorphism invariance
Since L 7→ DefL is 2-functorial, certainly the functor DefL → DefM must an equivalence
whenever L→M is an isomorphism of differential graded Lie algebras. In fact, the same
is true when ϕ is only a quasi-isomorphism as well.

Theorem 2.29. If L→M is a quasi-isomorphism of differential graded Lie algebras, then DefL →
DefM is an equivalence of deformation categories.

Remark 2.30. Proofs of this can be found in [GM88, theorem 2.4] or [Yek12, theorem 4.2];
in the former, this theorem is attributed to Deligne. In fact, it is not necessary to assume
that L→M is a quasi-isomorphism: it is sufficient to assume that it induce isomorphisms
on cohomology in degrees 0 and 1, and an injective map on cohomology in degree 2. We
will not need this generalization.

Fiber products
In what follows, we fix homomorphisms ϕ1 : L1 → M and ϕ2 : L2 → M of differential
graded Lie algebras concentrated in nonnegative degrees, and we let ϕ denote the pair
(ϕ1, ϕ2). The following generalizes and categorifies the main construction of [Man07].
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Definition 2.31. Define the functor MCϕ : ArtK → Set where MCϕ(R) is the set of triples
(x1, x2, τ) where xi ∈ MCLi

(R) for i = 1, 2, τ ∈ GM(R), and

τ ∗ ϕ1(x1) = ϕ2(x2).

There is an action ofGL1
×GL2

on MCϕ where (η1, η2) ∈ GL1
(R)×GL2

(R) acts on (x1, x2, τ) ∈
MCϕ(R) by

(η1, η2) ∗ (x1, x2, τ) = (η1 ∗ x1, η2 ∗ x2, ϕ2(η2) ∗ τ ∗ (−ϕ1(η1)).

We then define Defϕ := [MCϕ /(GL1
×GL2

)].

This definition is cooked up precisely so that we have the following.

Lemma 2.32. The forgetful functors Defϕ → DefL1
and Defϕ → DefL2

fit into a 2-cartesian
diagram as follows.

Defϕ DefL2

DefL1
DefM

Proof. Unwinding the construction of 2-fiber products in the (2, 1)-category of categories
over ArtK [Stacks, 0040], we find exactly the category Defϕ described above.

The pair ϕ = (ϕ1, ϕ2) defines a homomorphism ϕ1 −ϕ2 : L1 ⊕ L2 →M of differential
graded Lie algebras. We set

C := Cone(ϕ1 − ϕ2 : L1 ⊕ L2 →M)[−1].

Theorem 2.33. The deformation category Defϕ has infinitesimal automorphisms H0(C) and
tangent space H1(C). Moreover, if

ϕ2(mR ⊗ L12) ⊆ MCM(R)

for all R ∈ ArtK, then Defϕ has obstruction space H2(C).

Proof. The argument is essentially identical to the one [Man07, section 2], but we record it
here for completeness. We will write elements of mK[ϵ] ⊗ V as ϵv where v ∈ V . First, the
stabilizer of (0, 0, 0) ∈ MCϕ(K[ϵ]) is given by pairs

(ϵη1, ϵη2) ∈ GL1
(K[ϵ])×GL2

(K[ϵ])

such that
(ϵη1, ϵη2) ∗ (0, 0, 0) = (ϵη1 ∗ 0, ϵη2 ∗ 0,ϕ2(ϵη2) ∗ (−ϕ1(ϵη1)))

http://stacks.math.columbia.edu/tag/0040
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equals (0, 0, 0). Using the fact that ϵ2 = 0, we find that this condition is equivalent to
η1 ∈ Z0(L1), η2 ∈ Z0(L2), and

ϕ2(η2) = ϕ1(η1),

so (ϵη1, ϵη2) stabilizes (0, 0, 0) if and only if

(η1, η2) ∈ (Z0(L1)⊕ Z0(L2)) ∩ ker(ϕ1 − ϕ2) = Z
0(C) = H0(C)

where we have used the fact that L1, L2 andM all vanish in negative degrees. This shows
that “deleting ϵ” defines an isomorphism

Inf(Defϕ) ≃ H0(C).

Next, let us compute the tangent space. Since ϵ2 = 0, we have

MCLi
(K[ϵ]) = Z1(mK[ϵ] ⊗ Li) = mK[ϵ] ⊗ Z1(Li).

Suppose now that ϵxi ∈ MCLi
(K[ϵ]). Then ϵτ ∈ GM(K[ϵ]) satisfies

(ϵτ) ∗ ϕ1(ϵx1) = ϕ2(ϵx2)

if and only if
ϕ1(x1) − dτ = ϕ2(x2).

Thus we see that

MCϕ(K[ϵ]) ≃ {(x1, x2, τ) : xi ∈ Z1(Li) and ϕ1(x1) − ϕ2(x2) = dτ} = Z
1(C).

Now note that an element (ϵx1, ϵx2, ϵτ) is gauge equivalent to (0, 0, 0) precisely if there
exists

(ϵη1, ϵη2) ∈ GL1
(K[ϵ])×GL2

(K[ϵ])

such that
(ϵη1 ∗ 0, ϵη2 ∗ 0,ϕ2(ϵη2) ∗ (−ϕ1(ϵη1))) = (ϵx1, ϵx2, ϵτ).

Note that ϵηi ∗ 0 = −ϵdηi and

ϕ2(ϵη2) ∗ (−ϕ1(ϵη1)) = ϵ(ϕ2(η2) − ϕ1(η1)),

so (ϵx1, ϵx2, ϵτ) is gauge equivalent to (0, 0, 0) precisely if there exists (η1, η2) such that

dC(−η1,−η2) = (x1, x2, τ).

Thus “deleting ϵ” defines an isomorphism

T(Defϕ) ≃ H1(C).
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Finally, we want to define on H2(C) the structure of an obstruction space for Defϕ. By
lemma 2.12, it is sufficient to define the structure of an obstruction space for MCϕ. Let
π : R ′ → R be a small extension in ArtK and suppose (x1, x2, τ) ∈ MCϕ(R). Since the
functor ArtK → Set is evidently smooth, there exists x ′i ∈ mR ′ ⊗ L1i such that π(x ′i) = xi
for i = 1, 2. Also, since GM is smooth, there exists τ ′ ∈ GM(R ′) such that π(τ ′) = τ. We
now define

hi := Q(x ′i) = dx
′
i +

1

2
[x ′i, x

′
i] for i = 1, 2, and s := τ ′ ∗ ϕ1(x

′
1) − ϕ2(x

′
2).

Since (x1, x2, τ) ∈ MCϕ, we have π(hi) = 0 and π(s) = 0, so (h1, h2, s) is an element of

ker(π)⊗ C2 = ker(π)⊗ (L21 ⊕ L22 ⊕M1),

and (x ′1, x
′
2, τ

′) ∈ MCϕ(R
′) if and only if (h1, h2, s) = 0. We will show the following.

(a) Replacing (x ′1, x
′
2, τ

′) with different lifts corresponds precisely to shifting (h1, h2, s)
by a 2-coboundary in ker(π)⊗ C2.

(b) (h1, h2, s) is a 2-cocycle in ker(π)⊗ C2.

Once we have proved these facts, we can then define o(π, (x1, x2, τ)) to be the class in
ker(π) ⊗ H2(C) represented by (h1, h2, s). This class is independent of choices and mea-
sures exactly the obstruction to lifting (x1, x2, τ).

Let us first look at point (a). Given two lifts (x ′1, x
′
2, τ

′) and (x ′′1 , x
′′
2 , τ

′′) of (x1, x2, τ),
their difference

(ϵ1, ϵ2, δ) := (x ′′1 , x
′′
2 , τ

′′) − (x ′1, x
′
2, τ

′)

is an element ker(π)⊗ C1. Then the difference between the corresponding hi’s is exactly
dϵi. The proof of this is identical to the arguments in [GM88, paragraph 2.7] or [Man99,
section 3]. Now consider the difference between the corresponding s’s.

(τ ′′ ∗ ϕ1(x
′′
1 ) − ϕ2(x

′′
2 )) − (τ ′ ∗ ϕ1(x

′
1) − ϕ2(x

′
2)) (2.34)

Since τ ′′ = τ ′ + δ, we find by applying [GM88, lemma 2.8] that

τ ′′ ∗ ϕ1(x
′′
1 ) = τ

′ ∗ ϕ1(x
′′
1 ) − dδ.

Now note that

τ ′ ∗ ϕ1(x
′′
1 ) − τ

′ ∗ ϕ1(x
′
1) = ϕ1(ϵ1) +

∞∑
n=0

[τ ′,−]n

(n+ 1)!(ϕ(ϵ1)) = ϕ1(ϵ1),

where the sum vanishes because τ ′ ∈ mR ′ ⊗M0, ϕ(ϵ1) ∈ ker(π)⊗M1, and ker(π)mR = 0.
Putting all of this together, we find

(2.34) = ϕ1(ϵ1) − ϕ2(ϵ2) − dδ.
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This shows that replacing (x ′1, x
′
2, τ

′) with (x ′′1 , x
′′
2 , τ

′′) corresponds to replacing (h1, h2, s)
with

(h1 + dϵ1, h2 + dϵ2, s+ ϕ1(ϵ1) − ϕ2(ϵ2) − dδ) = (h1, h2, δ) + d(ϵ1, ϵ2, δ).

This concludes the proof of point (a).
For point (b), we compute

d(h1, h2, s) = (dh1, dh2, ϕ1(h1) − ϕ2(h2) − ds).

The proof that dhi = 0 is identical to the arguments in [GM88, paragraph 2.7] or [Man99,
section 3], so we just need to show that

ϕ1(h1) − ϕ2(h2) = ds.

Since τ ′ ∗ ϕ1(x
′
1) = ϕ2(x

′
2) + s by definition of s, we have

ϕ1(x
′
1) = (−τ ′) ∗ (s+ ϕ2(x

′
2))

= exp([−τ ′,−])(s) + (−τ ′) ∗ ϕ2(x
′
2)

= s+ (−τ ′) ∗ ϕ2(x
′
2)

where for the last step, we have used the fact that [−τ ′, s] = 0 since ker(π)mR ′ = 0. Then

ϕ1(h1) = ϕ1

(
dx ′1 +

1

2
[x ′1, x

′
1]

)
= dϕ1(x

′
1) +

1

2
[ϕ1(x

′
1), ϕ1(x

′
1)]

= d (s+ (−τ ′) ∗ ϕ2(x
′
2)) +

1

2
[s+ (−τ ′) ∗ ϕ2(x

′
2), s+ (−τ ′) ∗ ϕ2(x

′
2)]

= ds+ d((−τ ′) ∗ ϕ2(x
′
2)) +

1

2
[(−τ ′) ∗ ϕ2(x

′
2), (−τ

′) ∗ ϕ2(x
′
2)]

= ds+Q((−τ ′) ∗ ϕ2(x
′
2))

so it follows that

ϕ1(h1) − ϕ2(h2) − ds = Q((−τ ′) ∗ ϕ2(x
′
2)) −Q(ϕ2(x

′
2)).

Since we have assumed that ϕ2 maps mR ′ ⊗ L12 into MCM(R ′), we see that the right-hand
side of the above equation vanishes, completing the proof.

Remark 2.35. I do not know if H2(C) is an obstruction space for Defϕ even if we do not
have ϕ2(mR⊗L12) ⊆ MCM(R) for all R ∈ ArtK, but the proof above does at least show that
C2/B2(C) is always an obstruction space. We will only use the above result when we do
have ϕ2(mR ⊗ L12) ⊆ MCM(R), so this hypothesis will not be of any concern to us.
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Remark 2.36. With C = Cone(ϕ1 −ϕ2)[−1] and ϕ2(mR ⊗ L12) ⊆ MCM(R) for all R ∈ ArtK
as above, we have a distinguished triangle

C L1 ⊕ L2 M
+

in the derived category of vector spaces. The associated long exact sequence on then
relates the infinitesimal automorphisms, tangent spaces, and obstruction spaces of Defϕ,
DefL1

, DefL2
, and DefM.

Definition 2.37. If F is category over ArtK, we say that the pair ϕ governs F if there exists
an equivalence Defϕ → F of categories over ArtK.

Remark 2.38. One could say that Defϕ is “governed” by C = Cone(ϕ1 −ϕ2)[−1], but C is
not a differential graded Lie algebra. It is, however, an L∞-algebra [FM07], but this takes
us into higher categorical realms that are unnecessarily lofty for our purposes. It is also
possible to find a differential graded Lie algebra that does govern Defϕ [Man07, section
7], but we will not need this either.

Example 2.39. We will now discuss an extended example that will serve as the backbone
for the discussion in section 4.D. Letα : L→M be a homomorphism of differential graded
Lie algebras concentrated in nonnegative degrees, and let Γ denote the residual gerbe of
DefM. We then form the following diagram of deformation categories.

Def(α,0) Def(α,i) DefL

hK Γ DefM

Here i denotes the inclusion H0(M) ↪→ M. Note that Γ = DefH0(M) and hK = Def0, so
lemma 2.32 implies that

Def(α,0) = DefL ×DefMhK and Def(α,i) = DefL ×DefMΓ.

Since hK → Γ is essentially surjective, its pullback Def(α,0) → Def(α,i) is also essentially
surjective.

Now define the following.

C+ = Cone(α : L→M)[−1]

C = Cone(α− i : L⊕H0(M) →M)[−1]

Then we have two distinguished triangles as in remark 2.36, and a morphism between
them as follows.

C+ L M

C L⊕H0(M) M

α

(1,0) 1

+

α−i +
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We then get a morphism of long exact sequences.

0 H0(C+) H0(L) H0(M) · · ·

0 H0(C) H0(L)⊕H0(M) H0(M) · · ·

α

(1,0) 1

α−1

· · · H0(M) H1(C+) H1(L) H1(M) · · ·

· · · H0(M) H1(C) H1(L) H1(M) · · ·

1 1

α

1

α

Consider the map α− 1 : H0(L)⊕H0(M) → H0(M). Then

H0(C) = ker(α− 1 : H0(L)⊕H0(M) → H0(M))

= {(x, α(x)) : x ∈ H0(L)}

= H0(L).

Moreover, clearly α−1 is surjective. This means that the connecting mapH0(M) → H1(C)
is the zero map, so

H1(C) = ker(α : H1(L) → H1(M))

= im(H1(C+) → H1(L)).

Finally, we have Hi(C+) ≃ Hi(C) for all i ⩾ 2. Note moreover that i : H0(M) ↪→ M and
0 ↪→M are both zero in degree 1, soH2(C) andH2(C+) are obstruction spaces for Def(α,i)

and Def(α,0), respectively.
Since the identifications T(Def(α,0)) = H

1(C+) and T(Def(α,i)) = H
1(C) are both given

by “deleting ϵ,” we see that the map on tangent spaces induced by Def(α,0) → Def(α,i) is
surjective. It is also easy to see from the construction of obstruction classes thatH2(C+) →
H2(C) is compatible with Def(α,0) → Def(α,i). Thus, the standard smoothness criterion
lemma 2.8 implies that Def(α,0) → Def(α,i) is smooth.
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Chapter 3

Deformations of modules

Throughout this chapter, let K be a field of characteristic 0,D an associative K-algebra, and
E a left D-module. For any R ∈ ArtK, we let DR := R ⊗K D and ER := R ⊗K E. In this
chapter, we study the following deformation problem.

Definition 3.1. Let DefD,E be the category of tuples (R, F, θ) where R ∈ ArtK, F is a left
DR-module flat over R, and θ : F → E is a left DR-module homomorphism inducing an
isomorphism K ⊗R F → E. Morphisms (R ′, F ′, θ ′) → (R, F, θ) in DefD,E are pairs (π, u)
consisting of a homomorphism π : R ′ → R in ArtK and a homomorphism u : F ′ → F of left
DR ′-modules such that the corresponding left DR-module homomorphism R ⊗R ′ F ′ → F

is an isomorphism, and such that ϕ ◦ u = θ.

F ′ F

E

u

θ ′

θ

WhenD can be inferred from context, we will write DefE instead of DefD,E. The forgetful
functor DefE → ArtK defined by (R, E) 7→ R presents DefE as an opfibration in groupoids
over ArtK. It is straightforward to check directly that DefE is a deformation category, but
in any case this is a consequence of theorem 3.2 below. For R ∈ ArtK, we will abusively
write 1 for the canonical map ER → E. Regarding ER as a left DR-module in the natural
way, (R, ER, 1) becomes an object of DefE.

3.A Hochschild complex
For any D-bimodule P, let HochK(D,P) denote the Hochschild cochain complex, so

Hochp
K(D,P) = HomK(D

⊗p, P)

for all non-negative integers p, where D⊗p is the p-fold tensor product of D over K.
The differential is defined via a simplicial construction (cf. [Wei94, chapter 9] for details).
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When P is aK-algebra equipped with aK-algebra homomorphismD→ P, the cup product
makes HochK(D,P) is a differential graded K-algebra (cf. [Ger63, section 7, page 278]).

In particular, P = EndK(E) is a K-algebra under composition equipped with a homo-
morphism D → EndK(E), so HochK(D,EndK(E)) is a differential graded K-algebra. We
can then form the associated differential graded K-Lie algebra with the graded commuta-
tor bracket.

Theorem 3.2. HochK(D,EndK(E)) governs DefE.

Proof. Let L := HochK(D,EndK(E)). We are trying to construct an equivalence of cate-
gories

DefL DefEΘ

over ArtK. Observe that, for any R ∈ ArtK,

LR := R⊗K L = HochR(DR,EndR(ER)).

In degree 1, this complex contains a canonical element sR : DR → EndR(ER) which is
the R-algebra homomorphism defining the natural DR-module structure on ER. We can
compute that ϕ ∈ L1R satisfies the Maurer-Cartan equation dϕ+ 1

2
[ϕ,ϕ] = 0 if and only if

ϕ(d1)d2 + d1ϕ(d2) + ϕ(d1)ϕ(d2) = ϕ(d1d2)

for all d1, d2 ∈ DR, if and only if the R-module homomorphism ϕ + sR is actually an
R-algebra homomorphism DR → EndR(ER). Then note that

mR ⊗K L = ker(LR → L)

so ϕ ∈ mR ⊗K L
1 if and only if ϕ + sR maps to the D-module structure map sK ∈ L1 =

HomK(D,EndK(E)).
In other words, we conclude that objects DefL(R) are in bĳection with left DR-module

structures on ER which reduce to the given left D-module structure on E. If ϕ ∈ DefL(R),
we write ER,ϕ for ER regarded as a left DR-module via ϕ. Then (R,ϕ) 7→ (R, ER,ϕ, 1)
defines the functor Θ : DefL → DefE on the level of objects. Since any (R, F, θ) ∈ DefE
must have F isomorphic as an R-module to ER, this also shows that the functor Θ, once we
have finished constructing it, must be essentially surjective.

Next up, let’s compute the gauge action. Observe that

mR ⊗K L
0 = mR ⊗K EndK(E) = ker(EndR(ER) → EndK(E)).
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If η ∈ mR ⊗K L
0, then one checks that dη = −[η, sR], so for ϕ ∈ L1R, we have

η ∗ ϕ = ϕ+

∞∑
n=0

[η,−]n

(n+ 1)!([η,ϕ] − dη)

= ϕ+

∞∑
n=0

[η,−]n

(n+ 1)!([η,ϕ+ sR])

= ϕ+

∞∑
n=0

[η,−]n+1

(n+ 1)! (ϕ+ sR)

= e[η,−](ϕ+ sR) − sR

= eη(ϕ+ sR)e
−η − sR

where e[η,−] and eη denote exponentiation of nilpotent endomorphisms. Note that eη is
an R-module automorphism of ER with inverse e−η, and the last equality is lemma 3.3
below.

Now suppose that (π, η) is a morphism (R ′, ϕ ′) → (R,ϕ) in DefL. In other words,
π : R ′ → R is a homomorphism in ArtK and η ∈ mR ⊗K L

0 satisfies

η ∗ π(ϕ ′) = ϕ.

We define Θ(π, η) to be the pair consisting of π together with the following composite.

ER ′,ϕ ′ ER,π(ϕ ′) ER,ϕ.
π⊗1 eη

This composite is aDR-module homomorphism if and only if eη : ER,π(ϕ ′) → ER,ϕ is a left
DR-module homomorphism, if and only if the following diagram commutes.

DR EndR(ER)

EndR(ER) EndR(ER)

π(ϕ ′)+sR

ϕ+sR eη·

·eη

This commutativity is equivalent to

(ϕ+ sR)e
η = eη(π(ϕ ′) + sR)

which is exactly the condition η ∗ π(ϕ ′) = ϕ. Finally, we observe that eη ≡ 1 mod mR, so
Θ(π, η) is indeed a morphism Θ(R ′, ϕ ′) → Θ(R,ϕ) in DefE. Now if (π ′, η ′) : (R ′′, ϕ ′′) →
(R ′, ϕ ′) is another morphism in DefL, we need to check that the following diagram com-
mutes.

ER,π ′(π(ϕ ′′)) ER,π(ϕ ′)

ER,ϕ

eπ(η ′)

eη∗π(η ′)

eη
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But note the equality
log(eηeπ(η ′)) = η ∗ π(η ′)

so taking the exponential of both sides yields the desired equality. This completes our
construction of the functor Θ : DefL → DefE.

To complete the proof, we must check that Θ is fully faithful. This requires showing
that, for any R ∈ ArtK and any ϕ,ϕ ′ ∈ DefL(R), every left DR-module isomorphism
α : ER,ϕ ′ → ER,ϕ reducing to the identity on E modulo mR is of the form eη for some
η ∈ EndR(ER) satisfying η∗ϕ ′ = ϕ, and moreover that there is only one such η. We clearly
must take

η = log(α) = log(1+ (α− 1)) =

∞∑
n=1

(−1)n+1 (α− 1)n

n
,

which is well-defined since α− 1 is nilpotent. The fact that η ∗ϕ ′ = ϕ is then a translation
of the fact that α is a left DR-module homomorphism, as we saw above.

Lemma 3.3. Let R be a commutative ring and A an R-algebra. Suppose that a, b ∈ A and that a
is nilpotent. Then [a,−] is a nilpotent R-module endomorphism of A and

eaba−a =

∞∑
n=0

n∑
k=0

(−1)kan−kbak

(n− k)!k! = e[a,−](b).

Proof. Both equalities are direct calculations.

Corollary 3.4. (a) Inf(DefE) = EndD(E).

(b) T(DefE) = Ext1D(E, E).

(c) Ext2D(E, E) is an obstruction space for DefE.

Proof. This follows immediately from theorems 2.24 and 3.2, and the fact that

Hi(HochK(D,EndK(E))) = ExtiD/K(E, E) = ExtiD(E, E)

for all i. Here, we use [Wei94, lemma 9.1.9] to calculate the cohomology of the Hochschild
complex, and the fact that K is a field to identify ExtiD/K with ExtiD.

Remark 3.5. In light of the fundamental theorem of deformation theory 2.1, we see that
DefE has a hull as long as Ext1D(E, E) is finite dimensional. We also have a prorepre-
sentability result when EndD(E) = K (cf. corollary 3.8 below). Taking D to be commu-
tative, these results would give us statements about deformations of coherent sheaves on
affine K-schemes, but we rarely have finite dimensionality of Ext1D(E, E) over KwhenD is
commutative.

However, it is quite likely that there is a generalization of theorem 3.2 with D an
associative algebra in a general topos. Then, takingD to be the structure sheaf of a proper
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K-scheme would allow us to recover standard results about the deformation theory of
coherent sheaves on proper K-schemes (cf. [Nit09, theorem 3.6–8]). We do not pursue this
generalization here since this will not be necessary for our intended applications.

Remark 3.6. Suppose that

Hi(HochK(D,EndK(E))) = ExtiD(E, E) = 0

for all i ⩾ 2. For example, this could be because E has projective dimension at most 1 as
a left D-module, or, more strongly, because D has left global dimension at most 1. In this
situation, evidently the natural inclusion τ⩽1 HochK(D,EndK(E)) → HochK(D,EndK(E))
is a quasi-isomorphism. Moreover, τ⩽1 HochK(D,EndK(E)) is a differential graded sub-
algebra of HochK(D,EndK(E)). Since L 7→ DefL factors through quasi-isomorphisms of
differential graded Lie algberas by theorem 2.29, we see that the two-term differential
graded Lie algebra

τ⩽1 HochK(D,EndK(E))

governs DefE. Recall the explicit description of τ⩽1 HochK(D,EndK(E)).

EndK(E) DerK(D,EndK(E)) 0 · · ·d

Here DerK(D,EndK(E)) are derivations, i.e. K-linear maps s : D→ EndK(E) satisfying the
Leibniz rule s(ab) = s(a)b+ as(b) for all a, b ∈ D. The differential d is given by

d(ρ)(a) = aρ− ρa = [a, ρ]

for ρ ∈ EndK(E) and a ∈ D [Wei94, section 9.2]. The image of the differential d is the set of
principal derivations, denoted PDerK(D,EndK(E)). Multiplication is simply composition:
in degree 0 it is composition of K-endomorphisms of E, and the multiplication maps

EndK(E)× DerK(D,EndK(E)) DerK(D,EndK(E))

DerK(D,EndK(E))× EndK(E) DerK(D,EndK(E))

are also composition: the first takes (ρ, δ) to the derivation d 7→ ρ ◦ δ(d), and the second
takes (δ, ρ) to the derivation d 7→ δ(d) ◦ ρ.

3.B Derivations and extensions
If E and F are left D-modules, note that HomK(E, F) is a D-bimodule and

H1(HochK(D,HomK(E, F))) = Ext1D(E, F)
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using [Wei94, lemma 9.1.9]. Let us work out explicitly how to regard Hochschild cohomol-
ogy classes on the left-hand side as extensions of E by F on the right-hand side. We will
apply this in the case when E = F, but it is less confusing to work in greater generality.

For any s ∈ Hoch1
K(D,HomK(E, F)) = HomK(D,HomK(E, F)), let F ⊕s E denote the

vector space F⊕ E endowed with an “action” of D by the formula

a · (f, e) = (af+ s(a)(e), ae)

for all a ∈ D, f ∈ F and e ∈ E. If b is another element of D, then

ab · (f, e) = a · (b · (f, e)) if and only if s(ab) = s(a)b+ as(b)

so F⊕s E is a leftD-module if and only if s is a derivation. When this is the case, note that
the inclusion F ↪→ F⊕s E and the projection F⊕s E→ E are both D-linear, so F⊕s E is an
extension of E by F. In other words, we have defined a map

DerK(D,HomK(E, F)) Ext1D(E, F).

We now claim that this map is surjective and K-linear, and that the kernel of this map is
exactly PDerK(D,HomK(E, F)). We omit the proof of linearity.

Surjectivity
Suppose Q is an extension of E by F.

0 F Q E 0

This exact sequence splits in the category of vector spaces, so, after fixingK-linear splittings,
we have Q = F ⊕ E as a vector space. For any a ∈ D and e ∈ E, define s(a)(e) to be the
projection of a · (0, e) onto F. Then for any f ∈ Fwe see that

a · (f, e) = a · (f, 0) + a · (0, e) = (af, 0) + (s(a)(e), ae) = (af+ s(a)(e), ae)

using the fact that F → Q and Q → E are D-linear. Since Q is a left D-module, we know
from above that smust be a derivation andQ = F⊕sE as extensions of E by F. This proves
surjectivity.

Kernel is principal derivations
Suppose that s ∈ DerK(D,HomK(E, F)) and F⊕s E is a trivial extension of E by F. Choose
an isomorphism ϕ : F⊕s E→ F⊕ E of extensions.

0 F F⊕s E E 0

0 F F⊕ E E 0

ϕ



CHAPTER 3. DEFORMATIONS OF MODULES 36

The commutativity of this diagram means that ϕ must be given by ϕ(f, e) = (f + σ(e), e)
for some σ ∈ HomK(E, F). Since ϕ is D-linear, for any a ∈ Dwe have

(aσ(e), ae) = a(σ(e), e)

= aϕ(0, e)

= ϕ(a · (0, e))
= ϕ(s(a)(e), ae)

= (s(a)(e) + σ(ae), ae)

which means that
s(a)(e) = aσ(e) − σ(ae)

or, in other words,
s(a) = aσ− σa = [a, σ] = dσ(a)

for all a ∈ D. In other words, we have s = dσ, so s is principal. Conversely, it is also
clear from this calculation that any principal derivation does in fact give rise to a trivial
extension of E by F.

3.C Prorepresentability for irreducibles
Proposition 3.7. Suppose EndD(E) = K. Then for any (R, F, θ) ∈ DefE, we have

EndDR
(F) = R and AutR(F, θ) = 1+mR.

Proof. Note that the latter assertion follows from the former. Since the quotient map
R→ R/mR = K in ArtK can be factored into a series of small surjections [Stacks, 06GE], it
suffices to prove the following: whenever π : R → R ′ is a small surjection and (R, F, θ) →
(R ′, F ′, θ ′) is a map in DefE lying over π such that EndDR ′ (F

′) = R ′, then EndDR
(F) = R.

Suppose ϕ ∈ EndDR
(F). Then the induced DR ′-linear endomorphism of F ′ is a scalar

in R ′, which means that there exists a ∈ R such that ϕ − a ∈ EndDR
(F) induces the zero

endomorphism of F ′. In other words, if we define ψ := ϕ− a, we have im(ψ) ⊆ IF, where
I := ker(π). This means that

ψ(mRF) ⊆ mR im(ψ) ⊆ mRIF = 0

so ψ naturally factors through a ψ̄ : E = F/mRF→ IF.
Since π : R → R ′ is a small surjection, its kernel I is principally generated by some

ϵ ∈ R such that ϵmR = 0. Since every element of R can be written uniquely as a + η with
a ∈ K and η ∈ mR, we have

I = {aϵ : a ∈ K}.

http://stacks.math.columbia.edu/tag/06GE
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In other words, the mapK→ I given by 1 7→ ϵ is an isomorphism of R-modules. Tensoring
with F, we have an isomorphism of D-modules

E = K⊗R F I⊗R F = IF.
σ

Then σ−1 ◦ ψ̄ ∈ EndD(E) = K, so define b := σ−1 ◦ ψ̄. Observe that

ψ(f) = ψ̄(f mod mRF) = (σ ◦ σ−1 ◦ ψ̄)(f mod mRF) = σ(bf mod mRF) = bϵf

for any f ∈ F, which means that ψ = bϵ and therefore ϕ = a+ bϵ ∈ R.

Corollary 3.8. Suppose EndD(E) = K. If (R ′, F ′, θ ′) → (R, F, θ) in DefE lies over a surjective
map R ′ → R, then Aut(F ′, θ ′) → Aut(F, θ) is also surjective. Thus, if EndD(E) = K and
Ext1D(E, E) is finite dimensional, then DefE is prorepresentable.

Usually, the condition that EndD(E) = K is a consequence of the following.

Definition 3.9. E is absolutely irreducible if EK̄ is irreducible overDK̄, where K̄ is an algebraic
closure of K.

Lemma 3.10. Suppose that E has all of the following properties.

(i) EndD(E) is finite dimensional over K.

(ii) E is finitely presented over D.

(iii) E is absolutely irreducible.

Then EndD(E) = K.

Proof. We know that EndDK̄
(EK̄) = K̄ by Schur’s lemma, so we have

dimK EndD(E) = dimK̄(K̄⊗K EndD(E)) = dimK̄ EndDK̄
(EK̄) = 1

using lemma 3.11 below for the second equality. Thus EndD(E) = K.

Lemma 3.11. Suppose E is finitely presented and F is a left D-module. For every commutative
K-algebra P, we have

P ⊗K HomD(E, F) = HomDP
(EP, FP).

Proof. Observe that HomDP
(EP, FP) = HomD(E, FP). The map F → FP induces a mor-

phism HomD(−, F) → HomD(−, FP) of contravariant left-exact functors ModD → ModK.
But observe that HomD(−, FP) naturally takes values in ModP, so in fact we have a mor-
phism η : P⊗K HomD(−, F) → HomD(−, FP). Since P⊗K − is exact, this is a morphism of
contravariant left-exact functors ModD → ModP. We want to show that ηE is an isomor-
phism, but using left-exactness of both functors and the fact that E is finitely presented, it
suffices to show that ηD is an isomorphism. This is clear.
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Lemma 3.12. The following are equivalent.

(a) EK̄ is irreducible over DK̄, where K̄ is an algebraic closure of K.

(b) EL is irreducible over DL for any finite extension L of K.

Proof. Suppose L is a finite extension of K, and choose an embedding L ↪→ K̄. Suppose F is
a nonzeroDL-submodule of EL. Since K̄ is faithfully flat over L, we see that FK̄ is a nonzero
submodule of EK̄. This means that EK̄/FK̄ = (EL/F)K̄ = 0, which means that F = EL. This
shows (a) implies (b).

For the converse, note that K̄ is the colimit of all subextensions L finite over K, so
DK̄ = colimDL and EK̄ = colimEL. Suppose e ∈ EK̄ is nonzero. Then there exists an L0
finite over K such that e ∈ EL0

. Then for every L finite over L0, note that L is finite over K
also, so EL is irreducible and DLe = EL. Since the finite extensions of L0 are cofinal in the
partially ordered set of finite extensions of K in K̄, this shows that DK̄e = EK̄.
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Chapter 4

Deformations of differential modules

In this chapter, let K be a field of characteristic 0, and let O be a commutative K-algebra
equipped with a K-linear derivation ∂. Let DModO denote the category of differential
modules over O. We will study deformations of a finite free differential O-module.

4.A Preliminaries
The category DModO of differential O-modules is naturally a K-linear tensor category
[Ked10, definition 5.3.2].11 Given two differential O-modules E and E ′, the internal hom
Hom(E, E ′) is just HomO(E, E

′), with differential O-module structure determined by the
equation

(∂ · ϕ)(e) = ∂(ϕ(e)) − ϕ(∂(e))
for ϕ ∈ HomO(E, E

′) and e ∈ E.
Let D = O[∂] be the corresponding ring of differential operators: elements of D can

be written uniquely in the form f∂i where f ∈ O and i is a nonnegative integer, and
multiplication is determined by the equation

[∂, f] = ∂(f)

for all f ∈ O. Then DModO is naturally equivalent to the category ModD of leftD-modules.
For more about all of this, see [Ked10, chapter 5].

Definition 4.1 (de Rham complex). If E is a differential O-module, we define the de Rham
complex of E, denoted dR(O, E), be the following two-term chain complex in nonnegative
degrees.

E E 0 · · ·∂

We then define Hi
dR(E) := H

i(dR(O, E)).
11For us, tensor category will mean a closed symmetric monoidal abelian category in which the monoidal

product is right exact in each argument. We will say that it is compact closed if each of its objects is dualizable
and the monoidal product is exact in both arguments.
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Example 4.2. It follows from definitions that H0
dR(Hom(E, E ′)) = HomD(E, E

′).

Lemma 4.3 ([Chr11, section 6.6]). Let E be a finite free differential O-module and (e1, . . . , en)
an O-basis for E. Let N be the corresponding matrix of ∂. Then we have an exact sequence

0 D⊕n D⊕n E 0
∂I−N

where the mapD⊕n → E carries the standard basis ofD⊕n onto the O-basis (e1, . . . , en) of E, and
∂I denotes the diagonal matrix with ∂ in all of the diagonal entries

Corollary 4.4. Suppose E is a finite free differential O-module. Then E is finitely presented as a
left D-module and has projective dimension at most 1.12

Corollary 4.5. RHomD(O, E) = dR(O, E) for any differential O-module E.

Proof. Consider the free resolution of O as aD-module provided by lemma 4.3. Applying
the functor HomD(−, E) to this free resolution gives exactly the de Rham complex dR(O, E).

4.B de Rham and Hochschild complexes
For the remainder, we fix a finite free differential O-module E. When we write DefE, we
will mean DefD,E (as opposed to DefO,E).

Remark 4.6 (Lifting bases). Suppose (e1, . . . , en) is an O-basis for E and suppose (R, F, θ) ∈
DefE. Choose fi ∈ F such that θ(fi) = ei for all i = 1, . . . , n. Then the tuple (f1, . . . , fn)
defines an OR-module homomorphism ϕ : O⊕n

R → F and the composite

O⊕n K⊗R F E
1⊗ϕ 1⊗θ

is clearly an isomorphism. Since K⊗R F→ E is an isomorphism, we see that O⊕n → K⊗R F

must also be an isomorphism. Since F is R-flat, ϕ is itself an isomorphism [Sch68, lemma
3.3]. In other words, F is a finite free differential OR-module with OR-basis (f1, . . . , fn).
Hereafter, a basis (f1, . . . , fn) of F obtained in this way will be said to be a lift of the basis
(e1, . . . , en) of E.

Observe that dR(O,End(E)) a differential graded K-algebra under composition. Our
goal now is to show that dR(O,End(E)), regarded as a differential graded K-Lie algebra,
governs DefE. We will do this by relating it to HochK(D,EndK(E)).

12The fact that a finite free differential O-module must have projective dimension at most 1 is also verified
in [Goo74, proposition 2].
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Remark 4.7. It is easy to use general abstract nonsense to produce an identification

dR(O,End(E)) = HochK(D,EndK(E))

in the derived category of vector spaces, as we will work out momentarily, but it is not ap-
parent that the resulting identification preserves the differential graded Lie algbera struc-
tures on both complexes. Thus, we will instead construct an explicit quasi-isomorphism,
so that we can directly verify that it preserves the differential graded (Lie) algebra struc-
tures on both sides.

To see how to produce this identification using abstract nonsense, note that right
multiplication on D by ∂ gives a free resolution of O as a left D-module; it follows that

dR(O,−) = RHomD(O,−).

Next, note that the adjunction isomorphism Hom(O,Hom(E,−)) = Hom(E,−) is an
isomorphism of functors ModD → ModD, so taking horizontal sections on both sides, we
get an isomorphism HomD(O,Hom(E,−)) = HomD(E,−) of functors ModD → ModK.
Since HomO(E,−) is exact, we right derive both sides and get

RHomD(O,HomO(E,−)) = RHomD(E,−).

Putting these two identifications together and evaluating at E shows that

dR(O, E) = RHomD(E, E),

and the identification of the right-hand side with the Hochschild complex is a consequence
of the proof of [Wei94, lemma 9.1.9].

Lemma 4.8. The map s 7→ (s|O, s(∂)) defines an injective map of vector spaces

DerK(D,EndK(E)) DerK(O,EndK(E))× EndK(E)

whose image is the subspace of (r, v) such that

[r(f), ∂] + [f, v] + r(∂(f)) = 0 (4.9)

for all f ∈ O.

Proof. This proof is fairly excruciating, but there are no surprises. Observe thatD is a free
left O-module on the basis 1, ∂, ∂2, . . . . If we have s ∈ DerK(D,EndK(E)), then an easy
inductive argument shows that

s(f∂k) = s(f)∂k +

k−1∑
i=0

f∂is(∂)∂k−1−i (4.10)
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for any f ∈ O and k ∈ N. Since the right-hand side depends only on the pair (s|O, s(∂)),
this proves injectivity. Moreover, we have

0 = s(∂f) − s(∂)f− ∂s(f)

= s(f∂) + s(∂(f)) − s(∂)f− ∂s(f)

= s(f)∂+ fs(∂) + s(∂(f)) − s(∂)f− ∂s(f)

= [s(f), ∂] + [f, s(∂)] + s(∂(f))

which shows that the pair (s|O, s(∂)) satisfies equation (4.9) for all f ∈ O.
Conversely, suppose that we have (r, v) satisfying equation (4.9). Motivated by equa-

tion (4.10), we define a function s : D→ EndK(E) by declaring

s(f∂k) := r(f)∂k +

k−1∑
i=0

f∂iv∂k−1−i

for all f ∈ O and k ∈ N and then extending additively. Then we certainly have (s|O, s(∂)) =
(r, v), so we only need to check that s is actually a derivation. In other words, we need to
check that

s(PQ) = s(P)Q+ Ps(Q) (4.11)
for all pairs (P,Q) of elements of D.

We will do this by “inducting” on the complexity of an element of D. The key to this
is the following trivial observation: if P = P ′ + P ′′ for some P ′, P ′′ ∈ D and equation (4.11)
holds for (P ′, Q) and (P ′′, Q), then equation (4.11) also holds for (P,Q). There is an
analogous statement when Q decomposes as a sum of two elements. We will use this
observation tacitly throughout.

An element P ∈ D is a monomial if it is of the form f∂k for some f ∈ O and k ∈ N. We
say that k is the degree of the monomial P, and that P is a monic monomial if f = 1. We
say that P is left Leibniz if (P,Q) satisfies equation (4.11) for all Q ∈ D (equivalently, all
monomials Q). Dually, we say that Q is right Leibniz if (P,Q) satisfies equation (4.11) for
all P ∈ D (equivalently, all monomials P). To complete the proof, it suffices to show that
every monomial is left Leibniz. Let us proceed incrementally towards this assertion, in 6
steps.

Step 1. First, let us show that any monic monomial Q = ∂k is right Leibniz. Let P = f∂j.

s(f∂j+k) = r(f)∂j+k +

j+k−1∑
i=0

f∂iv∂j+k−1−i

s(f∂j)∂k = r(f)∂j+k +

j−1∑
i=0

f∂iv∂j+k−1−i

f∂js(∂k) =

j+k−1∑
i=j

f∂iv∂j+k−1−i
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Thus equation (4.11) holds for (P, ∂k).

Step 2. Let us next show that every degree 0 monomial f ∈ O is left Leibniz. Suppose
Q = g∂k.

s(fg∂k) = r(fg)∂k +

k−1∑
i=0

fg∂iv∂k−1−i

= r(f)g∂k + fr(g)∂k +

k−1∑
i=0

fg∂iv∂k−1−i

s(f)g∂k = r(f)g∂k

fs(g∂k) = fr(g)∂k +

k−1∑
i=0

fg∂iv∂k−1−i

Thus equation (4.11) holds for (f,Q).

Step 3. A calculation identical to one we did earlier shows that

s(∂f) − s(∂)f− ∂s(f) = [r, ∂] + [f, v] + r(∂(f))

which means that (r, v) satisfying equation (4.9) is equivalent to (∂, f) satisfying equa-
tion (4.11).

Step 4. Let us now show that ∂ is left Leibniz. Suppose Q = f∂k. Then

s(∂f∂k) = s(∂f)∂k + ∂fs(∂k)

= s(∂)f∂k + ∂s(f)∂k + ∂fs(∂k)

= s(∂)f∂k + ∂s(f∂k)

using the fact that ∂k is right Leibniz for the first equality (step 1), the fact that (∂, f)
satisfies equation (4.11) for the second (step 3), and then the fact that ∂k is right Leibniz
again for the third equality (step 1).

Step 5. Let us now show by induction on degree that any monic monomial is left Leibniz.
Suppose that ∂j is left Leibniz for some j ∈ N. Let Q = f∂k. Note that we have

∂j+1f∂k = ∂jf∂k+1 + ∂j∂(f)∂k
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in D. Using this, we have

s(∂j+1f∂k) = s(∂jf∂k+1 + ∂j∂(f)∂k)

= s(∂j)f∂k+1 + ∂js(f∂k+1) + s(∂j)∂(f)∂k + ∂js(∂(f)∂k)

= s(∂j)(f∂k+1 + ∂(f)∂k) + ∂js(f∂k+1 + ∂(f)∂k)

= s(∂j)∂f∂k + ∂js(∂f∂k)

= s(∂j)∂f∂k + ∂j(s(∂)f∂k + ∂s(f∂k))

= (s(∂j)∂+ ∂js(∂))f∂k + ∂j+1s(f∂k)

= s(∂j+1)f∂k + ∂j+1s(f∂k)

using the inductive hypothesis that ∂j is left Leibniz twice for the second equality, the fact
that ∂ is left Leibniz for the fifth (step 4), and the fact that ∂ is right Leibniz for the final
(step 1).

Step 6. Finally, we show that an arbitrary monomial f∂k is left Leibniz. For any Q ∈ D,
observe that

s(f∂kQ) = s(f)∂kQ+ fs(∂kQ)

= s(f)∂kQ+ fs(∂k)Q+ f∂ks(Q)

= s(f∂k)Q+ f∂ks(Q)

where the first and third equalities are because f is left Leibniz (step 2) and the second
because ∂k is left Leibniz (step 5).

Corollary 4.12. There is a unique injective K-linear map ζ : End(E) → DerK(D,EndK(E)) such
that ζ(ρ)(f) = 0 for all f ∈ O and ζ(ρ)(∂) = ρ. Moreover, im(ζ) is precisely the set of derivations
D→ EndK(E) which annihilate O.

Proof. If ρ ∈ EndK(E), note that (0, ρ) satisfies equation (4.9) if and only if ρ ∈ End(E).
So, for ρ ∈ End(E), let ζ(ρ) be the unique s ∈ DerK(D,EndK(E)) such that (s|O, s(∂)) =
(0, ρ).

Theorem 4.13. The map ζ of corollary 4.12 defines a quasi-isomorphism of differential graded
K-algebras

dR(O,End(E)) HochK(D,EndK(E)).

Proof. Since E has projective dimension at most 1 over D, we have ExtiD(E, E) = 0 for
all i ⩾ 2. Thus, as in remark 3.6, the natural inclusion τ⩽1 HochK(D,EndK(E)) →
HochK(D,EndK(E)) is a quasi-isomorphism of differential graded K-algebras. The map
ζ of corollary 4.12 defines a map of complexes dR(O,End(E)) → τ⩽1 HochK(D,EndK(E))
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as follows (where we are using the description of the truncated Hochschild complex from
remark 3.6).

End(E) End(E) 0 · · ·

EndK(E) DerK(D,EndK(E)) 0 · · ·

∂

ζ

d

To see that this diagram commutes, note that if σ ∈ End(E), note that

ζ(∂σ)(f) = 0 = [f, σ] = dσ(f)

for any f ∈ O and that

ζ(∂σ)(∂) = ζ([∂, σ])(∂) = [∂, σ] = dσ(∂).

In other words, dσ and ζ(∂σ) agree on O and on ∂, so the injectivity assertion of lemma 4.8
proves commutativity of the diagram.

A similar argument using the same injectivity assertion shows that ζ is a homomor-
phism of differential graded K-algebras. Suppose σ, ρ ∈ End(E), where σ is regarded as
living in degree 0 and ρ in degree 1. We want to show that

ζ(σρ) = σζ(ρ) = ζ(σ)ρ,

but clearly all three annihilate O and take the value σρ on ∂.
We now want to show that ζ induces isomorphisms on cohomology. This is clear in

degree 0, so we focus on degree 1. Note that we have a diagram as follows.

H1
dR(End(E)) Ext1D(E, E)

H1(HochK(D,EndK(E)))
ζ

Here, the vertical map is the isomorphism detailed in section 3.B, and the horizontal map
is the isomorphism of [Ked10, lemma 5.3]. To show that ζ is an isomorphism, it suffices
to prove that this diagram is commutative.

Let us begin by recalling the explicit construction of the horizontal isomorphism dis-
played above as it is described in [Ked10, proof of lemma 5.3]. Suppose we haveρ ∈ End(E)
representing a cohomology class inH1

dR(End(E)). Its image in Ext1D(E, E) is denoted E⊕ρE.
As an O-module, it is just E⊕ E, but ∂ acts by

∂ · (e, e) = (∂e+ ρ(e), ∂e).

It is straightforward to verify that this formula satisfies the Leibniz rule, and that the
inclusion E → E ⊕ρ E into the first coordinate and the projection E ⊕ρ E → E onto the
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second coordinate are both homomorphisms of differential O-modules. In other words,
E⊕ρ E is in fact an extension of E by itself.

Now let us find the image of this extension in

H1(HochK(D,EndK(E))) = DerK(D,EndK(E))/PDerK(D,EndK(E)).

To do this, we use the description in section 3.B. Note that the underlying O-module of
E⊕ρ E is E⊕E. In other words, there is a natural pair of K-linear (even O-linear) splittings
for this extension. Thus the image of E⊕ρE inH1(HochK((D,EndK(E)))) is the class of the
derivation s ∈ DerK(D,EndK(E)) where, for any P ∈ D and e ∈ E, s(P)(e) is the projection
of P · (0, e) onto the first coordinate.

Note that taking P = f for some f ∈ O, then f · (0, e) = (0, fe). Thus s|O = 0. Moreover,
taking P = ∂ shows that s(∂) = ρ. It follows from the injectivity assertion of lemma 4.8
that s = ζ(ρ). This proves that the diagram is commutative.

Corollary 4.14. dR(O,End(E)) governs DefE.

Remark 4.15. It is worth describing the equivalence Θ : DefdR(O,End(E)) → DefE explicitly.
For R ∈ ArtK, the objects of DefdR(O,End(E))(R) are elements of

mR ⊗ End(E) = ker(End(ER) → End(E)).

Given µ ∈ ker(End(ER) → End(E)), let ER,µ denote the differential OR-module whose
underlying OR-module is ER, and where ∂ acts by 1 ⊗ ∂ + µ. Since µ reduces to 0
modulo mR, the natural OR-module homomorphism θ : ER,µ → E is actually aDR-module
homomorphism.

The equivalence Θ : DefdR(O,End(E)) → DefE is given by µ 7→ (R, ER,µ, θ) on the level
of objects. On morphisms, Θ acts “by exponentiation.” See the proof of theorem 3.2 for
details about this.

4.C Trace and determinant
Lemma 4.16. The trace map tr : End(E) → O is a split surjective homomorphism of differential
O-modules. Moreover, the induced map tr : dR(O,End(E)) → dR(O,O) is a homomorphism of
differential graded K-Lie algebras.13

Proof. Observe that the natural embedding O → End(E), carrying an element f ∈ O to the
multiplication by f map, is a homomorphism of differential O-modules. Indeed, if we let
µf denote the multiplication by fmap, then

(∂ · µf)(e) = ∂µf(e) − µf∂(e) = ∂(fe) − f∂(e) = ∂(f)e = µ∂(f)(e).

13Note that it is not a homomorphism of differential graded K-algebras: it preserves the commutator
bracket, but not multiplication itself.



CHAPTER 4. DEFORMATIONS OF DIFFERENTIAL MODULES 47

Now let us show that the trace map also preserves the differential module structure. We
choose a basis (e1, . . . , en) for E, and then observe that if ϕ ∈ End(E) has matrix M with
respect to this basis, then ∂ϕ has matrix ∂(M) + [N,M] whereN is the matrix of action of
∂ and ∂(M) denotes entry-wise application of ∂ toM. Then

tr(∂ϕ) = tr(∂(M) + [N,M]) = tr(∂(M)) = ∂(tr(M)) = ∂(tr(ϕ)).

Clearly the map O → End(E) splits the trace map, so this completes the proof of the first
assertion. The second assertion follows from the observation that

tr([α,β]) = 0 = [tr(α), tr(β)]

for any α,β ∈ End(E).

Lemma 4.17. If N is the matrix of ∂ on E with respect to an O-basis (e1, . . . , en), then tr(N) is
the matrix of ∂ on det(E) with respect to e1 ∧ · · ·∧ en.

Proof. Recall from [Ked10, definition 5.3.2] that

∂(e1 ∧ · · ·∧ en) =
n∑

i=1

e1 ∧ · · ·∧ ei−1 ∧ ∂ei ∧ ei+1 ∧ · · ·∧ en.

By definition of N, we have

∂ei =

n∑
j=1

Nj,iej,

so

∂(e1 ∧ · · ·∧ en) =
n∑

i=1

Ni,i(e1 ∧ · · ·∧ en) = tr(N)(e1 ∧ · · ·∧ en).

Lemma 4.18. The following diagram 2-commutes.

DefdR(O,End(E)) DefdR(O,O)

DefE Defdet(E)

tr

det

Proof. Since det(E) is of rank 1, we have End(det(E)) = O. The vertical arrows are the
equivalences of corollary 4.14, which are described in more detail in remark 4.15. The
horizontal arrow on top is induced by the homomorphism tr : dR(O,End(E)) → dR(O,O)
of lemma 4.16, and the horizontal arrow on the bottom is given by

(R, F, θ) 7→ (R,det(F),det(θ)).
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The 2-commutativity of the square is straightforward to verify at this point; once we choose
bases, the key observation is lemma 4.17 above. The details follow.

For any R ∈ ArtK, observe that we have a canonical isomorphism ηR : det(E)R →
det(ER) of OR-modules. Explicitly, if we choose a basis (e1, . . . , en) of E, then

ηR(1⊗ (e1 ∧ · · ·∧ en)) = (1⊗ e1)∧ · · ·∧ (1⊗ en),

but ηR does not depend on the choice of basis. Chasing the basis 1⊗ (e1∧ · · ·∧en) around
shows that ηR makes the following diagram commute.

det(E)R det(ER)

det(E) det(E)

ηR

θ det(θ)

1

(4.19)

Moreover, the isomorphism ηR is evidently natural in R in the sense that, if π : R ′ → R is a
homomorphism in ArtK, we have a commutative diagram as follows.

det(E)R ′ det(ER ′)

det(E)R det(ER)

ηR ′

π⊗1 det(π⊗1)

ηR

(4.20)

Now suppose µ ∈ ker(End(ER) → End(E)). We claim that (1, ηR) is an isomorphism

(R,det(E)R,tr(µ), θ) (R,det(ER,µ),det(θ))

in Defdet(R). In fact, in light of the commutative diagram (4.19), it is sufficient to show that
ηR is an isomorphism of differential OR-modules det(E)R,tr(µ) → det(ER,µ). Once we show
this, it follows immediately from the diagram (4.20) that the collection (1, ηR) defines a
2-morphism that makes the square in the statement of the lemma 2-commute.

To prove that ηR : det(E)R,tr(µ) → det(ER,µ) is an isomorphism of differential modules,
we choose a basis (e1, . . . , en) for E. LetN be the matrix of ∂ acting on E and letM be the
n×nmatrix with coefficients in mR ⊗O representing µ. Observe that (1⊗ e1, . . . , 1⊗ en)
is a basis for ER,M and 1 ⊗ N +M is the matrix of action of ∂ on this basis. Applying
lemma 4.17, we see that ∂ acts on (1⊗ e1)∧ · · ·∧ (1⊗ en) by

tr(1⊗N+M) = 1⊗ tr(N) + tr(M).

This is precisely the matrix with which ∂ acts on the basis 1⊗(e1∧ · · ·∧en) of det(E)R,tr(M),
proving the claim.
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4.D Trivialized and trivializable deformations
We continue to fixO and E as above. Moreover, we assume in addition thatO♯ is an another
commutative K-algebra, O → O♯ is a homomorphism of K-algebras, and that there is a
K-linear derivation on O♯, again denoted ∂, which extends the action of ∂ on O.

We let D♯ := O♯[∂] be the corresponding ring of differential operators, and we regard
E♯ := O♯ ⊗O E as a finite free differential O♯-module. In other words, DefE♯ means DefD♯,E♯ .
For any (R, F, θ) ∈ DefE, we let

F♯ := O♯ ⊗O F

regarded as a differential O♯
R-module. Since F is R-flat, so is F♯. Letting θ♯ : F♯ → E♯ be

the natural map induced by θ, we observe that (R, F, θ) 7→ (R, F♯, θ♯) defines a functor
DefE → DefE♯ .

Observe that the map E → E♯ induces a homomorphism dR(O, E) → dR(O♯, E♯) of
complexes.

E E

E♯ E♯

∂

∂

In particular, since
End(E♯) = O♯ ⊗O End(E),

there is a natural map dR(O,End(E)) → dR(O♯,End(E♯)), which is a homomorphism of
differential graded K-algebras.

The following shows that this homomorphism dR(O,End(E)) → dR(O♯,End(E♯)) is
compatible with the functor DefE → DefE♯ and the equivalences of corollary 4.14.

Lemma 4.21. The following diagram 2-commutes.

DefdR(O,End(E)) DefdR(O♯,End(E♯))

DefE DefE♯

Proof. This is very pedantic and the proof is very similar in structure to that of lemma 4.18,
so we write down fewer details. Observe that there is a canonical isomorphism ηR :

(E♯)R → (ER)
♯ of O♯

R-modules coming from the symmetry of the tensor product:

(E♯)R = R⊗K (O♯ ⊗O E) O♯ ⊗O (R⊗K E) = (ER)
♯.

ηR

The content is to show that ηR is actually an isomorphism of differential O♯
R-modules

(E♯)R,µ♯ → (ER,µ)
♯ for any µ ∈ ker(End(ER) → End(E)). Note that µ♯ = 1O♯ ⊗ µ and ∂ acts

on the domain by
1R ⊗ 1O♯ ⊗ ∂+ µ♯.
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Under the symmetry isomorphism ηR, this corresponds precisely to

1O♯ ⊗ (1R ⊗ ∂+ µ)

which is precisely how ∂ acts on (ER,µ)
♯.

In other words, the functor DefE → DefE♯ is the one induced by the homomorphism
dR(O,End(E)) → dR(O♯,End(E♯)). Thus, we can set up a diagram as in example 2.39,
where Γ denotes the residual gerbe of DefE♯ .

Def♯,+E Def♯E DefE

hK Γ DefE♯

We can describe the deformation categories Def♯,+E and Def♯E explicitly. First, let’s look at
Def♯,+E . Its objects are tuples (R, F, θ, τ) where (R, F, θ) ∈ DefE and τ : (E♯R, 1) → (F♯, θ♯)

is in DefE♯(R). Morphisms (R ′, F ′, θ ′, τ ′) → (R, F, θ, τ) in Def♯,+E are morphisms (π, u) :
(R ′, F ′, θ ′) → (R, F, θ) in DefE such that the following diagram commutes.

E
♯
R ′ E

♯
R

F ′♯ F♯

τ ′ τ

u♯

Definition 4.22 (Trivialized deformations). Objects of Def♯,+E (R) are O♯-trivialized deforma-
tions of E over R.

Now Def♯E is the full subcategory of DefE consisting of objects (R, F, θ) such that there
exists a morphism τ : (E♯R, 1) → (F♯, θ♯) in DefE♯(R), but we do not fix τ as a part of the data.

Definition 4.23 (Trivializable deformations). The objects of Def♯E(R) are O♯-trivializable
deformations of E over R.

Lemma 4.24. Def♯,+E is smooth if and only if Def♯E is smooth.

Proof. As we noted in example 2.39, the map Def♯,+E → Def♯E is smooth and essentially
surjective. Apply [Stacks, 06HM].

Proposition 4.25. Suppose H0
dR(O) = K and H1

dR(O) is finite dimensional. If E is of rank 1, then
Def♯E and Def♯,+E are both smooth.

http://stacks.math.columbia.edu/tag/06HM
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Proof. Note that End(E) = O sinceE is of rank 1, so dR(O,O) governs DefE by corollary 4.14.
We have assumed that

EndD(E) = H
0
dR(End(E)) = H0

dR(O) = K,

so automorphisms lift over small extensions by corollary 3.8. The tangent space T(DefE) =
H1

dR(O) is also finite dimensional by assumption, so in fact DefE is prorepresentable by
the fundamental theorem of deformation theory 2.1. It is smooth, since the governing
complex dR(O,O) vanishes outside degrees 0 and 1.

Choose a list (h1, . . . , hs) inOwhose image inH1
dR(O) is a basis forH1

p(O). Then choose
(hs+1, . . . , hr) inOwhose images inH1

dR(O
♯) form a basis for im(H1

dR(O) → H1
dR(O

♯)). Then
the image of (h1, . . . , hs, hs+1, . . . , hr) in H1

dR(O) is a basis. Let e ∈ E be an O-basis and
suppose N ∈ O is such that ∂e = Ne.

Since DefE is smooth and prorepresentable and (h1, . . . , hr) gives a basis for the tangent
space H1

dR(O), for any (R, F, θ) ∈ DefE there is a lift f ∈ F of e such that

∂(f) =

(
1⊗N+

∑
i

αi ⊗ hi

)
f

for some α1, . . . , αr ∈ mR. We claim that (R, F, θ) is trivializable if and only if

αs+1 = · · · = αr = 0.

To see this, observe that an O
♯
R-module isomorphism τ : E♯R → F♯ compatible with 1 and

θ♯ must be given by 1⊗ e 7→ (1+ s)f for some s ∈ mR ⊗K O♯, and it is easy to check that τ
is D♯

R-linear if and only if

∂(s) + (1+ s)
∑
i

αi ⊗ hi = 0.

Note that αi ≡ 0 mod mR for all i. Since we can factor the surjection R → K into a
composite of small extensions, let us assume inductively that there exists some ϵ ∈ mR

such that ϵmR = 0 and αi ≡ 0 mod ϵR for all i > s. Since s ∈ mR ⊗K O♯, we have αis = 0
for all i > s, so the above equation reads

∂(s) + (1+ s)

(∑
i⩽s

αi ⊗ hi

)
+
∑
i>s

αi ⊗ hi = 0.

Choose a direct sum complement Q for ϵR inside mR, so that any element η ∈ mR can be
written uniquely as η0ϵ + η̃ where η0 ∈ K and η ′ ∈ Q. Then we have αi = αi,0ϵ + α̃i for
all i, and similarly we can write s = ϵ ⊗ s0 + η̃ ⊗ s̃ for some η̃ ∈ Q and s0, s̃ ∈ O♯. Again
recalling that ϵmR = 0, the “epsilon part” of the above equation is

∂(s0) +
∑
i

αi,0hi = 0,
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which is an equation in O♯. Passing to H1
dR(O

♯), clearly ∂(s0) disappears, as do the terms
corresponding to h1, . . . , hs since these terms were chosen to be inH1

p(O) = ker(H1
dR(O) →

H1
dR(O

♯)). But the image of (hs+1, . . . , hr) is linearly independent in H1
dR(O

♯) by construc-
tion, so we have αi,0 = 0 for all i > s. But we also had assumed inductively that
αi ≡ 0 mod ϵR for all i > s, so in fact αi = 0 for all i > s.

Now suppose (R, F, θ) is trivializable and choose a basis f ∈ F as above. Let F ′ be a free
OR ′-module of rank 1 with basis f ′. Choose lifts α ′

i ∈ mR ′ of αi and define an action of ∂
on F ′ by

∂f ′ =

(
1⊗N+

∑
i⩽s

α ′
i ⊗ hi

)
f ′.

Let u : F ′ → F be given by f ′ 7→ f and θ ′ = θ ◦ u. Then (R ′, F ′, θ ′) is trivializable by our
observations above and defines a lift of (R, F, θ). Thus Def♯E is smooth. Smoothness of
Def♯,+E follows from lemma 4.24.

4.E Compactly supported and parabolic cohomology
We continue to fix O♯ as above.

Definition 4.26. We define

C+(E) = Cone(dR(O, E) → dR(O♯, E♯))[−1]

C(E) = Cone(dR(O, E)⊕H0
dR(E

♯) → dR(O♯, E♯))[−1]

and then set
Hi

c(E) = H
i(C+(E)) and Hi

p(E) = H
i(C(E))

for all i.

It follows from the associated long exact sequences as in example 2.39 that Hi
c(E) =

Hi
p(E) for all i ⩾ 2, that H0

p(E) = H
0
dR(E), and that

H1
p(E) = im(H1

c(E) → H1
dR(E)) = ker(H1

dR(E) → H1
dR(E

♯)).

Moreover, in the cases of interest to us, we will have H0
c(E) = 0 for the following reason.

Lemma 4.27. If O → O♯ is injective, then H0
c(E) = 0.

Proof. Since E is free over O and therefore flat, the map E→ E♯ = O♯ ⊗O E is also injective.
The distinguished triangle

C+ dR(O, E) dR(O♯, E♯)
+
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then induces a long exact sequence as follows.

0 H0
c(E) H0

dR(E) H0
dR(E

♯)

H1
c(E) H1

dR(E) H1
dR(E

♯)

H2
c(E) 0

It follows that H0
c(E) = 0.

The following is an immediate consequence of the definitions plus our observations in
example 2.39.

Lemma 4.28. We have the following.

Inf(Def♯,+E ) = H0
c(End(E)) T(Def♯,+E ) = H1

c(End(E))
Inf(Def♯E) = H0

dR(End(E)) T(Def♯E) = H1
p(End(E))

Moreover, H2
c(End(E)) is compatibly an obstruction space for both Def♯,+E and Def♯E.

4.F Duality pairing
Definition 4.29 (Duality pairing). Observe that H2

c(E) is the cokernel of the sum of the
natural map E→ E♯, which we will denote e 7→ e♯, with the differential ∂ : E♯ → E♯. There
is a K-bilinear map

H0
dR(E

∨)×H2
c(E) H2

c(O). (4.30)

which we call the duality pairing, given by

(ϕ, e) 7→ ⟨ϕ, e⟩ := ϕ♯(e),

where e ∈ E♯ represents an element in H2
c(E).

Proof that the above pairing is well-defined. If e = f♯ for some f ∈ E, then

ϕ♯(e) = ϕ♯(f♯) = ϕ(f)♯

is in the image of O → O♯ and therefore vanishes in H2
c(O). If e = ∂f for some f ∈ E♯, then

ϕ♯(e) = ϕ♯(∂f) = ∂ϕ♯(f),

since ϕ ∈ H0
dR(E

∨), so we see that ϕ♯(e) is in the image of ∂ : O♯ → O♯ and therefore
vanishes in H2

c(O).
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Example 4.31 (Trace pairing). Note that have a perfect14 pairing

End(E)× End(E) O

given by (α,β) 7→ tr(α ◦ β). This yields an identification End(E)∨ = End(E). Combining
this identification and the natural identification O∨ = O, the dual of the trace map tr :
End(E) → O is exactly the inclusion O → End(E) carrying f ∈ E to the multiplication by f
map. Using the identification End(E)∨ = End(E), the duality pairing (4.30) becomes the
K-bilinear map

H0
dR(End(E))×H2

c(End(E)) H2
c(O). (4.32)

given by ⟨α,β⟩ = tr(α♯ ◦ β).

Example 4.33. Applying example 4.31 with E = O, we have a pairing H0
dR(O)×H2

c(O) →
H2

c(O) given by
⟨f, g⟩ = f♯g.

This pairing is always non-degenerate.14 Indeed, suppose we have some g ∈ H2
c(O) such

that ⟨f, g⟩ = f♯g = 0 for all f ∈ H0
dR(O). Taking f = 1 shows that we must have g = 0. If

H2
c(O) is nonzero and the pairing is perfect, then we must have H0

dR(O) = K.

The following tells us that the trace pairing annihilates all of the obstruction classes
for Def♯ in H2

c(End(E)).

Lemma 4.34. Suppose H0
dR(O) = K and H1

dR(O) is finite dimensional. If π : R ′ → R is a small
extension in ArtK and (F, θ) ∈ Def♯E(R), then

⟨1, o(π, (F, θ))⟩ = 0.

Proof. Observe that we have a commutative diagram of differential graded K-algebras as
follows.

dR(O,End(E)) dR(O,O)

dR(O♯,End(E♯)) dR(O,O♯)

tr

tr
14 Let A be a commutative ring and µ : M × N → L an A-bilinear map. Then µ is non-degenerate (resp.

perfect) if the induced map N→ HomA(M,L) is injective (resp. bĳective).
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Since L 7→ DefL is 2-functorial, this induces a 2-commutative square that becomes the back
of the following 2-commuatative cube.

DefdR(O,End(E)) DefdR(O,O)

DefE Defdet(E)

DefdR(O♯,End(E♯)) DefdR(O♯,O♯)

DefE♯ Defdet(E♯)

tr

det

tr

det

The front face of this cube evidently 2-commutes; the top and bottom faces 2-commute by
lemma 4.18, and the left and right faces 2-commute by lemma 4.21.

The conclusion of this is that the map H2
c(End(E)) → H2

c(O) induced by the trace
map tr : dR(O♯,End(E♯)) → dR(O♯,O♯) is compatible with the morphism of deforma-
tion categories det : Def♯E → Def♯det(E) in the sense of definition 2.7. Clearly the map
H2

c(End(E)) → H2
c(O) induced by the trace map is exactly ⟨1,−⟩, as one can see from our

explicit description of the pairing above in example 4.31. Compatibility therefore says
precisely that

⟨1, o(π, (F, θ))⟩ = o(π,det(F, θ)).
We know from proposition 4.25 that Def♯det(E) is smooth, so o(π,det(F, θ)) = 0.

Definition 4.35 (Duality pairing). One can define a duality pairing

H1
p(E

∨)×H1
p(E) H2

c(O).

as follows. Suppose ϕ ∈ H1
p(E

∨) and e ∈ H1
p(E). Then there exists α ∈ (E♯)∨ and f ∈ E♯

such that ∂α = ϕ♯ and ∂f = e♯, and we define

⟨ϕ, e⟩ = α(e♯) − ϕ♯(f) = α(∂f) − (∂α)(f). (4.36)

Proof that this pairing is well-defined. Suppose first that we have α,α ′ such that ∂α = ∂α ′ =
ϕ♯. Then α− α ′ is horizontal, so

(α(∂f) − (∂α)(f)) − (α ′(∂f) − (∂α ′)(f)) = (α− α ′)(∂f)

= ∂((α− α ′)(f))

which is in the image of ∂ : O♯ → O♯. Similarly, if we have f, f ′ such that ∂f = ∂f ′ = e♯,
then f− f ′ is horizontal and

(α(∂f) − (∂α)(f)) − (α(∂f ′) − (∂α)(f ′)) = (∂α)(f ′ − f)

= ∂(α(f ′ − f)),
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which again is in the image of ∂ : O♯ → O♯. In other words, formula 4.36 yields a
well-defined pairing

{ϕ ∈ E∨ : ϕ♯ ∈ im(∂)}× {e ∈ E : e♯ ∈ im(∂)} H1
dR(O

♯).

Now observe that if ϕ = ∂ψ for some ψ ∈ E∨, then

⟨ϕ, e⟩ = ψ♯(∂f) − (∂ψ♯)(f)

= 2ψ(e)♯ − ∂(ψ♯(f)),

where the first term is in the image of O → O♯ and the second in the image of ∂ : O♯ → O♯.
Thus ⟨ϕ, e⟩ vanishes in H2

c(O). Similarly, if e = ∂h for some h ∈ E, then

⟨ϕ, e⟩ = α(∂h♯) − (∂α)(h♯)

= ∂(α(h♯)) − 2ϕ(h)♯

and now the first term is in the image of ∂ : O♯ → O♯ and the second is in the image of
O → O♯, so again ⟨ϕ, e⟩ vanishes in H2

c(O).

Lemma 4.37. Under the identification End(E)∨ = End(E) resulting from the trace pairing as in
example 4.31, the duality pairing

H1
p(End(E))×H1

p(End(E)) H2
c(O)

is alternating.

Proof. Unwinding everything, we find that the duality pairing in this case is described as
follows. Givenϕ,ψ ∈ H1

p(End(E)), we find α,β ∈ End(E) such that ∂α = ϕ♯ and ∂β = ψ♯,
and then

⟨ϕ,ψ⟩ = tr(α ◦ (∂β) − (∂α) ◦ β).

If ϕ = ψ, then we can take α = β and we see that ⟨ϕ,ϕ⟩ is the trace of a commutator,
which must vanish.
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Chapter 5

Isocrystals on the projective line

In this chapter, we will describe the geometry of the adic projective line, and isocrystals
on open subsets of the punctured projective line in positive characteristic.

5.A Adic projective line
Notation 5.1. Let (K, ν) be a complete valued field of height 1 with an algebraically closed
residue field k. We letϖ denote a pseudo-uniformizer in K.

Note that Spa(K◦) consists of two points: a generic point which corresponds to the
valuation ν, and a closed point which corresponds to the trivial valuation on k.

Our goal in this section is to describe the projective line over K◦, regarded as an adic
space and denoted by P. It is the colimit of the following diagram.

Spa(K◦[t])

Spa(K◦[t, t−1])

Spa(K◦[t−1])

We will write D for Spa(K◦[t]).
The special fiberDk = Spa(k[t]) is described in example B.1, and the resulting picture

of Pk is given on the right of figure 5.2. The subspace Ptriv of trivially valued points of P
is entirely contained in the special fiber. Moreover, if we restrict the sheaf of rings on Pk
to Ptriv, the resulting locally ringed space is isomorphic to the scheme-theoretic projective
line P1 over k. Hereafter, we will tacitly P1 with Ptriv.

To describe the generic fiber PK, first let (C, ν) denote a completed algebraic closure of
(K, ν). The base change PC is well-described in the literature (cf. [Sch12, example 2.20],
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ß

◦∞

◦
1

◦
0

η

00̃

11̃

∞∞̃

x0

xϖ1/2

xϖ

x∞

x1

xϖ−1

Figure 5.2: The adic projective line P. The special fiber Pk is depicted on the right, and the
generic fiber PK on the left.

[Con15, lecture 11, sections 11.2–3], or [Mar, section 3]). The group G := Aut(C/K) of
continuous automorphisms of C fixing K naturally acts on PC, and PK is precisely the
quotient of PC by this action.

This allows us to assemble our picture of P; see figure 5.2. Let us describe some of the
points of P.

• The closed points of P are precisely the closed points of P1, which we label using
elements of the set k ∪ {∞}. These points are trivially valued with (completed)
residue field k.
For example, consider the point 0. It is contained in the unit diskD = Spa(K◦[t]), and
corresponds to the valuation ν0 on K◦[t] given by reducing modulo ϖ, evaluating
at 0, and then taking the trivial valuation on k. A base for the neighborhood filter
of 0 in D is given by rational subsets R(1/s) where s ∈ K◦[t] has constant term of
valuation zero.15 In fact, the rational subset R(1/s) depends only on the reduction
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s̄ ∈ k[t], so if for every λ ∈ k we fix a representative [λ] ∈ K◦, we can restrict s to
being a product of linear polynomials of the form t − [λ] for λ ∈ k×. For a picture
of R(1/(t − 1)), see figure 5.3. It follows from this description of the neighborhood
filter of 0 that

OP,0 = colim
λ∈k×

K◦⟨t, (t− [λ])−1⟩.

◦
1

0

11̃

Figure 5.3: The pink indicates the complement of the rational subset R(1/(t − 1)) inside D.
It includes 1, 1̃,

◦
1, and all of the points on the branch of PK that emanates from

◦
1. The gray

portion is an open neighborhood of 0.

15Let B denote the collection of rational subsets of the form R(1/s) where s ∈ K◦[t] has constant term of
valuation zero. Then clearly 0 is in every element of B, and moreover B is stable under finite intersections.
Suppose we have a rational subset R(f/s) containing 0 for some f, s ∈ K◦[t]. The fact that 0 ∈ R(f/s)
means that ν0(s) = 0, so the constant term of s̄ ∈ k[t] is nonzero. In other words, R(1/s) ∈ B. Moreover,
0 ∈ R(1/s) ⊆ R(f/s).
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• Each point a ∈ P1 has a unique horizontal generization ã of height 1. The point ã
is discretely valued, and the completed residue field κ̂(ã) is a formal Laurent series
field over k.
For example, 0̃ is in D and corresponds to the 0-adic valuation on k(t). In other
words,

ν0̃

(∑
ant

n
)
= min {n : ān ̸= 0}.

Restricting the valuation to the trivial subgroup of the value group yields precisely
the valuation ν0 from above; in other words, 0̃ is a horizontal generization of 0. A
basis for its filter of neighborhoods inside D is given by the rational subsets

R(ϖ/tn) ∩ R(1/s)

where n ⩾ 1 and s ∈ K◦[t] has constant term of valuation zero.16 For a rough picture
of R(ϖ/t), see figure 5.4.

• Next, let us consider the point η corresponding to the trivial valuation on k(t). It is
a vertical generization of all of the points ã, and it is the generic point of the special
fiber Pk (in particular, it is the generic point of P1). A base for the neighborhood
filter of η is given by rational subsets R(1/s) where s ∈ K◦[t] is primitive.17 As above,
we can restrict s to being a product of linear polynomials of the form t−[λ] for λ ∈ k,
so

OP,η = colim
λ∈k

K◦⟨t, (t− [λ])−1⟩.

16Suppose 0̃ ∈ R(f/s). This means that s̄ ∈ k[t] is nonzero and that the degree of smallest nonzero term
of f̄ is at least that of s̄. Since K◦ is henselian and its residue field k is algebraically closed, we can factor
s into uv where all roots of u have strictly positive valuation, and all roots of v have valuation zero (i.e.,
the constant term of v has valuation zero). Then evidently ν0̃(s) = ν0̃(u) (i.e., the degrees of the smallest
nonzero terms of s̄ and ū coincide), so 0̃ ∈ R(f/u). It is clear that R(f/u) ∩ R(1/v) ⊆ R(f/s).

Thus it is sufficient to show that there exists some n ⩾ 1 such that R(ϖ/tn) ⊆ R(f/u). Since 0̃ ∈ R(f/u),
we know that ū is nonzero; on the other hand, all of its roots have strictly positive valuation, so this forces
u to be monic (after multiplying by a unit in K◦). This means that if we divide f = uq + r in K[t] with
deg(r) < deg(u), then in fact we will have q, r ∈ K◦[t] [Ked10, lemma 2.3.1]. Then R(f/u) = R(r/u).
Moreover, since 0̃ ∈ R(r/u) and deg(r) < deg(u), we must have r̄ = 0. Thus, there exists an integer
k ⩾ 1 such that all the coefficients of r have valuation at least ν(ϖ)/k. Then νx(r) ⩾ νx(ϖ)/k for all x, so
0̃ ∈ R(ϖ/uk) ⊆ R(r/u). In other words, after replacing u with uk, we can assume that r = ϖ.

Let u = td + a1t
d−1 + · · ·+ ad and let n be an integer such that n ⩾ d and n > dν(ϖ)/ν(ai) for all i. If

x ∈ R(ϖ/tn), then
νx(t

d) ⩽ dνx(ϖ)/n < νx(ai) ⩽ νx(aitd−i)

for all i, so
νx(u) = νx(t

d) ⩽ dνx(ϖ)/n ⩽ νx(ϖ)

so x ∈ R(ϖ/u). In other words, we have R(ϖ/tn) ⊆ R(ϖ/u), as desired.
17Suppose η ∈ R(f/s). Then νη(s) = 0, so s is primitive in K◦[t] and η ∈ R(1/s) ⊆ R(f/s).
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00̃

x0

xϖ1/2

xϖ

Figure 5.4: The pink indicates the complement of the rational subset R(ϖ/t) inside D. It
includes the point 0, and all the points on the branch emanating from

◦
0 that are “sufficiently

far down.” The gray portion is an open neighborhood of 0̃.

• The Gauss point ß is the point corresponding to the Gauss valuation on K(t) given by

νß

(∑
ant

n
)
= minν(an).

Completing K(t) for this valuation yields the completed residue field κ̂(ß), also
called the Amice ring. This is evidently a height 1 valuation with value group ν(K×).
The horizontal specialization of ß obtained by restricting the valuation the trivial
subgroup of ν(K×) gives rise to the point η in the special fiber.
If we regard ß as a point of D, a base for the neighborhood filter of the Gauss point
in D is given by the rational subsets

R(ϖ/ϖ) ∩ R(1/s) = R(ϖ/ϖs)
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where s ∈ K◦[t] is monic.18 Thus

OP,ß = colim
λ∈k

K⟨t, (t− [λ])−1⟩.

• The Gauss point also has vertical specializations in P, one for each closed point of
P1. For a closed point a ∈ P1, we label the vertical specialization of ß corresponding
to a by ◦

a. All of their value groups are of height 2; more precisely, the value groups
are isomorphic to ν(K×)+Zϵwhere ϵ denotes a positive infinitesimal. For example,
the point

◦
0 corresponds to the valuation on K(t) given by

ν◦
0

(∑
ant

n
)
= min (ν(an) + nϵ) .

Note that the topology on K(t) defined by ν ◦
a coincides with the topology defined by

νß, so the completed residue fields κ̂( ◦
a) are all isomorphic to the Amice ring κ̂(ß).

The point ◦
a horizontally specializes to the point ã by restricting the value group to

the convex subgroup Zϵ. Restricting further to the trivial subgroup yields a ∈ P1.

• Corresponding to every Galois orbit in C ∪ {∞}, we have a height 1 one point in P.
If w ∈ C ∪ {∞}, we denote by xw the point of P corresponding to the Galois orbit
of w. For w ∈ C, the valuation νxw

is given by evaluating at w and then taking
the valuation, and the completed residue field κ̂(xw) is the closure inside C of the
extension of K generated by all of the Galois conjugates of w.
For example, consider w = 0. The point x0 is inD and corresponds to the valuation
νx0

(f) = ν(f(0)). The value group is ν(K×) and the horizontal specialization corre-
sponding to the trivial subgroup of the value group is the point 0 in the special fiber.
A base for the neighborhood filter of x0 inD is given by the rational subsets R(tn/ϖ)
where n ⩾ 1.

This list does not exhaust all of the points; there are many more points in the generic fiber
of P. If we choose a spherical completion (Csph, ν) of (C, ν), then there is a height 1 point
in PK associated to every closed disk

B(a, r) := {x ∈ Csph : ν(a− x) ⩾ r},

where a ∈ Csph and r ∈ R ∪ {∞}. The Gauss point ß is the point associated to the disk
B(0, 0), and the points associated to disks of the form B(a,∞) are of the type described in
the final bullet point above. Not all of these closed disks define distinct points: any pair of

18Suppose ß ∈ R(f/s) for some f, s ∈ K◦[t]. Observe that R(ϖ/ϖ) ∩ R(f/s) does not change when we
multiply f and s by a nonzero element of K, so we can assume without loss of generality that νß(s) = 0 (the
fact that ß ∈ R(f/s) means that this scalar multiplication will not bring f outside of K◦[t]). Now νß(s) = 0

means that s is primitive, and that ß ∈ R(1/s) ⊆ R(f/s).
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nested disks entirely contained within Csph \ C collapses to the same point in PK, as does
any Galois conjugate pair of disks contained in C. Moreover, each point associated to a
disk B(a, r) where r ∈ ν(C×) is not closed. Its closure in PK is homeomorphic to P1, and
all of the points in this closure are height 2 vertical specializations.

Tubes
Definition 5.5. Suppose Z is a closed subset of P1. The tube of Z in P, denoted ]Z[, is the
set {

x ∈ PK : lim
k→∞νx(fk) = ∞ for all f ∈ OP which vanish along Z

}
.

We then extend this definition of tubes to all constructible subsets of P1 by taking boolean
combinations.

The tube of any closed subset of P1 is open in PK, which means that the tube of an
open subset of P1 is closed. For example, the tube of Z = {0} is depicted in figure 5.6.

◦
0

ß

Figure 5.6: The tube of {0}. Note that this tube does not include
◦
0.
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5.B Isocrystals
Notation 5.7. Let (K, ν)be a complete, discretely valued field of mixed characteristic whose
residue field k is algebraically closed of characteristic p > 0. We normalize the valuation
so that ν(p) = 1, and we fix a uniformizerϖ. As above, we identify the scheme-theoretic
projective line P1 over kwith the subspace of trivially valued points of the adic projective
line P over K◦. We also fix a divisor Z in P1 and let U := P1 \ Z.

Observe that we can always change coordinates if necessary in order to assume that∞ ∈ Z, but for the moment we do not insist on this.

Functions on ]U[

We define
O := Γ(]U[, i−1OP)

where i is the inclusion ]U[ ↪→ P. Since ]U[ is contained in PK, this ring can equivalently
be described as the sections over ]U[ of the sheaf i−1OPK

. In particular, it is a K-algebra.

Remark 5.8. Suppose ∞ ∈ Z and h ∈ K◦[t] is a monic polynomial whose image h̄ ∈ k[t]
is a separable polynomial with zeros along Z \ {∞}. For any positive integer m, observe
that Sm := Spa(K[t], K◦[ϖtm]) is an affinoid open subset of PK, and its rational subset

Vm := R(ϖ/hm) ⊆ Sm

contains ]U[.
Let B consist of all affinoid open subsets of Sm for all m and also the small disks

S ′
m := Spa(K[t−1], K◦[ϖtm]). Then B is a basis for the topology on PK. Note that ]U[ is

disjoint from S ′
m for allm. Moreover, if S is an affinoid open subset of Sm for somem, and

V an open neighborhood of ]U[∩S in S, then Vm ′ ∩ S ⊆ V for somem ′ ⩾ m [LP16, lemma
2.17].

Observe that ]U[ is quasi-compact and quasi-separated, so taking global sections of
sheaves on ]U[ commutes with filtered colimits of sheaves [Stacks, 0739]. Thus, applying
Γ(]U[,−) to the isomorphism of [LP16, lemma 2.19] shows that

O = colim
V

Γ(V,OP) = colim
m

Γ(Vm,OP) = K[t, h
−1]†,

where in the first colimit,V varies over the open neighborhoods of ]U[ in P (or, equivalently,
PK), and where the right-hand side means more precisely the quotient K[t, u]†/(uh − 1)
of a free dagger algebra K[t, u]† in two variables.

Remark 5.9. One can show that i−1OP is a coherent sheaf of rings on ]U[ and that global sec-
tions Γ(]U[,−) induces an equivalence between the categories of coherent i−1OP-modules
and finite O-modules, but we will not need these facts here.

http://stacks.math.columbia.edu/tag/0739
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Proposition 5.10. If ∞ ∈ Z, then every maximal ideal of O is generated by an irreducible
polynomial f ∈ K[t]. In particular, O is a principal ideal domain.

Proof. We first check that O is a Dedekind domain. Note that O is noetherian [FP04,
discussion following lemma 7.5.1], so it suffices to show that Om is regular of Krull
dimension 1 for every maximal ideal m ⊆ O. The noetherian local ring Om is regular of
Krull dimension 1 if and only if its m-adic completion (Om)

∧ is regular of Krull dimension
1 [AM69, corollary 11.19, proposition 11.24]. But (Om)

∧ = (O ′
m)

∧, where O ′ denotes the
completion of O for the Gauss norm [Gro00, theorem 1.7(2)]. Note that O ′ = K⟨t, h−1⟩ for
some h ∈ K◦[t] as in remark 5.8 above, so m corresponds to a maximal ideal of K⟨t⟩ which
we abusively denote by m again. Then note that (O ′

m)
∧ = (K⟨t⟩m)∧ [FP04, remark 4.1.5(2)].

Now (K⟨t⟩m)∧ is regular of Krull dimension 1 since K⟨t⟩ is [FP04, theorem 3.2.1(2)], and
this completes the proof that O is a Dedekind domain.

Now to show that O is a principal ideal domain, it suffices to show that every prime
ideal is principal [LR08, proposition 3.17]. Clearly the zero ideal is principal. Since O is a
Dedekind domain, every nonzero prime ideal is a maximal ideal m. Note that m ∩ K[t]†
is a maximal ideal of K[t]†, so it must be generated by a polynomial f ∈ K[t] [Gro00,
proposition 1.5]. Injectivity of the map MaxSpec(O) → MaxSpec(K[t]†) (cf. [FP04, remark
4.1.5(2)]) implies m = fO. Clearly fmust be irreducible.

Remark 5.11. If we replaced P1 with a general smooth projective curve over k, it would
still be true that the ring O of functions on the tube of a dense affine open subset of the
curve is a Dedekind domain. This follows by adapting the argument of the first paragraph
of the above proof slightly.

Modules with connection on ]U[

Observe that the derivation d : OP → Ω1
P/K◦ restricts to a derivation

O Ω := Γ(]U[, i−1ΩP/K◦),
d

where i again denotes the inclusion ]U[ ↪→ P. Since ]U[ is contained in PK, this derivation is
K-linear. We define MC(]U[) to be the category ofO-modulesE equipped with connections
∇ : E→ Ω⊗ E. Tensor product over O makes MC(]U[) a K-linear tensor category.11

If∞ ∈ Z, then dt freely generatesΩ. EquippingOwith the corresponding derivation ∂
makes O a differential K-algebra, and we have an equivalence of K-linear tensor categories
MC(]U[) ≃ DModO. It follows from the explicit description of O in remark 5.8 that

H0
dR(O) = K.

Lemma 5.12. Suppose∞ ∈ Z and regardO as a differential ring by equipping it with the derivation
∂ dual to dt. Then O is differentially simple.19
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Proof. Since O is a principal ideal domain by proposition 5.10, it suffices to check that no
maximal ideal m of O is stable under ∂ [Blo81, lemma 4.4]. But we know that m = fO for
an irreducible f ∈ K[t]. If m were stable under ∂, then we would have ∂(f) ∈ m also. But
since f is irreducible, there exist a, b ∈ K[t] such that af+ b∂(f) = 1, which then forces m
to be the unit ideal, yielding a contradiction.

Corollary 5.13. The category MC(]U[) has global dimension 1.

Proof. We can assume without loss of generality that ∞ ∈ Z. IfD is the ring of differential
operators corresponding to the differential ringO, then the global dimension of the abelian
category MC(]U[) coincides with the global dimension of the ringD. Since O is a principal
ideal domain by proposition 5.10, it has global dimension 1. Moreover, by lemma 5.12, the
only prime ideal of O stable under ∂ is the zero ideal. Thus, applying [Goo74, theorem 5]
yields the result.

Corollary 5.14. If E ∈ MC(]U[) is finite over A, then it is finite free over A.

Proof. We can assume without loss of generality that ∞ ∈ Z so that we can regard E
as a differential module over O. Since O is differentially simple by lemma 5.12, E must
be finite projective over O [Mau14, theorem 4.3]. But O is a principal ideal domain by
proposition 5.10, so in fact it must be finite free. Alternatively, we can also apply [Chr81,
corollaire 4.3].

Corollary 5.15. The full subcategory MCf(]U[) of finiteO-modules with connection is a tannakian
category over K.

Proof. It follows from corollary 5.14 that MCf(]U[) is a Serre subcategory of MC(]U[), so
in particular it is K-linear abelian. The unit object of the symmetric monoidal category
MC(]U[) is O, whose endomorphisms are precisely H0

dR(O) = K. Clearly O ∈ MCf(]U[),
and it follows from corollary 5.14 that MCf(]U[) is stable under tensor products and inter-
nal homs; in other words, it is compact closed. Now note that the “tannakian dimension”
[Del90, section 7] evidently coincides with rank as a finite free module over O, which is
always a nonnegative integer. Thus MCf(]U[) is tannakian overK [Del90, theorem 7.1].

Corollary 5.16. If E ∈ MCf(]U[), then dimKH
0
dR(E) ⩽ dimO(E).

Proof. We can assume without loss of generality that ∞ ∈ Z. Suppose S is a K-basis for
H0

dR(E). Then 1 ⊗ S is still K-linearly independent in H0
dR(L ⊗O E), where L := Frac(O).

Since O is differentially simple, we have that H0
dR(L) = K [Mau14, proposition 3.1]. Thus

|S| = |1⊗ S| ⩽ dimKH
0
dR(L⊗O E) ⩽ dimL(L⊗O E) = dimO(E),

where the first equality is because E → L ⊗O E is injective, the first inequality is because
1⊗ S is linearly independent in H0

dR(L⊗O E), and the second inequality is a consequence
of [Ked10, lemma 5.1.5].

19Recall that a differential ring is differentially simple if it has no nonzero proper ideals that are stable
under its derivation.
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Robba fibers
Throughout this subsection, let a denote a closed point of P1 and j the open embedding
]a[ ↪→ P. The topological boundary of the open set ]a[ in P consists of the three points
a, ã, and ◦

a, so, if F is a sheaf on ]a[, the “interesting” stalks of j∗F are at these boundary
points. On the other hand, the stalk at a does not give us anything new: every point in ]a[
generizes a, so (j∗F)a = Γ(]a[, F). The chain of horizontal specializations

◦
a ã a

induces a chain of maps between the stalks of j∗F at these points going in the opposite
direction

(j∗F) ◦
a (j∗F)ã (j∗F)a = Γ(]a[, F).

Definition 5.17 (Robba ring). The Robba ring at a, denoted Ra, is the stalk at ◦
a of the sheaf

of K-algebras j∗O]a[ on P.

Remark 5.18. The Robba ring R0 at 0 is the ring of bidirectional power series∑
n∈Z

ant
n

where an ∈ K for all n ∈ Z, such that, for every s > 0, we have

lim
n→∞ν(ai) + si) = ∞

and for which there exists r > 0 such that

lim
n→−∞(ν(ai) + ri) = ∞.

In general, we can always find a coordinate defined near a in order to obtain a description
like this.

Proposition 5.19 ([CM00, proposition 3.1–1]). The Robba ring Ra is a Bézout domain.

Observe that any open neighborhood V of ]U[ in P contains ◦
a (since ]U[ itself contains

◦
a) and intersects ]a[ nontrivially (since it contains ◦

a, which is in the closure of ]a[). Thus
we have a natural homomorphism

Γ(V,OP) Γ(V ∩ ]a[,OP) = Γ(V, j∗O]a[) Ra.

Taking the colimit over all open neighborhoods V of ]U[ and applying remark 5.8 yields a
natural K-algebra homomorphism O → Ra.
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Observe that the derivation d : OP → Ω1
P/K◦ can be restricted to the open subset ]a[.

Pushing forward along ]a[ ↪→ P and taking stalks at ◦
a then yields a derivation

Ra Ωa := (j∗Ω
1
]a[/K) ◦

a.
d

SinceRa is a Bézout domain, finite projective modules are automatically free. In particular,
this means thatΩa must be free of rank 1. We see, for example, thatΩ0 is freely generated
by dt. In general, we can always change coordinates to get a generator of this form. We
use this to identify the category of modules with connection over Ra and the category
DModRa

of differential modules over Ra.

Definition 5.20 (Robba fiber). Since both O → Ω and Ra → Ωa are naturally induced by
the derivation d : OP → Ω1

P/K◦ , we have a commutative diagram as follows.

O Ω

Ra Ωa

d

d

Thus any E ∈ MCf(]U[) naturally induces a module with connection (or, equivalently, a
differential module) over Ra. This is called the Robba fiber of E at a, and is denoted Ea.

Overconvergent isocrsytals
Definition 5.21. We will say that E ∈ MCf(]U[) is overconvergent if the Robba fiber Ez
is solvable [CM00, définition 4.1–1] for every z ∈ Z. We write MC†(]U[) for the full
subcategory of MCf(]U[) spanned by the overconvergent objects.

Lemma 5.22. MC†(]U[) is a tannakian subcategory of MCf(]U[).

Proof. We already know that MCf(]U[) is tannakian over K from corollary 5.15. Thus is
sufficient to show that MC†(]U[) is stable under subquotients, extensions, tensor products
and duals. All of this follows from the fact that E 7→ Ez is an exact tensor functor plus
the fact that the solvability is stable under subquotients, extensions, tensor products, and
duals [Ked10, lemma 9.4.6].

The compact closed category Isoc†(U/K) of isocrystals on U over K is defined, for
instance, in [Ber86, définition 2.3.6]. It is also tannakian [Cre92, lemma 1.8]. We will write
Isoc†(U), leaving K tacit since it will always be fixed. One can formulate a definition of
isocrystals without referencing rigid analytic varieties à la Tate, using only adic spaces.
We do not pursue this here, as in any case we will always use the following to identify
Isoc†(U) with MC†(]U[).
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Lemma 5.23. There is an equivalence of K-linear tensor categories ι : Isoc†(U) → MC†(]U[),
and

Hi
rig(U,E) = H

i
dR(ι(E))

for any E ∈ Isoc†(U).

Proof. The first part is [LeS14, propositions 6.7 and 6.8, and the intervening discussion],
and the second is [Cre98, equation (8.1.1)].

5.C Compactly supported and parabolic cohomology
Notation 5.24. In addition to notation 5.7, we now assume that ∞ ∈ Z, and we identify
MC(]U[) with differential modules over O.

Let
O♯ :=

∏
z∈Z

Rz.

We have a natural homomorphism of differential rings O → O♯. This allows us to use the
notation introduced in definition 4.26.

Lemma 5.25 ([Cre98, section 8.1]). Suppose E ∈ Isoc†(U). Then

Hi
c,rig(U,E) = H

i
c(ι(E))

where ι : Isoc†(U) → MC†(]U[) is the equivalence of lemma 5.23.

The following is precisely the definition that Crew makes in [Cre98, equation (8.1.5)].

Definition 5.26. For E ∈ Isoc†(U), we define the parabolic cohomology of E, denoted
H1

p,rig(U,E), to be H1
p(ι(E)), where ι is the functor ι : Isoc†(U) → MC†(]U[) of lemma 5.23.

Observe that, for any E ∈ MCf(]U[), we have a distinguished triangle

C(E) dR(O, E)
∏
z∈Z

dR(Rz, Ez)
+
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which gives rise to a long exact sequence as follows, whereH0
c(E) = 0 by lemma 4.27 since

the homomorphism O → O♯ =
∏

z∈ZRz is injective.

0 ����H0
c(E) H0

dR(E)
∏
z∈Z

H0
dR(Ez)

H1
c(E) H1

dR(E)
∏
z∈Z

H1
dR(Ez)

H2
c(E) 0

(5.27)

This is Crew’s six-term exact sequence [Cre98, equation (8.1.4)].

5.D Duality pairing
There is a trace mapH2

c(O) → K [Cre98, equation (8.1.7)] which is an isomorphism [Cre98,
discussion following theorem 9.5]. For E ∈ MCf(]U[), composing the duality pairing of
definition 4.29 with the trace map yields exactly the pairing

H0
dR(E

∨)×H2
c(E) K (5.28)

of [Cre98, equation (8.1.8)].Similarly, composing the duality pairing of definition 4.35 with
the trace map yields exactly the pairing

H1
p(E

∨)×H1
p(E) K (5.29)

of [Cre98, equation (8.1.9)].
To get these pairings to be perfect, we need the following definition.

Definition 5.30. We say that E is strict if the Robba fiber Ez is strict20 for all z ∈ Z. We
write MCs(]U[) for the full subcategory of MCf(]U[) spanned by the strict objects.

Lemma 5.31. MCs(]U[) is a Serre subcategory of MCf(]U[) which contains the unit object O and
is stable under duality.

20A differential module E over the Robba ring is strict if H1
dR(E) is finite dimensional. A more technical

definition is given by Crew in [Cre98, discussion preceding theorem 6.3], but [Cre98, theorem 6.3] combines
with the more recent observation of Crew [Cre17, lemma 1] to show that the two definitions are equivalent.
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Proof. Since E 7→ Ez is an exact tensor functor, it is sufficient to show that the category
DMods

R of strict differential modules over the Robba ring R is a Serre subcategory of the
category DModf

R of finite free differential modules over R which contains the unit object
R and is stable under duality. The fact that R is strict is clear, since dimH1

dR(R) = 1. The
fact that DMods

R is stable under duality is [Cre98, theorem 6.3]. If

0 E ′ E E ′′ 0

is an exact sequence in DModf
R, it induces an exact sequence as follows.

0 H0
dR(E

′) H0
dR(E) H0

dR(E
′′)

H1
dR(E

′) H1
dR(E) H1

dR(E
′′)

0

Since H0
dR(E

′′) is always finite dimensional [Cre98, proposition 6.2], it follows that H1
dR(E)

is finite dimensional if and only if H1
dR(E

′) and H1
dR(E

′′) are finite dimensional. Thus
DMods

R is a Serre subcategory.

Remark 5.32. Let us make some further observations about the category DMods
R of strict

differential modules over the Robba ring R. For any α ∈ K, let Eα denote the differential
module defined by the differential equation t∂− α. Then Eα ∈ DMods

R if and only if α is
p-adic non-Liouville [Cre98, proposition 6.10].

• DMods
R is not stable under tensor products: if we choose p-adic non-Liouville num-

bers α,β whose sum α + β is p-adic Liouville, then Eα and Eβ are both strict but
Eα ⊗ Eβ ≃ Eα+β is not.

• DMods
R is incomparable with the category DMod†

R of solvable differential modules
over R. Indeed, Eα ∈ DMod†

R if and only if α ∈ Zp [Ked10, example 9.5.2]. So, for
example, if α ∈ Zp is p-adic Liouville, then Eα is solvable but not strict. Conversely,
if α ∈ K \ Zp, then Eα is strict but not solvable.

Remark 5.33. Let DModF
R denote the category of finite differential modules over the Robba

ring R that can be equipped with Frobenius structures potentially after a finite extension
of K [CM01, définition 2.5–2]. By way of example, if Eα is as in remark 5.32 above, then
Eα ∈ DModF

R if and only if α ∈ Z(p) [CM01, corollaire 6.0–23].
It follows immediately from [CM01, corollaire 6.0–20] that DModF

R is a tannakian
subcategory of the tannakian21 category DModf

R over K. Moreover, we have

DModF
R ⊆ DMod†

R ∩ DMods
R.
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The inclusion DModF
R ⊆ DMod†

R is a theorem of Dwork’s [Ked10, theorem 17.2.1]. The
inclusion DModF

R ⊆ DMods
R is a consequence of the p-adic local monodromy theorem

(which is due independently to André [And02], Kedlaya [Ked10, theorem 20.1.4], and
Mebkhout [Meb02]).

Remark 5.34. In particular, it follows from remark 5.33 that if E ∈ MCf(]U[) can be
equipped with a Frobenius structure, it is overconvergent and its Robba fibers along Z are
strict. This is the most important case.

Theorem 5.35 (Crew’s finiteness theorem [Cre98, theorem 9.5]). Suppose E ∈ MCs(]U[).22

Then all of the terms in the exact sequence (5.27) are finite dimensional, and both of the duality
pairings (5.28) and (5.29) are perfect.

5.E Dimension of parabolic cohomology
Definition 5.36. For E ∈ MC†(]U[) and z ∈ Z, we define the Artin conductor of E at z,
denoted Arz(E), by the formula

Arz(E) = Irrz(E) + rank(E) − dimH0
dR(Ez),

where Irrz(E) is the p-adic irregularity of the Robba fiber Ez [CM00, définition 8.3–8].
Observe that we always have Irrz(E) ⩾ 0 and dimH0

dR(Ez) ⩽ rank(E), so Arz(E) ⩾ 0.

Lemma 5.37. If E ∈ MC†(]U[) admits a Frobenius structure, we have

dimH1
p(E) = dimH0

dR(E) + dimH2
c(E) − 2 rank(E) +

∑
z∈Z

Arz(E).

Proof. Crew’s six-term exact sequence (5.27) and the definition of parabolic cohomology
give us an exact sequence as follows.

0 H0
dR(E)

∏
z∈Z

H0
dR(Ez) H1

c(E) H1
p(E) 0

Taking dimensions, we find that

dimH1
p(E) = dimH1

c(E) −
∑
z∈Z

dimH0
dR(Ez) + dimH0

dR(E).

21It follows from [Cre98, proposition 6.1] that the category DModf
R of finite differential modules over R

is stable under subquotients, extensions, tensor products, and internal homs, and it evidently contains the
unit object R. The endomorphisms of the unit object R are H0

dR(R) = K, and the “tannakian dimension”
[Del90, section 7] coincides with the rank as a finite free module over R, which is always a nonnegative
integer. Thus DModf

R is tannakian over K [Del90, theorem 7.1].
22Technically, [Cre98, theorem 9.5] is only stated for E ∈ MCf(]U[) both strict and overconvergent, but

overconvergence is not used anywhere in the proof.
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The Christol-Mebkhout index formula [CM00, théorème 8.4–1] says that

−dimH1
c(E) + dimH2

c(E) = χc(U,E) = χc(U) rank(E) −
∑
z∈Z

Irrz(E)

where χc(U,E) = 2− #Z. We now put these equations together.

Remark 5.38. Note that the above calculation also applies under the same “non-Liouville
hypotheses” that are necessary for the Christol-Mebkhout index formula [CM00, théorème
8.4–1].

5.F Parabolic cohomology and restriction to open subsets
The following shows that parabolic cohomology is an invariant of the “generic fiber” of
an isocrystal.

Proposition 5.39. For any dense open subset V ⊆ U and E ∈ MC†(]U[), there is a natural
isomorphism

H1
p(E) = H

1
p(E|V).

Proof. We will use the identification MC†(]U[) = Isoc†(U) of lemma 5.23 in order to apply
cohomological machinery like excision and so forth. Note that we have a commutative
diagram as follows.

H1
c,rig(V, E|V) H1

p(E|V) H1
rig(V, E|V)

H1
c,rig(U,E) H1

p(E) H1
rig(U,E)

(5.40)

We construct an isomorphism τ : H1
p(E|V) → H1

p(E) by doing the only thing one could
think to do in this setting: we define τ(α) for α ∈ H1

p(E|V) to be the image in H1
p(E) of a

lift α ′ ∈ H1
c,rig(V, E|V) of α. The content of this proof is to check that this actually defines

a bĳection, and then K-linearity follows immediately.
Let S := U \ V , and note that we have an excision exact sequence for compactly

supported rigid cohomology [Tsu99, proposition 2.5.1], and that Hi
c,rig(S, E|S) = 0 for all

i > 0 since dim(S) = 0.

· · · H1
c,rig(S, E|S) H1

c,rig(U,E) �������
H1

c,rig(S, E|S) · · ·

It follows that the vertical map H1
c,rig(V, E|V) → H1

c,rig(U,E) on the left-hand side of the
commutative square (5.40) is surjective.
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We can analogously show that the vertical map H1
rig(U,E) → H1

rig(V/K, E|V) on the
right-hand side of the square (5.40) is injective. We again have an excision exact sequence
[Tsu99, proposition 2.1.1(3)], and Hi

S,rig(U,E) = 0 for all i ̸= 2 [Tsu99, corollary 4.1.2].

· · · �������
H1

Z,rig(U,E) H1
rig(U,E) H1

rig(V, E|V) · · ·

Now to see that τ is well-defined and injective, observe that α ∈ H1
c,rig(V, E|V) vanishes

in H1
p(E|V) if and only its image in H1

p(E) vanishes: this is an elementary diagram chase
that uses the fact that H1

rig(U,E) → H1
rig(V, E|V) is injective. Surjectivity of τ follows

immediately from surjectivity of H1
c,rig(V, E|V) → H1

c,rig(U,E).

5.G Middle extensions of arithmetic D-modules
In this section, we relate parabolic cohomology to the middle extension operation in
the theory of arithmetic D-modules. Let X denote the formal projective line over K◦,
regarded as a formal scheme. For any closed subset T ⊂ P1

k, we can and will freely
regard overconvergent isocrystals on P1 \T as OX(

†T)Q-coherent D†
X(

†T)Q-modules [Car06,
théorème 2.2.12]. Note that there is a natural homomorphism D

†
X,Q → D

†
X(

†T)Q of sheaves
of rings on X. Restriction of scalars along this homomorphism is exact and naturally
induces a functor on the level of derived categories

Dperf(D
†
X(

†T)Q) Dperf(D
†
X,Q),

j+

called the ordinary direct image along the inclusion j : P1\T ↪→ P1. We also have the Verdier
duality functor [Vir00, définition 3.2]

Dperf(D
†
X(

†T)Q) Dperf(D
†
X(

†T)Q).
D

This functor is an involution: there is a natural isomorphism E = D2E for any E ∈
Dperf(D

†
X(

†T)Q) [Vir00, théorème 3.6]. We then define the extraordinary direct image functor

j! := Dj+D.

There is a natural morphism of functors j! → j+.
Furthermore, we have

RΓrig(P
1,−) := RΓ(X,Ω•

X ⊗OX
−) = RΓ(X,RHom

D
†
X,Q

(OX,Q,−)) = RHom
D

†
X,Q

(OX,Q,−),

as functors onDperf(D
†
X,Q). Here, we have used the fact that the arithmetic Spencer complex

resolves OX,Q [Ber00, proposition 4.3.3].
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Suppose E ∈ Isoc†(P1 \T) admits a Frobenius structure. Then j+E is a holonomic D†
X,Q-

module [HT07, proposition 3.1].23 Also, applying the duality functor D to E yields the
usual tannakian dual E∨, which also admits a Frobenius structure, and duality preserves
holonomicity [Car11, proposition 2.15], so it follows that j!E is also a holonomic D

†
X,Q-

module. We define the middle extension j!+E of E by

j!+E := im(j!E→ j+E).

This is also a holonomic D
†
X,Q-module, since the category of holonomic D

†
X,Q-modules is

abelian [Car11, proposition 2.14].

Theorem 5.41. If E ∈ Isoc†(U) admits a Frobenius structure, then

H1
p,rig(U,E) = H

1
rig(P

1, j!+E),

where j denotes the inclusion U ↪→ P1.

Proof. For every z ∈ Z = P1 \U, we let

Solnz(E) := H
0
dR((Ez)

∨) = H0
dR(Hom(Ez,R)).

As we noted in remark 5.34, each Ez is strict since E admits a Frobenius structure. Thus
(Ez)

∨ is strict as well by lemma 5.31. Moreover, we have a natural identification

Solnz(E)
∨ = H1

dR(Ez)

using the local duality pairing of [Cre98, theorem 6.3]. Combining this with [Li10, propo-
sition 5.1]24 tells us that we have a natural exact sequence

0 j!+E j+E
∏
z∈Z

iz!H
1
dR(Ez) 0

of D
†
X,Q-modules. We now apply RΓrig(P1,−) to get a distinguished triangle of vector

spaces over K, and then we consider the resulting long exact sequence. We know that
H1

rig(P
1, j+E) = H1

rig(U,E) [Ber90, corollaire 4.1.7]. Together with lemma 5.42 below, we
obtain an exact sequence

0 H1
rig(P

1, j!+E) H1
rig(U,E)

∏
z∈Z

H1
dR(Ez).

Comparing against Crew’s six-term exact sequence (5.27) and the definition of parabolic
cohomology, we obtain the result.

23In [HT07], the D
†
X(

†T)-module associated to an overconvergent isocrystal Ewith Frobenius structure is
denoted D̃†(E), and j+E is denoted D†(E).
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Lemma 5.42. For any closed point z ∈ P1 and any vector space V over K, we have

Hi
rig(P

1, iz!V) =

{
V if i = 1, and
0 otherwise.

Proof. Let δz be the D
†
X,Q-module which is a skyscraper sheaf at z with

Γ(Y, δz) =

{ ∞∑
i=0

ai∂
[i]

∣∣∣∣∣ai ∈ K for all i ∈ N and there exist c > 0 and
0 < η < 1 such that |ai| < cη

i for all i ∈ N

}
(5.43)

for any affine open neighborhood Y of z. We then have iz!V = δz ⊗ V for any vector space
V over K. Thus it suffices to prove the assertion of the lemma when V = K.

In other words, we would like to compute RΓ(X,Ω•
X ⊗OX

δz). Since δz is a skyscraper
sheaf at z, it is sufficient to compute the cohomology of the complex

Γ(Y, δs) Γ
(
Y,Ω1

X ⊗OX
δz
)∇

where Y is an affine open neighborhood of z. Using the description of δz given above in
equation (5.43), we see that and ∇ is given by P 7→ dt⊗∂P. It is clear from this description
that ker(∇) = 0 and coker(∇) = K, spanned by the image of dt⊗ 1.

24 There is a minor error in [Li10]. Lemma 4.2 in loc. cit. should state that

H1−s(i!E) = ExtsD†(E,Oan)∨

for s = 0, 1 (in loc. cit., the dual seems to be missing), and then the same correction applies to lemma 4.3.
The result of this is that proposition 5.1 should assert that

j!E/j!+E = δα ⊗Kα
Soln∨

α

(again, the dual in loc. cit. is missing). Indeed, the fourth display in the proof should say

HomDX(∞)(j!+E,O
an) = Ext1DX(∞)(j+E/j!+E,O

an) = H0(i!αiα!V)
∨ = V∨

using the aforementioned correction of lemma 4.3, so then the final display of the proof should start with
V∨ (instead of V). These corrections do not affect the main result of [Li10], since for that only dimensions
matter.
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Chapter 6

Deformations of isocrystals

6.A Deformations of isocrystals
We continue to use notation 5.24.

Theorem 6.1. Suppose E ∈ MCf(]U[). Then we have the following.

Inf(DefE) = H0
dR(End(E)) T(DefE) = H1

dR(End(E))
Inf(Def♯,+E ) = 0 T(Def♯,+E ) = H1

c(End(E))
Inf(Def♯E) = H0

dR(End(E)) T(Def♯E) = H1
p(End(E))

DefE is smooth, and H2
c(End(E)) is compatibly an obstruction space for both Def♯,+E and Def♯E.

Moreover, if End(E) is strict, then all three of the deformation categories DefE, Def♯,+E and Def♯E
have hulls, and the duality pairing on H1

p(End(E)) is symplectic, so dim T(Def♯E) is even.

Proof. The observations about DefE follow immediately from corollary 4.14. The observa-
tions about Def♯,+E and Def♯E are consequences of lemmas 4.27 and 4.28. If End(E) is strict
then all of the tangent spaces above are finite dimensional by Crew’s finiteness theorem
5.35, so all of the above functors have hulls by the fundamental theorem of deforma-
tion theory 2.1. Finally, we saw in lemma 4.37 that the duality pairing on H1

p(End(E))
is alternating, and Crew’s finiteness theorem 5.35 guarantees that it is perfect, so it is
symplectic.

Theorem 6.2. Suppose E ∈ MCf(]U[) is absolutely irreducible and End(E) is strict. Then Def♯E
and Def♯,+E are both smooth, and DefE and Def♯E are both prorepresentable.

Proof. Observe that

dimK EndD(E) = dimKH
0
dR(End(E)) ⩽ dimO End(E)



CHAPTER 6. DEFORMATIONS OF ISOCRYSTALS 78

by corollary 5.16, so EndD(E) is finite dimensional. Since E is absolutely irreducible,

H0
dR(End(E)) = EndD(E) = K

by lemma 3.10. By Crew’s finiteness theorem 5.35, we know that H2
c(End(E)) is dual to

H0
dR(End(E)), so

dimH2
c(End(E)) = 1.

Applying lemma 4.34, we see that all of the obstruction classes vanish, so Def♯E is smooth.
Thus Def♯,+E is also smooth by lemma 4.24.

Since EndD(E) = K, the map Aut(F ′, θ ′) → Aut(F, θ) is surjective for every (R ′, F ′, θ ′) →
(R, F, θ) in DefE lying over a surjective R ′ → R in ArtK, by corollary 3.8. Now Def♯E is a
full subcategory of DefE, so the same is true for every (R ′, F ′, θ ′) → (R, F, θ) in Def♯E. Since
End(E) is strict, we know that

H1
dR(End(E)) = T(DefE) and H1

p(End(E)) = T(Def♯E)

are finite dimensional by Crew’s finiteness theorem 5.35. Thus the functors DefE and Def♯E
are prorepresentable by the fundamental theorem of deformation theory 2.1.

6.B Algebraizing deformations of isocrystals
We conclude by observing that infinitesimal deformations of an isocrystal can usually be
“algebraized.” Let X denote the scheme-theoretic projective line over K◦ and let U be an
affine open subset whose special fiber is U. Let

Oalg := Γ(UK,OXK
)

be the ring of algebraic functions on the generic fiber UK. We can then regard Oalg as
a finite type K-subalgebra of O which is stable under the derivation ∂. For a differen-
tial Oalg-module Ealg, when we write Def♯

Ealg and Def♯,+
Ealg , we mean with respect to the

homomorphism

Oalg O♯ =
∏
z∈Z

Rz.

Theorem 6.3. SupposeE admits a Frobenius structure. Then there exists a differentialOalg-module
Ealg such that E = O⊗Oalg Ealg, and the functor

DefEalg DefE

is an equivalence of deformation categories, as are

Def♯
Ealg Def♯E and Def♯,+

Ealg Def♯,+E .
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Proof. Since E admits a Frobenius structure, so does End(E). Thus all exponents of E and
of End(E) are in Z(p) [CM97, théorème 5.5–3], so the Christol-Mebkhout algebraization
theorem [CM01, théorème 5.0–10] guarantees the existence of Ealg such that E = O⊗OalgEalg.
Moreover, since all of the exponents are in Z(p), the natural map

dR(Oalg,End(Ealg)) dR(O,End(E))

is a quasi-isomorphism of differential graded K-algebras [AB01, chapter 4, proposition
5.2.4]. We know from corollary 4.14 that the domain and codomain govern DefEalg and
DefE, respectively. Moreover, quasi-isomorphisms of differential graded algebras induce
isomorphisms on deformation categories by theorem 2.29. This gives us the first equiva-
lence in the statement of the theorem.

Now observe that we have a 2-commutative diagram of deformation categories as
follows.

DefEalg DefE

DefE♯ DefE♯

(6.4)

Letting Γ denote the residual gerbe of DefE♯ , we obtain 2-commutative diagram as follows,
in which the square (6.4) is the face on the far right.

Def♯,+
Ealg Def♯

Ealg DefEalg

Def♯,+E Def♯E DefE

hK Γ DefE♯

hK Γ DefE♯

The dotted map Def♯
Ealg → Def♯E is the natural one

Def♯
Ealg = Γ ×Def

E♯
DefEalg Γ ×Def

E♯
DefE = Def♯E

induced by the equivalence DefEalg → DefE, so it is an equivalence as well. Similarly the
dotted map Def♯,+

Ealg → Def♯,+E must be an equivalence as well, using hK in place of Γ .

6.C Cohomologically rigid isocrystals
Definition 6.5. We say E ∈ MCf(]U[) is cohomologically rigid if H1

p(End(E)) = 0.
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Example 6.6. Suppose E ∈ MC†(]U[) is absolutely irreducible of rank 2, admits a Frobe-
nius structure (or, more generally, has exponents whose differences are non-Liouville),
and has regular singularities along Z (i.e., Irrz(E) = 0 for all z ∈ Z). Let us compute
dimH1

p(End(E)), thereby finding a criterion for E to be cohomologically rigid.
Fix z ∈ Z. Note that Ez being regular means precisely that it is pure of slope 0. Since E

admits a Frobenius structure, the exponents Exp(Ez) = {ᾱ, β̄} of Ez are in Z(p)/Z [CM00,
théorème 5.5–3]. If we choose representatives α,β ∈ Z(p) for ᾱ, β̄ ∈ Zp/Z, then Christol-
Mebkhout’s p-adic Fuchs theorem [CM01, théorème 2.2–1] tells us that there is a basis of
Ez with respect to which the derivation ∂ acts by an upper triangular matrix of the form[

α ∗
0 β

]
,

and that if ᾱ ̸= β̄, then we can even take ∗ = 0. We will say that E has a scalar singularity at
z if there is a basis such that ∂ acts by a diagonal matrix.

If E has a scalar singularity at z, it splits into a direct sum of two isomorphic differential
modules of rank 1 (both corresponding to the differential equation t∂ − α), and then it is
clear that End(Ez) must be a constant differential module over the Robba ring Rz. In other
words, we have Arz(End(E)) = 0.

Otherwise, there are two cases.

• If Ez has two distinct exponents, then Ez splits into a direct sum of two non-
isomorphic differential modules over Rz of rank 1. It is then clear that

dimH0
dR(End(Ez)) = 2,

so Arz(End(E)) = 2.

• If not, then Ez has just one exponent ᾱ of multiplicity 2, but does not have a scalar
singularity at z. We know that there is a basis (e1, e2) such that ∂ acts by a matrix of
the form [

α ∗
0 α

]
.

Since Ez does not have a scalar singularity at z, the function ∗ must not have an
antiderivative in Rz. If it did have an antiderivative f ∈ Ez, then (e1, e2− fe1) would
be a basis with respect to which ∂would have a diagonal matrix.
We can then compute that dimH0

dR(End(E)) = 2, as follows. Note that End(Ez) splits
as a direct sum of the identity component and the trace-zero component End0(Ez).
Now End0(Ez) is spanned by the endomorphisms σe, σf, σh of F0 given by

[σe] =

[
0 1

0 0

]
, [σf] =

[
0 0

1 0

]
, [σh] =

[
1 0

0 −1

]
.
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Now H0
dR(End0(Ez)) is spanned by σe over K. To see this, suppose we have a

horizontal σ = uσe + vσf +wσh for some u, v,w ∈ Rz. We compute the following.

σ∂(e1) = awe1 + ave2

∂σ(e1) = (aw+ ∗v+ ∂(w))e1 + (∂(v) + av)e2

σ∂(e2) = (∗w+ au)e1 + (∗v− aw)e2
∂σ(e2) = (∂(u) + au− ∗w)e1 + (−∂(w) − aw)e2

Equating the first two, we see first that we must have ∂(v) = 0, so v is a scalar. Then
we must have ∂(w) = −v∗. Then we see that in fact we must have v = 0, since
otherwise −w/v would be an antiderivative of ∗. This then forces w to be scalar.
Then, equating the second two equations above, we see that ∂(u) = 2w∗. Again this
forces w = 0, since otherwise ∗ would have an antiderivative, and further it must
be that u is scalar. This proves that H0

dR(End0(Ez)) is spanned by σe over K. Thus
H0

dR(End(Ez)) is spanned by 1 and σe, proving that

dimH0
dR(End(Ez)) = 2,

whence Arz(End(E)) = 2.

Since End(E) is self-dual via the trace pairing of example 4.31, we know thatH0
dR(End(E))

andH2
c(End(E)) are dual by Crew’s finiteness theorem 5.35. Moreover, sinceE is absolutely

irreducible, we know that dimH0
dR(End(E)) = 1. Thus lemma 5.37 tells us that

dimH1
p(End(E)) = −6+

∑
z∈Z

Arz(End(E)) = 2(m− 3)

wherem is the number of points z ∈ Z such that E has non-scalar singularities at z.
In other words, if all of the singularities of E are non-scalar, then E is cohomologically

rigid if and only if #Z = 3. This is analogous to what we saw in example 1.9.
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Appendix A

Isolated points of algebraic stacks

Throughout, let X be an algebraic stack [Stacks, 026O]. We make the following definition.

Definition A.1. A point x ∈ |X| is isolated if {x} is open and closed in |X|.25

Lemma A.2. Any isolated point of X must be a point of finite type.

Proof. If x is an isolated point, then {x} ∩ Xft-pts must be nonempty [Stacks, 06G2].

Lemma A.3. Suppose X has a unique finite type point x. Then |X| = {x}. In particular, x is an
isolated point of X.

Proof. Suppose f : U → X is any smooth map with U a nonempty scheme. The image
of U is a nonempty open subset of |X| [Stacks, 04XL], so it must contain x [Stacks, 06G2].
Moreover, the complement is a closed subset of |X| containing no finite type points, so the
complement must be empty. In other words, fmust be surjective. This means that we can
replace Uwith a nonempty affine open subscheme and fwill still be surjective.

Let Γx be the residual gerbe at the unique finite type point x [Stacks, 06G3]. Then the
inclusion Γx ↪→ X is a locally of finite type monomorphism, so its pullback Rx := Γx×XU→
U is a locally finite type monomorphism of algebraic spaces. This must be representable
[Stacks, 0418]. In other words, Rx is actually a scheme, and we have a cartesian diagram
as follows.

Rx U

Γx X

f

Since |Γx| = {x}, clearly it is sufficient to show that Rx → U is surjective.
Chevalley’s theorem [Stacks, 054K] guarantees that the image of Rx → U is a locally

constructible subset ofU, butU is affine so in fact the image must be constructible [Stacks,
25If |X| is locally connected, then this is equivalent to requiring that {x} is a connected component of |X|.

This is implied, for instance, by the condition that X be locally noetherian [Stacks, 04MF, 0DQI].

http://stacks.math.columbia.edu/tag/026O
http://stacks.math.columbia.edu/tag/06G2
http://stacks.math.columbia.edu/tag/04XL
http://stacks.math.columbia.edu/tag/06G2
http://stacks.math.columbia.edu/tag/06G3
http://stacks.math.columbia.edu/tag/0418
http://stacks.math.columbia.edu/tag/054K
http://stacks.math.columbia.edu/tag/04MF, 0DQI
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054C]. Then the complement Z of the image is also constructible [Stacks, 005H]. In
particular, Z is a finite union of locally closed subsets. Thus Z ∩ Uft-pts must be dense in
Z. If Z were nonempty, there would have to exist some u ∈ Z ∩ Uft-pts. But then f(u)
would have to be a finite type point of X [Stacks, 06G0], and it could not equal x since
u is constructed to not be in the image of Rx → U. This contradicts the assumption that
Xft-pts = {x}. Thus Zmust be empty, proving that Rx → U is surjective.

Lemma A.4. Suppose X is quasi-separated and locally of finite type over a field k, and x ∈ |X| is
isolated. Then dimx(X) ⩽ 0.

Proof. Notice first that if U is the open substack corresponding to the open subset {x} ⊆ |X|

[Stacks, 06FJ], then
dimx(X) = dimx(U).

In other words, by replacing X with U if necessary, we can assume that |X| = {x}.
Now if f : U → X is any smooth map with U a nonempty locally noetherian scheme,

then clearly f must be surjective. Thus we may assume that U is affine and of finite type
over k. Then U has finitely many irreducible components Z1, . . . , Zn, and we can replace
U with the nonempty open subset U \ (Z2 ∪ · · · ∪ Zn) in order to assume that U is also
irreducible.

SinceX is quasi-separated, R := U×XU is a finite type algebraic space over k. Moreover,
we have a smooth groupoid in algebraic spaces

(U,R, s, t, c, e, i)

and an equivalence X = [U/R] [Stacks, 04T5]. For every u ∈ U, let Tu be the connected
component of Ru := s−1(u) containing e(u). Since Ru is smooth over κ(u), the connected
component Tu is also an irreducible component of Ru.

The image of Tu under t is therefore an irreducible subset O(u) of U which contains
u. It is constructible by Chevalley’s theorem [Stacks, 0ECX]. As u varies, we obtain a
partition of U into irreducible constructible subsets of the form O(u).

If η ∈ U is the generic point, then O(η) is a constructible subset of U containing
η, so in fact O(η) contains a dense open subset of U [Stacks, 005K]. Then there exists
v ∈ O(η)∩Uft-pts [Stacks, 02J4]. Moreover, since v ∈ O(η)∩O(v), we must haveO(η) = O(v).

In other words, Tv → U is a dominant morphism of algebraic spaces of finite type over
k. Thus dim(U) ⩽ dim(Tv) [EGA, IV2, corollaire 2.3.5(i)]. Since f(v) = x, we see from the
definition of dimension [Stacks, 0AFN] that

dimx(X) = dimv(U) − dime(v)(Ru) = dim(U) − dim(Tv) ⩽ 0.

http://stacks.math.columbia.edu/tag/054C
http://stacks.math.columbia.edu/tag/005H
http://stacks.math.columbia.edu/tag/06G0
http://stacks.math.columbia.edu/tag/06FJ
http://stacks.math.columbia.edu/tag/04T5
http://stacks.math.columbia.edu/tag/0ECX
http://stacks.math.columbia.edu/tag/005K
http://stacks.math.columbia.edu/tag/02J4
http://stacks.math.columbia.edu/tag/0AFN
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Appendix B

Adic spectrum of a Dedekind domain

Example B.1. Let A be a Dedekind domain with the discrete topology. There are three
kinds of points in Spa(A).

(1) For every maximal ideal m in A, there is the point corresponding to the trivial
valuation on A/m. We abusively denote this point by m again.

(2) For every maximal ideal m in A, there is a point m̃ corresponding to the m-adic
valuation on Frac(A).

(3) There is a point η corresponding to the trivial valuation on Frac(A).

The fiber of supp above m ∈ Spec(A) contains just the one point corresponding to the
trivial valuation on A/m. Indeed, if x ∈ Spa(A) has support m, then x corresponds to a
valuation subring of A/m containing the image of A, which must be A/m itself.

To see that every point in the fiber above the generic point of Spec(A) is either η or of
the form m̃, we need to classify valuation subrings B of Frac(A) containing A. Let p be
the intersection of the maximal ideal of B with A, so that B dominates the local ring Ap.
Since A is a Dedekind domain, we know that Ap is a valuation subring of Frac(A), so it
is maximal with respect to domination. Thus B = Ap. The case when p = m is maximal
corresponds to the point m̃, and the case when p = 0 corresponds to the point η.

The point m in Spa(A) is closed, and m̃ is a horizontal generization of m. The point η is
a vertical generization of m̃. In fact, η is the generic point of Spa(A). An arbitrary closed
subset Z ⊊ Spa(A) is comprised of finitely many m, together with finitely many points of
the form m̃ for some maximal ideal m such that m ∈ Z. We summarize this discussion
with B.2.



APPENDIX B. ADIC SPECTRUM OF A DEDEKIND DOMAIN 85

Figure B.2: The adic spectrum of a discretely topologized Dedekind domain

Point x OSpa(A),x κ(x) νx Γx κ̃(x)

m Am A/m trivial 0 A/m
m̃ Am Frac(A) m-adic Z A/m
η Frac(A) Frac(A) trivial 0 Frac(A)

η

m̃
m
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