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ABSTRACT OF THE DISSERTATION

Highly multiplexed microfluidics for dynamic genome interrogation, synthetic gene
circuit screening, and multi-target biosensing applications.

by

Nicholas Sigmund Csicsery

Doctor of Philosophy in Bioengineering

University of California San Diego, 2019

Professor Jeff Hasty, Chair

The rise of DNA sequencing and synthesis technologies over the past two decades has

ushered in a new wave of forward engineering genetic circuits, synthetic biology. Synthetic

biology has since been deployed for applications spanning therapeutics, industrial chemical

biosynthesis, and environmental sensing. Coupled with advances in genomics and systems

biology, synthetic biology has revolutionized our ability to investigate biological networks. Further

utilized with the fine-tuned experimental control of microfluidics, synthetic biology has enabled

the precise interrogation of single nodes in these biological networks. Recently, the emergence

of genome-scale microfluidic devices has bridged the gap between the scale and throughput of

xv



-omics technology and the dynamics achievable with microfluidics. Towards this end, we have

developed an elegant, straightforward microfluidic platform capable of monitoring the temporal

gene expression of 2,176 unique microbes with both research and industrial applications. In

Chapter 1, I provide a brief overview of synthetic biology and microfluidics in the context of

biological research. In Chapter 2, I describe the high-throughput microfluidic platform we have

engineered and the protocol for building these devices. In Chapter 3, I demonstrate the platform’s

utility as an environmental biosensor and research tool, where the dynamics of 1,807 E. coli

GFP-promoter strains coupled with machine learning algorithms are used to detect the presence

of six heavy metals in real-time in both laboratory and real-world settings. Finally, in Chapter 4, I

show the device’s application for the dynamical screening of synthetic gene circuit libraries. In

all, I highlight the need for the further development of such multiplexed microfluidic platforms

and demonstrate their utility for biological research, synthetic gene circuit engineering, and

environmental biosensing.
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Chapter 1

Introduction

1.1 Synthetic biology and microfluidics: Tools for the study

and forward engineering of biology

1.1.1 Towards forward engineering gene circuits

Synthetic biology is a rising and interdisciplinary field, drawing from the technology,

knowledge, and technical approaches of engineering and the biological sciences to create novel

biological systems. While genetic engineering and recombinant DNA technologies have existed

since the 1970s [1], the early 2000s opened with a new wave of genetic modification based

on the arrangement of genetic elements to produce novel cellular behavior [2–4]. This new

iteration of genetic engineering, synthetic biology, was accelerated forward by technological

leaps in the ability to both read and write DNA. Drawing from established engineering disciplines,

synthetic biology seeks to enable the forward engineering of biological systems. With engineering

principles, such as computational modeling and the standardization, decoupling, and abstraction

of genetic elements [4], functional biological modules [5] have been created and interfaced

together, including genetic toggle switches [2], oscillators [3, 6], and logic gates [7]. These

1



synthetic biology modules, or genetic circuits, have been employed for numerous applications

over the past 20 years, thrusting synthetic biology to a market size of $12.80-13.96 billion in

2018 [8].

1.1.2 Applications of synthetic biology

Synthetic biology has addressed a wide range of application since its emergence in

the early 2000s, including therapeutics [9], biomaterials [10], biofuels [11], pharmaceutical

bioproduction [12], and biosensing [13]. However, biological complexity still exists and limits

the true forward engineering of biological systems. To overcome this, researchers must acquire a

deeper understand of basic biology, address the challenges of biological noise and evolution, and

further characterize synthetic gene circuits. Fortunately, towards this end, synthetic biology often

serves as the solution to its own obstacles, advancing biological research by enabling novel ways

to investigate genetic networks in biological systems from the bottom-up. However, research

and development in synthetic biology still remains as much as a scientific pursuit as it does an

engineering discipline.

1.1.3 Interfacing microfluidics with biology

Microfluidics is a widespread technology for the precise control of fluids on the microliter

and sub-microliter scales. Originating with the development of inkjet printers in the 1950s,

microfluidics have since been deployed in the biological sciences. Notably, microfluidics have

served as a useful tool for the miniaturization of established laboratory protocols, colloquially

referred to as lab-on-a-chip devices [14], as well as the facilitation of novel biological assays.

Beyond tools for basic research, a major area of commercial expansion for microfluidics is in the

detection and reporting of compounds of interest from small sample sizes, particularly useful for

point-of-care diagnostics or real-time monitoring of clinical or environmental samples [15].
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Within synthetic biology, and in the Biodynamics Laboratory, microfluidics have served

as a powerful tool for scientific discovery. Coupled with time-lapse fluorescence microscopy,

microfluidic platforms provide precise imaging and environmental control to investigate the

underlying dynamics of biological networks in microorganisms [16]. In our lab, this has enabled

the development of genetic oscillators [6,17,18], studies of cellular aging or competitive fitness in

dynamic environments [19, 20], and clinically relevant cancer therapies [9]. These developments

have spanned micrometer scales single cell analysis [19] to the millimeter scale, observing 2.5

million cells across a 5 mm device [18].

Conventional laboratory microfluidic devices consist of an elastomer polydimethylsilox-

ane (PDMS) monolith bonded to glass. The PDMS is cast from a photoresist patterned silicon

wafer made using standard photolithography. After surface treatment, the PDMS and glass are

bonded together and cured at high temperatures (80◦C) for several hours. Cells are then loaded

onto devices after bonding, often requiring a distinct waste port for each unique strain to avoid

cross-contamination [16]. Due to space limitations and experimental complications, conventional

microfluidic devices are generally low-throughput, allowing users to track the behavior of a few

nodes to answer narrow biological questions [21–23].

A handful of studies have demonstrated how microfluidic parallelization and automation

allows for the simultaneous tracking of hundreds to thousands of strains from available fluorescent

libraries for S. cerevisiae [24–26] and E. coli [27,28], utilizing the precise control of microfluidics

to generate -omics scale data sets. While significantly expanding the utility of a single device,

highly parallelized microfluidics typically consist of multiple layers with pneumatic connections

allowing valves to control media flow, cell loading, and chemical delivery [24,29,30]. This leads to

additional experimental complexity compared to single-strain microfluidics, which can complicate

experimental setup, limit control of environmental dynamics, and shorten experimental run-time.

Thus, while incredibly useful to a trained technician, these obstacles impede the widespread

adaptability of highly-multiplexed microfluidics throughout academic and industrial labs.
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In the following chapters, I describe the development and application of a broadly ap-

plicable highly-multiplexed microfluidic platform. This single-layer, single-inlet, single-outlet

device exhibits microfluidic and experimental simplicity while enabling the real-time monitoring

and environmental control of over 2,000 E. coli or S. cerevisiae strains over week timescales.

I demonstrate the utility of this platform to basic biology research, enabling the generation of

-omics scale gene expression data at a 3 minute temporal resolution. I show the platform’s

potential to assist synthetic biology design as a tool for the high throughput screening of variant

gene circuit constructs. Further, I describe the immediate real-world application of this platform

as an environmental biosensor for the real-time detection of heavy metals in water supplies.
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Chapter 2

Highly-multiplexed microfluidics for

continuous culturing and monitoring of E.

coli and S. cerevisiae strain libraries

2.1 Introduction

Genome-scale technologies have transformed our understanding of the biomolecular

signaling networks that underpin gene function, cellular behavior, and drug responses. Omics-

level analysis has cemented the view that biological signal processing is not the result of linear

pathways, but an emergent property of complex networks whose functions and dynamics we now

seek to understand [18, 31–35]. In model organisms, signaling networks are often elucidated

by studying the changing patterns of gene expression in reaction to experimentally-induced

environmental perturbations [2, 31, 32]. However, the high-throughput, genome-wide techniques

(including RNA-seq [36, 37], ribosome profiling [38], mass spectrometry [39], and microarray-

based expression profiling [40, 41]) that have successfully been applied to this problem are

destructive in nature and only offer snapshots of a cell’s state [42]. Technologies that acquire
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single time point data do not capture the information encoded in the dynamics of biomolecular

networks [43], which are complex, time-dependent signals [44–46].

Over the past two decades, microfluidic devices coupled to time-lapse fluorescence

microscopy have evolved to bridge the gap of -omics data and precisely controlled dynamic

environments, resulting in high-quality time series data for thousands of signaling network

constituents in live cells [47,48] for a variety of model organisms and cell lines [24–28]. Here, we

present an advance in microfluidics with the pipeline for the simultaneous loading, culture, and

measurement of over 2,000 unique E. coli or S. cerevisiae strains on a straightforward, single-inlet,

single-outlet, and single-layer device.

2.1.1 Existing multiplexed microfluidic platforms

Some of the first high-throughput microfluidic devices for cellular analysis were published

from the Quake lab at Stanford University. In 2002, the group published a device consisting of 256

individually addressable chambers controlled by 2,056 microvalves where two separate substrates

can be loaded into a compartmentalized chamber, mixed pairwise, and independently retrieved

[49]. This device was used as a microfluidic comparator to successfully screen and retrieve E. coli

cells expressing a cytochrome c peroxidase enzyme from a heterogeneous population. A similar

platform was published in 2007 for mammalian cell culture, with 96 individually addressable cell

chambers [50]. Though this device can only load a maximum of two unique strains, it introduced

multiplexed valve systems to microfluidics and paved the way for many valve-based devices. This

device was used to investigate the influence of transient stimulation schedules on human primary

mesenchymal stem cells. While these devices primarily showcased the ability to address a single

strain with under multiple conditions, they introduced multiplexed valve systems to microfluidics

and paved the way for many valve-based devices.

The Maerkl lab at the Swiss Federal Institute of Technology in Lausanne (EPFL) fur-

ther developed valve-based microfluidic technology to develop a 1,152-chamber microfluidic
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device for monitoring S. cerevisiae at the single cell level [24]. Cells are first spotted onto an

epoxysilane-coated coverslip using a DNA microarrayer. The multi-layer PDMS device is then

aligned and bonded to the coverslip. The device has four valves that are opened and closed

in a specific sequence, controlling the direction of flow to prime the chip with media, prevent

cross-contamination, and allow the cells to continuously grow as a monolayer in each chamber.

This device is arrayed into 3, 384-chamber sections that are fluidically isolated from each other

and allow a medium switch between two sources. The temporal resolution for imaging this device

is twenty minutes. The Maerkl group measured gene expression over six hours of growth and

seven hours of DNA damage exposure. While this device is the most high-throughput device

currently available for S. cerevisiae monitoring, the temporal resolution is not sufficient for

measuring dynamics in all signaling networks in S. cerevisiae. For example, in the oxidative

response network, the time scale of protein expression change is on the order of minutes [51].

Additionally, this device only monitors strains for less than a day, preventing the monitoring of

longer dynamics such as fermentation and shifts in metabolism and growth phases. Finally, this

platform only allows for one medium shift and does not allow for a dynamic input, despite such

control being one of the most salient advantages of microfluidics [16].

The Maerkl lab additionally developed a valve-based microfluidic device with 768 cham-

bers for monitoring E. coli [29]. The same spotting technique is used as their S. cerevisiae device,

where cells are arrayed onto a coverslip using a DNA array spotter and a multi-layer PDMS device

is aligned and bonded to the coverslip. While this device can culture and monitor strains for up to

one week, it requires a complex sampling process where a series of valves are opened and closed

in order control the flow of medium, sample, and lysis buffer every hour throughout the duration

of the experiment. During this sampling process, the sample is flowed onto the device for 10

minutes, the cells are then exposed to the sample and media via diffusion for 45 minutes, and

then lysis buffer is flown on to clear the channels for ten minutes. This discontinuous exposure to

a fresh sample could lead to a change in the microenvironment in each biopixel over time due to
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nutrient metabolism and waste secretion by the cells. Additionally, this sampling step inhibits the

dynamic input of the sample. This device was used to characterize strains and as a biosensor to

detect varying levels of arsenic using a custom optical system.

Finally, a 1,500 chamber mammalian cell culture device was developed by the Tay Lab at

the University of Chicago and is a built to culture single cells, two-dimensional populations, or 3D

neurospheres of stem cells [30]. Each chamber can have independent culture conditions including

cell type and density, and can also have a unique set of signaling molecules, growth factors,

or drugs delivered to the chamber. The device has an on-chip chemical formulator, peristaltic

pump, and valve system to mix various chemicals and deliver them to individual chambers with

sub-minute temporal resolution. Contrary to the previous valve-based devices where cells are

spotted prior to bonding the PDMS device to the glass slide, this device is first bonded and then

cells are loaded onto the PDMS-glass device through a semi-automatic loading program through

the channels and on-chip valve system. A typical week long experiment results in the tracking of

30,000 individual cells with 1,500 dynamic individual conditions. While this device is capable of

1,500 dynamic inputs of chemicals, it is not used in the study to look at many different cell types

in one experiment. This is potentially due to the requirement of loading each strain individually

using the valve system.

While all three of the devices described above have many strengths with respect to

monitoring the gene expression of their organism of interest, all share the disadvantage that

these multi-layer, valve-based microfluidic devices have complex experimental protocols that are

cumbersome to set-up and require hardware that limits the devices’ usability in an industrial setting.

These shortcomings and those listed above impede the widespread adoption of a potentially

transformative technology and its application towards signaling pathway dynamics and associated

biomedical applications [25]. To this end, by sacrificing the ability to individually address each

cell culture chamber, we have developed a novel single-layer, two-fluidic-port device for the

high-throughput continuous culture and measurement of over 2,000 E. coli or S. cerevisiae over
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week timescales. This chapter describes the optimization performed to fabricate, load, and bond

these devices and concludes with a full detailed protocol for their manufacturing.

2.1.2 Fluorescent strain libraries

To validate the use of our multiplexed microfluidic platform we tested the viability, long-

term growth, and fluorescent dynamics of two strain libraries: an E. coli promoter library from

the Alon group [27] and an S. cerevisiae library from the O’Shea and Weissman groups [26].

The E. coli is composed of 1930 unique 50-150 base pair promoter regions from the MG1655 E.

coli genome inserted into a low copy, pSC101, plasmid upstream of a strong ribosome binding

site and GFP (Figure 2.1A). The S. cerevisiae library is comprised of 4,159 unique strains in

which GFP fusion proteins were integrated into the BY4741 yeast genome, to be expressed by

endogenous chromosomal promoters (Figure 2.1B). Upon their creation, both libraries were used

to measure gene expression and promoter activity in their respective studies, though only under

batch growth conditions [26, 27, 52]. In our effort to characterize these library dynamics under

continuous growth conditions, we sought to engineer a multiplexed microfluidic device that could

simultaneously culture over 2,000 unique strains, amounting to the entire E. coli library or half

the S. cerevisiae library on a single chip.

sc101 Ori

GFP
KanR

{

Promoter
region

A B

ORF ORF
Chromosome

NH2 COOH

Fusion protein

GFPProtein

S. cerevisiae libraryE. coli library

Figure 2.1: Strain library architecture. (A) E. coli library members are transformed with
a plasmid, each with a unique 50-150 base pair promoter region upstream of GFP. (B) S.
cerevisiae library members have GFP genomically integrated, each with a unique native-protein
GFP fusion.
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2.2 Microfluidic device design

2.2.1 Cell loading requirements

Traditional loading of microbial cell cultures onto microfluidics requires an individual

fluidic line and connecting port into the microfluidic assembly for each unique strain in order

to minimize the risk of strain-cross contamination [16]. The use of multi-layer devices with

microvalve arrays can offer a workaround to excessive fluidic connections, but introduces its

own complexities and an increased risk of cross contamination. To bypass superfluous fluidic

connections while maintaining a simple and easily adoptable fluidic architecture we found it

necessary to develop a method to load strains directly onto the device before bonding PDMS

to glass (Figure 2.2). As an additional constraint, loading 2,000 strains onto either the glass or

PDMS components of a microfluidic device would need to be rapidly performed, as PDMS-glass

bond strength weakens with time between plasma exposure and component bonding.

Figure 2.2: Device complexity in multiplexed microfluidics. An early stage 18-strain microflu-
idic device requiring 20 fluidic connections (left) compared to the final 2,176-strain device with
2 fluidic connections (right). The 18-strain device is loaded using conventional fluidic methods
while the 2,176-strain device is loaded using our novel spotting protocol.

There is no off-the-shelf equipment that can load tens to thousands of strains onto a

microfluidic device. To meet this need, we adapted the Singer ROTOR spotting robot from its

original purpose as a tool to transfer cells between liquid well-plates or agar plates using contact
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(agar) and surface tension (liquid), to a tool that could transfer cells from agar to a microfluidic

device. The microfluidic design requirements were constrained to the capabilities of this robot.

The requirements included the following: a cell trap region at least 400 μm in diameter where

each initial cell spot would be placed, 1.125 mm spacing between each cell trap in both the x and

the y dimension due to SBS-format limitations, and a region for exponential cells to grow and

have sufficient diffusion of nutrients where the measurements would be taken.

2.2.2 Cell trap design

Before scaling up to the final 2,000-strain microfluidic device, a 32-strain mid-scale

device was created to verify our spotting protocol (Figure 2.3). This mid-scale device features

a 4x8 array of cell spotting regions, each connected to 10 cell chambers as seen in Figure 2.3c.

Spacing between the spotting regions is 1.125 mm for compatibility with standard SBS-format

6144-density spacing. Flow through the device is such that each cell chamber region is fluidically

isolated to prevent strain cross-contamination. A single strain bank is detailed in Figure 2.3a.

Each cell spotting region (a1) can be loaded with a different cell strain. Upon wetting the device,

cells grow along the feeder channels (a2) and fill the cell chamber (a3). The cells grow on fresh

media delivered by the media channel (a4). A linker channel (a5) allows cross-seeding of the cell

chambers in order to continually refill any chambers whose cells are washed out.

The geometry of individual cell chambers is shown in Figure 2.3b. The cell chambers are

designed 10 μm wide to minimize internal convective flow from the media channel, improving

cell retention. They are fabricated as 50 μm tall and closely spaced at 30 μm in order to maximize

the cellular fluorescence signal integrated along the orthogonal optical imaging path. The full

chip layout is shown in Figure 2.3c and an image of a single strain bank in exponential growth

with E. coli in Figure 2.3d.

While the cell trap in Figure 2.3 was used for development of the spotting protocol, several

trap geometries were tested for the final design. Trap designs were tested in order to maximize
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Figure 2.3: Geometry of the mid-scale 32-strain microfluidic device. a) Schematic of single
strain bank, with a cell spotting region (1), feeder channels (2), cell traps (3), media channel
(4), and linker channel (5). b) Detailed dimensions (μm) of the cell traps, optimized for cell
growth, retention, and optical signal. c) Overview of the mid-scale device with 32-strain banks
connected in parallel. d) Microscope image of E. coli growing exponentially in one strain bank.

E. coli cell retention, homogeneous growth states, and fluorescence signal while minimizing

excess cell mass that would lead to clogging and therefore a shorter device lifetime (Figure 2.4).

Figure 2.4a shows the cell traps initially designed and described above, referred to informally

as “gills”. Gill traps had a high aspect ratio which resulted in maximized fluorescence signal,

however cell retention was poor, due to convective flow into the first gill and flowing out of the

tenth gill. The Gill-Shunt design (Figure 2.4b) was designed to reduce convective flow in the gill

traps by providing a path of lesser resistance for flow to follow before cells filled. Although this

design helped redirect flow, cell retention was still variable. Furthermore, the high aspect ratio of

the gill traps made devices difficult to fabricate with techniques other than PDMS lithography,

limiting the possibility of more commercially viable fabrication methods such as hot embossing.

The cell traps in Figure 2.4c were designed to have a dead volume region in order to better retain

cells. While cell retention improved, cell growth states were variable, and resulted in variable

fluorescence responses. Figure 2.4d shows the simplest trap possible, a single open side trap in

which cells are directly spotted. Cells in this 50 μm tall trap accumulated too much biomass and
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clogged the device quickly. Figure 2.4e shows a design similar to 2.4d with an added spotting

post to constrict some biomass while also providing a support pillar for the spotting process. This

design also resulted in excessive biomass. Figure 2.4f shows a funneled cone design also 50 μm in

height that restricted cell mass. This design was iterated for use in the channel-free design (Figure

2.4g-j). Figure 2.4g has a 4 μm spotting region and 50 μm funneled cone. Figure 2.4h shows a

teardrop wall in order to prevent upstream cells from gathering on downstream trap walls. It has

a 4 μm spotting region and 50 μm funneled cone similar to Figure 2.4g. The narrow funneled

cone prevented clogging and large biomass, but the 50 μm height still resulted in variability in the

growth state. Similarly, Figure 2.4i also has a teardrop shape and 4 μm spotting region. Instead

of a 50 μm cone, this design has 50 μm gills as the cell trap. The gills reduced cell mass and

clogging, but still showed variability in growth state. Figure 2.4j has a 4 μm spotting region and

4 μm cone. This design limited biofilm formation, decreased growth state variability, and had

sufficient fluorescence signal; however, this design was not compatible with the manifold channel

design. This trap design was adapted to work with the manifold channel design (Figure 2.4k),

successfully retaining cells in a homogeneous growth state with detectable fluorescence signal.

The design in Figure 2.4k, referred to as “bulbs”, was had the best overall performance and was

the primary trap design used for the work presented in Chapter 3.

2.2.3 Channel system design

Traditionally in microfluidics, a binary splitting channel system is used, where each cell

trap has an equal channel path length in order to have identical flow rates and fresh nutrients.

However, as the number of desired cell traps increases, this channel system requires large amounts

of space (Figure 2.5a). Moreover, the total number of cell traps must be a factor of 2n, where n

is the number of splitting events, in order to have even flow across all traps. Three additional

channel systems were tested in order to decrease the feature footprint between traps, while

maintaining sufficient nutrient delivery, preventing excessive buildup of cell mass, and preventing
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Figure 2.4: Cell trap designs tested to maximize E. coli cell retention, homogeneous growth
states, and fluorescence signal. Gill traps with (a) and without (b) shunts inconsistently filled
traps. Dead end gills (c) and side traps (d,e) lead to heterogeneous growth states. Channel-free
traps (f-j) were tested with 4 μm (f,j) and 50 μm (g-i) openings with various opening sizes for
cell retention. k) The final trap design used with the manifold channel system for Dynomics
data collection in Chapter 3.

cross contamination (Figure 2.5b-d).

The shared channel system (Figure 2.5b) consists of a single inlet channel splitting into

multiple channels of equal length. Each channel has many traps in series, with media from

upstream traps flowing directly to downstream traps. This design ensures an even flow rate across

all traps in a shared channel, regardless of clogging of fabrication defects. However, we found

that downstream cell traps are cross-contaminated with effluent cells from upstream traps. The

shared channel system is only successful if replicates of strains are loaded in a single channel,
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Figure 2.5: Channel systems tested for increasing the throughput of microfluidic devices
constrained to 1.125 mm spacing between traps. a) Binary splitting channel system traditionally
used in microfluidics. b) Shared channel system. c) Channel-free system. d) Manifold channel
system which is used in the 2,176-strain device. Black arrows denote flow direction.

reducing the throughput of the device.

The channel-free system (Figure 2.5c) consists of an inlet channel feeding media into one

large open area with media flowing around the top of cell traps. The traps were rotated 15◦ so that

the laminar flow paths from the mouth of one cell trap would not directly feed another, reducing

cross contamination, and maximizing nutrient diffusion. While the channel-free system has

the smallest feature footprint, analysis using fluorescent microbeads showed that flow direction

unexpectedly changes near some traps, resulting in cross-contamination. The unpredicted changes

in direction of flow were likely due to small differences in the height of the open area due to

imperfections in the silicon wafer fabrication process.

The manifold channel system (Figure 2.5d) consists of an inlet channel that splits into

several vertical major media channels with a height of 230 μm. Major channels split into minor

channels in parallel that are 50 μm tall. Each minor channel feeds one cell trap. The minor

channels then combine again into shared outlet media channels. The manifold channel system

meets the design requirements best, as cells see fresh media at each trap eliminating cross
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contamination, and the channel footprint is small enough to fit between the required 1.125 mm

spacing between cell traps. While the number of manifold columns is restricted to a factor of 2n,

any number of rows can be used. The manifold channel system results in about a 20% difference

in flow rate down a column of cell traps; however, that did not affect the response of the E. coli

strains tested during channel optimization. The manifold channel system was implemented in the

large-scale device.

2.2.4 Device scale-up

With several trap and channel design vetted, we had the framework to scale the device up

to the thousand-strain scale. The manifold channel system was scaled-up to include 2,176 strains

as seen in Figure 2.6. The strain banks are arranged into two halves of 17x64 strain banks. A

single inlet splits to feed media to each half of the device, with one outlet combining the flow to

remove excess cells and media waste. With the manifold system, a variety of cell traps can be

substituted based on experimental requirements. The gill and bulb designs are the two cell trap

designs used most frequently in this work.

2.3 Device loading

2.3.1 Strain library handling and replication

To prepare strains of E. coli or S. cerevisiae for loading onto a microfluidic device, they

are rearranged from their original 96-well density format. The strains are handled using the Singer

ROTOR (Figure 2.7a). Bulk strain movement uses Singer 96-, 384-, 1536-, or 6144-density

RePads (Figure 2.7b) whereas single colonies can be rearranged using the Singer Stinger (Figure

2.7c). Strains are maintained either in liquid cultures on 96- or 384-well liquid plates or in solid

form on agar plates with a colony density of up to 6144 unique colonies per plate. To ensure that
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Figure 2.6: A large-scale, 2,176 strain microfluidic device. Image of the large-scale 2,176-strain
device loaded with E. coli. The inset shows a single reservoir before and after cell spotting and
revival.

colonies on agar plates do not cross-contaminate, growth times are limited such that colonies do

not touch and are not too large for the RePad pins. We found that growth times for various colony

densities were consistent with those previously reported [53].

The workflow for rearranging cells is shown in Figure 2.7d. First, 96-well liquid plates

are spotted to 96-colony-density agar plates using the ROTOR. Next, the Stinger re-arrays strains

onto four fresh agar plates at a 1536-density based on the desired arrangement on the microfluidic

device. The four 1536-density agar plates are then combined to form a single 6144-density plate.

6144-density RePads are used to transfer cells from the 6144-density agar plate to the microfluidic

device(s).

17



a b

d

c
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Microfluidic Device

Figure 2.7: Cell arraying equipment and workflow. a) Singer ROTOR HDA. b) A 384-density
long-pin RePad, used for bulk movement of strains. c) Singer Stinger, an attachment used for
single colony movement. d) The workflow for loading strains onto a large-scale microfluidic
device. Cells are re-arrayed from 96-density to 1536-density using the Singer Stinger. 1536-
density plates are scaled up to a 6144-density and then spotted to the microfluidic device.

2.3.2 Robot loading optimization - PDMS unbonding

To determine the best cell loading method with the Singer ROTOR, both spotting to glass

slides and to PDMS was explored. Initial device loading tests involved spotting cells from agar

plates onto glass slides using the mid-scale device. PDMS and glass slides were cleaned and

then exposed to oxygen plasma. After plasma exposure, glass slides were placed on a 3D printed

insert compatible with the Singer ROTOR. Cells were spotted from the 6144-density agar plate

onto the glass slides. Finally, PDMS was aligned to the cell array on the glass slides using a

photolithography mask aligner, pressed together, and bonded at 37◦C for two hours. In all, time

between plasma exposure and glass-PDMS bonding took 20-40 minutes.

Spotting to glass resulted in poor bonding between the glass and PDMS. Regions surround-

ing spotted cells often unbonded, causing clogging and cross-contamination (Figure 2.8a). We

hypothesized that the increased hydrophilicity of the glass slides after oxygen plasma treatment

was causing a thin layer of liquid to spread around the cells and prevent bonding. To test this
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hypothesis, cells were grown on agar plates containing 10 μM fluorescein and spotted to both

plasma treated and untreated glass slides. Fluorescence imaging of glass slides showed that

significantly more liquid spreading occurred on plasma treated glass slides. Adding a five second

delay between picking up cells and spotting them allowed cells to dry and resulted in less liquid

spreading, but also led to inconsistent spotting and smaller cell spots (Figure 2.8b).

To spot cells to PDMS, cells were first transferred from a 6144-density plate to an acrylic

insert compatible with the Singer ROTOR to establish alignment markers. Next, the PDMS device

was aligned to the cell spots on the acrylic insert using a photolithography mask aligner. After

alignment, we exposed glass slides and our PDMS aligned to the acrylic insert to oxygen plasma.

We then spotted cells to the PDMS using the Singer ROTOR, pressed together the PDMS and

glass slide, and bonded the device at 37◦C for 2 hours. For this method, time between plasma

exposure and glass-PDMS bonding is about 10 minutes.

Experiments where cells were spotted to PDMS resulted in better bonding than those

spotted to glass slides, but the hydrophilicity of the PDMS caused moisture to wick to the edges of

the reservoirs, resulting in some unbonding. This was solved by adding features to the reservoirs

to increase surface area (Figure 2.8c). Additionally, spotting parameters on the Singer ROTOR

including pin pressure, speed, offset, and overshoot were fine-tuned for spotting the optimal

number of cells. Due to decreased process time and higher bonding efficiency, we chose spotting

cells to PDMS as our primary loading method.

2.3.3 Robot loading optimization - cell viability

Cell health during experiments is essential; therefore, we optimized growth conditions

before and after spotting cells to the microfluidic device to ensure that cells survived the spotting

process and recovered during the experiment.

During early S. cerevisiae experiments, anywhere from 25-97% of spotted reservoirs per

chip failed to grow (Figure 2.9). We hypothesized that this was due to cells drying out between
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Figure 2.8: Minimizing chip unbonding after spotting onto microfluidic devices. a) Experiments
with cells spotted to glass slides resulted in significant unbonding. b) Cells grown on 10 μM
fluorescein agar plates that were either treated or untreated with oxygen plasma. Spreading of
fluorescent fluid was largest for treated slides. Adding a 5-second delay prevented spreading
but resulted in few cells. c) Cells spotted to PDMS patterned reservoirs resulted in well bonded
devices.

being loaded onto the device and being wetted with media. We verified this using a yeast viability

kit [54]. Cells growing on agar plates were spotted onto glass slides and then allowed to dry for

variable periods of time. After drying, cells were stained with green- and red-fluorescent dyes, in

which the red dye selectively stained nonviable cells. Using flow cytometry, we found fresh cells

growing on agar plates to be 98% viable, whereas cells spotted to glass slides and immediately

stained for viability were only 6% viable (Figure 2.9A).

To improve S. cerevisiae viability, we sought to increase the uptake and production of a

cryoprotectant, trehalose, in the cells. Trehalose has been shown to increase the tolerance of S.

cerevisiae to the osmotic stress associated with freezing and drying [55,56]. To increase trehalose

uptake, cells were grown on yeast extract peptone (YP) plates supplemented with 2% Trehalose

and 1% Galactose [57]. In microfluidic runs loaded from cells grown on trehalose plates, we

observed complete cell growth. To increase trehalose production, we grew S. cerevisiae under

heat shock conditions at 37◦C. Cells grown by this method also exhibited complete recovery in

microfluidic experiments. Cells grown on trehalose plates with heat shock did not demonstrate a
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Figure 2.9: Optimizing yeast viability after contact transfer. (A) Cell viability after spotting
onto glass slides. (B) Microfluidic experiments with and without heat shock to induce trehalose
production in S. cerevisiae.

significant advantage over cells only grown on trehalose or only grown under heat shock, thus

all further yeast runs were conducted with a simple heat shock. Future runs were conducted by

growing yeast under heat shock conditions before spotting (Figure 2.9B).

Early E. coli experiments had complete revival on microfluidic devices when grown on

LB+Kan agar plates. However, both E. coli and S. cerevisiae viability decreased after replicating

the same set of strains for several months. Consequently, we thaw fresh overnight cells stored at

-80◦C every six months and repeat the preparation pipeline.

After S. cerevisiae and E. coli are spotted, they are grown on rich SC-His and LB+Kan

media, respectively, for optimal growth. Once reservoirs and traps are filled, S. cerevisiae

experiments are switched to a minimal media, YNB+Met+Ura+Leu, to decrease the fluorescence

of media for an increased signal to noise ratio. Similarly, E. coli experiments are switched to a

minimal media optimized for microfluidic experiments, HM9. Table 2.1 summarizes optimal

growth conditions for E. coli and S. cerevisiae.
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Table 2.1: Growth conditions for E. coli and S. cerevisiae for optimal device performance.

Agar growth Microfluidics - grow up Microfluidics - imaging
E. coli LB+Kan at 37◦C LB+Kan at 37◦C HM9+Kan at 30◦C
S. cerevisiae SC -His at 37◦C SC -His at 30◦C YNB+Met+Ura+Leu at 30◦C

2.4 Device validation

After successfully developing a protocol for the loading, growth, and imaging of strains

of both E. coli and S. cerevisiae, we verified that we could achieve continuous monitoring of

fluorescence levels in library strains. For E. coli, 7 strains were arrayed evenly across the large-

scale chip: the cadmium responsive zntA, the copper responsive cueO, the promoterless control

U139, and three sigma factors, rpoH, rpoS, and rpoD. Baseline fluorescence expression of these

promoters was not significantly different based on device position. Similarly, upon induction with

cadmium or copper, the corresponding strains responded as expected, with zntA responding to

cadmium and cueO responding to copper (Figure 2.10). Variation observed within these responses

was not dependent on device position.

Similarly, S. cerevisiae was validated by running the entire library across two chips, and

ensuring that we could measure gene expression changes in response to osmotic stress. The

library was subjected to multiple short, 2-3 hour, pulses of hyperosmotic stress (1 M sorbitol) [58].

Three representative dynamic fluorescent responses were extracted and are shown in Figure 2.11b.

While we observed S. cerevisiae to have higher auto-fluorescence than E. coli, it was still possible

to measure changes in gene expression by fluorescence measurement.
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Figure 2.10: Library member response to cadmium and copper inductions. (A) Roughly 300
copies of 7 control strains were arrayed evenly across the device. Time series responses to
cadmium and copper inductions are shown for zntA, cueO, and the promoterless U139 strain.
Solid line represents mean, while shaded region represents standard deviation. (B) Histograms
showing the percentage of each strain responding with a specific fold change to each metal
induction.

2.5 Protocol for the contact loading of PDMS microfluidic de-

vices with cells grown on agar plates.

Below is the step by step loading and bonding protocol for mid-scale and large-scale

devices, for both E. coli and S. cerevisiae.

2.5.1 Wafer fabrication

Our group has previously described the steps to design and build a silicon wafer patterned

with the features of the microfluidic device [16]. Briefly, the device is designed using AutoCAD

or similar software, with each set of features of one desired height designed on an individual mask.

Masks are printed by CAD/Art Services, Bandon, OR. A silicon wafer is built using standard soft

photolithography techniques with SU-8 negative photoresist, layering each set of features with a
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Figure 2.11: Validation of induction protocol and fluorescence measurement with S. cerevisiae.
(a) An image of a region of the large-scale device showing approximately 608 strains just before
an induction with sorbitol. (b) The temporal responses of strains in the colored squares from
panel (a) show fluorescence of three strains responding to sorbitol induction (gray bars), an
osmotic stress inducer. (c) Snapshots of the cell chamber region of strain RRP42-GFP taken
every two hours before and after the two sorbitol inductions.
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unique height. The wafer is then coated with silane to prevent SU-8 features from tearing off the

wafer with successive PDMS pours.

2.5.2 PDMS device fabrication

Timing: 3 hours

1. In a clean weighing dish, mix 70 grams of the Dow Corning Sylgard 184 elastomer base

with 7 grams of the Dow Corning Sylgard 184 curing agent. Mix vigorously with a clean

stir rod for 5-10 minutes until the PDMS solution is well mixed.

2. Place the PDMS mixture in a vacuum desiccator to remove bubbles. Vent the vacuum

desiccator as needed so that the bubbles do not spill over the weighing dish.

3. Place a 5” x 5” x 0.125” glass plate in the center of a two-layer 8” x 8” piece of aluminum

foil. Carefully fold up the aluminum to create a dish around the glass plate. Overlap the

aluminum foil over the edges of the glass to minimize PDMS leaking underneath the glass

dish.

4. Place the patterned silicon wafer on the center of the glass plate and pour the PDMS mixture

onto the center of the wafer, using a spatula if necessary, to get the viscous mixture onto

the wafer.

5. Place the wafer stack into a leveled vacuum desiccator and degas until all bubbles are

removed.

6. Once the bubbles are removed, use the blunt ends of two pipette tips to center the wafer if

it slid to one side, and gently push down on opposite sides of the wafer to push out PDMS

that seeped under the wafer.

7. Place the wafer stack into a level oven and bake at 95◦C for 1 hour.
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8. Remove the wafer stack from the oven. Use a razor blade to cut off the foil from the wafer

stack and cut off the excess PDMS around the wafer.

9. Gently slide a razor blade horizontally between the wafer and glass plate and then remove

it. Repeat this around the circumference of the wafer until the wafer separates from the

glass plate. Note: The razor blade must slide horizontally between the glass and the wafer.

Wafers are extremely fragile and if the razor blade is angled then the wafer will break.

10. Using a razor blade, remove any excess PDMS from the bottom of the wafer. Peel the

PDMS off of the feature side of the wafer in the direction of the major channels.

11. Place the PDMS on a cutting mat with the feature-side up to keep the PDMS clean. Using

a razor blade, cut out each PDMS device. Punch out the inlet and outlet channels using a

stainless-steel puncher.

12. Rinse each device with 70% ethanol and blow it dry with compressed air or pressurized

nitrogen gas.

13. Remove debris from each device using Scotch tape, cleaning the feature side four times

and the non-feature side twice. Use forceps to gently press the tape into the features to

remove all debris. Leave tape on each side to keep the devices clean.

2.5.3 Glass slide preparation

Timing: 1 hour

1. Sonicate glass slides in a 2% Helmanex III solution for 30 minutes at 40◦C.

2. Rinse glass slides with deionized water, rubbing them with a clean latex glove.

3. Completely dry the glass slides with pressurized nitrogen gas and ensure that no streaks are

visible.
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4. Store glass slides in a clean, dust-free environment until used.

2.5.4 Cell preparation

Timing: 48-72 hours

1. Using Singer Plus Plates, pour agar plates with the appropriate cell culture media on a

level surface, pouring 42 mL of media + agar into each plate. Allow plates to dry on the

benchtop with the lids covered for 48 hours before parafilming and storing at 4◦C.

2. Fill 96-well or 384-well liquid plates with overnight cultures of the strains of interest, or

thaw glycerol stocks of strains of interest in a 96-well of 384-well density format.

3. Using the Singer ROTOR, spot the liquid plate onto an agar Plus Plate. Use the default

pinning settings for both the source and target plates.

• If spotting E. coli, grow the cells at 37◦C overnight.

• If spotting S. cerevisiae, grow the cells at 30◦C for 2 days.

4. Using the Singer Stinger single colony arrayer, rearray the 96-agar or 384-density agar plate

onto a set of 4, 1536-density plates that matches the array of the microfluidic device(s).

These plates will later be combined into one, 6144-density plate that will be spotted to the

microfluidic devices. Note: if spotting devices with fewer strains, multiple devices can be

arrayed onto one set of 1536-plates.

5. Grow the cells overnight.

• If spotting E. coli, grow the cells at 30◦C overnight.

• If spotting S. cerevisiae, grow the cells on the benchtop overnight.

Note: 1536-density plates can be stored in the fridge and continually used as source plates

for up to 6 months.
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2.5.5 6144-density plate and acrylic tool preparation

Timing: 1 hour for E. coli, 25 hours for S. cerevisiae

A: If spotting E.coli:

1. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one 6144-

density agar plate using the “1:4 Array” program and the pinning settings listed in Table 2.2.

Repeat this for two target plates.

2. Grow one of the target plates for one hour at 37◦C if the source plates have been used less

than three times, or for 90 minutes at 37◦C if the plates have been used more than three

times.

3. Using the other 6144-denstiy target plate, the ”Replicate” program on the Singer ROTOR,

and the pinning settings listed in Table 2.2, spot cells from 6144-density target plate onto

the clean acrylic alignment tool. These cells will be used as alignment markers for the

PDMS device.

B. If spotting S. cerevisiae:

1. Using the Singer ROTOR, replicate the 4x 1536-density agar source plates onto 4x 1536-

density agar source plates using the ”Replicate” program. Grow the plates at 37◦C

overnight.

2. Using the Singer ROTOR, combine the 4x 1536-density agar source plates onto one

6144-density agar plate using the ”1:4 Array” program and the pinning settings listed in

Table 2.2.

3. Using the ”Replicate” program on the Singer ROTOR and the pinning setting listed in

Table 2.2, spot cells from 6144-density target plate onto the clean acrylic alignment tool.

These cells will be used as alignment markers for the PDMS device.
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Table 2.2: Singer ROTOR pinning settings for each step of the microfluidic device loading
process.

Source to target description
Pinning

pressure (%)
Pinning speed

(mm/sec)
Pinning

overshoot (mm)
Source Target Source Target Source Target

1536 agar to 6144 agar 58 64 19 10 2 1
6144 agar to acrylic 50 100 10 10 0.6 0.6
6144 agar to microfluidic
device for E. coli 55 70 10 10 0.6 0.6

6144 agar to microfluidic
device for S. cerevisiae 50 64 10 10 0.6 0.6

2.5.6 Aligning the PDMS to the acrylic tool

Timing: 30 minutes

A. If spotting multiple devices with fewer strains:

1. Using a photolithography mask aligner or similar system, set the acrylic tool on top of the

mask holder with the alignment cells facing up. Bring the cells of one device into focus.

2. Remove the Scotch tape from one PDMS device, avoiding touching the feature side of the

device.

3. Gently place the PDMS device on top of the alignment cells, feature-side up, such that the

center of the spotting regions is centered over the cells.

4. Place tape on top of the PDMS, pressing the PDMS down to ensure adhesion of the PDMS

onto the acrylic tool.

5. Repeat this for each device on the acrylic tool.

B. If spotting one large device with many strains:

1. Using a photolithography mask aligner or similar system, place the PDMS device feature-

side-down on top of the wafer chuck. Remove the tape from the non-feature side of the

PDMS.
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2. Place the acrylic tool on top of the mask holder, with the alignment cells facing down,

above the PDMS.

3. Using the micrometers on the mask aligner, align the center of the spotting regions with the

center of the alignment cells.

4. Bring the PDMS and acrylic tool into contact using the wafer chuck.

5. Remove the tape from the feature-side of the PDMS and check the alignment, ensuring that

the PDMS did not shift when it came into contact with the acrylic tool. If necessary, adjust

the alignment.

6. Re-tape the feature side of the PDMS until ready to expose the PDMS to oxygen plasma.

2.5.7 Oxygen plasma exposure

Timing: 10 minutes

1. Expose the clean 4x3” glass slide and the PDMS acrylic stack to 30W of oxygen plasma

for 30 seconds.

2. Blow any dust off the glass slide and PDMS acrylic stack with compressed nitrogen.

2.5.8 Cell preparation for S. cerevisiae spotting

Timing: 10 minutes

1. If spotting S. cerevisiae, using the Singer ROTOR, combine the heat shocked 4x 1536-

density agar source plates onto one 6144-density agar plate using the ”1:4 Array” program

and the pinning settings listed in Table 2.2.

Note: This plate should be used immediately to spot cells onto the oxygen plasma exposed

PDMS device.
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2.5.9 Loading and bonding the device

Timing: 10 minutes

1. Using the Singer ROTOR and the parameters listed in Table 2.2, spot the cells from the

6144-density agar plate to the oxygen plasma exposed PDMS acrylic stack.

2. Peel the spotted PDMS off the acrylic piece and gently place it face down on the center of

the oxygen-plasma-exposed glass slide.

3. Gently tap the top of the PDMS, ensuring that the device bonds to the glass.

4. Incubate the device at 37◦C for at least two hours.

2.5.10 Experimental set-up

Timing: 40 minutes

1. Place the bonded PMDS device in a vacuum desiccator for at least twenty minutes.

2. Prepare an inlet syringe using methods previously described by our group [16].

3. Prepare and outlet syringe (mid-scale) using methods previously described by our group [16]

or prepare an outlet tube and metal connector feeding into a waste bottle.

4. Mount the bonded PDMS device on the desired imaging platform, plugging in the inlet

syringe first and then the outlet tube when a bead of liquid has formed on the outlet port.

5. Image the device at the desired temporal resolution.
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Chapter 3

Dynomics: A microfluidic and machine

learning platform for genome-scale

transcriptional dynamics and

environmental biosensing

3.1 Introduction

With a platform developed for the continuous culture and measurement of up to 2,176

microbial strains, we sought to demonstrate its utility in measuring gene expression dynamics at

the genome scale. As a further application, we investigated the intrinsic ability of a fluorescent

promoter library to serve as a de facto array of whole-cell biosensors. The development of

whole-cell biosensors has been at the juncture of synthetic biology and the study of genome-scale

dynamics [13, 59]. Previously, whole-cell sensors have been developed towards applications

including the detection heavy metals for environmental safety [18, 59, 60], sensing metabolites

relevant to bioproduction [61–64], or operating in vivo towards diagnostic applications [65–67].
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Whole-cell sensors often harness transcriptional machinery, using either native or engineered

pathways in E. coli, to tie specific environmental inputs to the expression of a reporter gene

from a transcriptional promoter. In this chapter, I demonstrate the utility of Dynomics, a 2,176-

strain microfluidic and imaging platform, for both discovery of these transcriptional elements,

namely, in the case of heavy metals, where E. coli have already evolved native sense and response

mechanisms [68, 69].

3.1.1 Heavy metal pollution and effects on human health

Heavy metal contamination in water sources is a global threat that continues to grow due

to industrialization, mining, and aging water supply infrastructures [70]. Such contamination is

detrimental in both drinking and agricultural water supplies, with top contaminants including

arsenic, cadmium, mercury, chromium, lead, zinc, iron and copper.

Arsenic is a pervasive carcinogenic agent in groundwater globally that has been linked

to skin, bladder, lung, and other cancers [71]. It’s natural and widespread abundance makes it

a metal of significant concern, both in the US and worldwide. Cadmium, largely introduced

to the environment through industrial processes and cadmium-polluted waste, has particularly

harmful effects on human health at low concentrations. Cadmium consumption leads to acute

gastrointestinal effects, kidney and bone damage, and potential carcinogenic effects [72]. Mercury

toxicity varies depending on organic or inorganic forms and exposure levels, but symptoms range

from muscle weakness to neurological dysfunction. While mercury enters water sources through

natural and human processes (coal burning and mining), its primary introduction to humans is

through the consumption of fish that have biomagnified this atmospheric mercury [73]. Chromium

and lead are other industrial pollutants, with chromium linked to carcinogenic effects [74] and

lead, commonly entering drinking water through corroded plumbing, notable for its neurotoxicity,

harming neuropsychological development in children [75, 76].

Zinc, iron, and copper are all metals which are required for many biological processes, but
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can be toxic to humans in high doses. However, because human cells have developed powerful

homeostasis mechanisms to these metals, acute and chronic toxicity is less common. Chronic

excess zinc exposure has been shown to cause anemia and copper and ferritin deficiencies [77],

excess iron can have negative effects on the liver [78] and excess copper consumption primarily

affects the gastrointestinal tract and liver [79].

The contamination of US water supplies has affected hundreds of thousands of Americans

in cases such as Flint, Michigan where an estimated 140,000 people were exposed to dangerously

high levels of lead in their drinking water for over a year, with thousands of children testing

positive for elevated blood levels for years to come [80, 81]. While Flint, MI received much of

the media’s attention, there are almost 3,000 small counties in the United States with a prevalence

of lead poisoning twice that of Flint’s [82].

Heavy metal contamination also arises from large-scale spills when dams collapse at

mines, dumping toxins into nearby rivers. One recent spill was the Gold King Mine Disaster near

Silverton, CO on August 5, 2015 [83]. The Gold King Mine, which was abandoned in 1923, had

accumulated a large amount of contaminated groundwater inside of it, a consequence of acid

mine drainage [83]. The 2015 spill occurred when the Environmental Protection Agency (EPA)

went to clean the site, but accidentally caused a dam plugging the mine’s entrance to fail. All of

the mine’s waste water, including metals such as cadmium, copper, zinc, iron, cadmium, and lead,

poured into Cement Creek, and then into the Animas River, followed by the San Juan River. The

thousands of members of the Navajo Nation, through which the San Juan flows, had to shut off

irrigation from the river to their crops and livestock in the days after the spill, causing widespread

damage and lasting effects on food supply [84].

Heavy metals have long posed a threat to both drinking and agricultural water supplies;

however, sufficient equipment for measuring levels of heavy metals is not readily available.

Currently, water analysis requires periodic sampling that is sent to an off-site laboratory for

analysis, eliminating the ability to detect early signs of pollution or when pollution has reached
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safe levels [85]. Not only is such sampling inefficient for large mine spills causing water to be

shut off from agriculture for days longer than it needs to be, but such sampling occurs infrequently

in municipal areas and rarely in people’s homes. With the increasing concern of heavy metal

pollution, a real-time, cheap, and portable solution is necessary.

3.1.2 Current methods for metal detection in water supplies

Of the most widespread current methods for heavy metal detection are atomic absorption

spectroscopy (AAS), inductively coupled plasma (ICP), and anodic stripping voltammetry (ASV).

AAS atomizes elements in a sample with one of several techniques (flame, electrothermal, hybrid)

and measures the amount of light absorbed by the vapor solution. Inductively coupled plasma

based methods use plasma to atomize a sample, then optical emission spectrometry of the excited

atoms (ICP-OES) or mass spectrometry (ICP-MS). ASV is a less expensive, but lower throughput,

method that coats an electrode with metals in solution, and measures current as the metals

are stripped off. All of these methods are fast and incredibly precise, however, all require the

collection of environmental samples that are often brought to a laboratory for analysis [86].

The lack of a reliable, real-time, and field-deployable metal sensor offer an opening for which

biosensors are well suited to fill.

3.1.3 Biosensors for heavy metal detection

With the growth of synthetic biology, biosensors have become a highly researched area for

detecting heavy metals. Biosensors can be broadly classified into cell-free systems and whole-cell

systems. Protein based biosensors include using aptamers, nucleic acids, peptides, enzymes,

antibodies, or proteins as probes for sensing heavy metals. While these systems are able to detect

low concentrations of analytes quickly and specifically, they can be expensive and often require

immobilization, purifications, and involved analysis [59].
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The evolution of genetic engineering has made it possible for creating whole-cell biosen-

sors that can detect samples faster, cheaper, and with less operational expertise required than

traditional analytical chemistry techniques. They offer similar detection limits as cell-free biosen-

sors but are cheaper and easier to cultivate. Genetic engineers can also harvest the systems

microbes have already evolved for processing heavy metals.

Combining microfluidic technologies with whole-cell biosensors has led to a massive

reduction in size and cost for in-line heavy metal detection systems. Many microfluidic biosensors

to date have been single-strain, single-toxin devices or devices that require a complex system

with multiple external connections, constraining these devices to a lab setting [29, 59]. Instead

of single-strain devices, genome-scale microfluidic instruments that can culture, monitor, and

measure thousands of strains could leverage biology’s natural ability to sense and respond to

environmental stimuli, resulting in a non-specific sensor that could sense any substance that

perturbs a microbe. Coupling artificial intelligence (AI) algorithms with the fluorescence outputs

of such a device would allow for a robust, simple, field-deployable device to sense toxins of

interest in real-time that would output if that toxin is present.

3.1.4 Artificial intelligence for biological discovery

Over the last two decades, computer science has experienced a massive increase in

computing and algorithmic power in the field of artificial intelligence (AI). Concurrently, the rise

of -omics technologies has led to exponential increase in the volume of experimental data [87].

However, machine learning has not yet fully delivered on its potential to facilitate scientific

discovery because of the “black box problem”: as an algorithm’s ability to model complex

phenomena grows, its decision-making processes become more and more obscured from its

operators. Explainable artificial intelligence (XAI) techniques have begun to address this problem,

with model-specific approaches in the life sciences [88–90], and recently, a mathematically-

consistent method for understanding the decision-making process of any AI classifier [91, 92]. In
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the following chapter, I will describe how we use these AI advances to better leverage the data

produced by Dynomics.

3.2 Deploying Dynomics

3.2.1 Dynomics platform overview

Using the device developed in Chapter 2, we have developed a high-throughput microflu-

idic biosensor and associated software platform, Dynomics, that can simultaneously co-culture

and monitor 1,807 strains of a promoter-GFP E. coli library [26] under time-varying environmen-

tal conditions, successfully detecting the presence of Cu(II), Zn(II), Fe(III), Pb(II), Cd(II), and

Cr(VI). Initially, time series and fold-change data are used to identify and quantify responsive

strains. The data is further leveraged via both deep learning classifiers, for real-time detection of

inducers, and XAI algorithms, to quantify each strain’s impact on the classifier’s predictions and

understand which strains are responding to each metal (Figure 3.1).
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Figure 3.1: The Dynomics platform. Fluorescent strain libraries are loaded onto large-scale
microfluidic devices that can be fully captured in a single image using custom optics. Parallel
cultures of E. coli are subjected to multiple exposures of different stimuli with time series and
fold-changes used to quantify responsive strains. Machine learning algorithms are trained on
preprocessed data to enable real-time stimulus detection.
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3.2.2 Microfluidic device optimization

Based on the initial design in section 2.2.2 the Dynomics microfluidic device was opti-

mized for straightforward experimental setup, reliable trap filling and cell retention, and optimal

fluorescence signal from each spotted microcolony (Figure 3.2a-c). The single media inlet-outlet

device requires only two fluidic connections after cell spotting and chip bonding. The media

inlet channel feeds a total of 2,176 4-μm-tall cell traps. Trap shape and spacing allows a 6,144

SBS-density pin pad to deposit cells into the back of the trap, where they grow towards the tapered

opening interfacing with 50 μm-tall minor media-channels. These minor channels branch off of

a larger 230 μm-tall major media-channel manifold system, as designed in section 2.2.2. Once

spotted cells have reached confluence, inducer compounds can be pulsed in at user-specified

frequencies with the dynamic response of each strain measured down to a 3-minute temporal

resolution (Figure 3.2d).

3.2.3 Dynomics Optical Enclosure

The Dynomics optical enclosure is a stand-alone microscope for imaging the microfluidic

device with a 70 mm x 70 mm field-of-view (Figure 3.3a). The enclosure includes an SBIG

STX-16803 CCD camera (a1), a custom lens stack assembly (a2), two blue excitation LEDs

(a3) and associated drivers (a7) for GFP imaging, a green LED (a5), associated driver (a7), and

diffuser stack assembly (a4) for transmitted light imaging, a temperature-controlled enclosure

where the microfluidic device is mounted (a4), all necessary power supplies and wiring (a8), and

a Tegra computer with custom software (a7) to control the LEDs, imaging, temperature, and

to sync the images onto servers via WiFi. The enclosure costs about $15,000, compared to an

off-the-shelf microscope that can cost an order of magnitude more. The optical enclosure images

in both transmitted light and fluorescence channels with a 36 μm optical resolution, comparable

to a lab-grade microscope at 4x magnification (Fig. 3.3c-e). With a nominal imaging frequency
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Figure 3.2: The Dynomics microfluidic device. a) Design of the Dynomics 2,176-strain mi-
crofluidic device with cell traps in red and media channels in blue and yellow. b) Detailed
schematic of four strain banks with arrows showing direction of media flow. c) Mean fluores-
cence (solid blue) and standard deviation (shaded blue) of the E. coli zntA promoter driving GFP
to repeated cadmium inductions (gray bars) with periods increasing from left to right (30 min.,
2 hrs., 4 hrs., and 8 hrs.)

of 3 minutes, Dynomics allows us to adjust environmental conditions and measure the resulting

changes in gene expression at a high temporal resolution.

3.2.4 Screening for responsive promoters to heavy metals

Using the Dynomics platform with a previously developed GFP E. coli promoter library

[27], 1,807 unique E. coli promoters were screened against nine heavy metals (Cu(II), Zn(II),
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Figure 3.3: The Dynomics custom optical enclosure. a) Components include (1) a SBIG
STX-16803 CCD camera, (2) a custom lens stack assembly, (3) blue excitation LEDs for GFP
fluorescence imaging, (4) a temperature-controlled enclosure where the microfluidic device is
mounted, (5) a green LED and associated diffusers and lenses for transmitted light imaging, (6)
a Tegra computer and software for controlling imaging and transferring images to a server, (7)
LED drivers, and (8) all associated power supplies and wiring. b) An image of a large-scale
microfluidic device mounted in (a4). c-e) The Dynomics microfluidic device imaged on a
standard research grade scope with 4x magnification, and on the Dynomics enclosure for both
transmitted light (d) and fluorescence (c,e) channels. The Dynomics enclosure has 36 μm
resolution.

Fe(III), Pb(II), Cd(II), Cr(VI), Hg(II), As(III), Sb(III)) at environmentally relevant concentrations

(Table 3.4). Screening experiments lasted 7-14 days, with cells exposed to a different heavy metal

every 24 hours (Figure 3.4).

Promoters responsive to each metal can be identified through a combination of clustering

and fold-change analysis. A high-level view of the 1,807 promoter time traces (Figure 3.5a)

and subsequent clustering (Figure 3.5b) reveal distinct classes of transcriptional responses to

a single four hour zinc exposure. In (Figure 3.5b), clusters 1 and 2 include promoters that are

up- and down-regulated, respectively, in the presence of zinc, but return to baseline expression

levels within 15 hours of zinc removal. Clusters 3 and 4 include promoters that are up- and

down-regulated, respectively, with slower dynamics. Gene ontology (GO) enrichment analysis
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Figure 3.4: Responsive strains over the duration of a Dynomics experiment. Normalized
fluorescence for two strains is plotted over the duration of one experiment, with four-hour heavy
metal inductions (gray bars) occurring once daily.

suggests that from these four clusters, genes associated with cellular stress are up-regulated

(cellular detoxification and antibiotic metabolic process) while genes involved in metabolism

and biosynthesis are down-regulated (nitrogen metabolism and glutamine family amino acid

biosynthesis). The full list of GO terms and their associated p-values are listed in Table 3.1.

Individual responsive strains for each metal were identified, based on their fold-change

response (Figure 3.6a) to four-hour metal exposures, which were repeated in random order

once every 24 hours. Fold-change detection highlights the promoters displaying the strongest

response to each metal. Subsequent investigation of the most responsive strains (Figure 3.6b)

quantitatively elucidates dynamics, such as amplitude, relaxation time, and response rate, all of

which important factors for their use in the study of gene expression regulation and continuous

biosensing applications. While many of the Dynomics-identified sensing strains such as zntA [93]

or cueO [94] have well documented metal interactions, others are less studied or poorly annotated,

particularly members of E. coli ‘y-ome’ [95]. Overall, the methods of data analysis reveal each

metal to have responsive promoters with a unique signature of up- and down-regulation. However,

in view of the ultimate task of a biosensor, which is to distinguish the presence of a metal based
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Figure 3.5: Dynomics as a screening tool for heavy metal responsive promoters in E. coli. a)
Fluorescence response of an E. coli promoter library during a four hour 50 ppb Zn induction
(dotted window). Each row represents the promoter activity, normalized between 0 and 1, of a
single strain, with 1,995 total strains represented. Four clusters from agglomerative clustering
are labeled on the right. b) Four clusters of strains calculated from agglomerative clustering
from the data in panel a. The mean (dark blue line) and standard deviation (dark blue shading)
of all strains in each cluster is plotted. The dotted window denotes when zinc was present.

on a real-time transcriptional data, fold-change alone is difficult due to promoter non-specificity,

cross-talk, noise, and low amplitude responses.
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Table 3.1: Gene ontology enrichment analysis of the clusters obtained by agglomerative cluster-
ing of Figure 3.5.

Cluster GO	biological	process	complete Fold	Enrichment P-value
localization	(GO:0051179) 0.74 4.11E-02
transport	(GO:0006810) 0.71 3.30E-02
transmembrane	transport	(GO:0055085) 0.62 4.47E-02
protein	autoprocessing	(GO:0016540) 9.7 4.59E-02
transcription	antitermination	(GO:0031564) 9.7 4.59E-02
carbon	utilization	(GO:0015976) 9.7 4.59E-02
cellular	response	to	light	stimulus	(GO:0071482) 9.7 4.59E-02
cellular	response	to	radiation	(GO:0071478) 9.7 4.59E-02
regulation	of	single-species	biofilm	formation	(GO:1900190) 9.7 4.59E-02
cellular	response	to	UV	(GO:0034644) 9.7 4.59E-02
bacterial	transcription	(GO:0001121) 9.7 1.29E-02
one-carbon	metabolic	process	(GO:0006730) 7.28 2.11E-02
tetrahydrofolate	metabolic	process	(GO:0046653) 5.54 1.43E-02
folic	acid-containing	compound	metabolic	process	(GO:0006760) 4.31 2.68E-02
pteridine-containing	compound	metabolic	process	(GO:0042558) 3.88 3.48E-02
positive	regulation	of	nitrogen	compound	metabolic	process	(GO:0051173) 2.11 3.44E-02
macromolecule	metabolic	process	(GO:0043170) 0.66 4.19E-02
transmembrane	transport	(GO:0055085) 0.33 4.02E-02
thiamine-containing	compound	biosynthetic	process	(GO:0042724) 5.29 2.57E-02
cellular	detoxification	(GO:1990748) 5.29 2.57E-02
thiamine	biosynthetic	process	(GO:0009228) 5.29 2.57E-02
thiamine-containing	compound	metabolic	process	(GO:0042723) 4.23 4.07E-02
thiamine	metabolic	process	(GO:0006772) 4.23 4.07E-02
antibiotic	catabolic	process	(GO:0017001) 3.53 2.15E-02
detoxification	(GO:0098754) 3.53 2.15E-02
cellular	response	to	toxic	substance	(GO:0097237) 3.53 2.15E-02
reactive	oxygen	species	metabolic	process	(GO:0072593) 3.31 4.21E-02
tetrapyrrole	biosynthetic	process	(GO:0033014) 3.17 2.99E-02
tetrapyrrole	metabolic	process	(GO:0033013) 3.17 2.99E-02
response	to	toxic	substance	(GO:0009636) 2.91 5.74E-03
antibiotic	metabolic	process	(GO:0016999) 2.8 1.46E-02
vitamin	biosynthetic	process	(GO:0009110) 2.65 1.29E-02
water-soluble	vitamin	biosynthetic	process	(GO:0042364) 2.65 1.29E-02
water-soluble	vitamin	metabolic	process	(GO:0006767) 2.43 1.78E-02
vitamin	metabolic	process	(GO:0006766) 2.43 1.78E-02
drug	catabolic	process	(GO:0042737) 2.41 2.54E-02
drug	metabolic	process	(GO:0017144) 2.17 1.33E-03
positive	regulation	of	biological	process	(GO:0048518) 0.38 4.72E-02
arginine	biosynthetic	process	(GO:0006526) 2.79 4.34E-02
arginine	metabolic	process	(GO:0006525) 2.54 4.22E-02
glutamine	family	amino	acid	biosynthetic	process	(GO:0009084) 2.36 3.63E-02
drug	transport	(GO:0015893) 1.77 4.98E-02
transmembrane	transport	(GO:0055085) 1.48 2.65E-02
localization	(GO:0051179) 1.28 4.48E-02
drug	metabolic	process	(GO:0017144) 0.5 2.90E-02

4

1
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(blue line) and standard deviation (blue shading) across all inductions for a given metal (dotted
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3.3 Using machine learning to leverage Dynomics data

3.3.1 Supervised machine learning

To better discriminate between E. coli’s response to the heavy metals used in our screening,

we trained and tested two types of machine learning models on the Dynomics data. The first

model, known as extreme gradient boosted trees (XGBoost), is a popular decision tree ensemble-

based classifier known for its ability to learn nonlinear models [96]. The second, known as a long

short-term memory recurrent neural network (LSTM-RNN), is a DNN [97] selected because of
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its ability to effectively utilize sample sequence history to classify time series data, a property not

shared by XGBoost.

Both classification algorithms outperformed random guessing of the majority class (no

toxin) on the standardized experiments’ feature set, with the LSTM-RNN performing the best

overall (Figures 3.7, 3.8). The LSTM-RNN was able distinguish both biotic and xenobiotic

metal-spiked water from pure water with a high level of reliability. We believe this is the first

instance of a multi-class classifier successfully leveraging genome-wide transcriptional dynamics

to predict exposure of a biological organism to an environmental stressor.

The LSTM-RNN found iron and copper to be easily-detectable biotic metals, which is

not surprising given their importance to E. coli cellular function [94, 98]. Cadmium was the

most readily detected xenobiotic metal with the LSTM-RNN classifier, though it was sometimes

confused with zinc. E. coli are known to use the same sensing and transport systems to capture

and export excess amounts of these two metals, which possess the same number of valence

electrons [93, 99]. Most classification errors occurred at the beginning and the end of the

experiments’ induction periods, when the LSTM-RNN occasionally had difficulty determining

the exact time that each metal was added or removed from the media (Figure 3.9).

3.3.2 Explainable artificial intelligence

Taking advantage of recent XAI advances, we trained a Shapley additive explanations

(SHAP) XAI on both our XGBoost and LSTM learners [91, 100]. Viewing both SHAP values

(impact on classifier output) and feature values (data fed to the classifier) with respect to time offers

insight into how the classifier operates in real-time (Figure 3.10). The cause of misclassification

is made clearer, as SHAP dynamics reveal that the predictive impact of a strain often varies

within an induction window, particularly at its start and end. Furthermore, we see how some

promoters, such as zntA, positively contribute to the detection of multiple metals, which causes

the classifier to rely on promoters with less-pronounced responses to distinguish the exposed
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Figure 3.7: Confusion matrices showing the frequency, recall, precision, and F1 score of the
LSTM-RNN classifier in predicting six metals across all experimental data (14,332 time points).
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Figure 3.8: Confusion matrices showing the frequency, recall, precision, and F1 score of the
XGBoost classifier in predicting six metals across all experimental data (14,332 time points).
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Figure 3.9: LSTM-RNN classifier applied to time series data for all six detectable metals in
two different experiments. Misclassified time points are shown in red.

metal. As a result of the combination of experimental noise and weaker responses, the SHAP

values of these differentiating strains are often smaller and vary more with time, explaining the

misclassification of the metals. Finally, promoters that may not have been identified as responsive

using fold-change analysis because of subtle, low-amplitude, and noisy responses can be identified

via XAI. While these subtle responders may not serve as stand-alone biosensor strains, they

provide promising targets for future sensor engineering efforts. These insights highlight the ability

of the LSTM-RNN classifier to compile the influence of many strains, prominent and subtle, to

make a more often than not accurate prediction of the present metal exposure.

The SHAP-XAI highlights the similarities and differences between how the LSTM-RNN

and XGBoost make decisions. Figure 3.11 shows the 15 promoters with the highest mean impact

on the model and the promoterless strain U139. Both methods rely heavily on the metal-sensing

promoter zntA for the detection and discrimination of multiple metals, especially cadmium and

zinc. Beyond zntA, XGBoost relies heavily on single strains to detect single metals, in a manner
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Figure 3.10: Dynamic SHAP and feature values during metal exposures. (A) Feature (blue)
and SHAP (orange) time trajectories for individual promoters during metal exposures. Solid
lines show the mean value over all inductions for that metal and shaded regions around lines
represents standard deviation. Shaded regions represent the metal exposure window. While
some promoters are responsive to many different metals, additional information from other
promoters helps the classifier to differentiate each metal. Many promoters with noisy and subtle
metal responses also contribute to classifier performance. (B) Feature (red and blue) and SHAP
(orange and blue) values for 9 of the most information rich promoters, as determined by XAI,
during metal exposures.

comparable to human attention patterns. While XGBoost is not as proficient as the LSTM-

RNN classifier at predicting metals, coupled with SHAP-XAI, XGBoost is able to identify top

responding strains for each metal. The LSTM-RNN, on the other hand, utilizes many strains of

moderate influence in a combinatorial fashion; this tendency to find a different representation

than that of the human visual system has been noted in other works [101].

When looking by class, we see overlap with some, and more distinction with others, like

copper (Figure 3.12).

The ability of the XAI-coupled classifiers to identify promoters involved in metal response

serves as a valuable scientific tool, suggesting potential pathways for further investigation. This is

highlighted by looking at a subset of the ten most-impactful promoters individually for cadmium

and iron inductions (Figure 3.13). These summary plots illustrate how the two classifiers make

similar decisions through different methods. In the case of cadmium, zntA plays a significant
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role for both classifiers, while different sets of genes involved in ion transport or amino acid

synthesis are identified for each. Most notably, the metE and metB promoters which are involved

in methionine synthesis, an amino acid known to chelate cadmium, are identified by XGBoost,

while the LSTM-RNN only uses the metE regulator, metR, for detection. Similarly, with iron, we

see XGBoost rely on members of the arginine synthesis, argA and argC, while the LSTM-RNN

relies on different promoters that are involved in other metabolic or biosynthetic processes.

3.3.3 Biosensor validation

Given the severe impact of heavy metals on human health [102] and the persistence of

water quality issues in the US [103] we sought to deploy the Dynomics platform as a real-time

water quality biosensor. To validate this device for heavy metal sensing outside of a laboratory

setting, we conducted experiments with media made from municipal water samples from San

Diego, Seattle, Chicago, Miami-Dade, and New York City with added cadmium. Figure 3.14a

shows the LSTM-RNN classifier predictions for cadmium exposures on each city’s water supply.

While there is some misclassification of cadmium for zinc, there are few instances of incorrectly
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Figure 3.12: E. coli transcriptional elements with the highest contribution to the prediction
of each metal. The bar plots show the cumulative contribution based on the Shapley Additive
Explanations (SHAP) values of 15 top promoters and a negative control (promoterless strain
U139) to the prediction of each metal for both XGBoost (a) and LSTM-RNN (b) classifiers.
Colored bars for each metal represent the mean absolute SHAP value over all experimental time
points.
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Figure 3.13: SHAP values for the top 10 promoters for Cd(II) and Fe(III) with enriched Gene
Ontology (GO) terms. SHAP values are shown for 10 top promoters and a negative control
(promoterless strain U139) for Cd(II) and Fe(III) for XGBoost and LSTM-RNN. Each point
represents the feature value (normalized first derivative) at a time point. Positive SHAP values
suggest that a given metal is present while negative values suggest its absence. Upregulated
promoters (zntA, codB) give high SHAP values when feature values are high. Promoters are
annotated with prominent gene ontology terms enriched between the two data sets.

predicting the presence of a toxin versus water, even with largely different water compositions

between each city.

The Dynomics device was also exposed to samples collected from the Gold King Mine

Spill in August 2015. Figure 3.14b shows the predictions of the LSTM-RNN classifier on

samples from the spill, collected from the San Juan River. The classifier predictions are output as

multi-class, multi-label probability vectors. As the sample was introduced onto the device, the

probability of water decreased significantly while the probabilities of the other metals increased.
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The metal with the highest probability, iron, was also the most abundant metal in the samples

as measured by ICP-MS (Table 3.2). Despite the classifier not being trained on combinations

of metals, nor at the concentrations present in these samples, the ability to reliably report the

presence of the most prominent metal, and, to a lesser degree, the less abundant metals, suggests

the broad applicability of this platform for heavy metal detection.
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Figure 3.14: Dynomics and machine learning on environmental samples. a) LSTM-RNN
classification of cadmium contamination added to five different urban water sources. The colors
correspond to the metals in the inset in (b). b) Multi-class, multi-label classification of water
samples from the San Juan River during the 2015 Gold King Mine waste water spill. Independent
probabilities of each class are determined by the sigmoid activation function. The plot shows
the sum of the classifier probabilities, averaged across triplicate sample exposures (addition and
removal at vertical black lines). Inset bar chart shows the concentration of detectable metals in
San Juan River samples as determined by ICP-MS. The colors of predicted toxins correspond to
the metals plotted in the inset.

3.3.4 Dimensionality reduction for data visualization

To better visualize the data from 2,000+ strain Dynomics experiments, data reduction

techniques were applied to the data set. Principal component analysis (PCA) was performed on

induction data across several experiments to reduce the 2,176 strain dimensions into a 2D or
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Table 3.2: Concentration of metals in HM9 media made with San Juan River samples as
measured by ICP-MS at the Environmental Complex Analysis Lab at UC San Diego.

Metal Concentration

Aluminum 100.9 ppm
Vanadium 1.263 ppm
Chromium 88.83 ppb
Manganese 828.3 ppm
Iron 151.8 ppm
Cobalt 1.289 ppm
Nickel 1.634 ppm
Copper 1.215 ppm
Zinc 2.947 ppm
Gallium 63.73 ppb
Arsenic 64.94 ppb
Silver 22.45 ppb
Cadmium 48.16 ppb
Thallium 33.52 ppb
Lead 209.3 ppb

3D space. We found that this data reduction technique can be used to visualize differences in

the device state between water and toxin inductions. Principal component analysis (PCA) was

performed on the collected data using the scikit learn library in Python. To perform PCA, the

collected time series are processed using a median high-pass filter and individual time points are

selected from the start and end of each induction window. Time points collected outside of the

induction window are labeled as water, while those collected within the induction window are

labeled as the inducing toxin. A PCA model is fit to an m-by-n matrix containing the collected

data, where m is the number of time points and n is the number of strains. The model is then

used to apply an orthogonal transformation to a data-set sharing the same number of strains, but

not necessarily the same number of time points. The resulting matrix will maintain the number

of time points, while the strain dimension will have been reduced. The reduced dimensions

emphasize variance in the original data set, with the first principal component containing the

highest variance.
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Figure 3.15: Dimensionality reduction of Dynomics data. Principal component analysis was
performed on regularly processed data (bottom) and data processed with the UniFrac metric
(top). Each point represents an experimental time point, with color indicating the true label. The
water label indicates media with no added metal or toxin.

To improve visualizations from PCA, we adopted a method from microbiome research,

UniFrac, to operate with our data [104]. UniFrac is a distance metric which accounts for the

phylogenetic distance between species in metagenomic data sets. Processing data with UniFrac

before dimensionality reduction emphasizes trends at the taxon level rather than the species level.

To apply to our data, a gene ontology tree (analogous to a phylogenetic tree) was constructed

based on the shared gene ontology labels of each gene in the E. coli genome. UniFrac then

computed the distance between each time point with weight factored in for ontological difference

between each strain. Applying the UniFrac distance metric before reducing the dimensionality

of our data to 2D space resulted in much cleaner clustering of the results, and better overall
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visualization (Figure 3.15). However, when simultaneously looking at all experimental data, the

metals that incite the highest magnitude response (Cd and Zn) tend to be those that contribute the

most to variance in the data, and this are highlighted in PCA.

Ultimately, we found that PCA produced the best results when applied to a reduced set of

responsive library device positions and a reduced set of compounds. Using information from the

XAI, we selected the top 10 responsive strains for each of the three metals: cadmium, copper, and

iron (Figure 3.16). With overlapping response strains for each metal, a total of 28 strains were

reduced to 5 dimensions, with principal components 2, 3, and 5 expressing specific variability for

one of the three metals.
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Figure 3.16: Dimensionality reduction on a reduced strain set. PCA was performed on first-
derivative like features for the top 10 responsive genes, as determined by XAI, for cadmium,
copper, and iron. Principal components 2, 3, and 5 are shown.

While PCA and other dimensionality reduction techniques do not replace supervised

machine learning for predicting the chemical state of water, it can be a useful tool for data

visualization. A particularly interesting challenge with this data set is the evolution of feature

values over time. We can see from these visualization methods that the state of the device

has a transition region from toxin to no-toxin, rather than an immediate jump to a segregated

region of the principal component space. This further highlights challenges that the machine

learning algorithms faced while classifying metals: metals are difficult to predict upon immediate
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introduction. Nonetheless, after extended time on a specific metal, the expression state of the

device changes in a way such that we can distinguish the presence of these metals.

3.4 Discussion

Adaptation to rapidly changing environments and external stressors is a hallmark of bacte-

rial life and requires critical dynamic properties, many of which can be traced down to rapid and

specific control of gene expression [105]. Transcriptomic technologies [106–108] have identified

genes involved in environmental stress response and, more recently, furthered understanding of

their mode of regulation. In this work we developed a high-throughput microfluidic platform

to track the transcriptional dynamics of thousands of E. coli genes in parallel. Our Dynomics

platform provides a temporal resolution and degree of experimental control that alternative ex-

perimental techniques do not possess [29]. In a high-throughput screen using Dynomics, we

simultaneously exposed the 1,807 strains of the promoter-based E. coli GFP library to nine

different heavy metal stressors. The fine-grained temporal gene-expression data it produced

highlighted the unique dynamics of stimuli-specific genes previously identified as heavy-metal

responsive [107], and allowed for the identification of gene clusters based on temporal response.

Our platform possesses the genome-scale coverage and high sampling frequency needed to probe

bacterial gene regulatory networks and screen large strain libraries for motifs difficult to discern

using static gene expression data, yet ubiquitous in biology such as nonlinear interaction patterns

and feedback loops [42].

We further illustrate our platform’s capacity for exploring the dynamics of transcriptional

networks by applying machine learning techniques to detect stimuli-specific features of heavy

metal stress response. Here we demonstrate that supervised machine learning can leverage the

dynamic change in gene expression to infer the presence of environmental stressors in real-time.

Algorithms derived from two formally distinct machine learning frameworks were trained on the
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time traces of the 1,807 promoter strains and successfully differentiated between metals belonging

to biotic (Cu(II), Zn(II), Fe(III)) and xenobiotic classes (Pb(II), Cd(II), Cr(VI)). Deep-learning

based methods, known for their ability to leverage time-series data, were more successful. In

addition, we exploit recent progress in XAI to gain insight into the biological mechanisms that

characterize transcriptomic adaptation to stress.

Finally, we demonstrate the real-world applicability of our platform by testing it on

cadmium-spiked water from five municipal areas around the US with varying water composition,

as well as water from the Colorado Gold King Mine Spill, possessing multiple metals at con-

centrations vastly different from those in the training sets. In both cases the machine learning

algorithms successfully predicted the presence of the appropriate heavy metals. Approaches such

as these involving the combination of high throughput microfluidics and machine learning may

outperform single purpose biosensors in accuracy and robustness, and be adaptable to more varied

sensing tasks.

3.5 Materials and methods

3.5.1 Wafer Fabrication

The silicon wafer was fabricated using standard photolithography techniques previously

described by our group [16]. The cell trap layer was fabricated using 2005 SU-8 photoresist with

a spin speed of 5000 rpm and had a resulting height of 3.85-4.05 μms, the minor channel layer

was fabricated using 2075 SU-8 photoresist with a spin speed of 4250 rpm and had a resulting

height of 45-50 μms, and the major channel layer was fabricated using 2075 SU-8 photoresist

with a spin speed of 1200 on top of an undeveloped major channel layer, resulting in a final height

of 200-260 μms.
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3.5.2 Microfluidic device fabrication

The microfluidic devices were fabricated, loaded, and bonded with the E. coli promoter

library [27] using the protocol in section 2.5.

3.5.3 Experimental protocol

Microfluidic experiments were performed on the Dynomics custom optical enclosure.

Continuous imaging occurred every ten minutes, imaging both the transmitted light and GFP

fluorescence channels. The inlet port was connected to a 140 mL syringe (Covidien Monoject

Syringe) and PTFE tubing (Cole Palmer PTFE#24 AWG tubing) with LB media with Kanamycin,

0.075% Tween-20, and 50 mM Methyl α-D-mannopyranoside. The waste port was connected

to PTFE tubing and a 1L waste bottle. The height difference between the inlet and outlet was

39” corresponding to a flow rate of 11 mL/hr. Tween-20 and Methyl α-D-mannopyranoside

were used in the media to prevent biofilming and therefore increase the longevity of microfluidic

experiments. Tween-20 has been used by our group in many experiments without an adverse

effect on E. coli [16, 18]. Methyl α-D-mannopyranoside inhibits normal surface attachment of

type I pili but cannot be metabolized by E. coli [109]. After 16-24 hours of growth on LB media

for cells to fill the traps, the media was switched to an HM9 minimal media described in Table

3.3, which was based on a previous study [110] and optimized for microfluidic E. coli growth

with minimal traces of metals. Cells were grown on HM9 for 48 hours before inducing with

heavy metals.

Heavy metal inductions occurred once a day for four hours. To induce, the HM9 in the inlet

syringe was slowly pipetted out of the syringe and the HM9 + metal media was slowly pipetted in.

To remove the heavy metal media after the 4 hour induction, the HM9 + metal media was pipetted

out, and the remaining dead volume was washed with 2, 5 mL HM9 wash steps. Then the HM9

media was pipetted in to fill the syringe. The order of daily metal inductions was randomized for
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each experiment. Inductions of each metal were performed across multiple experiments, with

each experiment lasting 7-14 days. The number of inductions and concentrations for each metal

is listed in Table 3.4.

Table 3.3: HM9 minimal media recipe.

Chemical Concentration (mM)

Potassium Chloride 49.6
MOPS pH 7.2 40
β-Glycerol phosphate disodium salt pentahydrate 4
Dextrose 22.2
Ammonium chloride 18.70
Magnesium Sulfate, 7-Hydrate 0.2
Calcium Chloride Dihydrate 0.01
Iron(III) Chloride hexahydrate 0.001
Kanamycin sulfate from Streptomyces kanamyceticus 0.086
Tween 20 0.611
Methyl α-D-mannopyranoside 50

3.5.4 Live-cell imaging and data

Microfluidic devices were imaged using the Dynomics custom optical enclosure contin-

uously every ten minutes in both the transmitted light and GFP fluorescence channels with a 1

second and 60 second exposure respectively.

Images were synced from the enclosure to a server via WiFi for further data processing.

Custom software produced flat-field-corrected images in both channels in real-time to remove

optical vignetting using the following equation:

C = m∗ R−D
F ′−D′

(3.1)

where R is the raw image to be flat-field corrected (Figure 3.17a), D is the dark-current image for
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Table 3.4: Metal induction count by concentration for fold change analysis and machine learning
analysis

Metal EPA MCL
(ppb)

Concentration
Tested (ppb)

Fold Change
Induction Count

Machine Learning
Induction Count

Arsenic 10 30 7 7
Antimony 6 1000 7 7

Cadmium 5
4.50 12 12
8.99 0 1

Chromium 100 260 6 6
Copper 1300 127 8 8

Iron 300
279 6 6
558 0 1

5580 0 1

Lead 15
14.92 0 3
29.84 6 6
298.4 0 1

Mercury 2 2 6 6

Zinc 5000
50 5 5

500 0 3
1310 0 1

that device, taken at the same exposure settings as R, F ′ is a raw image taken by the camera with

no device present, D′ is the dark-current image taken at same exposure as F ′, m is the mean value

for all values in the array (F ′−D′), and C is the resulting corrected image (Figure 3.17b).

Flat-field corrected images were then registered to an extraction mask to account for

the device drifting from thermal expansion, with mean transmitted light and green fluorescence

channels from masked bulb and background regions extracted (Figure 3.18).

Raw data was initially processed as:

GFPRaw =
GFPBulb−GFPBackground

GFPBackground
(3.2)

For fold change analysis, fluorescence values were passed through a median filter

(scipy.signal.medfilt, kernel size=11) and normalized by promoterless strains (Figure 3.19).

Promoterless strains U139 and U66 from the GFP promoter library [27] were spotted at various

62



Raw Image Flat-field Corrected ImageRaw Imagea b

Figure 3.17: Flat-field correction with Dynomics. A full Dynomics image taken on custom
optics before (a) and after (b) flat-field correction.

locations across each device, with 20 device positions of each, for 40 in total. Normalized

fluorescence for Figure 3.6 was thus determined as:

GFPnormalized =
scipy.signal.med f ilt(GFPRaw)−mean(scipy.signal.med f ilt(GFPPromoterless))

mean(scipy.signal.med f ilt(GFPPromoterless))

(3.3)

Fold change in Figure 3.6 was calculated as the quotient of the normalized fluorescence at the first

and last time point of each metal exposure. P-values were determined by a dependent two-sided t-

test on the log2 fluorescent values at the start and end of each metal exposure (scipy.stats.ttest rel).

3.5.5 Microfluidic device validation

In order to ensure that measured gene expression was independent of spatial position

and to ensure responses weren’t affected by previous inductions within a given experiment, a

Dynomics chip was spotted with 2,176 replicates of the zntA promoter strain from the E. coli
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Bulb
10 μm 0.5 μm

Figure 3.18: Data extraction from a Dynomics image. 2,176 device positions are simultaneously
imaged in both transmitted light (gray) and green fluorescence (16 color) channels. At each time
point for each device position, the mean fluorescence of the boxed bulb and background (BG)
regions are extracted.

GFP-promoter library [27] and subjected to multiple replicate cadmium inductions. This strain is

a reporter for the zinc and cadmium-responsive gene zntA and was chosen for its relevance in E.

coli heavy metal metabolism and ability to be selectively activated via the heavy metal inducers

used in the context of this work. As seen in Figure 3.20, strains across the device maintained

statistically similar response parameters (amplitude of response and relaxation time) regardless of

day of induction or spatial positioning on the device.

3.5.6 Gene ontology results for Figure 3.5

We performed enrichment analysis [111] on gene clusters obtained via agglomerative

clustering of promoter activity, normalized between 0 and 1, of 1,995 strains responding to a 50

ppb Zn induction (Figure 3.5). Table 3.1 lists the enriched GO terms obtained for each cluster via

http://pantherdb.org/. The statistical method used was Fisher’s exact test with no correction

for multiple testing. No correction was selected as we chose to minimize the number of false

negatives over the number of false positives. We note that this increases the likelihood of finding

enrichment terms by chance only. The reference list for the GO enrichment analysis was the
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Figure 3.19: Normalization process for data presented in Figure 3.6. Raw data was median
filtered, then divided by the mean traces of promoterless strains U139 and U66. Dark lines show
the mean of all time series while shaded regions represent the standard deviation.

1,807 unique genes of the GFP-promoter library [27].

3.5.7 Machine learning

We transformed our eighteen standardized experiments’ time points into a first derivative-

based feature for the training and testing feature sets. All data used for machine learning results

were pre-processed into first derivative-based features. Intuitively, a first derivative-based feature

is an excellent candidate for any sort of machine learning model because it is what the human brain

instinctively monitors when looking for changes in strain-promoter behavior. Any significant

modification in the mean or variance of the first derivative of a given promoter while induced or

uninduced could signify that the promoter is sensitive to that particular environmental perturbation.

The engineering of a first derivative-approximation feature essentially amounts to distilling out

the pure changes in the original feature’s behavior, while effectively filtering out any changes that

could be due to extraneous local or global environmental influences. Figure 3.21 illustrates the

results of the feature engineering process.

In order to optimize the classifiers, extensive Bayesian Optimization searches were used
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a

b

Figure 3.20: Device validation of a Dynomics chip. Device validation with a Dynomics chip
with 2,176 replicates of the zntA strain from the E. coli GFP-promoter library [27]. a) Mean
(dark blue) plus/minus one standard deviation (light blue) for the 2,176 strain responding to
three consecutive four-hour 0.04 μM Cadmium inductions. b) Histograms of the decay half-life
of post-induction response (i.e. the time taken for a strain’s fluorescence levels to decay back
down to their half-peak value) are overlaid for the three inductions plotted in a).

to find optimal hyperparameter combinations [112]. Throughout our hyperparameter searches,

we used leave-one-out cross-validation on a per-experiment basis and appropriate overfitting-

prevention strategies to ensure that any resultant classifier would generalize to future data sets.

All classifiers were evaluated using the F1-macro scoring metric. The F1-macro score, which is

the per-class average of the harmonic mean of precision and recall, was especially well-suited

because of our data set’s large multi-class imbalances, with water making up approximately 86%

of the final feature set [113]. Finally, all generalization evaluations were performed by recording

the results of using leave-one-out cross-validation with early stopping and then taking the mean
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Figure 3.21: Raw and processed fluorescent signals. Our feature engineering eliminates
a significant amount of intra-experiment variability by rendering the raw signal into a first
derivative-like feature. This variability is due to differing hardware between Dynomics devices,
among other sources.

prediction across the cross-validation’s output.

Additional feature preprocessing

In addition to the data preprocessing and feature engineering that were explicitly enumer-

ate in the previous subsection, other steps were often taken when training and testing any machine

learning algorithms. These additional steps each dropped some portion of the final feature set, but

only after the features had been calculated using the entire original experiments. Dropping these

time points before calculating the features would have introduced potential discontinuities to any

features approximating the first-derivative. All features were processed and cached in permanent

memory. Only the cached features were used for any further analysis.

All experiments included transient periods over the first several days of the experiment.

These transients were caused by the colonies’ recoveries post-spotting shock, their growth-to-

effluence within their individual traps, and their second recovering following the switch to minimal

HM9 growth media. In addition, since most experiments were run until the microfluidic chips

were deemed unusable due to clogging by biofilms, the final hours of most experiments did not
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yield high-quality water data. Since the beginnings and the ends of the experiments represented

non-steady state local and global growth conditions, the features from these periods were dropped

prior to analysis and machine learning. This trimming was done by removing features more than

eighteen hours before the first induction and more than four hours after the final metal induction.

In addition, inductions using undetectable metals, such as arsenic, mercury, and antimony,

and special inductions that introduced any non-standard inducers were dropped from the feature

set post-processing.

Mercury, arsenic, and antimony exposures were also fed into the classifiers, but despite

extensive feature-engineering efforts, no classifier was able to successfully detect these metals.

This negative result was most likely a consequence of the absence of the E. coli ars and mer

operons from the Alon promoter library [114]. These operons are known to be highly efficient at

sensing and exporting arsenic and mercury, respectively, from their cells [115, 116]. In addition,

upon further review, we found that the tested concentrations of both metals were over an order of

magnitude lower than the known in-batch minimum inhibitory concentrations for E. coli [117].

To focus classification on detectable metals, features during these metal inductions were relabeled

as No Toxin.

3.5.8 Municipal water experimental set-up

Water samples were obtained from the Department of Water Management at the City of

Chicago, in Chicago, IL, the Alex Orr Water Treatment Plant in Miami, FL, the New York City

Department of Environmental Protection and Bureau of Water Supply in Corona, NY, the Seattle

Public Utilities Water Quality Lab in Seattle WA, and the Alvarado Water Treatment Plant in

San Diego, CA. HM9 media for each city water experiment was prepared by diluting 5x HM9

concentrate made from milliQ water with the water obtained from each city. The microfluidic

device was initially grown on LB media with Kanamycin, 0.075% Tween-20, and 50 mM Methyl

α-D-mannopyranoside until traps were filled to confluence and then switched to HM9 made with
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city water for the remainder of the experiment. Cadmium diluted in the HM9 city water media

was used to perform inductions as described in Section 3.5.3.

3.5.9 Gold King Mine spill experimental set-up

Water was collected from Mexican Hat, Utah in August, 2015 when the Gold King

Mine Spill plume reached the collection point in the San Animas River. Samples were stored in

0.5% HCl Acid until tested. HM9 media was prepared by diluting 5x HM9 concentrate made

from milliQ water with filtered San Animas samples. The pH was adjusted to 7.05. The metal

concentrations of the HM9 San Animas samples were tested by ICP-MS at the Environmental and

Complex Analysis Laboratory (ECAL) at UC San Diego. Four hour inductions were performed

as described in Section 3.5.3.
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Chapter 4

DynaScreen: A multiplexed-microfluidic

platform for the dynamic phenotypic

screening of synthetic gene circuits

4.1 Introduction

4.1.1 The need for continuous phenotypic screening systems

As described in Chapter 1, synthetic biology strives to achieve the forward engineering

of biological systems by piecing together DNA modules to build genetic circuits with complex

functions [4, 5]. However, in practice, forward engineering of gene circuits requires frequent

design-build-test-learn cycles, often with little quantitative guidance as to which genetic modules

will best produce the desired output. Fortunately for synthetic biologists, a vast number of genetic

modules and strains exist within the scientific community and in resources such as the Registry

of Standard Biological Parts [4]. These libraries and registries of genetic parts enable the rapid

prototyping of many circuit variants, however, few of these modules are well-characterized, and

for those that are, it is primarily done with batch characterization in micro-titer plates. This poses
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a challenge to forward-engineering as future gene circuits are deployed in real-world settings with

temporally fluctuating environments, such as bioreactors [118, 119], living systems [9, 120, 121],

or nature [122]. Furthermore, over a decade of research from our group and others has revealed

that batch characterization is not sufficient to predict and model gene circuit function [21, 123]

or to predict behavior in a continuous system [6, 9, 17, 18]. In this chapter, I describe the

adaptation and application of the previously described Dynomics platform (Chapters 2 and 3) to

dynamically screen libraries of synthetic gene circuits, biosensors and oscillators, under changing

environmental conditions.

4.1.2 Existing approaches for phenotypic screening

Phenotypic screening is widely used in drug discovery, genomics, and biological research

including synthetic biology. In all of these cases, screening is typically performed in high-

throughput, batch systems. One of the most common methods of phenotypic screening is those

using microtiter plates [124, 125]. These methods utilize low volumes (200 μL or less), offer the

capability to test anywhere from 96-1,536 unique conditions, and can be tied to many readout

types including fluorescence, luminescence, and optical density. Similarly, agar plates have been

used to screen solid colony phenotypes with up to 6,144 colonies one a single plate [126]. With

agar-plate-based methods, assay readout is similar to liquid-plate assays, the number of strains

that can be screened is increased four-fold or greater, but only one environmental condition

can be tested per plate. In other cases, flow-cytometry has been used as an alternative to plate

based-screening [127]. The aforementioned approaches are widely used throughout academia and

industry and have brought forth great advances in biological understanding, drug development, and

genetic engineering. However, the methods described here are based on batch growth and allow

little-to-no temporal control of the growth environment. Towards the high-throughput screening

under continuous growth has been the development of the various multiplexed microfluidic

platforms described in Chapter 2 [24, 30, 50, 128]. However, the potential of these devices to
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continuously screen libraries of synthetic circuits has not been fully explored.

4.1.3 Methods for generating gene circuit libraries

Within synthetic biology, generating a variety of gene circuits can be accomplished in

several of ways. As described and utilized in Chapters 2 and 3, libraries of microbial strains can

be created by changing a specific element in each library member such as the promoter driving

GFP [27] or the protein tagged with a fluorescent protein [26, 52]. Resources such as the Registry

of Standard Biological Parts can be especially useful here, as typical gene circuit troubleshooting

will involve prototyping with several previously used genetic modules. In less defined cases,

or when parts delivering the desired function aren’t suspected to exist, mutant libraries can be

generated through either error-prone PCR or site-directed mutagenesis of genetic elements and

protein coding sequences [129, 130]. Lastly, in cases where desired phenotype can be tied to

growth rate, adaptive laboratory evolution and competition experiments can be used evolve and

screen strains based on growth-characteristics [131].

4.2 An acoustic loaded microfluidic platform for dynamical

gene circuit screening

4.2.1 Limitations of contact spotting from agar plates

To develop a multiplexed device for dynamical screening of numerous bacterial strains in

parallel, we identified minor shortcomings in the platform developed in Chapter 2 and deployed in

Chapter 3. While incredibly robust when screening the same arrangement of two-thousand strains

against multiple environmental conditions, as was the case in Chapter 3, re-arraying the strain

layout on a device is slow, taking up to a full week, and not conducive to screening hundreds to

thousands of strains with a high layout turnover (Figure 4.1).
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Figure 4.1: Experimental throughput of contact and acoustic cell transfer. For contact transfer
from agar plates to PDMS devices, cell re-arraying takes roughly 96 hours for a 2,000 strain
device and an additional 2 hours for transfer from agar to PDMS. Acoustic transfer does not
require the pre-rearraying as the Echo liquid handler can eject roughly 60 drops per second,
allowing for on-the-fly arraying. Cells are grown to a desired OD on liquid plates, typically 2-16
hours, and transferred directly to a spotted microfluidic device.

To improve throughput, we looked towards acoustic droplet ejection [132] which could

enable us to rapidly and directly transfer overnight bacterial liquid cultures to PDMS devices.

While this would not significantly reduce day-of-experimental spotting time (2 to 1 hours), it

would eliminate the need for re-arraying large libraries, potentially saving a full work week of

re-arraying for each unique device layout. This is made possible as the Singer Stinger transfers

190 colonies a minute while a commercial acoustic liquid transfer robot, the Labcyte Echo, can

transfer 3,600 droplets a minute.

Beyond limited experimental throughput, contact spotting also limits the types of experi-

ments that can be performed with this loading method. While excellently capturing dynamics

of a first-order-like system such as the inducible promoters in the E. coli promoter library [27],

second-order systems such as genetic oscillators perform poorly. In the case of a previously

developed lysis oscillator [9], cells spontaneously lyse and express GFP in synchrony once the

presence of a quorum-sensing molecule AHL reaches a certain threshold. However, due to

differences in growth rate and small molecule diffusion between the front and back of the large

73



Solid colony - contact transfer Liquid culture - contact transfer
Liquid culture - acoustic transfer

Hydrodynamic loading
N

or
m

al
iz

ed
 fl

uo
re

sc
en

ce

Time (h) Time (h) Time (h)

Figure 4.2: Synchronized lysis oscillator dynamics with different spotting methods. Fluo-
rescence traces from six cell trapping regions are shown for each method. ROTOR spotting
from solid colonies leads to some oscillatory behavior, though widely inconsistent between
traps. Hand-spotting liquid cultures to the same trap geometry enables visible oscillations in
all cell traps, however, oscillation dynamics are inconsistent both temporally and between cell
traps. Loading multiplexed devices from liquid culture and allowing hydrodynamic loading of
downstream cell traps enables robust and consistent oscillations across all cell traps.

spotting area cells are unable to consistently lyse in synchrony (Figure 4.2). As is apparent

in fluorescent traces from each spotting method, synchronized lysis is further hindered by the

immovable mass of cells and agar from contact spotting of solid colonies, often resulting in no

synchronized lysis at all.

We sought to instead load liquid cultures onto the microfluidic devices since synthetic

lysis oscillators are typically loaded fluidically onto microfluidics during early exponential growth

before cell lysis has occurred [9], a growth condition that cannot be replicated on agar plates.

Hand-spotting of liquid cultures produces better oscillator behavior but presents two challenges.

First, oscillations are still inconsistent due to the large geometry of the cell-spotting and trapping

region. And second, hand-spotting hundreds to thousands of strains is not logistically feasible.

Thus, we sought to construct a new automated protocol and device design for liquid loading of

cells across the Dynomics platform. Here, I describe the development of a pipeline for the direct

deposition of E. coli onto a microfluidic device with an acoustic liquid handler, while maintaining

74



cell viability and gene circuit function.

4.2.2 Microfluidic redesign for acoustic cell loading

A microfluidic array was developed for the continuous culturing and monitoring of E. coli

strains loaded by acoustic droplet ejection using a Labcyte Echo liquid handler. This system,

capable of co-culturing 144 distinct strains, consists of a single inlet branching over a manifold of

cell spotting and trapping regions before recombining into a single outlet (Figure 4.3A). Each

spotting region has built-in error tolerance for imprecision in acoustic transfer equipment (explored

in depth in Figure 4.4), allowing cells to be acoustically spotted within, or overlapping with, the

spotting features while maintaining reliable cell trap filling. Upon device setup, growth media

from the manifold channels flows through the spotting region features carrying spotted cells to the

downstream cell traps (Figure 4.3B-C). Complete washout of the spotting region is prevented by

the presence of low-flow internal channel, observed experimentally and in finite element analysis

modeling in COMSOL (Figure 4.5). Downstream cell traps are hydrodynamically loaded when

empty, as cells carried by flow through the traps are stuck in the 0.5 μm layer. Within roughly 8

hours, cell traps reach confluence, preventing further flowthrough.

With this system, cells can be loaded directly from liquid culture, grown under a precise

and dynamic environment, and measured continuously with experimental run times lasting 1-2

weeks. Both biosensor and genetic oscillator circuits were tested in this device with acoustic

loading, imaged in the down-stream hydrodynamically loaded cell traps, and performed as they

would in traditional fluidically loaded microfluidic experiments (Figure 4.6). Biosensor circuits

responded with increased fluorescence with the addition of inducer molecules and with decreased

fluorescence upon their removal. Fluctuations of transmitted light and fluorescence were measured

over several days in synthetic lysis oscillators [9]. Improved oscillator performance in this device

is attributed to a healthier cell state when grown in liquid culture and a vast decrease in the cell

trap size, from a previously described 500 μm diameter spotting region and cell trap to a 70 μm
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Figure 4.3: An acoustic droplet ejection compatible microfluidic device. (A) A microfluidic
device was developed with 144 individually spottable cell growth regions. The inset shows
typical spatial variability of 2.5-5 nL E. coli droplets. (B) Each cell growth region is comprised
of a spotting region at which cells are deposited via acoustic liquid transfer. (C) Cells flow out
of the spotting reservoir and into the cell trapping region where they are imaged. When traps are
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and grow to confluence. Once cell traps fill, flow through the traps is blocked and media flow
proceeds perpendicular to the traps in the main channel. (D) E. coli growth in the spotting region
is slow with sick, elongated cells, while growth in the cell traps is faster with healthier cells.
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Figure 4.4: Acoustic transfer imprecision. (A) 256 cell dyed cell culture were transferred to
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wide downstream cell trap (Figure 4.2).
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Figure 4.5: COMSOL modeling of cell spotting region. (A) Flow rate throughout the cell
spotting region. High flow is observed in the main channel, while low flow is observed in
winding side channels. (B) Flow direction throughout the cell spotting region. Arrow size not to
scale with flow rate.

4.3 High-throughput dynamic screening of synthetic gene cir-

cuits

4.3.1 Development of fluorescent biosensor strains

As described in Chapter 3, whole-cell biosensing applications have been a forefront

pursuit of synthetic biologists since the advent of the field [13,59]. A prominent area of biosensor

development has been environmental biosensors to determine the safety and quality of water,

both for drinking and agricultural applications. Though environmental sensors have begun to

approach real-world deployability, many such sensors exist in batch systems [128, 133–135]

which are often limited to a single measurement of a single environmental sample or compound.

Furthermore, reporting modules are most commonly fluorescent or luminescent proteins [18, 29,

59, 60, 128, 133–135], which produce a strong signal but can require specialized tools to measure.

Here, I present multiple tools to expand the utility and deployability of synthetic biosen-

sors. First, I illustrate how the multiplexed, acoustic loadable microfluidic platform enables
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Figure 4.6: Demonstration of cellular dynamics which can be measured in this device. (A) A
simple inducible circuit driving GFP is exposed to a two hour exposure to an inducer compound
(1 μm Cd, gray bar). (B) A free-running synthetic oscillator driving the expression of GFP and
lysis protein at regular intervals.

continuous measurement of the response of synthetic biosensor strains to dynamic environmental

perturbations on week timescales. We demonstrate that the co-culture of these sensor strains

enables the specific real-time detection of five heavy metals of interest: arsenic, cadmium, lead,

mercury, and copper. Second, we demonstrate that with the substitution of a fluorescent reporter

with a protein driving programmed cell lysis, the reporting mechanism of existing fluorescent

biosensor strains can easily be converted to one based on optical density or electrical impedance.

We show that such circuit redesign eliminates the reliance on fluorescence-based optics, and in

some cases, increases strain sensitivity. Finally, we show the dual-utility of our acoustic loadable

microfluidic platform not only for biosensing applications, but for the screening of synthetic

strain libraries. Such screens are used to expand the set of sensors with both fluorescent and

lysis-based reporting for better metal detection.

This platform was initially deployed for the monitoring of five synthetic E. coli biosensor

strains designed to sense copper, arsenic, cadmium, lead, and mercury (Fig. 4.7A). Each sensor

construct consists of a metal inducible promoter driving the expression GFP, and in some cases, its

own regulating transcription factor. The E. coli MG1655 chassis strain genome was left unaltered

and in all but the mercury sensing strain contains natively expressed elements which are known

to interact with the engineered plasmids.
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Figure 4.7: Synthetic fluorescent biosensor strains for the detection of heavy metals. (A) Five
plasmids were engineered to respond to five metals (Cu, As, Cd, Pb, Hg) in the MG1655 strain
of E. coli, with circuit design presented at the right of the vertical dashed line. Gene circuit
architecture to the left of the vertical dashed line represent native elements of the MG1655
genome that interact with the engineered plasmids. (B) The metal-fluorescence dose-response
was measured for each of the biosensor strains. Concentrations in red affect cell growth and
were not used to fit the dose-response curve. (C) The fluorescence response of the five sensor
strains as measured in the acoustic loaded microfluidic device. All strains were subjected to 4
hour exposures of each metal. Solid line represents the mean of 4 cell traps and shaded region
represents standard deviation.

The native E. coli ArsR promoter was selected for the arsenic sensing strain. This promoter

has been previously characterized and shown to be responsive mainly to arsenic and antimony,

via the action of the transcriptional repressor protein ArsR, which binds to the promoter region

and inhibits transcription in the absence of these chemical inducers [136]. For sensing of mercury,

we selected the well-characterized MerR transcriptional activator with the corresponding bi-

directional promoter. MerR is naturally found in a variety of gram-negative bacteria and plasmids

on the transposon Tn21 [137]. While it is native to some species of E. coli, it is not naturally

found in our strain MG1655. In addition, we use three promoters found on the MG1655 genome
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which we found were responsive to toxins without requiring overexpression of any additional

transcriptional factors: zntA [138] for cadmium and lead, cusC [139] for copper, and zraP [140]

for lead. All the biosensor constructs described previously were placed on a medium-copy p15A

origin plasmid with a kanamycin resistance gene. All sensor strains were tested in batch by

measuring the dose-response curve (Fig. 4.7B). Because of the toxic nature of heavy metals,

several sensors arrest growth before the GFP-toxin response is saturated, however, a detectable

level of fluorescence is measured at non-toxic concentrations for all strains. The performance of

these sensors strains was evaluated in acoustic loaded devices, enabling sequential exposures of

all strains to multiple metals. Some crosstalk between metals is apparent in individual strains,

however the strains respond to these metals to different degrees. By examining the combined

responses of all strains, individual metals in the media can be uniquely identified (Fig. 4.7C).

4.3.2 Development of lysis-based sensor strains

As an alternative to fluorescence-based methods of reporting in biosensor strains, we

tested the viability of optical density-based reporting with a simple swap of the fluorescent

reporter gene (GFP) with the E lysis protein from bacteriophage φX174 using Gibson assembly

(Figure 4.8A) [141]. For initial testing, each strain was grown in a 1 mL HM9 batch culture with

and without its respective inducing toxin. All strains except zntA exhibited inhibited cell growth,

visible by eye, when grown under the constant presence of its respective inducer compound

(Figure 4.8B).

The strains were then further investigated in acoustic loaded microfluidics. I observed

that that these strains were effective in continuous culture, with induced lysis in the presence of

inducing toxin, and regrowth with the removal of the toxin, (Figure 4.8C-D). When all strains

were grown together and subjected to induction series of each metal of interest, little cross-talk

was observed between the metals (Figure 4.8E and Figure 4.9). Signal from each cell trap was

measured as the normalized lysis rate, or the first derivative of TL, normalized between zero and
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Figure 4.8: Lysis-based reporting for synthetic metal sensor strains. (A) The GFP reporter gene
was replaced with the E lysis protein from phage X174 in the five sensor strains to create a
lysis-based method of reporting metal presence. (B) 1 mL of cell culture in HM9 grown with
and without the respective inducing toxin. (C) In microfluidics lysis sensors lyse and empty cells
traps in the presence of induce signal, and grow and refill in its absence. (D) arsR lysis-based
sensor responding to 2 hour pulses of 1 μm As(III) (gray bars). Solid line represents the mean
of multiple cell traps and shaded region represents standard deviation. (E) First derivative of
TL of each lysis strain measured in microfluidic experiments. Metal concentrations for all
measurements were: 1 μm As(III), 0.5 μm Cd(II), 0.5 μm Hg(II), 5 μm Pb(II), and 2 μm Cu(II)

one for all strains. In general, while the lysis-based sensors are incredibly responsive upon the

exposure to a metal, cell recovery back to full, growing cell traps can take long periods of time.

In the case of cusC, cell traps take nearly four days to refill. With fluorescence strains, all sensors

return to baseline levels of fluorescence within 24 hours of a 4 hour metal exposure. Therefore,

while the lysis-based sensor strains may be used for the real-time detection of heavy metals, best

performance would consist of the co-deployment of these strains with fluorescence-based sensors.

When exposing cell culture in early exponential phase to serial dilutions of each metal,

we observed that all five fluorescent biosensor strains exhibited induced lysis in the presence
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Figure 4.9: Lysis-based reporting in microfluidics. Normalized lysis rate of the lysis-based
sensors when exposed to 1-2 hour pulses of each metal (gray bars). Solid line represents the
mean of four cell traps, and shaded region represents standard deviation.

of their respective metal, however, many (notably cusC and zntA) were able to recover, at least

partially, and grow after the initial lysis event. Dose-response curves were measured for each

of the lysis-based reporters, quantifying the magnitude of the lysis event immediately after the

introduction of toxin and 8 hours after the introduction of toxin as well as the rate at which cells

lysed. In both cases the metal concentration necessary to induce half of the maximum lysis (EC50)

was lower than that required for fluorescence-based reporters (Table 4.1). This is likely due to the

destructive nature of the lysis protein, resulting in switch-like, “all-or-nothing” lysis events.

Table 4.1: Dose-response EC50 of lysis-based sensors (ppb)

Strain GFP Lysis mag.
(1 h)

Lysis mag.
(8 h)

Lysis
rate

cusC 347 40 - 35
arsR 196 87 95 91
zntA 15 7.5 - 5
zraP 2850 178 143 124
merR 48 16 24 20
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Figure 4.10: Induction curves of the lysis-based sensor strains. (A) The magnitude of lysis
(left) is measured as the ratio of the change in OD due to lysis over the change in OD due to
growth before toxin exposure (red arrow). Lysis magnitude is measured at the initial lysis event
(solid line, black circles) and 8 hours after toxin exposure (dashed line, black triangles). Error
bars represent standard deviation. (B) The lysis rate is represented as the difference of 1 and
the minimum first derivative after toxin exposure. Gray line at lysis rate of 1 indicates an OD
derivative of 0. Error bars represent standard deviation.

4.3.3 Electrochemical measurement of lysis-based sensors

A substantial challenge in synthetic biology is minimally tracking gene expression without

the needed for fluorescent proteins and the associated imaging equipment. As a proof of concept

of the utility of lysis-based reporting mechanisms, we measured the impedance of cell culture in

a chemostat during a lysis event. We observed that when induced lysis occurred, both turbidity

and admittance of the culture decreased (Figure 4.11). This paves the way for the biosensing of

heavy metals without the need for any optics, only electrical probes. The elimination of bulky

optics can significantly reduce the size and cost of future sensing platforms.
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Figure 4.11: Interfacing bacterial circuits for electrochemical sensing. (A) A conceptual figure
representing a custom electrochemostat used to measure the impedance of a bacterial culture.
(B) Profiles of the admittance (red) and turbidity (blue) using an arsenic-sensitive strain in an
electrochemostat device. The shaded region represents the duration of 250 ppb arsenic induction.
(C) Profiles for the As-lysis strain induced with 250 ppb copper.

Table 4.2: ICP-MS measurements of metals water sources (ppb). * indicates national secondary
standard, a non-enforceable federal guideline. Bolded values exceed Environmental protection
agency (EPA) federal standard for drinking water.

Water treatment Suburban Ocean Apple Juice HM9 EPA (MCL)
Cu 64.28 590.97 42.86 1542.10 8.29 1300
As 6.34 4.20 13.28 87.12 ND 10
Cd 0.25 0.21 0.52 1.27 0.32 5
Pb 5.91 1.14 ND 7.58 30.68 15
Hg ND ND ND ND ND 2
Zn 92.86 48.03 ND 1469.68 20.53 5000*
Fe 273.84 41.60 408.31 12469.97 483.11 300*
Cr 23.69 1.17 20.81 89.44 2.55 100

4.3.4 Screening fluorescent biosensor strains under multiple media condi-

tions.

To demonstrate the screening capabilities of the acoustic-loadable platform, and to evaluate

the potential of these strains for the real-time detection of heavy metals on real environmental

samples, the sensor strains were subjected to 6 consecutive exposures of metals on four different

water supplies: (1) water from the Alvarado Water Treatment Plant in San Diego, CA, (2) suburban

tap water from San Diego, CA, (3) Ocean water from Black’s Beach in La Jolla, CA, and (4)

apple juice (Fig. 4.12). The four conditions were tested in four separate chips in parallel on a
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Figure 4.12: Biosensor performance on different water sources. The five fluorescent sensor
strains were tested on four environmental water sources: water from a treatment plant, suburban
tap water, ocean water, and commercial apple juice. Metal exposures were performed daily (gray
bars) at the following concentrations: 1 μm As(III), 0.5 μm Cd(II), 0.5 μm Hg(II), 5 μm Pb(II),
and 2 μm Cu(II). No toxin (NT) represents an exposure to the water sample with no additional
dissolved metals. Mean signal-to-noise ratio is represented as a solid line and standard deviation
as the shaded region.

single imaging platform. In additional to screening on the biosensor strains, these environmental

samples were also subjected to ICP-MS to determine specific quantities of trace metals in each

media (Table 4.2).

All sensor strains performed nearly identically to lab samples when tested in water from

a water treatment facility. On suburban tap water, sensors can readily distinguish between

different metals when tested on suburban tap water. However, the presence of copper in this water

source contributes to a baseline response in the cueO strain upon each metal exposure. Ocean

water induces an unconventional response in the sensor strains, likely due to cell stress in the

high-salinity environment. These responses exhibit discontinuous relaxation dynamics upon the

removal of ocean water, and more off-target excitation in the presence of each metal. Most notably,
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zntA is activated in the absence of any added metal, despite low levels of trace cadmium and zinc

in ocean water. Finally, apple juice proved to be a difficult sensing background, especially with

its high autofluorescence masking the sensor response. The zntA sensor is continuously activated

by apple juice, likely due to the high amount of trace metals, particularly zinc which is known

to interact with the ZntR regulator [138]. Furthermore, copper and lead are not detected on this

background media. This could be due to the already near-toxic to E. coli levels of trace copper in

apple juice, possible chelating agents in apple juice, or the high background fluorescence masking

the signal. Nonetheless, these results demonstrate the utility of this microfluidic platform to

rapidly determine on which background medias these sensors can reliably report the presence of

different metals.

4.3.5 Screening of libraries of synthetic gene circuit mutants.

Libraries of the cusC and zntA fluorescent sensor strains were created through error-prone

PCR and subsequent cloning of the promoter region on each sensor plasmid. Strains were loaded

onto 144- or 48-strain microfluidic devices and subjected to multiple exposures of either Cu(II)

or Cd(II) at different concentrations (Fig. 4.13A,E). The first derivative of fluorescence and the

time constant, τ, were measured for the time series data as representative dynamic parameters

for differentiating the on- and off-dynamics of the responsive strains (Fig. 4.13B,C,F). Among

the cusC variants, strains with both increased and decreased sensitivity were identified, denoted

as cusC 9 and cusC 12 respectively (Fig. 4.13B). With significantly varying response dynamics

in response to copper introduction, the co-culture of these variant strains on a single device

expands the sensors sensitivity and dynamic range, while further serving as candidates for “traffic

light” sensors, for which less external calibration is needed to discern copper concentration [142].

Furthermore, when the increased sensitivity cusC 9 and decreased sensitivity zntA 4 strains were

cloned into their respective lysis sensors, we see an improved lysis stability as compared to those

presented in Figure 4.8 (Fig. 4.13D,H).
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Figure 4.13: Dynamic library screening in microfluidics. (A) 16 mutant cusC strains in triplicate
subjected to low and high concentrations of Cu(II) in microfluidics. Wild-type strain (orange), a
strongly-expressed variant (yellow) and a weakly-expressed variant (brown) are highlighted. (B)
Extraction of the first derivative for each strain (10 shown) reveals a range of responsiveness
at each metal concentration. With a threshold detection threshold defined at a first derivative
of 100/min, the yellow variant is the only above-threshold strain at 32 ppb Cu(II), while all
three highlighted strains are above the threshold at 126 ppb. (C) Dynamic screening allows us to
better understand how these strains will perform in situ, with an important parameter being the
time constant τ representing the time to reach the e fraction of the maximum amplitude. (D)
Lysis performance of the cusC 9 variant lysis strain in batch, with lysis magnitude at 1 hour
(solid line, circles) and 8 hours (dashed line, triangles) shown. (E) Response dynamics were
measured for 16 zntA variant strains under a single toxin concentration. (F) Similar response
dynamics were measured. (G) Inhibited growth is now observed in batch, with more stable lysis
after 8 hours.

4.3.6 Screening libraries of synthetic lysis oscillators.

To fully demonstrate the capability of this device to screen dynamic gene circuits, we

generated and screened a library of synthetic oscillator strains (Figure 4.14A). We used a single-

plasmid oscillator design based on the two-plasmid oscillator previously used by our lab for drug

delivery [9]. The expression of the LuxI protein, which produces the quorum sensing autoinducer

N-Acyl homoserine lactone (AHL), generates synchronized positive feedback in a colony of

isogenic cells. The positive activation of the pLuxI promoter in-turn drives the expression negative
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feedback via the lysis protein, E, causing the synchronized lysis of the colony. A library of this

single-plasmid oscillator was generated by randomly mutagenizing 5 bases in the ribosome

binding site (RBS) upstream of the lysis protein, E. With 1,024 possible library members, varying

RBS strength will alter the translation of E, potentially changing the negative feedback, and

thus, oscillatory dynamics of this system. Because of these varying oscillatory phenotypes,

this oscillator is an excellent candidate for dynamic phenotype screening. Furthermore, these

oscillations are only observable in continuous culture, including on the acoustic loaded device,

and has both fluorescent and OD based reporting (Figure 4.14B).
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Figure 4.14: Screening of synthetic oscillator strains. (A) A single-plasmid synthetic oscillator
was developed with AHL production from the LuxI protein as a cell-synchronized positive
feedback mechanism, and cell lysis as negative feedback. A library was created by having
randomizing four bases in the ribosome binding site (RBS) upstream of the lysis protein, E, for
a total of 256 possible library members. (B) This single-plasmid oscillator performs well in
the acoustic loaded microfluidic platform, with both GFP and TL used as measurable outputs.
(C) 24 library members were screened on a 48 strain device and subjected to temporal changes
in the background AHL concentration. Different dynamic phenotypes were measured from
across these 24 strains, with four examples shown. (D) Extracted parameters of 24 oscillator
strains under 1 nM AHL. The period oscillatory period of each strain is shown, with 0 indicating
no measured oscillations. The mean peak fluorescence values are shown below. Error bars
represent standard deviation of measured cell traps. (E) A single strain subjected to multiple
background concentrations of AHL exhibits varying dynamic phenotypes.

24 randomly selected library members were run across the 48-strain DynaScreen device,

with fluorescence measurements taken every 10 minutes (Figure 4.14C). Over a period of 3
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days, the device was subjected to varying background concentrations of AHL to determined its

effect on oscillatory dynamics. Clustering of all cell traps reveals an abundance of phenotypes,

predominantly “broken” oscillators with no oscillatory dynamics, but several working oscillators.

Four strains are highlighted in Figure 4.14C (sequences shown in Figure 4.15C), showing oscilla-

tors that only activate under 1 nM AHL, 100 nM AHL, or are robust to varying concentrations.

Dynamic parameters (period and peak fluorescence) were extracted for all 24 strains at 1 nM

AHL to demonstrate that a range of values could be generated and measured with this library and

device (Figure 4.14D). Finally, Multiple chips were set up in parallel to observe the phenotype of

these oscillator strains grown under different AHL concentration (Figure 4.14E). We observe that

for the highlighted strain, oscillations are sparse at 0 nM of AHL, regular at 1 nM and 10 nM

with frequency increasing at higher concentrations, and absent at 100 nM.

4.4 Discussion

In this Chapter, we develop a high-throughput, multiplexed microfluidic platform for

continuous culture and real-time measurement of bacterial colonies. We demonstrate that with

acoustic cell-loading, we can rapidly inoculate a microfluidic device from liquid culture while

maintaining cell health and gene circuit phenotype. We demonstrate the parallel culture capabili-

ties of this device for the dynamic phenotype screening of fluorescence and cell-density-based

biosensors and synthetic lysis oscillators under continuous growth conditions. We use this to

rapidly validate biosensor performance using both laboratory-made solutions and environmental

samples dosed with heavy metals. Furthermore, we show how the dynamic screening of these

gene circuits enables precise tuning of circuit output, most notably in the case of synthetic

oscillators where batch-screening approaches could not be used.

Towards environmental monitoring, synthetic biologists can have the most impact har-

nessing the breadth of sensing targets as well as the real-time capabilities of biosensors. Well
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established analytical techniques such as atomic absorption spectroscopy (AAS) or inductively

coupled plasma mass spectrometry (ICP-MS) are highly sensitive, but limited by the number of

detectable compounds and operate on discrete samples [86]. Whole-cell biosensors are notable

for their ability to sense a wide range of compounds, previously being developed for the detection

harmful compounds for environmental safety [18, 29, 59, 60, 128, 133–135], sensing metabolites

relevant to bioproduction [61–64, 143], or perform medical diagnostics in vivo [65–67, 144].

However, while many environmental sensors are approaching real-world deployability, most are

limited to batch systems [133–135] and the single measurement of a single sample or compound.

Multiplexed microfluidic platforms fully utilize these properties of whole-cell biosensors, en-

abling the co-deployment of multiple engineered strains without the need to consider microbial

ecologies [145], while operating in situ and detecting compounds in real time. Existing platforms

have greatly advanced the capabilities on this front [29, 30], and we believe the accessibility,

throughput, dynamics, and week-long time scales achievable with our device will push it even

further.

Tuning genetic circuit outputs by screening variant libraries for a desired phenotype has

long been fundamental to synthetic biology design. However, the mass-screening of dynamic

phenotypes has remained a persistent challenge and our ability to generate genotypic diversity

far exceeds our ability to screen complex phenotypes [146]. Despite limited means for dy-

namic phenotype screening, canonical gene circuit motifs, including oscillators, logic gates, and

feedback controllers have been increasingly deployed in time-dependent applications spanning

metabolic engineering to therapeutic delivery [9, 147–150]. Multiplexed microfluidics, such as

ours, can aid in the development of circuits like these, for both academic research and as synthetic

biology exits the lab and enters the real world. Microfluidics has served as powerful tool for

approximating complex real-world environments in the past, simulating environments spanning

soil to human organs [151, 152]. While not a perfect recreation of these complex environments,

tuning environmental and time-dependent parameters achievable with microfluidics serves an
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important role in the prototyping and scale-up of all classes of gene circuits.

4.5 Materials and methods

4.5.1 Microfluidic device development and fabrication

Our group has previously described the microfabrication techniques used to pattern SU-8

photoresist onto a silicon wafer to create the mold for our device [16]. A poly-dimethylsiloxane

(PDMS) device was made from the wafer by mixing 77 grams of Sylgard 184 and pouring it

on the wafer centered on a level 5”x5” glass plate surrounded with an aluminum foil seal. The

degassed wafer and PDMS was cured on a flat surface for one hour at 95◦C.

4.5.2 Microfluidic device loading and bonding

A PDMS device cleaned with 70% Ethanol and adhesive tape was aligned to a custom

fixture compatible with the Labcyte Echo. Both the fixture and a clean glass slide sonicated with

2% Helmanex III were exposed to oxygen plasma. E. coli to be used in microfluidic experiments

were grown for 16 hours on LB media, after which 45 μL of each strain was pipetted into a well

of an Echo plate (get details) and 2.5 nL acoustically transferred to each device position on the

PDMS device. The spotted device and glass slide were bonded together and cured at 37◦C for

two hours.

4.5.3 Microfluidic experimental protocol

Microfluidic experiments were performed on a custom optical enclosure described in the

supplemental information or on a Nikon TE2000-U epifluorescent inverted microscope (Nikon

Instruments Inc., Tokyo, Japan). Cells were initially grown on the device on LB media with

Kanamycin, and 0.075% Tween-20 until traps were filled to confluence. The media was then
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switched to an HM9 minimal media described in Table S1, which was based on a previous

study [110] and optimized for microfluidic E. coli growth with minimal traces of metals. Cells

were grown on HM9 for at least 12 hours before exposure to heavy metals. Extracted fluorescence

time series were normalized to remove device background fluorescence and strain background

fluorescence. Detailed methods on experimental set-up and data collection can be found in the

supplement (Table S3).

4.5.4 Cloning and mutant library generation

Fluorescence-based sensor strains were cloned using Q5 DNA Polymerase (New Eng-

land Biolabs, Ipswich, MA) to amplify PCR products from source plasmids, custom gBlocks

(IDT, Coralville, IA), or the MG1655 E. coli genome and reassembled using Gibson assem-

bly [153]. Lysis variants of these strains were cloned by amplifying the fluorescence-sensor

plasmid, excluding GFP, and the E, lysis protein with 20 base pairs of homology with the amplified

fluorescence-sensor vector on both the 5’ and 3’ ends, before joining with Gibson assembly.

Error prone PCR was performed on the promoter and RBS regions of each sensor plas-

mid using a previously described protocol [154], using 30 amplification cycles. Sensor strain

backbones were amplified using PCR with the high-fidelity Q5 DNA Polymerase (New England

Biolabs, Ipswich, MA), and assembled to mutated promoter constructs using CPEC assem-

bly [155]. Assembled constructs were transformed into E. coli MG1655 and plated onto LB plates

with kanamycin. 144 colonies were selected, grown on 96 well plates and subjected to metal

exposures on the 144-strain microfluidic device. 48 variants with differential GFP production

from wild-type were subjected to further screening on the 48-strain device. Plasmid sequences

were confirmed with Sanger sequencing (Eton Bioscience, San Diego, CA). Sequences of the

highlighted variants are shown in Figure 4.15.

To generate a mutant library of the pAL spSLC oscillator plasmid, 5 base pairs in the

Shine-Dalgarno sequence of the ribosome binding site (located 7 to 12 base pairs upstream of the
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Figure 4.15: Plasmid map and sequences for biosensor strains. (A) The general plasmid map
for the sensor strains used in this study. All strains have the same background, with only the
promoter unit varying between each strain. (B) The different promoter units used for each of
the sensor strains. The merR and arsR strains also express their own regulator, highlighted in
blue and red, respectively. (C) Sequences of the promoter regions subjected to error prone PCR
for the base and mutant strains. -10 and -35 sites are highlighted in pink, the RBS region is
highlighted in blue, and mutated bases are highlighted in red.
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Figure 4.16: Plasmid map and sequences for single plasmid lysis oscillator circuits. (A) The
general plasmid map for the single plasmid synthetic lysis circuit (spSLC) strains used in this
study. (B) Sequences of the RBS region, with the 5 randomized bases highlighted in blue.
Deviations from the base strain (pAL spSLC 0) are shown in red.

start codon of the lysis protein, E) were randomized by site directed mutagenesis. The original

sequence at this position was: GAGAA. First, the entire plasmid was PCR amplified with the

following degenerate primers where N indicates any base: 5’ CATTAAAGAGNNNNNAGGTAC-

CATGATGGTAC 3’ and 5’ AATTCTCTCTATCACTGATAG 3’. The PCR reaction mix was

incubated with DPNI at 37C for 30 minutes to digest template plasmid and then the 4.7 kb PCR

product was run on an agarose gel and extracted using a QIAquick Gel Extraction Kit (QIAGEN).

1μL of the gel extracted PCR product was mixed with 0.5μL T4 ligase buffer, 0.5μL T4 PNK,

and 3μL of DNase-free water and incubated at 37 ◦C. Next, 0.5μL T4 ligase buffer, 0.5μL T4

DNA ligase, and 4μL were added to the reaction mixture and the mixture was incubated at room

temperature overnight. The following day, 50μL of chemically competent MG1655 E. coli cells

were transformed with 3μL of the reaction mix and plated on an LB agar plate containing 0.2%

glucose and spectinomycin. 24 colonies from the agar plate were randomly selected for mutant

screening and grown up for 16 hours in LB media with 0.2% glucose and spectinomycin prior to

use in experiments. Sequences of the highlighted variants are shown in Figure 4.16.
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Figure 4.17: Comparison of HM9 and LB media. Plate reader analysis of the five sensor strains
grown and induced with metal on either LB or HM9 growth media. Triplicate fluorescence
values were measured after 16 hours of growth, and divided by the fluorescence of the uninduced
counterpart. arsR was induced with 1.5 ppm As(III), zntA with 0.5 ppm Cd(II), cusC with 0.63
ppm Cu(II), zraP with 8.5 ppm Pb(II), and merR with 0.2 ppm pf Hg(II)

4.5.5 Media selection

HM9 was chosen for experiments because of the know characteristic of LB media to

chelate metals [156]. The recipe for HM9 media is described in Table 3.3, and was based on a

previous study [110] and optimized for microfluidic E. coli growth with minimal traces of metals.

Sensor performance on this media was verified with initial inductions of the strains on both HM9

and LB. We observed that LB inhibited GFP expression as compared to HM9 for all five tested

metals except As(III) (Fig. 4.17), for which there was little discernable difference. Furthermore,

the low autofluorescence of HM9 reduces the background signal from media when imaging in

microfluidics, making it more ideal for detecting subtle fluorescent changes in low-sensitivity

strains.

4.5.6 Plate reader experiments

E. coli to be used in plate reader experiments were grown for 16 hours on LB kanamycin

media, reseeded in a 1:1000 dilution into fresh media, and allowed to grow for four hours until
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it reached an OD600 of about 0.1 before being added to HM9 media in a 96-well plate. For

fluorescence dose-response curves, a 96-well plate was prepared with 200 μL of HM9 and a

range of metal concentrations before cell culture seeding. Fluorescence and OD600 values were

continuously measured during growth. The maximum OD normalized fluorescence value at

the OD closest to 0.2, normalized to a promoterless strain, is presented in Figure 4.7. For lysis

dose-response curves, a 96-well plate was prepared with 170 μL of HM9 before cell culture

seeding. Once measured OD was roughly 0.15, 30 μL of HM9 with metal was added to bring

each well to the reported metal concentration. OD values were continuously measured after metal

exposure.

4.5.7 Live-cell imaging and data

Microfluidic devices were imaged in a custom optical enclosure continuously every ten

minutes in both the transmitted light and gfp fluorescence channels with a 1 second and 60

second exposure respectively. The custom optical enclosure uses an SBIG STX-16803 CCD

Camera with a custom lens stack assembly containing the Semrock FF01-466/40-32-D-EB and

FF02-520/28-50-D-EB excitation and emission filters, respectively. The enclosure has green and

blue LED spotlight sources obtained from ProPhotonix for transmitted light and fluorescence

light sources, respectively. The optical resolution of the enclosure is 36 μm. The enclosure was

temperature controlled to 37◦C.

Images were synced from the enclosure to a server via WiFi for further data processing.

Custom software produced flat-field-corrected images in both channels in real-time to remove

optical vignetting using the following equation:

C = m∗ R−D
F ′−D′

(4.1)

where R is the raw image to be flat-field corrected (Fig. 4.18), D is the dark-current image for
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that device, taken at the same exposure settings as R, F ′ is a raw image taken by the camera with

no device present, D′ is the dark-current image taken at same exposure as F ′, m is the mean value

for all values in the array (F ′−D′), and C is the resulting corrected image.

Flat-field corrected images were then processed in ImageJ, where a custom “Region Of

Interest” or ROI manager was used to extract fluorescence, transmitted light, and background

values (Fig. 4.19).

Data was initially processed by subtracting the local background signal, in order to

eliminate any local or regional fluctuations that are of an additive (or, analogously, subtractive)

nature. The result of this background correction was to produce a vector ~xt representing the

background-corrected fluorescent signals of all cell traps at time t:

x(t, si) = xtrap
(t, si)
− xbackground

(t, si)
(4.2)

where t refers to the current time point, si refers to the strain in cell trap i, xtrap(t, si) is the

flat-field corrected fluorescent signal from the trap of position i at time t, and xbackground
(t, si)

refers to

the flat-field corrected local background fluorescent signal at position i at time t.

Signal-to-noise ratio (SNR) was determined as the background normalized fluorescence

value divided by the standard deviation of the fluorescence values between the HM9 switch and

the first metal induction.

4.5.8 Source water testing

Sensor strains were tested on four different water sources: (1) water from the Alvarado

Water Treatment Plant in San Diego, CA, (2) suburban tap water from San Diego, CA, (3) Ocean

water from Blacks Beach in La Jolla, CA (3) and apple juice (Trader Joe’s Fresh Pressed Apple

Juice SKU#88463). Once a day, each device was exposed to a mixture of a single toxin dissolved

in HM9 made from the respective water source for four hours. When not exposed to metal,
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Figure 4.18: Flat field correction of fluorescence and transmitted light images taken on custom
optics. The raw and flat field corrected images of four chips, for both the GFP and transmitted
light (TL) channels are shown.
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Figure 4.19: Data extraction regions from microscope images. Fluorescence and TL values are
extracted from each of the four cell traps at each strain spotting position. A background value is
also extracted for further normalization.
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cells were grown on HM9 made from MilliQ water. Signal-to-noise ratio was determined as the

fluorescence value at each time point divided by the standard deviation of fluorescence 7.5 hours

before induction. Fold change was calculated from the signal-to-noise ratio of for four biological

replicates of each sensor.

4.5.9 Electrochemostat measurements

The macro-scale bacterial characterization was performed using an ‘electrochemostat’

composed of a custom-built 3D printed housing where the electrochemical and turbidity detector-

sare enclosed. This assembly was placed in a 37 ◦C incubator for experiments. The 3 mL bacterial

culture, confined in an autoclavable beaker, is stirred at 700 rpm. Fresh media is continuously

supplied with a P625/10K.143 peristaltic pump (Instech, Plymouth Meeting, PA, US) at a typical

flow rate of 25 μL/min. A removable lid holds in place inlet and outlet tubings, and the disposable

screen-printed electrochemical sensor consisting of a 3 mm diameter gold working electrode and

a 4 mm gold counter/reference electrode (C220AT, DropSens-Metrohm, Riverview, FL, US). The

lid also contains has an extra opening for aerobic conditions. A new electrode is used for each

experiment and connected to a type B screen printed electrode adapter (IORodeo, Pasadena, CA,

US) interfaced to the potentiostat. The optimal potential frequency for impedance measurement

in these experiments was 100 MHz. Turbidity and impedance values were taken every 30 s and

transmitted via USB to a PC.

4.6 Protocol for the acoustic loading of PDMS microfluidic

devices with cells grown in liquid culture.

Below is the step by step loading and bonding protocol for transferring liquid cultures of

E. coli onto microfluidic devices using a Labcyte Echo. Steps for the wafer fabrication, PDMS
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fabrication, and glass slide preparation can be found in Section 2.5.

4.6.1 Cell preparation

Timing: 2-16 hours

1. Grow cells in 45 μL of media in an Echo Qualified 384-Well Polypropylene Microplate.

Cells can be grown for varying periods of time ranging from an early exponential phase

OD (roughly 2 hours) to a saturated overnight culture (16 hours).

2. Spin down microplate for 1 min at 100 x g.

4.6.2 Creating alignment markers

Timing: 10 minutes

1. Clean the acrylic alignment tool with 70% ethanol in water and scrub lightly with a

Kimwipe or paper towel.

2. Run the Labcyte Echo Plate Reformat software for transfer 2.5-5 nL of cell culture from a

384-well source plate to a 1-well destination plate. Destination well x and y offsets will be

specified manually in a custom pick list .csv.

• Select 384PP AQ BP2 as the source plate type.

• For a roughly 6.5 mm acrylic piece, specify destination plate dimensions with a plate

height of 8.5 mm. Giving a space of 2 mm between acrylic piece and source plate.

This distance can be increased or reduced is desired.

3. After initiating the protocol, select “Partial plates (as defined by pick list)” and import the

.csv mapping file.
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4. When prompted, load the 384-Well Polypropylene Microplate as the source plate, and the

acrylic alignment tool as the destination plate.

4.6.3 Aligning PDMS to the acrylic tool

Timing: 5-10 minutes

1. Using a Model 200 Mask Aligner (OAI, San Jose, CA) mask aligner or similar system,

place the PDMS device feature-side-down on top of the wafer chuck. Remove the tape

from the non-feature side of the PDMS.

2. Place the acrylic tool on top of the mask holder, with the alignment cells facing down,

above the PDMS.

3. Using the micrometers on the mask aligner, align the center of the spotting regions with the

center of the alignment cells.

4. Bring the PDMS and acrylic tool into contact using the wafer chuck.

5. Remove the tape from the feature-side of the PDMS and check the alignment, ensuring that

the PDMS did not shift when it came into contact with the acrylic tool. If necessary, adjust

the alignment.

6. Re-tape the feature side of the PDMS until ready to expose the PDMS to oxygen plasma.

4.6.4 Oxygen plasma exposure

Timing: 10 minutes

1. Expose the clean glass slide and the PDMS acrylic stack to 30W of oxygen plasma for 30

seconds.

2. Blow any dust off the glass slide and PDMS acrylic stack with compressed nitrogen.
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4.6.5 Loading and bonding the device

Timing: 10 minutes

1. Run the Labcyte Echo Plate Reformat software for transfer 2.5 nL of cell culture from a

384-well source plate to a 1-well destination plate.

• Select 384PP AQ BP2 as the source plate type.

• Specify new destination plate dimensions to account for the addition of a roughly 5.5

mm thick PDMS device. Specify destination plate dimensions with a plate height of

14 mm.

2. After initiating the protocol, select “Partial plates (as defined by pick list)” and import the

same .csv mapping file used to place alignment markers.

3. When prompted, load the 384-Well Polypropylene Microplate as the source plate, and the

acrylic alignment tool as the destination plate.

4. Once acoustic transfer is complete, peel the spotted PDMS off the acrylic piece and gently

place it face down on the center of the oxygen-plasma-exposed glass slide.

5. Gently tap the top of the PDMS, ensuring that the device bonds to the glass.

6. Incubate the device at 37C for at least two hours.
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[67] Carlos Piñero-Lambea, Gustavo Bodelón, Rodrigo Fernández-Periáñez, Angel M. Cuesta,
Luis Álvarez-Vallina, and Luis Ángel Fernández. Programming controlled adhesion of E.
coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology,
4(4):463–473, 2015.

[68] James A Imlay. The mismetallation of enzymes during oxidative stress. The Journal of
biological chemistry, 289(41):28121–8, oct 2014.

[69] Pete Chandrangsu, Christopher Rensing, and John D. Helmann. Metal homeostasis and
resistance in bacteria. Nature Reviews Microbiology, 15(6):338–350, mar 2017.

[70] Kanwal Rehman, Fiza Fatima, Iqra Waheed, and Muhammad Sajid Hamid Akash. Preva-
lence of exposure of heavy metals and their impact on health consequences. Journal of
Cellular Biochemistry, 119(1):157–184, 2018.

110



[71] K. Jomova, Z. Jenisova, M. Feszterova, S. Baros, J. Liska, D. Hudecova, C. J. Rhodes,
and M. Valko. Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied
Toxicology, 31(2):95–107, 2011.

[72] Johannes Godt, Franziska Scheidig, Christian Grosse-Siestrup, Vera Esche, Paul Bran-
denburg, Andrea Reich, and David A. Groneberg. The toxicity of cadmium and resulting
hazards for human health. Journal of Occupational Medicine and Toxicology, 1(1):1–6,
2006.

[73] Robin A. Bernhoft. Mercury toxicity and treatment: A review of the literature. Journal of
Environmental and Public Health, 2012, 2012.

[74] Max Costa and Catherine B. Klein. Toxicity and carcinogenicity of chromium compounds
in humans. Critical Reviews in Toxicology, 36(2):155–163, 2006.

[75] D A Gidlow. Lead toxicity. Occupational Medicine, 54(2):76–81, 2004.

[76] United States Environmental Protection Agency. Basic Information about Lead in Drinking
Water, 2017.

[77] J. Nriagu. Zinc Toxicity in Humans. Encyclopedia of Environmental Health, (c):801–807,
2007.

[78] Antonello Pietrangelo. Iron and the liver. Liver International, 36(November 2015):116–
123, 2016.

[79] Lisa M. Gaetke and Ching Kuang Chow. Copper toxicity, oxidative stress, and antioxidant
nutrients. Toxicology, 189(1-2):147–163, 2003.

[80] Mona Hanna-Attisha, Jenny LaChance, Richard Casey Sadler, and Allison Champney
Schnepp. Elevated blood lead levels in children associated with the flint drinking water
crisis: A spatial analysis of risk and public health response. American Journal of Public
Health, 106(2):283–290, 2016.

[81] Dustin Renwick. Five years on, the Flint water crisis is nowhere near over. National
Geographic, 2019.

[82] M.B. Pell and J. Schneyer. The thousands of U . S . locales where lead poisoning is worse
than in Flint, 2016.

[83] Karletta Chief, Janick F Artiola, Paloma Beamer, Sarah T Wilkinson, and Raina M Maier.
Understanding the Gold King Mine Spill. Superfund Research Program, (August):1–7,
2016.

[84] Alysa Landry. Navajo Nation Seeks $ 160 Million in Damages for Gold King Mine Spill,
2016.

111



[85] Luca Pujol, David Evrard, Karine Groenen-Serrano, Mathilde Freyssinier, Audrey Ruffien-
Cizsak, and Pierre Gros. Electrochemical sensors and devices for heavy metals assay in
water: The French groups’ contribution. Frontiers in Chemistry, 2(APR):1–24, 2014.

[86] Asli Baysal, Nil Ozbek, and Suleyman Akm. Determination of Trace Metals in Waste
Water and Their Removal Processes. Waste Water - Treatment Technologies and Recent
Analytical Developments, 2013.

[87] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai,
Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robinson.
Big data: Astronomical or genomical? PLoS Biology, 13(7):1–11, 2015.

[88] Jianzhu Ma, Michael Ku Yu, Samson Fong, Keiichiro Ono, Eric Sage, Barry Demchak,
Roded Sharan, and Trey Ideker. Using deep learning to model the hierarchical structure
and function of a cell. Nature Methods, 15(4):290–298, 2018.

[89] Jason H. Yang, Sarah N. Wright, Meagan Hamblin, Douglas McCloskey, Miguel A.
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