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Abstract

The infant gut microbiome is increasingly recognized as a reservoir of antibiotic

resistance genes, yet the assembly of gut resistome in infants and its influencing

factors remain largely unknown. We characterized resistome in 4132 metagen-

omes from 963 infants in six countries and 4285 resistance genes were observed.

The inherent resistome pattern of healthy infants (N=272) could be distinguished
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by two stages: a multicompound resistance phase (Months 0–7) and a tetracycline‐
mupirocin‐β‐lactam‐dominant phase (Months 8–14). Microbial taxonomy ex-

plained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%)

harboring the most resistance genes. In a further analysis with all available infants

(N=963), we found age was the strongest influencer on the resistome and was

negatively correlated with the overall resistance during the first 3 years (p<0.001).

Using a random‐forest approach, a set of 34 resistance genes could be used to

predict age (R2 = 68.0%). Leveraging microbial host inference analyses, we inferred

the age‐dependent assembly of infant resistome was a result of shifts in the gut

microbiome, primarily driven by changes in taxa that disproportionately harbor

resistance genes across taxa (e.g., Escherichia coli more frequently harbored

resistance genes than other taxa). We performed metagenomic functional profiling

and metagenomic assembled genome analyses whose results indicate that the

development of gut resistome was driven by changes in microbial carbohydrate

metabolism, with an increasing need for carbohydrate‐active enzymes from

Bacteroidota and a decreasing need for Pseudomonadota during infancy.

Importantly, we observed increased acquired resistance genes over time, which

was related to increased horizontal gene transfer in the developing infant gut

microbiome. In summary, infant age was negatively correlated with antimicrobial

resistance gene levels, reflecting a composition shift in the gut microbiome, likely

driven by the changing need for microbial carbohydrate metabolism during

early life.

KEYWORD S

age, antimicrobial resistance genes, carbohydrate metabolism, diet, infant gut resistome,
metagenomics

Highlights

• We first examined the natural assembly of resistome in healthy infants' guts

and identified resistance genes that were significantly impacted by age.

• We inferred that the age‐dependent assembly of infant resistome was a

result of the shift of the gut microbiome, which was due to resistance genes

being disproportionally distributed across taxa.

• Age‐dependent assembly of infant resistome reflected the shift in the gut

microbiome, and such modifications were often a result of dietary

transitions during infancy.

• Maturation of gut resistome was driven by infants’ changing carbohydrate

metabolism, which demonstrated an increasing need for carbohydrate‐
active enzymes from Bacteroidota and decreasing involvements from

Pseudomonadota during infancy.

INTRODUCTION

The assembly of infant gut microbiota occurs soon after
birth, in close concert with host immune system develop-
ment, host metabolism, and host intestinal homeostasis

[1–4]. Colonization occurs from multiple sources [5], and
the developing infant gut microbiota can be divided into
three phases: a developmental phase (Months 3–14), a
transitional phase (Months 15–30), and a stable phase (≥31
months) [6]. Studies have demonstrated that host genetics,
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prenatal intrauterine environment, and the mode of
delivery are associated with the composition of infant gut
microbiomes at birth [7, 8]. Multiple factors, including
geography [9], antibiotic treatment, the method of feeding
[10], age at weaning, and environmental exposures, will
further influence microbiome maturation [4]. The develop-
mental and transitional phases of infant gut microbiota
development are considered vital windows when microbe‐
based interventions to reduce the risk of diseases and
improve overall host health may be possible [11].

Coincident with the development of infant micro-
biota, the gut resistome (i.e., the collection of all
resistance genes in a biome) is assembled. The infant
gut microbiota are recognized as reservoirs of antimicro-
bial resistance genes (ARGs), and one recent study found
that 40% of detected ARGs found in the infant gut
conferred resistance to multiple antibiotics, including
resistance to drugs to which infants had not been
exposed [12]. Globally, ~214,000 cases of neonatal
sepsis‐related death are attributed to ARG‐carrying
pathogens [13]. Previous studies have demonstrated that
the infant gut microbiota matures in an age‐dependent
manner [14, 15], whether this is also true for the
resistome and how microbiota influencing factors might
affect the trajectory of resistome remains understudied.
Therefore, understanding the natural assembly of the gut
resistome and which factors influence the resistome is a
priority for public health.

We aim to study the infant gut resistome's natural
assembly, including identifying factors that influence the
trajectory of resistome development using publically
available metagenomes from infants and toddlers. Our
findings present a landscape of the infant gut resistome,
which will lay the foundation for studies in developing
strategies to mitigate the prevalence of antimicrobial
resistance.

RESULTS

Overview of multicohort worldwide infant
gut metagenomes

To assemble a cohort of global infant gut metagenomes,
we retrieved 4132 infant and toddler (under age 3
years)‐related metagenomes from 963 infants enrolled
in 19 different cohorts, in 17 independent studies
between 2015 and 2020 (Figure 1A and Table S1). The
sequencing platforms used by the studies were Illumina
HiSeq. 2000 (N= 7), Illumina HiSeq. 2500 (N= 7),
Illumina NextSeq. 500 (N= 4), and Illumina HiSeq.
4000 (N= 2). An additional three studies generated
sequences via multiple platforms. We applied a unified

quality control step to handle the study‐dependent
variance in sequencing quality, and the overall quality
was significantly improved through this data pre‐
processing (Figure S1).

Of the 963 infants included in our assembled cohort,
38.6% (N= 372) were female, 38.1% (N= 367) were male,
and 23.3% (N= 224) were not recorded with a sex
marker. Then, 36.0% of these infants (N= 346) were
preterm and 63.8% (N= 614) were full‐term. Next, 64.7%
(N= 623) were vaginally delivered and 34.6% (N= 333)
were delivered by cesarean section (Table S1). In
addition, 4.8% (N= 46) of included infants experienced
necrotizing enterocolitis (NEC) (all of them were
preterm) and 29.1% (N= 280) had a recorded episode of
antibiotic treatment. Samples were collected from a wide
array of geographical locations (Estonia, Finland, Italy,
Russia, Sweden, and the United States) (Figure 1A),
representing a >3‐year long (i.e., day 0 to day 1162)
development of infant gut microbiome and resistome.
The assembled metagenomes and associated clinical
traits of infants enabled the investigation of the trajectory
of gut resistome development during early life and the
identification of factors with the greatest influence on
resistome development.

Natural assembly of healthy infant gut
microbiota during early life

Full‐term infants who were vaginally delivered without
any recorded antibiotic treatment were categorized as
“healthy” in our analysis. Consequently, 858 consecutive
stool metagenomes from 272 infants during the first
14 months of life were used to capture the natural
assembly of healthy infant gut microbiota.

We observed a significant increase in α‐diversity as
measured by the Shannon index over time, indicative
of the actively assembling gut microbiome (linear
mixed model [LMM], p < 0.001, Figure 1B). There were
distinct fecal metagenome structures based on infant
age in months at the time of collection (permutational
multivariate analysis of variance [PERMANOVA],
p < 0.001, Figure 1C). Actinomycetota, Bacteroidota,
Bacillota, and Pseudomonadota dominated the devel-
oping gut microbiome, representing ~99.82% of
all profiled microbes (Figure 1D). The relative abun-
dance of Enterobacteriaceae decreased drastically over
14 months, whereas Bifidobacteriaceae and Bacteroi-
daceae increased (Figure 1E).

The developing infant gut microbiome was classified
into three enterotype clusters by a Dirichlet multinomial
mixtures (DMM) model, with Cluster 1 dominated by
bacterial genus Escherichia; Cluster 2 dominated by
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Bifidobacterium; and Cluster 3 dominated by Bacteroides
(Figure 1F). Our DMM modeling observed a salient
enterotype transition over time with three distinct develop-
mental stages (Figure 1G). Microbes observed in fecal
metagenomes from Month 0 to 4, Month 5 to 9, and Month

10 to 14 were mainly classified in Cluster 1, Cluster 2, and
Cluster 3, respectively (Figure 1G). Consequently, our
assembled cohort of metagenomes represents a typical
development of infants’ gut microbiome during early life
consistent with earlier studies [6, 10].

FIGURE 1 (See caption on next page).
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The typical succession of fecal resistome
during the first 14 months of life in
healthy infants

We next examined the fecal resistome in healthy infants.
During the first 14 months of life, 2732 resistance genes
were observed in the gut microbiome. The gut
resistome α‐diversity was inversely associated with infant
age (LMM, p<0.005, Figure 2A). Consistent with the
gradually changing microbial community, we observed
gradual changes in the infant resistome with increasing
age (PERMANOVA, p<0.001, Figure 2B). Of the resistance
types included in the MEGARes database, the drug
resistance type was the most frequently observed, followed
by metal, multi‐compound, and biocide resistance types
(Figure 2C). At birth, the relative abundance of sequences
conferring resistance to each of the MEGARes types
(biocides, drugs, metals, and multicompound) was compa-
rable; however, the level of drug type resistance gradually
increased to 91.3% of all resistance sequences (median;
interquartile range [IQR], 55.6%) at Month 14 (Figure 2C).
The absolute abundance of resistance genes, as quantified
by resistance‐related reads per kilobase per genome
equivalent (RPKG), decreased over time (LMM, p<0.05,
Figure 2D). Specifically, the meconium microbiome har-
bored the highest abundance of resistance (>600 RPKG),
indicating the presence of a natural reservoir of resistance
for infants at birth (Figure 2D). Overall, resistance to
tetracyclines (14.7%) and drug‐biocide (12.8%) were the
most common antimicrobial resistance phenotypes in the
developing infant guts within the first 14 months, followed
by resistance to multi‐metal (11.0%), mupirocin (10.6%),
β‐lactams (7.9%), macrolides–lincosamides–streptogramines
(4.9%), and copper (4.0%) (Figure 2E).

The DMM model identified the succession of infant
gut resistome characterized by seven resistance clusters
on resistance at the class level (Figure 2F,G). Over 14
months, the healthy infant gut resistome exhibited two
distinct developmental stages: the multicompound resist-
ance stage (Months 0–7), showing a dominant level of
drug‐biocide resistance (15.1% ± 3.4%) (mean ± SD) and
multimetal resistance (14.0% ± 1.9%); and the drug
resistance dominant stage (Months 8–14), during which
tetracycline (22.3% ± 8.7%), mupirocin (11.4% ± 5.6%),
and β‐lactam (9.4% ± 6.3%) resistances were prevalent
(Figure 2G). Importantly, clinically relevant antimicro-
bial resistance genotypes (e.g., β‐lactam antibiotics) were
conserved and remained dominant in infant gut
microbes, posing a threat to the potential treatment of
antibiotics, including penicillin and amoxicillin [16].

Escherichia harbored the most resistance
genes in healthy infants

The increasing complexity of the infant gut microbiome
is accompanied by a decline in the absolute abundance of
resistance genes, suggesting an uneven distribution of
these resistance genes across microbial taxa. Our LMM
analysis, by incorporating the microbiome distance
matrix into the final model, demonstrated that 36.1% of
the variation in aggregated resistance (as measured by
the sum of resistance to drugs, metals, biocides, and
multicompounds) could be explained by bacterial genera.
By assigning a microbial taxon to the resistance gene‐
containing contigs, we found that Pseudomonadota was
the dominant resistome‐related phyla, which harbored
3720 unique resistance genes (3809 in all), representing

FIGURE 1 Sampling geographical distribution and the assembly of healthy infant gut microbiota during the first 14 months of their life.
(A) Geographical distribution of 4132 infant‐related metagenomes from 963 infants in Estonia (N= 71), Finland (N= 170), Italy (N= 30),
Russia (N= 70), Sweden (N= 100), and United States (N= 522). (B) Box plot depicting the α‐diversity of healthy infant gut microbiome as
measured by Shannon diversity (N= 858). Dots represent individual samples and Shannon index values were presented as the median
(central horizontal line); the lower and upper hinges correspond to the 25th and 75th percentiles, respectively. A generalized linear mix
regression model was represented by the regression line with a 95% confidence interval in gray shading. (C) Nonmetric multidimensional
scaling (NMDS) of healthy infant fecal samples based on a Bray–Curtis calculation (k= 4, stress = 0.1). Subsampling to obtain an equal
sample size (N = 20) at each month (Months 10, 11, and 14 were deleted due to sampling size < 20) was completed before performing the
ordination analysis and permutational multivariate analysis of variance (PERMANOVA). The centroid of each ellipse represents the group
mean, and the shape was defined by the covariance within each group. Because of limited inter‐sample variation, samples belonging to
months 8–11 and 12–14 were labeled as connected groups. (D, E) Stacked bar plots depicting the relative abundance of microbes as
measured at the phyla and family level, respectively. Microbial taxa quantified with an average relative abundance <1% were aggregated into
“Others”. (F) Heatmap indicating the relative abundance of the top 25 dominant bacterial species as classified in three Dirichlet multinomial
mixtures (DMM) clusters. DMM model was constructed by all microbes at the species level. From top to bottom, microbes were listed in an
order with a decreased contribution to the DMM model. (G) A transition model showing the progression of bacterial species across DMM
clusters over time. Nodes represented the sample size per month in each cluster. The color and thickness of edges represented the transition
frequency, as measured by the proportion of the microbes that transitioned from one node to the next.

INFANT RESISTOME | 5 of 22



46.9% of the infant gut resistome overall abundance
(Figure 3A and Figure S2).

Approximately 75.4% of resistance genes (N= 2040)
were from Pseudomonadota at birth and the contribution

of Pseudomonadota to the resistome gradually decreased
to 13.9% of resistance genes at month 14, comparable to
levels of Actinomycetota (0.9% at birth, 20.9% at Month
14), Bacillota (5.0% at birth, 30.5% at Month 14), and

FIGURE 2 (See caption on next page).
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Bacteroidetes (10.4% at birth, 22.1% at Month 14)
(Figure 3B). Microbes from 1273 genera were predicted
to possess resistance traits in healthy infants’ gut, with
Escherichia (25.5%) and Bifidobacterium (12.8%) harbor-
ing the most resistance genes, followed by Bacteroides
and Klebsiella (Figure 3C). The resistome from Escher-
ichia was dominated by drug‐biocide resistance (24.1%)
and multimetal resistance (18.2%), whereas Bifidobacter-
ium frequently harbored resistance to mupirocin (25.2%),
β‐lactams (13.4%), and drug‐biocide (13.3%) (Figure 3A
and Figure S3).

The developing gut resistome is
age‐dependent during infancy

Next, we extended our analysis from healthy infants to all
metagenomic samples to explore the factors influencing the
infant gut resistome. When including all samples, we
identified 4285 resistance genes. A LMM indicated that
clinical variables and study cohort (fixed effects) explained
37.9% of the variation in overall resistance. The study
cohort, age, method of feeding, and NEC were significantly
associated with the overall resistance (Figure S4). Age was
negatively correlated with overall resistance, explaining
27.5% of the variance in overall resistance abundance
(Figure 4A).

We further applied a random forest (RF) model to
identify time‐specific signatures in the resistome. The
developing gut resistome was linearly related to infant
biological age; this suggests a deterministic transition of
resistance over time (Figure 4B,C). RF, with a cross‐
validation analysis (R2 = 68.0%), identified the 34 most
predictive resistance genes most predictive of age, of which
52.9% conferred resistance to drugs, 17.6% conferred multi-
compound resistance, 8.8% conferred biocide resistance, and
20.6% conferred metal resistance (Figure 4D and Table S2).

A mupirocin resistance gene, ileS, was ranked as the most
important variable differentiating infant age (Figure 4D
and Figure S5). Multiple tetQ resistance genes (i.e.,
MEG7183, MEG7178, and MEG7184) exhibited a gradual
increase in absolute abundance over time and were strong
indicators of infant age (Figure S5). Resistance from class A
β‐lactams (i.e., MEG1636, MEG1637) showed a similar
pattern (Figure S5). Two arsenic resistance genes, pstB, and
pstC (i.e., MEG5815), decreased in absolute abundance with
infant age. This decrease was also observed with multi‐
biocide resistance (MEG5321) and multicompound
(MEG2132) genes (Figure S5).

To decipher the underlying mechanism of the age‐
dependent assembly of infant gut resistome, we
attempted to identify the resistance genes that exhibited
significant correlations with age in terms of their
abundance. Overall, 110 genes were grouped into six
clusters with two distinct dynamic patterns: the abun-
dance of resistance genes belonging to Clusters 1–3
(N= 53) was relatively high at the beginning and then
decreased over time, while genes classified within
Clusters 4–6 (N= 57) gradually increased during infancy
(Figure 4E). Genes in Clusters 1–3 originated from more
taxa than genes in Clusters 4–6. In Clusters 1–3, genes
originated from an average of 11.3 phyla (±2.6), 67.8
families (±15.7), and 136.0 genera (±41.5). In Clusters
4–6, genes originated from an average of 9.1 phyla (±2.2),
47.5 families (±12.0), and 93.9 genera (±27.4). Genes
from Clusters 4–6 (ratio of genes with transfer potential:
72.0%) were more likely to be transferable than genes
from Clusters 1–3 (72% of genes in Clusters 4–6 were
transferable compared to 13.2% of genes in Clusters 1–3,
Figure 4E). Resistance genes in Clusters 1–3 were more
frequently observed in Pseudomonadota (53.4 ± 20.3%,
Figure 4F), as Pseudomonadota decreased over time
(Figure 1D), it makes sense that these genes would also
decrease over time. Genes in Clusters 4–6 were often

FIGURE 2 The assembly of gut resistome in healthy infants during early life. (A) box plot depicting the α‐diversity of infant gut
resistome as measured by Shannon index (N= 858). A generalized linear mix regression model was represented by the regression line with a
95% confidence interval in gray shading. (B) Nonmetric multidimensional scaling (NMDS) of healthy infant gut resistome based on a Bray–
Curtis dissimilarity calculation at the individual resistance gene level (k= 4, stress = 0.1). Subsampling to obtain an equal sample size (N =
20) at each month (months 10, 11, and 14 were deleted due to sampling size < 20) was completed before performing the ordination analysis
and permutational multivariate analysis of variance (PERMANOVA). (C) Absolute abundance of resistance genes as measured by resistance
reads per kilobase per genome equivalent (RPKG) at the type level. (D, E) Stacked bar plot depicting the relative abundance of resistance
groups as measured at the type and class level of resistome, respectively. Resistance groups quantified with an average relative abundance
<1% were aggregated into “Others.” (F) Heatmap depicting the relative abundance of the 25 most descriptive antimicrobial classes across
Dirichlet multinomial mixture (DMM) clusters. From left to right, resistome classes were listed in an order with a decreased contribution to
the DMM model. DMM model was constructed by all resistome at the class level. (G) A transition model showing the progression of
resistome across DMM clusters over time. Nodes represented the sample size per month in each cluster. The color and thickness of edges
represented the transition frequency, as measured by the proportion of resistances from antimicrobial classes that transitioned from one
node to the next.
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FIGURE 3 Microbial hosts of healthy infant gut resistome. (A) Sankey diagram connecting resistance genes from months (the first
column) at the antimicrobial compound class level (the second column) to the predicted bacterial hosts at the genus (the third column) and
phyla level (the fourth column). Phyla and Genus were respectively limited within the Top 4 phyla and Top 4 genera carrying the most
resistance; otherwise, will be aggregated to other phyla or other genera. (B, C) Bubble plots depicting the dynamic change of bacterial hosts
of resistance genes at the phyla and genus level over time. For better visualization, phyla and genus appeared in <25%, <20% of sample
numbers (N= 851), and were aggregated into other phyla and other genera, including unknown.
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FIGURE 4 (See caption on next page).

INFANT RESISTOME | 9 of 22



from Bacillota (46.1 ± 17.2%, Figure 4F), Actinomycetota
(17.3 ± 12.0%), and Bacteroidota (17.3 ± 18.3%), so the
increase in these genes over time mirrored the increase of
the taxa (Figure 1D) that most frequently carried them.

Infant gut resistome assembly links to
shifts in microbial carbohydrate
metabolism

To gain insight into the influences of carbohydrate
metabolism on resistome, we proceeded with in‐depth
functional profiling analyses that observed six classes of
carbohydrate‐active enzymes (CAZy) (Table S3). Over 80%
of profiled CAZy genes belonged to the glycoside hydrolase
or glycosyltransferase classes. Although the relative contri-
bution of glycosyltransferase steadily decreased over time,
the levels of glycoside hydrolases increased (Figure 5A).
The carbohydrate metabolism genes showed distinct
differences over time (PERMANOVA by adonis2 and
distance‐based redundancy analysis [db‐RDA], p<0.05,
Figure 5B), with the number of distinct CAZy enzymes
increasing over time (Figure 5C).

Approximately 22.8% of all CAZy enzymes were
present in Pseudomonadota at birth, decreasing to only
0.9% of all CAZy enzymes by the age of 3 years. In
contrast, 10.9% of CAZy enzymes in the infant gut
microbiome at birth were found in Bacteroidota, rising to
47.0% at age 3 years (Figure 5D,E). Looking at the
samples collected during the first 3 years of life, there
were 83 CAZy enzymes in five clusters significantly
associated with age, with glycoside hydrolases being the
most frequently observed enzyme class (60.3% of
enzymes), followed by polysaccharide lyases (PLs)
(14.9%), carbohydrate‐binding modules (12.4%), glycosyl-
transferases (7.4%), carbohydrate esterases (2.5%), and
auxiliary activities (2.5%). Overall, enzymes belonging to

Clusters 1 and 2 were predominantly found in glycoside
hydrolase (GH) and PL families, and their hosts were
more diversified at birth, gradually converging towards
origins in Bacteroidaceae (Bacteroidota) with increasing
age. The activities observed for the (sub)families from the
GH (e.g., β‐1,4‐glucanase and α‐1,4‐glucan) were related
to complex carbohydrates present in breast milk and
plant‐based foods (Table S3).

Most CAZy enzymes within Cluster 4 were prevalent
during the first days of life but decreased at later time
points and likely originated from Enterobacteriaceae
(Pseudomonadota). A subset of Cluster 4 enzymes (e.g.,
CBM82) increased over time; most often, the enzymes that
increased over time were predicted to originate in
Lachnospiraceae and Clostridiaceae (Bacillota) (Figure 5F).
Members of CBM82 were reported to be specifically solid‐
food‐related enzymes that possess the β‐1,3‐glucan binding
function to plant‐based substrates (e.g., starch) [17]
(Table S3).

Furthermore, we examined the association between
the 110 age‐associated MEGIDs (ARG IDs in MEGARes,
https://www.meglab.org/) and the 83 age‐associated
CAZy enzymes and found that half of the possible
MEGID‐CAZy pairs (over 5000) were significantly
correlated. We then used a multivariate linear mixed‐
effect model to test for the association between CAZy
enzymes (predictor) and MEGIDs (outcome). We
observed that the variation in resistance abundance due
to carbohydrate metabolism (40.7%) was greater than the
variation due to microbial composition (36.1%). This
close connection between resistance was validated by our
genome‐centric analysis by functional profiling of
metagenome‐assembled genomes (MAGs) from the top
4 genera with the highest abundance of resistance genes
(Escherichia, Bifidobacterium, Bacteroides, and Klebsiella)
with 110 age‐associated MEGIDs and 83 age‐associated
CAZy enzymes (Figure S6). The frequency of both

FIGURE 4 Factors influencing the assembly of the infant gut resistome and age‐discriminatory resistance genes. (A) Variation
explained by the clinical variables. (B, C) The predicted infant age (resistome age) versus actual infant age in the (B) test set and (C) training
set in the random forest (RF) model. The full data set was split into a training data set (N for infant host): test data set (N for infant host) =
7:3. The pink line represents the time when the actual age (Days) equals the predicted infant age (Days). The petrol line represents the fitted
line based on a linear model [R2 = 68.0%]. (D) Ranked lists of the Top 34 MEGIDs (antimicrobial resistance gene IDs in MEGARes, https://
www.meglab.org/) in their group format (resistome genes) whose absolute abundance values when permuted have a larger marginal
increase in MSE (mean squared error) besides the study cohort. They are consistent with the “infant age discriminatory importance”. The
plot below shows the cross‐validation error versus the number of MEGIDs. Ten‐fold cross‐validation indicates that 35 variables are sufficient
for RF predictions of the infant age day based on resistance composition. The inset details vertex. Data are mean ± SEM computed over 100
iterations. (E) Heatmap depicting the abundance of resistance genes, which were significantly associated with age over 37 months (N= 103).
The abundance values were log‐transformed (log [value + 1, 10]) for better visualization. The numbers of distinct microbial hosts of
individual genes were calculated at the level of bacterial genus, family, and phyla. The transfer potential of these resistance genes was
characterized by manually referring to published experimental data. (F) Stacked bar plots demonstrating the microbial hosts of individual
resistance genes at the level of phyla. NEC, necrotizing enterocolitis.
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FIGURE 5 (See caption on next page).
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resistance genes and CAZy enzymes did vary based on
the genus or origin, with resistance genes more
frequently observed in Escherichia and Klebsiella (more
prevalent taxa during the first days of life), and CAZy
enzymes were more common in Bacteroides and Bifido-
bacterium (more prevalent taxa in older infants) (-
Figure S6). This creates a microbial taxa connection
between the gradually modified infant gut microbial
carbohydrate metabolism and the reduced prevalence of
gut resistance genes, mirroring the transition from low‐
CAZy enzyme/high‐resistance genes taxa to high‐CAZy
enzyme/low‐resistance genes taxa over time.

Increasing lateral gene transfer (LGT)
events and transferrable resistance
genes in infants' gut

We next examined the prevalence of acquired resistance
genes in all infants with ResFinder 4.0. The overall
abundance of transferrable genes was significantly associ-
ated with infant age (LMM, p<0.001). Starting at ~8.1
RPKG (median; IQR, 9.1) at birth, levels of transferrable
genes increased to 12.8 RPKG at Month 1 (IQR, 15.0), then
dropped to 3.1 RPKG at Month 9 (IQR, 3.6), and finally
stabilizing around 8.2 RPKG (Months 10 to 38)
(Figure 6A,B). Consistent with analyses based on the
MEGARes database, transferrable tetracycline resistance
genes (58.7%) were the most frequently observed resistance
genes in the developing infant gut microbiome, followed by
β‐lactamases (19.8%), disinfectant resistance genes (8.2%),
aminoglycoside resistance genes (6.6%), and quinolone
resistance genes (3.4%) (Figure 6C). Consequently, we
observed a gradually increased level of acquired resistance
genes in infant gut resistomes over time (Figure 6B).
Enterobacteriaceae was found to be the dominant family
carrying acquired resistance genes, followed by Bacteroida-
ceae, Bifidobacteriacae, Staphylococcaceae, Clostridiaceae,
and Enterococcaceae (Figure 6D).

We further expanded our analysis to predict the
occurrence of LGT in infant gut microbiome. Microbes
from 172 microbial taxa were involved in either receiving or
transmitting ARGs by LGT in newborns, with the number of
involved taxa increasing to a peak of 422 taxa at Month 13
and then slightly decreasing at older ages (Figure 6E). As
measured by LGT events per microbial taxon, transfer
frequency gradually increased over time (Figures 4E and 6F,
and Table S4). LGT events were predicted to occur across
branches in the phylogenetic tree, 63.5% of transfers
occurred across microbial families, with a subset of 4.8%
of these transfers likely occurring across microbial phyla
(e.g., mobilization among Actinomycetota, Bacillota, and
Pseudomonadota) (Figure 6G). Our network modeling
identified 26 “hub” taxa that were predicted to have the
greatest occurrence of LGT across time points, these taxa
included microbes belonging to Clostridiaceae, Enterobacter-
iaceae, Bacteroidaceae, and Lachnospiraceae, Bifidobacteria-
ceae, Prevotellaceae, and Ruminococcaceae (Figure 6G). All
proposed hub taxa have been proven to be frequently
associated with LGT events by experimental evidence [18,
19]. Specifically, Escherichia coli and Klebsiella pneumoniae
are well‐known for carrying acquired resistance genes and
virulence and can cause severe blood infections that are
difficult to treat in infants [20, 21]. Of note, Bifidobacterium
frequently transferred resistance genes to microbiomes
belonging to Actinobacteria, Bacillus, and Clostridia [22].
Consequent to the high levels of LGT, we observed an
increasing prevalence of acquired resistance genes in
developing infant gut resistome with age as the genes
spread across different microbial taxa.

DISCUSSION

In early life, infants acquire a large resistome burden,
and our understanding of the resistome in healthy
infants was comparably less known than the gut
microbiome. Considering what is known about the

FIGURE 5 Functional capacity of infants' gut microbiome during early life. (A) Bar plots of the relative abundance of carbohydrate‐
active enzymes (CAZy) families per class of enzymes over time. (B) Nonmetric multidimensional scaling (NMDS) of infant gut CAZy results
based on a Bray–Curtis dissimilarity calculation (k= 4, stress = 0.07). Subsampling to obtain an equal sample size (N= 20) at each month
(months of sampling size < 20 were deleted) was completed before conducting the ordination analysis and permutational multivariate
analysis of variance (PERMANOVA). (C) Box plot demonstrating the richness of observed CAZy enzymes during early infancy. (D, E)
Stacked bar plots depicting the predicted microbial hosts of CAZy enzymes at the phyla (D) and family (E) level. (F) Heatmap depicting the
abundance of CAZy families, which were significantly associated with infant age. The abundance values were log‐transformed (log
[value + 1, 10]) for better visualization. The lower dot plot showed the inferred bacteria hosts producing corresponding CAZy enzymes and
the sizes of dots indicated the confidence level (%) of microbial inferences. The absence of a dot indicated that our inability to predict the
bacterial origin or the CAZy family was not detected at a particular time. AA, auxiliary activities; CBM, carbohydrate‐binding modules; CE,
carbohydrate esterases; GH, glycoside hydrolases; GT, glycosyltransferases; PL, polysaccharide lyases.
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microbiome, the gut resistome is relatively better
studied in hospitalized infants than in community‐
dwelling children [23–29]; however, healthy infants
are also an important reservoir of resistance genes [10,
30, 31]. By defining healthy infants as term, vaginally
delivered, and without NEC or any recorded antibiotic
use, we systematically examined the natural assembly
of the healthy infant gut resistome. Leveraging public
metagenomes (N= 858 healthy metagenomes), we
found that the abundance and richness of resistance
genes were the highest for infants at birth and then

gradually decreased over time, the progression of
which could be distinguished into two phases: the
multicompound resistance phase (Months 0–7), and
the tetracycline–mupirocin–β‐lactam‐dominant phase
(Months 8–14). Even in healthy infants, some genes
are resistance genes to clinically important antibiotics
(e.g., penams, macrolides, and aminoglycosides)
widely distributed in the gut, posing a threat to
effective antibiotic treatment. Our findings in healthy
infants from industrialized countries defined the
natural succession of the gut resistome, providing an

FIGURE 6 The development of infant gut mobilome. (A) Stacked bar plot depicting the absolute abundance of acquired resistance genes as
measured by the copy numbers of resistance RPKG (resistance‐related reads per kilobase per genome equivalent). (B) Box plot demonstrating the
dynamic change of the overall resistance. Outliers were eliminated for better visualization. (C) Stacked bar plot depicting the relative abundance of
acquired resistance genes as measured at the antimicrobial class level. The local regression line (blue) represents the percentage of transferable
genes (ResFinder 4.0) in total resistance genes (MEGARes 2.0). (D) Chord diagram connecting acquired resistance genes and inferred microbial
hosts at the family level. Bacterial families and corresponding genes which contributed to <2% of overall resistance were filtered out for better
visualization. (E, F) Scatter plots obtained by three independent subsamplings indicate the number of nodes (E) and corresponding average
degrees (F) from predicted lateral gene transfer (LGT) networks in the infant's gut over time. (G) Networks illustrating predicted LGT events
during early infancy. Subsampling was performed to minimize sample size bias, and time points without sufficient samples (N<40) were
removed for this analysis. At each time point, three representative microbial clusters and the corresponding nodes (hub taxa) were colored to
depict a gradually modified network; hub taxa were labeled, from top to bottom, with decreased occurrence.
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essential reference for future potential interventions to
reduce ARG carriage in this population.

Our systematic microbial origin analysis identified that
microbes belonging to Escherichia, Bifidobacterium, Bacter-
oides, and Klebsiella were the main bacterial hosts of
resistance genes, which was consistent with studies indicat-
ing that E. coli as the main microbe differentiating resistome
structure [10, 12, 23, 27, 32, 33]. This is also congruent with
an earlier study that found an increased resistance burden in
the bifidobacterial community with age [34].

Age exerts a strong influence on the infant's gut
resistome. This is consistent with the age‐dependent
assembly of the infant microbiota [6, 10, 15], as the
microbiome shapes the resistome [12, 32]. Previous studies
tried to examine the influence of age on the infant gut
resistome but were limited to fewer time points [12, 27, 32],
thus limiting the extent of possible longitudinal analysis. In
the present assembled cohort, we observed an overall
decrease in resistance genes in infants during the first 3
years of life. Despite the reduction trend, the risks from
resistance genes in infants remain because the decrease
occurs in intrinsic resistance genes while transferable
resistance genes generally increase over time. Clinical factors
such as study cohort, method of feeding, and NEC were
significantly associated with the overall resistance in addition
to age, suggesting these factors had an enduring influence on
infant gut resistome from 0 to 3 years. For example, Infants
with NEC had a higher total abundance of resistance genes.

The assembly of gut microbial communities is often
driven by diet (i.e., transition frommilk to solid food) during
infancy [35–37]. The infants begin eating solid food at about
6 months and gradually transition to table foods. The
changing infant diet includes distinct types of carbohydrates,
which call for varied metabolic functions of both the host
and the gut microbiome. For example, dietary fiber from
solid food is often digested by Bacteroides [17, 37]. The
assembly of the gut resistome is likely driven by the
changing microbial needs for effective metabolism of
carbohydrates in infants. The diet changes during infancy
are consistent with an increasing need for CAZy from
Bacteroidota (a relatively small reservoir of ARGs), and a
decreasing role for Pseudomonadota (often equipped with
ARGs), which match our findings in this study. The
structures of human milk oligosaccharides require a distinct
set of GH, particularly those in GH families GH13 and GH26
that are commonly found in Bacteroidetes and Bifidobacter-
ium [18], which are aligned with our result.

Furthermore, resistance genes with transfer potential
threaten public health more than intrinsic resistance genes
[38–41]. Previous studies have indicated that infants have a
10‐fold greater rate of evolution and strain turnover and
higher abundances of ARGs on mobile genetic elements
than adults [28, 29, 42]. Our mobilome analysis observed a

gradual increase in acquired resistance genes (via ResFin-
der) in infants’ gut despite the reduction of the overall
resistome with age. With the LGT analysis, we observed an
increasing transfer frequency among microbial clades from
Month 0 to Month 23. The majority of LGT occurred across
bacterial families (>60%), with a subset of transfer events
occurring across phyla (~5%) (Figure 6), even though the
major determinant of mobile resistance was bacterial
phylogeny [43]. This was likely a result of the microbial
community changing with increased exposure to the
environment and a more complex diet as the infants aged,
consistent with a recent study that found an elevated rate of
gene transfer in the industrialized human microbiome [44].

Although informative, combining metagenome data
from different studies without experimental validation
consistent across cohorts was a major limitation of this
work. The lack of standardized protocols (for sample
collection, DNA extraction, sequencing platform), variability
in study populations, and absence of more detailed
information regarding the sample host (such as maternal
nutrition status, medical history, and other potential factors)
further complicated the data integration. Future studies
employing greater consistency and validation across cohorts
are needed to decipher further the relationship between
dietary transitions and the infant gut resistome. Despite the
limitations of this work, this study still provides insight into
the changes that occur in the gut resistome as infants age
and suggests a role for diet in shaping the infant resistome.

CONCLUSIONS

In conclusion, this study provided valuable insights into
the natural assembly of the healthy infant gut resistome
and the factors that influence the resistome. Our findings
revealed that resistance genes are enriched early in life,
with the highest abundance and richness observed at
birth and gradually decreasing over time. Additionally,
the age‐related changes in the infant gut resistome were
influenced by the changes in microbial carbohydrate
metabolism necessitated by changes in the infant diet
and clinical factors. The study also highlighted a gradual
increase in acquired resistance genes in the infant gut
resistome over time, corresponding with an increase in
LGT events.

METHODS

Global metagenome collection

To identify publically available datasets useful for our
study of the assembly of the infant gut resistome we
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conducted a series of literature searches using keywords
such as ((microbiome OR microbiota) AND (infant OR
neonatal OR neonate* OR newborn OR “preterm
infant”) AND (feces OR stool OR fecal OR feces OR
gut)) in PubMed (2003), Web of Science (3319), and
Scopus (1628) between the years 2015 and 2020
(Figure S7). A total of 6909 relevant articles were
retrieved, out of which 3475 were identified as
nonduplicate articles. We then selected studies with
complete metagenomic sequencing profiles and meta-
data in publicly available data repositories that had
sample collection during the first 1120 days of life. This
led us to 17 studies with data available for this work.
These 17 studies had data on 4132 metagenomes from
963 infants and 19 cohorts available across multiple data
depositories (i.e., the Sequence Read Archive, the
European Nucleotide Archive, and local servers;
Table S1). All relevant metadata was compiled and is
available in Table S1. The accessed metagenomes
included infants from six countries (i.e., United States,
Sweden, Finland, Estonia, Russia, and Italy) and were
sequenced on multiple platforms, including several
Illumina platforms (i.e., HiSeq. 2000, HiSeq. 2500,
NextSeq. 500, MiSeq, and HiSeq. 4000; Table S1).
Greater than 13,234 Gb raw shotgun metagenomic
sequences were obtained, representing the largest
assembled cohort of infant gut metagenomes for a
single analysis. We used this data to explore the
trajectory of the infant resistome during the first 1000
days, including the interaction of the resistome with
related confounding variables. All samples involved in
this work had a sequencing depth of over five million
cleaned reads to ensure the capture of rare ARGs per a
published standard [45].

Sequence preprocessing and quality
control

We applied unified quality controls to all samples from all
cohorts before any downstream analyses. Host sequences
were identified by aligning metagenomes to the human
reference genome GRCh38, by using BMtagger in bmtools
(v1), and were removed. The remaining reads were trimmed
using Trimmomatic (v0.36) to remove low‐quality
sequences. Trimming was done with parameters (LEAD-
ING:3 TRAILING:3 SLIDINGWINDOW: 4:15) and was
adjusted for sequences ≥150 bp (MINLEN:99) and 100 bp
(MINLEN:40). FastUniq (v1.1) was next applied to remove
duplicate reads, and the resulting sequences were sorted to
match pairs using bbmap (repair.sh, v38.72). Quality control
was performed before and after the sequence trimming for
direct comparisons to track the sequence's “improvement”

during data processing. Briefly, bbmap was used to assess
sequencing depth and read length, and fastqc (v0.11.5) was
applied to examine the sequence quality with default
settings (Figure S1). A direct comparison of sequences
during data pre‐processing indicated that the number of
reads of infant gut metagenomes was ~7.6 million (median;
IQR, 11.4 million) and was decreased to 5.7 million (median;
IQR, 10.6 million) after quality control (pair Wilcoxon test,
p<0.001 in all cases) (Figure S1).

Taxonomic profiling and metagenome
assembly

Sorted sequences were used for taxonomic profiling via
MetaPhlAn2 [46] (v2.7.7) and data were analyzed at the
phyla, family, and species levels. MEGAHIT [47]
(v1.1.1) was used to assemble metagenomes per sample
with default parameters. We modified the reported
names of phyla to match the updated official nomen-
clature [48].

Resistome analysis

MEGARes [49] 2.0, which contains genes conferring
resistance to all types of antimicrobial compounds (i.e.,
antibiotics, heavy metals, biocides, and multicom-
pounds), was used to profile the infant resistome.
Resistance genes in MEGARes 2.0 were classified at five
levels, from top to bottom: the “Type” of a compound to
which the accession confers resistance (i.e., drug, biocide,
metal, and multicompound), the “Class” of antimicrobial
compounds to which a gene confers resistance (e.g.,
aminoglycosides, and biocide, and metal resistance), the
“Mechanism” by which this resistance is conferred, the
“Group” name of the genes (e.g., BLAZ, and CTX), and
the “MEGID” for each individual gene accession (e.g.,
MEG7183 and MEG5321). A total of 4238 individual
resistance genes were mapped (of 7378 genes from
MEGARes 2.0 after removal of speculated resistance
genes, which required further SNP validation for point
mutations in our analyses), representing 143 unique (of
220 in MEGARes V2) mechanisms of resistance, and
conferring resistance to four types of compounds (i.e.,
antibiotics, biocides, heavy metals, and multicom-
pounds). bwa‐mem (v2) was used to align metagenomes
to MEGARes 2.0 with default parameters, and resistome
analyzer (https://github.com/cdeanj/resistomeanalyzer)
was used to analyze the aligned SAM files. Normalization
was performed by calculating the number of resistance
genes per estimated genome by using a custom script
adapted from Li et al. [50–52]. Genome equivalents were
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obtained by analyzing sorted sequences via Microbe-
Census (v2.15) with adjusted parameters (‐n 100000000)
to use all available sequences [53].

Microbial hosts of resistance genes

The microbial origin of resistance genes was estimated by
assigning taxonomy to assembled contigs harboring
target genes. Following alignment, the SAM file was
parsed, and the successfully aligned reads harboring
resistance genes were extracted and further used to align
back to contigs [54]. The resulting resistance‐containing
contigs were assigned a taxon via kaiju [55].

Functional capacity profiling analysis

To study the functional carbohydrate profile of infant gut
microbial communities, we used CAZy database [56] as a
reference database via DIAMOND (v2.0.15, cutoff
E‐value≤ 10−10) [57]. Sequencing reads that were predicted
to encode CAZy enzymes were aligned to metagenomic‐
assembled contigs by using BWA‐MEM. Contigs carrying
sequences that encoded age‐associated CAZy enzymes were
further used to be annotated by assigning taxa via kaiju [55].

Assessing the association between
resistome and metabolome by
genomic‐centric analysis

We examined the MEGIDs and CAZy enzymes through
genomic‐centric analysis on the top 4 genera (Escher-
ichia, Bifidobacterium, Klebsiella, and Bacteroides)
(Figure 3C). Specifically, a total of 32,277 MAGs were
obtained from the research of Zeng et al. [58] and were
filtered to keep the MAGs (N= 14,280) retrieved from
the same set of samples used in our analysis. Assembled
genomes were searched for sequence similarity to
annotated ARGs present in the MEGAResv2.0 using
BLASTN (version 2.12.0) with a coverage threshold of
80%. CAZy enzyme was also profiled in MAGs by
aligning to the CAZy database via Diamond. MAGs were
taxonomically classified using the Genome Taxonomy
Database Toolkit (GTDB‐Tk, v1.7.0) and the “classi-
fy_wf” function with default parameters.

Statistical analysis

Statistical analyses were performed using R (v3.6.2).
α‐diversity was measured by the Shannon index for both

bacterial species and resistance genes. β‐diversity of
microbial species and resistance genes from healthy infants,
and CAZy enzyme results from all the infants were
generated via Bray–Curtis dissimilarity, and nonmetric
multidimensional scaling was afterward used to visualize
the compositional variances across these community data by
controlling a stress value< 0.1 under four dimensions [59].
For PERMANOVA, we checked for dispersion differences
across months based on Bray‐Curtis dissimilarity measures
before completing the PERMANOVA with adonis2 in the
vegan package to test for differences in β‐diversity across
months. To address the bias from the study cohort, we
further conducted a db‐RDA using the vegan package and
got the same result. We applied a subsampling strategy to
obtain an equal size of samples across months, and only one
sample of infants was used in PERMANOVA and db‐RDA.
The trajectory of α‐diversity was estimated via a LMM using
the R package lme4 with “age of infants” and “study cohort”
as fixed effects and “infant ID” as a random effect.

Influences of clinical variables on the gut
resistome

LMMs were also used to assess the statistical impact of
clinical variables on the infant resistome. Resistance
values were standardized via an inverse‐normal transfor-
mation, and a variance inflation factor was used to
identify collinearity between variables. The final model
was as below, and the response Yresistance represented the
observed value (we took the overall resistance value, the
sum of four types of resistance, here as an example):

Y β β

β β

β β β

β

= (Infant age) + (Geography)

+ (Antibiotics) + (Delivery mode)

+ (Feeding) + (Term) + (NEC)

+ (Study cohort ID)

+ (1|subject_ID).

resistance 1 2

3 4

5 6 7

8

(1)

The resistance values of drug, biocide, metal, and
multi‐compound were considered, respectively. The
influence of fixed effects on resistome was calculated
via marginal R2, where σ f

2 is the variance of fixed effects,

σα
2 is between‐subject variance, and σε

2 is the residual
variance. To further quantify the contribution of each
predictor to the variance of resistome, variable explain-
ability was calculated as below [60]:
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where f_variance_i is the variance of the ith fixed
variable, and r variance explained is the variance ex-
plained by random effect.

Age‐associated MEGIDs and CAZy
enzymes

We also used GLMM to identify age‐associated MEGIDs
and CAZy enzymes. The fixed effect and random effect
were the same as the Equation (1) and the dependent
variable was Y(MEGID) or Y(CAZy enzyme), followed by
multiple comparison corrections. Considering the count
data of MEGID contained excess zero, we further
categorized each gene into binary outcomes (0 or 1).
Significant age‐associated MEGIDs and CAZy enzymes
were chosen by age (padj < 0.001 with Bonferroni
correction) and a total of 110 MEGIDs and 83 CAZy
enzymes were obtained and grouped into clusters by
calculating the Euclidean distance. We further compared
all the pairs of the associations between 83 age‐associated
CAZy enzymes and 110 age‐associated MEGIDs using
LMM. We employed each CAZy enzyme, alongside
identical fixed and random effects in the Equation (1),
as predictor variables, with each MEGID serving as the
response variable. We also compared all the pairs of the
associations between 111 resistomes from the mecha-
nism level and 6 CAZy groups (AA, GH, GT, PL, CE, and
CBM) from a general perspective.

Microbiota and CAZy function ability to
explain the infant gut resistome

To model the effect of clinical variables and microbiota at
genus level or CAZy enzyme function on the resistome,
multivariate LMMs of the following form were used [61]:

y

m e

= Infant age + Geography

+ Delivery Mode + Term

+ Feeding + Antibiotics + NEC

+ Study cohort + + .

aijkmlqps

k m

l q p

s i ajkmlqpsi

a j

(2)

In Equation (2), yaijkmlqps is the summed resistance
value. mi is the random effect accounting for multiple
samples from the ith infant ~ NID (0, σ2gM), where σ g

2

is the microbial variance and M is the genus relation
matrix [62, 63]. The genus relation matrix M was
calculated as:

M
XX

n
=

′
,

where X is the matrix of normalized bacterial relative
abundance and n is the number of microbes. The eajkmlqpsi

is residual variable. We used a second LMM to estimate
the CAZy enzyme influence on variation in the resist-
ance. The model was similar to (2), but M was replaced
with C, and the random effect ci ~ NID (0, σ2cC). The
CAZy enzyme relation matrix C was similar to M which
was computed as a variance–covariance matrix from
CAZy enzyme composition. The resistance variances
explained by the microbiome and CAZy enzyme were
estimated by
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where σ p
2 is the overall resistance variance.

Prediction of infant age by resistome
using RFs

RFs were used to predict infant age from the absolute
abundance of MEGIDs since this approach can detect
both linear and nonlinear relationships between
resistance and infant age in days. We split the data
based on infants in a 7:3 ratio (training set:test set) by
each cohort to prevent bias from different proportions
of each study cohort present in the training and testing
set. The number of predictors to be used in the
RF model was determined through 10‐fold cross‐
validation over 100 iterations. The number of trees,
variables for each split (mtry), and the total number of
MEGIDs (node size) to grow the forest were set to 500,
35, and 35, respectively. Default selections were
retained for the remaining hyperparameters. In the
main model, we considered not only MEGID but also
infant host ID to account for repeated measures, and
study cohort to address any remaining bias from the
differences in each cohort. Of note, we had over 900
infants with samples included in this study and
performed a 1:n numeric assignment for infant ID
randomly. In an additional sensitivity analysis, we
only considered the impact of MEGID (the result is
shown in Table S2).

We used the percentage increase in mean squared
error (Inc% mean squared error) with the out‐of‐bag
samples to rank the importance of each MEGID in
predicting infant age. Further, we used feature
contributions estimated by forestfloor, which shows
how the predicted infant age changes with each
predictor. Out‐of‐bag observations were used to
minimize overfitting when estimating the marginal
effects.
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DMM clustering of infant gut microbiome
and resistome

DMM model is integrated to predict the structure of
healthy infant gut microbiomes and resistomes using the
R package DirichletMultinomial as described in previous
studies [6, 64]. The best‐fit number of DMM components
was based on the minimum Laplace approximation score
of 1 to 15. DMM modeling reduces the effect of a small
sample size on a rich community where the clusters will
be biased towards extreme sample sizes.

Transferrable resistance genes and LGT in
infant gut microbiomes

We specifically analyzed the acquired infant gut resistome
by aligning metagenomic sequences to ResFinder (v4.1)
using bwa‐mem (v2) [65]. Bedtools was used to analyze the
alignments with a coverage cut‐off of 80%. Resultant
sequences were normalized in the same pipeline with
MEGARes 2.0 analysis. The LGT events in infant gut
microbiomes were predicted via WAAFLE (http://
huttenhower.sph.harvard.edu/waafle) and the frequency
of LGT was normalized to per 1 K assembled genes before
any downstream comparisons. The LGT networks were
constructed using the predicted edge matrixes and were
visualized using the R package igraph (v1.2.11).
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in the Supporting Information section at the end of this
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Figure S1: The attributions (counts, lengths, and
qualities) of raw and processed sequencing reads.

Figure S2: Sankey diagram connecting resistance genes
from month 0‐14 at the antimicrobial compound class
level (left) to the predicted bacterial hosts at the genus
(middle) and phylum level (right).

Figure S3: The dynamics of resistome in Bifidobacterium
and Escherichia genome.

Figure S4: Clinical variables significantly associated with
the inverse‐normal transformed absolute abundance of
summed resistance.
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Figure S5: Forest floor main effect plots of random forest
mapping structure of model predicting panel ratings of
infant age on basis of MEGID.

Figure S6: Heatmap of age‐associated MEGID and CAZy
enzymes mapped in certain genus of metagenome‐
assembled genomes (MAGs).

Figure S7: Flow chart of systematic review and selection
process.

Table S1: Descriptive characteristics of metagenomes
involved in this study.

Table S2: Detailed information of ranked lists of the top
MEGIDs (resistance).

Table S3: Function and predicted microbial host of
83 age‐dependent CAZy.

Table S4: Transfer potential information regarding
age‐dependent MEGIDs.
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