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Abstract

Proactive Design Approaches for Energy-Efficient Buildings

by

Shuyang Li

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

During the past years, studies have shown that energy-efficient buildings can pro-
vide effective means to achieve a range of global goals and bring multiple benefits
to society, environment, and economy. As the most considerable energy and elec-
tricity consumption sector, the building industry has gradually fulfilled the vision
of zero-energy or even net-positive-energy design and construction. Meanwhile, the
large thermal mass and a significant amount of flexible load also make building the
ideal target for energy storage and demand response to maintain grid stability. With
the advent of smart devices and advanced technologies, more advanced design ap-
proaches have been developed to reduce the maintenance and utility costs while
maintaining occupant comfort. In this dissertation, proactive approaches for the
high-performance buildings are discussed in three phases, control system designing,
monitoring-based commissioning, and existing building retrofits with renewables.

Modern buildings are equipped with monitoring systems to gather thousands of time
series that capture and store real-time and historical information about occupancy,
temperature, energy, and many other measurable operational data. Intelligent data
analytics empower building management to transform into a predictive and proactive
approach, which increases energy efficiency, improve occupant comfort, and predict
maintenance. The powerful insights pulled from the data patterns enables the control
strategy transformation from heuristic or rule-based to model-based.

Heating, ventilation, and air conditioning (HVAC) systems account for over 50% of
the total energy use in buildings. They have enormous energy-saving potentials such
that to be highlighted for commissioning and retrofitting. Chapter 2 and 3 present
the physical model development for both energy and thermal dynamics within the
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building envelop. Details on the simulation-based, as well as the data-driven based
model identification methods, are provided in Chapter 3. Given the unavailability of
measurement, parametric, semiparametric, and nonparametric models are adopted
to predict the thermal loads those grey-box models achieve a balance between model
interpretability and accuracy.

In Chapter 4, starting from the current best practice control strategy, demand-
responsive rule-based control, in compliance with many building standards and codes,
the proposed cost-responsive design strategy incorporates energy models, dynami-
cally estimates the total cost among several candidate setpoints, and them itera-
tively moves in the direction of the least cost. The experiment results in Chapter
5 demonstrate the effectiveness of the proposed proactive control strategy and re-
veal significant energy cost reduction without compromising occupant comfort. This
cost-effective approach is feasible to implement on a large scale with minimum inter-
fering with the existing building management system infrastructure. Some practical
challenges faced during deployment and testing are discussed and analyzed along
with the possible generalization to other cases.

Chapter 6 documents issues and recommendations from a commissioning project
concerning heating and ventilation issues arising from the occupant survey. In-depth
statistical analyses of operational data trends over time can inform the possible fault
and provide insights for future proactive maintenance. The case study demonstrates
the feasibility of proactive monitoring-based commissioning. Furthermore, paramet-
ric methods of analyzing benefit and value in terms of cost, comfort, and energy are
investigated on an existing office building to evaluate energy-efficient measures for
retrofitting in Chapter 7. On-site renewable energy generation can be designed to
achieve zero net energy.
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Chapter 1

Introduction

1.1 Backgrounds

According to the U.S. Energy Information Administration (EIA)[1] and the En-
vironmental Protection Agency (EPA) [2], the building sector accounted for about
40% of total U.S. primary energy consumption and 72% of total U.S. electricity con-
sumption over their life-cycle. The energy is mostly derived from fossil sources that
produce the carbon dioxide which is the main cause of global warming. The building
sector was responsible for nearly 40% of U.S. greenhouse gas emissions. Necessary
steps need to be taken to preserve livable conditions on earth. Architecture 2030
[3] provides the high-impact actions to transform the built environment to carbon-
neutral by 2050. The green building idea raises as a solution with social, economic,
and environmental benefits, which changing traditional practices towards a more sus-
tainable future. The green building benefits are quantified by the General Services
Administration (GSA) [4] as 13% lower maintenance costs, 26% less energy usage,
27% higher level of occupant satisfaction, and 33% lower CO2 emissions. The solu-
tions comprise several parallel paths: increase the energy efficiency of the building
stock, replace polluting sources with clean and renewable energy sources.

The three-tier sustainable design approach introduced in [5] states that first two
tiers, basic building design, and passive systems, are the domain of architects, and
proper design decisions can reduce the energy consumption of buildings as much as
80%. Tier three requires designing the mechanical and electrical systems by engineers
to be as efficient as possible. Thus, only 15% as much energy is needed in a properly
designed building as in a conventional building. Over the years, researchers have
learned how to design, build, and operate “zero-energy buildings” (ZEB)[6, 7, 8],
which uses as little energy as possible, with the small remaining load being met
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mostly by on-site renewable energy such as photovoltaics on the roof.
However, there are a large number of existing buildings that do not meet the

energy efficient requirement at the first two tiers due to many reasons. The most
common reason is the neglect of climate characteristics. There are buildings designed
with large glazed areas to improve the aesthetics in very hot or very cold climates.
The engineers then have to design bulky, energy-guzzling mechanical systems to
maintain thermal comfort. Heating, ventilation, and air conditioning (HVAC) ac-
count for nearly 45% of the total site energy consumption in both residential and
commercial buildings [1]. Its apparent predominance reveals the significant impor-
tance of optimal design and control for both existing and future buildings.

1.2 Literature review

HVAC system consists of three parts: heating, cooling, and ventilation [5]. There
are several types of heating systems, for example, electric heating, hot-water heating,
hot-air heating, and heat pumps. As for air-conditioning systems, there are through-
the-wall units (PTAC), packaged systems, split systems, and ductless split systems
for small buildings, while all-air systems, all-water systems, and combination air-
water systems for large buildings. The air distribution systems can be categorized as
single-duct and double-duct systems. Therefore, there are many variations in system
design to meet different purposes and requirements.

HVAC system control involves designing optimal sequence for many controllable
setpoints, such as comfort temperature range, supply air temperature, ventilation
flow rate, economizer position, etc [9, 10, 11, 12, 13, 14]. The standard practices
are suggested and required by standards and codes [15, 16, 17, 18]. With the ad-
vent of Direct Digital Control (DDC) and advances in data storage, computing, and
communication devices, more complex control strategies have been developed and
implemented in testbeds to validate the efficiency and to provide guidance for future
best industrial practice.

Model Predictive Control (MPC) is shown in considerable work to outperform
existing production logic in terms of lower energy consumption, better transient
response, robustness to disturbances, and adaptive to varying conditions [19, 20, 21,
22, 23]. The main idea of predictive control is to use a model of the plant to predict
the future evolution of the system. At the current time step, an open-loop optimal
control problem is solved over a time horizon. Only the first optimal command signal
is applied to the system. At the next time step, a new optimal control problem based
on the new state is solved over a shifted horizon.
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Similar to any other model-based method, MPC has the following problem: the
performance highly depends on the accuracy of the model, disturbance prediction.
[24] shows a 20% cost difference between the best performing model and the worst
performing model for the cases studied. The computation complexity is also another
liability. It is essential to choose an appropriate prediction horizon and sampling
time. Cascade MPC is designed to solve the discrepancy between slow dynamics and
fast-moving disturbances. Two-mass system models consisting of fast (air tempera-
ture) and slow (wall temperature) dynamics are advocated in [25, 21]. The idea is
motivated from the lagging phenomenon: in the morning, cold walls which represent
the slow dynamics with high heat capacity will be warmed up using most of the solar
radiation; in the afternoon, walls absorb heat at a slower rate which causes faster
increasing of the air temperature in the thermal zone. The time-of-use electricity
price hierarchy can then be integrated into MPC design, which enables the peak
shifting by pre-heating or pre-cooling.

The area of decentralized control is created to address the challenges arising in
the control of real-world systems with many interconnected subsystems. A set of
partially interacting local controllers is designed to reduce computation or commu-
nication complexity. Distributed control is similar to decentralized control but with
some information exchange between the local controllers. However, the previously
designed Distributed Model Predictive Control (DMPC) in buildings has substantial
communication overhead using Sequential Quadratic Programming (SQP) and dual
decomposition [20, 26].

Compared to the traditional reactive design approach, which just reacting to cur-
rent conditions, proactive design strategies with the capability of acting in advance
of a future situation have many advantages: increased energy efficiency, improved
occupancy comfort, increased operational efficiency, and better predictive mainte-
nance. A proactive building intelligence solution usually involves predicting thermal
loads throughout operational hours and regulating temperature levels before they
spike. Studies have shown that incorporating occupancy behavior and solar energy
exploitation with existing building management systems can both reduce energy con-
sumption and improve occupant comfort compared to the baseline reactive control
[27, 28, 29]. One representative proactive control product is the Comfy Insights [30],
which allows building occupants to make individual heating or cooling requests based
on their comfort needs and then dynamics adjust temperature set points and ranges
according to occupant preference learned from historical requests with up to 25% en-
ergy savings. Studies on predictive maintenance [31] have shown 30% maintenance
costs reduction, 75% of the breakdown time elimination, and about 40% downtime
reduction.
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1.3 Dissertation Outline

In this dissertation, the proactive design approaches for three main stages among
building life-cycle to achieve energy efficiency are discussed using case studies. During
the planning and design stage, optimal control strategies for the HVAC system are
explored. For existing buildings, a continuous process of fault detection and diagnosis
would be necessary during the maintenance and commissioning stage. Further, more
cost-intensive system upgrades could be evaluated based on simulation during the
renovation and retrofitting stage. The dissertation is organized as follows.

Chapter 2 presents the energy models and comfort indexes used in the control de-
sign for the typical single-duct central-cooling systems with reheat modules. Without
direct measurement from the water-side (i.e., chilled water and hot water), a mod-
ified air side heat balance using available sensor data is performed to estimate the
intentional cooling and reheat energy use. The energy consumption of the supply air
fan, which circulates the cooled air throughout buildings, is modeled using Affinity
Laws. Occupancy comfort is another optimal target besides energy. Some quanti-
fied constraints over measurable variables are imposed to provide a certain level of
occupant satisfaction.

Chapter 3 presents the four types of simplified models for the thermal dynamics
within the building envelope. The thermal load needs to be estimated simultaneously
with system dynamics parameters identification. The simulation-based approach
incorporates modeling the geometry, including the layout and construction materials.
The simulation engine and software toolbox are used together to obtain the system
matrices of a higher-order linear system model. Three data-driven based approaches
- semiparametric, parametric, and nonsupervised regression, are studied and tested
on historical data collected from an office building at UC Berkeley.

Chapter 4 outlines the control strategy design for HVAC systems. The current
best practice, rule-based control, is request-responsive. The control law is piece-wise
linear with respect to PID output of zone temperature and outside air temperature.
To perform “better than the code”, model-based control strategies are investigated.
A cost-responsive control strategy is proposed to incorporate the energy model. The
optimal setpoint for supply air temperature for the next time step is chosen to be
the one with the lowest predicted total cost.

Chapter 5 reports the detailed case study for cost-responsive control strategy im-
plementation on the Sutardja Dai Hall at UC Berkeley. A randomized controlled trial
is conducted by switching between the proposed strategy and the current baseline
strategy. Experimental results suggested that the cost-responsive strategy can reduce
17% of the total cost. Some practical issues on implementation are also discussed.

Chapter 6 presents a case study of a classroom building to demonstrate how oper-
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ational data can inform the possible faults during monitoring-based commissioning.
The energy audit and occupancy survey can provide some information about po-
tential problems. More insightful facts can be revealed by analyzing data patterns.
After on-site examination, malfunctioning valves and passive valves are identified.
Meanwhile, the root cause for the under-ventilated room is identified as the small
opening of the economizer.

Chapter 7 presents a case study of an office building to demonstrate the cost
evaluation of possible energy-efficient upgrade measures for a retrofitting project.
The mixed-mode ventilation analysis is conducted to access the buildings potential
to take advantage of natural ventilation. The desirable natural ventilation schedule
can be incorporated into the current control system in order to reduce mechanical
ventilation energy use while producing the highest percentage of comfortable time
during occupied hours. Rooftop solar panels with different titled angles are evaluated
to provide the most renewable production.
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Chapter 2

System Description and Modeling

2.1 HVAC system

In practice, Building Management System (BMS) control platforms are physically
distributed throughout the building. For a most common type of HVAC system in
commercial buildings, single-duct VAV with reheat1, as shown in Figure 2.1, the
central processor is located at the Air Handling Unit (AHU), while the local control
units are distributed at each thermal zone. Each thermal zone, served by one VAV
box, can be composed of several rooms which share the same or similar thermal
condition, such as temperature and humidity. There are some practical concerns
about allocating thermal zones. On the one hand, although separating every room as
a thermal zone will achieve higher control accuracy, it will increase the infrastructure
(ductwork, damper, filter, etc.) complexity and cost as well. Therefore, some non-
critical rooms, such as storage and cleaning closets, can be assigned together as one
thermal zone. On the other hand, some large spaces, such as big auditoriums and
hallways running through the entire building, can be separate into different thermal
zones for twofold reasons: space limitation of bulky ducts for large airflow need, plus
inherent distinct thermal conditions from difference exposures. In this paper, we
assume that there are n thermal zones in the building, as assigned in the BMS.

The AHU circulates air through the buildings by supply and return fan. The
fresh outside air and return air are mixed with proportion controlled by economizer
damper. The mixed air can be cooled using chilled water when needed. Before
discharging each zone, the supply air goes through VAV box first to regulate flow and
temperature using heating coil and damper. Inside each zone, diffusers or registers
mix discharge air and zone air without causing drafts. And the air is assumed to be at

1“Reheat” is called because the air is cooled down first and then warmed up.
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Figure 2.1: HVAC system schematic diagram

the same temperature among the space without stratification. Return air generally
leaves a zone through a grille, as shown in Figure 2.2.

supply discharge

return

VAV boxhot water

diffusergrille

Figure 2.2: VAV system schematic diagram

In summary, the control inputs at the AHU level are: the outside airflow rate, the
return airflow rate, and the cooling coil outlet temperature setpoint (i.e. supply air
temperature setpoint). The control inputs at the VAV level are: the discharge airflow
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rate, and the heating coil outlet temperature setpoint (i.e. discharge air temeprature
setpoint).

2.2 Modeling

Assumption

The assumptions for all levels are listed below and the assumptions for specific
part are detailed in each subsection.

(A1) All dynamics other than thermal dynamics of zones are neglected. That is to
say, there is no measurement delay; actuators achieve their control setpoints
instantaneously; air fully mixes without delay.

(A2) Humidity is not explicitly included in the model for twofold reasons: the com-
fort zone covers a relatively large range of relative humidity, plus it is not an
issue in East Bay area.

(A3) Measurements from sensors are accurate and historical time-series data is ac-
cessible.

(A4) The air in one thermal zone is assumed to be uniform across its volume. And
the thermal characteristic of the air, walls, furnishings, and other contents of
zone i can be combined into a single parameter.

(A5) The air mass in the thermal zone will not change in the process, i.e. the
discharge air mass flow rate equals the return air mass flow rate.

(A6) There is no air leakage in the ducts.

Measurement

There might be thousands of sensors installed in high-rise buildings: at the AHU
level, supply air duct static pressure, supply/mixed/return/outside air temperature,
total supply/return airflow rate, chilled water valve position, outside/return/exhaust
air damper position, return air humidity (optional), etc; at the VAV level, discharge
airflow rate, discharge air temperature, hot water valve position, damper position,
zone temperature, zone CO2 concentration(optional).

It is worth noting that accurate measurement of variables is critical. Take temper-
ature sensor for example, using the same type of sensors to measure all temperatures
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will help eliminate sensor calibration errors. A bulk of redundant measures may be
used to improve the accuracy. Several readings may need to be taken and averaged
to accurately reflect the true value. In addition, some measured variables can be also
expressed using other variables, which provides a way to detect and diagnose fault
when the deviation is too large.

Since the supply air mass flow rate is assumed to be equal the return air mass
flow rate, the return air temperature Tr can be calculated as weighted average of
zone temperature Tz,i as

Tr =
n∑
i=1

ṁiTz,i/

n∑
i=1

ṁi (2.2.1)

where the total mass flow rate ṁc can be denoted as the sum of discharge air
mass flow rate ṁi

ṁc =
n∑
i=1

ṁi (2.2.2)

In reality, the airflow sensors in VAV and AHU are not as accurate as temperature
sensors and are subject to large variation under different inlet flow conditions. The
airflow reading error could be up to 45% according to the test result in [32]. Figure
2.3 shows the difference between the total air mass flow fraction measured from AHU
and VAV. Each data point is an instantaneous measurement reading from the BMS.

Figure 2.3: Total mass flow measurement from both AHU and VAV

Sometimes, there will be separate panel meters which measure aggregated power
consumption of the same type, the same serving location, or adjacent equipments.
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For instance, total power of fan system, which includes supply fan, return fan, and
exhaust fan, can be recorded using substation meter.

Economizer

The economizer damper position η determines the amount proportion between
the fresh outside air and the return air. Sometimes, there will be a separate minimum
outside air duct which is open all the time to guarantee enough amount of fresh air
during recirculation, as shown in Figure 2.1. The economizer was designed to utilize
the outside air to minimize energy consumption in some situation. For example,
in summer night, the outside temperature is relatively low compared to the indoor
temperature. We can use 100% outside air to cool the building instead of using
cooling coil, i.e. η = 1. While in winter, we want to use most warm return air to
keep thermal comfort instead of using heating coil excessively, i.e. η ' 0 (not strictly
zero because minimal outside fresh air need to be guaranteed).

Assume that perfect mixing occurs, the mixed air temperature Tm can be calcu-
lated using the outside air temperature To, the return air temperature Tr, as well as
the proportion η

Tm = ηTo + (1− η)Tr (2.2.3)

We can also using temperature sensors to calculate η and provide feedback control.
This approach works best when there are significant differences between the outdoor
air temperature and the return temperature, such as in extreme hot and cold days.

Air-water heat exchanger

The heating and cooling coils are air-water heat exchangers, i.e. the chilled water
(or hot water) that is acting as a heat sink (or heat source) soaks up (or gives up)
heat and gets warmer (or colder) while the air gets cooler (or warmer). Taking the
cooling coil for example, the supply air temperature Ts depends on the cooling valve
position, the chilled water temperature, the mixed air temperature Tm, the mass
flow rate of the mixed air ṁc, and the thermal effectiveness of the cooling coils. We
assume that in the ideal case, the chilled water needs to provide cooling power Pc
which equals to the power used for cooling the total supply air ṁc down to a certain
temperature

Pc = ṁccp(Ts − Tm) (2.2.4)

where cp is the specific heat capacity of air. Similarly, we assume the heating power
required in the water side equals to the power needed in the air side. For each VAV
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box,
Ph,i = ṁicp(Td,i − Ts) (2.2.5)

where ṁi is the discharge air mass flow rate, and Td,i is the discharge air temperature.
The above coil power model makes strong assumptions: the thermal power from

the water side delivers completely to the air side without any loss. In other words,
we only consider the sensible heat removed by the heating and cooling coil, which is
not a significant issue given the outside air dew-point.

Chiller

Chillers and cooling towers are responsible for providing chilled water by means
of a vapor-compression or absorption refrigeration cycle. Usually, the chiller model
and control are not taken into account since each equipment manufacturer provides
unique control logic with different types of machine. As long as the chilled water
temperature is set, we suppose that the chiller will provide it in real time. The
water-side energy consumption can be calculated using the corresponding return
and supply water temperature, as well as the chilled water flow. Alternatively, the
chiller power consumption can be calculated using equation (2.2.4) in combined with
the coefficient of performance (COP).

Fan

The supply and return fans are usually driven by electric motors to guarantee
the required ventilation and a slightly positive pressure in the building. To reduce
energy consumption and cost, variable frequency drive (VFD) is installed in most
commercial buildings to allow fan controlling its motor speed with which it moves
air around. The electrical input power displayed by VFD is the actual fan power
consumption. Besides, according to the affinity law (also known as “fan laws”), the
fan power is theoretically cubic with volumetric flow rate. A part-load factor/ratio
r is first calculated as the ratio of the actual operating mass flow rate ṁc to the
maximum fan mass flow rate ṁfull. Then a third-order polynomial model can be
fitted as following using historical data.

Pf = a1r
3 + a2r

2 + a3r + a4 (2.2.6)

where r = ṁc/ṁfull. Some reference fan curve coefficients were developed using the
characteristic system curve fan model in [33]. The part load performance from curve
fitting and reference is presented in Figure 2.4. Note that the y-axis is percent power
which is the ratio of actual power to the maximum power. The data used for curve
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fitting is collected from BMS, where the fans operate mostly in low-load situation
(between 0.2 and 0.5) with static pressure reset strategy. The results show that the
fitting curve coincides with the theoretical curve along the operational range as in
Figure 2.3.

Figure 2.4: Fan part load performance

Thermal zone

The heat and mass transfer processes involved in a thermal zone include manifold
forms: conduction heat transfer through the building construction elements (includ-
ing walls, roof, ceiling, and floor); solar radiation transmission through windows;
infiltration of outside air; heat dissipation from equipment and occupants; heating
and cooling provided by the HVAC system. A valid mathematical model of thermal
behavior for zones is required for all model-based optimal controls.

Traditionally, high-dimensional purely physical white-box models are developed
and validated through simulation softwares, such as TRNSYS [34], EnergyPlus [35],
and Modelica [36]. These complex models include all features in a building and can
yield high granularity of prediction with appropriate parameter calibration. How-
ever, the large amount of tunable parameters and data make them computationally
expensive and difficult to adopt in optimal control design problem.

The simplified lower-dimensional data-driven models, thus, become the focal at-
tention of researchers. It alleviates the model and computational complexity in
expense for coarse prediction within an acceptable error range. Black-box regression
techniques, such as neural network [37], can lead to models that do not respect the
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proper physics. Furthermore, it is not known how well the model would perform in
situations that do not occur in the training data. The grey-box models that combine
some physics, are favorable.

In general, the thermal dynamics of each zone are

dTz,i(t)

dt
= fi(Tz,1(t), · · · , Tz,n(t), Td,1(t), · · · , Td,n(t), ṁ1(t), · · · , ṁn(t), To(t), Ts(t), q(t))

(2.2.7)
where fi(·) is some unknown nonlinear function, Tz,i is the temperature in the i−th
zone, Td,i is the discharge air temperature, ṁi is the amount of air sent to the
zone, To is the outdoor air temperature, Ts is the supply air temperature and q are
variables related to other effects. In Chapter 3, more detailed modeling methods are
introduced.

2.3 Indoor Environmental Quality (IEQ)

The ultimate goal of intelligent design and control is to better serve building occu-
pants. Energy efficient buildings with high-quality indoor environments protect the
health and comfort within the building envelop. The IEQ includes indoor air quality
and thermal, visual, and acoustic comfort. However, it is challenging to quantify
the comfort index as an optimization goal. Instead, some quantitative indicators are
chosen to be included as optimization constraints, such as CO2 concentration and
room temperature.

In practice, occupancy survey is the most powerful method to assess the IEQ.
Figure 2.5 shows the occupant survey result of three classrooms in Davis Hall. Oc-
cupant Survey Toolkit [38] developed by the Center For the Built Environment can
be used to better conduct and deliver the survey result.

Thermal comfort

The thermal comfort of occupants is mainly determined by four conditions: air
temperature, relative humidity (RH), air movement, and mean radiant temperature.
The comfort range for most people (80%) extends from 20◦C to 25◦C, from 20%-80%
RH in winter to 20%-60% RH in summer, from 0.1 to 0.3 m/s air motion speed [5].
The range is large because of many other variables involved, such as clothing level
and metabolic rate. The comfort zone on the psychrometric chart under different
conditions can be obtained using the online CBE Thermal Comfort Tool [39] as
shown in Figure 2.6.
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(a) Lighting (b) Air quality (c) Thermal comfort

Figure 2.5: Sample occupancy survey regarding IEQ

In most modern commercial building, only the air temperature factor is consid-
ered and controlled to infer thermal comfort. The relative humidity is sometimes
controlled within a relatively wide range at central supply level, especially in hu-
mid areas. As for air speed, it would require special measurement sensors, such as
omni-directional hotwire anemometers. The mean radiant temperature is also very
location-dependent as the air speed. It is not practical to measure and control it
for each workstation. In the following of the paper, only the air temperature is
considered for the thermal comfort constraints, as shown in equation (2.3.1).

Tz,i(k) ∈ Ti(k) = [T z,i(k), T z,i(k)] (2.3.1)

where the default comfort range is [21.1◦C, 23.3◦C]([70◦F, 74◦F]). Note that the ther-
mal comfort ranges could be different for different zones at different times with some
adaptive learning programs running, such as Comfy [30]. The minimum and maxi-
mum temperatures are preset to certain values for occupied and unoccupied hours,
additionally, they can be dynamically reset according to occupants’ requests.

Air quality

Indoor air quality (IAQ) is often defined as the index of whether the air is fresh
and pleasant. Some topics mention in [40] relative to control system are listed here:
air pressure need to be 3 to 7 pascals positive with respect to outdoor air, in order
to avoid unintended infiltration into the building envelope; outdoor air ventilation
need to be continuous and at least the required minimum flow rates during occu-
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Figure 2.6: The thermal comfort range for different scenarios

pancy, in order to remove many indoor generated air contaminants from furnishings,
equipment, and occupants; moisture level need to make materials dry from wet less
than two days; air filtration systems need have a particle-removal efficiency at least
Minimum Efficiency Reporting Value 8. In addition, CO2 concentrations can be used
as an indicator of odorous bioeffluents and occupant acceptance of these odors, with
the acceptable range from 1000 to 1200 ppm. Usually, the air quality measures are
not accounted for modeling.

To ensure the indoor air is healthy to breathe, there are some constraints on the
control variables. The positive building pressure is not directly controlled, but is
adjusted via the amount of air sucked and blown. An alert would be trigged when
the building pressure drops below a certain value. Mechanical ventilation system is
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required by many building codes, and the minimum outdoor air ventilation rates are
also specified as in equation(2.3.2).

ṁi ≥ ṁi (2.3.2)

where the minimum discharge air mass flow rate is suggested to be 15 cfm/occupant,
0.15 cfm/ft2, or 1.0 ACH, whichever is greater [16]. Note that for unoccupied hours,
there is no strict requirement on the ventilation. However, most buildings would
keep the minimum flow rate to ensure the positive building pressure and better air
quality at next morning.

2.4 Physical and Practical Consideration

There are many physical and practical limitations for the actuators and equip-
ments installed in the building.

� Dampers

The stability and accuracy of a VAV box depends on two main components:
the flow probe provided by the box manufacturer, and the controller typically
provided by a separate control manufacturer. It is important to make sure
that the VAV boxes can achieve a given flow setpoint while the inlet pressure is
fluctuating. The controllers could have some issues, such as under-estimating
actual flow at minimum flow, and zero-drift which requires re-zero at certain
period. Therefore, the damper command in each VAV box which controls the
desired discharge airflow rate is better above 10%-20% open. It is not included
in the model constraints since the damper position is the intermediate control
variable.

System engineers and air balance technician would design the minimum and
maximum airflow rate for each thermal zone, and then size the proper duct
and diffuser window. The minimum airflows are determined by the ventilation
and controllability issues, while the maximum airflows are determined from the
total pressure drop and sound power levels. Here, it is assumed that all these
values are given, as expressed in equation (2.4.1).

ṁi ≤ ṁi ≤ ṁi (2.4.1)

� Temperatures
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The supply air temperature cannot be greater than the outdoor air temperature
since there is no heating component at AHU. However, it might exceed a few
degrees due to duct heating.

T sps ≤ To (2.4.2)

The discharge air temperature cannot be lower than the supply air temperature
since there is no cooling component at VAV.

T spd ≥ Ts (2.4.3)

2.5 Summary

In this chapter, the building HVAC systems are presented and modeled for opti-
mization purpose. Some quantitative indoor environmental quality are discussed to
serve as optimization constraints. The thermal dynamic model for each zone will be
presented in more detail in next chapter.
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Chapter 3

Thermal Zone Modeling

The system dynamic of zone i ∈ {1, · · · , n} can be modeled using the differential
equation

ci
dTz,i(t)

dt
= ui(t) + vi(t) + wi(t) + qi(t)

ui(t) = ṁicp (Td,i(t)− Tz,i(t))

vi(t) =
∑
j∈Ai

ai,j(Tz,j(t)− Tz,i(t))

wi(t) = bi(To(t)− Tz,i(t))

(3.0.1)

where Tz,i[
◦C] is the temperature of zone i; ui[kW] is the HVAC heating input (nega-

tive value means cooling input); vi, wi[kW] are the heat transfer from adjacent zones
and outside space via envelops; qi[kW] is the thermal load on zone i due to the in-
ternal heat gain (e.g. occupants, lighting, equipments), transmitted solar radiation,
and other untraceable disturbances; ṁi[kg/s] and Td,i[

◦C] are the discharge air mass
flow rate and temperature, respectively; To[

◦C] is the outside air temperature; Ai is
the index set which contains all the zones that are adjacent to zone i; The constant
cp[kJ/(kg◦C)] is the specific heat capacity of air, ci[kJ/◦C] is thermal mass of the
i-th zone, ai,j, bi[kW/◦C] are the thermal conductivities between zone i and adjacent
space (zone j and outside).

The system dynamics are generally nonlinear as in equation (2.2.7). The model
(3.0.1) is assumed to be a linearized model around its nominal operating conditions.
Furthermore, the discrete time system model need to be derived in order to design
and implement the direct digital control.

The discrete time system model is obtained by Euler forward discretization with
sampling time ∆t

Tz,i(k + 1) = AiTz,i(k) +Bi(ui(k) + vi(k) + wi(k) + qi(k)) (3.0.2)
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where k is the time step. The effect of different discretization methods was studied
in [41].

3.1 Simulation based identification

Building simulation, which is also called energy modeling, has come a long way in
the last ten years with the development of computer technology. There are stricter
code compliance regulations such as Title 24 [18] and voluntary rating systems like
LEED rating systems [42] requesting a performance based simulation approach.
This modeling method is preferable when evaluating different design features and
retrofitting efficiency measures across the entire building lifecycle. It requests the
building geometry construction, envelope and facade design, material property spec-
ification, building equipment design (e.g., HVAC and lighting), plug and process load
estimation, and programmatic and operational parameters assignment.

The simulation engine ables to provide relatively accurate energy estimation for
new construction with an accuracy of +/5% and for existing buildings with parame-
ters calibration [43].The Building Resistance-Capacitance Modeling (BRCM) Matlab
Toolbox [44] provides a means for the generation of linear models from basic geom-
etry, construction and building systems data. It decomposed the full model into a
thermal model of the building structure (3.1.1) and several external heat flux (EHF)
models (3.1.2).

ẋ = Atx(t) +Btq(x(t), u(t), v(t)) (3.1.1)

q(x(t), u(t), v(t)) = Aqx(t) +Bq,uu(t) +Bq,vv(t) +
nu∑
j=1

(Bq,vu,jv(t) +Bq,xu,jx(t))uj(t)

(3.1.2)

where x denotes the states (temperatures of zone or building elements), u denotes the
input (discharge air mass flow rate for each zone), and v the disturbances (outside
air temperature, supply air temperature, solar radiation, etc.).

The thermal model input data contain information about zones and building ele-
ments (wall/floor/ceiling/roof), including adjacent connections, windows, construc-
tions and materials. It can be obtained directly from EnergyPlus input data file by
parsing objects from certain classes. It is so far the most convenient semi-automated
way compared to purely user-specified, although the conversion algorithm has some
limitations, for example no doors and internal windows are allowed, and window
properties have to be modified by hand. Figure 3.1 shows the target building’s ge-
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ometry, note that the unified and aggregated result after conversion (e.g. at most
one window per building element is allowed).

(a) Floor plan

(b) Building geometry in SketchUp (c) Aggregated building geometry in BRCM

Figure 3.1: Geometry of the studied building (5th floor, Sutardja Dai Hall)

The system matrices At, Bt, Aq, Bq are functions of tuning parameters: the win-
dow heat transmission coefficient, the convection coefficients of interior wall, exterior
wall, floor, and the ceiling. Those parameters can be identified using optimiza-
tion such that the difference between the measured temperature and the simulated
temperatures is minimized. More detail work can be found in [44] and [45]. It is
worth noting that the system states are not all measurable, therefore state estimation
method such as Kalman Filter must be implemented in conjunction with control al-
gorithm. Figure 3.2 plots the validation results over a week period. One can observe
that the prediction match well with the actual measurement.
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Figure 3.2: Validation result of BRCM model

3.2 Data-driven based identification

In this section, we used the Simple Measurement and Actuation Profile (sMap) [46]
database1 from Sutardja Dai Hall as our data source for training our thermodynamics
model. All collected data are down-sampled or interpolated to 15 minute intervals.

To be specific, two rooms are chosen to be studied: Bechtel Board Room (Room
630) is a peripheral conference room with large windows, and Chan Room (Room
240) is an interior classroom without any window, as shown in Figure 3.3.

Generally speaking, model identification is usually more accurate when the con-
trol inputs are independent of the system states or external input. However, since
most of the buildings nowadays have already been equipped with some decent and
similar control system and doing extra forced response experiments might disturb
the occupancy comfort, the data used in this project is from normal operation.

Semiparametric model

The semi-parametric regression method to identify a partially linear model was
proposed in [47]. Consider a simple discrete thermal model for single zone

T (k + 1) = aT (k) + bu(k) + cv(k) + q(k) + ε(k) (3.2.1)

where a, b, c are some time constants related to the room inherent time-invariant
physics properties, T is the room temperature, u is the VAV box heating input, v is

1http://www.openbms.org/dashboard/

http://www.openbms.org/dashboard/
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(a) Conference room (b) Classroom

Figure 3.3: Two examples for model identification.

the outside air temperature, and q is the change in temperature due to intractable
disturbance, such as solar radiation and internal heat gain due to occupancy activ-
ity and equipment in the room. In addition, ε is assumed to be independent and
identically distributed zero mean noise with constant variance.

We take the conditional expectations on both sides of (3.2.1) to get

E [T (k + 1)|k + 1] = aE [T (k)|k] + bE [u(k)|k] + cE [v(k)|k] + E [q(k)|k] + E [ε(k)|k]
(3.2.2)

Take the temperature variable T (k) for example, if we can find an estimator T̂ (k)
to estimate the conditional expectation E [T (k)|k], then we can further write (3.2.2)
into

T̂ (k + 1) = aT̂ (k) + bŷ(k) + cv̂(k) + E [q(k)|k] + E [ε(k)|k] (3.2.3)

Noting that and E [q(k)|k] = q(k) and E [ε(k)|k] = 0, so subtracting (3.2.3) from
(3.2.1) gives

T (k+1)− T̂ (k+1) = a(T (k)− T̂ (k))+b(u(k)− ŷ(k))+c(v(k)− v̂(k))+ ε(k) (3.2.4)

The key highlight of this method is that the unknown disturbance q(k) term has
been eliminated, and thus the parameters a, b, c can be estimated using any regression
method, such as regularized least square.

min
a,b,c

∑
k

(
T (k + 1)− T̂ (k + 1)− a(T (k)− T̂ (k))

− b(u(k)− ŷ(k))− c(v(k)− v̂(k))
)

+ λ‖(a, b, c)‖2
(3.2.5)
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Further, with the estimated coefficients â, b̂, ĉ, the unknown disturbance can be
estimated by manipulating (3.2.3)

q̂(k) = T̂ (k + 1)−
(
âT̂ (k) + b̂û(k) + ĉv̂(k)

)
(3.2.6)

There is one last but not least concerning about how the estimators are computed.
According to [47], there are a variety of estimators which are equivalent to smoothing
over time. We argue that the choice of estimator will give dramatically different
results.

Nadaraya-Watson kernel regression In any nonparametric regression, the con-
ditional expectation of variable X relative to time index k can be written as a locally
weighted average, using a kernel as a weighting function. The Nadaraya-Watson
estimator is

X̂(k) =

∑m
i=1K(k − ki)Xi∑m
i=1K(k − ki)

(3.2.7)

where K is a kernel with some bandwidth. The optimal set of parameters is (â, b̂, ĉ) =
(0.60, 0.27, 0.02). The estimated disturbance calculated with (3.2.6) is shown in
Figure 3.4a.

Locally weighted smoothing (LOWESS) regression For standard locally
weighted linear regression with a tri-cube weight function, we can use k−fold cross-
validation to determine the bandwidth.

The optimal set of parameters is (â, b̂, ĉ) = (0.18, 0.32, 0.01). The estimated
disturbance calculated with (3.2.6) is shown in Figure 3.4b.

This method separates the thermal model terms and the unknown disturbance
term in the statistical sense. The estimator can be viewed as a small deviation
from the measurement value, thus this method can only work when there is enough
difference between the estimator and the measurement value, i.e. the variable values
have been changed during the operation time. If there is not sufficient excitation,
the temperature will not change much, the optimal parameter set will be all zeros.

Even if there is enough variation in the temperature, we can get completely
different models using different estimators. This is an evidence to show that the
model we obtained using this method cannot be trusted for control design. The
estimated disturbance can also be different in the scale of 10◦C as shown in Figure
3.4.
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Figure 3.4: The estimated disturbance. Gray lines are for individual weeks in the
training set, black line is the average.

Another thing to be noted that the open-loop predictions of the temperature
using the average weekly disturbance estimator are not good, as shown in Figure
3.5. The root mean square errors of prediction are 0.49 and 0.5 respectively.

Polynomial model

It is usually either hard or expensive to capture accurately the internal heat gains
from human activities. As a result, we used the data collected over the weekends for
training our models to circumvent those uncertainties, as is done by other reported
approaches in literature [47, 48]. The reason for also including the daytime data
besides the nighttime data in our training set is because there is usually a lack
of excitation during the night for accurate identification of the thermodynamics;
however, we will then also need a way to decouple the excitation from solar radiation
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Figure 3.5: The open-loop prediction using average disturbance function.

from other sources.
In our approach, the unknown solar radiation in the thermodynamics is modeled

as an additional posynomial/polynomial disturbance term

qsolar =
∑
i

xi

(
n∏
j=1

w
αij

j

)
=
∑
i

xiw
αi =

∑
i

φixi = Φx, (3.2.8)

where w1, w2, . . . , wn are the features for the monomial term, and αi = {αij} is one
particular choice of the exponents for each feature wj. φi = wαi (component-wise
exponent operation) is the ith column of Φ.

In order to decouple the effects of qsolar on the zone temperature from other
inputs to the thermodynamics equation, it will be helpful to incorporate some prior
knowledge on the time frame that qsolar exists. To do that, we introduce a time-
varying multiplier η(k) modeling the “active window” of the solar radiation using
a combination of two sigmoidal membership functions as shown in Figure 3.6. The
parameters in (3.2.9) are chosen as above such that η(k) > 0.5 between 11AM and
6PM, which is roughly the time frame that the west-facing experimental zone will
receive direct sunlight.

η(k) =

{
fs(x, 1/30, 11× 60), 0 < H(k) ≤ 14

1− fs(x, 1/30, 18× 60), 14 < H(k) ≤ 24,
(3.2.9)

where fs(x, a, c) =
1

1 + e−a(x−c)
. (3.2.10)
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By multiplying η(k) to the features we used to fit the polynomial solar radiation
model, we can ensure solar radiation is close to zero outside the active window. It is
worthy to note that, in this approach, no prior assumption on the relative magnitude
of the solar radiation within its active window has been imposed.
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Figure 3.6: The active window function η(k) over the span of a day.

In practice, since the posynomial/polynomial model can admit a constant term,
we can absorb the constant heat gain in the zone into the model without any loss of
generality. We will denote by q′solar the posynomial/polynomial model representing
solar radiation and constant heat gain for the zone.

The objective function to minimize for the sparse posynomial/polynomial iden-
tification is of the following form

f(b, c, x) =

∥∥∥∥(bu+ cv + Φx− y
Σ

)∥∥∥∥
2

+ λbb+ λcc+ λ>x, (3.2.11)

=
∥∥∥Φ̃′x′ − ỹ

∥∥∥
2

+ λ′>x′, (3.2.12)

where Σ = σI is added to regularize Φ in order to improve the numerical condition
of the problem (3.2.12). Here, we write the objective in a more compact way by ab-
sorbing the terms containing b and c into the posynomial/polynomial term and end
up having a LASSO problem, which can be solved either using CVX or coordinate
descent methods as to be introduced in the next section. We refer interested readers
to the work [49] for a more detailed account on the sparse posynomial/polynomial
model identification approach as well as the associating safe feature elimination tech-
niques for speedup.

We have fitted both a posynomial and a polynomial model for the zone we in-
vestigated. In the experiment, we set the regularization parameters λb = λc = 0.01,
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Feature Choice of Exponents Typical Values
w0 = η(k)H(k) {0, 1, 2, 3} 0-24
w1 = η(k)Toa(k) {0, 1, 2} 10-30

w2 = η(k)Toa(k − 4) {0, 1, 2} 10-30
w3 = η(k)Toa(k − 8) {0, 1, 2} 10-30

Table 3.1: Selected Features for the Polynomial Model Training

and all entries in λ to be the same value 0.05. The data collected over four weekend
days (Oct 1, Oct 2, Oct 7 and Oct 8 in the year of 2016) are used for training, and
the data for another weekend (Sep 17 and Sep 18) in the same season are as the test
set. An interval ts = 15min is used in the experiment. To increase the number of
data points for the experiment, we pick intervals that have overlaps, e.g. not only
the data at the 1st and the 16th minutes, but also the data at the 2nd and 17th
minutes, are used as T (k) and T (k + 1).

The features we selected to train the posynomial and polynomial models, along
with the choices of exponents of each of them, are listed in Table 3.1. The resulting
Φ̃ has 108 columns (i.e. candidate monomials to fit the posynomial/polynomial
model). Because the data in each column can be of dramatically different scales, we
standardized each column2 so that they are centered at zero and have a standard
deviation of one.

For either model, it took less than a minute on a Intel Core i7 laptop with
8GB memory. The identified thermodynamics using a posynomial model for solar
radiation writes

yposy(k) = T (k + 1)− T (k) = 0.262 · u(k) + 0.00458 · v(k) + q′solar,

where q′solar = −41.4435 + 2.81× 10−5 · w0, (3.2.13)

and it has a Mean Squared Error (MSE) of an MSE of 0.00118 on the training data
set and 0.00088 on the test data set.

The identified thermodynamics using a polynomial model (3.2.14), with an MSE
of 0.00099 on the training set and 0.00092 on the test set, have many more terms
compared to the one above. The error distributions for both models on the training

2By using zscore function in Matlab
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and test data are given as histograms in Figure 3.7.

ypoly(k) = T (k + 1)− T (k) = 0.311 · u(k) + 0.00716 · v(k) + q′solar,

where q′solar = −41.46 + 4.3× 10−3 · w3 − 1.64× 10−6 · w2w3

− 2.31× 10−8 · w1w2w3 + 1.37× 10−6 · w1w2 + 1.96× 10−3 · w0w3

− 0.0021128 · w0w1 − 8.13× 10−7 · w0 + 7.1698× 10−8 · w0w3

+ 2.4357× 10−7 · w0w2 − 3.39× 10−6 · w0w1. (3.2.14)
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Figure 3.7: Histograms showing the error distribution on the training data and the
test data sets.

To detail how each component in the identified thermodynamics equations (3.2.13)(3.2.14)
contributes to the fitted model, we plot the prediction of bu(k), cv(k) and q′solar(k)
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over the test period, respectively in Figure 3.8 and in Figure 3.9 for the posynomial
and the polynomial model. As we can see from both models, the solar radiation
prediction reaches it maximum at around 4.30 pm, which matches the physics since
the windows in the zone is facing westwards. We further do an experiment to see
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Figure 3.8: A breakdown of the identified posynomial model that shows how each
term contributes to the fitted yposy(k).



CHAPTER 3. THERMAL ZONE MODELING 30

Time
12AM  4AM  9AM  2PM  7PM 12AM  4AM  9AM  2PM  7PM 12AM

T
em

pe
ra

tu
re

 (
C

el
ci

us
)

-0.2

-0.1

0

0.1
Cooling Input

Time
12AM  4AM  9AM  2PM  7PM 12AM  4AM  9AM  2PM  7PM 12AM

T
em

pe
ra

tu
re

 (
C

el
ci

us
)

-0.1

0

0.1
Thermal Conduction Between Zone and Outside

Time
12AM  4AM  9AM  2PM  7PM 12AM  4AM  9AM  2PM  7PM 12AM

T
em

pe
ra

tu
re

 (
C

el
ci

us
)

0

0.1

0.2
Solar Radiation + Constant Heat Gains

Time
12AM  4AM  9AM  2PM  7PM 12AM  4AM  9AM  2PM  7PM 12AM

T
em

pe
ra

tu
re

 (
C

el
ci

us
)

-0.2

0

0.2
Actual T(k+1) - T(k) vs. Prediction

Actual
Predicted

Figure 3.9: A breakdown of the identified polynomial model that shows how each
term contributes to the fitted ypoly(k).

how the identified model with solar radiation estimate performs in an open-loop pre-
diction. The results for both models are shown in Figure 3.10. It can be seen again
that the prediction accuracy of both models are similar, although the polynomial
model has many more terms than the posynomial one.
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Figure 3.10: Open-loop prediction results of both models on the test data set.

Slow Feature Analysis (SFA)

The model of temperature dynamics can be reasonably approximated as first-
order difference equation as follow

Tz(k + 1) = aTz(k) + bu(k) + q(k) (3.2.15)

where q is the total thermal load on zone i due to the net heat gain through envelop,
internal heat gain (e.g. occupants, lighting, equipments), solar radiation, and other
untraceable disturbances.

Standard parameter identification techniques cannot be used since q(k) is un-
known and is expected to be highly nonlinear with respect to time. Section 3.2 uses
conditional expectations to eliminate the uncertain disturbance term, while section
3.2 parametrizes q(k) with a polynomial basis, and then identify all parameters using
nonlinear regression. An unsupervised learning algorithm which is robust and fast,
called SFA [50], is adopted here to estimate the thermal load. It has been success-
fully applied to signal processing, such as invariant object recognition and gesture
recognition.

Given multidimensional time-varying input signals, {x(k)}, SFA can instanta-
neously generate slowly-varying output signal, {y(k)}, by searching different nonlin-
ear combinations of the input signals.

min〈 ˙̄y2〉 s.t. 〈ȳ〉 = 0, 〈ȳ2〉 = 1, ȳ = g(x(k)) (3.2.16)
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where the bracket 〈·〉 indicates the temporal mean. To avoid the trivial constant
solution, we need to add constraints of zero mean and unit variance.

In this application, we choose {Tz(k), To(k), ṁ(k), Td(k), U(k)} as the input time
series, and other choices or combinations are also acceptable. Note that SFA can only
give a normalized {q̄(k)} time series with zero temporal mean and unit variance, the
scale and offset factors related to the true value are fixed and need to be identified
as well. Then, the parameter identification problem is formulated as

(â, b̂, ĉ, d̂) = arg min
a,b,c,d

‖Tz(k + 1)− aTz(k)− bU(k)− cq̄(k)− d‖2 (3.2.17)

With the estimated parameters in hand, the estimation of thermal load can be esti-
mated as

q̂(k) = ĉq̄ + d̂ ≈ Tz(k + 1)− âTz(k)− b̂u(k) (3.2.18)

The results for two case studies are shown in Figure 3.11 and Figure 3.12. The
interesting observation is that internal heat gain due to occupants is much less than
the solar radiation and heat gain from outside air through windows. The base load
is high for the conference room is because of the large thermal mass of the peripheral
walls. The wall has been heated during the day and behave as a heat sink at night.

The model advocated here is particularly attractive when the fine-grained mea-
surement data is available, and detail floor plan or structural characteristics are
unknown.

3.3 Summary

In this chapter, the different approaches for building thermal dynamic modeling
are presented. The simulation-based approach needs extra effort to model the geom-
etry and construct state estimators to estimate the unmeasurable variables. While
the data-driven based approaches achieve a balance between the model complexity
and model accuracy. However, the identification and estimation results subject to
training data and might yield unphysical predictions.
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Figure 3.11: Validation result of SFA model - conference room

Th Fri Sat Sun Mon Tu Wed Th

Day of Week

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

T
em

pe
ra

tu
re

 [
° C

]

measurement
prediction

(a) Testing result of the zone temperature

00 03 06 09 12 15 18 21 24
0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

T
he

rm
al

 lo
ad

 (
° C

)

Th
Fri
Sat
Sun
Mon
Tu
Wed

(b) Estimation of the thermal load

Figure 3.12: Validation result of SFA model - classroom



34

Chapter 4

Optimal Control Design

The optimal control design of energy efficient HVAC system can be casted into
an optimization problem 4.0.1: the optimal goal is to minimize the total utility
cost, while subject to system models and comfort constraints, as well as physical
constraints as described in Chapter 2.

min
uk

N−1∑
k=0

C(uk)

subject to ∀k = 0, · · · , N − 1

xk+1 = f(xk,uk,vk,wk)

xk+1 ≤ xk+1 ≤ xk+1

u ≤ uk ≤ u

(4.0.1)

xk Zone temperatures
uk Controllable set-points, e.g. Ts, ṁ, Td
vk Measured disturbances, e.g. solar radiation, weather
wk Unknown disturbances, e.g. internal heat gain

4.1 Current industry best practice

Dual-maximum control [13]

Modern VAVs use a feedback controller to adjust the rate and temperature of
airflow supplied to each thermal zone according to changes in cooling and heating
load in order to maintain occupant thermal comfort. The two predominant control
logics in existing VAVs are single-maximum and dual-maximum as shown in Figure
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4.1. The cooling and heating loop are intermediate control numbers, in percentage
between 0 and 100%, which are the outputs of PI control of zone temperature.
There is a specific comfort temperature range bounded by the heating and cooling
setpoint, T = [Tz, Tz], which is also called dead band since the zone does not require
any heating or cooling within the range. Then the loop responses are determined by
the deviation between the zone temperature and the two setpoints. The minimum
airflow setpoint is suggested to be either the minimum ventilation requirements for
sufficient fresh air mixing, or the smallest controllable airflow allowed by the damper
(from both accuracy and stability perspective), whichever is larger.

The single-maximum control logic is programmed to provide maximum airflow at
the design cooling condition and gradually drop discharge airflow to the minimum
airflow setpoint, which is often set by the airflow required at the design heating con-
dition, as cooling load decreases. The hot water valve position is controlled linear
with heating loop. While the dual-maximum control logic increases airflow in heating
mode once the heating loop exceeds a certain number to prevent air stratification
issues, which results two maximum airflow setpoints. And the discharge air temper-
ature set directly instead of the hot water valve. Compared with single-maximum
logic, dual-maximum control logic allows for much lower minimum airflow, (e.g. 10-
20% vs 30-50% of maximum of heating airflow), and thus lower energy consumption of
heating, cooling and fan. Building code and energy standards Title 24[18], ASHRAE
90.1[17] require implementing or retrofitting to dual-maximum control logic for new
or existing construction respectively.

The control logics is just piece-wise linear with respect to the cooling and heating
loopout, which is the PID output of the zone temperature.
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Airflow setpint

Hot water valve
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Figure 4.1: Industrial VAV practice control logic
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Trim and Respond[10]

The Trim and Respond logic is advocated by many compliance building codes
and standards. It is also called demand-based reset since the setpoints vary based
on the requirement of the most demanding (“critical”) zone.

Duct static pressure reset The duct static pressure should be just high enough
so that the most demanding VAV terminal unit in the building (the critical unit)
has sufficient pressure to meet its current airflow setpoint. This control strategy
is known as a duct static pressure reset, and it is required by both ASHRAE 90.1
[17] and California Title 24 [18]. It is typically achieved by resetting the duct static
pressure setpoint upwards when a zone requests increased pressure (typically when a
VAV damper is nearly wide open and the airflow is still below the maximum airflow
setpoint), and allowing the setpoint to slowly decrease when there are no requests.
This reduces static pressure (and fan power) to the minimum needed to meet the
current airflow requirements for all of the zones in the building, and can generate
fan energy savings from 30-50% compared to fixed duct static pressure setpoints
[51]. Typically, there is also a user-defined number of requests that will be ignored,
particularly in systems with many zones, as one faulty (rogue) zone would otherwise
drive the entire reset strategy.

Supply air temperature (SAT) reset Similarly, the SAT should be controlled
using a SAT reset strategy, so that the most demanding VAV terminal unit receives
supply air that is just cool enough to meet its zone cooling temperature setpoint,
as defined by the thermal comfort requirements for that zone. This is typically
achieved by resetting the SAT setpoint downwards when a zone requests cooler air,
and allowing the setpoint to slowly increase when there are no requests. As for the
duct static pressure reset, there is also a user-defined number of requests that are
ignored. SAT reset is currently prescriptively required in Title 24 and Standard 90.1
but the requirements allow the reset to be in response to representative building loads
or simply to outdoor air temperature SAT reset based on outdoor air temperature
is a common approach in systems without feedback from the individual zone, but it
has a significant drawback in that it is an open loop feedback strategy that runs the
risk of not maintaining comfort and not realizing maximum energy savings.

However, unlike a duct static pressure reset where lower values always provide
energy savings, there is an additional consideration in the case of SAT reset: the po-
tential to save energy by supplying lower temperature air while still meeting comfort
conditions in the zones in the building. Reducing the SAT setpoint beyond the point
at which comfort needs are met has three primary effects:
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1) It reduces the airflow required by any zones that are currently in cooling mode,
which reduces fan energy consumption in a cubic relationship with respect to
airflow

2) It increases the reheat energy used in any zones that are currently in heating
mode, in a linear relationship to temperature

3) It will increase cooling energy at the AHU depending on the status of the
economizer, i.e., if the outside air temperature is higher than the SAT.

4.2 Cost-responsive supply air temperature reset

strategy

Existing SAT reset strategies make inherent simplifications and assumptions
about the relationship between SAT and total HVAC energy cost. As industry best
practice has progressed from a fixed setpoint; to a setpoint that varies based solely
on outside air temperature; to the warmest possible setpoint that will still provide
comfortable conditions based on feedback from every zone; to a combination of the
last two approaches (current practice) there has been an inherent assumption that
each new strategy has improved overall energy efficiency. However, none of these
approaches will find optimum SAT under all operating conditions, as that optimum
value depends on a wider range of conditions in the building than simply the cur-
rent outside air temperature and SAT. Furthermore, the first two strategies do not
incorporate feedback from the zone, and thus had an additional issue - they do not
guarantee that comfort conditions will be met in all zones in the building.

It can be viewed as a hybrid system approach by forcing the supply air temper-
ature setpoint to belong to a finite set of values, i.e. T sps ∈ M = {T sps,1, · · · , T sps,p},
where p is the number of modes. The new strategy dynamically estimates the to-
tal HVAC energy cost at a particular SAT setpoint, and then iteratively moves in
the direction of least cost, while subject to the same constraint to maintain comfort
conditions as the current industry best practice [52].

We strove to reduce complexity to a minimum to ensure that this approach is
feasible to implement at scale within the building automation systems currently in
use today. Similarly, to ensure that this could be implemented cost effectively, we
also constrained the required measurements to a minimum set of data that are likely
already present in a modern VAV system. We assume direct digital controls (DDC)
to each zone, with an airflow measurement at each VAV terminal unit, and a zone
discharge air temperature measurement after each reheat coil. At the AHU, we as-
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sume that there is a mixed air and supply air temperature measurement and a power
output from the variable frequency drive. These are all very common measurements
in a modern VAV system, many of which are requirements in codes and standards.

A high-level overview of the proposed control strategy is as follows. At each
(user-defined) time interval (typically 5 minutes), we compare the estimated HVAC
energy cost at the current SAT setpoint with the estimated costs at alternative SAT
setpoint values. We then adjust the setpoint to the lowest cost value and repeat
the process at the next time interval. This strategy assumes that the energy and
cost estimates are reasonably accurate, and the estimated value corresponds to the
steady state power consumption of the system.

In our implementation, we first determine a vector of fixed temperature differ-
ences, ∆Ts, e.g. [−0.6◦C,−0.3◦C, 0◦C, 0.3◦C, 0.6◦C]. We use these to calculate a
vector of candidate SAT setpoints within the feasible range of setpoint values. For
example, if the current SAT setpoint is 11.8◦C and the feasible range of SAT setpoints
is 11.7◦C to 18.3◦C, then we calculate the candidate setpoints using the tempera-
ture difference vector, ensuring that the lowest and highest values remain within the
feasible range: [11.7◦C, 11.7◦C, 11.8◦C, 12.1◦C, 12.6◦C]. At each iteration, we select
the best candidate based on a cost estimation method that we describe in the next
section.

In addition, cooling requests from zones take priority over the energy cost signals
to ensure comfort requirements are met. If the number of zone cooling requests
exceeds a user-defined number to ignore (e.g. 9 rooms in the building request more
cooling while the threshold to ignore is 8), we default to the standard trim and
respond logic to ensure that the VAV system meets comfort needs in the building in
the same manner as current industry best practice meets those needs. However, the
range of feasible setpoints in which the trim and respond logic can operate is not
constrained by the outside air temperature limits used in the current best practice
logic.

In case an exception or error occurs during the computation, the program falls
back to the current industry best practice trim & respond strategy, and if an excep-
tion occurs there, the program writes a reasonable fixed default setpoint value.

Airflow and fan power model

We estimate the change in fan power change according to the candidate SAT
setpoint values by first estimating each zone air flow rate at the new SAT, determining
the new system airflow rate based on the sum of zones, and then calculating the fan
power at that new airflow rate.
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When a zone is not in cooling mode, or when it is making a cooling request, the
zone airflow estimate is the same for all candidate SAT setpoints - the zone minimum
airflow setpoint or zone maximum airflow setpoint respectively. Where a zone is in
cooling mode, the airflow estimate is:

V̂i(k + 1) = Vi(k)
(
T̄i(k)− Td,i(k)

)
/
[
T̄i(k)− (Td,i(k) + ∆Ts)

]
(4.2.1)

where Vi(k) = ṁi(k), T̄i(k) is the temperature cooling setpoint. There are accuracy
concerns with these simplifications, as there are for the other estimation methods.
When the zone temperature is just below the zone cooling setpoint, the zone will not
be in cooling mode and the zone airflow estimate will remain at the zone minimum
airflow setpoint. Clearly, moving to a candidate SAT that is higher than the current
SAT will cause the zone to enter cooling mode, and the airflow will increase. This
state change effect is not captured by this estimation method. However, it will be
captured after a subsequent iteration of the controller - once the SAT moves to
the new candidate setpoint, and the zone enters cooling mode. Also, this approach
applies to zones that use either single-max or dual-max logic at the VAV box. Even
with dual-max sequences, when the airflow increases in the second stage of heating,
that airflow increase is independent of the supply air temperature it occurs at a
fixed discharge air temperature setpoint.

Finally, we use the airflow estimate and the current airflow to estimate the change
in fan power based on the fan affinity law:

Pf (k + 1) = Pf (k)

(∑
V̂i(k + 1)∑
Vi(k + 1)

)3

(4.2.2)

Coil power model

The heating and cooling coils are air-water heat exchangers. In a simple coil
model, we compute the instantaneous power used in a coil as the product of the air
flow measured across the coil and the temperature difference between the inlet and
outlet air. Note that there will be a temperature change across the coil when the
valve is closed whether it is a coil in the air handling unit or a coil in a terminal
unit. This temperature change can be caused by a combination of duct heat gain
(or loss), a passing valve, fan heat gain, thermal capacitance of the coil and fluid
in the coil, and/or measurement error. We estimate this temperature difference, i.e.
T, using the inlet and outlet temperature when the valve has been closed for an
extended period (the default is 5 minutes). This time period is long enough for the
fluid in the coil to approach steady state temperature with the air. In this way, we
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dynamically calibrate the temperature sensor pair so that we only estimate the heat
transfer that is intentionally caused by valve operation. We smooth this temperature
estimate using an exponential averaging function, where is small (0.001-0.0001) to
ensure that the smoothing occurs over a period of days.

The following equations describe the reheat power calculation:

∆Th,i(k + 1) =

{
α(Td,i(k + 1)− Ts(k + 1)) + (1− α)∆Th,i(k) Ωh,i(k) = 0

∆Th,i(k) Ωh,i(k) > 0
(4.2.3)

Ph(k + 1) =

{
0 Ωh,i(k) = 0∑n

i=1 ρcp max(0, V̂i(k)(Td,i(k)− T sps (k + 1))−∆Th,i(k)) Ωh,i(k) > 0

(4.2.4)
Aside from flow and temperature measurement accuracy concerns at the VAV

box, there are several limitations to the above approach for estimating reheat power.
The conditions in the building (e.g., temperature in the return plenum, supply air
flow and temperature, etc.) are dynamic, so the temperature differential measured
when the coil was last closed for an extended period may not be representative of
the temperature difference when the coil is open, especially if the coil has been open
for an extended period. Additionally, this approach ignores distribution losses (the
heat lost from piping when a valve opens and closes), and the heat lost from the
coil once the valve closes. Lastly, when the zone temperature is just above the
zone heating setpoint, the reheat valve will be closed and thus, the reheat power
estimate will be zero for that zone. Clearly, moving to a candidate SAT that is
lower than the current SAT will cause this valve to open, and the coil will consume
reheat energy. This estimation method above does not capture this secondary effect
directly. However, it will capture this effect in the subsequent iteration of the SAT
reset control - once the SAT moves to the new candidate setpoint, and the reheat
valve opens.

Similarly, the following equations describe the cooling power calculation:

∆Tc(k + 1) =

{
α (Ts(k + 1)− Tm(k + 1)) + (1− α)∆Tc(k) Ωc(k) = 0

∆Tc(k) Ωc(k) > 0
(4.2.5)

Pc(k + 1) =

{
0 Ωc(k) = 0∑n

i=1 ρcp max(0, V̂i(k)(Tm(k)− T sps (k + 1)) + ∆Tc(k)) Ωc(k) > 0

(4.2.6)
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Cost estimation and new setpoint calculation

Using time-of-use prices for electricity, cooling and heating, we can map the
estimated reheat, chilled water, and fan power values to cost estimates. We sum
these individual cost estimates to yield a total cost estimate at each candidate SAT
setpoint, and then select the lowest total cost candidate as the new SAT setpoint.

min
T sp
s (k+1)∈M={T sp

s,1,··· ,T
sp
s,p}

Ĉ(k + 1) = celec (Pf (k + 1) + Pc(k + 1)/COP ) + chwPh(k + 1)

(4.2.7)

4.3 Summary

In this chapter, the cost-responsive control strategy is proposed with minor modi-
fication from current rule-based control. The existing best practice is model-free and
easy to debug and interpret the control law. The cost-responsive control strategy
for the supply air temperature setpoint incorporates the energy model to achieve the
minimum energy cost in one-step ahead. The saving performance highly depends on
energy and cost model accuracy, but it can provide building-specific improvement.
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Chapter 5

Case Study: Experiments

Apart from simulation-based studies, experimental verification is necessary to
build confidence for widespread implementation.

5.1 Case study building

We implemented the control strategies in Sutardja Dai Hall (SDH), an institu-
tional building of 13 000 m2 on UC Berkeley campus. It is divided into a four-floor
nanofabrication laboratory and a seven-floor building containing open-space and pri-
vate offices, and also houses a few classrooms, research labs, an auditorium, and a
café. This seven-floor building is used as the testbed for model identification and
control algorithm verification. The building is equipped with Siemens Apogee BMS
and sMap package through BACnet network protocol interface [46], which yield the
convenience and ease of access of the control system and data. The HVAC system
has one centrifugal chiller and one absorption chiller, which operate in parallel with
only one running at a time. There are total 138 thermal zones, of which the majority
(121 zones) have hot water heating coils. We restrained the experiment and analysis
to occupied hours, i.e. 6am-8pm, in order to ensure the results are comparable to
more typical office building operations.

The default, manufacturer-provided controller used PID loops to actuate the VAV
boxes with single-max control logic and uses trim-and-response to reset the supply air
temperature. The time-series data with meta information is collected every 1 minute
and archived on OpenBMS [53]. We choose a period of 15 minutes to resample the
data for the purpose of modeling.
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5.2 Power cost estimates

Aside from the hot water, chilled water, and fan power estimates, we also need
a common basis for directly comparing them. We chose dollars per hour, as this
seemed like the most relevant, however, it would also be valid to use site or source
energy, or other similar metric.

We used the UC Berkeley campus estimate of $0.023/kWh for steam as the hot
water cost estimate, as the campus district steam cogeneration system converts to
a hot water system inside SDH. This underestimates the cost of hot water as the
conversion process also includes losses which we were unable to easily quantify. This
approach also ignores pumping power costs. It is also worth considering that a district
steam cogeneration system is also relatively unusual. In comparison, a typical gas
fired hot water boiler system would approximately double the cost per unit energy
of hot water.

We used a fixed system coefficient of performance of 5.0 to convert the chilled
water power to an electrical power value. This inherently assumes that chilled water
consumption instantly corresponds to electrical power consumption, which is not the
case in reality, and causes minor errors when the cost of electricity changes during
the day. Also, the simple fixed COP estimate approach could be improved with a
chiller model of varying degrees of complexity, but we deemed that to be outside the
scope of this project.

For electricity consumption, we used the actual tariff data from the utility provider
for this building which varies from $0.074/kWh in winter off-peak to $0.097/kWh in
summer peak cost category periods. Note that we do not include the daily per me-
ter charges, or power factor correction charges, transformer losses, and transmission
losses, each of which are a relatively minor part of the overall electricity cost. How-
ever, we also do not include the demand charges which are based on the monthly peak
demand value within each cost category period, as that would require knowledge of
the total campus electricity demand - information that was not readily available. It
would also require a prediction of what exact time of the month the peak demand
was expected to occur within each cost category period, and then applying an ex-
ceptionally high $/kWh cost during that window of time so that the optimal SAT
would effectively prioritize minimizing electricity use over everything else (ignoring
hot water use entirely). This would significantly complicate the proposed solution,
and is a significant negative implication of these types of pricing structures on energy
conservation measures in practice. These demand charges are significant - ranging
from $8.31/kW in the winter off-peak to $24.06/kW during the summer peak pe-
riod - and are approximately equivalent to 30-50% of the overall cost of electricity
depending on when they occur, and how much electricity the AHU is consuming



CHAPTER 5. CASE STUDY: EXPERIMENTS 44

at that time. Incorporating these peak demand electricity costs would reduce the
relative cost of hot water power and reduce its effect on the optimal SAT. In this
particular building, that effect is already very minor.

5.3 Randomized controlled trial

Thoroughly testing the effectiveness of an intervention in a building is a challenge
due to the varying nature of weather, building occupancy, usage, HVAC setpoints,
etc. For most Measurement & Verification activities, 12 months of pre (i.e., “base-
line”) and post (i.e., “intervention”) data is the recommended amount of data, though
recent research has shown that the results from 6 months of data yield similar results
in most cases [54]. The concern always arises that something substantial may have
changed in the building which is unrelated to the intervention that the analyst wishes
to evaluate, and then confounds the results. For many interventions in buildings, it
is only possible to test pre- and post- intervention and there is simply no choice
in the matter. For example, physically replacing a chiller or boiler. However, for
interventions that consist purely of changes to the control strategy in a building, it
is feasible to perform a randomized controlled trial i.e., randomly switch back and
forth between the intervention and the baseline control sequences. This approach is
far more robust as any changes in building operation will simply cancel each other
out by the random selection process given a sufficient sample size.

We ran an experiment in SDH for 6 months, from September 1, 2016 to February
21, 2016. During this time, we randomly selected between two different supply
air temperature reset strategies every day at midnight. In the following, describes
the industry best practice trim and respond logic with constraints based on outside
air temperature as the Baseline throughout, and describes the proposed new reset
strategy as the Intervention throughout. After discarding unrepresentative days in
which this experiment was not running due to other experiments being performed in
the building, or when scheduled maintenance or communication issues occurred, the
random selection yielded 77 days of “Baseline” data and 68 days of “Intervention”
data, collected at 5-minute intervals.

5.4 Results

The total HVAC energy cost was $0.43 /h (or 17%) lower during the intervention
period than the baseline period. Figure 5.1 compares the total HVAC cost of the two
control strategies and shows that the intervention generates significant cost savings.
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These savings occur under different operating conditions, during which times the
building loads and outside air temperature distributions are quite different.

Figure 5.1: Total HVAC cost for the two control strategies.

Figure 5.2 shows that there are large differences between the supply air tempera-
tures selected by the two control strategies at the same outside air temperatures. The
intervention strategy uses notably higher supply air temperatures when it is warmer,
and lower supply air temperatures when it is moderate. The SATs converge to the
same value the upper limit of the SAT range - at lower outside air temperatures.
However, at higher outside air temperatures they are almost exactly opposite. This
is particularly the case during periods when there is little load, such as during week-
end. The intervention strategy tends to maximize the use of outside air economizer,
indicated by the proximity of the SAT to the black line (where SAT and OAT are
the same). It is important to note that the cost-optimal control shown in Figure 5.2
is unique to this building, its HVAC system, the electricity and steam cost, and how
it is currently occupied and operated. Though the outside air temperature is the
dominant factor (at least in this case), a regression against outside air temperature
alone cannot identify the optimal SAT. The optimal SAT for a given condition varies
widely depending on a range of parameters.

There is also far more scatter in the supply air temperature data for the interven-
tion strategy than for the baseline. This is particularly the case during the weekday,
when loads are more variable and there is likely to be more comfort driven cooling
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Figure 5.2: Scatter plot of the total energy cost and supply air temperature by the
outside air temperature.

requests. This indicates that the new control strategy is responding dynamically to
the conditions in the building at that time, and finding the point of lowest cost.

Figure 5.2 also shows that total HVAC energy cost closely correlates with the
outside air temperature, as one would expect. It clearly shows that the intervention
strategy matches or outperforms the baseline strategy under all conditions. The
savings generated by the intervention also depend highly on outside air temperature,
and are largest in the range from approximately 15.6 C (60 F) to 23.9 C (75 F). For
context, in this climate, the outside air temperature is within this range for just over
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half (53%) of typical office occupied hours (8am to 6pm) throughout the year.
The breakdown of cooling, fan, and reheat costs illustrates that in general, the

intervention strategy trades an increase in fan energy cost for a larger reduction in
cooling and reheat energy costs combined. Quantifying this by directly comparing
the intervention and baseline datasets over the entire study period shows that fan
energy cost increased by $0.24/hr (19%), while chilled water energy cost decreased by
$0.57/hr (63%) and reheat decreased by $0.09/hr (24%), yielding the overall decrease
in total HVAC energy cost of $0.43/hr (17%) noted above.

Similarly, Figure 5.3 shows similar trends against the time of day, which is pre-
sumably a proxy for load within the building (as well as outside air temperature).

5.5 Limitations

The three individual cost functions are convex and monotonic 5.4 within the
evaluated range of feasible SATs within the 5-minute iteration time interval. This
ensures that there is only one global minimum cost for the SAT to converge towards,
and this assumption applies reasonably well to the heating and fan power estimates.
It also applies to the cooling power estimates when a central chilled water plant
supplies the cooling. However, for packaged DX AHUs, there is a significant energy
cost penalty to using a small amount of cooling - the energy cost function is not
continuous at this point. This will pose issues in implementation, or will yield less
than optimal results if ignored. For example, for many of the operating hours in the
SDH study, the cost-responsive reset converged to an SAT setpoint that was just
above or below the point where cooling was needed. If this was a packaged DX unit,
it would ensure that the compressors cycled frequently, which is far from ideal. Thus,
this control strategy is widely applicable to buildings with VAV systems served by
chilled water plans and reheat served by hot water plants. The control strategy can
likely be extended to DX cooling and electric heat with additional research.

The other limitation to application is in climates with significant dehumidification
loads, as mentioned previously. While this is not a major issue in dry climates (e.g.
many climate zones in California), it would be for other climates. Given the lack
of robust and reliable sensors for measuring moisture content in air (e.g., humidity,
enthalpy, or dew-point sensors), and the fact that these are not common within
most AHUs, this is a significant limitation in climates where latent cooling makes
up a significant portion of total cooling. However, the control strategy can likely
be extended to account for dehumidification costs with additional research, and/or
could be modified to function with an additional constraint for dehumidification
control. For example, we could use the typical meteorological data for each location
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Figure 5.3: Scatter plot of the total energy cost and supply air temperature by the
time of day.

to calculate a coefficient that increases the cooling cost calculation (see Equation 6) to
account for typical dehumidification at a particular combination of SAT and outside
air temperature. This is an approximate approach, but it simply uses weather data
(information that is readily available at no cost), and does not require additional
instrumentation.

Note also that though all SAT reset strategies will affect indoor humidity levels,
neither the proposed cost-responsive SAT reset, nor the existing best practice SAT
reset, address humidity control as this is not common in air handling units outside
of applications in clean rooms, hospitals, museums, and other demanding environ-
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Figure 5.4: Example of cost estimation for a small range of SAT setpoints around
the current setpoint.

ments. Instead, in most applications humidity is controlled implicitly by the upper
limit placed on feasible SAT setpoint values. In other conditions, or where those hu-
midity levels are of concern, either the upper SAT setpoint limit should be lowered
accordingly, or the AHU control logic should include sequences to explicitly address
humidity control.

We expect the energy savings results to vary quite widely between buildings,
and that this will depend on a wide variety of factors. While SDH is a reasonable
representation of many buildings in regard to the first three points, the same does
not apply for the last three. SDH has a slightly wider zone setpoint temperature
range than usual due to the use of Comfy, and the building operates continuously.
Neither of these are representative of a typical office building and thus, extrapolat-
ing the magnitude of the energy savings results of this study to other buildings is
not valid. SDH also uses the relatively unusual combination of single-max controls
(i.e. relatively high zone minimum airflow setpoints), and demand based supply air
temperature resets. Lastly, the mild climate has more operating hours within the
range of outside temperatures that provide larger energy savings than many other
climates. Further implementations in other buildings and simulation-based analysis
are valid methods to estimate the energy savings potential in a broad population of
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buildings.

5.6 Summary

In this chapter, the cost-responsive supply air temperature setpoint reset strategy
is implemented in a office building. Compared the energy costs to the industry
best practice in a randomized controlled trial, it shows approximately 17% energy
cost reduction. Though there are some limitations that require further research,
the proposed control strategy is applicable as it can be implemented within many
existing building management system.
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Chapter 6

Case Study: Monitoring-based
Commissioning

As time goes by, the operational efficiency of the building will decrease due to
multiple reasons: operators override systems, mechanical systems degrade, and man-
agement system turnover. Commissioning identifies and implements operational and
maintenance measures in building to make it perform as expected. An existing class-
room building is used as a case study to demonstrate the process of commissioning.

6.1 Case study building

Located in the east side of the Berkeley campus, the Haas Complex, constructed
in 1995, consists of three connected buildings, i.e. the Faculty Wing, the Student
Services Wing and the Cheit Hall. The three buildings are connected through two
sky bridges. Cheit Hall, a four-story classroom building with a total floor area of
27;000 m2, is one of the three buildings in the complex that serves about 2,000
students the Haas School of Business1. Classrooms are on Floor 1-3 in Cheit Hall.
The AHUs, the chillers, as well as many other machines are located in the machine
room on the fourth floor.

The BMS used by Cheit Hall is from AutomatedLogic, which provides a We-
bCtrl interface to view and download various kinds of data about the HVAC system.

6.2 Occupant Survey Analysis

A recent survey on the IEQ in the Haas Complex was conducted to the staff and
faculty occupants in the Faculty Wing and the Student Services Wing. The valid
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response rate of the 100 questionnaires is 97%. Overall, there are some aspects to
improve, such as the thermal comfort and the cleaning service.

Thermal Comfort

In the responses, most respondents reported that the ventilation is poor and the
air is stuffy. Besides, the thermostats are either not accessible or not working. During
hot weather, the indoor temperature can be even higher than the outside, and the
fans are of little help. The building has distinct micro climates, especially during
summer. South-facing offices are hotter than north-facing ones.

Ventilation

Another issue is ventilation. Due to the limited space in a shared room, venti-
lation is necessary to maintain the air quality and comfortable temperature. There
are two kinds of ventilation: natural ventilation through windows, and mechanical
ventilation via AHUs. When it is noisy outside or no windows can be opened, the
mechanical ventilation system is essential for ensuring the IEQ. Lack of ventilation
is also one reason accounting for the mold appeared on the walls and the ceiling tiles.

Many occupants complained that the air is stuffy and the temperature inside is
even hotter than outside during summer. Trash and wasted food even make the
situation worse. If there is enough ventilation, the air will not smell so bad. It needs
to be further investigated why the air circulation is not effective and efficient.

After all, there seems to be a correlation between thermal comfort and ventilation.
When people feel hot, they also tend to feel stuffy as well.

6.3 Energy Benchmarking

For benchmarking the energy use of the Haas Complex, we chose the period
between August 2014 to July 2015. Using the parameters shown in Table 6.1, we get
the EnergyStar benchmarking result, including the source and site EUI, as shown in
Table 6.2.

It is interesting to see that the Weather Normalized site/source EUI is exactly the
same as the site/source EUI. It probably implies that the energy consumption of the
property does not exhibit a correlation with the temperature. One possible explana-
tion is that the ventilation systems run all year around, regardless of temperature.
Also, the temperature in Berkeley does not fluctuate so much during our evaluation
period. Therefore, the energy use during 30-year average weather conditions will be
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the same as current year result. Another interesting finding is that site/source EUI
is not exactly the result of site/source energy use divided by the gross floor area.

Occupancy Gross Floor Area Weekly Operating Hours Enrollment Number of FTE Workers Number of Computers
100% 200,000 ft2 92 2,000 350 1,000

Table 6.1: Parameters used in the EnergyStar benchmark system.

Metric ENERGY STAR score Source EUI (kBtu/ft2) Site EUI (kBtu/ft2) Source Energy Use (kBtu) Site Energy Use (kBtu)
Total GHG Emissions

(Metric Tons CO2)
Current Not Available 368.0 206.9 73,601,979.8 41,386,793.0 2,934.1

Median Property 50 262.6 147.7 52,517,999.5 29,531,154.7 2,093.6

Table 6.2: EnergyStar benchmarking result.

The total energy consumption in the Haas Complex shows a general decreasing
trend, as shown in the upper graph in Figure 6.1. The quarterly energy consumption
is highest during Q2 and Q3, during the ”hot season”. The energy consumption is
decreasing monotonically over the years for Q3 and Q4, but the trend is sporadic for
Q1 and Q2. Q3 and Q4 cover the hotter seasons, and the current trend implies the
cooling energy consumption is becoming more efficient over years, but the heating
mechanism has not improved. Therefore, in the project we have dedicated a signif-
icant amount of effort on studying, and improving the heating mechanism in Haas
Cheit Hall.

6.4 Ventilation

According to the ANSI/ASHRAE Standard 62.1-2013[16], the minimum ven-
tilation rate for classroom is the combination of outdoor air 7.5 cfm/person and
0.06 cfm/ft2, while the default values for combined outdoor air is 0.15 cfm/ft2. Mean-
while, Title 24 [18] suggests 15 cfm/person. It is recommended that the indoor CO2

concentration should be kept under 1000 ppm to maintain enough ventilation. Fig-
ure 6.2 is a heat map showing the typical CO2 variation within a day in the selected
classrooms in Cheit Hall.

The CO2 concentration exceeds 1000 ppm several times a day, even when the
local air flow rate reached its maximum. At the same time, the economizer damper
is closed, so the proportion of the outside air in the mixed air is minimum, and hence
the CO2 concentration couldn’t be decreased. As a result, the discharged air with
high CO2 concentration is circulated into the classrooms again.



CHAPTER 6. CASE STUDY: MONITORING-BASED COMMISSIONING 54

Figure 6.1: Haas complex annual energy consumption 2009-2015.

Figure 6.3 shows the situation of C135 on Nov 12 2015 in a more detailed way.
As can be seen, the CO2 concentration is sensitive to both the occupancy and the
airflow rate. While Figure 6.4 shows the economizer damper position on the same
day. The CO2 concentration of outside air is about 450 ppm and when the economizer
damper opens to its maximum, the CO2 concentration of room C135 cannot increase
so dramatically, as shown during 13:00-14:00 time period.

6.5 Heating Profile Analysis

The reheat system can provide relatively precise control of space temperature,
but can be very energy intensive. Analyzing the heating pattern can reveal insightful
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Figure 6.2: A heat map showing the typical CO2 variation in seven classrooms in
Cheit Hall.

potential for energy savings. In this section, we use statistical learning method to
uncover the underlying existing issues in the system.

To qualify and quantify the amount of reheat, there are two variables that are
relevant, the temperature difference between discharge air temperature to each room
and supply air temperature leaving the AHU, and the hot water valve position for
each VAV/CAV box.

Hot water valve position profile

Data The data used in this section contains the daily hot water valve opening
position (HW%) for 30 rooms at 5 minutes intervals. We only consider the data
during occupied hours in weekdays, i.e. Monday-Friday 6:30AM-9:30PM. Figure
6.5 shows the heatmap of data for 30 rooms at 13 days. Each pixel on the graph
represents the opening of the hot water valve at a certain time instance on a particular
day, while the color of a pixel represents the degree of opening as indicated as the
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Figure 6.3: The CO2 concentration, with respect to its occupancy and air flow rate.
The occupancy data is obtained from the class schedule, assuming the classroom is
100% occupied during class period and unoccupied at other times.
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Figure 6.4: The economizer damper position on Nov 12 2015.

color bar. The histogram on the left represents the total HW% for a particular
VAV/CAV box on one day.
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Heatmap of Hot Water Valve % in Weekdays
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Figure 6.5: The hot water valve position profile for all rooms in weekdays.

We simply decompose the daily HW% profile l(t) as l(t) = as(t), where a =
∑
l(t)

and s(t) = l(t)/a. a is the daily total usage and s(t) is the normalized usage profile,
which denominated as usage shape.

Daily total usage a characterization The simplest characterization of daily
total usage a is to infer probability distribution of values across the population. The
empirical distribution exhibits a long right tail and the range of a is quite large with
limited sample size. Since the sample size is not so large, parametric distribution
fitting method, such as mixture Gaussian distribution, cannot be adapted properly.
Therefore, a Kernel distribution (Eqn. 6.5.1) is utilized to model the distribution of
log(1 + a) instead of a. The result is shown in Fig. 6.6. The distribution model can
be used to predict the future daily total usage for each room.

f̂(x) =
1

nh

n∑
n

K(
x− log(1 + ai)

h
)

K(t) =
1√
2π
exp

(
−t2

2

) (6.5.1)
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Figure 6.6: The Gaussian Kernel distribution fitting on log(1+a) for all and for each
room.

The maximum likelihood estimate of log(1 + a) and corresponding probability
density for each room is listed as Tab. 6.3.

From the result, we can find that four rooms, C135, C110, Locker,and Storage3L,
do not use hot water valve at all, i.e. a = 0; some rooms seldom use reheat, Rest2,
C132, Vender, C210 and Hall1L, i.e. a is small; while some rooms use reheat inten-
sively, C325, C220,C230L, Hall2, Store3D and C230R, i.e. a is large. Combined with
the probability density value, we can easily divide the room into four categories.

� use heating rarely 10 rooms
C135, C110, Locker, Storage3L, Rest2, C132, Vender,Hall1L, C125

� use heating constantly and intensively 4 rooms
C325, C220, C230L, Hall2

� use heating constantly but not intensively 6 rooms
Storage3D, C230R, C250, C337, C335, C320

� use heating varying a lot 10 rooms
C122, Hall1R, Stair1, C138, C210, C330, Stair3, Storage3T, Hall3L, Rest3F,
Rest3M

HW% usage shape s(t) clustering At first step, we eliminates the profiles with
a = 0.
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Room C135 C132 C125 Vender C122 Hall1R C110 Stair1 Hall1L C138

MLE 0 0.9485 5.5600 0.9964 6.2002 6.8824 0 1.7202 1.3591 5.9670

Density 0.3988 0.0760 0.1904 0.0989 0.5245 0.0950 0.3988 0.0760 0.1904 0.0989

Room C230L Hall2 C230R C220 Locker C210 Rest2 C250 C337 C330

MLE 8.5335 8.2254 7.7640 9.0793 0 0.6763 0.2273 7.5079 7.2877 5.6012

Density 1.2965 0.3621 1.4537 0.5792 0.3988 0.0707 0.1019 0.9615 0.5231 0.1254

Room C335 Hall3L C320 C325 Store3T Rest3F Stair3 Store3D Rest3M Store3L

MLE 7.0077 5.6565 7.3284 9.6061 5.5383 6.2614 6.7074 7.8028 7.1173 0

Density 0.3731 0.1563 0.4438 0.5117 0.3213 0.1186 0.3454 0.9282 0.1511 0.3988

Table 6.3: The MLE of log(1 + a) and corresponding density for each room.

First, we apply the simple K-Means algorithm with a fixed clustering size k.
This method can only guarantee an optimal distance between cluster centroids, but
not limit the distance between each sample and its corresponding cluster centroid.
Because the usage shape sample size is not big enough and the difference among the
population is quite huge, a lot of samples will be clustered in one class while other
clusters only contain single spike shape, as shown in Fig. 6.7.

To ensure every usage shape is within a certain range of the cluster centroid, we
can use a two-stage clustering method[55]: first use adaptive K-mean algorithm with
a specific threshold, then merge clusters whose centroids are too close. The result is
shown in Fig. 6.8. It gives almost the same result as simple K-means. The ones with
few spike would be clustered as single class.

Since the data size is small, we can classify the data based on selected feature.
Many possible features can be extracted from usage shape s(t), such as peak usage
fraction, peak time and peak duration. The Fig. 6.9 show some representative shapes.

� Number of peaks
If we take a look at the number of peaks of s(t), it is worth noting that there are
certain amount of usage shape that exist more than 20 peaks, as shown in Fig. 6.10,
which means that the hot water valve need to open and close a lot. The oscillation
effect can result in energy inefficient and inaccurate temperature control. If we apply



CHAPTER 6. CASE STUDY: MONITORING-BASED COMMISSIONING 60

Simple K-means result on s(t)
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Figure 6.7: The example of simple K-means result with k = 6.

the two-stages K-means to data with specific peak number, then the result will be a
lot of better than previous, as shown in Fig. 6.11.

� Morning peaks (6:30-8:00am)
From Fig. 6.5, the morning peaks happen a lot. It is worth to classify the usage
pattern according to peaks in morning. There are three rooms whose heating usage
happening in morning takes up to 80% of total daily usage: C335, C320 and Stair3.

Effectiveness of hot water valve

In this part, we analyze the relationship between DAT-SAT and HW% to deter-
mine the effectiveness of hot water valve. The pairs of data are shown in Fig. 6.12
for each room. And we cluster the data into three categories as shown in Fig. 6.13a.

If we summarized the clustering result into Fig. 6.13b, the effectiveness of hot
water valve can be divided into three types.

� faulty (do not heat up) 3 rooms
C230L, C220, C325

� never use valve 4 rooms
C135, C110, Locker, Storage3L

� effective reheat 13 rooms
other rooms
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Two-stage K-means result on s(t)
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Figure 6.8: The example of two-stage K-means result with kmin = 6, ρ = 0.5.
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Figure 6.9: Some examples of representative shapes.

Recall the result in Section 6.5, the three faulty VAV boxes are categorized in con-
stantly and intensively heating. Because the heating coil cannot really heat up the
air, the controller will keep request opening the hot water valve, which resulting in
the huge amount of a.
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Figure 6.10: The histogram of number of peaks in one usage shape.

6.6 Summary

This chapter is about how to use the operational data to identify the reheat and
ventilation issues in Haas Cheit Hall. The findings are classified into two categories:
thermal comfort, and ventilation. On the thermal comfort side, excessive reheat
exists, which implies the supply air temperature was often overly low. Three mal-
functioning hot water valves were identified, which not only caused excessive energy
consumption, but also supplied unnecessary extra cool air to the local classrooms. On
the ventilation side, five classrooms were identified to be under-ventilated according
to the CO2 amount measured during the occupied hours.
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Two-stage K-means result on s(t) with 6 peaks
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Figure 6.11: Examples of two-stage K-means clustering on data with certain peak
number.



CHAPTER 6. CASE STUDY: MONITORING-BASED COMMISSIONING 64

HW%
20 30 40 50 60 70 80 90 100

D
A

T
-S

A
T

 ° F

0

10

20

30

40

50

60

70

80
(HW%, DAT-SAT) for each room

C135
C132
C125
Vender
C122
Hall1R
C110
Stair1
Hall1L
C138

C230L
Hall2
C230R
C220
Locker
C210
Rest2

C250
C337
C330
C335
Hall3L
C320
C325
Storage3T
Rest3F
Stair3
Storage3D
Rest3M
Storage3L

Figure 6.12: The pairs of hot water valve and temperature difference of SAT-DAT.
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Chapter 7

Case Study: Retrofitting to Net
Zero Energy Building

The design of retrofitted energy-efficient buildings is a promising option towards
achieving a cost-effective improvement of the overall building energy performance.
An existing office building is used as a case study to demonstrate the process of
retrofitting planning using simulation.

The office building, as in Figure 7.1 is located in Los Angeles, California. It was
previously a warehouse built in 1939 and then has been renovated and converted
into office space in 1972. The building has around 400 square meters of existing
photovoltaic arrays, which offers an opportunity to utilize preexisting solar panels to
achieve zero net energy use.

7.1 Climate analysis

The climate is a hybrid of two Southern California micro-climates. It is far
enough inland that one can feel the immense heat radiated by numerous miles of
asphalt and the densely built environment, yet close enough to the coast that rem-
nants of California’s coastal sea breeze percolate through the nearby hills cooling the
neighborhood considerably. At the peak of summer, daily temperatures often reach
the high eighties and seldom reach a sweltering ninety degrees. Although ninety may
be very warm, the real discomfort comes when the breezes seize. In winter, daytime
temperatures remain in the low seventies. As with summer, the temperature of the
air is usually pleasant, while the breezes may bring a slight chill.

As seen in the climate trend 7.2 using Typical Meteorological Year Data(TMY),
that climate is rather stable and consistent.
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(a) Geometry model in SketchUp (b) Exterior view

Figure 7.1: Case study building.

Figure 7.3 represents information from three typical weather.

� Typical Cold Weather: The days are warm for around two hours at noon,
though the temperature is overall under the comfort zone. The climate is
humid during winter months when it is cold. The higher humidity is caused by
the presence of rain, sea breeze, and fog. The solar radiation is low during fall
and winter; rainfall is greatest during winter. Wind direction pattern shows
wind coming from the north during the nighttime and the west during the
daytime.

� Typical Hot Weather: Rainfall is low. Solar radiation is the same as those
during Typical Mild Weather. Often, the nighttime climate is comfortable.
Wind direction is consistent throughout the year coming from the southwest.
The wind blows consistently from the southwest during the daytime.

� Typical Mild Weather: During the daytime, the temperature is around 18C.
Most of the day is still under comfort zone when accounting for humidity. Wind
pattern is similar to that of hot weather, with strong daytime southwest wind
and northbound wind during the night.

The psychrometric chart obtained using CLIMATE CONSULTANT [56] relates
dry bulb temperature and humidity, which informs how the building envelope can
filter the environment to provide comfort. The natural climate is comfortable 13% of
the time each year. Many data points show colder weather, which is uncomfortable.
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Figure 7.2: The TMY graphs of the location.

There are very few uncomfortably hot days compared to cold days. With passive
design strategies in place, 86% of each year will be comfortable. Internal heat gain
contributes to 65% of comfortable hours. Passive solar direct gain mass further
provides warmth and comfort. To alleviate uncomfortably hot days, sun shading of
windows and natural ventilation can provide an additional 3.4% of comfortable days.

7.2 Model Sensitivity Analysis

A true Building Information Model (BIM) is built to facilitate the analysis. Each
piece of geometry has information embedded in it. After some simple calibration,
such as materials and constructions, internal thermal loads, window glass and frames,
the baseline model is refined to reflect the real scenario.

This sensitivity analysis is conducted by simulating exaggerated values of the
baseline model in order to find which categories of energy use are most sensitive to
change. The more sensitive categories should then be prioritized because they are
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Figure 7.3: The representative typical weather information.

(a) Comfort chart with no strategies. (b) Comfort chart with passive strategies.

Figure 7.4: The bio-psychrometric chart.

sensitive means that minimal change will produce significant reductions in energy
use.

In this analysis, whenever possible, the values of the baseline were tripled; by
increasing the values by a consistent amount, the outputs will be comparable. The
internal load model results for sensitivity analysis are shown in Figure 7.5. The
effects of many factors are analyzed, including people, lights, equipment, process,
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hot water, insulation, glass, and mass.
The only building envelope variable that seems to impact the building signifi-

cantly is infiltration, which is very sensitive to change. However, infiltration does
not increase energy usage more than internal loads, given that the building is primar-
ily used as an office/working space, which is highly dependent on office equipment.
Additionally, the climate is relatively mild, which makes the changes to the building
envelope having a smaller impact on the overall energy usage of the building. There-
fore, we can prioritize optimizing energy usage for the internal loads to minimize the
buildings energy demand.

Figure 7.5: The comparative energy use for sensitivity analysis.

7.3 Mixed-mode ventilation

Heating and cooling

The simulation will be run multiple times to evaluate the HVAC systems. Figure
7.6 shows the heating and cooling energy use based on the specified use of equipment.
There exists an opportunity to reduce cooling through natural ventilation during the
hot weather.

No ventilation

If there is no ventilation and heating at all, the preliminary analysis 7.7 shows
the unconditioned building is comfortable 65.5% of the year. There is significant
overheating from April to November, which means that there is a high potential for
ventilation to help cool the building during that time.
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Figure 7.6: The heating and cooling energy use for conditioned zone.

Natural ventilation only

We need to access the building’s potential to take advantage of natural ventilation.
Figure 7.8 shows how the wind flows through the building via operable doors and
windows. The heat maps of the thermal autonomy 7.9 indicate that using natural
ventilation is not enough to cool down the building during hot days.

Mixed-mode schedule

It is cost-effective to combine natural ventilation with mechanical ventilation. The
natural ventilation is desirable when the outside air temperature is lower than in-
doors, and the outside air temperature has relatively low humidity. As seen in Figure
7.7, the period of overheating occurs during 12pm-9pm from April 1 to November 1.
While the period of desirable natural ventilation occurs during 9am-3pm from April
1 to November 1.

With the corresponding heating, cooling, and natural ventilation availability
schedule, the mixed-mode ventilation yields the following result 7.10. The mixed
mode model appears to be a better option because it produces the highest percent-
age of comfortable time during occupied hours.



CHAPTER 7. CASE STUDY: RETROFITTING TO NET ZERO ENERGY
BUILDING 71

Figure 7.7: The baseline model with no ventilation.

Figure 7.8: The airflow diagram through the openings.

7.4 Comfort suites

In this section, more energy-efficient upgrade measures are explored to reduce the
energy use further. The lights, equipment, appliances, and hot water are replaced
with more efficient models. The windows are replaced with lower U-value glass, and
the current envelope is repaired to allow less infiltration. The comparative energy



CHAPTER 7. CASE STUDY: RETROFITTING TO NET ZERO ENERGY
BUILDING 72

Figure 7.9: The baseline model with only natural ventilation.

use is shown in Figure 7.11 with the corresponding thermal comfort chart in Figure
7.12.

The heating increases after reducing the equipment since the more efficient appli-
ances generate less heat, and then decreases after windows are replaced with lower
U-value. However, once the glass insulation increases, the cooling also increased,
which is not enough to counteract the decrease of energy in heating. Therefore,
improving lighting and glass made the most impact on overall energy use.
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Figure 7.10: The heat maps of comfortable temperature using the mixed-mode ven-
tilation.

Figure 7.11: The comparative energy use for the proposed comfort suite.

Figure 7.12: The thermal comfort chart for the proposed comfort suite.

7.5 On-site renewable energy

In this study, the diurnal and seasonal change of the ambient temperature within
this particular building structure and surroundings are investigated. Figure 7.13
indicates that the front of the building is consistently well lit throughout the year,
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and the back of the building is consistently shaded. And the optimal configuration
for the roof solar panels is found to having a tilt of 10 degrees from the current
configuration, which produce the most amount of energy.

Figure 7.13: The sun exposure study among the year.

Figure 7.14: The optimal configuration of solar panels.

The energy generated by the solar panels is on an hourly basis, as seen in Figure
7.15. The energy production density is condensed between the intervals of March
through October. From Figure 7.16, the building can produce enough energy to be
net positive in Spring, Summer, and Fall.

7.6 Summary

In this chapter, an existing office building is analyzed for energy use, and ap-
propriate measures are proposed to improve performance. It entails an energy audit
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Figure 7.15: On-site energy generation.

and reports the value of energy-efficient measures. The project focuses on paramet-
ric methods of analyzing benefits and value in terms of cost, comfort, and energy.
More specifically, the mixed-mode ventilation is explored to take the most benefits
of natural ventilation. On-site renewable energy is investigated to achieve net zero
energy building.
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Figure 7.16: The energy generation and consumption through the year.
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