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Abstract
We construct an example of a group G = Z

2 × G0 for a finite abelian group G0, a
subset E of G0, and two finite subsets F1, F2 of G, such that it is undecidable in ZFC
whether Z2 × E can be tiled by translations of F1, F2. In particular, this implies that
this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there
exist translational tilings of E by the tiles F1, F2, but no periodic tilings. Previously,
such aperiodic or undecidable translational tilings were only constructed for sets of
eleven or more tiles (mostly in Z

2). A similar construction also applies for G = Z
d

for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the
construction produces an undecidable translational tiling with only one tile F . The
argument proceeds by first observing that a single tiling equation is able to encode an
arbitrary system of tiling equations, which in turn can encode an arbitrary system of
certain functional equations once one has two or more tiles. In particular, one can use
two tiles to encode tiling problems for an arbitrary number of tiles.
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1 Introduction

1.1 A Note on Set-Theoretic Foundations

In this paper we will be discussing questions of decidability in the Zermelo–Frankel–
Choice (ZFC) axiom system of set theory. As such,we will sometimes have to make
distinctions between the standard universe1 U of ZFC, inwhich for instance the natural
numbersN = NU are the standard natural numbers {0, 1, 2, . . .}, the integers Z = ZU

are the standard integers {0,±1,±2, . . .}, and so forth, and also nonstandard universes
U∗ of ZFC, in which the model NU∗ of the natural numbers may possibly admit some
nonstandard elements not contained in the standard natural numbersNU, and similarly
for the model ZU∗ of the integers in this universe. However, every standard natural
numbern = nU ∈ Nwill have awell-defined counterpartnU∗ ∈ NU∗ in suchuniverses,
which by abuse of notation we shall usually identify with n; similarly for standard
integers.

If S is a first-order sentence in ZFC, we say that S is (logically) undecidable (or
independent of ZFC) if it cannot be proven within the axiom system of ZFC. By the
Gödel completeness theorem, this is equivalent to S being true in some universes of
ZFC while being false in others. For instance, if S is a undecidable sentence that
involves the group Z

d for some standard natural number d, it could be that S holds
for the standard model Zd = Z

d
U of this group, but fails for some non-standard model

Z
d
U∗ of the group.

Remark 1.1 In the literature the closely related concept of algorithmic undecidability
from computability theory is often used. By a problem S(x), x ∈ X , we mean a
sentence S(x) involving a parameter x in some range X that can be encoded as a
binary string. Such a problem is algorithmically undecidable if there is no Turing
machine T which, when given x ∈ X (encoded as a binary string) as input, computes
the truth value of S(x) (in the standard universe) in finite time. One relation between
the two concepts is that if the problem S(x), x ∈ X , is algorithmically undecidable
then there must be at least one instance S(x0) of this problem with x0 ∈ X that is
logically undecidable, since otherwise one could evaluate the truth value of a sentence
S(x) for any x ∈ X by running an algorithm to search for proofs or disproofs of
S(x). Our main results on logical undecidability can also be modified to give (slightly
stronger) algorithmic undecidability results; see Remark 1.12 below. However, we
have chosen to use the language of logical undecidability here rather than algorithmic
undecidability, as the former concept can be meaningfully applied to individual tiling
equations, rather than a tiling problem involving one or more parameters x .

In order to describe various mathematical assertions as first-order sentences in ZFC,
it will be necessary to have the various parameters of these assertions presented in
a suitably “explicit” or “definable” fashion. In this paper, this will be a particular
issue with regards to finitely generated abelian groups G = (G,+). Define an explicit

1 Here we of course make the metamathematical assumption that the standard universe exists, so that in
particular ZFC is consistent. By the second Gödel incompleteness theorem, this latter claim, if true, cannot
be proven within ZFC itself.
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finitely generated abelian group to be a group of the form

Z
d × ZN1 × · · · × ZNm (1.1)

for some (standard) natural numbers d,m and (standard) positive integers N1, . . . , Nm ,
where we use ZN :=Z/NZ to denote the standard cyclic group of order N . For
instance, Z2×Z

20
21 is an explicit finitely generated abelian group. We define the notion

of an explicit finite abelian group similarly by omitting the Zd factor. From the classi-
fication of finitely generated abelian groups, we know that (in the standard universe U
of ZFC) every finitely generated abelian group is (abstractly) isomorphic to an explicit
finitely generated abelian group, but the advantage of working with explicit finitely
generated abelian groups is that such groups G are definable in ZFC, and in particular
have counterparts GU∗ in all universes U∗ of ZFC, not just the standard universe U.

1.2 Tilings by a Single Tile

If G is an abelian group and A, F are subsets of G, we define the set A ⊕ F to be
the set of all sums a + f with a ∈ A, f ∈ F if all these sums are distinct, and
leave A⊕ F undefined if the sums are not distinct. Note that from our conventions we
have A ⊕ F = ∅ whenever one of A, F is empty. Given two sets F, E in G, we let
Tile(F; E) denote the tiling equation2

X ⊕ F = E, (1.2)

where we view the tile F and the set E to be tiled as given data and the indeterminate
variable X denotes an unknown subset of G. We will be interested in the question of
whether this tiling equation Tile(F; E) admits solutions X = A, and more generally
what the space

Tile(F; E)U := {A ⊂ G : A ⊕ F = E}

of solutions to Tile(F; E) looks like. Later on we will generalize this situation by
considering systems of tiling equations rather than just a single tiling equation, and
also allow for multiple tiles F1, . . . , FJ rather than a single tile F .

We will focus on tiling equations in which G is a finitely generated abelian group,
F is a finite subset of G, and E is a subset of G which is periodic, by which we mean3

that E is a finite union of cosets of some finite index subgroup ofG. In order to be able

2 In this paper we use tiling to refer exclusively to translational tilings, thus we do not permit rotations or
reflections of the tile F . Also, we adopt the convention that an equation such as (1.2) is automatically false
if one or more of the terms in that equation is undefined.
3 We caution that in some literature, the term “periodic” instead refers to sets that are unions of cosets of
some non-trivial cyclic subgroup ofG; in our notation, wewould refer to such sets as being one-periodic. For
instance, ifG = Z

2 and Awas an arbitrary subset ofZ, then A×Zwould be one-periodic, but not necessarily
periodic in the sense adopted in this paper. The notion of an aperiodic tiling is similarly modified in some
of the literature, and the notion of aperiodicity used here (see Definition 1.2 (ii)) is sometimes referred to
as “weak aperiodicity”.
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to talk about the decidability of such tiling problems we will need to restrict further
by requiring that G is an explicit finitely generated abelian group in the sense (1.1)
discussed previously. The finite set F can then be described explicitly in terms of a
finite number of standard integers; for instance, if F is a finite subset of Z2 ×ZN , then
one can write it as

F = {(a1, b1, c1 mod N ), . . . , (ak, bk, ck mod N )}

for some standard natural number k and some standard integers a1, . . . , ak, b1, . . . , bk,
c1, . . . , ck . Thus F is now a definable set in ZFC and has counterparts FU∗ in every
universe U∗ of ZFC. Similarly, a periodic subset E of an explicit finitely generated
abelian group Z

d × ZN1 × · · · × ZNm can be written as

E = S ⊕ ((rZd) × ZN1 × · · · × ZNm )

for some standard natural number r and some finite subset S of G; thus E is also
definable and has counterparts EU∗ in every universeU∗ of ZFC.One can now consider
the solution space

Tile(F; E)U∗ := {A ⊂ GU∗ : A ⊕ FU∗ = EU∗}

to Tile(F; E) in any universe U∗ of ZFC.

We now consider the following two properties of the tiling equation Tile(F; E).

Definition 1.2 (undecidability and aperiodicity) Let G be an (explicit) finitely gen-
erated abelian group, F a finite subset of G, and E a periodic subset of G.

(i) We say that the tiling equation Tile(F; E) is undecidable if the assertion that there
exists a solution A ⊂ G to Tile(F; E), when phrased as a first-order sentence in
ZFC, is not provable within the axiom system of ZFC. By the Gödel completeness
theorem, this is equivalent to the assertion that Tile(F; E)U∗ is empty for some4

universes U∗ of ZFC, but non-empty for some other universes. We say that the
tiling equation Tile(F; E) is decidable if it is not undecidable.

(ii) We say that the tiling equation Tile(F; E) is aperiodic if, when working within the
standard universeU of ZFC, the equation Tile(F; E) admits a solution A ⊂ G, but
that none of these solutions are periodic. That is to say, Tile(F; E)U is non-empty
but contains no periodic sets.

Example 1.3 Let G be the explicit finitely generated abelian group G :=Z
2, let

F := {0, 1}2, and let E := Z
2. The tiling equation Tile(F; E) has multiple solutions

in the standard universe U of ZFC; for instance, given any (standard) function
a : Z → {0, 1}, the set

A := {(n, a(n) + m) : n,m ∈ 2Z}
4 In fact, in the specific context of undecidable tiling equations, one can show that Tile(F; E)U is non-empty
for the standard universe U; see Appendix A.
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solves the tiling equation Tile(F; E) and is thus an element of Tile(F; E)U. Most of
these solutions will not be periodic, but for instance if one selects the function a ≡ 0
(so that A = (2Z)2) then one obtains a periodic tiling. This latter tiling is definable
and thus has a counterpart in every universe U∗ of ZFC, and we conclude that in this
case the tiling equation Tile(F; E) is decidable and not aperiodic.

Remark 1.4 The notion of aperiodicity of a tiling equation Tile(F; E) is only inter-
esting when E is itself periodic, since if A ⊕ F = E and A is periodic then E must
necessarily be periodic also.

Awell-knownargument ofWang (see [4, 30]) shows that if a tiling equationTile(F; E)

is not aperiodic, then it is decidable; contrapositively, if a tiling equation is undecid-
able, then it must also be aperiodic. From this we see that any undecidable tiling
equation must admit (necessarily non-periodic) solutions in the standard universe of
ZFC (because the tiling equation is aperiodic), but (by the completeness theorem) will
not admit solutions at all in some other (nonstandard) universes of ZFC. For the conve-
nience of the reader we review the proof of this assertion (generalized to multiple tiles,
and to arbitrary periodic subsets E of explicit finitely generated abelian groups G) in
Appendix A.

1.3 The Periodic Tiling Conjecture

The following conjecture was proposed in the case5 E = G = Z
d by Lagarias and

Wang [23] and also previously appears implicitly in [14, p. 23]:

Conjecture 1.5 (periodic tiling conjecture) Let G be an explicit finitely generated
abelian group, let F be a finite non-empty subset of G, and let E be a periodic subset
of G. Then Tile(F; E) is not aperiodic.

By the previous discussion, Conjecture 1.5 implies that the tiling equation Tile(F; E)

is decidable for every F, E,G obeying the hypotheses of the conjecture. The following
progress is known towards the periodic tiling conjecture:

• Conjecture 1.5 is trivial when G is a finite abelian group, since in this case all
subsets of G are periodic.

• When E = G = Z, Conjecture 1.5 was established by Newman [25] as a conse-
quence of the pigeonhole principle. In fact, the argument shows that every set in
Tile(F;Z)U is periodic. As we shall review in Sect. 2 below, the argument also
extends to the case G = Z × G0 for an (explicit) finite abelian group G0, and
to an arbitrary periodic subset E of G. See also the results in Sect. 10 for some
additional properties of one-dimensional tilings.

• When E = G = Z
2, Conjecture 1.5 was established by Bhattacharya [5] using

ergodic theory methods (viewing Tile(F;Z2)U as a dynamical system using the
translation action of Z2). In our previous paper [13] we gave an alternative proof
of this result, and generalized it to the case E is a periodic subset of G = Z

2. In

5 Strictly speaking, Lagarias and Wang posed an analogue of this conjecture for E = G = R
d , see

Sect. 12.2.
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fact, we strengthen the previous result of Bhattacharya, by showing that every set
in Tile(F, E)U is weakly periodic (a disjoint union of finitely many one-periodic
sets). In the case of polyominoes (where F is viewed as a union of unit squares
whose boundary is a simple closed curve), the conjecture was previously estab-
lished in [2, 9]6 and decidability was established even earlier in [36].

The conjecture remains open in other cases; for instance, the case E = G = Z
3 or the

case E = G = Z
2 ×ZN for an arbitrary natural number N , are currently unresolved,

although we hope to report on some results in these cases in forthcoming work. In [33]
it was shown that Conjecture 1.5 for E = G = Z

d was true whenever the cardinality
|F | of F was prime, or less than or equal to four.

1.4 Tilings byMultiple Tiles

It is natural to ask if Conjecture 1.5 extends to tilings by multiple tiles. Given subsets
F1, . . . , FJ , E of a group G, we use Tile(F1, . . . , FJ ; E) = Tile((Fj )

J
j=1; E) to

denote the tiling equation7

J⊎

j=1

X j ⊕ Fj = E, (1.3)

where A 	 B denotes the disjoint union of A and B (equal to A ∪ B when A, B are
disjoint, and undefined otherwise). As before we view F1, . . . , FJ , E as given data
for this equation, and X1, . . . ,XJ are indeterminate variables representing unknown
tiling sets in G. If G is an explicit finitely generated group, F1, . . . , FJ are finite
subsets of G, and E is a periodic subset of G, we can define the solution set

Tile(F1, . . . , FJ ; E)U :=
⎧
⎨

⎩(A1, . . . , AJ ) : A1, . . . , AJ ⊂ G;
J⊎

j=1

A j ⊕ Fj = E

⎫
⎬

⎭

and more generally for any other universe U∗ of ZFC we have

Tile(F1, . . . , FJ ; E)U∗ :=
⎧
⎨

⎩(A1, . . . , AJ ) : A1, . . . , AJ ⊂ GU∗ ;
J⊎

j=1

A j ⊕ (Fj )U∗ = EU∗

⎫
⎬

⎭ .

We extend Definition 1.2 to multiple tilings in the natural fashion:

Definition 1.6 (undecidability and aperiodicity for multiple tiles) LetG be an explicit
finitely generated abelian group, F1, . . . , FJ be finite subsets of G for some standard
natural number J , and E a periodic subset of G.

6 In fact, they showed that when F is a polyomino, every set in Tile(F;Z2)U is one-periodic.
7 See Sect. 1.7 for our conventions on precedence of operations such as ⊕ and 	. In the language of
convolutions, one can also write this tiling equation as 1X1 ∗ 1F1 + · · · + 1XJ ∗ 1FJ = 1E , where we
use 1A to denote the indicator function of A.
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(i) We say that the tiling equation Tile(F1, . . . , FJ ; E) is undecidable if the asser-
tion that there exist subsets A1, . . . , AJ ⊂ G solving Tile(F1, . . . , FJ ; E), when
phrased as a first-order sentence in ZFC, is not provable within the axiom system
of ZFC. By the Gödel completeness theorem, this is equivalent to the assertion that
Tile(F1, . . . , FJ ; E)U∗ is non-empty for some universes U∗ of ZFC, but empty for
some other universes. We say that Tile(F1, . . . , FJ ; E) is decidable if it is not
undecidable.

(ii) We say that the tiling equation Tile(F1, . . . , FJ ; E) is aperiodic if, when work-
ing within the standard universe U of ZFC, the equation Tile(F1, . . . , FJ ; E)

admits a solution A1, . . . , AJ ⊂ G, but there are no solutions for which all of the
A1, . . . , AJ are periodic. That is to say, Tile(F1, . . . , FJ ; E)U is non-empty but
contains no tuples of periodic sets.

As in the single tile case, undecidability implies aperiodicity; see Appendix A. The
argument of Newman that resolves the one-dimensional case of Conjecture 1.5 also
shows that for (explicit) one-dimensional groups G = Z × G0, every tiling equation
Tile(F1, . . . , FJ ; E) is not aperiodic (and thus also decidable); see Sect. 2.

However, in marked contrast to what Conjecture 1.5 predicts to be the case for
single tiles, it is known that a tiling equation Tile(F1, . . . , FJ ; E) can be aperiodic
or even undecidable when J is large enough. In the model case E = G = Z

2, an
aperiodic tiling equation Tile(F1, . . . , FJ ;Z2) was famously constructed8 by Berger
[4] with J = 20426, and an undecidable tiling was also constructed by a modification
of the method with an unspecified value of J . A simplified proof of this latter fact
was given by Robinson [30], who also constructed a collection of J = 36 tiles was
constructed in which a related completion problem was shown to be undecidable. The
value of J for either undecidable examples or aperiodic examples has been steadily
lowered over time; see Table 1 for a partial list. We refer the reader to the recent survey
[17] for more details of these results. To our knowledge, the smallest known value of
J for an aperiodic tiling equation Tile(F1, . . . , FJ ;Z2) is J = 8, by Ammann et al.
[1]. The smallest known value of J for a tiling equation Tile(F1, . . . , FJ ;Z2) that was
explicitly constructed and shown to be undecidable is J = 11, due to Ollinger [27].

Remark 1.7 As Table 1 demonstrates, many of these constructions were based on a
variant of a tile set in Z

2 known as a set of Wang tiles, but in [16] it was shown
that Wang tile constructions cannot create aperiodic (or undecidable) tile sets for any
J < 11.

Analogous constructions in higher dimensions were obtained for E = G = Z
3 (or

more precisely R
3) in [7, 8, 31] and for E = G = Z

n (or more precisely R
n), n ≥ 3,

in [12].

8 Strictly speaking, Berger’s construction was for the closely related domino problem (orWang tiling prob-
lem), but it was shown by Golomb [10] shortly afterwards that this construction also implies undecidability
for the translational tiling problem. Similar considerations apply to several of the other constructions listed
in Table 1.
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Table 1 Selected constructions of aperiodic or undecidable tiling equations

J Author Type

20426 Berger [4] aperiodic [undecidable] (W)

104 Robinson [29] aperiodic (W)

104 Ollinger [26] aperiodic [undecidable] (W)

103 Berger [3] aperiodic (W)

86 Knuth [22] aperiodic (W)

56 Robinson [30] aperiodic (W)

52 Robinson [28] aperiodic (W)

40 Lauchli [35] aperiodic (W)

36 Robinson [30] completion-undecidable (W)

32 Robinson [14] aperiodic (W)

24 Grünbaum–Shephard [14] aperiodic (W)

24 Robinson [14] aperiodic (W)

16 Ammann et al. [1] aperiodic (W)

16 Goodman–Strauss [11] aperiodic

14 Kari [19] aperiodic (W)

13 Culik [6] aperiodic (W)

12 Socolar–Taylor [32] aperiodic

11 Jeandel–Rao [16] aperiodic (W)

11 Ollinger [27] undecidable

8 Ammann et al. [1] aperiodic

2∗ Theorems 1.8, 1.9 undecidable

1∗∗ Theorem 11.2 undecidable

This list is primarily adapted from [16], and incorporates from that reference some corrections to the values
of J in several lines of this table. Constructions labeled (W) arise from a Wang tile construction. The
constructions marked “aperiodic [undecidable]” give aperiodic tilings for the specified value of J , and an
undecidable tiling for an unspecified value of J . The asterisk for our results in Theorems 1.8 and 1.9 denotes
the fact that we are replacing Z

2 by Z
2 × E0 for some subset E0 of an explicit finite abelian group G0,

or by a periodic subset of some high-dimensional lattice Zd . The double asterisk indicates that the tiling
is nonabelian. For some other notable constructions of aperiodic or undecidable tiling equations (but with
values of J that are either not explicitly stated, or larger than other contemporary constructions), see [11,
16, 17]

1.5 Main Results

Our first main result is that one can in fact obtain undecidable (and hence aperiodic)
tiling equations for J as small as 2, at the cost of enlarging E from Z

2 to Z2 × E0 for
some subset E0 of an (explicit) finite abelian group G0.

Theorem 1.8 (undecidable tiling equation with two tiles in Z
2 × G0) There exists

an explicit finite abelian group G0, a subset E0 of G0, and finite non-empty subsets
F1, F2 of Z2 ×G0 such that the tiling equation Tile(F1, F2;Z2 × E0) is undecidable
(and hence aperiodic).
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The proof of Theorem 1.8 goes on throughout Sects. 3–8. In Sect. 9, by “pulling back”
the proof of Theorem 1.8, we prove the following analogue in Zd .

Theorem 1.9 (undecidable tiling equationwith two tiles inZd ) There exists an explicit
d > 1, a periodic subset E of Zd , and finite non-empty subsets F1, F2 of Zd such that
the tiling equation Tile(F1, F2; E) is undecidable (and hence aperiodic).

Remark 1.10 One can further extend our construction in Theorem 1.9 to the Euclidean
space Rd , as follows. First, replace each tile Fj ⊂ Z

d , j = 1, 2, with a finite union
F̃j of unit cubes centered in Fj , and similarly replace E ⊂ Z

d with a periodic set
Ẽ ⊂ R

d . Next, in order to make the construction rigid in the Euclidean space, add
“bumps” on the sides (as in the proof of Lemma 9.3). When one does so, the only
tilings of Ẽ by the F̃1, F̃2 arise from tilings of E by F1, F2, possibly after applying a
translation, and hence the undecidability of the former tiling problem is equivalent to
that of the latter.

Our construction can in principle give a completely explicit description of the sets
G0, E0, F1, F2, but they are quite complicated (and the group G0 is large), and we
have not attempted to optimize the size and complexity of these sets in order to keep
the argument as conceptual as possible.

Remark 1.11 Our argument establishes an encoding forany tilingproblem Tile(F1, . . . ,
FJ ;Z2) with arbitrary number of tiles in Z

2 as a tiling problem with two tiles in
Z
2 × G0. However, in order to prove Theorem 1.8 we only need to be able to encode

Wang tilings.

Remark 1.12 A slight modification of the proof of Theorem 1.8 also establishes the
slightly stronger claim that the decision problem of whether the tiling equation
Tile(F1, F2;Z2 × E0) is solvable for a given finite abelian group G0, given finite
non-empty subsets F1, F2 ⊂ Z

2 × G0 and E0 ⊂ G0, is algorithmically undecidable.
Similarly for Theorems 1.9 and 11.2 below. This is basically because the original
undecidability result of Berger [4] that we rely on is also phrased in the language
of algorithmic undecidability; see footnote 11 in Sect. 8. We leave the details of the
appropriate modification of the arguments in the context of algorithmic decidability
to the interested reader.

Theorem 1.8 supports the belief9 that the tiling problem is considerably less well
behaved for J ≥ 2 than it is for J = 1. As another instance of this belief, the J = 1
tilings enjoy a dilation symmetry (see [5, Prop. 3.1], [13, Lem. 3.1], and [34]) that have
no known analogue for J ≥ 2. We present a further distinction between the J = 1
and J ≥ 2 situations in Sect. 10 below, where we show that in one dimension the
J = 1 tilings exhibit a certain partial rigidity property that is not present in the J ≥ 2
setting, and makes any attempt to extend our methods of proof of Theorem 1.8 to the
J = 1 case difficult. On the other hand, if one allows the group G0 to be nonabelian,
then we can reduce the two tiles in Theorem 1.8 to a single tile: see Sect. 11.

9 As a dissenting view, it was conjectured in [9] that the translational tiling problem for Z2 with J = 2 is
(algorithmically) decidable and not aperiodic.
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[2]

Thm. 1.20

Thm. 7.1

Thm. 1.19

Thm. 11.2 Thm. 1.18

Thm. 1.17 Thm. 9.5

Thm. 1.16 Thm. 9.2

Thm. 1.8 Thm. 1.9

§8

§7

§7

11.6
§6

§5 §9

4.1 9.4

1.15 9.1

Fig. 1 The logical dependencies between the undecidability results in this paper (and in [4]). For each
implication, there is listed either the section where the implication is proven, or the number of the key
proposition or lemma that facilitates the implication. We also remark that Proposition 9.4 is proven using
Lemma 9.3, while Proposition 11.6 is proven using Corollary 11.5, which in turn follows from Lemma 11.4

1.6 Overview of Proof

We now discuss the proof of Theorem 1.8; the proofs of Theorems 1.9 and 11.2 are
provenbymodifications of themethod and are discussed inSects. 9 and11 respectively.
The arguments proceed by a series of reductions in which we successively replace the
tiling equation (1.2) by a more tractable system of equations; see Fig. 1.

We first extend Definition 1.6 to systems of tiling equations.

Definition 1.13 (undecidability and aperiodicity for systems of tiling equations with
multiple tiles) Let G be an explicit finitely generated abelian group, J , M ≥ 1 be
standard natural numbers, and for each m = 1, . . . , M , let F (m)

1 , . . . , F (m)
J be finite

subsets of G, and let E (m) be a periodic subset of G.

(i) We say that the system Tile(F (m)
1 , . . . , F (m)

J ; E (m)), m = 1, . . . , M , is undecid-
able if the assertion that there exist subsets A1, . . . , AJ ⊂ G that simultaneously
solve Tile(F (m)

1 , . . . , F (m)
J ; E (m)) for all m = 1, . . . , M , when phrased as a first-

order sentence in ZFC, is not provable within the axiom system of ZFC. That is to
say, the solution set

M⋂

m=1

Tile(F (m)
1 , . . . , F (m)

J ; E (m))U∗

is non-empty in some universes U∗ of ZFC, and empty in others. We say that the
system is decidable if it is not undecidable.

(ii) We say that the system Tile(F (m)
1 , . . . , F (m)

J ; E (m)), m = 1, . . . , M , is aperiodic
if, when working within the standard universeU of ZFC, this system admits a solu-
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tion A1, . . . , AJ ⊂ G, but there are no solutions for which all of the A1, . . . , AJ

are periodic. That is to say, the solution set

M⋂

m=1

Tile(F (m)
1 , . . . , F (m)

J ; E (m))U

is non-empty but contains no tuples of periodic sets.

Example 1.14 Let G be an explicit finitely generated abelian group, and let G0 be an
explicit finite abelian group. The solutions A to the tiling equation Tile({0} × G0;
G × G0) are precisely those sets which are graphs

A = {(n, f (n)) : n ∈ G} (1.4)

for an arbitrary function f : G → G0. It is possible to impose additional conditions on
f by addingmore tiling equations to this “base” tiling equationTile ({0}×G0;G×G0).
For instance, if in addition H is a subgroup of G0 and y + H is a coset of H in G0,
solutions A to the system of tiling equations

Tile({0} × G0;G × G0), Tile({0} × H ;G × (y + H))

are precisely sets A of the form (1.4) where the function f obeys the additional10

constraint f (n) ∈ y + H for all n ∈ G. As a further example, if −y0, y0 are distinct
elements of G0, and h is a non-zero element of G, then solutions A to the system of
tiling equations

Tile({0} × G0;G × G0), Tile({0,−h} × {0};G × {−y0, y0})

are precisely sets A of the form (1.4) where the function f takes values in {−y0, y0}
and obeys the additional constraint f (n+h) = − f (n) for all n ∈ G. In all three cases
one can verify that the system of tiling equations is decidable and not aperiodic.

We then have

Theorem 1.15 (combining multiple tiling equations into a single equation) Let J , M
≥ 1, let G = Z

d × G0 be an explicit finitely generated abelian group for some
explicit finite abelian group G0. Let ZN be a cyclic group with N > M, and for each
m = 1, . . . , M let F (m)

1 , . . . , F (m)
J be finite non-empty subsets of G and E (m)

0 a subset
of G0. Define the finite sets F̃1, . . . , F̃J ⊂ G × ZN and the set Ẽ0 ⊂ G0 × ZN by

F̃j :=
M⊎

m=1

F (m)
j × {m}, (1.5)

10 In this particular case, the former tiling equation is redundant, being a consequence of the latter. However,
we choose to retain the former equation in this example to illustrate the principle of imposing additional
constraints on the function f by the insertion of additional tiling equations.
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Ẽ0:=
M⊎

m=1

E (m)
0 × {m}. (1.6)

(i) The systemTile(F (m)
1 , . . . , F (m)

J ;Zd×E (m)
0 ), m = 1, . . . , M, of tiling equations is

aperiodic if and only if the tiling equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0) is aperiodic.
(ii) The system Tile(F (m)

1 , . . . , F (m)
J ;Zd × E (m)

0 ), m = 1, . . . , M, of tiling equations
is undecidable if and only if the tiling equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0) is
undecidable.

Theorem 1.15 can be established by easy elementary considerations; see Sect. 3. In
view of this theorem, Theorem 1.8 now reduces to the following statement.

Theorem 1.16 (undecidable system of tiling equations with two tiles in Z
2 × G0)

There exists an explicit finite abelian group G0, a standard natural number M, and
for each m = 1, . . . , M there exist finite non-empty sets F (m)

1 , F (m)
2 ⊂ Z

2 × G0 and

E (m)
0 ⊂ G0 such that the system of tiling equations Tile(F (m)

1 , F (m)
2 ;Z2 × E (m)

0 ),
m = 1, . . . , M, is undecidable.

The ability to now impose an arbitrary number of tiling equations grants us a substantial
amount of flexibility. In Sect. 4 we will take advantage of this flexibility to replace
the system of tiling equations with a system of functional equations, basically by
generalizing the constructions provided in Example 1.14. Specifically, we will reduce
Theorem 1.16 to the following statement.

Theorem 1.17 (undecidable system of functional equations) There exists an explicit
finite abelian group G0, a standard integer M ≥ 1, and for each m = 1, . . . , M there
exist (possibly empty) finite subsets H (m)

1 , H (m)
2 of Z2 ×Z2 and (possibly empty sets)

F (m)
1 , F (m)

2 , E (m) ⊂ G0 for m = 1, . . . , M such that the question of whether there
exist functions f1, f2 : Z2 × Z2 → G0 that solve the system of functional equations

⊎

h1∈H (m)
1

(F (m)
1 + f1(n + h1)) 	

⊎

h2∈H (m)
2

(F (m)
2 + f2(n + h2)) = E (m) (1.7)

for all n ∈ Z
2×Z2 andm = 1, . . . , M is undecidable (when expressed as a first-order

sentence in ZFC).

In the above theorem, the functions f1, f2 can range freely in the finite group G0. By
taking advantage of the Z2 factor in the domain, we can restrict f1, f2 to range instead
in a Hamming cube {−1, 1}D ⊂ Z

D
N , which will be more convenient for us to work

with, at the cost of introducing an additional sign in the functional equation (1.7).
More precisely, in Sect. 5 we reduce Theorem 1.17 to

Theorem 1.18 (undecidable system of functional equations in the Hamming cube)
There exists standard integers N > 2 and D, M ≥ 1, and for each m = 1, . . . , M
there exist shifts h(m)

1 , h(m)
2 ∈ Z

2 and (possibly empty sets) F (m)
1 , F (m)

2 , E (m) ⊂ Z
D
N for
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m = 1, . . . , M such that the question of whether there exist functions f1, f2 : Z2 →
{−1, 1}D that solve the system of functional equations

(F (m)
1 + ε f1(n + h(m)

1 )) 	 (F (m)
2 + ε f2(n + h(m)

2 )) = E (m) (1.8)

for all n ∈ Z
2, m = 1, . . . , M, and ε = ±1 is undecidable (when expressed as a

first-order sentence in ZFC).

The next step is to replace the functional equations (1.8) with linear equations on
Boolean functions f j,d : Z2 → {−1, 1} (where we now view {−1, 1} as a subset of
the integers). More precisely, in Sect. 6 we reduce Theorem 1.18 to

Theorem 1.19 (undecidable system of linear equations for Boolean functions) There
exists standard integers D ≥ D0 ≥ 1 and M1, M2 ≥ 1, integer coefficients a(m)

j,d ∈ Z

for j = 1, 2, d = 1, . . . , D, m = 1, . . . , Mj , and shifts hd ∈ Z
2 for d = 1, . . . , D0

such that the question of whether there exist functions f j,d : Z2 → {−1, 1} ⊂ Z for
j = 1, 2 and d = 1, . . . , D that solve the system of linear functional equations

D∑

d=1

a(m)
j,d f j,d(n) = 0 (1.9)

for all n ∈ Z
2, j = 1, 2, and m = 1, . . . , Mj , as well as the system of linear functional

equations

f2,d(n + hd) = − f1,d(n) (1.10)

for all n ∈ Z
2 and d = 1, . . . , D0, is undecidable (when expressed as a first-order

sentence in ZFC).

Now that we are working with linear equations for Boolean functions, we can encode
a powerful class of constraints, namely all local Boolean constraints. In Sect. 7 we
will reduce Theorem 1.19 to

Theorem 1.20 (undecidable local Boolean constraint) There exist standard integers
D, L ≥ 1, shifts h1, . . . , hL ∈ Z

2, and a set � ⊂ {−1, 1}DL such that the question
of whether there exist functions fd : Z2 → {−1, 1}, d = 1, . . . , D, that solve the
constraint

( fd(n + hl))d=1,...,D
l=1,...,L

∈ � (1.11)

for all n ∈ Z
2 is undecidable (when expressed as a first-order sentence in ZFC).

Finally, in Sect. 8 we use the previously established existence of undecidable transla-
tional tile sets to prove Theorem 1.20, and thus Theorem 1.8.
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1.7 Notation

Given a subset A ⊂ G of an abelian group G and a shift h ∈ G, we define A + h =
h + A := {a + h : a ∈ A}, A − h := {a − h : a ∈ A}, and −A := {−a : a ∈ A}. The
unary operator − is understood to take precedence over the binary operator ×, which
in turn takes precedence over the binary operator ⊕, which takes precedence over the
binary operator 	. Thus for instance

A × −B ⊕ −C × D 	 E = ((A × (−B)) ⊕ ((−C) × D)) 	 E .

By slight abuse of notation, any set of integerswill be identifiedwith the corresponding
set of residue classes in a cyclic group ZN , if these classes are distinct. For instance, if
M ≤ N , we identify {1, . . . , M}with the residue classes {1mod N , . . . , M mod N } ⊂
ZN , and if N > 2, we identify {−1, 1} with the set {−1 mod N , 1mod N } ⊂ ZN .

2 Periodic Tiling Conjecture in One Dimension

In this section we adapt the pigeonholing argument of Newman [25] to establish

Theorem 2.1 (one-dimensional case of periodic tiling conjecture) Let G = Z × G0
for some explicit finite abelian group G0, let J ≥ 1 be a standard integer, F1, . . . , FJ

be finite subsets of G, and let E be a periodic subset of G. Then the tiling equation
Tile(F1, . . . , FJ ; E) is not aperiodic (and hence also decidable).

We remark that the same argument also applies to systems of tiling equations in
one-dimensional groups Z × G0; this also follows from the above theorem and The-
orem 1.15.

Proof Suppose one has a solution (A1, . . . , AJ ) ∈ Tile(F1, . . . , FJ ; E)U to the tiling
equation Tile(F1, . . . , FJ ; E). To establish the theorem it will suffice to construct a
periodic solution A′

1, . . . , A
′
J ∈ Tile(F1, . . . , FJ ; E)U to the same equation.

We abbreviate the “thickened interval” {n ∈ Z : a ≤ n ≤ b} × G0 as [[a, b]] for
any integers a ≤ b. Since the F1, . . . , FJ are finite, there exists a natural number L
such that F1, . . . , FJ ⊂ [[−L, L]]. Since E is periodic, there exists a natural number
r such that E + (n, 0) = E for all n ∈ rZ, where we view (n, 0) as an element of
Z × G0. We can assign each n ∈ rZ a “color”, defined as the tuple

((A j − (n, 0)) ∩ [[−L, L]])Jj=1.

This is a tuple of J subsets of the finite set [[−L, L]], and thus there are only finitely
many possible colors. By the pigeonhole principle, one can thus find a pair of integers
n0, n0 + D ∈ rZ with D > L that have the same color, thus

(A j − (n0 + D, 0)) ∩ [[−L, L]] = (A j − (n0, 0)) ∩ [[−L, L]]
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or, equivalently,

A j ∩ [[n0 + D − L, n0 + D + L]] = (A j ∩ [[n0 − L, n0 + L]]) + (D, 0) (2.1)

for j = 1, . . . , J .

We now define the sets A′
j for j = 1, . . . , J by taking the portion A j ∩ [[n0, n0 +

D − 1]] of A j and extending periodically by DZ × {0}, thus

A′
j := (A j ∩ [[n0, n0 + D − 1]]) ⊕ DZ × {0}.

Clearly we have the agreement

A′
j ∩ [[n0, n0 + D − 1]] = A j ∩ [[n0, n0 + D − 1]]

of A j , A′
j on [[n0, n0 + D − 1]], but from (2.1) we also have

A′
j ∩ [[n0 − L, n0 − 1]] = (A j ∩ [[n0 + D − L, n0 + D − 1]]) − (D, 0)

= A j ∩ [[n0 − L, n0 − 1]]

and similarly

A′
j ∩ [[n0 + D, n0 + D + L]] = (A j ∩ [[n0, n0 + L]]) + (D, 0)

= A j ∩ [[n0 + D, n0 + D + L]],

and thus A j , A′
j in fact agree on a larger region:

A′
j ∩ [[n0 − L, n0 + D + L]] = A j ∩ [[n0 − L, n0 + D + L]]. (2.2)

It will now suffice to show that A′
1, . . . , A

′
J solve the tiling equation

Tile(F1, . . . , FJ ; E),

that is to say that

A′
1 ⊕ F1 	 · · · 	 A′

J ⊕ FJ = E .

Since both sides of this equation are periodic with respect to translations by DZ×{0},
it suffices to establish this claim within [[n0, n0 + D − 1]], that is to say

J⊎

j=1

(
(A′

j ⊕ Fj ) ∩ [[n0, n0 + D − 1]]) = E ∩ [[n0, n0 + D − 1]]. (2.3)

However, since F1, . . . , FJ are contained in [[−L, L]], so the only portions of
A′
1, . . . , A

′
J that are relevant for (2.3) are those in [[n0 − L, n0 + D + L − 1]].
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But from (2.2) we may replace each A′
j in (2.3) by A j . Since A1, . . . , AJ solve the

tiling equation Tile(F1, . . . , FJ ; E), the claim follows. ��
Remark 2.2 An inspection of the argument reveals that the hypothesis that G0 was
abelian was not used anywhere in the proof, thus Theorem 2.1 is also valid for non-
abelian G0 (with suitable extensions to the notation). This generalization will be used
in Sect. 11.

3 CombiningMultiple Tiling Equations into a Single Equation

In this sectionwe establish Theorem1.15. For the rest of the sectionwe use the notation
and hypotheses of that theorem.

Remark 3.1 The reader may wish to first consider the special case M = 2, J = 1,
N = 3 in what follows to simplify the notation. In this case, part (ii) of the theorem
asserts that the system of tiling equations

Tile(F (1),Zd × E (1)
0 ), Tile(F (2),Zd × E (2)

0 )

in Zd × G0 is undecidable if and only if the single tiling equation

Tile
(
F (1) × {1} 	 F (2) × {2}, Zd × (

E (1)
0 × {1} 	 E (2)

0 × {2}))

in Zd × G0 × Z3 is undecidable.

We begin with part (ii). Suppose we have a solution

(A1, . . . , AJ ) ∈
M⋂

m=1

Tile(F (m)
1 , . . . , F (m)

J ;Zd × E (m)
0 )U

in G to the system of tiling equations Tile(F (m)
1 , . . . , F (m)

J ;Zd × E (m)
0 ), m =

1, . . . , M , thus

A1 ⊕ F (m)
1 	 · · · 	 AJ ⊕ F (m)

J = Z
d × E (m)

0 (3.1)

for all m = 1, . . . , M . If we then define the sets

Ã j := A j × {0} ⊂ G × ZN

for j = 1, . . . , J , then from construction of the F̃j we have

Ã j ⊕ F̃j =
M⊎

m=1

(A j ⊕ F (m)
j ) × {m}
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for any j = 1, . . . , J and m = 1, . . . , M , and hence by (3.1)

Ã1 ⊕ F̃1 	 · · · 	 ÃJ ⊕ F̃ (m)
J =

M⊎

m=1

(Zd × E (m)
0 ) × {m}.

But by (1.6), the right-hand side here is Zd × Ẽ0. Thus we see that Ã1, . . . , ÃJ solve
the single tiling equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0).

Conversely, suppose that we have a solution

( Ã1, . . . , ÃJ ) ∈ Tile(F̃1, . . . , F̃J ;Zd × Ẽ0)U

in G × ZN to the tiling equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0); thus

Ã1 ⊕ F̃1 	 · · · 	 ÃJ ⊕ F̃ (m)
J = Z

d × Ẽ0. (3.2)

Weclaim that Ã j ⊂ G×{0} for all j = 1, . . . , J . For if thiswere not the case, then there
would exist j = 1, . . . , J and an element (g, n) of Ã j with n ∈ ZN \{0}. On the other
hand, for any 1 ≤ m ≤ M , the set F (m)

j is non-empty, hence F̃j contains an element of

the form ( fm,m) for some fm ∈ G. By (3.2), we then have (g+ fm, n+m) ∈ Z
d× Ẽ0,

hence by construction of Ẽ0 we have

n + m ∈ {1, . . . , M}

for all m = 1, . . . , M , or equivalently

n + {1, . . . , M} ⊂ {1, . . . , M}.

But since N > M , this is inconsistent with n being a non-zero element of ZN . Thus
we have Ã j ⊂ G × {0} as desired, and we may write

Ã j = A j × {0}

for some A j ⊂ G. By considering the intersection (or “slice”) of (3.2) with G × {m},
we see that

A1 ⊕ F (m)
1 	 · · · 	 AJ ⊕ F (m)

J = Z
d × E (m)

0

for all m = 1, . . . , M , that is to say A1, . . . , AJ solves the system of tiling equations
Tile(F (m)

1 , . . . , F (m)
J ;Zd × E (m)

0 ), m = 1, . . . , M . We have thus demonstrated that
the equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0) admits a solution if and only if the system
Tile(F (m)

1 , . . . , F (m)
J ;Zd × E (m)

0 ), m = 1, . . . , M , does. This argument is also valid
in any other universe U∗ of ZFC, which gives (ii). An inspection of the argument also
reveals that the equation Tile(F̃1, . . . , F̃J ;Zd × Ẽ0) admits a periodic solution if and
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only if the system Tile(F (m)
1 , . . . , F (m)

J ;Zd × E (m)
0 ),m = 1, . . . , M , does, which

gives (i).
As noted in the introduction, in view of Theorem 1.15 we see that to prove Theo-

rem 1.8 it suffices to prove Theorem 1.16. This is the objective of the next five sections
of the paper.

Remark 3.2 For future reference we remark that the abelian nature of G0 was not
used in the above argument, thus Theorem 1.15 is also valid for nonabelian G0 (with
suitable extensions to the notation).

4 From Tiling to Functions

In this section we reduce Theorems 1.16 to 1.17, by means of the following general
proposition.

Proposition 4.1 (equivalence of tiling equations and functional equations) Let G be
an explicit finitely generated abelian group, let G1 be an explicit finite abelian group,
let J , M ≥ 1 and N > J be standard natural numbers, and suppose that for each
j = 1, . . . , J and m = 1, . . . , M one is given a (possibly empty) finite subset H (m)

j

of G and a (possibly empty) subset F (m)
j of G1. For each m = 1, . . . , M, assume also

that we are given a subset E (m) of G1. We adopt the abbreviations

[[a]] := {a} × G0 ⊂ ZN × G1,

[[a, b]] := {n ∈ Z : a ≤ n ≤ b} × G1 ⊂ ZN × G1,

for integers a ≤ b. Then the following are equivalent:

(i) The system of tiling equations

Tile
((−H (m)

j × {0} × F (m)
j 	 {0} × [[ j]])Jj=1; G × ({0} × E (m) 	 [[1, J ]])

)

(4.1)

for all m = 1, . . . , M, together with the tiling equations

Tile
(({0} × [[σ( j)]])Jj=1; G × [[1, J ]]

)
(4.2)

for every permutationσ : {1, . . . , J } → {1, . . . , J }of {1, . . . , J }, admit a solution.
(ii) There exist f j : G → G1 for j = 1, . . . , J that obey the system of functional

equations

J⊎

j=1

⊎

h j∈H (m)
j

(F (m)
j + f j (n + h j )) = E (m) (4.3)

for all n ∈ G and m = 1, . . . , M.
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Remark 4.2 The reason why wework with {0}×F (m)
j 	[[ j]] instead of just {0}×F (m)

j
in (4.1) is in order to ensure that one is working with a non-empty tile (as is required
in Theorem 1.16), even when the original tile F (m)

j is empty.

Remark 4.3 The reader may wish to first consider the special case M = J = 1, N = 2
in what follows to simplify the notation. In this case, the theorem asserts that for any
finite H ⊂ G, and F, E ⊂ G1, the system of tiling equations

A ⊕ ((−H × {0} × F) 	 ({0} × {1} × G1)) = G × ({0} × E 	 {1} × G1),

A ⊕ {0} × {1} × G1 = G × {1} × G1

admits a solution A ⊂ G × Z2 × G1 if and only if there is a function f : G → G1
obeying the equation

⊎

h∈H
(F + f (n + h)) = E

for all n ∈ G. The relationship between the set A and the function f will be given by
the graphing relation

A = {(n, 0, f (n)) : n ∈ G}.

Proof Let us first show that (ii) implies (i). If f1, . . . , f J obey the system (4.3), we
define the sets A1, . . . , AJ ⊂ G × ZN × G1 to be the graphs of f1, . . . , f J in the
sense that

A j := {(n, 0, f j (n)) : n ∈ G}. (4.4)

For any j = 1, . . . , J and permutation σ : {1, . . . , J } → {1, . . . , J }, we have

A j ⊕ {0} × [[σ( j)]] = G × [[σ( j)]], (4.5)

which gives the tiling equation (4.2) for any permutation σ . Next, for j = 1, . . . , J
and m = 1, . . . , M , we have

A j ⊕ −H (m)
j × {0} × F (m)

j =
⊎

n∈G
{n} ×

⊎

h j∈H (m)
j

{0} × (F (m)
j + f j (n + h j ))

(4.6)

and (as a special case of (4.5))

A j ⊕ {0} × [[ j]] = G × [[ j]]

123



Discrete & Computational Geometry (2023) 70:1652–1706 1671

so that the tiling equation (4.1) then follows from (4.3). This shows that (ii) implies (i).

Nowassumeconversely that (i) holds, thuswehave sets A1, . . . , AJ ⊂ G×ZN×G1
obeying the system of tiling equations

J⊎

j=1

A j ⊕ (−H (m)
j × {0} × F (m)

j 	 {0} × [[ j]])) = G × ({0} × E (m) 	 [[1, J ]])

(4.7)

for all m = 1, . . . , M , and

J⊎

j=1

A j ⊕ {0} × [[σ( j)]] = G × [[1, J ]] (4.8)

for all permutations σ : {1, . . . , J } → {1, . . . , J }. We first adapt an argument from
Sect. 3 to claim that each A j is contained in G × [[0]]. For if this were not the case,
there would exist j = 1, . . . , J and an element (g, n, g0) of A j with n ∈ ZN \ {0}.
The left-hand side of the tiling equation (4.8) would then contain (g, n + σ( j), g0),
and thus we would have

n + σ( j) ∈ {1, . . . , J }

for all permutations σ , thus

n + {1, . . . , J } ⊂ {1, . . . , J }.

But this is inconsistent with n being a non-zero element of ZN . Thus each A j is
contained in G × [[0]] as claimed.

If one considers the intersection (or “slice”) of (4.8) withG×[[σ( j)]], we conclude
that

A j ⊕ {0} × [[σ( j)]] = G × [[σ( j)]]

for any j = 1, . . . , J and permutation σ . This implies that for each n ∈ G there is a
unique f j (n) ∈ G1 such that (n, 0, f j (n)) ∈ A j , thus the A j are of the form (4.4) for
some functions f j . The identity (4.6) then holds, and so from inspecting the G ×[[0]]
“slice” of (4.7) we obtain the equation (4.3). This shows that (i) implies (ii). ��
The proof of Proposition 4.1 is valid in every universe U∗ of ZFC, thus the solvability
question in Proposition 4.1 (i) is decidable if and only if the solvability question in
Proposition 4.1 (ii) is. Applying this fact for J = 2, we see that Theorem 1.17 implies
Theorem 1.16. It now remains to establish Theorem 1.17. This is the objective of the
next four sections of the paper.
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5 Reduction to the Hamming Cube

In this section we show how Theorem 1.18 implies Theorem 1.17. Let N , D, M, h(m)
1 ,

h(m)
2 , F (m)

1 , F (m)
2 , E (m) be as in Theorem 1.18. For d = 1, . . . , D, let πd : ZD

N → ZN

denote the d th coordinate projection, thus

y = (π1(y), . . . , πD(y)) (5.1)

for all y ∈ Z
D
N . We write elements of Z2 ×Z2 as (n, t) with n ∈ Z

2 and t ∈ Z2. For a
pair of functions f̃1, f̃2 : Z2×Z2 → Z

D
N , consider the system of functional equations

(
π−1
d ({0}) + f̃ j (n, t)

) 	 (
π−1
d ({0}) + f̃ j (n, t + 1)

) = π−1
d ({−1, 1}) (5.2)

for (n, t) ∈ Z
2 × Z2, d = 1, . . . , D, and j = 1, 2, as well as the equations

(
F (m)
1 + f̃1((n, t) + (h(m)

1 , 0))
) 	 (

F (m)
2 + f̃2((n, t) + (h(m)

2 , 0))
) = E (m) (5.3)

for (n, t) ∈ Z
2×Z2 andm = 1, . . . , M . Note that this system is of the form (1.7) (with

f j replaced by f̃ j , and for suitable choices of M, F (m)
1 , F (m)

2 , E (m)). It will therefore
suffice to establish (using an argument formalizable in ZFC) the equivalence of the
following two claims:

(i) There exist functions f̃1, f̃2 : Z2 × Z2 → Z
D
N solving the system (5.2) and (5.3).

(ii) There exist f1, f2 : Z2 → {−1, 1}D solving the system (1.8).

Remark 5.1 As a simplified version of this equivalence, the reader may wish to take
M = 1, D = 2, and only work with a single function f (or f̃ ) instead of a pair
f1, f2 (or f̃1, f̃2) of functions. The claim is then that the following two statements are
equivalent for any F, E ⊂ Z

2
N :

(i′) There exists f̃ : Z2 × Z
2 → Z

2
N obeying the equations:

({0} × ZN + f̃ (n, t)) 	 ({0} × ZN + f̃ (n, t + 1)) = {−1, 1} × ZN ,

(ZN × {0} + f̃ (n, t)) 	 (ZN × {0} + f̃ (n, t + 1)) = ZN × {−1, 1},

and F + f̃ (n, t) = E for all (n, t) ∈ Z
2 × Z2.

(ii′) There exists f : Z2 → {−1, 1}2 obeying the equation F + ε f (n) = E for all
n ∈ Z

2 and ε = ±1.

The relation between (i′) and (ii′) shall basically arise from the ansatz f̃ (n, t) =
(−1)t f (n).

We first show that (ii) implies (i). Given solutions f1, f2 to the system (1.8), we define
the functions f̃1, f̃2 : Z2 × Z2 → Z

D
N by the formula

f̃ j (n, t) := (−1)t f j (n)
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for j = 1, 2, n ∈ Z
2, and t ∈ Z2, with the conventions (−1)0 := 1 and (−1)1 := − 1.

The equations (1.8) then imply (5.3), while the fact that the f j takes values in {−1, 1}D
implies (5.2) (the keypoint here is that {−1, 1} = {x}	{−x} if andonly if x ∈ {−1, 1}).
This proves that (ii) implies (i).

Now we prove (i) implies (ii). Let f̃1, f̃2 : Z2 × Z2 → Z
D
N be solutions to

(5.2)&(5.3). From (5.2) we see (on applying the projection πd ) that

{πd( f̃ j (n, t))} 	 {πd( f̃ j (n, t + 1))} = {−1, 1}

for all j = 1, 2, d = 1, . . . , D, and (n, t) ∈ Z
2 × Z2, or equivalently that

πd( f̃ j (n, t)) ∈ {−1, 1} and πd( f̃ j (n, t + 1)) = −πd( f̃ j (n, t))

for all j = 1, 2, d = 1, . . . , D, and (n, t) ∈ Z
2 × Z2. From (5.1), we thus have

f̃ j (n, t) ∈ {−1, 1}D and f̃ j (n, t + 1) = − f̃ j (n, t)

for all j = 1, 2 and (n, t) ∈ Z
2 × Z2. Thus we may write

f̃ j (n, t) = (−1)t f j (n)

for some functions f j : Z2 → {−1, 1}D . The system (5.3) is then equivalent to the
system of equations (1.8). This shows that (i) implies (ii). These arguments are valid in
every universe U∗ of ZFC, thus Theorem 1.18 implies Theorem 1.17. It now remains
to establish Theorem 1.18. This is the objective of the next three sections of the paper.

6 Reduction to Systems of Linear Equations on Boolean Functions

In this sectionwe showhowTheorem1.19 implies Theorem 1.18. Let D, D0, M1, M2,

a(m)
j,d , hd be as in Theorem 1.19. We let N be a sufficiently large integer. For each

j = 1, 2 and m = 1, . . . , Mj , we consider the subgroup H (m)
j of ZD

N defined by

H (m)
j :=

{
(y1, . . . , yD) ∈ Z

D
N :

D∑

d=1

a(m)
j,d y j = 0

}
(6.1)

and let πd : ZD
N → ZN for d = 1, . . . , D be the coordinate projections as in the

previous section. For some unknown functions f1, f2 : Z2 → {−1, 1}D ⊂ Z
D
N we

consider the system of functional equations

H (m)
j + ε f j (n) = H (m)

j (6.2)

for all n ∈ Z
2, j = 1, 2, m = 1, . . . , Mj , and ε = ±1, as well as the system

(π−1
d ({0}) + ε f1(n)) 	 (π−1

d ({0}) + ε f2(n + hd)) = π−1
d ({−1, 1}) (6.3)
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for all n ∈ Z
2, d = 1, . . . , D0, and ε = ±1. Note that this system (6.2)&(6.3) is

of the form required for Theorem 1.18. It will suffice to establish (using an argument
valid in every universe of ZFC) the equivalence of the following two claims:

(i) There exist functions f1, f2 : Z2 → Z
D
N solving the system (6.2)&(6.3).

(ii) There exist functions f j,d : Z2 → {−1, 1} solving the system (1.9)&(1.10).

Remark 6.1 To understand this equivalence, the reader may wish to begin by verify-
ing two simplified special cases of this equivalence. Firstly, the two (trivially true)
statements

(i′) There exist a function f : Z2 → {−1, 1}2 solving the equation

H + ε f (n) = H

for all n ∈ Z
2 and ε = ±1, where H := {(y1, y2) ∈ Z

2
N : y1 + y2 = 0}.

(ii′) There exist functions f1, f2 : Z2 → {−1, 1} solving the equation

f1(n) + f2(n) = 0

for all n ∈ Z
2.

canbe easily seen tobe equivalent aftermaking the substitution f (n) = ( f1(n), f2(n)).
Secondly, for any h ∈ Z

2, the two (trivially true) statements

(i′′) There exist a functions f1, f2 : Z2 → {−1, 1} solving the equation

({0} + ε f1(n)) 	 ({0} + ε f2(n + h)) = {−1, 1}

for all n ∈ Z
2 and ε = ±1.

(ii′′) There exist functions f1, f2 : Z2 → {−1, 1} solving the equation

f2(n + h) = − f1(n)

for all n ∈ Z
2.

are also easily seen to be equivalent (the solution sets ( f1, f2) for (i′′) and (ii′′) are
identical).

Returning to the general case, we first show that (ii) implies (i). Let f j,d : Z2 →
{−1, 1} be solutions to (1.9)&(1.10). We let f j : Z2 → {−1, 1}D be the function

f j (n) := ( f j,1(n), . . . , f j,D(n)) (6.4)

for n ∈ Z
2 and j = 1, 2, where we now view the Hamming cube {−1, 1}D as lying

in ZD
N . For any j = 1, 2, m = 1, . . . , M , n ∈ Z

2, and ε = ±1, we see from (1.9) and
(6.1) that

ε f j (n) ∈ H (m)
j
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and hence (6.2) holds. Similarly, for any d = 1, . . . , D0, n ∈ Z
2, and ε = ±1 we

have from (1.10) that

({0} + ε f1,d(n)) 	 ({0} + ε f2,d(n + hd)) = {−1, 1},

which implies (6.3). This shows that (ii) implies (i).
Nowwe show that (i) implies (ii). Let f1, f2 be a solution to the system (6.2)&(6.3).

We may express f j in components as (6.4), where the f j,d are functions from Z
2 to

{−1, 1}. From (6.2) we see that

( f j,1(n), . . . , f j,D(n)) ∈ H (m)
j

for all n ∈ Z
d , j = 1, 2, m = 1, . . . , Mj (viewing the tuple as an element of ZD

N ), or
equivalently that

D∑

d=1

a(m)
j,d f j,d(n) = 0 mod N .

The left-hand side is an integer that does not exceed
∑D

d=1 |a(m)
j,d | in magnitude, so for

N large enough we have

D∑

d=1

a(m)
j,d f j,d(n) = 0,

that is to say (1.8) holds. Similarly, from (6.3) we see that

{ f1,d(n)} 	 { f2,d(n + hd)} = {−1, 1}

for all n ∈ Z
2 and d = 1, . . . , D0, which gives (1.9). This proves that (i) implies (ii).

These arguments are valid in every universe of ZFC, thus Theorem 1.19 implies The-
orem 1.18. It now remains to establish Theorem 1.19. This is the objective of the next
two sections of the paper.

7 Reduction to a Local Boolean Constraint

In this section we show how Theorem 1.20 implies Theorem 1.19. (One can also
easily establish the converse implication, but we will not need that implication here.)
We begin with some preliminary reductions. We first claim that Theorem 1.20 implies
a strengthening of itself in which the set � can be taken to be symmetric: � = −�;
also, we can take D ≥ 2. To see this, suppose that we can find D, L, h1, . . . , hL ,�

obeying the conclusions of Theorem 1.20. We then introduce the symmetric set �′ ⊂
{−1, 1}(D+1)L to be the collection of all tuples (ωd,l)d=1,...,D+1;l=1,...,L obeying the

123



1676 Discrete & Computational Geometry (2023) 70:1652–1706

constraints

ωD+1,1 = . . . = ωD+1,L and (ωd,lωD+1,l)d=1,...,D
l=1...,L

∈ �.

Clearly �′ is symmetric. If f1, . . . , fD : Z2 → {−1, 1} obeys the constraint (1.11),
then by setting fD+1 : Z2 → {−1, 1} to be the constant function fD+1(n) = 1 then
we see from construction that

( fd(n + hl))d=1,...,D+1
l=1,...,L

∈ �′ (7.1)

for all n ∈ Z
2. Conversely, if there was a solution f1, . . . , fD+1 : Z2 → {−1, 1}

to (7.1), then we must have

fD+1(n + h1) = . . . = fD+1(n + hL)

and

( fd(n + hl) fD+1(n + hl))d=1,...,D
l=1...,L

∈ �,

and then the functions fd fD+1 : Z2 → {−1, 1} for d = 1, . . . , D would form
a solution to (1.11). As these arguments are formalizable in ZFC, we see that
Theorem 1.20 for the specified choice of D, L, h1, . . . , hL ,� implies Theorem 1.20
for D + 1, L, h1, . . . , hL ,�′, giving the claim.

Nowconsider the system (1.11) for some D, L, h1, . . . , hL ,�with D ≥ 2 and� ⊂
{−1, 1}DL symmetric, and some unknown functions f1, . . . , fD : Z2 → {−1, 1}.
The constraint (1.11) involves multiple functions as well as multiple shifts. We now
“decouple” this constraint into an equivalent system of simpler constraints, which
either involve just two functions, or do not involve any shifts at all. Namely, we
introduce a variant system involving some other unknown functions f j,d,l : Z2 →
{−1, 1} with j = 1, 2, d = 1, . . . , D, l = 1, . . . , L , consisting of the symmetric
Boolean constraint

( f1,d,l(n))d=1,...,D
l=1,...,L

∈ � (7.2)

for all n ∈ Z
2, the additional symmetric Boolean constraints

f2,d,1(n) = . . . = f2,d,L(n) (7.3)

for all n ∈ Z
2 and d = 1, . . . , D, and the shifted constraints

f2,d,l(n + hl) = − f1,d,l(n) (7.4)
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for all n ∈ Z
2, d = 1, . . . , D, and l = 1, . . . , L . Observe that if f1, . . . , fD : Z2 →

{−1, 1} solve (1.11), then the functions f j,d,l : Z2 → {−1, 1} defined by

f1,d,l(n) := fd(n + hl) and f2,d,l(n) := − fd(n)

obey the system (7.2)–(7.4); conversely, if f j,d,l : Z2 → {−1, 1} solve (7.2)–(7.4),
then from (7.3) we have f2,d,l(n) = − fd(n) for all d = 1, . . . , D, l = 1, . . . , L , and
some functions f1, . . . , fD : Z2 → {−1, 1}, and then from (7.2) and (7.4) we see that
f1, . . . , fD solve (1.11). These arguments are formalizable in ZFC, so we conclude
that the question of whether the system (7.2)–(7.4) admits solutions is undecidable.

A symmetric set � ⊂ {−1, 1}DL can be viewed as the Hamming cube {−1, 1}DL

with a finite number of pairs of antipodal points {ε,−ε} removed. The constraint
(7.3) is constraining the tuple ( f2,d,l(n))d=1,...,D;l=1,...,L to a symmetric subset of
{−1, 1}DL , which can thus also be viewed in this fashion. Relabeling f j,d,l as f j,d
for d = 1, . . . , D0 := DL , and assigning the shifts h1, . . . , hL to these labels appro-
priately, we conclude the following consequence of Theorem 1.20:

Theorem 7.1 (undecidable system of antipode-avoiding constraints) There exist stan-
dard integers D0 ≥ 2 and M1, M2 ≥ 1, shifts h1, . . . , hD0 ∈ Z

2, and vectors

ε
(m)
j ∈ {−1, 1}D for j = 1, 2 and m = 1, . . . , Mj such that the question of whether

there exist functions f j,d : Z2 → {−1, 1}, for j = 1, 2 and d = 1, . . . , D0, that solve
the constraints

( f j,d(n))d=1,...,D0 /∈ {−ε
(m)
j , ε

(m)
j } (7.5)

for all n ∈ Z
2, j = 1, 2, m = 1, . . . , Mj , as well as the constraints

f2,d(n + hd) = − f1,d(n) (7.6)

for all n ∈ Z
2 and d = 1, . . . , D0, is undecidable (when expressed as a first-order

sentence in ZFC).

This is already quite close to Theorem 1.19, except that the linear constraints (1.9)
have been replaced by antipode-avoiding constraints (7.5). To conclude the proof
of Theorem 1.19, we will show that each antipode-avoiding constraint (7.5) can be
encoded as a linear constraint of the form (1.9) after adding some more functions.

To simplify the notation we will assume that M1 = M2 = M , which one can
assume without loss of generality by repeating the vectors ε

(m)
j as necessary. The key

observation is the following. If ε = (ε1, . . . , εD0) ∈ {−1, 1}D0 and y1, . . . , yD0 ∈
{−1, 1}D0 , then the following claims are equivalent:

(a) (y1, . . . , yD0) /∈ {−ε, ε}.
(b) ε1y1 + · · · + εD0 yD0 ∈ {−D0 + 2,−D0 + 4, . . . , D0 − 4, D0 − 2}.
(c) There exist y′

1, . . . , y
′
D0−2 ∈ {−1, 1} such that ε1y1 + · · · + εD0 yD0 + y′

1 + · · · +
y′
D0−2 = 0.
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Indeed, it is easy to see from the triangle inequality and parity considerations (and the
hypothesis D0 ≥ 2) that (a) and (b) are equivalent, and that (b) and (c) are equivalent.
The point is that the antipode-avoiding constraint (a) has been converted into a linear
constraint (c) via the addition of some additional variables.

Example 7.2 As a simple example of this equivalence (with D0 = 4 and ε1 = . . . =
ε4 = 1), given a triple (y1, y2, y3, y4) ∈ {−1, 1}4, we see that the following claims
are equivalent:

(a′) (y1, y2, y3, y4) /∈ {(−1,−1,−1,−1), (+1,+1,+1,+1)}.
(b′) y1 + y2 + y3 + y4 ∈ {−2, 0,+2}.
(c′) There exist y5, y6 ∈ {−1, 1} such that y1 + y2 + y3 + y4 + y5 + y6 = 0.

We now set D := D0 + M(D0 − 2) and consider the question of whether there exist
functions f j,d : Z2 → {−1, 1}, for j = 1, 2, d = 1, . . . , D, that solve the linear
system of equations

D0∑

d=1

ε
(m)
j,d f j,d(n) +

D0−2∑

d=1

f j,D0+(m−1)(D0−2)+d(n) = 0 (7.7)

for j = 1, 2, m = 1, . . . , M , n ∈ Z
2, as well as the linear system (7.1) for j = 1, 2,

n ∈ Z
2, and d = 1, . . . , D0. In view of the equivalence of (a) and (c) (and the fact that

for each j = 1, 2, m = 1, . . . , M , and n ∈ Z
2, the variables f j,D0+(m−1)(D0−2)+d(n)

appear in precisely one constraint, namely the equation (7.7) for the indicated values
of j,m, n) we see that this system of equations (7.6)&(7.1) admits a solution if and
only if the system of equations (7.5)&(7.6) admits a solution. This argument is valid in
every universe of ZFC, hence the solvability of the system (7.6)&(7.1) is undecidable.
This completes the derivation of Theorem 1.19 from Theorem 1.20. It now remains to
establish Theorem 1.20. This is the objective of the next section of the paper.

8 Undecidability of Local Boolean Constraints

In this section we prove Theorem 1.20, which by the preceding reductions also estab-
lishesTheorem1.8.Our starting point is the existence of an undecidable tiling equation

Tile(F1, . . . , FJ ;Z2) (8.1)

for some standard J and some finite F1, . . . , FJ ⊂ Z
2. This was first shown11 in [4]

(after applying the reduction in [10]), with many subsequent proofs; see for instance

11 Berger’s construction is able to encode any instance of the halting problem for Turing machines (with
empty input) as a (Wang) tiling problem; since the consistency of ZFC is an undecidable statement equiv-
alent to the non-halting of a certain Turing machine with empty input, this gives the required claim of
undecidability.

123



Discrete & Computational Geometry (2023) 70:1652–1706 1679

[17] for a survey. One can for instance take the tile set in [27], which has J = 11,
though the exact value of J will not be of importance here.

Note that to any solution

(A1, . . . , AJ ) ∈ Tile(F1, . . . , FJ ;Z2)U

in Z
2 of the tiling equation (8.1), one can associate a coloring function c : Z2 → C

taking values in the finite set

C :=
J⊎

j=1

{ j} × Fj

by defining

c(a j + h j ) := ( j, h j )

whenever j = 1, . . . , J , a j ∈ A j , and h j ∈ Fj . The tiling equation (8.1) ensures that
the coloring function c is well defined. Furthermore, from construction we see that c
obeys the constraint

c(n) = ( j, h j ) �⇒ c(n − h j + h′
j ) = ( j, h′

j ) (8.2)

for all n ∈ Z
2, j = 1, . . . , J , and h j , h′

j ∈ Fj . Conversely, suppose that c : Z2 → C
is a function obeying (8.2). Then if we define A j for each j = 1, . . . , J to be the set of
those a j ∈ Z

2 such that c(a j + h j ) = ( j, h j ) for some h j ∈ Fj , from (8.2) we have
c(a j + f ′

j ) = ( j, f ′
j ) for all j = 1, . . . , J , a j ∈ A j , and f ′

j ∈ Fj , which implies that
A1, . . . , AJ solve the tiling equation (8.1). Thus the solvability of (8.1) is equivalent
to the solvability of the equation (8.2); as the former is undecidable in ZFC, the latter
is also, since the above arguments are valid in every universe of ZFC.

Since the set C = ⊎J
j=1{ j} × Fj is finite, one can establish an explicit bijection

ι : C → � between this set and some subset � of {−1, 1}D for some D. Com-
posing c with this bijection, we see that the question of locating Boolean functions
f1, . . . , fD : Z2 → {−1, 1} obeying the constraints

( f1(n), . . . , fD(n)) ∈ �, (8.3)

( f1(n), . . . , fD(n)) = ι( j, h j ) �⇒
( f1(n − h j + h′

j ), . . . , fD(n − h j + h′
j )) = ι( j, h′

j )
(8.4)

for all n ∈ Z
2, j = 1, . . . , J , and h j , h′

j ∈ Fj , is undecidable in ZFC. However, this
set of constraints is of the type considered in Theorem 1.20 (after enumerating the set
of differences {h j − h′

j : j = 1, . . . , J ; h j , h′
j ∈ Fj } as h1, . . . , hL for some L , and

combining the various constraints in (8.3) and (8.4)), and the claim follows.
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9 Proof of Theorem 1.9

In this section we modify the ingredients of the proof of Theorem 1.8 to establish
Theorem 1.9. The proofs of both theorems proceed along similar lines, and in fact are
both deduced from a common result in Theorem 1.18; see Fig. 1. We begin by proving
the following analogue of Theorem 1.15.

Theorem 9.1 (combining multiple tiling equations into a single equation) Let
J , M, d ≥ 1 and N > M be standard natural numbers. For each m = 1, . . . , M,
let F (m)

1 , . . . , F (m)
J be finite non-empty subsets of Zd , and let E (m) be a periodic sub-

set of Zd . Define the finite sets F̃1, . . . , F̃J ⊂ Z
d × {1, . . . , M} and the periodic set

Ẽ ⊂ Z
d × Z by

F̃j :=
M⊎

m=1

F (m)
j × {m}, (9.1)

Ẽ :=
M⊎

m=1

E (m) × (NZ + m). (9.2)

(i) The system Tile(F (m)
1 , . . . , F (m)

J ; E (m)), m = 1, . . . , M, of tiling equations is
aperiodic if and only if the tiling equation Tile(F̃1, . . . , F̃J ; Ẽ) is aperiodic.

(ii) The system Tile(F (m)
1 , . . . , F (m)

J ; E (m)), m = 1, . . . , M, of tiling equations is
undecidable if and only if the tiling equation Tile(F̃1, . . . , F̃J ; Ẽ) is undecidable.

Proof We will just prove (i); the proof of (ii) is similar and is left to the reader.
The argument will be a “pullback” of the corresponding proof of Theorem 1.15 (i).
First, suppose that the system Tile(F (m)

1 , . . . , F (m)
J ; E (m)), m = 1, . . . , M , of tiling

equations has a periodic solution A1, . . . , AJ ⊂ Z
d , thus

A1 ⊕ F (m)
1 	 · · · AJ ⊕ F (m)

J = E (m) (9.3)

for m = 1, . . . , M . If we then introduce the periodic sets

Ã j := A j × NZ ⊂ Z
d × Z, j = 1, . . . , J ,

then we have

Ã j ⊕ F̃j =
M⊎

m=1

(A j ⊕ F (m)
j ) × (NZ + m)

for all j = 1, . . . , J , and hence by (9.3) and (9.2) we have

Ã1 ⊕ F̃1 	 · · · 	 ÃJ ⊕ F̃j = Ẽ . (9.4)

Thus we have a periodic solution for the system Tile(F̃1, . . . , F̃J ; Ẽ).
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Conversely, suppose that the systemTile(F̃1, . . . , F̃J ; Ẽ) admits a periodic solution
Ã1, . . . , ÃJ , so that (9.4) holds. Observe that if Ã j ⊂ Z

d ×NZ for each j = 1, . . . , J ,
then the “slices”

A j := {a ∈ Z
d : (a, 0) ∈ Ã j }, j = 1, . . . , J ,

would be periodic and obey the equation (9.3) for every m = 1, . . . , M , thus giving a
periodic solution to the system of tiling equations

Tile(F (m)
1 , . . . , F (m)

J ; E (m)), m = 1, . . . , M .

Now, suppose to the contrary that there is j0 = 1, . . . , J such that there exists (g, u) ∈
Ã j0 where n ∈ Z\NZ. From (9.4) we see that for every ( f ,m) ∈ F̃ (m)

j0
�= ∅, we have

(g + f , u + m) ∈ Ẽ .

Thus u + m ∈ {1, . . . , M} ⊕ NZ for every m = 1, . . . , M . This is only possible if
u ∈ NZ, a contradiction. Therefore, we have Ã j ⊂ Z

d × NZ, for every j = 1, . . . , J
as needed. ��
As in the proof of Theorem 1.8, Theorem 9.1 allows one to reduce the proof of
Theorem 1.9 to proving the following statement.

Theorem 9.2 (undecidable system of tiling equations with two tiles in Z
d ) There

exist standard natural numbers d, M, and for each m = 1, . . . , M there exist finite
non-empty sets F (m)

1 , F (m)
2 ⊂ Z

d and periodic sets E (m) ⊂ Z
d such that the system

of tiling equations Tile(F (m)
1 , F (m)

2 ; E (m)), m = 1, . . . , M, is undecidable.

Wewill show that Theorem 1.18 implies Theorem 9.2. In order for the arguments from
Sect. 4 to be effectively pulled back, we will first need to construct a rigid tile that can
encode a finite group Z

k/	 as the solution set to a tiling equation.

Lemma 9.3 (rigid tile) Let N1, . . . , Nk ≥ 5, and let 	 ≤ Z
k be the lattice

	 := N1Z × · · · × NkZ.

Then there exists a finite subset R of Zk with the property that the solution set
Tile(R;Zk)U of the tiling equation Tile(R;Zk) consists precisely of the cosets h + 	

of 	, that is to say

Tile(R;Zk)U = Z
k/	.

Proof As a first guess, one could take R to be the rectangle

R0 := {0, . . . , N1 − 1} × · · · × {0, . . . , Nk − 1}.
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a+R

a´+R

Fig. 2 A tiling by the rigid tile R constructed in Lemma 9.3

For this choice of R we certainly have that that every coset h + 	 solves the tiling
equation Tile(R0;Zk):

(h + 	) ⊕ R0 = Z
k .

However, the tiling 	 ⊕ R0 = Z
k is not rigid, and it is possible to “slide” portions of

this tiling to create additional tilings (cf. Example 1.3). To fix this we need to add12

and remove some “bumps” to the sides of R0 to prevent sliding. There are many ways
to achieve this; we give one such way as follows. For each j = 1, . . . , k, let n j be an
integer with 2 ≤ n j ≤ N j − 3 (the bounds here are in order to keep the “bumps” and
“holes” we shall create from touching each other). We form R from R0 by deleting
the elements

(n1, . . . , n j−1, 0, n j+1, . . . , nk)

from R0 for each j = 1, . . . , k, and then adding the points

(n1, . . . , n j−1, N j , n j+1, . . . , nk)

back to compensate. Because R was formed from R0 by shifting some elements of
R0 by elements of the lattice 	, we see that 	 ⊕ R = 	 ⊕ R0 = Z

k . By translation
invariance, we thus have the inclusion

Z
k/	 ⊂ Tile(R;Zk)U.

It remains to prove the converse inclusion. Suppose that A ∈ Tile(R;Zk)U, thus
A ⊂ Z

k and A ⊕ R = Z
k . Then for any a ∈ A and 1 ≤ j ≤ k, the point

a + (n1, . . . , n j−1, 0, n j+1, . . . , nk)

fails to lie in a + R and thus must lie in some other translate a′ + R of R for some
a′ ∈ A such that a′ + R is disjoint from a + R. From the construction of R it can

12 This basic idea of using bumps to create rigidity goes back to Golomb [10].
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be shown after some case analysis (and is also visually obvious, see Fig. 2) that the
only possible choice for a′ is a′ = a − N je j , where e1, . . . , ek are the standard basis
of Zk . Thus the set A is closed under shifts by negative integer linear combinations of
N1e1, . . . , Nkek . If two elements a, a′ of A lie in different cosets of 	, then A would
contain the set

{a, a′} ⊕ {−c1N1e1 − · · · − ck Nkek : c1, . . . , ck ∈ N},

which has density strictly greater than 1/(N1 . . . Nk) = 1/|R| in the lower left quad-
rant. This contradicts the tiling equation A ⊕ R = Z

k . Thus A must lie in a single
coset y + 	 of 	. Since we have (y + 	) ⊕ R = Z

k = A ⊕ R, we must then have
A = y + 	, giving the desired inclusion. ��
Now we can prove the following analogue of Proposition 4.1.

Proposition 9.4 (equivalence of tiling equations in G ×Z
k and functional equations)

Let G be an explicitly finitely generated abelian group, and G1 = ZN1 × · · · × ZNk

be an explicit finite abelian group with N1, . . . , Nk ≥ 5. Let J , M ≥ 1 be standard
natural numbers, and 	, R be as in Lemma 9.3. Suppose that for each j = 1, . . . , J
and m = 1, . . . , M one is given a (possibly empty) finite subset H (m)

j of G and a

(possibly empty) subset F (m)
j of Zk . For each m = 1, . . . , M, assume also that we are

given a subset E (m)
1 of G1 and let E (m) := π−1(E (m)

1 ), where π : Zk → G1 is the
quotient homomorphism (with kernel 	). We adopt the abbreviations

[[a]] := {a} × R, [[a, b]] := {n ∈ Z : a ≤ n ≤ b} × R ⊂ Z × Z
k

for integers a ≤ b. Let N > J . Then the following are equivalent:

(i) The system of tiling equations

Tile
((−H (m)

j × {0} × F (m)
j 	 {0} × [[ j]])Jj=1; Ẽ (m)

)
(9.5)

for all m = 1, . . . , M, together with the tiling equations

Tile
(({0} × [[σ( j)]])Jj=1; G × ([[1, J ]] ⊕ NZ × 	)

)
(9.6)

for every permutation σ : {1, . . . , J } → {1, . . . , J } admit a solution, where

Ẽ (m) :=G × (NZ × E (m) 	 [[1, J ]] ⊕ NZ × 	).

(ii) There exist f j : G → G1 for j = 1, . . . , J that obey the system of functional
equations

J⊎

j=1

⊎

h j∈H (m)
j

(F (m)
j + f j (n + h j )) = E (m)

1 (9.7)

123



1684 Discrete & Computational Geometry (2023) 70:1652–1706

for all n ∈ G and m = 1, . . . , M.

Proof The proof of the direction (ii) implies (i) is similar to the proof of this direction
of Proposition 4.1, with the only difference that the solution defined there should be
pulled back, i.e., one should set

A j :=
⊎

n∈G
{n} × NZ × π−1({ f j (n)}) ⊂ G × NZ × Z

k

for j = 1, . . . , J to construct the desired solution to the system (9.5)&(9.6).

We turn to prove (i) implies (ii). Let A1, . . . , AJ ⊂ G × Z × Z
k be a solution to

the systems (9.5)&(9.6). As in the proof of Proposition 4.1, by adapting the argument
from the proof of Theorem 9.1 once again, one can show that A j ⊂ G×NZ×Z

k . For
any n ∈ G and j = 1, . . . , J , if we then define the slice A j,n ⊂ Z

k by the formula

A j,n := {y ∈ Z
k : (n, 0, y) ∈ A j }

we conclude from (9.6) that

A j,n ⊕ R = R ⊕ 	

which from Lemma 9.3 implies that A j,n is a coset of 	, or equivalently that

A j,n = π−1( f j (n))

for some f j (n) ∈ G1. If one now inspects the G × {0} ×Z
k slice of (4.1), we see that

for any m = 1, . . . , M one has

J⊎

j=1

⊎

h j∈H (m)
j

A j,n+h j ⊕ F (m)
j = E (m)

which gives (9.7) upon applying π . This completes the derivation of (ii) from (i). ��
The proof of Proposition 9.4 is valid in every universe U∗ of ZFC, so in particular the
problem in Proposition 9.4 (i) is undecidable if and only if the one in Proposition 9.4 (ii)
is. Hence, to prove Theorem 9.2, it will suffice to establish the following analogue of
Theorem 1.17, in which Z

2 × Z2 is pulled back to Z2 × Z.

Theorem 9.5 (undecidable system of functional equations in Z2 ×Z) There exists an
explicit finite abelian groupG0, a standard integer M ≥ 1, and for eachm = 1, . . . , M
there exist (possibly empty) finite subsets H (m)

1 , H (m)
2 of Z2 × Z and (possibly empty

sets) F (m)
1 , F (m)

2 , E (m) ⊂ G0, m = 1, . . . , M, that the question of whether there exist
functions g1, g2 : Z2 × Z → G0 that solve the system of functional equations

⊎

h1∈H (m)
1

(F (m)
1 + g1(n + h1)) 	

⊎

h2∈H (m)
2

(F (m)
2 + g2(n + h2)) = E (m) (9.8)
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for all n ∈ Z
2 ×Z and m = 1, . . . , M is undecidable (when expressed as a first-order

sentence in ZFC).

We can now prove this theorem, and hence Theorem 1.9, using Theorem 1.18:

Proof Werepeat the arguments fromSect. 5.Let N , D, M, h(m)
1 , h(m)

2 , F (m)
1 , F (m)

2 , E (m)

be as in Theorem 1.18. We recall the systems (5.2) and (5.3) of functional equations,
introduced in Sect. 5.

As before, for each d = 1, . . . , D, let πd : ZD
N → ZN denote the d th coordinate

projection.Wewrite elements ofZ2×Z2 as (n, t)with n ∈ Z
2 and t ∈ Z2 and elements

ofZ2×Z as (n, z)withn ∈ Z
2 and z ∈ Z. For a pair of functions g1, g2 : Z2×Z → Z

D
N ,

consider the system of functional equations

(
π−1
d ({0}) + g j (n, z)

) 	 (
π−1
d ({0}) + g j (n, z + 1)

) = π−1
d ({−1, 1}) (9.9)

for d = 1, . . . , D and j = 1, 2, as well as the equations

(
F (m)
1 + g1((n, z) + (h(m)

1 , 0))
) 	 (

F (m)
2 + g2((n, z) + (h(m)

2 , 0))
) = E (m) (9.10)

form = 1, . . . , M . Itwill suffice to establish (using an argument valid in every universe
of ZFC) the equivalence of the following two claims:

(i) There exist functions f̃1, f̃2 : Z2 ×Z2 → Z
D
N solving the systems (5.2) and (5.3).

(ii) There exist functions g1, g2 : Z2 ×Z → Z
D
N solving the systems (9.9) and (9.10).

Indeed, if (i) is equivalent to (ii), by Sect. 5, (ii) is equivalent to the existence of
functions f1, f2 : Z2 → {−1, 1}D solving the system (1.8). Hence Theorem 1.18
implies Theorem 9.5. It therefore remains to show that (i) and (ii) are equivalent.

Suppose first that f̃1, f̃2 : Z2 × Z2 → Z
D
N solve the systems (5.2) and (5.3). Then

we can define g1, g2 : Z2 × Z → Z
D
N

g j (n, z) = f̃ j (n, z mod 2), j = 1, 2,

which solve systems (9.9) and (9.10). Conversely, if g1, g2 : Z2 × Z → Z
D
N solve the

systems (9.9) and (9.10), then the functions f̃1, f̃2 : Z2 × Z2 → Z
D
N defined by

f̃ j (n, t) = (−1)t g j (n, 0)

solve the systems (5.2) and (5.3). The claim therefore follows. ��

10 Single Tile Versus Multiple Tiles

In this section we continue the comparison between tiling equations for a single tile
J = 1, and for multiple tiles J > 1. In the introduction we have already mentioned
the “dilation lemma” [5, Prop. 3.1], [13, Lem. 3.1], [34], that is a feature of tilings of
a single tile F that has no analogue for tilings of multiple tiles F1, . . . , FJ . Another
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distinction can be seen by taking the Fourier transform. For simplicity let us consider
a tiling equation of the form Tile(F1, . . . , FJ ;ZD). In terms of convolutions, this
equation can be written as

1A1 ∗ 1F1 + · · · + 1AJ ∗ 1FJ = 1.

Taking distributional Fourier transforms, one obtains (formally, at least)

1̂A1 1̂F1 + · · · + 1̂AJ 1̂FJ = δ,

where δ is the Dirac distribution. When J > 1, this equation reveals little about the
support properties of the distributions 1̂A j . But when J = 1, the above equation
becomes

1̂A1̂F = δ,

which now provides significant structural information about the Fourier transform of
1A; in particular this Fourier transform is supported in the union of {0} and the zero
set of 1̂F (which is a trigonometric polynomial). Such information is consistent with
the known structural theorems about tiling sets arising from a single tile; see e.g., [13,
Rem. 1.8]. Such a rich structural theory does not seem to be present when J ≥ 2.

Now we present a further structural property of tilings of one tile that is not present
for tilings of two or more tiles, which we call a “swapping property”. We will only
state and prove this property for one-dimensional tilings, but it is conceivable that
analogues of this result exist in higher dimensions.

Theorem 10.1 (swapping property) Let G0 be a finite abelian group, and for any
integers a, b we write

[[a]] := {a} × G0 ⊂ Z × G0 and

[[a, b]] := {n ∈ Z : a ≤ n ≤ b} × G0 ⊂ Z × G0.

Let A(0), A(1) be subsets of Z × G0 which agree on the left in the sense that

A(0) ∩ [[n]] = A(1) ∩ [[n]]

whenever n ≤ −n0 for some n0. Suppose also that there is a finite subset F of Z×G0
such that

A(0) ⊕ F = A(1) ⊕ F . (10.1)

Then we also have

A(ω) ⊕ F = A(0) ⊕ F
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for any function ω : Z → {0, 1}, where

A(ω) :=
⋃

n∈Z
A(ω(n)) ∩ [[n]] (10.2)

is a subset of Z × G0 formed by mixing together the fibers of A(0) and A(1).

Proof For any n ∈ Z and j = 0, 1, we define the slices A( j)
n , Fn ⊂ G by the formulae

A( j)
n := {x ∈ G0 : (n, x) ∈ A( j)} and Fn := {x ∈ G0 : (n, x) ∈ F}.

By inspecting the intersection (or “slice”) of (10.1) at [[n]] for some integer n, we see
that

⊎

l∈Z
A(0)
n−l ⊕ Fl =

⊎

l∈Z
A(1)
n−l ⊕ Fl .

(Note that all but finitely many of the terms in these disjoint unions are empty.) In
terms of convolutions on the finite abelian group G0, this becomes

∑

l∈Z
1
A(0)
n−l

∗ 1Fl (x) =
∑

l∈Z
1
A(1)
n−l

∗ 1Fl (x)

for all n ∈ Z and x ∈ G0. If one now introduces the functions fn : G0 → C for n ∈ Z

by the formula

fn :=1
A(1)
n

− 1
A(0)
n

then by hypothesis fn vanishes for n ≤ n0, and also

∑

l∈Z
fn−l ∗ 1Fl (x) = 0 (10.3)

for every n ∈ Z and x ∈ G.
To analyze this equation we perform Fourier analysis on the finite abelian group

G0. Let Ĝ0 be the Pontryagin dual of G0, that is to say the group of homomorphisms
ξ : x �→ ξ · x from G0 to R/Z. For any function f : G0 → C, we define the Fourier
transform f̂ (ξ) : Ĝ0 → C by the formula

f̂ (ξ) :=
∑

x∈G0

f (x)e−2π iξ ·x .

Applying this Fourier transform to (10.3), we conclude that

∑

l∈Z
f̂n−l(ξ)1̂Fl (ξ) = 0 (10.4)
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for all n ∈ Z and ξ ∈ Ĝ0. Suppose ξ ∈ Ĝ0 is such that 1̂Fl (ξ) is non-zero for at least
one integer l. Let lξ be the smallest integer with 1̂Flξ

(ξ) �= 0, then we can rearrange
(10.4) as

f̂n(ξ) = −
∞∑

l=1

1̂Flξ +l (ξ)

1̂Flξ
(ξ)

f̂n−l(ξ)

for all integers n. Since f̂n(ξ) vanishes for all n ≤ n0, we conclude from induction
that f̂n(ξ) in fact vanishes for all n.

To summarize so far, for any ξ ∈ Ĝ0, either 1̂Fl (ξ) vanishes for all l, or else f̂n(ξ)

vanishes for all n. In either case, we see that we can generalize (10.4) to

∑

l∈Z
ω(n − l) f̂n−l(ξ)1̂Fl (ξ) = 0

for all n ∈ Z and ξ ∈ Ĝ0. Inverting the Fourier transform, this is equivalent to

∑

l∈Z
ω(n − l) fn−l ∗ 1Fl (x) = 0

for all n ∈ Z and x ∈ G0, which is in turn equivalent to

∑

l∈Z
1
A(0)
n−l

∗ 1Fl (x) =
∑

l∈Z
1
A(ω(n−l))
n−l

∗ 1Fl (x)

and hence

⊎

l∈Z
A(0)
n−l ⊕ Fl =

⊎

l∈Z
A(ω(n−l))
n−l ⊕ Fl

for all n ∈ Z. This gives (10.2) as desired. ��
Example 10.2 Let G0 = Z2, F = {0} × Z2, and let

A( j) := {(n, a( j)(n)) : n ∈ Z}

for j = 0, 1, where a(0), a(1) : Z → Z2 are two functions that agree at negative
integers. Then we have A(0) ⊕ F = A(1) ⊕ F = Z × G0. Furthermore, for any
ω : Z → {0, 1}, the set

A(ω) := {(n, a(ω)(n)) : n ∈ Z}

satisfies the same tiling equation:

A(ω) ⊕ F = A(0) ⊕ F = A(1) ⊕ F = Z × G0.
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Example 10.3 Let G0 = Z2, F = {(0, 0), (1, 1)}, and let

A( j) := {(n, j) : n ∈ Z}

for j = 0, 1. Then, as in the previous example,we have A(0)⊕F = A(1)⊕F = Z×G0.
But for any non-constant function ω : Z → {0, 1}, the set

A(ω) := {(n, a(ω)(n)) : n ∈ Z}

will not obey the same tiling equation:

A(ω) ⊕ F �= A(0) ⊕ F = A(1) ⊕ F = Z × G0.

The problem here is that A(0), A(1) do not agree to the left. Thus we see that this
hypothesis is necessary for the theorem to hold.

Informally, Theorem 10.1 asserts that if E ⊂ Z × G0 for a finite abelian group G0
and F is a finite subset of Z × G0, then the solution space Tile(F; E)U to the tiling
equation Tile(F; E) has the following “swapping property”: any two solutions in this
space that agree on one side can interchange their fibers arbitrarily and remain in
the space. This is quite a strong property that is not shared by many other types of
equations. Consider for instance the simple equation

f2(n + 1) = − f1(n) (10.5)

constraining two Boolean functions f1, f2 : Z → {−1, 1}; this is a specific case of the
equation (1.10). We observe that this equation does not obey the swapping property.
Indeed, consider the two solutions ( f (0)

1 , f (0)
2 ), ( f (1)

1 , f (1)
2 ) to (10.5) given the formula

f (i)
j (n) = (−1)1n>i+ j

for i = 0, 1 and j = 1, 2. These two solutions agree on the left, but for a given function
ω : Z → {0, 1}, the swapped functions

f (ω)
j (n) = (−1)1n>ω(n)+ j

only obeys (10.5) when ω(1) = ω(2). Because of this, unless the equations (10.5) are
either trivial or do not admit any two different solutions that agree on one side, it does
not seempossible to encode individual constraints such as (10.5) inside tiling equations
Tile(F; E) involving a single tile F , at least in one dimension. As such constraints
are an important component of our arguments, it does not seem particularly easy to
adapt our methods to construct undecidable or aperiodic tiling equations for a single
tile. We remark that in the very special case of deterministic tiling equations, such
as the aperiodic tiling equations that encode the construction of Kari in [19], this
obstruction is not present, for then if two solutions to (10.5) agree on one side, they

123



1690 Discrete & Computational Geometry (2023) 70:1652–1706

must agree everywhere13. So it may still be possible to encode such equations inside
tiling equations that consist of one tile.

However, as was shown in the previous sections, we can encode any system of
equations of the type (10.5) in a system of tiling equations involving more than one
tile.

Example 10.4 In the group Z × Z4, the solutions to the system of tiling equations

Tile
({(0, 0), (0, 2)}, {(0, 1), (0, 3)};Z × Z4

)
,

Tile
({(0, 0)}, {(−1, 0)};Z × {−1, 1})

can be shown to be given precisely by sets A1, A2 ⊂ Z × Z4 of the form

A j = {(n, f j (n)) : n ∈ Z}

for j = 1, 2 and functions f1, f2 : Z → {−1, 1} solving (10.5). The above discus-
sion then provides a counterexample that demonstrates that Theorem 10.1 fails when
working with a pair of tiles F1, F2 rather than a single tile.

The obstruction provided by Theorem 10.1 relies crucially on the abelian nature ofG0
(in order to utilize the Fourier transform), suggesting that this obstruction is not present
in the nonabelian setting. This suggestion is validated by the results in Sect. 11 below.

11 A Nonabelian Analogue

In this section we give an analogue of Theorem 1.8 in which we are able to use just
one tile instead of two, at the cost of making the group G somewhat nonabelian. The
argument will share several features in common with the proof of Theorem 1.8, in
particular both arguments will rely on Theorem 1.19 as a source of undecidability (see
Fig. 1).

In order to maintain compatibility with the notation of the rest of the paper we
will continue to write nonabelian groups G in additive notation G = (G,+). Thus,
we caution that in this section the addition operation + (or ⊕) is not necessarily
commutative.

Example 11.1 (nonabelian additive notation for permutations) Consider the finite
group S

Z
2
4

≡ S16, the group of permutations α : Z2
4 → Z

2
4 on the order 16 abelian

group Z2
4; this group will play a key role in the constructions of this section. With our

additive notation for groups, we have

α + β = α ◦ β

for α, β ∈ S
Z
2
4
, with 0 denoting the identity permutation,mα denoting the composition

of m copies of α, and −α denoting the inverse of α.

13 For extensive studies of deterministic configurations see [18, 20, 24].We thank JarkkoKari for providing
us with these references.
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The notion of a periodic set continues to make sense for subsets of nonabelian groups
(note that every finite index subgroup of G contains a finite index normal subgroup),
as does the notation of a tiling equation Tile(F; E). Our main result is

Theorem 11.2 (undecidable nonabelian tiling with one tile) There exists a group G of
the form G = Z

2 × SD
Z
2
4
×G0 for some standard natural number D and explicit finite

abelian group G0, a finite non-empty subset F of G, and a finite non-empty subset E0
of SD

Z
2
4
×G0, such that the nonabelian tiling equationTile(F;Z2×E0) is undecidable.

Wewill derive this result from Theorem 1.19 and some additional preparatory results.
The main new idea is to encode the Hamming cube {−1, 1}2 as the solution to a
system of tiling equations involving only a single tile in S

Z
2
4
. The use of this group S

Z
2
4

is ultimately in order to be able to access the reflection permutation ρ ∈ Z
2
4, which

will play a crucial role in encoding the equation (1.10) using only one tile rather than
two. We first need some additional notation, which we summarize in Fig. 3.

Definition 11.3 (notation relating to S
Z
2
4
and Z

2
4)

(i) We let ρ ∈ S
Z
2
4
denote the reflection permutation ρ(y1, y2) := (y2, y1).

(ii) We define the regular representation τ : Z2
4 → S

Z
2
4
by τ(h)(x) := x − h for

h, x ∈ Z
2
4.

(iii) We define the coordinate function π : S
Z
2
4

→ Z
2
4 by π(α) := α−1(0, 0), and

observe that

π(α + β) = β−1(π(α)) (11.1)

for α, β ∈ S
Z
2
4
. In particular we have

π(α + τ(h)) = π(α) + h (11.2)

for all α ∈ S
Z
2
4
and h ∈ Z

2
4.

(iv) We view the Hamming cube {−1, 1}2 as a coset of the subgroup (2Z4)
2 in

Z
2
4, where 2Z4 = {0 mod 4, 2 mod 4} is the order two subgroup of Z4. We let

B ⊂ S
Z
2
4
denote the set

B := π−1({−1, 1}2), (11.3)

and let K be the order two subgroup of (2Z4)
2 defined by K := {(0, 0), (0, 2)}.

(v) A cycle in the permutationgroup S
Z
2
4
is a permutationσ : Z2

4 → Z
2
4 such that there

is an enumeration α1, . . . , α16 ofZ2
4 such that σ(αi ) = αi+1 for all i = 1, . . . , 16

(with the periodic convention α17 = α1). Note that any such cycle generates a
cyclic subgroup {0, σ, 2σ, . . . , 15σ } of S

Z
2
4
of order 16.

(vi) We let Stab({−1, 1}2) ≡ S12 denote the stabilizer group of {−1, 1}2, that is to
say the subgroup of S

Z
2
4
consisting of those permutations that act trivially on the

Hamming cube {−1, 1}2.
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ρρ

ρ

B

K τ

π

π

ρ

Fig. 3 Maps between various subgroups (or subsets) of S
Z
2
4
and Z2

4. Solid arrows denote group homomor-

phisms; hooked arrows denote injections; double-headed arrows denote surjections; and unlabeled hooked
arrows denote inclusions

We can now state our preliminary encoding lemma.

Lemma 11.4 (encoding {−1, 1}2 as a system of tiling equations in S
Z
2
4
) Let A be a

subset of S
Z
2
4
. Then the following are equivalent:

(i) A is of the form

A = π−1({y}) = {α ∈ S
Z
2
4

: π(α) = y} (11.4)

for some y ∈ {−1, 1}2.
(ii) A obeys the tiling equation

Tile(τ ((2Z4)
2); B) (11.5)

as well as the tiling equations

Tile({φ, σ, 2σ, . . . , 15σ }; S
Z
2
4
) (11.6)

for every cycle σ ∈ S
Z
2
4
and every φ ∈ Stab({−1, 1}2).

Proof Suppose that (i) holds, thus A = π−1({y}) for some Y ∈ {−1, 1}2. From (11.2)
we then have

A + τ(h) = π−1({y + h})

for every h ∈ (2Z4)
2, and hence

A ⊕ τ((2Z4)
2) = B;

that is to say, (11.5) holds. Similarly, from (11.1) we have

A + φ = π−1({φ−1(y)}) = π−1({y})
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for every φ ∈ Stab({−1, 1}2), and

A + kσ = π−1({σ−k(y)})

for any k = 1, . . . , 15andevery cycleσ ∈ S
Z
2
4
; since theorbit y, σ−1(y), . . . , σ−15(y)

traverses Z2
4, we conclude that

A ⊕ {φ, σ, 2σ, . . . , 15σ } = S
Z
2
4
,

giving (11.6). Thus (i) implies (ii).
Now suppose conversely that (ii) holds. Then from (11.5) we have A ⊂ B, and

moreover for each β ∈ B there exists a unique element of the coset β + τ((2Z4)
2)

that lies in A.
If φ is an arbitrary element of Stab({−1, 1}2) and σ ∈ S

Z
2
4
is an arbitrary cycle, we

see from two applications of (11.6) that

A ⊕ {φ, σ, 2σ, . . . , 15σ } = A ⊕ {0, σ, 2σ, . . . , 15σ },

which on cancelling the terms involving σ gives A ⊕ {φ} = A ⊕ {0}. That is to say,
the set A is invariant with respect to the right action of the group Stab({−1, 1}2).

If α ∈ A, then α ∈ B, and hence α({−1, 1}2) must contain the origin (0, 0). Let
α, α′ ∈ A be such that the imagesα({−1, 1}2),α′({−1, 1}2) intersect only at the origin.
We claim that this implies that π(α) = π(α′). Indeed, suppose for contradiction that
π(α) �= π(α′). Then the map σ0 : α({−1, 1}2) → α′({−1, 1}2) defined by

σ0(α(y)) := α′(y)

contains no fixed points (the only possible fixed point would be at the origin, but the
assumption π(α) �= π(α′) prohibits this). Since the domain α({−1, 1}2) and range
α′({−1, 1}2) of thismap only intersect at one point, σ0 also contains no cycles, and thus
one can complete σ0 to a cycle σ̃ : Z2

4 → Z
2
4 of Z

2
4. By construction, the permutations

σ̃ + α and α′ agree on {−1, 1}2, thus

σ̃ + α = α′ + φ

for some φ ∈ Stab({−1, 1}2). Defining

σ := (−α) + σ̃ + α

to be the conjugate of σ̃ by α, we see that σ is a cycle with

α + σ = α′ + φ,

but this contradicts the tiling equation (11.6). Thus π(α) = π(α′) as claimed.
Now suppose let α, α′ be arbitrary elements of A, dropping the requirement that

α({−1, 1}2),α′({−1, 1}2) intersect only at the origin. The cardinality of α({−1, 1}2)∪
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α′({−1, 1}2) is at most seven; since Z2
4 has order 16, we can then certainly find a four-

element subset X ofZ2
4 that intersectsα({−1, 1}2)∪α′({−1, 1}2) only at the origin.We

can then find β ∈ B such that β({−1, 1}2) only intersects α({−1, 1}2)∪α′({−1, 1}2)
at the origin. Since the coset β + τ ((2Z4)

2) intersects A, we conclude that there
exists α′′ ∈ A in this coset such that α′′({−1, 1}2) = β({−1, 1}2) only intersects
α({−1, 1}2)∪α′({−1, 1}2) at the origin. By the previous discussion, we have π(α) =
π(α′′) and π(α′) = π(α′′), hence π(α) = π(α′). We conclude that π is constant on A,
thus there exists y ∈ {−1, 1}2 such that

A ⊂ {α ∈ S
Z
2
4

: π(α) = y}.

Observe that the right-hand side has cardinality 15!, while from (11.6) A must have
cardinality exactly 16!/16 = 15! Thus we must have equality here, giving (i) as
claimed. ��
We lift this lemma from S

Z
2
4
to the slightly larger group S

Z
2
4
×Z

2
4, tomake the encoding

of {−1, 1}2 more visible:

Corollary 11.5 (encoding {−1, 1}2 as a system of tiling equations in S
Z
2
4
×Z

2
4) Let A

be a subset of S
Z
2
4
× Z

2
4. Then the following are equivalent:

(i) A is of the form

A = π−1({y}) × {y} = {(α, y) : α ∈ S
Z
2
4
, π(α) = y} (11.7)

for some y ∈ {−1, 1}2.
(ii) A obeys the tiling equation

Tile
({(τ (h), h) : h ∈ (2Z4)

2}; {(α, π(α)) : α ∈ B}) (11.8)

as well as the tiling equations

Tile
({φ, σ, 2σ, . . . , 15σ } × Z

2
4; SZ2

4
× Z

2
4

)
(11.9)

for every cycle σ ∈ S
Z
2
4
and every φ ∈ Stab({−1, 1}2).

Proof If (i) holds, then from (11.2) we have

A + (τ (h), h) = π−1({y + h}) × {y + h}

for all h ∈ (2Z4)
2, which gives (11.8), while from (11.1) one has

A ⊗ {φ} × Z
2
4 = π−1({y}) × Z

2
4

for all φ ∈ Stab({−1, 1}2) and

A ⊗ {kσ } × Z
2
4 = π−1({σ−k(y)}) × Z

2
4
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for any cycle σ ∈ S
Z
2
4
and k = 1, . . . , 15, which gives (11.9) much as in the proof of

the previous lemma. Thus (i) implies (ii).
Now suppose conversely that (ii) holds. From (11.8) we see that A is contained in

the set on the right-hand side of (11.8); in particular A is a graph

A = {(α, π(α)) : α ∈ A′}

for some A′ ⊂ S
Z
2
4
. Since A satisfies the tiling equations (11.8) and (11.9), A′ satisfies

the tiling equations

{(α + τ(h), π(α) + h) : α ∈ A′, h ∈ (2Z4)
2} = {(α, π(α)) : α ∈ B}

and (A′ ⊕ {φ, σ, 2σ, . . . , 15σ }) × Z
2
4 = S

Z
2
4
× Z

2
4.

We conclude that A′ must obey the tiling equations (11.5) and (11.6). Applying
Lemma 11.4, we see that A′ is of the form (11.4) for some y ∈ {−1, 1}2, and we
obtain (i) as required. ��
We enumerate the system (11.8)&(11.9) as the system of tiling equations

Tile(F�; E�), � = 1, . . . , L, (11.10)

for some explicit collection F1, . . . , FL , E1, . . . , EL of subsets of S
Z
2
4
× Z

2
4 (indeed

one has L = 1+ 15! · 12!). Thus the sets (11.7) are precisely the solutions to the tiling
system (11.10):

L⋂

�=1

Tile(F�; E�)U = {π−1({y}) × {y} : y ∈ {−1, 1}2}. (11.11)

Thus we have successfully encoded the Hamming cube {−1, 1}2 as a system of tiling
equations, in a manner that allows the reflection map ρ ∈ S

Z
2
4
to interact with this

encoding.
We now use the above corollary to encode the solvability question appearing in

Theorem 1.19.

Proposition 11.6 (encoding linear equations) Let D ≥ D0 ≥ 1 and M1, M2 ≥ 1 be
natural numbers, and let a(m)

j,d ∈ Z be integer coefficients for j = 1, 2, d = 1, . . . , D,

m = 1, . . . , Mj , and shifts hd ∈ Z
2 for d = 1, . . . , D0. Let N be a multiple of 4 that is

sufficiently large depending on all previous data. We define the coordinate projections

π ′
1, . . . , π

′
D : (Z2

N )D → Z
2
N ,

π ′′
1 , . . . , π ′′

D : (S
Z
2
4
)D → S

Z
2
4
,

π ′′′
1 , π ′′′

2 : Z2
N → ZN ,
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in the obvious fashion, while also letting � : Z2
N → Z

2
4 be the reduction mod 4

map, which is a homomorphism with kernel (4ZN )2; see Fig. 4. Then the following
statements are equivalent:

(i) There exist functions f j,d : Z2 → {−1, 1} ⊂ Z, for j = 1, 2 and d = 1, . . . , D,
that solve the system of linear functional equations (1.9) for all n ∈ Z

2, j = 1, 2,
and m = 1, . . . , Mj , as well as the system of linear functional equations (1.10)
for all n ∈ Z

2 and d = 1, . . . , D0.
(ii) There exists a set A ⊂ Z

2 ×Z2 × (Z2
N )D × (S

Z
2
4
)D that simultaneously solves the

following systems of nonabelian tiling equations:

• The tiling equations

Tile
(
{((0, 0), 0)} × H (m)

j × Cσ ; Z2 × Z2 × H (m)
j × SD

Z
2
4

)
(11.12)

for all j = 1, 2 and m = 1, . . . , Mj , and cycles σ ∈ S
Z
2
4
, where H (m)

j ≤
(Z2

N )D is the subgroup

H (m)
j :=

{
(y1,d , y2,d)

D
d=1 ∈ (Z2

N )D :
D∑

d=1

a(m)
j,d y j,d = 0

}
(11.13)

and Cσ ⊂ SD
Z
2
4
is the set

Cσ := (π ′′
1 )−1({0, σ, . . . , 15σ }) = {0, σ, . . . , 15σ } × SD−1

Z
2
4

.

• The tiling equations

Tile
({(0, 0)} × Z2 × (π ′′′

j ◦ π ′
d)

−1({0}) × Cσ ;
Z
2 × Z2 × (π ′′′

j ◦ π ′
d)

−1({−1, 1}) × SD
Z
2
4

) (11.14)

for all d = 1, . . . , D, j = 1, 2, and cycles σ ∈ S
Z
2
4
.

• The tiling equations

Tile
(
(Td 	 T ′

d);Z2 × Z2 × (Z2
N )D × (π ′′

d )−1(B)
)

(11.15)

for all d = 1, . . . , D0, where

Td := {((0, 0), 0)} × (Z2
N )D × (π ′′

d )−1(τ (K )),

T ′
d := {(−hd , 0)} × (Z2

N )D × (π ′′
d )−1(ρ + τ(K )).

• The tiling equations

Tile
({((0, 0), 0)} × F�,d;Z2 × Z2 × E�,d

)
(11.16)
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{− 1, 1}2D

{− 1, 1}2 2 2
4

{− 1, 1} (K ) + (K ) B

j j

Π

Fig. 4 Some of the sets and maps mentioned in Proposition 11.6. (The notation is the same as in Fig. 3.)

for all d = 1, . . . , D and � = 1, . . . , L, where

F�,d :=
{
(y, ζ ) ∈ (Z2

N )D × SD
Z
2
4

: (π ′′
d (ζ ),�(π ′

d(y))) ∈ F�

}
,

E�,d :=
{
(y, ζ ) ∈ (Z2

N )D × SD
Z
2
4

: (π ′′
d (ζ ),�(π ′

d(y))) ∈ E�

}
,

and F�, E� are the sets from (11.10).

Proof Suppose that (i) holds. The sets

π−1({y}) = {α ∈ S
Z
2
4

: π(α) = y}

have the same cardinality 15! for all y ∈ {−1, 1}2, so we may arbitrarily enumerate

π−1({y}) = {αy,1, . . . , αy,15!}

for each y ∈ {−1, 1}2 and some distinct permutations αy,k for y ∈ {−1, 1}2, k =
1, . . . , 15! We then let A denote the set of all elements of Z2 × Z2 × ({−1, 1}2)D ×
(S

Z
2
4
)D of the form

(
n, t, (yn,t,d)

D
d=1, (αyn,t,d ,k)

D
d=1

)

for (n, t) ∈ Z
2 × Z2 and k = 1, . . . , 15!, where

yn,t,d := ((−1)t f1,d(n), (−1)t f2,d(n)) ∈ {−1, 1}2. (11.17)

We now verify the tiling equations (11.12), (11.14), (11.15), and (11.16). For any
(n, t) ∈ Z

2 × Z2 and any cycle σ ∈ S
Z
2
4
, we see from Lemma 11.4 that

{
(αyn,t,d ,k)

D
d=1 : k = 0, . . . , 15!

}
⊕ Cσ = SD

Z
2
4
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and thus for any d = 1, . . . , D, j = 1, 2, σ , one has

A ⊕ {((0, 0), 0)} × H (m)
j × Cσ =

⊎

(n,t)∈Z2×Z2

{(n, t)} ×
(
(yn,t,d)

D
d=1 + H (m)

j

)
× SD

Z
2
4
.

From (11.13), (11.17), and (1.9) we have

(yn,t,d)
D
d=1 + H (m)

j = H (m)
j

and the equation (11.12) then follows. In a similar vein, the set

A ⊕ {(0, 0)} × Z2 × (π ′′′
j ◦ π ′

d)
−1({0}) × Cσ

for a given d = 1, . . . , D, j = 1, 2, σ , is equal to

⊎

n∈Z2

{n} × Z2 ×
⎛

⎝
⊎

t∈Z2

(π ′′′
j ◦ π ′

d)
−1(π ′′′

j (yn,t,d))

⎞

⎠ × SD
Z
2
4
.

From (11.17) we have

{π ′′′
j (yn,0,d)} 	 {π ′′′

j (yn,1,d)} = {−1, 1}

and the equation (11.14) then follows. Turning now to (11.15), we see from the defi-
nitions of A, Td , T ′

d that the set A ⊕ (Td 	 T ′
d) is equal to

⊎

(n,t)∈Z2×Z2

{(n, t)} × (Z2
N )D × (π ′′

d )−1(An,t,d ⊕ τ(K ) 	 An+hd ,t,d ⊕ (ρ + τ(K ))
)
,

where An,t,d ⊂ S
Z
2
4
is the set

An,t,d := {αyn,t,d ,k : k = 1, . . . , 15!} = π−1({yn,t,d}).

From (11.2) we have that

An,t,d ⊕ τ(K ) = π−1(yn,t,d + K )

and similarly from (11.1) and (11.2) (and the involutive nature of ρ) that

An+hd ,t,d ⊕ (ρ + τ(K )) = π−1(ρ(yn+hd ,t,d) + K ).

On the other hand, from the equation (1.10) we have

(yn,t,d + K ) 	 (ρ(yn+hd ,t,d) + K ) = {−1, 1}2
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and hence

A ⊕ (Td 	 T ′
d) =

⊎

(n,t)∈Z2×Z2

{(n, t)} × (Z2
N )D × (π ′′

d )−1(π−1({−1, 1}2)).

Since π−1({−1, 1}2) = B, this gives (11.15).

Finally we verify (11.16). Suppose that (n, t, y, ζ ) ∈ Z
2 × Z2 × (Z2

N )D × SD
Z
2
4
is

an element of

A ⊕ {((0, 0), 0)} × F�,d .

By the definition of A and F�,d , we thus have

(n, t, y, ζ ) = (
n, t, (yn,t,d)

D
d=1 + y′, (αyn,t,d ,k)

D
d=1 + ζ ′)

for some k = 1, . . . , 15!, y′ ∈ (Z2
N )D , ζ ′ ∈ SD

Z4 obeying (π ′′
d (ζ ′),�(π ′

d(y
′))) ∈ F�.

In particular, we have

�(π ′
d(y)) = �(yn,t,d) + �(π ′

d(y
′)) and π ′′

d (ζ ) = αyn,t,d ,k + π ′′
d (ζ ′)

and hence by definition of An,t,d , F� and (11.11) (or Corollary 11.5)

(π ′′
d (ζ ),�(π ′

d(y))) ∈ An,t,d × {�(yn,t,d)} ⊕ F� = E� (11.18)

(note from (11.11) that all the sums in the right-hand side of (11.18) are distinct).
Conversely, if (n, t, y, ζ ) obeys the constraint (11.18), we can reverse the above argu-
ments and represent (n, t, y, ζ ) uniquely as an element of A ⊕ {((0, 0), 0)} × F�,d .
We conclude that

{
(n, t, y, ζ ) ∈ Z

2 × Z2 × (Z2
N )D × SD

Z
2
4

: (π ′′
d (ζ ),�(π ′

d(y))) ∈ E�

}
,

and (11.16) follows. This concludes the derivation of (ii) from (i).

Now suppose conversely that (ii) holds. For any (n, t) ∈ Z
2 × Z2, let An,t ⊂

(Z2
N )D × SD

Z
2
4
be the fiber

An,t :=
{
(y, ζ ) ∈ (Z2

N )D × SD
Z
2
4

: (n, t, y, ζ ) ∈ A
}
.

From the tiling equation (11.16) we have for every d = 1, . . . , D and � = 1, . . . , L
that

A ⊕ {((0, 0), 0)} × F�,d = Z
2 × Z2 × E�,d
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and hence (on restricting to {(n, t)} × (Z2
N )D × (S

Z
2
4
)D) we have

An,t ⊕ F�,d = E�,d

for every (n, t) ∈ Z
2 × Z2. By the definition of F�,d , E�,d , this implies that the map

(y, ζ ) �→ (π ′′
d (ζ ),�(π ′

d(y))) is injective on An,t , and that the image

A′
n,t,d := {(π ′′

d (ζ ),�(π ′
d(y))) : (y, z) ∈ An,t } ⊂ S

Z
2
4
× Z

2
4

obeys the tiling equations

A′
n,t,d ⊕ F� = E�

for all � = 1, . . . , L . Applying (11.11) (or Corollary 11.5), we conclude that there
exists yn,t,d ∈ {−1, 1}2 such that

A′
n,t,d = {

α ∈ S
Z
2
4

: π(α) = yn,t,d
} × {yn,t,d}. (11.19)

In particular A′
n,t,d has cardinality 15!, hence An,t has cardinality 15! as well. From

(11.19) and the definition of A′
n,t,d , we see that for any (y, ζ ) ∈ An,t , we have

�(π ′
d(y)) = π(π ′′

d (ζ )) = yn,t,d (11.20)

for all d = 1, . . . , D.

Next, from (11.14) we have in particular that

A ⊂ Z
2 × Z2 × (π ′′′

j ◦ π ′
d)

−1({−1, 1}) × SD
Z
2
4

and hence

π ′′′
j ◦ π ′

d(y) ∈ {−1, 1}

whenever (n, t) ∈ Z
2 × Z2, (y, ζ ) ∈ An,t , j = 1, 2, and d = 1, . . . , D. In particular,

π ′
d(y) ∈ {−1, 1}2, which when combined with (11.20) gives π ′

d(y) = yn,t,d (where
by abuse of notation we view {−1, 1}2 as embedded in both Z

2
4 and Z

2
N ). Thus we

have

y = (yn,t,d)
D
d=1 (11.21)

whenever (y, ζ ) ∈ An,t .

From (11.12) we have

A ⊂ Z
2 × Z2 × H (m)

j × SD
Z
2
4
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which when combined with (11.21) implies that

(yn,t,d)
D
d=1 ∈ H (m)

j

for j = 1, 2 and m = 1, . . . , Mj , and (n, t) ∈ Z
2 × Z2. If we now introduce the

boolean functions f j,d : Z2 → {−1, 1} by the formula

( f1,d(n), f2,d(n)) := yn,0,d (11.22)

for n ∈ Z
2 and d = 1, . . . , D, we conclude that

( f1,d(n), f2,d(n))Dd=1 ∈ H (m)
j

or equivalently that

D∑

d=1

a(m)
j,d f j,d(n) = 0 mod N

for all n ∈ Z
2, j = 1, 2, and m = 1, . . . , Mj . For N large enough, we may drop the

reduction modulo N as the left-hand side is bounded independently of N , thus

D∑

d=1

a(m)
j,d f j,d(n) = 0

in the integers. This gives (1.9).

Next, from (11.15) we have

An,t ⊕ (Z2
N )D × (π ′′

d )−1(τ (K )) 	 An+hd ,t ⊕ (Z2
N )D × (π ′′

d )−1(ρ + τ(K ))

= (Z2
N )D × (π ′′

d )−1(B)

for any (n, t) ∈ Z
2 × Z2 and d = 1, . . . , D0. Applying the projection π ′′

d followed
by (11.19), we conclude that

{α ∈ S
Z
2
4

: π(α) = yn,t,d} ⊕ τ(K )

	 {α ∈ S
Z
2
4

: π(α) = yn+hd ,t,d} ⊕ (ρ + τ(K )) = B.

Applying (11.1), (11.2), and (11.3), this is equivalent to

(yn,t,d + K ) 	 (ρ(yn+hd ,t,d) + K ) = {−1, 1}2.

Specializing to t = 0 and using (11.22), we obtain

{ f1,d(n)} 	 { f2,d(n + hd)} = {−1, 1}
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which is (1.10). This establishes (i). ��

By Theorem 1.19, there exist choices of D, D0, M1, M2, α
(m)
j,d , hd such that the prob-

lem in Proposition 11.6 (i) is undecidable in ZFC. As the proof of this proposition is
valid in every universe U∗ of ZFC, we conclude that for N a sufficiently large (stan-
dard) multiple of 4, the problem in Proposition 11.6 (ii) is undecidable in ZFC. Thus,
we can find an undecidable system of nonabelian tiling equations

Tile(F̃�;Z2 × Ẽ�), � = 1, . . . , L̃,

for some non-empty subsets F̃1, . . . , F̃L̃ of Z2 × Z2 × (Z2
N )D × (S

Z
2
4
)D and subsets

Ẽ1, . . . , Ẽ L̃ of Z2 × (Z2
N )D × (S

Z
2
4
)D . Applying Theorem 1.15 (and Remark 3.2), we

obtain Theorem 11.2 as desired.

12 Open Problems and Remarks

12.1

Recall that Conjecture 1.5 is open in dimensions d > 2 (see Sect. 1.3 for further
discussion and known results). The following question then naturally arises.

Problem 12.1 Let G be a non-trivial finitely generated abelian group. Are there any
finite set F ⊂ Z

2 × G and periodic set E ⊂ Z
2 × G such that the tiling equation

Tile(F, E) is aperiodic?

We hope to address this problem in a future work.

12.2

Conjecture 1.5 was originally formulated in [23] for G = R
d . It is an interesting

question to determine the precise relationship between the Zd and Rd formulations of
the conjecture.

Problem 12.2 Let d ≥ 1. What can be said about Conjecture 1.5 for G = R
d , given

that the conjecture holds in Zd?

In the one dimensional case, the two formulations are equivalent (see [23]). In the
two dimensional case the precise relationship between the discrete and continuous
formulations of the periodic tiling conjecture is not known. In [21] Kenyon extended
the result in [9] and proved that the periodic tiling conjecture holds for topological
discs in R

2. In [13] we proved that for any finite F ⊂ Z
2 and periodic E ⊂ Z

2, all
the solutions to the equation Tile(F, E) are weakly periodic. This implies a similar
result for some special types of tile F inR2, by using the construction in Remark 1.10.
We hope to extend this class of tiles and consider the higher dimensional case of
Problem 12.2 in a future work.
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12.3

We suggest several possible improvements of our construction.

• Itmight be possible tomodify our argument to allow E0 inTheorem1.8 to equalG0.

Problem 12.3 Is there any finite abelian group G0 for which there exist finite non-
empty sets F1, F2 ⊂ Z

2 × G0 such that the tiling equation Tile(F1, F2;Z2 × G0) is
undecidable?

• In [11] a construction of two tiles F1, F2 inR2 is given in which the tiling equation
is aperiodic if one is allowed to apply arbitrary isometries (not just translations) to
the tiles F1, F2; each tile ends up lying in eight translation classes, so in our notation
this is actually an aperiodic construction with J = 2 · 8 = 16. Similarly for the
“Ammann A2” construction in [1] (with J = 2 · 4 = 8). The aperiodic tiling of R2

(or the hexagonal lattice) construction in [32] involves a class of twelve tiles that are
all isometric to a single tile (twelve being the order of the symmetry group of the
hexagon).

It may be possible to adapt the construction used to prove Theorem 1.8 so that the
tiles F1, F2 are isometric to each other. On the other hand, we note a remarkable result
of Gruslys et al. [15] that asserts that for any non-empty finite subset F of Zd , there
exists a tiling of Zn for some n ≥ d by isometric copies of F .

Problem 12.4 Does our construction provide an example of a finite abelian group G0,
a subset E0 ⊂ G0, and two finite sets F1, F2 ⊂ Z

2 × G0 which are isometric to each
other, such that the tiling equation

Tile(F1, F2;Z2 × E0)

is undecidable?

• The finite abelian groupG0 in Theorem 1.8 obtained from our construction is quite
large. It would be interesting to optimize the size of G0.

Problem 12.5 Find the smallest finite abelian group G0 for which there exist finite
non-empty sets F1, F2 ⊂ Z

2 × G0, and E0 ⊂ G0 such that the tiling equation
Tile(F1, F2;Z2 × E0) is undecidable.

• It might be possible to reduce the dimension d in Theorem 1.9 by “folding” more
efficiently the finite construction of G0 in Theorem 1.8, into a lower dimensional
infinite space.

Problem 12.6 Let G0 = ∏d
i=1 ZNi . Suppose that there exist F1, F2 ⊂ Z

2 × G0 and
E0 ⊂ G0 such that the tiling equation Tile(F1, F2;Z2 × E0) is undecidable. Does
this imply the existence of d ′ < 2+ d such that there are finite sets F ′

1, F
′
2 ⊂ Z

d ′
and

a periodic set E ⊂ Z
d ′
for which the tiling equation Tile(F ′

1, F
′
2; E) is undecidable?

• In Remark 1.12 we discuss the algorithmic undecidable tiling problem which our
argument establishes. In this tiling problem, the finite abelian group G0 is one of
the inputs. It might be that a slight modification of our construction would imply the
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existence algorithmic undecidable tiling problem with two tiles in Z2 ×G0, for a fixed
finite abelian group G0.

Problem 12.7 Is there any finite abelian group G0 such that the decision problem
of whether the tiling equation Tile(F1, F2;Z2 × E0) is solvable for any given finite
subsets F1, F2 ⊂ Z

2 × G0 and E0 ⊂ G0, is algorithmically undecidable?
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Appendix A: Undecidability and Aperiodicity

In this sectionwe give awell-known argument ofWang (see [4, 30]) that undecidability
implies aperiodicity (which in particular implies that undecidable tiling equations
admit tilings in the standard universe). The argument is usually phrased in the language
of algorithmic undecidability, but can be adaptedwithout difficulty to the logical notion
of undecidability discussed here.

Theorem A.1 (undecidability implies aperiodicity) Let G be an explicit finitely
generated abelian group, J , M ≥ 1 be standard natural numbers, and for each
m = 1, . . . , M, let F (m)

1 , . . . , F (m)
J be finite subsets of G, and let E (m) be a peri-

odic subset of G. If the system Tile(F (m)
1 , . . . , F (m)

J ; E (m)) for m = 1, . . . , M is
undecidable, then it is aperiodic.

Proof We will establish the contrapositive: if the system Tile(F (m)
1 , . . . , F (m)

J ; E (m))

for m = 1, . . . , M fails to be aperiodic, then it must be decidable. By definition of
aperiodicity, one of the following two statements must hold:

(i) The standard solution set
⋂M

m=1 Tile(F (m)
1 , . . . , F (m)

J ; E (m))U is empty.

(ii) The standard solution set
⋂M

m=1 Tile(F (m)
1 , . . . , F (m)

J ; E (m))U contains a periodic
tuple (A1, . . . , AJ ).

In case (ii), since periodic sets are definable, we have a solution to the system
Tile(F (m)

1 , . . . , F (m)
J ; E (m)), m = 1, . . . , M , in every universe U∗ of ZFC, and

hence by the Gödel completeness theorem the solvability question is decidable (in
the positive). Now suppose that we are in case (i). By the compactness theorem
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in logic14, there must therefore exist a finite subset S of G such that the system
Tile(F (m)

1 , . . . , F (m)
J ; E (m)), m = 1, . . . , M , is not satisfiable in S, in the sense that

there does not exist A1, . . . , AJ ⊂ G such that

((A1 ⊕ F (m)
1 ) ∩ S) ∪ · · · ∪ ((AJ ⊕ F (m)

J ) ∩ S) = E (m) ∩ S

for all m = 1, . . . , M . This latter assertion can be viewed as unsatisfiable boolean
sentence involving the finite number of propositions (n ∈ A j ) for j = 1, . . . , J ,
m = 1, . . . , M , and n ∈ S − F (m). The unsatisfiability of this sentence can be
proven in ZFC (simply by exhausting a truth table), and it implies the unsolvability of
Tile(F (m)

1 , . . . , F (m)
J ; E (m)), m = 1, . . . , M , in every universe of ZFC. By the Gödel

completeness theorem, we thus see that the solvability of this system is decidable (in
the negative). The claim follows. ��
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