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Abstract

Macroecological Patterns Out Of Steady State

by

Micah Brush

Doctor of Philosophy in Physics

University of California, Berkeley

Professor John Harte, Co-chair

Professor Oskar Hallatschek, Co-chair

Prevalent macroecological patterns have been identified across a wide range of ecosystems,
and these patterns have proven effective for understanding ecosystems at scales relevant for
conservation and management. However, empirical studies and macroecological theory to
this point have largely focussed on static patterns for ecosystems in steady state, and there
is increasing interest in understanding how these metrics change over time and in respond
to disturbance.

In my dissertation, I use the Maximum Entropy Theory of Ecology (METE) as a starting
point to predict how ecosystems will respond to disturbance and analyze the correspond-
ing shifts in macroecological patterns. METE uses the principal of maximum entropy to
predict various macroecological patterns and has proven effective for ecosystems at steady
state, though its predictions appear to fail for disturbed ecosystems. The first chapter of
my dissertation studies how deviations from METE predictions can inform us about under-
lying biology by studying macroecological patterns across land uses of different intensities
for arthropods in the Azores. I then look at how we can modify METE to improve its
predictions for ecosystems out of steady state. In my second chapter I present a new model
that extends the spatial predictions of the theory to include intraspecific negative density
dependence. Finally, in my third chapter I discuss my work developing DynaMETE: a new
hybrid theory of macroecology that combines the maximum entropy methods of METE with
explicit mechanisms to predict how patterns change in time. I present a method for iterating
this theory in time, and code that implements this iteration scheme.

Ecosystems are faced with increasing levels of human disturbance from habitat fragmenta-
tion, to land management, to climate change. This makes it important to study macroeco-
logical patterns out of steady state as we work toward understanding how ecosystems will
respond to disturbances at the large scales relevant for conservation and management.
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Introduction

Ecosystems are complex. They are highly dynamical and governed by many different inter-
actions between a large number of organisms and their environment. Any individual in an
ecosystem will interact with other individuals in its species, will have different relationships
with individuals of other species in its surroundings, and will interact in complicated ways
with its habitat. Describing any one of these interactions in depth could be a full dissertation
on its own.

Despite this small scale complexity, there are patterns in ecology that appear consistently
across ecosystems at large spatial or temporal scales (Brown 1995; Rosenzweig 1995; Gaston
and Blackburn 2000; Magurran and McGill 2011). Many of these patterns have been identi-
fied and studied for a long time. This includes the relationship between the number of species
and the area of the ecosystem (the species-area relationship or SAR) (Arrhenius 1921), and
the distribution of the abundances of each species (the species-abundance distribution or
SAD) (Fisher et al. 1943; Preston 1948). Other patterns include distributions of metabolic
rates or body sizes (the metabolic distribution of individuals or MRDI), or the spatial dis-
tribution of individuals (the species-level spatial-abundance distribution or SSAD). Typical
forms of these distributions are shown schematically in Fig. 0.1. These ubiquitous patterns
can provide hints as to the structure of unifying theory in ecology (Lawton 1999; Hubbell
2001; McGill 2010; Harte 2011; McGill et al. 2019).

In physics, simplicity can often arise from complicated underlying behaviour, and there
are many mathematical and analytical tools to describe this emergence. Statistical physics
as a field studies and describes systems with large population sizes, using probability theory
and statistic to understand aggregate properties of complicated systems. Methods from these
types of analyses can be useful in studying these large scale patterns in ecology, where we are
looking for statistical patterns emerging from complicated underlying mechanism (Banavar
et al. 2010; Harte 2011; O’Dwyer and Chisholm 2014; Bertram and Dewar 2015; Azaele et al.
2016; Pigolotti et al. 2018; Gouveia et al. 2020).

One such tool is the method of maximum entropy, or MaxEnt. By maximizing Shannon
information entropy (Shannon and Weaver 1949), MaxEnt selects the least informative prob-
ability distribution that is compatible with prior constraints (Jaynes 1957; Jaynes 1982). In
physics, MaxEnt can be used to derive the Boltzmann distribution for the energy distribution
of particles in an idealized gas (Jaynes 1957). In ecology, the Maximum Entropy Theory of
Ecology, or METE, uses MaxEnt to simultaneously predict many macroecological patterns,
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Figure 0.1: A schematic of some common macroecological patterns. All lines shown here are
the corresponding METE predictions. The SAD shows rank ordered species abundances n,
the SAR shows how the number of species S changes with the area of observation A, the
SSAD shows the rank ordered fraction of individuals in one half of a plot, and the MRDI
shows the rank ordered metabolic rates of individuals ε.

including those in Fig. 0.1 (Harte et al. 2008; Harte 2011; Harte and Newman 2014).
METE imposes prior constraints in the form of state variables: macroscopic observables

analogous to pressure, volume or temperature in thermodynamics. These state variables
capture enough of static ecosystems to describe their large scale patterns without having
to describe underlying mechanism. In METE, the relevant state variables are the number
of species S, the total number of individuals N , the total metabolic rate of all individuals
E, and the area of observation A. For ecosystems in steady state, these state variables
are sufficient for METE to accurately predict many macroecological metrics (Harte 2011;
White et al. 2012; McGlinn et al. 2013; Xiao et al. 2015). Steady state, in this case, is
characterized by relatively constant state variables. This is distinct from true equilibrium,
as the underlying dynamical biological processes are still occurring.

Outside of steady state, when the state variables are changing relatively rapidly, METE
predictions are generally less successful (Newman et al. 2020; Franzman et al. 2021). This is
analogous to the ideal gas law, which is valid for an idealized gas at steady state when derived
using the MaxEnt predicted Boltzmann distribution for the particle energies, but which may
no longer hold when the gas is out of steady state, such as in a gas with a rapidly changing
temperature. In this case, the pressure, volume, and temperature no longer determine the
energy distribution of particles and the ideal gas law may not hold. In the case of METE,
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it seems that different types of disturbance affect patterns in different ways (Kempton and
Taylor 1974; Carey et al. 2006; Supp et al. 2012; Rominger et al. 2016), and therefore
deviations from METE can provide useful insights about the ecosystem. This additionally
makes it natural to modify METE by incorporating mechanistic disturbance to predict how
patterns change over time.

In this dissertation, I use METE as a baseline to study how changes in macroecological
distributions out of steady state can inform us about the underlying biology, and to build
theory to understand and predict how these patterns will change over time in ecosystems
under disturbance. This is especially important given the degree of anthropogenic distur-
bance and global change in the Anthropocene (Turner 2010; Pereira et al. 2012; Dı́az et al.
2019; Newman 2019).

The first chapter focuses specifically on the effects of land use, given that land man-
agement is a primary driver of ecological disturbance around the world (Foley et al. 2005;
Newbold et al. 2015; Newbold et al. 2018). I compare METE predictions to macroecological
patterns of arthropods in the Azores Islands, an isolated archipelago in the Atlantic Ocean.
Human settlement has drastically changed the island from largely undisturbed natural forest
to mixed land uses, including intensively managed pasture land (Cardoso et al. 2009; Norder
et al. 2020). Comparing the SAD, MRDI, and SAR predictions to data provides information
about how land use disturbance is affecting these arthropod communities.

The second chapter focuses on a specific type of disturbance, density dependence, and its
effects on the spatial predictions of METE. I present a new model of spatial aggregation that
uses METE as a starting point and includes a parameter that characterizes the strength of
negative density dependence (Brush and Harte 2021). This parameter can be interpreted as
a density dependent correction away from the MaxEnt predicted spatial distribution, and by
analysing spatially explicit data we can determine to what degree ecosystems are consistent
with different levels of underlying density dependence.

Finally, in the third chapter I present DynaMETE: a broad theoretical framework for
predicting how macroecological patterns change in time in response to disturbance (Harte
et al. 2021). This theory combines explicit mechanism governing disturbance and MaxEnt
inference, and reduces to METE in steady state. I provide code for iterating the theory for-
ward in time given the initial iteration scheme and discuss possible alternative formulations
with the eventual goal of connecting the theory results directly to data.
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Chapter 1

The influence of land use on
arthropod macroecology in the Azores

Abstract

Human activity and land management practices have resulted in global loss of biodiversity.
These types of disturbances affect the shape of macroecological patterns, and analysing
these patterns can provide insights into how ecosystems are affected by land use. The
Maximum Entropy Theory of Ecology (METE) is a theory that simultaneously predicts
many of these patterns. Its predictions are successful across habitats and taxa in undisturbed
natural ecosystems, though they perform less well in disturbed ecosystems. Deviations from
METE therefore contain information about the effects of disturbance. We here compare
predictions from METE to arthropod data from Terceira Island in the Azores archipelago
across four different land uses. Ranked in order of management intensity, these land uses
are: 1. Native forest, 2. Exotic forest, 3. Semi-natural pasture, and 4. Intensive pasture.
We simultaneously predict the species-abundance distribution (SAD), the metabolic rate
distribution of individuals (MRDI), and the species-area relationship (SAR) and compare to
observations at 96 sites across the four land uses. Across these patterns, we find that the
forest sites are the best fit by METE and the semi-natural pasture is consistently the worst
fit by METE. The intensive pasture is intermediately well fit for the SAD and MRDI, and
comparatively well fit for the SAR, though the residuals are not normally distributed. The
direction of failure of the METE predictions at the pasture sites is likely due to the highly
abundant introduced spider species present there. We hypothesize that the particularly poor
fit at the semi-natural pasture is due to the mix of arthropod communities out of equilibrium
and the changing management practices throughout the year, whereas the comparatively
better fit at the intensive pasture results from arthropod communities that are well adapted
to intensive management.
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1.1 Introduction

Human management of land is a primary driver of ecological disturbance around the world
(Foley et al. 2005; Pereira et al. 2012; Klein Goldewijk et al. 2017). Land use has large
effects on landscape heterogeneity, and can fragment the habitat of endemic or native species
leaving a mosaic of habitat types (Fahrig 2003; Fischer and Lindenmayer 2007; Cardoso et al.
2009; Fahrig 2019). This type of human driven disturbance is leading to global biodiversity
loss (Martins et al. 2014; Pimm et al. 2014; Newbold et al. 2015; Maxwell et al. 2016;
Newbold et al. 2018). On oceanic islands, this is especially pronounced as conversion of
native vegetation to agricultural and pasture land may put native and endemic species at
risk through the spread of exotic species (Gillespie and Roderick 2002; Borges et al. 2006;
Gillespie et al. 2008).

Disturbance as a result of human activity can often be observed in macroecological pat-
terns, as deviations from the expected shapes can be interpreted as disturbance (Kempton
and Taylor 1974; Carey et al. 2006; Dornelas et al. 2009; Supp et al. 2012; Matthews and
Whittaker 2015; Franzman et al. 2021). In order to interpret the patterns in this way,
we require a theoretical prediction for what these different patterns should look like in an
ecosystem that has not been disturbed or managed.

The Maximum Entropy Theory of Ecology (METE) predicts numerous macroecological
patterns simultaneously using the principle of maximizing information entropy (Harte et
al. 2008; Harte 2011; Harte and Newman 2014; Brummer and Newman 2019). METE
is characterized by three so-called state variables that are used to constrain the predicted
distributions for a given ecosystem: the number of individuals N0, the total metabolic rate
E0, and the species richness S0. To make spatial predictions, METE also requires the total
area of the site A0. It has been found to well describe empirical patterns across diverse taxa
and habitats (Harte 2011; White et al. 2012; Xiao et al. 2015). However, there is increasing
evidence that these predictions perform less well in disturbed ecosystems (Carey et al. 2006;
Rominger et al. 2016; Newman et al. 2020; Franzman et al. 2021; Harte et al. 2021). Most
disturbance to this point in relation to METE has been characterized by ecosystems with
rapidly changing state variables, and METE seems to well describe ecosystems where the
state variables are relatively constant in time.

The effects of land use and related disturbances on macroecological patterns and their
deviations from METE have not yet been explored. Given that METE predictions appear
to perform better in pristine ecosystems, we expect that land uses that introduce significant
disturbance should result in patterns that deviate from them. How well the data fit METE
across land use can then tell us something about disturbance at that land use. Analyzing
ecosystems in this way can provide insights about how different land uses affect these large
scale patterns, and by extension how management can affect biodiversity.

Here, we investigate how land use affects several patterns predicted by METE with
arthropod data from Terceira Island in the Azores archipelago. The Azores are an isolated
island chain in the Atlantic Ocean that have been populated for about 600 years (Norder et
al. 2020). In this time, they have undergone a large change from largely undisturbed natural
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forest to mixed land uses, including managed forest plantations and intensive pasture land
(Cardoso et al. 2009).

Arthropod species have also been introduced. These exotic species have changed the
ecological landscape (Florencio et al. 2013) and have different functional trait composition
than indigenous species (Rigal et al. 2018). However, they appear to be integrated in these
ecosystems, perhaps by replacing indigenous species or filling empty niche space (Gaston
et al. 2006; Rigal et al. 2013).

Species-abundance distributions of arthropods in the Azores have already been shown
to be useful for biogeographical purposes (Fattorini et al. 2016; Borda-de-Água et al. 2017).
Additionally, Rigal et al. (2018) found that functional trait composition varies strongly with
management intensity. This, together with the fact that there are small but important
regions of remaining native forest, makes the Azores an ideal system to test how land use
affects macroecological patterns and their deviation from METE predictions.

Here we will analyze three predictions of METE simultaneously: the species-abundance
distribution (SAD), the metabolic energy rate distribution of individuals (MRDI), and the
species-area relationship (SAR). Analyzing multiple patterns simultaneously avoids treating
any individual pattern in isolation (McGill et al. 2007), especially since single patterns can
often be predicted from many different underlying theories. We compare all three of these
patterns with arthropod data across land use types on Terceira Island. We expect to see
that METE predictions fit the data better for less intensively managed land uses, and we
also analyze deviations from the predicted patterns for information about how disturbance
is affecting the ecosystem.

1.2 Methods

Study area and data

The Azores Islands are an isolated island chain in the Atlantic Ocean of volcanic origin. All
of the data analyzed here come from Terceira Island, which before human colonization was
almost entirely forest and now has a mix of land uses, including agricultural and intensively
managed pastures. The four major land uses, ranked in increasing order of management
intensity, are 1. Native forest, 2. Exotic forest, 3. Semi-natural pasture, and 4. Intensive
pasture (Rigal et al. 2018). These land uses comprise about 87% of the total island area,
which is broken down by land use in Table 1.1 (Cardoso et al. 2009). Figure S1.1 in Rigal
et al. (2018) shows a land use distribution map of Terceira Island with more specific spatial
information.

The native forest is made of perennial trees and shrubs adapted to a hyper-humid Atlantic
climate, and is now restricted to elevations above 500 m above sea level (a.s.l.) and dominated
by Juniperus-Ilex forests and Juniperus woodlands (Elias et al. 2016). Exotic plantations
of the fast growing tree Cryptomeria japonica were planted after the Second World War to
reforest large areas of previous native forest that were destroyed in the previous decades for
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Land use % Area Sites Total S0 Total N0 Median S0 Median N0

Native forest 9 44
148

(86, 60)
10 291

(7288, 3001)
24

(16, 8)
195

(129, 50)

Exotic forest 15 12
87

(44, 42)
3385

(1476, 1908)
20

(10, 9)
196

( 11, 51)
Semi-natural

pasture
15 16

127
(50, 76)

11 421
(2110, 9310)

28
(10, 17)

766
(101, 623)

Intensive pasture 48 24
136

(40, 94)
21 153

(4076, 17 070)
36

(10, 27)
878

(161, 684)

Table 1.1: The total number of species and individuals observed for each land use, and the
median number across sites within one land use. The number in parentheses is the number
of indigenous species or individuals, followed by the number of exotic species or individuals.
Additionally, the number of sites where data was collected for each land use, and the percent
of the total island area occupied by that land use. Across all land uses, there are a total of
271 species and 46 250 individuals, with four species constituting 11 individuals that are not
identified as indigenous or exotic.

fuel. These plantations are dense and almost no understory is present. Semi-natural pastures
are located around 400-600 m a.s.l., have a mixture of native and exotic herbs and grasses,
and are mostly grazed in the spring and summer with low cattle density. Intensive pastures
are located between 100-500 m a.s.l. and are grazed every three weeks (and sometimes up to
every 12 days in the summer) with high cattle density.

The data set analyzed here was collected from pitfall traps. Each of the 96 sites has a
single 150 m transect with 30 pitfall traps spaced out at 5 m intervals. All data was collected
over summers on Terceira Island (see Cardoso et al. 2009; Rigal et al. 2018). Measurements
of individuals were performed as described in Rigal et al. (2018) and Maćıas-Hernández et
al. (2020). For spiders we have measurements of both males and females and at least four
individuals per sex. For some beetle species we have also several individuals measured.

Table 1.1 shows the number of sites analysed for each land use, along with the total and
median number of species S0 and individuals N0 across all transects of that land use. The
number of indigenous and exotic species or individuals are shown in parentheses. Indigenous
species are defined as those that are endemic (occur only in the Azores) or native (appear in
the Azores Islands and other nearby islands). Exotic species are those believed to have been
introduced by human settlement. Unidentified species that share a genus, subfamily, or fam-
ily with other species present in the archipelago are put into the same colonization category
as those species (Borges et al. 2010; Florencio et al. 2013). There are four remaining species
that are not identified as indigenous or exotic that constitute 11 individuals. Across all land
uses, there are a total of 271 species and 46 250 individuals, with 126 indigenous species and
14 950 indigenous individuals and 141 exotic species and 31 289 exotic individuals.
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METE Review

METE as a theory predicts many different macroecological patterns simultaneously by max-
imizing Shannon information entropy given a set of constraints (Harte et al. 2008; Harte
2011; Harte and Newman 2014; Brummer and Newman 2019). Its core distribution is the
ecological structure function R(n, ε|S0, N0, E0), which is a joint conditional distribution over
abundance n and metabolic rate ε given the number of species S0, the number of individuals
N0, and the total metabolic rate E0. Thus, Rdε is the probability that a species is picked
from the species pool has abundance n, and an individual picked at random from that species
has metabolic rate between ε and ε + dε. Note that n is discrete, and ε is continuous. In
practice, we scale the metabolic rate such that the smallest metabolic rate in the ecosystem
has ε = 1.

We then use the method of Lagrange multipliers to maximize the information entropy∑
n

∫
ε
dεR log(R) given the following constraints:

N0

S0

=

N0∑
n=1

∫ E0

ε=1

dε nR(n, ε)

E0

S0

=

N0∑
n=1

∫ E0

ε=1

dε nεR(n, ε).

(1.1)

We additionally require the distribution R to be normalized such that∑N0

n=1

∫ E0

ε=1
dε R(n, ε) = 1. The solution for the ecological structure function is

R(n, ε|S0, N0, E0) =
exp (−λ1n− λ2nε)

Z
, (1.2)

where the Lagrange multipliers λ1 and λ2 are solved from the constraints, and the normal-
ization Z is calculated as

∑N0

n=1

∫ E0

ε=1
dε exp (−λ1n− λ2nε). To a very good approximation

given typical empirical values for S0, N0, and E0 (Harte 2011; Brummer and Newman 2019),
λ2 = S0/(E0 −N0), and λ1 can then be solved from

N0

S0

=

∑N0

n=1 e
−βn∑N0

n=1 e
−βn/n

. (1.3)

where β = λ1 + λ2.
The distribution R can then be used to derive other macroecological distributions that

can be compared to data. We here show derivations of the relevant distributions.

Species-abundance distribution

We obtain the METE SAD prediction Φ(n) by integrating the structure function over ε. The
METE prediction is equivalent to the max likelihood prediction for the log series (White et
al. 2012, Appendix A). This prediction assumes that the number of species is large enough
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that we can ignore certain terms, which eliminates any dependence on E0. The resulting
prediction is the log series distribution

Φ(n|S0, N0) =
e−βn

n log (1/ (1− e−β))
(1.4)

Metabolic rate distribution of individuals

The METE MRDI prediction Ψ(ε) is obtained by summing the structure function multiplied
by n over n and correcting the normalization,

Ψ(ε) =
S0

N0

N0∑
n=1

nR(n, ε). (1.5)

This sum gives

Ψ(ε|S0, N0, E0) = λ2

(
eβ − 1

) e−γ

(1− e−γ)2
(1.6)

where γ = λ0 + λ1ε. Note that we use a slightly different form for Ψ compared to Eq. 7.33
in Harte (2011), where β has been replaced with eβ − 1. The normalization of Ψ(ε) in
Eq. 1.6 is significantly better, as

∫
ε
dε Ψ(ε) is much closer to 1. This form still allows the

cumulative distribution function and the rank ordered distribution to be solved analytically,
and is numerically very similar to the full expression without any approximations, even down
to the individual transect level.

Species-area relationship

The SAR can be predicted by combining the SAD with the species-level spatial abundance
distribution (SSAD) Π(n|A,A0, n0), which predicts the number of individuals present in an
area A given n0 individuals of that species in a larger area A0. The number of species at
a given scale A can be predicted by multiplying the SAD by the probability that a species
with abundance n0 is present at that scale and then summing over n0,

S(A) =

N0∑
n0=1

Φ(n0) (1− Π(0|A,A0, n0)) . (1.7)

The SSAD can also be predicted by maximizing information entropy given the constraint∑n0

n=0 nΠ(n) = n0A/A0. The solution corresponds to the finite negative binomial distribution
(Conlisk et al. 2007; Zillio and He 2010)

Π(n|A,A0, n0) =

(
n+k−1
n

)(
n0−n+kA0/A−k−1

n0−n

)(
n0+kA0/A−1

n0

) . (1.8)

with aggregation parameter k = 1 (Harte 2011; Wilber et al. 2015).
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METE also predicts that all nested SARs will collapse onto a single universal curve when
plotted as the slope of the SAR z versus D = log(N0/S0), a scale parameter. (Harte 2011;
Wilber et al. 2015)

Comparing METE predictions with data

We divide the data by land use and compared the observations to the predictions of METE.
Because we have multiple transects for each land use, we can either compare our results by
aggregating across all transects in one land use category, or at the individual transect level
by treating each transect as a replicate. We primarily analyze our results at the individual
transect level. This is because METE makes predictions within a single community, and
aggregating data over several locations may create a mismatch between the theory predictions
and the data. Additionally, the number of species observed will not be the same across many
small patches compared to a single large patch of the same area. Despite these issues, we do
find mostly similar results aggregating the data by land use (Appendix A.1).

Our data are separated into juvenile and adult data. Where possible, we treat these
together as a single dataset that accurately captures all ground dwelling arthropods. Note
that some species will have adult forms that will not be captured by pitfall traps. However,
in some sense the arthropods that are not captured by the pitfall traps are not part of
the same ecosystem of ground dwelling arthropods. These individuals likely interact with
different species and habitats, and thus do not necessarily need to be included for METE
to make accurate predictions about the composition of the study ecosystem. Unfortunately,
for the predictions for metabolic rate, we were only able to use adult arthropods as we use
scaling relationships to calculate the empirical metabolic rates that are only available for
adults.

Finally, our data categorizes species as indigenous (native or endemic) or exotic (likely
introduced by humans). We analyze these groups independently for the species-abundance
distributions, though we believe these species are integrated into the community, at least in
macroecological patterns (Gaston et al. 2006; Rigal et al. 2013).

Species-abundance distribution

There are many existing methods for comparing empirical SADs to data, however there
is not single metric that can well capture goodness of fit (Connolly and Dornelas 2011;
Matthews and Whittaker 2014). In general, binning should be avoided as the shape of the
distribution depends on the binning interval, and given the sparse data each observed bin is
unlikely to have a sufficiently large expectation to have a meaningful χ2 test (Williamson and
Gaston 2005; Gray et al. 2006; Ulrich et al. 2010). Log-likelihood based methods are also
inappropriate in this case as we are not trying to determine a preferred model and instead
are looking for a goodness of fit test.

Given this, we use the mean least squares of the rank ordered natural log of abundance
as our primary goodness of fit metric to compare the METE predictions to data. Although
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Matthews and Whittaker (2014) notes that mean least squares of rank ordered data violates
some underlying statistical assumptions, namely that the data points are not statistically
independent (Connolly and Dornelas 2011), we still find it preferable to their recommended
method of using a parametric bootstrap. For many test statistics this method scales with
the number of points, making comparisons between land uses challenging. As that is our
primary objective here, we prefer to use the mean least squares.

To ensure our results are robust to our choice of goodness of fit metric, we additionally
performed Kolmogorov-Smirnov (KS) tests for each transect and obtained at the two-sided
test statistic DKS when the empirical CDF is compared to the METE predicted CDF. These
results can be found in Appendix A.2, and are very similar to the results obtained by mean
least squares. For the KS test for the SAD, we used the R package DGOF which implements
the KS test for discrete distributions (Arnold and Emerson 2011).

Metabolic rate distribution of individuals

The raw data includes information on average body lengths for each species of arthropod.
For adult arthropods, we can use empirical scaling relationships to convert these to body
mass data, which can be related to metabolic rate using metabolic scaling. Since we only
have average body lengths, we do not capture the variation in body lengths within a single
species. To reintroduce this variation, we look at several beetle and spider species where we
have multiple measurements for body length and convert these into distributions for intraspe-
cific variation in body mass. We find in this case that these distributions can be roughly
approximated by normal distributions. Gouws et al. (2011) also found that intraspecific
body size distributions are usually normal across many species of insects, including beetle
species. Note that for spiders we find that this distribution is much more likely to be bi-
modal because of the sexual dimorphism present in many of the species, and in this data
information about the sex of the individual is available for species with multiple individuals.
However, the full dataset provides only one average body length regardless of sex, and so we
approximate the spiders body mass distribution as a single normal distribution, as with the
beetles. This approximation should be closer to representing the female spiders as we are
more likely to sample a larger number of them due to their longer life span.

For both the beetles and the spiders, we find that the relationship between the log10 of
the mean body mass and the log10 of the variance is roughly linear, without an obvious trend
in the residuals. The slopes and intercepts are similar for the beetles and spiders, although
the slope for the spiders is slightly steeper (2.22± 0.13 versus 1.99± 0.12). This means the
variance will be higher for spiders for most species with comparable mass, which makes sense
given that we expect the true distribution for the spiders to be bimodal. Plots of individual
beetle and spider species and the log(body mass) versus log(variance) relationship can be
found in Appendix A.3.

We then use these relationships for our analysis. For each species, we draw n0 samples
from the corresponding normal distribution for body mass before converting to metabolic
rate and rank ordering. Because the samples are drawn randomly, some samples for low
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mass species will be below zero, even though mass must be strictly positive. We fix this by
setting these draws to the smallest positive mass plus a small amount of noise (1% of the
mass multiplied by a normal distribution with mean and variance equal to one) to avoid
duplicates. We used the relationship for beetles for all orders except for Araneae, where we
used the relationship we obtained for spiders. Some of the orders may be more similar to
spiders, or be quite different overall, but since Coleoptera and Araneae are the two most
common orders in the dataset, difference among other orders should not overly impact the
analysis.

As with the SAD, we primarily use the mean least squares of the rank ordered natural log
of metabolic rates to as a goodness of fit metric at each land use. Alternative options for this
comparison would be R2 as defined in eg. Xiao et al. (2015), or to bin the data and use a χ2

test. Again here though, binning relies on a large number of points per bin that we will not
have at the individual transect level, and the results can depend on the bin width. In order
to test the robustness of our goodness of fit metric we additionally performed Kolmogorov-
Smirnov goodness of fit tests for the empirical CDF compared to the METE predicted CDF.
Again, we obtain similar results to the mean least squared analysis (Appendix A.2).

Species-area relationship

At each transect, there are 30 individual pitfall traps arranged linearly. We compare the
resulting empirical SAR to the METE prediction by first averaging the number of species
at different scales. We chose scales of 1, 2, 3, 5, 6, 10, 15, and 30 traps. These relative
scales were chosen as they use all of the data available at every scale, or put another way,
these numbers are all factors of 30. This is slightly different than has been done in other
comparisons, which use a number of cells that is a factor of two and divide repeatedly in
half (eg. Franzman et al. 2021).

To then compare these average numbers of species to the METE prediction, we use the
functions for the log series SAD φ(n) and the finite negative binomial SSAD Π(n) from the
macroeco software package (Kitzes et al. 2015; Kitzes and Wilber 2016), which we have
adapted for use with Python 3.0.

There are many different methods for comparing the predicted SAR to data. We could fix
the number of species and individuals at the largest scale and predict the number of species
at every smaller scale from this anchor scale, or we could compare the predicted slope z
of the SAR against the scale parameter D = log(N0/S0), which as noted above collapses
SARs onto a single, universal curve (Harte 2011; Wilber et al. 2015). Harte (2011) provides
an equation for z given the empirical number of species and individuals at a given scale,
assuming that we bisect the plot in two. We use a similar approach, in that we use the
number of species and individuals at a given scale to predict the number of species at the
next smallest scale in consideration and then use that to predict a slope. Mathematically,
we write

zi =
log(Si/Si−1)

log(Ai/Ai−1)
, (1.9)
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where i indexes the scale. In the list above then, i = 1 corresponds to the average number of
species at the scale of 1 cell, and i = 8 corresponds to the number of species in all 30 cells.

Given we are predicting the number of species directly using this approach, we can also
compare the SAR directly (see Appendix A.4). However, given the collapse onto a single
curve in the z − D plots we prefer that comparison. We obtain the empirical slope by
comparing the number of species at the scale being considered to the number of species at
the next smallest scale. This is similar to the theoretical prediction, but now the number
of species at the smaller scale is also empirical. This method allows us to compare slopes
at all except the smallest scale, as we do not have a smaller scale with which to make the
empirical slope prediction.

We therefore have 7 data points to make the comparison and again use the mean least
squares between the prediction and the empirical data to judge goodness of fit to METE.
Note that for many transects we will have fewer than 7 data points as we additionally only
use scales where the empirical average for the number of species is greater than four (S0 > 4).
This is because several METE simplifications break down for small S0, including the fact
that we can ignore E0 and derive β from only N0 and S0. This means that transects with
lower abundance we will have fewer than 7 points of comparison.

1.3 Results

Species-abundance distribution

The closed circles in Fig. 1.1 show the mean of the mean least squared error over transects
with its standard error at each land use for the SAD. We find that the semi-natural pasture
is particularly poorly described by METE, and the native forest is the most well fit. The
exotic forest and intensive pasture are fairly similar and intermediate between the native
forest and the semi-intensive pasture. The standard deviation of the mean is the lowest for
the native forest sites, and the highest for the semi-natural pasture. Similar results for the
KS test statistic DKS across transects are shown in Appendix A.2.

Plots of the SAD at each transect are shown in Appendix A.5. To combine all of the
SADs onto a single plot, we plot the residuals of log10(abundance) in Fig. 1.2, where the x-
axis has been scaled by the number of species to facilitate comparison. Each line in this plot
represents the SAD at a single site. In the semi-natural pasture in particular, we see that
METE consistently under predicts the abundance of the most abundant species and over
predicts the abundance of the species and intermediate rank. We can see a similar pattern
across land uses where the residual of the most abundant species tends to be positive, though
it is most prevalent at the pasture sites and least common at the native forest sites. Across
all sites, METE generally under predicts the number of singletons, though this is again least
common at the native forest sites.

Results aggregating over transects rather than treating them as replicates can be found
in Appendix A.1. In that case, the forest sites are again better fit than the pasture sites,
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Figure 1.1: A comparison of means of the mean least squares and their standard errors across
all three patterns and land uses. Note the difference in y-scale for the SAR, where the mean
least squared error was much smaller. The shape of the marker indicates the pattern and
the color indicates the land use.

but the ranking is slightly different. The overall goodness of fit is also worse, which is in line
with our expectation that METE predictions are more accurate for individual transects.

Indigenous and exotic species

We additionally analyzed the SADs independently for species classified as indigenous and
exotic at each land use. Figure 1.3 shows the mean and associated standard error of mean
least squares across transects, separated by species that are indigenous and introduced, at
all four different land uses. We see that by far the biggest difference between indigenous
and introduced species is at the semi-natural pasture sites, where the introduced species fit
quite poorly compared to the indigenous species. Across other land uses indigenous and
introduced species are comparably well fit, though the introduced species fit slightly better
at the exotic forest sites. Again, these results are similar when analyzed at the community
level (Appendix A.1).
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Figure 1.2: The observed log10 of abundance minus the predicted log10 of abundance from
METE for each transect across land uses. The darker lines are sites with a higher number
of species, and lighter lines represent sites with fewer species. The colors correspond to the
different land uses.

Metabolic rate distribution of individuals

The triangles in Fig. 1.1 show the mean and its standard error for the mean least squared
error across transects for the MRDI. This metric shows that the forest sites are better fit
by METE than the pasture sites, and the semi-natural pasture is particularly poorly fit by
METE.

The rank ordered plots for the MRDIs at each transect are plotted in Appendix A.6,
and Fig. 1.4 shows the residuals from the rank ordered metabolic rates at each transect on
a single plot. Each line here represents a single site at that land use. Across land uses, we
see that there are often far more individuals around a single metabolic rate than predicted
by METE at any given site. This appears as long lines of similar slope in the residuals. See
particularly the pasture sites, where this pattern in the residuals is especially common.
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Figure 1.3: Mean and the standard error of the mean of the mean least squares for the SAD
across transects for each land use, for both indigenous (closed circles) and introduced species
(open circles). Colors represent land use type.

The results are again similar if analyzed using the KS test statistic (Appendix A.2) or at
the community level (Appendix A.1, though here the intensive pasture is much worse fit).

Species-area relationship

The X markers in Fig. 1.1 show the mean of the mean least squared error over transects with
its standard error at each land use for the slope z. Note the different y-axis scale compared to
the SAD and MRDI. Here, the mean least squared error for each transect has been averaged
over the number of scales where the empirical S0 > 4.

Figure 1.5 compares the data for each site, organized by land use. Each point here repre-
sents a single transect at a single scale D = log (N0/S0), and the lines are the corresponding
METE predictions. The scatter in this plot is significant across land use. Looking at the
residuals, we see that METE tends to under predict the slope at larger scales, particularly in
the pasture sites. We can see this pattern across sites in Fig. 1.6, which uses the scale-collapse
of the z −D relationship to display all of the sites together on a single plot.

The results are similar if we analyze the predicted number of species at each scale rather
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Figure 1.4: The observed log10 of the metabolic rate minus predicted log10 of the metabolic
rate for the rank ordered plots. The darker lines are sites with a higher number of individuals,
and lighter lines represent sites with fewer individuals. The colors correspond to the different
land uses.

than the slope (Appendix A.4).

1.4 Discussion

Species-abundance distribution

The most distinctive pattern in the SAD residuals in Fig. 1.2 is the consistent under pre-
diction of the most abundant species, particularly at the pasture sites. In other words,
these sites have a few very abundant species that are much more abundant than predicted
by METE. We attribute this to small-bodied, highly dispersive, mostly introduced spider
species. Rigal et al. (2018) found that these types of species were very prevalent at sites
with high land use intensity.
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and are colored according to land use type. The gray lines are the METE predictions. Here
we have plotted the slope of the relationship on the y-axis so that all points collapse onto
one universal curve. The residuals for each land use are shown immediately below the plot
for that land use.
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by land use. Each point represents a single transect at a specific scale, where the scale is
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have plotted the slope of the relationship on the y-axis so that all points collapse onto one
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The dispersal ability of these spiders also appears in the SAD. Borda-de-Água et al.
(2017) consider how the shape of the SAD changes according to different dispersal abilities
in Azorean arthropods, and they find that an intermediate mode in abundance appears in the
Preston plot (number of species versus log2(abundance)) for lower dispersal species. When
rank ordered, this results in plots that are less steep at low rank. For species with high
dispersal rates, the rank ordered curve should then be steeper. We see these steep rank
ordered SADs in the pasture sites in Fig. 1.2 and in Appendix A.5, which correspond to
the highly dispersive introduced spider species. These species have not yet been selected for
reduced dispersal as they have not been present on the island for evolutionary time scales.

These spider species additionally have multiple generations per year, which allows them
to recolonize the pasture sites from the nearby surrounding forest after disturbance due to
land management or cattle grazing (see Rigal et al. 2018, Figure S1.1 for a map). This
recolonization is particularly relevant for the semi-natural pasture sites, where cattle grazing
and fertilization is seasonal. The particularly high abundance of these species in this data
may be related to the fact that this data was collected in the summers, when the semi-natural
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pasture sites are likely to be subject to cattle grazing.
Another pattern observed in the residuals is that METE tends to under predict the

abundance of the intermediate rank species, again particularly at the pasture sites. However,
given that METE is constrained such that the number of individuals must be N0, this is likely
a consequence of these highly abundant spider species. If the METE SAD under predicts
the abundance at some rank, it must over predict the abundance at another rank such that
this constraint is satisfied.

Similarly, METE tends to under predict the number of singletons at most sites, except in
some cases for the native forest sites where we see that METE over predicts the number of
species with small abundance. This could be related to sampling, as the traps are less likely
to capture multiple individuals of rare species, but it could also be related to the METE
prediction for the number of singletons. METE predicts a number of singletons equal to
βN0, and therefore increasing N0 while holding S0 constant decreases the expected number
of singletons (Harte 2011, Chapter 7.3). From Table 1.1, we see that N0/S0 is large for the
pasture sites compared to the forest sites, and therefore METE predicts proportionally fewer
singletons at these sites. If ecologically we still expect a similar number of singletons, given
that the high N0/S0 is being driven by a small number of very abundant species, then this
could mean that METE under predicts the number of singletons.

Indigenous and exotic species

The results by separating indigenous and exotic species support our hypothesis that the
poor fit of the SADs for the semi-natural pasture sites is driven by introduced species. Out-
side of the semi-natural pasture, there is little difference in goodness of fit for the SADs
between indigenous and introduced species. This is in line with previous studies that stud-
ied the relationship between occupancy, variance, and abundance (Gaston et al. 2006) and
the interspecific abundance-occupancy relationship (Rigal et al. 2013) and found that ex-
otic species were integrated with the indigenous species in the Azorean community. Some
evidence for this integration comes from comparing the goodness of fit results in Fig. 1.1
and Fig. 1.3. We find that for all land uses except the semi-natural pasture, the mean least
squares of the indigenous and introduced species are each slightly higher than the goodness
of fit for the SAD when these species are combined. This means that when the indigenous
and introduced species are analyzed together, the METE prediction performs better than
when they are analyzed separate, except for the semi-natural pasture.

One reason this could be the case is that these species are filling different niches. Rigal
et al. (2018) found different functional trait profiles for indigenous and introduced species
across the four different land uses considered, which could mean that introduced species are
filling vacant ecological niches left by indigenous species. This should be particularly true at
the pasture sites, which rely mostly on species introduced by humans as indigenous species
are not well adapted to these novel habitats.

That the semi-natural pasture has such a difference in goodness of fit between the in-
digenous and exotic species could therefore be pointing to more complex dynamics at these
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sites. This could perhaps result from more similar numbers of introduced and exotic species
(Table 1.1) when compared to the intensive pasture sites. These sites are also in greater
proximity to forest sites, which could impact how species use these sites. For example, per-
haps some species, particularly indigenous species, use the semi-natural pasture to connect
different fragmented forest habitats.

Metabolic rate distribution of individuals

Across land use, we find that the MRDIs are not particularly well described by the METE
prediction. The Data section in Xiao et al. (2015) discusses why we should not necessarily
expect animals (rather than plants) to follow the METE predicted MRDI. Namely, body
sizes of animals belonging to the same species cluster around an intermediate value, and
much larger or smaller species are rare (eg. Gouws et al. 2011). This means we are likely
to end up with multimodal MRDIs (Thibault et al. 2011) rather than the monotonically
decreasing form predicted by METE, which always predicts that the smallest size class is
the most abundant.

A further reason that we may not necessarily expect these distributions to fit well is the
number of approximations required to obtain these distributions. We used scaling relation-
ships to covert from body length to body mass, and then approximated the intraspecific
body mass distributions to be normal, and then further used a scaling relationship to covert
to metabolic rate.

Despite these concerns and the number of approximations, we can still quantify which
land use is the most well described by METE, and we see a similar relationship between
land use and goodness of fit when compared with the SAD and SAR.

One direction we would expect the distribution to be skewed is that only adults are
included in the metabolic rate distribution. This could result in missing the lower end of the
unscaled MRDI. However, because METE predicts relative metabolic rate (scaled so that
the smallest organism is ε = 1), this will result in over predicting the metabolic rate of the
individuals with the greatest metabolic rate. We see this in Fig. 1.4, in that at low rank the
METE predictions are consistently too high.

Another possible cause is that the Azorean arthropods are not saturating the ecological
niches for large species. There is evidence that the indigenous species pool is unsaturated
(Borges and Hortal 2009; Triantis et al. 2012; Rigal et al. 2013), and that specifically in
the native forest sites the most successful introduced species were large bodied relative to
indigenous species (Rigal et al. 2018). Though we note that if introduced species are filling
these niches, then the species pool when combined may not have vacant niche space.

At the pasture sites, we consistently under predict the low rank, high metabolic rate
individuals, and over predict the high rank, low metabolic rate individuals, resulting in a
pattern where the residuals have positive slope (Fig. 1.4). These patterns are indicative of
a large number of individuals with similar metabolic rate (see Appendix A.6 for plots of
each site). As discussed in relation to the SAD, these sites have a few highly abundant,
small bodied spider species. These species have comparatively low metabolic rate, and the
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variation in metabolic rate within a species is smaller than the variation across species. We
therefore end up with long lines of positive slope in the residuals as the METE prediction
slopes downward over rank but the empirical MRDI remains roughly constant. We see this
especially at intermediate and low ranks as these species have low metabolic rate. Thus this
pattern is also likely driven by a few highly abundant species.

Species-area relationship

The mean least squares comparisons for the SAR in Figs. 1.1 and A.9 are noticeably different
from those for the SAD and MRDI. Again here we find that the semi-natural pasture is the
worst fit by METE, but it is not as dramatic as in other cases and is much closer to both
forest sites. Additionally, we find that the intensive pasture is the most well fit by METE.
However, the mean least squares is not the only goodness of fit metric. Particularly in the
case of the pasture sites here, we see clear patterns in the residuals in Figs. 1.5 and A.10 that
METE under predicts z and correspondingly over predicts the number of species at small
scales. This is in line with our analysis of the SAD at the pasture sites, in that these sites
have more high abundance species compared to the METE prediction (ie. the SAD is more
hollow than the METE predicted log series). Overall, even though the mean least squares
is smaller at the intensive pasture site, the direction of the difference is more biased.

In general, the pasture sites correspond to larger N0/S0 than the forest sites (see Fig. 1.5
and Table 1.1). When using D as a scale variable, this means that the pastures are testing
a different scale compared to the forest sites. We see this in the residuals in Fig. 1.6,
where the METE prediction for z is noticeably lower than the data points starting around
log(N0/S0) ≈ 2, which is also where most of the pasture data points are clustered. This
could indicate that the failure of METE to accurately predict the SAR is coming more
from the underlying prediction of a log series abundance distribution, rather than from the
spatial SSAD prediction, as the log series prediction for the pasture sites under predicts the
abundance of the most abundant species.

Summary

Across METE predictions, the forest habitats are better predicted by METE than the semi-
natural pasture habitat. The intensive pasture is intermediately well fit for the SAD and
MRDI, and better fit for the SAR, though the residuals are not normally distributed.

For the forest sites, the native forest has very little human management but may be
subject to the spread of invasive plants, and the exotic forest is subject to some human
management and is in close proximity to the pastures. The deviations from METE in these
sites are comparatively small and there are less noticeable trends in the residuals, though as
with all sites METE over predicts the metabolic rate of the highest metabolic rate individuals.

The pasture sites are characterized by a few very abundant species, which is consistent
with the abundance of several small bodied introduced spiders. In the SAD, METE consis-
tently under predicts the abundance of the most abundant species, as well as the number of
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singletons. In the MRDI, these very abundant species appear in the residuals as long lines
of positive slope, as the variation in metabolic rate within a species is relatively small and
the METE prediction falls off more rapidly than the empirical distribution.

The semi-natural pasture is particularly poorly described by METE across metrics. This
is also the only land use with a large difference in goodness of fit between indigenous and
introduced species, and the poor fit for the SAD appears to be driven by introduced species.
Interpreting the deviation from METE as disturbance, this means that the semi-natural
pasture is in some sense more disturbed than the intensive pasture. This could be due to
complex interactions between indigenous and introduced species, particularly because of the
proximity to other land uses, or because of the varying levels of management over the course
of a year. It could also mean that the arthropod communities at the intensive pasture sites
are more well adapted to the high level of management intensity, perhaps resulting in the
large number of introduced species present at these sites.

In other studies of METE, disturbance is often linked to rapid change in state variables
(Newman et al. 2020; Franzman et al. 2021; Harte et al. 2021). The dynamics are then out of
steady state, and the state variables alone are not sufficient to describe the macroecological
patterns. For example, Franzman et al. (2021) analyzed the change in state variables over
time in a declining alpine meadow and found that macroecological patterns moved away
from METE predictions over a six year period of observation. Here, we instead analyze how
land use affects deviation from METE predictions assuming that this deviation is relatively
static in time at any given land use. Assuming that disturbance is connected to changing
state variables, we could interpret the poor fit of the semi-natural pasture as indicating that
N0, E0 and/or S0 are not constant on ecological time scales. We could test this hypothesis
with time resolved data of arthropod composition. For example, connecting to our previous
hypothesis, we might expect the state variables to change with management intensity over
the year. It also may be the case that disturbance is more general and cannot always be
characterized by changing state variables, and may depend on additional factors such as the
rate of migration in and out of the ecosystem rather than just the net difference.

Analyzing the deviation from METE predictions across land use has provided us with
useful information about how land use and related disturbance is affecting macroecological
patterns in Azorean arthropods. While we initially expected the intensive pasture sites to
be the most poorly fit by METE, this analysis points to the semi-natural pasture as the land
use where arthropod communities are the most out of steady state. We were additionally
able to interpret the deviations from METE predictions ecologically. We expect this type of
comparison between METE predictions and ecosystems under land management disturbance
to be helpful in identifying how land use affects macroecological patterns across other habitats
and taxa.
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Chapter 2

Relating the strength of density
dependence and the spatial
distribution of individuals

Published in Frontiers in Ecology and Evolution as Brush and Harte (2021).

Abstract

Spatial patterns in ecology contain useful information about underlying mechanisms and
processes. Although there are many summary statistics used to quantify these spatial pat-
terns, there are far fewer models that directly link explicit ecological mechanisms to observed
patterns easily derived from available data. We present a model of intraspecific spatial aggre-
gation that quantitatively relates static spatial patterning to negative density dependence.
Individuals are placed according to the colonization rule consistent with the Maximum En-
tropy Theory of Ecology (METE), and die with probability proportional to their abundance
raised to a power α, a parameter indicating the degree of density dependence. This model
can therefore be interpreted as a hybridization of MaxEnt and mechanism. Our model shows
quantitatively and generally that increasing density dependence randomizes spatial pattern-
ing. α = 1 recovers the strongly aggregated METE distribution that is consistent with many
ecosystems empirically, and as α → 2 our prediction approaches the binomial distribution
consistent with random placement. For 1 < α < 2, our model predicts more aggregation than
random placement but less than METE. We additionally relate our mechanistic parameter α
to the statistical aggregation parameter k in the negative binomial distribution, giving it an
ecological interpretation in the context of density dependence. We use our model to analyze
two contrasting datasets, a 50 ha tropical forest and a 64 m2 serpentine grassland plot. For
each dataset, we infer α for individual species as well as a community α parameter. We
find that α is generally larger in the tightly packed forest than the sparse grassland, and the
degree of density dependence increases at smaller scales. These results are consistent with
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current understanding in both ecosystems, and we infer this underlying density dependence
using only empirical spatial patterns. Our model can easily be applied to other datasets
where spatially explicit data are available.

2.1 Introduction

Spatial patterns in ecology have been studied extensively (e.g. Wiegand and Moloney 2013;
Diggle 2014), and contain useful information about what processes shape ecosystems (Law
et al. 2009; Brown et al. 2011; Münkemüller et al. 2020). Quantitative understanding of these
patterns can therefore be used to infer the importance of various mechanisms, and illuminate
underlying processes (Levin 1992; Rosenzweig 1995; Brown et al. 2016). Additionally, models
of spatial patterns allow us to better predict ecosystem response to natural and anthropogenic
disturbances (Thomas et al. 2004; Newman et al. 2020), are critical in understanding the well
studied species-area relationship (Arrhenius 1921; Plotkin et al. 2000; Drakare et al. 2006;
Harte and Kitzes 2015), and have applications in reserve designs and conservation (Kitzes
and Shirley 2016).

A common approach to quantifying these patterns is the use of various summary statistics
(Wiegand et al. 2013), which have been shown to be able to distinguish different ecological
mechanisms (Brown et al. 2016). Here we take a slightly different approach and directly
model the impact of an important mechanism in population dynamics: intraspecific nega-
tive density dependence. We focus on the effects of this ecological mechanism on spatial
patterning.

More specifically, we consider the effects of intraspecific negative density dependence on
the spatially explicit species-level abundance distribution. This distribution, Π(n|A,A0, n0),
is defined as the probability that if a species has n0 individuals in a plot of area A0, then
it has n individuals in a randomly selected subplot of area A. In this analysis, we will
focus on this distribution in bisected plots where A = A0/2. Studying bisections is well
motivated theoretically as it often leads to simpler expressions which can be easily compared
across models. Here it keeps our model analytically tractable and facilitates comparison to
empirical data. We note limitations to this approach in the Discussion.

One prediction of the function Π(n|n0) comes from the Maximum Entropy Theory of Ecol-
ogy (METE), which successfully and simultaneously predicts many macroecological patterns
(Harte 2011; Harte and Newman 2014) across a wide range of spatial scales, taxa, and habi-
tats (White et al. 2012; Xiao et al. 2015). METE predicts very strong spatial aggregation,
which is consistent with many observed ecosystems, and obtains the functional form of Π(n)
by maximizing entropy while constraining the mean number of individuals in a subplot.
However, the same functional form can be obtained using a colonization rule, which is the
approach we will use in our model.

Colonization rules assign spatial locations to new individuals based on the location of
existing individuals. Chapter 4.1.2 in Harte (2011) shows that using the Laplace rule of
succession as a colonization rule results in the same geometric distribution for Π(n) that
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METE predicts. Because METE agrees well with empirical data in many cases, we will use
this colonization rule in our model. Occasionally, however, we see that the empirical degree
of aggregation is less than the METE prediction (Conlisk et al. 2012; McGlinn et al. 2015).
To study this, Conlisk et al. (2007) added an extra parameter to the relevant colonization
rule that allows Π(n) to vary, but it has no mechanistic interpretation and is used only as a
free fit parameter.

We derive a new model that uses the colonization rule consistent with METE and adds
a density dependent death rule. This means our model can be viewed as a density depen-
dent extension of METE, and in that sense hybridizes MaxEnt and mechanism. Our model
introduces a parameter α which quantifies the degree of intraspecific negative density de-
pendence. This parameter can be fit to empirical spatial data to predict the strength of
underlying density dependence. However, as with all models inferring process from pattern,
there are many underlying mechanisms that lead to similar spatial patterns (Vellend 2016;
Leibold and Chase 2018), and we cannot definitively attribute any pattern to a single process.

More generally, our model predicts a more random spatial arrangement with stronger
negative density dependence and more spatial aggregation with weaker density dependence.
While empirically there is an apparent qualitative relationship between species density and
aggregation (Condit et al. 2000; Bagchi et al. 2011; Comita et al. 2014), our aim here
is to establish a general quantitative statement relating density dependence and spatial
aggregation.

2.2 Methods

In this section, we review the Maximum Entropy Theory of Ecology (METE) and its pre-
diction for the species-level abundance distribution, Π(n). We then contrast this prediction
of strong aggregation to the well known random placement model (Coleman 1981), which
predicts no spatial aggregation. Given that most species are aggregated (He and Gaston
2000; Kitzes 2019), but not all are as aggregated as predicted by METE (Conlisk et al.
2012), the aggregation of most species should fall somewhere between these two predictions
for Π(n).

We then introduce a density dependent death rule to combine with the colonization rule
consistent with METE, and derive the resulting Π(n) distribution. This derivation assumes
a steady state between deaths and new individuals in a single species, but our results should
hold if this assumption is relaxed (see Discussion).

Finally, we discuss the techniques used to compare our predicted distribution to data,
and describe the datasets used in our analysis.

Relevant code for the resulting Π(n) distribution and data analysis is available at https:
//github.com/micbru/density dependence public.

https://github.com/micbru/density_dependence_public
https://github.com/micbru/density_dependence_public
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The Maximum Entropy Theory of Ecology (METE)

In METE, the Π(n) function is given by maximizing the information entropy of the Π(n)
distribution given the following constraint (Harte et al. 2008; Harte 2011, Chapter 7.4):

n0∑
n=0

nΠ(n|A,A0, n0) =
n0A

A0

. (2.1)

This leads to the following distribution

Π(n|A,A0, n0) =
e−λΠn

ZΠ

(2.2)

where ZΠ is a normalization factor, and λΠ is the Lagrange multiplier determined by the
constraint condition.

In the case of a bisection, A = A0/2 and the Π function simplifies to

Π(n|n0) =
1

n0 + 1
, (2.3)

which is independent of n. This means that given n0 individuals, any arrangement of them on
the two sides of a bisected plot or quadrat is just as likely as any other. In other words, this is
equivalent to equal probability for each unique spatial arrangement of unlabeled individuals
(Haegeman et al. 2010).

Ecologically this prediction translates to very strong spatial aggregation, as individuals
are equally as likely to all be on one side of the bisection as to be evenly divided on each
half. This is in agreement with many datasets (Harte et al. 2008; Harte 2011, Chapter 8.3)
but fails in others, where the theory over-predicts aggregation (Conlisk et al. 2007; McGlinn
et al. 2015). This empirical agreement is why we choose the METE distribution as our
starting point.

The prediction from METE is equivalent to the distribution obtained from using the
Laplace rule of succession as a colonization rule (Harte 2011, Chapter 4.1.2). This rule
states that in a colonization process, the probability of placing an individual on one side of
the bisected area is roughly proportional to the fraction of individuals already there. This
“rich get richer” effect results in strong spatial aggregation. The probability for placing an
individual on the left half of a bisected plot with nL individuals on the left and nR individuals
on the right is

pL =
nL + 1

nL + nR + 2
.

To make our notation consistent with that above, let the number on the left be n and
the total number to be n0. The probabilities of a new individual arriving on the left or on
the right are then:

pL(n|n0) =
n+ 1

n0 + 2
,

pR(n|n0) =
n0 − n+ 1

n0 + 2
.

(2.4)
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If we place n0 individuals using this rule, the resulting probability distribution is given by
Eq. 2.3.

Random placement

Another model for spatial ecology, perhaps the simplest, is the random placement model
(Coleman 1981). Instead of the placement rules in Eq. 2.4, each individual is placed ran-
domly. In a bisected plot this means each individual has a 50 percent chance of being placed
on either side, pL = pR = 0.5. Placing n0 individuals this way gives the binomial distribution

ΠRP(n|n0) =

(
n0

n

)(
1

2

)n0

(2.5)

which, if n0 is large, means we are very likely to have roughly half the individuals on each
side. This is equivalent to having no spatial aggregation; there is no preference for any new
individual to stay close to any previous individual as each placement is a random coin flip.

Deriving the Π(n) distribution with a density dependent death
rule

We now introduce an intraspecific density dependent death rule in addition to the METE
colonization rule in Eq. 2.4. To allow for general density dependence, we set the death rate
proportional to nα. The parameter α determines the strength of the density dependence,
and can be inferred from the data. Density dependence may result from resource limitation,
or some other mechanism (e.g. the Janzen-Connell effect (Janzen 1970; Connell 1971)).

In the case of a bisected plot, each death must be on the left or right. Thus, given that
we have one death in a species, the probabilities that the death is on the left, pD,L, or on
the right, pD,R, are

pD,L(n|n0) =
nα

nα + (n0 − n)α

pD,R(n|n0) =
(n0 − n)α

nα + (n0 − n)α
.

(2.6)

Now that we have the colonization and death rules (Eqs. 2.4 and 2.6), we can derive the
general Πα(n|n0) for bisections. We will assume the population size of the species is constant
and step the model forward over time, where at each step in the model we will have one
death followed by the placement of one new individual within a species. Each placement
can be interpreted ecologically as a birth or as the immigration of an individual from the
same species. We can then solve for the resulting steady state distribution where we reach
an equilibrium in the spatial pattern.

There are several approaches for deriving the steady state solution for such a system.
Here, we equate the rates leaving and entering any individual state Πα(n|n0). We take the
probability that we start with n individuals on the left, one on the right dies and then one is
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placed on the left resulting in n+1 individuals on the left, and equate that to the probability
that we have n+ 1 individuals on the left, one on the left dies and then one is placed on the
right resulting in n individuals on the left. We could have equivalently done the same thing
with n and n− 1. Equating these rates using the probabilities in Eq. 2.4 and Eq. 2.6 leads
to a recursion relation. Solving it gives a general stationary solution for Πα with a given n0

and α:

Πα(n|n0) =
nα + (n0 − n)α

C(n0, α)nα0

(
n0

n

)α−1

(2.7)

where C(n0, α) is the overall normalization that does not have a closed analytic form. In the
case that n0(α− 1) is large, an approximate form for the normalization is

C =
2n0(α−1)πn0√

α− 1

(
1

2πn0

)α/2
. (2.8)

See Supplementary Material B.1 for the details of this derivation.
If α = 2, we can solve for the normalization explicitly to get

Πα=2(n|n0) =
n2 + (n0 − n)2

2n0−1n0(n0 + 1)

(
n0

n

)
, (2.9)

and if α = 1, we recover the METE prediction Πα=1(n|n0) = 1
n0+1

.

Comparing to data

Inferring the degree of intraspecific density dependence in empirical data requires obtaining
a value of α consistent with the data. Bisection predictions can be compared to data by rank
ordering the fraction of individuals present in one half of the plot for each species (e.g. Harte
(2011)). This method, however, ignores species abundance and does not account for the
likelihood of individual data points. This can lead to incorrect conclusions about which
model is preferred (see Supplementary Material B.2).

We instead find the maximum likelihood α given the data, where we minimize the sum
of the negative logs of the probabilities given data points ni and n0,i, where i labels each
quadrat for a given species. Inferring α using this method gives us the values that are the
most consistent with the data, even if they may not look like they agree with the rank
ordered fractions (Supplementary Material Fig. B.1 and Table B.1).

The statistical error in estimating α this way goes as 1/
√
p where p is the sample size

(see Supplementary Material B.3). We can also get some idea of error from the maximum
likelihood estimate itself by considering the width of the likelihood distribution, however for
Fig. 2.3 and 2.4, we do not include these error bars as they are smaller than the data points.

For determining α for individual species, we will require multiple bisections and the
sample size p will be roughly the number of cell pairings, p ≈ 2b−1, where b is the number of
bisections. There will be fewer data points in practice as some cell pairings will be empty.
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We can also define a community α, assuming each species follows the same death rule
with identical α. In this case, we will have a larger sample size. For a single bisection, we
will have a sample size p equal to the number of species, p = S0. For multiple bisections
where we consider the species on aggregate, the sample size will be roughly equal to the
number of species multiplied by the number of cells, p ≈ S02b−1. Again, the equality is not
exact as not all cell pairings beyond the first bisection will have all of the species present at
the single bisection level.

In both the case of the species-level and community-level α, we will bisect single plots
more than once (into quadrants, then into 8 cells, etc.) when comparing the model to data.
In our analysis, we begin by bisecting the plot in half in one direction, then bisecting each
of the resulting plots in the opposite direction. We alternate this bisection pattern until we
have 2b cells. We can then combine adjacent cells (either left/right or up/down) as if they
were single plots with abundance n0,i, where i will index the plots and range from 1 to 2b−1.
We then choose the abundance on one half to be ni. This method gives us 2b−1 points.

Additionally, in this analysis we will only consider species that could have at least one
individual per bisection (n0 > 2b−1). The smallest scale we consider in our datasets is b = 8,
so when we bisect the plot more than once we will only consider species with more than
128 individuals. This restriction ensures that we do not have too many plots with only a
few individuals present. If n0 is very small, Πα(n) is not particularly sensitive to α and it
becomes very difficult to reliably infer α from the data. For n0 ≤ 2, Πα(n) does not depend
on α.

Data used

We will compare our results to two contrasting datasets. First, we will use data from a
sparse Californian serpentine grassland site (Green et al. 2003; Green et al. 2019) at the
McLaughlin University of California Natural Reserve censused in 1998. This is a 64 m2 plot
divided into 256 cells with 24 species and 37 182 individuals. There are 10 species with
abundance greater than 128 individuals that constitute 36 783 individuals.

Second, we will use data from Barro Colorado Island (BCI) in Panama (Condit 1998;
Hubbell et al. 1999; Hubbell et al. 2005; Condit et al. 2019), a 50 ha plot in a moist tropical
forest. We will work with the 2005 census and consider plants with a diameter at breast
height (dbh) greater than 10 cm. This dataset has 229 species and 20 852 individuals, and
40 species with abundance greater than 128 individuals that constitute 15 960 individuals.

2.3 Results

Comparison to METE and random placement

Figure 2.1 compares the bisection predictions for Π(n) from METE, random placement,
and our density dependent model for various α, at n0 = 10 and 50. In general, our model
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Figure 2.1: Comparison of the bisection probability distributions Π(n) from METE, random
placement (RP), and our density dependent model with varying α at (A) n0 = 10 and
(B) n0 = 50. At α = 1, our model corresponds exactly to METE. At larger n0, α → 2
approaches the random placement distribution. Our model varies continuously between
METE and random placement for 1 < α < 2.

predicts that increasing negative density dependence (larger α) leads to more random spatial
patterning, and less density dependence (smaller α) leads to stronger aggregation.

We can relate our distribution directly to both the METE and random placement distri-
butions for different values of α. α = 1 corresponds exactly to the METE solution, which
makes sense given that the placement and death rules are both linear in n. As α → 2,
our distribution approaches the random placement prediction if n0 is large enough (Supple-
mentary Material B.4 shows this result analytically). For 1 < α < 2, we vary continuously
between METE and random placement. We can make the distribution even more spatially
aggregated than METE with α < 1 and even less than random placement (overdispersed)
with α > 2.

We can also relate this distribution to the commonly used conditional negative binomial
distribution (Bliss and Fisher 1953; He and Gaston 2000; He and Gaston 2003; Green and
Plotkin 2007) in the limit of large n0, assuming that matching the peak of the distributions
is a good approximation for the entire distribution. In that limit, the aggregation parameter
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Figure 2.2: Boxplots for α among the species at different scales at both sites, where (A)
shows 10 species from the serpentine dataset, and (B) shows 40 species from the BCI dataset.
In both cases at smaller scales α is larger, and we see a relatively large spread in α across
species at the same scale. The boxplots show boxes from quartile 1 (Q1) to quartile 3 (Q3)
with a line at the median. The whiskers extend to 1.5×(Q3-Q1). The remaining points are
plotted as individual circles.

k is approximately related to the density dependent parameter α by

k ≈ n0

2

(
α− 1

2− α

)
+ 1. (2.10)

Note that this approximation holds for 1 ≤ α ≤ 2, which should be the ecologically relevant
range for most species as most species will be more aggregated than random placement, and
less aggregated than METE. This also allows the aggregation parameter k to be interpreted
mechanistically as the degree of density dependence, in that higher k corresponds to higher
α and greater density dependence. See Supplementary Material B.5 for the derivation.

Individual species

Since the Π function is defined on the species level, we can consider each species separately
and find the maximum likelihood α for each. To do this we have to go beyond the first
bisection to get multiple data points for the same species at smaller scales.
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For the serpentine data, we exclude Eriogonum nudum from the following figures as an
outlier (see Discussion). This leaves 9 species with abundance greater than 128 individuals.

Figure 2.2 shows the distribution of α values among the species at each scale, for both
the serpentine and BCI data. The median α increases at smaller scales for both datasets,
and is higher overall at the BCI dataset, even though the absolute scale is much larger. The
spread in α is quite large, but this variation is expected considering the small number of
data points, especially for rarer species. Most species have an α between 1 and 2, which is
somewhere between the aggregation predicted by METE and random placement.

Community α

We can instead treat α as a community parameter, using each species as a single data point to
recover a community α. Figure 2.3 shows the direct comparison between our model prediction
and the serpentine and BCI datasets at the single bisection level. Each data point is the
observed fraction of individuals in one half of the plot versus the species abundance. The
curves in this figure show the 95% contour intervals for the Π(n|n0) distributions predicted by
METE, random placement, and our density dependent model with the maximum likelihood
α value. We can see that with increasing n0, the random placement model narrows quickly
to having most of its probability weight around 0.5, whereas the METE contours are very
wide.

At the single bisection level, the maximum likelihood result for the serpentine dataset is
nearly indistinguishable from α = 1, so the confidence interval curves on the plot for METE
and the density dependent model overlap for most n0. For the BCI data, the maximum
likelihood value is α = 1.12, slightly larger than 1. In this case, where 1 < α < 2, we
see the width of the predicted distribution is between METE and random placement. The
likelihoods for each of the models are shown in Table 2.1.

Serpentine BCI
Model Log-likelihood Model Log-likelihood
METE -114.8 METE -729

RP -5188.6 RP -963
α = 1.0003 -114.6 α = 1.12 -660

Table 2.1: Log-likelihood values for the three different models, with α as a community
parameter. We can compare our model to METE using the deviance in log-likelihood and
obtain a p-value. The deviance is defined as twice the difference in log-likelihood. For the
serpentine dataset, the deviance is 0.6 which corresponds to a p-value of 0.45. For the BCI
dataset, the deviance is 138 which corresponds to a p-value of < 10−30.
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A
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Figure 2.3: 95% contour intervals for the predicted bisection probability distributions Π(n|n0)
from METE, random placement, and our density dependent model with maximum likelihood
community α, and bisection data for each species in (A) the serpentine dataset, and (B) the
BCI dataset. The data is plotted for each species, where the y-axis is the fraction in one half
plot and the x-axis is the total species abundance in that plot. The contours are calculated
at each n0. For our density dependent model with a community α, α = 1.0003 maximizes
the log-likelihood for the serpentine dataset, and α = 1.12 maximizes log-likelihood for BCI
dataset.
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Figure 2.4: Community α scaling with area for species with abundance n0 > 128. The
density dependence again increases at smaller scales and the trend is similar to the single
species analysis. The serpentine dataset has 36 783 individuals and the BCI dataset has 15
960 individuals.

Scale dependence in community α

Going beyond the first bisection allows us to see how α varies depending on the scale of
our plot. Figure 2.4 shows how α scales with fractional area for both the serpentine and
BCI plots. Density dependence increases at smaller scales in both datasets. The trend in
community α across scales is similar to the median α in the single species analysis, though
the median α is in general slightly larger than the community α. Note that here we restrict
our analysis to species with n0 > 128 for all scales so that we are including the same species
across scales.

2.4 Discussion

Our model establishes a quantitative relationship between the spatially explicit distribution
Π(n) and the parameter α, which measures the strength of negative density dependence.
This can be seen in Fig. 2.1, where the Πα(n) distribution flattens with smaller α, indicating
greater aggregation, and broadens as α increases. Importantly, the parameter α has a direct
interpretation as quantifying the strength of negative density dependence. Further, our
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relationship in Eq. 2.10 allows us to interpret the parameter k in the negative binomial
distribution in the same intuitive way.

Comparing species and community α

In our analysis, we consider α both as a separate parameter for each species (as in Fig. 2.2),
and as a community parameter where each species has the same α (as in Fig. 2.3 and
Fig. 2.4). The community α is harder to interpret ecologically, but we include it to allow for
comparisons with models with community level aggregation parameters (e.g. Conlisk et al.
(2007) and Volkov et al. (2005)). To analyze and compare the accuracy of the species-level α
and the community α, we considered the Akaike Information Criterion (AIC) in both cases
across scales (Table 2.2). This was calculated for single species as the negative log-likelihood
summed over each species with the number of parameters equal to the number of species,
whereas for the community α there was only a single α parameter. For both serpentine and
BCI at all scales considered, we find that the AIC is lower with species-level α compared to a
single community α, despite the inclusion of 9 more parameters in the case of the serpentine
data and 228 more parameters in the case of the BCI data. We therefore conclude that a
separate α for each species describes the data better than a single community α.

Scale (A/A0) 2−8 2−7 2−6 2−5 2−4 2−3

Serpentine Species α, AIC 474 769 1294 1931 3208 4881
Community α, AIC 485 777 1321 2079 3420 5182

BCI Species α, AIC 10133 7541 5079 3409 2109 1271
Community α, AIC 10207 7621 5148 3522 2171 1307

Table 2.2: Comparison of the Akaike Information Criterion (AIC) for α defined at the
individual species level and at the community level in both the serpentine and BCI data
and across scales. At the individuals species level, the number of parameters is equal to the
number of species, whereas at the community level there is only a single parameter. The
AIC is lower at the species level in all cases.

Comparing serpentine and BCI

We use our model to directly compare our results between our two contrasting datasets,
serpentine and BCI. Because the serpentine site was very sparse, whereas the BCI forest is
tightly packed, we expect higher α values and greater density dependence at BCI than at
the serpentine site. This is consistent with our inferred values of α at both the individual
species level and at the community level.

Another difference between the serpentine and BCI sites is how well other macroecolog-
ical distributions agree with METE. METE well describes other patterns at the serpentine
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site, and does less well at explaining the BCI data. Given that α = 1 corresponds to the
METE prediction for Π(n), we might expect that ecosystems well described by other METE
predictions will have α ≈ 1, as these systems will generally be consistent with METE. This
is consistent with our analysis here as the median and community αs for the serpentine data
are approximately 1 at the largest scale, whereas at BCI the median and community αs are
larger than 1.

Because METE predictions seem to hold for relatively static and undisturbed ecosystems
(Newman et al. 2020), this suggests interpreting an increase in density dependence away
from METE (α > 1) as a kind of ecological disturbance. A biological example of strong
density dependent mortality as a result of disturbance could be the self-thinning of trees
in forest recovery from wildfire, such as bishop pines in coastal California (Harvey et al.
2014). This interpretation is in line with the recently proposed DynaMETE theory (Harte
et al. 2021), which models specific mechanistic disturbances away from METE to predict
macroecological patterns.

Scaling

Our scaling results in both Figs. 2.2 and. 2.4 make ecological sense. We expect that at smaller
scales, the density dependence would be larger as individuals compete more for resources at
that scale. At large scales, we expect α to be close to 1 as the individuals do not compete
over large distances. This means that the spatial distributions look more aggregated on
large scales than on small scales as the individuals within species broadly group together,
but repel each other at small scales. We see this trend at the individual level in Fig. 2.2 as
the medians increase at smaller scales, and for the community α in Fig. 2.4.

Our repeated bisection analysis also indicates at which scale density dependence becomes
important. This will appear as a shoulder in the data where α moves away from ≈ 1. We
could do this for individual species by tracing α and looking for a shoulder in Fig. 2.2, but
here we will look at the community results in order to compare to Conlisk et al. (2007)
and Volkov et al. (2005). Looking at Fig. 2.4, we find that the shoulder in absolute scale
corresponds to < 0.5m2 for the serpentine plot and < 1.6 ha for the BCI dataset. This again
makes sense given that the serpentine grassland is much more sparse than the BCI forest.

We first compare to Conlisk et al. (2007), who introduce a fit parameter φ that modifies
the colonization rule Eq. 2.4 and allows the Π distribution to vary continuously between
random placement and METE. They compare their estimated community φ parameter to
both the serpentine and BCI data in their Fig. 6. For the serpentine data, they find that at
scales larger than around 0.5 m2 (the 8th bisection), φ approaches 0.5, which corresponds to
the METE prediction. At scales around 0.5 m2 or smaller, φ ≈ 0.25, where φ = 0 corresponds
to random placement. This is consistent with our scaling results in Fig. 2.4. For BCI, they
find that at all but the largest scales φ ≈ 0.25. Our result that α is larger at BCI than at the
serpentine site across scales, which corresponds to less spatial aggregation, is not consistent
with their findings. We believe this is due to a difference in how the data are analyzed.
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In Conlisk et al. (2007), the species abundance n0 is measured at the scale of the full plot,
and the bisection prediction is recursively iterated to smaller scales (see their Theorem 2).
Here, we treat each bisection at smaller scales separately. For example, after dividing the
plot into 128 quadrats (8 bisections), we look at the species abundance in each individual
quadrat without considering n0 at the scale of the entire plot. In principle, we could conduct
our analysis in the same way and anchor at the largest scale, though this would be difficult
analytically, and our approach makes use of the empirical data available at each scale rather
than only at the largest scale. Further, the method in Conlisk et al. (2007) depends implicitly
on the chosen size of the overall study plot. This is not true in our analysis as a bisection
studied at any scale does not depend on information at any other scale. In practice, this
means that in our analysis there is no difference between studying species in a 1 m2 subplot
embedded in a 100 m2 plot versus studying the same 1 m2 plot independently. This difference
in how n0 is treated across scales could lead to different predictions for α (or φ).

We can further compare our results to Conlisk et al. (2007) by relating our α to φ,
using their relationship between φ and k and our Eq. 2.10. This relationship depends on
n0, which may affect comparisons between these parameters across scales. Finally, an addi-
tional difference between our analyses is our different cutoff of n0 > 128, and for BCI, dbh
> 100mm, however this does not explain all of the difference between our results. Supple-
mentary Material B.6 derives an approximate relationship between α and φ, Supplementary
Material Fig. B.4 uses that relationship to transform our Fig. 2.4 to a relationship in φ, and
Supplementary Material Fig. B.5 shows how our result changes if we remove our abundance
threshold. A takeaway from this comparison is that these scaling results depend at least in
part on the choice of model and the data analysis methods.

Volkov et al. (2005) showed that intraspecfic and symmetric density dependence can
explain different shapes for the species-abundance distribution. Their added parameter c
is interpreted as a measure of the strength of symmetric density dependence, where c = 0
corresponds to no density dependence. This parameter is therefore similar to our community
α in that all species have the same degree of negative density dependence. They then show
at what density these effects become important in their Fig. 3. For BCI, they find c = 1.80,
and the density dependent effects are visible for species with n > 27. To convert this to
area, we need to look at scales of the total area divided by the abundance where density
dependent effects become visible. Thus, this corresponds to density dependence entering at
scales smaller than a fractional area of 1/27 = 1/24.75, which is close to the same scale where
we see α increase away from 1 in Fig. 2.4.

Across these results, we interpret increasing α at small scale as an increase in density
dependence. However, at smaller spatial scales where there are fewer individuals it becomes
more difficult to distinguish between different patterns of aggregation. In particular, when
n0A/A0 << 1, it is difficult to determine if the empirical pattern is due to noise or a specific
clustering process (Harte 2011, pg 63). This sampling effect should be small here, as even
at the smallest scale the median n0A/A0 is greater than 1 for both datasets (Supplementary
Material B.7).
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Trends for individual species at BCI

At the individual species level at BCI, we find overall that most species at all scales are more
aggregated than random (α < 2 in Fig. 2.2). This is consistent with results from Condit
et al. (2000). We also find that species tend to be more aggregated at large scales than at
small scales (median α > 1 at small scales and α ≈ 1 at large scales in Fig. 2.2), which
makes sense as we expect some species to only be present in certain areas of the plot.

More broadly, we might expect to find trends in inferred density dependence with species
abundance or size. More abundant species may be competing more for the same resources,
or larger species may compete over larger distances. For example, Condit et al. (2000) find
that both rarer species and smaller individuals tend to be more aggregated, however at a
much smaller scale (within a 10 m radius). We looked for trends in abundance, mean dbh,
and total energy for each species at BCI with n0 > 128 across all scales considered (as in
Fig. 2.2).

In terms of abundance (Supplementary Material Fig. B.7 and Table B.2), we do not find
any species with high α and high abundance (no highly density dependent high abundance
species), and we find that the variance in α decreases with abundance. We also find that
at all scales except the two smallest, α decreases slightly with increasing log of abundance.
Thus, we find that at larger scales, more abundant species are slightly more aggregated than
less abundant species.

We find no evidence of a trend with species’ mean dbh (Supplementary Material Fig. B.8
and Table B.3), though it is possible this trend is obscured by variance in individual size
within a species, or that the range of mean dbh we considered (about 100 − 500 mm) is
too small to see its effect. Finally, we looked for an overall energy effect. Considering that
the most abundant species tend to be smaller, it may be that density dependence depends
on the total metabolic rate of a species. Plotting this relationship (Supplementary Material
Fig. B.9 and Table B.4) again does not reveal a significant scaling relationship at all scales
except one (log2(A/A0) = −6).

A plausible mechanism for the observed density dependence at BCI is the Janzen-Connell
effect (Janzen 1970; Connell 1971), whereby areas near parent trees are inhospitable for
offspring, resulting in density dependence. Various studies (Harms et al. 2000; Carson et al.
2008; Comita et al. 2014) have observed this effect at BCI, which is consistent with our
result that α > 1 for most species at smaller scales there.

See Supplementary Material B.8 for more information on these trends.

Notable species

For individual species at the BCI dataset, Gustavia superba stood out with an average α
of 1.001 across scales. This species is largely limited to 2 hectares of young secondary
forest along the edge of the plot, (J. Wright, personal communication, 2019) making it look
especially aggregated and resulting in a maximum likelihood α close to 1.
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In the serpentine dataset, we excluded Eriogonum nudum as an outlier for part of our
analysis. The maximum likelihood α was > 6 at the smallest scale and the maximum
itself was very shallow. This species has a large canopy compared to the other grassland
plants, and tends to be found far from other individuals. It makes sense that it would be
overdispersed with α > 2.

Implications for the species-area relationship

In METE, the spatial distribution is used together with the species-abundance distribution
to predict the species-area relationship (Harte 2011, Chapter 7.5), and to upscale predictions
of biodiversity (Harte and Kitzes 2015). These predictions should hold in ecosystems like
the serpentine grassland analyzed here, as the observed species aggregation agrees with
the METE prediction. However, different levels of aggregation will impact the species-area
relationship. The impact of aggregation is discussed in Wilber et al. (2015). They find that
increasing randomization decreases the predicted slope of the species-area relationship at
the same scale, and therefore upscaling METE will overpredict species richness. In addition,
they analyze the effect of variation in aggregation among species, which slightly decreases
the slope at small scales and increases the slope at larger scales. This results in a species-
area relationship that more closely resembles a power law. They also consider the effect
of decreasing aggregation across scale, which results in a species-area relationship that no
longer displays scale collapse. We observe both of these effects here.

Limitations and assumptions

As with all models inferring process from pattern, we can never be sure the pattern we
observe can be completely attributed to the process we model. There are many different
underlying processes that can lead to aggregation, including environmental filtering and dis-
persal limitation (Vellend 2016; Leibold and Chase 2018), and it is not possible for any
one model to include every effect. Our empirical results here are consistent with our inter-
pretation of α as a parameter that relates to the strength of intraspecific negative density
dependence, however there are certainly other important mechanisms in these datasets. Re-
gardless of our ability to infer process from pattern, our theoretical result that increasing
density dependence increases spatial randomization holds.

Our model is also limited in that it only considers bisections, and it would be useful to
extend it to be more general. There are many spatial arrangements that can not be accu-
rately captured by dividing plots into bisection, and in general a single functional summary
statistic does not completely describe the observed spatial pattern (Wiegand et al. 2013).
For example, if we divide our plot into an m by m grid, and have one individual per cell,
we would see exactly 0.5 as the fraction for each bisection. This result would be consistent
with random placement with a large number of individuals, which does not well describe
this exceptionally uniform arrangement. There could also be different degrees of spatial ag-
gregation within a cell that we will not accurately capture with a bisection. Despite these
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limitations, bisections are useful for understanding commonly observed macroscopic spatial
patterns.

A conceptually simple extension to our model is to divide plots into quadrisections rather
than bisections. The colonization and death rules then have three unknowns rather than one
(the number of individuals in each quadrant, where the fourth is determined by constraining
the sum to be n0). This makes it hard to solve analytically, however we can simulate the
birth-death process until it reaches steady state. We find no significant difference in our
simulation compared to our prediction from two bisections, and find that a community
α = 1.12 is still consistent with the BCI data.

Because we consider the steady state solution in our model, we are assuming that the
density dependence time scale is longer than the time scale of individual births or deaths.
That is, α must not change too rapidly in time. This assumption is justified for many systems
roughly in steady state with their environment and not undergoing rapid change (Newman
et al. 2020).

Solving for the steady state solution also assumes that births and deaths are in balance.
We assume here that there is a single death followed by a placement, however simulating
two deaths followed by two placements gives a probability distribution consistent with our
analytic prediction. We expect our result to hold with other numbers of deaths and place-
ments. Assuming that births and deaths are in balance also implicitly assumes some amount
of negative density dependence, and here α provides a quantitative measure of the degree of
density dependence.

Another assumption in our model is the choice of colonization rule itself, though if we had
chosen a different colonization rule many of our conclusions would remain the same. We use
the colonization rule consistent with METE because of its good empirical agreement (Harte
2011, Chapter 8.3). This allows us to interpret the α = 1 case as consistent with METE.
This is useful as METE can be thought of as a null theory that holds in ecosystems that
are undisturbed and relatively static (White et al. 2012; Xiao et al. 2015; Harte et al. 2017;
Newman et al. 2020), and α 6= 1 can be thought of as a density dependent correction, away
from the MaxEnt distribution. In this sense, this model hybridizes MaxEnt and mechanism.

Instead, as an example, we could have chosen the colonization rule resulting in the random
placement distribution. For a bisection this rule is just pL = pR = 0.5. In this case, α = 1
would recover the binomial distribution, which we know does not well describe most spatial
data (He and Gaston 2000; Condit et al. 2000), and so we cannot interpret α 6= 1 as a density
dependent correction. As another example, if we had chosen the more general colonization
rule in (Conlisk et al. 2007) we would have two parameters to tune, making it difficulty to
differentiate between colonization and death. In ecosystems where we suspect a different
colonization rule may be in play, we could modify our theory appropriately. In any of these
cases, our general results would remain largely unchanged.
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Future work

One advantage of the bisection approach is that it can make predictions about inter-quadrat
correlations. McGlinn et al. (2015) examined these correlations and compared empirical
distance-decay relationships with the spatial predictions of METE (α = 1 in this model).
They found that the predicted distance-decay was much stronger than observed. We would
expect the predicted distance-decay relationship to be weaker with α > 1 in our model.
Conlisk et al. (2007) note that φ > 0 in their model produces more realistic looking distance-
decay than random placement. Together, this means that with 1 < α < 2 our model
should predict a more realistic shape for the distance-decay relationship compared to random
placement, but with less steep of a slope than predicted by METE. However, Conlisk et al.
(2007) also note that the analysis of these inter-quadrat correlations makes use of distance
between cell pairs rather than physical distance, which limits the analysis (though note
Ostling et al. (2004) provides a set of user rules to reduce this effect). This issue is also
present in our model. Future comparisons to empirical distance-decay relationships could
provide another method of estimating α and testing this framework.

Another advantage of our approach is that it only requires static spatial data. However,
analyzing a single dataset over time could provide an interesting test of our interpretation
of α as a measure of density dependence. This would be particularly appropriate with data
where strong density dependent mortality is known to occur, for example a self-thinning
forest recovering from wildfire (Harvey et al. 2014; Newman et al. 2020).

Finally, while our analysis here compares two contrasting datasets, future work could
analyze more ecosystems to look for effects of habitat type, species richness, or average
density.

Conclusion

Our model robustly predicts that increased intraspecific negative density dependence leads
to more random spatial patterning, and establishes a quantitative relationship between the
degree of density dependence described by the parameter α and spatial patterning described
by the metric Π(n). We predict that this result is general across ecosystems and taxonomic
groups. We find that at all but the smallest scales, the serpentine grassland site is consistent
with the absence of a density dependent correction and has the strong spatial aggregation
predicted by METE. This is true for both the median individual species and at the commu-
nity level. At the tropical forest site, our results indicate that negative density dependence
is important: the median species α and the community α are both greater than 1 at even
the largest scales. Both ecosystems show scaling of α consistent with its interpretation as
the strength of negative density dependence. Median species α and community α are larger
at smaller scales, and increase away from 1 at scales consistent with other analyses. Overall,
our analysis of α is consistent with the interpretation of density dependence at both sites.
Because this model uses only static spatial patterning, it can be applied in any ecosystem
with spatially explicit data.
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Chapter 3

Implementing the iteration scheme for
DynaMETE, a dynamic extension of
the Maximum Entropy Theory of
Ecology

Abstract

Macroecological theory has largely focused on static large scale patterns, and there is not
yet a theoretical framework for predicting how these patterns change over time. The Maxi-
mum Entropy Theory of Ecology (METE) predicts the shape of macroecological patterns in
relatively static ecosystems by imposing constraints using state variables and then inferring
distributions using MaxEnt. Its predictions have largely been successful in ecosystems where
the state variables are relatively static, but have failed in disturbed ecosystems where the
state variables are changing rapidly on ecological time scales. We here present a theory
called DynaMETE, which extends METE to predict time trajectories of state variables and
macroecological patterns. The theory hybridizes MaxEnt with underlying biological mecha-
nism to determine the effects of disturbance. We explore the iterative scheme for this theory
and develop a semi-analytic approach to iteration we call λ dynamics. We also present code
for numerical iteration of the theory. We test the iteration scheme and find that it is not
stable against all perturbations. Finally, we discuss how the theory could be altered to
increase stability and alternative iteration schemes. We hope that further development of
DynaMETE will improve its predictive ability, and allow it to be connected more directly
to data.
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3.1 Introduction

Macroecology seeks to understand the shape and origin of patterns in the abundance, ener-
getics, and spatial distributions of individuals and species (Brown 1995; Rosenzweig 1995;
Gaston and Blackburn 2000). However, to this point, macroecological theory has largely fo-
cused on large scale patterns observed at a single time point, and ignored how these patterns
change over time (Fisher et al. 2010). There are some exceptions (e.g. Hill and Hamer 1998;
Dornelas 2010; Turner 2010; Newman 2019), but there is no theory that provides a larger
theoretical framework for predicting how macroecological patterns change in ecosystems out
of steady state.

While theory has largely not advanced past static predictions, there is increasing empirical
evidence that macroecological patterns are not static (Kempton and Taylor 1974; Carey et
al. 2006; Harte 2011; Supp et al. 2012; Rominger et al. 2016; Newman et al. 2020; Franzman
et al. 2021). The patterns observed in these studies across largely different ecosystems
and with different study organisms indicate that macroecological patterns do change over
time, and that they appear to be different between disturbed ecosystems and those that are
roughly in steady state. Additionally, the way that these patterns change seem to depend
on how the site is disturbed. For example, the slope of the species-area relationship remains
relatively constant with scale in the bishop pine forest recovering from wildfire studied by
Newman et al. (2020), but decreases sharply with scale in the declining alpine meadow
studied by Franzman et al. (2021). The evenness of the species abundance distribution also
changes differently in these two studies, where the disturbed pine forest is less even than the
undisturbed forest while the declining meadow becomes more even over time.

Here I describe DynaMETE (Harte et al. 2021), a theory that attempts to build a broad
theoretical framework for how disturbances change the shape of macroecological patterns
and how they change over time. It is built using a maximum entropy (MaxEnt) frame-
work, which selects the least informative distribution possible given constraints (Jaynes
1957; Jaynes 1982). The MaxEnt form of a distribution is obtained by maximizing the
Shannon information entropy (Shannon and Weaver 1949). The Maximum Entropy Theory
of Ecology (METE) is a static theory based on the MaxEnt framework (Harte 2011; Harte
and Newman 2014), whose predictions have been able to describe macroecological patterns
across diverse habitats and taxa (Harte 2011; White et al. 2012; Xiao et al. 2015).

METE assumes that state variables vary slowly on ecological time scales, and therefore
their instantaneous values are sufficient for describing macroecological patterns. In a dis-
turbance regime, this assumption often no longer holds as the state variables vary rapidly
with time, and so it makes sense that in disturbed ecosystems macroecological patterns can-
not be characterized by state variables alone. This is analogous to thermodynamics, where
the macroscopic state variables of pressure, volume, and temperature can be used to derive
the Boltzmann distribution for molecular kinetic energies using MaxEnt (Jaynes 1982), but
for a gas out of steady state, the values of these state variables are no longer sufficient to
determine this distribution. Note here the difference between steady state and equilibrium.
While ecological systems are unlikely to be in true equilibrium as there will always be birth,
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death, and other dynamical processes, it is possible for them to maintain a steady state over
time if these processes are balanced. In the case of METE, we can reasonably assume that
the ecosystem is in steady state as long as the state variables that characterize the system
change slowly, even though there are many underlying biological processes.

DynaMETE uses METE as a starting point, and additionally includes mechanism to
model disturbance. In steady state, its predictions are the same as METE, but away from
steady state its predictions depend on the disturbance itself. DynaMETE uses the same
state variables as METE, the number of species S, the number of individuals N , and the
total metabolic rate E, but additionally adds the time derivatives of these state variables
as constraints. These derivatives are related to underlying mechanism through transition
functions that characterize the ecosystem. Because the constraints themselves are now time
dependent, we can iterate DynaMETE forward in time by updating constraints and then
redoing the MaxEnt procedure.

In this chapter, I first review the formulation of DynaMETE, and then present the pro-
posed iteration scheme along with accompanying code run simulations of the theory. I then
discuss ongoing work exploring alternative forms for the transition functions, and alternative
iteration schemes.

3.2 The structure of DynaMETE

The core of DynaMETE, as with METE, is the structure function R(n, ε). This distribution
is a function of n, the abundance of a single species, and ε, the metabolic rate of an individual.
Thus Rdε is the probability that a species picked at random from the species pool has
abundance n, and that an individual picked at random from that species has a metabolic
rate in the interval (ε, ε+ dε). Note that n is therefore discrete as it represents abundance,
and ε is continuous. We normalize the metabolic rate such that the smallest metabolic rate
is ε = 1. The structure function is normalized so that

∑N
n=1

∫ E
ε=1

dε R(n, ε) = 1.
The structure function R(n, ε) describes how individuals are distributed amongst species,

and how metabolism is distributed over individuals. From an information theoretic per-
spective, this makes sense given our fixed set of state variables, N , E, and S. From this
perspective, we want to know the least biased way of distributing individuals given these
constraints. From an ecological perspective, these variables also make sense as the total
energy available in an ecosystem is fixed, at least to some extent, and the number of in-
dividuals is measurable. The microscopic variables are also well motivated ecologically, in
that the number of individuals in a given species is of great interest in macroecology, and
the individual metabolic rate is related to the body size of individuals. The relationship
between the state variables and microscopic variables has an analogy in thermodynamics.
As an example, in an ideal gas the state variables are the pressure, volume, number of moles,
and temperature. Given that, using MaxEnt (Jaynes 1957; Jaynes 1982), we can predict the
underlying Boltzmann energy distribution, where the microscopic variable is the energy of
an individual particle in the gas.
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In METE, the distribution R depends on the state variables S, N , and E, but as
mentioned in the introduction DynaMETE has additional constraints corresponding to the
derivatives of the state variables. To simplify the notation, we write Xi to indicate state
variables with X = (N,E, S). The full set of constraints is then:

N

S
=

N∑
n=1

∫ E

ε=1

dε nR(n, ε|X, dX/dt) (3.1)

E

S
=

N∑
n=1

∫ E

ε=1

dε nεR(n, ε|X, dX/dt) (3.2)

1

S

dN

dt
=

N∑
n=1

∫ E

ε=1

dε f(n, ε,X)R(n, ε|X, dX/dt) (3.3)

1

S

dE

dt
=

N∑
n=1

∫ E

ε=1

dε h(n, ε,X)R(n, ε|X, dX/dt) (3.4)

dS

dt
=

N∑
n=1

∫ E

ε=1

dε q(n, ε,X)R(n, ε|X, dX/dt). (3.5)

The functions f, h and q we call transition functions. These functions describe the mech-
anisms at the micro scale that are relevant for the change in derivative of the corresponding
macroscopic state variable. In the initial formulation of the theory, f includes parameters for
birth and death rate as well as immigration, h includes terms for the growth of an individual
(ontogenetic growth) as well as death and immigration, and q includes terms for immigration
and extinction. We emphasize that the transition functions included in Harte et al. 2021
are just one possible form for these functions, and other underlying mechanisms could be
included. These transition functions are where the theory is hybridized between MaxEnt
and mechanism: the parameters included here characterize the processes happening at the
scale of individuals or species, and by summing over the structure function we see their effect
in terms of changing the state variables.

Again to simplify notation, we rewrite the constraints as

Fµ =
N∑
n=1

∫ E

ε=1

dε fµ(n, ε,X)R(n, ε|X, dX/dt), (3.6)

where Fµ are the constraints in terms of the state variables and their derivatives, and the fµ
are the corresponding transition functions. The index µ here runs from 1 to 5. Throughout
this text, we will use Greek indices (ie. µ, ν) when the index runs from 1 to 5, as is the case
with the constraints and transition functions (Fµ and fµ), and Latin indices (ie. i, j) when
the index runs from 1 to 3, as is the case with the state variables and their derivatives (Xi

and dXi/dt). Note that fµ includes n and nε from standard METE, and that these can also
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Figure 3.1: The structure of DynaMETE. The first panel describes an initial disturbance
away from the standard METE solution, assuming that R(t < 0) is the standard METE R.
The central panel then describes the iteration process to take R(t) to R(t+ 1). Finally, the
third panel shows how to sum over R to obtain predictions for macroecological patterns at
any time t.

be viewed as transition functions. We can simplify this even further by writing Fµ =
∑
fµR

where the dependencies are implicit and the sum represents the sum and integral.
The information entropy is then defined as H = −

∑
n

∫
ε
R log(R). The solution to this

set of equations obtained by applying MaxEnt is

R =
e−

∑
µ fµλµ

Z
(3.7)

where the λµ are the corresponding Lagrange multipliers that can be solved using the con-
straint conditions in Eqs. 3.1–3.5, and Z is the normalization constant. Note that in the
case λ3−5 = 0, this simplifies to the METE solution.

Figure 3.1 shows the overall structure of DynaMETE. The first panel describes an initial
disturbance from steady state, where at time t < 0 we begin from the METE solution with
λ3−5 = 0. The second panel shows the overall iteration process described below. Finally, as
in METE, macreocological distributions can be calculated by summing appropriately over
R for DynaMETE, which is shown in the third panel in Fig. 3.1.
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3.3 Iteration scheme

In order to calculate how the the structure function varies in time, we need to construct an
iteration scheme for the theory. The central panel in Fig. 3.1 shows the iteration scheme
for DynaMETE. In it, we will assume that the transition functions do not depend on the
derivatives of the state variables, but do depend on the state variables themselves. We will
also assume that any rate parameters for underlying process, such as birth rate or death
rate, are constant in time. This assumption could easily be relaxed if we assume a form for
the time evolution of the parameters.

We begin at a discrete time t, where the constraint conditions will be satisfied. We can
then update the Xi directly using their time derivatives as

Xi(t+ 1) = Xi(t) +
dXi(t)

dt
∆t. (3.8)

We then have to update the time derivatives of the state variables. Since the transition
functions fµ are are allowed to depend on Xi, we first update the transition functions to
fµ(t+1) by plugging in the updated state variables. We can then update the time derivatives
using Eqs. 3.3, 3.4, and 3.5 as

dN(t+ 1)

dt
= S(t+ 1)

N(t+1)∑
n=1

∫ E(t+1)

ε=1

dε f(n, ε,X(t+ 1))R(n, ε|X(t+ 1), dX(t)/dt) (3.9)

dE(t+ 1)

dt
= S(t+ 1)

N(t+1)∑
n=1

∫ E(t+1)

ε=1

dε h(n, ε,X(t+ 1))R(n, ε|X(t+ 1), dX(t)/dt) (3.10)

dS(t+ 1)

dt
=

N(t+1)∑
n=1

∫ E(t+1)

ε=1

dε q(n, ε,X(t+ 1))R(n, ε|X(t+ 1), dX(t)/dt), (3.11)

where the Lagrange multipliers in R are evaluated at t, not at t + 1. Note that in theory
the upper limits of the sum and integral should be evaluated at t + 1, as noted in these
equations, however in practice with a small enough time step the difference will be minimal.
Since R is an exponential function it is much smaller at large n and ε, so small changes in
the upper limits of the sum are not significant.

Finally then, we can update the structure function R by solving for the Lagrange multi-
pliers at t+1 with the initial constraint conditions. Note that at this step, Eqs. 3.3, 3.4, and
3.5 will already be satisfied as we derived the updated time derivatives using these expres-
sions. We therefore need to obtain a new set of λs that satisfy the first two constraints while
keeping the constraints for the time derivatives satisfied. Doing this maximization process
will give us R(t+ 1).

In practice, this is quite challenging to solve numerically as it involves simultaneously
solving large sums and integrals. We therefore developed a semi-analytic method for iterating
the theory, which we call λ dynamics.
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3.4 λ dynamics

At each step of our iteration scheme, we have to maximize entropy for the function R. This
is quite computationally intensive due to the complexity of the constraint conditions, and
the large sum and integral for larger ecosystems. We here present a semi-analytic method to
solve for the Lagrange multipliers at each new step. This means that rather than maximizing
entropy numerically, we need only invert a matrix to solve for the derivatives of the λs at
each step.

To demonstrate how this method works, let us consider only the equations relating to
the state variable N : Eqs. 3.1, 3.3, and 3.9. We additionally have the equation

dN(t+ 1)

dt
= S(t+1)

N(t+1)∑
n=1

∫ E(t+1)

ε=1

dε f(n, ε,X(t+1))R(n, ε|X(t+1), dX(t+1)/dt) (3.12)

from solving the constraints at time t+ 1. Subtracting Eq. 3.9 from this equation gives

0 =
∑
n

∫
ε

dε f(n, ε,X(t+ 1)) (R(n, ε|X(t+ 1), λ(t+ 1))−R(n, ε|X(t+ 1), λ(t))) (3.13)

where we have written the explicit time dependence of the λ rather than dX/dt, as there is
no explicit dependence on dX/dt in R. We can expand the second term as

R(n, ε|X(t+1), λ(t)) ≈ R(n, ε|X(t+1), λ(t+1))−
∑
µ

∂R(n, ε|X(t+ 1), λ(t+ 1))

∂λµ(t+ 1)

dλµ(t+ 1)

dt

(3.14)
and substitute in to get∑

n

∫
ε

dε
∑
µ

f(n, ε,X(t+ 1))
∂R(n, ε|X(t+ 1), λ(t+ 1))

∂λµ(t+ 1)

dλµ(t+ 1)

dt
= 0. (3.15)

Taking these partial derivatives with respect to λ gives

∂R

∂λµ
= (−fµ + Fµ)R (3.16)

where the second term, Fµ, comes from the partial derivative of Z. Rewriting Eq. 3.15 then
gives∑

µ

(∑
n

∫
ε

dε f(n, ε,X)fµ(n, ε,X)R(n, ε|X,λ)− Fµ (X, dX/dt)
N

S

)
dλµ
dt

= 0 (3.17)

where all variables are evaluated at t+1, but it is omitted for readability. We can rewrite the
above in terms of covariances, where Cov(X, Y ) = 〈XY 〉 − 〈X〉 〈Y 〉, where angular brackets
represent the average over the distribution R. The end result is∑

µ

Cov (f, fµ)
dλµ
dt

= 0. (3.18)
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This derivation can be replicated for E and S to obtain∑
µ

Cov (h, fµ)
dλµ
dt

= 0 (3.19)

∑
µ

Cov (q, fµ)
dλµ
dt

= 0. (3.20)

To solve for dλ/dt we need two additional equations. We can obtain these by taking the
time derivative of Eqs. 3.1 and 3.2. These derivatives give us another form for dN/dt and
dE/dt. Using similar methods to the derivation above, we obtain

1

S

dN

dt
− N

S2

dS

dt
+
∑
µ

(
Cov (n, fµ)

dλµ
dt

+ Cov (n, dfµ/dt)λµ

)
= 0 (3.21)

1

S

dE

dt
− E

S2

dS

dt
+
∑
i

(
Cov (nε, fµ)

dλµ
dt

+ Cov (nε, dfµ/dt)λµ

)
= 0 (3.22)

where we note that df0/dt = df1/dt = 0, so the second term in the brackets is only non-zero
for µ = 3, 4, 5.

Thus, we have five equations for the five derivatives of the lambdas. We can then iterate
the theory forward in time using the same iteration scheme as normal, but rather than
maximizing entropy to obtain a new set of λs, we obtain the new set of λs as λ(t + 1) =
λ(t) + dλ(t)/dt∆t. For small step sizes, this should converge to the same solution as if we
were to maximize entropy at each step. We can test this numerically if we specify transition
functions.

3.5 Specifying the transition functions

To this point, we have left the framework of DynaMETE intentionally very general. Any
form of the transition functions that depend on X but not dX/dt will work. These functions
are meant to capture the small scale processes that will change the macro state variables.

As an example, we here consider the transition functions presented in Harte et al. 2021.
They are

f(n, ε) =

(
b0 − d0

E

Ec

)
nε−1/3 +

m0

N
n (3.23)

h(n, ε) =

(
w0 − d0

E

Ec

)
nε2/3 − w10

ln2/3(1/β)
nε+

m0

N
n (3.24)

q(n, ε) = m0e
−µS−γ − d0S

E

Ec
δn,1ε

−1/3. (3.25)

The parameters are the birth rate b0, the death rate d0, the metabolic carrying capacity of
the ecosystem Ec, the immigration rate m0, the ontogenetic growth rates w0 and w10, and a
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parameter for the size of the metacommunity µ. We now explain the justification for these
forms for the transition functions.

First we consider the form of f . Taking the birth and death rates to be proportional
to nε−1/3 in f is consistent with metabolic scaling theory (West et al. 2001; Brown et al.
2004). The E/Ec term represents a constraint that operates at the community level, rather
than at the individual or species level. More broadly, note that d0E/Ec always appears
together in the transition functions, so d0/Ec is effectively a single parameter characterizing
the death rate with a metabolic rate carrying capacity. The final term in f characterizes the
immigration rate. If an individual immigrant is a member of a species already present in the
local community, we assume that the probability that it is from a species with abundance n
is simply n/N . Given that the vast majority of immigrants will be from an existing species,
we can assume the overall immigration rate m0 needs only to be multiplied by n/N to give
the overall rate of immigration to a species with n individuals.

The expression w0ε
2/3 − w1ε is consistent with ontogenetic growth (West et al. 2001).

Here we have modified it in h by multiplying by the abundance of the species n, since that
expression is at the individual level, and we have added a scaling constant 1/ ln2/3(1/β),
where β = λ1 + λ2. The immigration term is the same as for f as we assume immigrants
have ε = 1. Finally, we multiply the death term in f by ε to account for the metabolic rate
of the individual that is dying, and we ignore birth as it primarily partitions rather than
adds to metabolism.

Finally, for q, we ignore the speciation models discussed in Harte et al. 2021 and consider
only immigration. The first term represents the rate of immigration of new species. The
full derivation is in SI-D in Harte et al. 2021, but essentially this considers the probability
that an immigrant from a metacommunity with number of species Sm and abundance Nm

is from a species not already present in the local community. The derivation assumes the
metacommunity species abundance distribution follows the METE prediction, and so is a
log-series parameterized by βm. The parameter µ in q is equal to ln(1/βm)/Sm. We then
multiply this by the overall immigration rate m0 to obtain the rate of immigration of new
species. Note that this term does not depend on n or ε, so it will be cancelled out in the
normalization of R. However, it still contributes to dS/dt. The second term in q is the rate
at which species with abundance n = 1 go extinct. This is the overall death rate multiplied
by the Kronecker delta δn,1, which is 1 when n = 1 and 0 otherwise.

3.6 Iteration code

With the transition functions and iteration scheme specified, we can now numerically iterate
the theory. We have outlined two numerical approaches for doing so: brute force maximum
entropy at every step, and λ dynamics. I have written code for each case which can be found
at https://github.com/micbru/dynamete iteration. The code DynaMETE Rfunctions.py im-
plements the necessary sums and integrals over R, mean covariances.py uses these calcu-
lates to get the means and covariances of the transition functions, and brute force.py and

https://github.com/micbru/dynamete_iteration
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lambda dynamics.py implement the iteration with the corresponding schemes. The jupyter
notebook Iteration.ipynb reproduces all of the results here and shows how to use these
functions.

For both codes, note that the transition functions specified above depend only linearly on
n, with the exception of q. However the dependence in q is a δ function which can be pulled
out of the sum. Therefore, the sum over n can be done analytically, which greatly increasing
code performance. The sum over n for Eqs. 3.1–3.4 (not including the normalization Z) is
of the form ∑

n

ne−c(ε)n−q(n,ε)λ5 , (3.26)

where c(ε) is equal to
∑4

µ=1 fµλµ/n = λ1 + λ2ε+ λ3f(n = 1, ε) + λ4h(n = 1, ε). Note that µ
only runs until 4 in this sum as the q dependence is pulled out of the sum. Given the first
term in q is not n dependent, it can be pulled out of the sum. The second term has δn,1, so
we can separate the sum as

e−q(n=0,ε)λ5

N∑
n=1

ne−c(ε)n + e−c(ε)−q(n=1,ε)λ5 . (3.27)

The solution is then

Z
∑
n

nR = e−c(ε)−q(n=1,ε)λ5 + e−2c(ε)−q(n=0,ε)λ5
2− e−c(ε) + e−c(ε)(N−1)

(
Ne−c(ε) −N − 1

)
(1− e−c(ε))2 .

(3.28)
The sum over n for the normalization Z can also be calculated analytically using the

same technique. The form is the same but we do not multiply the structure function R by
n. The solution is

Z
∑
n

R = e−c(ε)−q(n=1,ε)λ5 + e−2c(ε)−q(n=0,ε)λ5
1− e−c(ε)(N−1)

1− e−c(ε)
. (3.29)

We then integrate this over ε to get the normalization Z.
These sums are implemented as functions in DynaMETE Rfunctions.py as nRsum and

Rsum. Note that for the covariances needed for λ dynamics, we also need the sum
∑

n n
2R,

which is done in a similar way and implemented as n2Rsum.
Now we only have to integrate over ε to solve the constraint equations. Again to speed up

the calculations, we only calculate each required integral over ε once. The required combina-
tions for the transition functions alone are the sum over nε−1/3, n, nε2/3, nε, and δn,1ε

−1/3.
For the covariances for λ dynamics, we additionally need n2ε−2/3, n2ε−1/3, n2, n2ε1/3, n2ε2/3,
n2ε, n2ε4/3, n2ε5/3, n2ε2, and δn,1ε

−2/3, δn,1ε
1/3, δn,1ε

2/3. These are all implemented by the
get means function in DynaMETE Rfunctions.py. This function takes the Boolean param-
eter alln, which if false only calculates the sums needed for the brute force maximization,
and if true calculates all of the sums needed for λ dynamics.
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To this point, we have only calculated the various sums and integrals over n and ε. The
file means covariances.py contains functions that take in this array and calculate individual
means and covariances over the various transition functions and derivatives as required by
the constraint equations (Eqs. 3.1–3.5), and the λ dynamics equations (Eqs. 3.18–3.22).

The final step is to use these calculations to iterate the theory as described in the pre-
vious section. This is implemented with the iterate function in both brute force.py and
lambda dynamics.py. Note that the lambda dynamics.py file has an additional method
get dl matrix vector which calculates the covariance matrix defined by Eqs. 3.18–3.22
that we need to invert in order to solve for the derivatives of the Lagrange multipliers.

Overall, the goal is that users need only call the iterate function, specifying the param-
eters for the transition functions as a labeled list p, the initial state variables s0, and the
length of the iteration t. This function sets the default iteration step as dt=0.2, though this
parameter can also be passed in.

In theory, we can use the iteration scheme from any initial conditions, which can be
optionally passed in as the initial λs, l0 and the initial derivatives of the state variables, ds0.
However given that our goal with DynaMETE is to model disturbance, we will often assume
the ecosystem begins in steady state before one or more of the parameters are perturbed.
We can then iterate from there to see the effect of that type of disturbance.

To begin in steady state, we set some parameters based on biological plausibility, and
then fix others so that the derivatives of the state variables are zero initially and λ3−5 =
0. This initial optimization of parameters at steady state is implemented in the function
get ss params in lambda dynamics.py, which is set up to solve for w10, µ, and m0 but
can easily be changed to solve for different parameters. The initial λs in the iteration are
then equivalent to the METE λs. To begin the iteration process, we perturb parameters
and use Eqs. 3.9, 3.10, and 3.11 to derive the initial time derivatives. We then update the
state variables as normal, beginning the first iteration step, which should now continue as
the time derivatives are no longer zero. This method for establishing the initial disturbance
is shown in the first panel in Fig. 3.1.

The default with the iterate function if initial conditions are not passed in is to assume
the system begins at steady state, but the parameters have been perturbed. The function
then calculates the corresponding METE λs, sets the initial time derivatives using Eqs. 3.9,
3.10, and 3.11, and then begins the iteration process. Therefore, to iterate the theory from
a perturbed steady state, we need only pass in the perturbed parameters and the state
variables at steady state.

This function then returns the λs, state variables, and their derivatives at each time step.

3.7 Exploring the theory

We now need to specify parameter values. We choose parameter values that are plausible
for a tropical forest. More specifically, we use Barro Colorado Island (BCI), a tropical forest
in Panama, as a guide to obtain realistic parameter values. This site has 30 years of census
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data available (Condit 1998; Hubbell et al. 1999; Hubbell et al. 2005; Condit et al. 2019),
allowing for comparison to the theory over time. Further, both N and S are declining over
time at this site, which may be a consequence of disturbance as the formation of Gatun
Lake has resulted in the semi-isolation of the forest from its metacommunity. This site is
therefore a good starting point to test the theory as we have a hypothesis for what kinds of
disturbance may be affecting this site, as well as available time series data.

The parameters and state variables presented in Table 3.1 are obtained as biologically
plausible values for BCI. These values are meant to be in line with what BCI could have
looked like before the formation of Gatun Lake, around 1905. The state variables are rounded
from what we see in 1985, where S = 309, N = 241 786, and E = 19 788 030. E is in units
such that a tree with 1 cm dbh has a metabolic rate of 1 and this number was calculated
assuming that metabolic rate scales as dbh2 (Brown et al. 2004; Marbà et al. 2007; but
see Muller-Landau et al. 2006). The initial parameters are then chosen by first fixing the
parameters Ec, b0, d0, and w0 to be biologically plausible, and then solving for w10, µ, and
m0 while setting the time derivatives in Eq. 3.3–3.5 to 0.

The choice of initial parameters here is as in SI-F in Harte et al. 2021. To summarize,
we set Ec as a round number near the steady state values, Ec = 2× 107, and then take E to
be slightly larger as a steady state value. Note that we take E > Ec to balance against the
positive migration term in Eq. 3.3, though note that if we are at a site with a net migration
outflow then m0 < 0 and E < Ec. The birth and death rates assume that average saplings
with 1 cm dbh die at a rate of 0.2/year, and we set b0 = d0. The growth rates of trees are
set assuming that a sapling of 1 cm dbh doubles in diameter in 3-4 years, and becomes a
tree of 30 cm dbh in 80 years, which gives w0 ≈ 1 and w10 ≈ 0.4. Finally, we can check the
biological plausibility of µ by assuming the size of the metacommunity, which is this case is
about 100 times the area of the BCI plot.

Note that our parameters w10, µ, and m0 are slightly different from the parameters in
Harte et al. 2021, as we use more precise numerical solutions for the parameters that set the
initial derivatives to zero. This ensures that if we iterate the theory from steady state, we
remain in steady state.

We emphasize that the parameter set here is meant to serve as a starting point, and
gives us a way to numerically test the structure of the theory as well as different iteration
schemes. It is not meant to be compared to BCI data directly, or to serve as a set of best fit
parameters describing the site.

We first test our semi-analytic iteration scheme, λ dynamics. Figure 3.2 shows trajectories
for the λs and the derivatives of the state variables under a perturbation to the death rate
d0 → 0.25 for both the brute force and λ dynamics iteration schemes for ∆t = {0.1, 0.2, 0.5}.
We can see that for small enough ∆t the different iteration schemes give very similar results,
and further that the solution overall seems to converge for small ∆t.

We have omitted plots of the state variables themselves as their change is relatively small
over this time window, as well as plots of the macroecological patterns themselves obtained
from R as the difference between the predicted form for METE and DynaMETE after this
many iterations is small. To get a larger effect, we could run the perturbation longer or
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Parameter Values State Variables Values

b0 0.2 N 2.3×105

d0 0.2 E 2.04×107

m0 437.3 S 320
w0 1.0
w10 0.42
Ec 2× 107

µ 0.0215

Table 3.1: The numerical parameters we use to explore DynaMETE initially.
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Figure 3.2: Time trajectories of the Lagrange multipliers λµ and the derivatives of the state
variables dXi/dt after an increase in death rate from d0 = 0.20 to d0 = 0.25, with the rest
of the parameters given in Table 3.1. The color represents the iteration method, and the
dashes represent the time step used. These are calculated using the lambda dynamics and
brute force codes.
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Figure 3.3: Time trajectories of the Lagrange multipliers λµ and the derivatives of the state
variables dXi/dt after an decrease in ontogenetic growth rate from w10 = 0.42→ 0.4096, with
the rest of the parameters given in Table 3.1. The color represents the iteration method, and
overlap until the iteration fails to progress. These are calculated using the lambda dynamics

and brute force codes.

make the perturbation larger. The iteration here is meant to serve as an example for how
the iteration scheme works, as well as to show that λ dynamics is working as expected.

After setting up this code, we tried other perturbations and noticed that in some cases the
theory seems to have issues with stability. An example of this is perturbing the ontogenetic
growth rate w10 down to the initial value in Harte et al. 2021, w10 = 0.42 → 0.4096. With
the brute force iteration scheme, the maximization method can no longer find a solution
that satisfies the constraints, and with λ dynamics, the constraints stop being satisfied.
This becomes apparent looking at the trajectories for the λs and the derivatives of the state
variables, which are shown in Fig. 3.3. Each of the dX/dt and λs blow up. This is not solved
by taking a smaller time step and seems to be part of the theory, especially because the
failure appears for both λ dynamics and the brute force iteration schemes.

Given that the same issue with the theory appears with both iteration schemes, we are
led to believe that the issue is fundamental to the theory, or a result of the specific transition
functions chosen here, rather than a numerical instability. We have a few approaches to
determine what is causing the theory to fail. One potential issue is the initial condition of
the time derivatives. In the d0 perturbation, dN/dt is heading towards 0, and if we continue
the iteration dE/dt also curves back towards 0. However in the w10 perturbation, all of the
time derivatives and λs seem to continue to increase in the same direction before blowing
up. We are currently investigating the second derivatives of the state variables to see if the
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form of the transition functions causes some kind of runaway effect.
Another possibility is that the theory collapses when there are not enough degrees of

freedom for the constraint conditions. This is because the transition functions, and therefore
the exponent for R, depends only on n, nε, nε−1/3, nε2/3, and δn,1ε

−1/3, all of which are linear
in n. This should be sufficient degrees of freedom to solve in that we have five different forms
and five constraints, but perhaps there is overlap between the nε−1/3 term and the δn,1ε

−1/3

term. In a toy model without ε, we can show that having only linear n cause the theory to
collapse, and that adding a term with a different n dependence fixes this issue. We therefore
explore different n dependence for some of the terms below.

3.8 Ongoing and future work

Alternative transition functions

Given we suspect the numerical failure of the iteration scheme is related to the exponent
in R depending only on linear n and a few different powers of ε, we are working on dif-
ferent forms of the transition functions that are still biologically plausible but will increase
the number of degrees of freedom. This requires writing new iteration code, as the iter-
ation code above is specific to the transition functions in Harte et al. 2021. This code is
available at https://github.com/micbru/dynamete iteration and includes the python files
lambda dynamics FlexibleFunctions.py, DynaMETE Rfunctions FlexibleFunctions.py

as well as the jupyter notebook FlexibleFunctions.ipynb to replicate the results here.
The primary difference is that the sum over n is no longer calculated analytically, which
drastically reduces the number of hard coded equations. In this code, the integral over ε
is done first in parallel over all n, before being summed over n. This means we can easily
change the functional form of the transition functions by changing their definitions, and
the definition of their derivatives. The rest of the code does not change, and the functions
are all very similar or identical. While this makes the code much more flexible, the major
drawback of this approach is that the iteration is much slower as the sums must now be done
numerically and the R function takes much longer to compute. Because of this, testing this
code with the parameter set in Table 3.1 is not feasible, and we instead test with a similar
but smaller ecosystem.

To test this more flexible code, we change the death rate to depend on n2 rather than n,
so d0/Ec n/ε

−1/3 → d0/Ec n
2/ε−1/3. This affects both f and h. This is biologically motivated

as density dependent death, but is meant more as an example to show how modifying the
code can work. The state variables and parameters in this case are given in Table 3.2. Note
that the state variables are scaled down significantly, but are meant to be representative of a
smaller sample at BCI and were obtained roughly from a patch roughly 1/256 the size of the
entire 50 ha plot. The parameter d0 was also changed in line with changing n→ n2, and again
m0, w10, and µ were obtained by setting the derivatives of the state variables to zero using
the function get ss params in lambda dynamics FlexibleFunctions.py. Note that the µ

https://github.com/micbru/dynamete_iteration
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Parameter Values State Variables Values

b0 0.2 N 103

d0 0.002 E 2.04×104

m0 127.5 S 30
w0 1.0
w10 0.6705
Ec 2× 104

µ 0.3525

Table 3.2: The numerical parameters we use to explore DynaMETE with alternative transi-
tion functions, where d0n→ d0n

2.

parameter here is not particularly realistic, as it would require an enormous metacommunity
Nmeta without that many additional species (for example, Nmeta = 106, Smeta = 36). Again
though, this test is primarily meant to demonstrate a possible alternative form for the
transition functions.

Figure 3.4 shows trajectories for the derivatives of the state variables and the λs with
a d0 perturbation, d0 → 0.0025, with this form of the transition function and time step
∆t = 0.2. Note the relative similarity between this figure and Fig. 3.2, which shows a d0

perturbation for the initial theory. This is promising in that the particular form of the
transition function does not seem to change the effects of one type of perturbation all that
much, meaning that we may still be able to disentangle the underlying mechanism without
having to know the exact function form for the transition function. However, this also means
that this modification to the transition function may not solve the stability issues with the
iteration, and there may be a different underlying issue with the theory.

Analytic solution to iterations

The iteration scheme presented here depends on using discrete time, since we are obtaining
the iteration by advancing the state variables. We believe the solution should converge if
we take ∆t to be small enough, but have not yet found an analytic form for this solution.
The semi-analytic method is a first step towards an analytic solution for the iteration of the
λs. This is important given the difficulty of advancing the theory numerically, particularly
with large N or E. Additionally, we may be able to see analytically how different transition
functions will affect the trajectories in the theory if we can solve the iteration more generally.

For simple toy models of the theory, it is possible to invert Eqs. 3.18–3.22 analytically
in terms of dλµ/dt. However, these equations still depend on both the state variables and
the Lagrange multipliers, and we need to invert the constraint conditions to solve for the
full time dependence. Inverting the constraint conditions Eq. 3.1–3.5 themselves in the full
theory is very challenging, but will be necessary to obtain any analytic expression for the
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Figure 3.4: Time trajectories of the Lagrange multipliers λµ and the derivatives of the state
variables dXi/dt after an increase in death rate from d0 = 0.0020 to d0 = 0.0025, with
the rest of the parameters given in Table 3.2 and ∆t = 0.2. These are calculated with
the λ dynamics iteration method for the transition functions with d0n → d0n

2, using the
lambda dynamics FlexibleFunctions code.

time evolution of the theory.

Alternative iteration schemes

Rather than solve the existing iteration scheme, another approach is to develop an alterna-
tive. Pessoa et al. 2021 presents a framework for dynamics on Gibbs statistical manifolds,
which is the underlying manifold in the case of DynaMETE as it is obtained by maximizing
entropy. This framework uses information geometry (Caticha 2015; Amari 2016), which as-
signs a geometric structure to the space of probability distributions such that the distance
between neighbouring distributions P (x|θ + dθ) and P (x|θ) characterized by parameters
θ = {θµ} is given by d`2 = gµνdθ

µdθν . Note that in this section we will use the Einstein
summation convention, so gµνdθ

µdθν =
∑

µ

∑
ν gµνdθ

µdθν as the indices appear twice in a
single term as both a subscript and a superscript. The metric gµν here is the Fisher-Rao
information metric given by

gµν =

∫
dx P (x|θ)∂ logP (x|θ)

∂θµ
∂ logP (x|θ)

∂θν
. (3.30)
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In the case of a MaxEnt distribution, θµ is equal to the constraints F µ, and the metric
simplifies to the Hessian of the entropy H

gµν = − ∂2H

∂F µ∂F ν
. (3.31)

The inverse of the metric is given by the covariance matrix

Cµν = Cov(fµf ν), (3.32)

and Cµνgνγ = δµγ .
We can use this information geometry framework to iterate the theory by moving around

on this statistical manifold with coordinates defined by the constraints F µ. This has already
been explored to some extent for METE in Pessoa 2021, but with DynaMETE the fact that
the constraints F µ are themselves time dependent should allow us to iterate the theory.

It is also worth noting that there are similarities between these equations and λ dynamics.
First, we will rewrite λ dynamics in terms of the information metric. Eqs. 3.18–3.20 can be
rewritten as

Cµν dλν
dt

= 0 for µ = {3, 4, 5}, (3.33)

and Eqs. 3.21–3.22 can be written as

Cµν dλν
dt

= −dF
µ

dt
− Cov

(
fµ,

df ν

dt

)
λν for µ = {1, 2}. (3.34)

If we do not allow the fµ to depend on X, and so assume dfµ/dt = 0, then this simplifies to

Cµν dλν
dt

= −dF
µ

dt
. (3.35)

Further, with this assumption, we can take the time derivatives of both sides of the con-
straints Eqs. 3.3, 3.4, and 3.5 to get

dF µ

dt
= −

∑
ν

Cov(fµ, f ν)
dλν
dt

= −Cµν dλν
dt

for µ = {3, 4, 5}. (3.36)

In λ dynamics, this expression is equal to zero. Thus we can rewrite λ dynamics for all µ
under this assumption as

Cµν λν
dt

= −dF
µ

dt
. (3.37)

This is as Eq. 19 in Pessoa et al. 2021, where dF µ = −Cµνdλν , but we have divided
by dt and assumed that dfµ/dt = 0 and therefore dF µ/dt = 0 for µ = {3, 4, 5}. However,
in the case that this assumption does not hold, these approaches are no longer equivalent.
Further work is needed to see if we can develop a more general iteration scheme using this
information geometry framework, perhaps using Eq. 50 in Pessoa et al. 2021,

〈∆F µ〉
∆t

= Cµν ∂S

∂F ν
− Γµ

2
, (3.38)

where Γµ = ΓµνγC
νγ and Γµνγ is the Christoffel symbol.
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3.9 Conclusion

DynaMETE is an ambitious theoretical framework that seeks to predict how state variables
and macroecological patterns change over time in response to disturbance. However, there
is still work to do to connect the framework as presented to ecological data. The iteration
scheme with the transition functions initially presented in Harte et al. 2021 does not appear
to be stable to many perturbations. This could indicate something biological, or could be a
larger issue with the iteration scheme proposed. Numerical code to test the theory as written,
as well as to test a more flexible version of the theory, is available at https://github.com/
micbru/dynamete iteration. We are just beginning to explore alternative transition functions
and iteration schemes, which will allow for a more complete understanding of the theory.
As the theory grows, we hope that DynaMETE will contribute to better understanding of
disturbed ecosystems, will help identify processes driving ecological change, and will improve
conservation and management strategies.
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Conclusion

Throughout this work, the importance of dynamical macroecology is clear. Patterns are
not constant in time, and how they vary carries important information about underlying
biology. These patterns can be analyzed empirically and compared to static predictions,
as in the first chapter where I show how deviations from static theory can provide us with
information about underlying biology, and how disturbance in the form of land use changes
macroecological patterns.

We can also learn about underlying process by modelling explicit disturbances and com-
paring resulting predictions to data, as in chapter 2. There I show how modifying static
theory to include a specific disturbance can be used to understand how disturbance affects
patterns, and that in turn can be used to interpret data.

We can then move from modelling specific disturbance to building broad theoretical
frameworks that model generic disturbance and out of steady state dynamics. As with dy-
namics out of steady state in statistical physics, building theory for macroecological patterns
under disturbance is challenging. These types of models are generally the most difficult to
connect directly to data, but are important in predicting how ecosystems will evolve over
time. My third chapter presents one approach to building general theory for macroecological
patterns out of steady state.

Understanding how macroecology changes over time has many important implications.
It could allow us to connect changes in patterns to different types of disturbance, or other
underlying ecology. Deviations from static patterns may also be useful in identifying when
ecosystems are subject to disturbance. More robust theory could also predict how climate
change will impact these systems over time, or predict how habitat loss will affect species
extinctions. More broadly, macroecology may point us toward unifying principles and theory
in ecology.

Future work will have to address most of these questions, as dynamic understanding of
macroecological patterns is in its infancy. Given that we are at a time where humans are
having more of an impact on the planet than ever before, understanding macroecology out
of steady state will be increasingly important as the number of ecosystems around the world
with significant disturbance continues to increase.
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Cunha, R. Gabriel, V. Gonçalves, A. Martins, I. Melo, M. Parente, P. Raposeiro, P.
Rodrigues, R. Santos, L. Silva, P. Vieira, & V. Vieira (Eds.), A list of the terrestrial
and marine biota from the Azores (pp. 179–246). Principia.

Brown, C., Illian, J. B., & Burslem, D. F. R. P. (2016). Success of spatial statistics in
determining underlying process in simulated plant communities. Journal of Ecology,
104 (1), 160–172. https://doi.org/10.1111/1365-2745.12493

Brown, C., Law, R., Illian, J. B., & Burslem, D. F. R. P. (2011). Linking ecological processes
with spatial and non-spatial patterns in plant communities. Journal of Ecology, 99 (6),
1402–1414. https://doi.org/10.1111/j.1365-2745.2011.01877.x

Brown, J. H. (1995). Macroecology. University of Chicago Press.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a

Metabolic Theory of Ecology. Ecology, 85 (7), 1771–1789. https://doi.org/10.1890/03-
9000

Brummer, A. B., & Newman, E. A. (2019). Derivations of the Core Functions of the Max-
imum Entropy Theory of Ecology. Entropy, 21 (7), 712. https://doi.org/10.3390/
e21070712

Brush, M., & Harte, J. (2021). Relating the Strength of Density Dependence and the Spatial
Distribution of Individuals. Frontiers in Ecology and Evolution, 9, 390. https://doi.
org/10.3389/fevo.2021.691792

Cardoso, P., Aranda, S. C., Lobo, J. M., Dinis, F., Gaspar, C., & Borges, P. A. V. (2009).
A spatial scale assessment of habitat effects on arthropod communities of an oceanic
island. Acta Oecologica, 35 (5), 590–597. https://doi.org/10.1016/j.actao.2009.05.005

Carey, S., Harte, J., & Moral, R. D. (2006). Effect of community assembly and primary
succession on the species-area relationship in disturbed ecosystems. Ecography, 29 (6),
866–872. https://doi.org/10.1111/j.2006.0906-7590.04712.x

Carson, W. P., Anderson, J., Leigh, E., & Schnitzer, S. A. (2008). Challenges Associated with
Testing and Falsifying the Janzen–Connell Hypothesis: A Review and Critique. In
W. P. Carson & S. A. Schnitzer (Eds.), Tropical Forest Community Ecology (pp. 210–
241). Wiley-Blackwell.

Caticha, A. (2015). The basics of information geometry. AIP Conference Proceedings, 1641 (1),
15–26. https://doi.org/10.1063/1.4905960

Coleman, B. D. (1981). On random placement and species-area relations. Mathematical Bio-
sciences, 54 (3-4), 191–215. https://doi.org/10.1016/0025-5564(81)90086-9

Comita, L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K., Krishnadas, M.,
Beckman, N., & Zhu, Y. (2014). Testing predictions of the Janzen-Connell hypothesis:
A meta-analysis of experimental evidence for distance- and density-dependent seed

https://doi.org/10.1111/j.1365-2699.2005.01324.x
https://doi.org/10.1111/j.1365-2699.2005.01324.x
https://doi.org/10.1111/1365-2745.12493
https://doi.org/10.1111/j.1365-2745.2011.01877.x
https://doi.org/10.1890/03-9000
https://doi.org/10.1890/03-9000
https://doi.org/10.3390/e21070712
https://doi.org/10.3390/e21070712
https://doi.org/10.3389/fevo.2021.691792
https://doi.org/10.3389/fevo.2021.691792
https://doi.org/10.1016/j.actao.2009.05.005
https://doi.org/10.1111/j.2006.0906-7590.04712.x
https://doi.org/10.1063/1.4905960
https://doi.org/10.1016/0025-5564(81)90086-9


BIBLIOGRAPHY 67
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Appendix A

Appendix for Chapter 1 – “The
influence of land use on arthropod
macroecology in the Azores”

A.1 Community level analysis

We feel that our analysis treating the transects as replicates across land use is stronger,
particularly when comparing data to METE. This is because METE predictions are made
within a single community and aggregating data over disparate locations, even of the same
land use, may create a mismatch between the theory expectations and the aggregated data.
Additionally, the number of species scales differently when summing multiple small patches
than in a large patch of comparable area.

Despite that, we present the analysis at the community level here. In this case, all
transects with the same land use are aggregated together, and we compare that empirical
data to the METE prediction made with the total number of species and individuals for that
land use. The mean least squared error for the SAD and MRDI across land uses is shown
in Fig. A.1. These results are similar to those obtained when the transects are analyzed
individually, though note here that the MRDI is the worse fit at the intensive pasture rather
than the semi-natural pasture. Another difference is that the MRDI is comparatively better
fit than the SAD at the forest sites. This is primarily as the SAD is significantly worse fit
at the community level. The semi-natural pasture is still the only site that is poorly fit by
both metrics. This fits with our interpretation in the main text that this site is the most
poorly described by METE. The SAD results in particularly are very similar when analyzed
at the community level.

We also show the empirical rank ordered SADs along with the corresponding METE
predictions in Fig. A.2. Note that again the pasture sites are characterized by a few very
abundant species, and METE under predicts the number of singletons across sites.

The empirical rank ordered MRDIs along with the corresponding METE predictions in
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Fig. A.3. Again here, METE over predicts the metabolic rate of the highest metabolic rate
individuals. This is particularly unsurprising here, as METE will predict higher metabolic
rate individuals in larger ecosystems, which we have created here by aggregating across
transects. It is likely that the maximum size of arthropods is more constrained at the
transect level than at this larger community level.

Finally, we show the mean least squared error across land uses for indigenous and intro-
duced species separately in Fig. A.4, and the corresponding rank ordered SADs in Fig. A.5.
Here again we see that the highly abundant species at the pasture sites are introduced, and
the fit for introduced species is much worse than for indigenous species at the semi-natural
pasture. One difference with this community level analysis is that at both forest sites, the
introduced species are better fit by METE than the indigenous species. We see this to some
extent in the transect level analysis at the exotic forest, but it is more obvious here. We
note that the overall fit for the community level analysis is worse across all land uses when
compared to the transect level analysis, except for the intensive pasture.
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Figure A.1: The mean of the the mean least squared error for the SAD and the MRDI
across land uses when transects are aggregated rather than analyzed individually. There are
no error bars as there are no replicates when the data are analyzed this way.
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Figure A.2: Aggregated rank ordered SADs by land use. The solid line is the METE
prediction and the points are observed rank abundance.
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Figure A.3: Aggregated rank ordered MRDIs compared to METE predictions by land use.
The empirical curve here is simulated from assuming a mean-variance relationship and adding
variance to the mean body mass for each species.
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Figure A.4: Mean and its standard error for the mean least squares of the SAD for indige-
nous (closed circles) and introduced species (open circles) across land uses. Here, we have
aggregated all transects rather than analyzed them individually, and so there are no error
bars.
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Figure A.5: Aggregated rank ordered species abundance distributions for different land
use, where species have been categorized and indigenous (filled circles) or introduced (open
circles). Mete predictions are the solid line in each case.
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A.2 Kolmogorov-Smirnov test

As a second goodness of fit test to check our results using mean least squares, we use the
Kolmogorov-Smirnov test comparing the empirical CDF and the METE predicted CDF. For
the SAD, the KS test must be adapted as the distribution is discrete with many duplicate
values (ie. many singletons). We made use of the R package DGOF, which implements the
KS test for discrete distributions. This is not an issue for the MRDI as it does not have
repeated values. We plot the mean and standard error of the test statistic DKS for both the
SAD and MRDI for each land use in Fig. A.6.

The results here are comparable to those obtained with mean least squares. The MRDI
is worse fit than the SAD, and the semi-intensive pasture is the worst fit for both the SAD
and the MRDI. The intensive pasture results are also similar as it is among the best fit for
the SAD, and intermediately well fit for the MRDI. That these results are comparable to the
mean least squares results is important, as our conclusions about how well METE describes
the data across land use do not appear to depend on the goodness of fit test itself.
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Figure A.6: The mean and standard error of the KS test statistic DKS for the SAD and
MRDI across transects for each land use.
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A.3 Intraspecific body mass variation

For select species, we have individual measurements of multiple individuals within a species.
We can use this intraspecific body length variation to estimate the variance in intraspecific
body mass using the same scaling relationship. We can then convert this into a variance in
metabolic rate, which we can use to reconstruct more realistic metabolic rate distributions.

We have individual body length measurements for 26 of the 115 species of Coleoptera
(beetles) in the data, and for 26 of the 41 species of Araneae (spiders). These are the two
most common orders in the data, which is where it is most important to have an idea of
intraspecific variation in body mass. For less abundant species, this variation matters less as
there are only a few of each species present in the data. We use the Coleoptera results for all
other orders in the dataset. Note that this data actually has separate body length values for
female and male spiders, given that sexual dimorphism is common. However, in the larger
dataset we have only average body length, and therefore we will use only the overall mean
and variance for spiders without separating by sex.

We plot the body mass distributions for the four most abundant species of Coleoptera
and Araneae in this dataset in Fig. A.7, overlayed with the best fit normal distributions. We
can see here that the Araneae species appear more bimodal, but the number of data points
is quite small, and again this finer resolution is not available in the full data set.

We plot the relationship between the log of the mean and the log of the variance for
both beetles and spiders in Fig. A.8. The slopes, intercepts, and R2 correlation coefficient
values are shown in Table A.1. We use these values to simulate variation in body mass for
all species in our dataset and to reconstruct empirical MRDIs.

Order Slope Intercept R2

Coleoptera (beetles) 1.99 ± 0.12 -1.24 0.925
Araneae (spiders) 2.22 ± 0.13 -1.15 0.919

Table A.1: Results from the regression of log10 of variance versus log10 of mean body mass
for data that includes intraspecific body mass variation for both Coleoptera and Araneae.
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Figure A.7: Histograms and best fit normal distributions for the four most abundant species
of Coleoptera and Araneae present in the data that includes intraspecific variation.
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A.4 SAR comparison of number of species

In addition to the comparison of slopes in the main text, we can compare the predicted
number of species at each scale directly. The mean least squares across transects at each
land use are shown in Fig. A.9, again as the mean at the land use with its standard error.
The direct plots of log(S) versus log(A) do not show the difference between the theoretical
predictions and the observed values very well as the differences are relatively small, so we
instead show the residuals of log(S0) for each transect in Fig. A.10. Note that as mentioned
in Methods, the largest scale corresponds exactly in all cases, and so we really only have 7
points of prediction in this case. Here again we see that METE over predicts S0 at smaller
scales for the pasture sites, and the residuals are relatively randomly distributed for the
forest sites.
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Figure A.9: The mean and its standard error for the mean least squares of the predicted
number of species for each transect, organized by land use.
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A.5 SADs at each transect
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Figure A.11: The rank ordered SAD at each transect in the native forest.
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Figure A.12: The rank ordered SAD at each transect in the exotic forest.
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Figure A.13: The rank ordered SAD at each transect in the semi-natural pasture.
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Figure A.14: The rank ordered SAD at each transect in the intensive pasture.
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A.6 MRDIs at each transect
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Figure A.15: The rank ordered MRDI at each transect in the native forest.
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Figure A.16: The rank ordered MRDI at each transect in the exotic forest.



APPENDIX A. APPENDIX FOR CHAPTER 1 92

100

101

102

103

104 TER-BAGA-T-77 TER-BAGA-T-78 TER-CA_T163 TER-GOLF-T-86
METE
Obs.

100

101

102

103

104 TER-CVSB_T162 TER-MNEG-T-73 TER-MNEG-T-76 TER-MNEG-T-79

100

101

102

103

104 TER-NFBF-T-61 TER-NFGM-T-69 TER-NFPG-T118 TER-NFPG-T-67

101 103
100

101

102

103

104 TER-NFTB-T117

101 103

TER-NFTB-T-28

101 103

TER-PB-T165

101 103

TER-SBAR-T-72

Semi-natural pasture

lo
g(

M
et

ab
ol

ic 
ra

te
)

log(Rank)

Figure A.17: The rank ordered MRDI at each transect in the semi-natural pasture.
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Figure A.18: The rank ordered MRDI at each transect in the intensive pasture.
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Appendix B

Appendix for Chapter 2 – “Relating
the strength of density dependence
and the spatial distribution of
individuals”

B.1 Derivation of the probability distribution

Following the methods in the main text and equating the rates entering and exiting Π(n)
gives

pR(n|n0 − 1)pD,L(n+ 1|n0)Π(n+ 1|n0) = pL(n|n0 − 1)pD,R(n|n0)Π(n|n0).

Plugging in with Eq. 2.4 and 2.6 gives

(n+ 1)α−1

(n0 − n− 1)α + (n+ 1)α
Πα(n+ 1) =

(n0 − n)α−1

(n0 − n)α + nα
Πα(n). (B.1)

We can solve this recursion relation to obtain a general stationary solution. To do so, we
define

P (n) =
Π(n)

(n0 − n)α + nα

to get
(n+ 1)α−1P (n+ 1) = (n0 − n)α−1P (n).

We can fix Π(0), since we can choose it freely before normalizing the distribution. For
simplicity, choose Π(0) = 1. Then we can write the first few P terms and generalize to P (n):
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P (0) =
1

nα0

P (1) =
1

n0

P (2) =

(
n0 − 1

2

)α−1
1

n0

P (3) =

(
(n0 − 1)(n0 − 2)

6

)α−1
1

n0

...

P (n) =

(
(n0 − 1)(n0 − 2) . . . (n0 − (n− 1))

n!

)α−1
1

n0

=

(
n0!

n!(n0 − n)!

)α−1
1

nα0
.

Finally, we plug this back into our definition of Π(n) to obtain the general stationary
Π(n) for a given n0 and α

Πα(n|n0) =
nα + (n0 − n)α

C(n0, α)nα0

(
n0

n

)α−1

(B.2)

which is Eq. 2.7 in the main text.
We now want an approximate analytic form for the normalization C(n0, α),

C(n0, α) =

n0∑
n=0

(nα + (n0 − n)α)

nα0

(
n0

n

)α−1

. (B.3)

We begin by approximating the binomial term with a normal distribution, which is good for
large n0. This gives(

n0

n

)α−1

≈ exp

(
− 2

n0

(α− 1)(n− n0/2)2

)(
2−n0

√
πn0

2

)−(α−1)

.

We then use the symmetry of the sum over n to write nα + (n0 − n)α = 2nα. Finally, we
replace the sum with an integral over n from 0 to infinity, again assuming n0 is very large.
This integral gives∫ ∞

0

dn2na exp

(
− 2

n0

(α− 1)(n− n0/2)2

)
=(

n0

2(α− 1)

)α/2(
αn0

2
Γ
(α

2

)
1F1

(
1− α

2
,
3

2
,−n0

2
(α− 1)

)
+√

n0

2(α− 1)
Γ

(
α + 1

2

)
1F1

(
−α

2
,
1

2
,−n0

2
(α− 1)

))
. (B.4)



APPENDIX B. APPENDIX FOR CHAPTER 2 96

Now if we assume n0(α− 1) is large, we can approximate

1F1 (a, b, z) ≈ Γ(b)

Γ(b− a)
(−z)−a

and Eq. B.4 becomes

2

√
π

α− 1

(n0

2

)α+1/2

.

Putting the other contributions to the normalization back in, we get

C(n0, α) =
2n0(α−1)πn0√

α− 1

(
1

2πn0

)α/2
, (B.5)

as Eq. 2.8 in the main text.
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B.2 The problem with rank ordered fractions

As mentioned in the main text, Harte (2011) and others have compared bisection predictions
to data by rank ordering the fraction of individuals present in half of the plot for each species.
This gives a number of points equal to the number of species in the plot. Rank ordering in
this way with the BCI data gives us 229 data points, one for each species.

Since our models only predicts the bisection curve for a single n0, but our data incorpo-
rates species with different n0, we still have to do a bit of work to compare our theory to the
rank ordered data. For each species, we generate one value of n randomly from the desired
theoretical distribution with abundance n0. We then rank order these predicted fractions
and compare to the rank ordered data. Figure B.1A shows the results using the BCI data.

By eye to the first decimal place, it looks like α = 1.4 is a very good fit to the data. With
this method, the BCI data deviated the most from the METE prediction for the datasets
considered in Chapter 8.3 of Harte (2011).

To fit the free parameter α more rigorously, we maximize the log-likelihood of the density
dependent distribution given n and n0 from the data. We obtain α = 1.12, which by eye
does not appear to be as good of a fit to the rank ordered data.

The log-likelihood values from the rank-ordered best fit α, the maximum log-likelihood
α, as well as random placement and METE are given in Table B.1. Note that even though
our model with α = 1.4 looks like it has a much better fit in Fig. B.1A, the log-likelihood
is very close to that of METE, whereas α = 1.12 provides a much better fit to the data in
terms of maximizing log-likelihood.

Unfortunately, rank ordering the results from the distribution draws in Fig. B.1A hides
the likelihood of individual points and ignores the effect of n0. The rank ordered plot assigns
the same weight to each data point, whereas maximizing the log-likelihood considers how
likely each data point is. This is particularly problematic for rank ordering as the probability
distribution itself changes with n0, but Fig. B.1A puts all points on the same plot by fraction.
This is misleading since the distribution itself depends on both the fraction n/n0, and n0.

We show this more explicitly in Fig. B.1B, which is similar to Fig. 2.3 in the main text,
and shows the fraction and abundance together on one plot with 95% probability contours
of each distribution overlayed. We can see that with increasing n0, the random placement
model narrows very quickly to having most of its probability weight around 0.5, whereas the
METE contours are very wide. We can see that the BCI data does narrow with n0, but not
as much as predicted by random placement.

Most important for this section, we see that the contours for α = 1.4 narrow much faster
than the data, and many individual data points fall outside of the contours, particularly at
moderate to high abundance. The individual points that fall outside of the contours have
very low probability, and so when maximizing log-likelihood we obtain a smaller value of
α where more of the points fit within the 95% contour intervals. This method is preferred
to rank ordering, as it accounts for the likelihood of individual points and the probability
distribution’s dependence on n0.
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In summary, rank ordering by fraction obscures the abundance data as it only presents
the fractions and does not properly account for how the distribution depends on n0, or the
likelihood of individual points. We do not recommend rank order comparisons across data
with different n0, and instead recommend maximizing log-likelihood.
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B

A

Figure B.1: Rank ordered fraction comparison of METE, random placement, and our density
dependent model. By eye, (A) seems to indicate that our model with α = 1.4 is a much
better fit compared to the maximum likelihood value of α = 1.12. In (B), we plot the BCI
data with the fraction in one half of the bisection versus the total abundance in that bisection.
We overlay this data with the 95% contour intervals for each probability distribution at each
n0. We see that many individual data points, particularly at moderate to high abundance,
fall outside of the 95% contour intervals for α = 1.4, which is why the maximum likelihood
approach prefers the smaller value of α = 1.12.
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Model Log-likelihood
METE -729

RP -963
α = 1.4 -718
α = 1.12 -660

Table B.1: Log-likelihood values for the BCI data set for the three different models, including
the by eye fit to the rank ordered plot and the maximum likelihood estimate of α. Despite the
good apparent fit in the rank ordered plot, here we see that a maximum likelihood approach
prefers a smaller α.
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B.3 Error in recovering α

To test how well we could fit for a known α using our methods, we directly simulate the
placement and death processes in Eqs. 2.4 and 2.6.

In our simulations, we start with n0 = 40 and then assign a random initial n. We
simulate 500 placements and deaths with α = 1.2 and take the final n, repeating this p times
to simulate the number of observed points (e.g. species at a single bisection). We then obtain
the maximum likelihood α.

Figure B.2 shows the results of these simulations. Figure B.2A shows explicitly how the
error scales with the number of points p, and Fig. B.2B shows the mean α we recover with
standard deviations from 5 runs at each number of points.

A B

Figure B.2: The error in recovering α from our simulation scales as 1 over the square root of
the number of points p. This is shown explicitly in (A). (B) shows the value and standard
deviation of α that we recover from a simulation with a known α = 1.2 (the thick black line).
The number of points on the x-axis is analogous to the number of data points we observe in
data, and the standard deviation is obtained from doing 5 simulations with that number of
runs. We simulated with p = {10, 50, 100, 500}.
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B.4 Relating to the binomial distribution

One way to understand why Eq. 2.9 approaches the binomial distribution for large n0 is to
rewrite Eq. 2.9 as:

Πα=2(n) =

(
4(n− n0/2)2

n0(n0 + 1)
+

n0

n0 + 1

)
BD(n, n0, 1/2). (B.6)

The first term in the parentheses is 0 at n = n0/2 and approximately 1 (given n0

n0+1
≈ 1) at

n = {0, n0}, and the second term is approximately 1. This means that there is a factor of
2 increase compared to the binomial in the tails of the distribution near n = {0, n0}, but
around the center the two distributions look identical. Since the tails are already so small
at large n0, this factor of 2 isn’t really noticeable and so this distribution looks very similar
to the binomial distribution.
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B.5 Relating to the negative binomial distribution

The negative binomial distribution is very common in ecological modelling (Bliss and Fisher
1953; He and Gaston 2000; He and Gaston 2003), and many ecologists are familiar with the
k parameter as a measure of aggregation. A standard way to write the negative binomial
distribution is

NB(n|p, k) = (1− p)npk Γ(n+ k)

Γ(n+ 1)Γ(k)
, (B.7)

where p is a parameter that relates to the mean µ of the distribution as µ = k(1− p)/p.
For a bisection we use the conditional negative binomial distribution, where the negative

binomial is conditioned on a total of n0 individuals. Given n individuals on one side of
the distribution and total number of individuals n0, the corresponding conditional negative
binomial is (Conlisk et al. 2007)

CNB(n|n0, p, k) =
Γ(n0 + 1)Γ(2k)

Γ2(k)Γ(n0 + 2k)

Γ(n+ k)Γ(n0 − n+ k)

Γ(n+ 1)Γ(n0 − n+ 1)
. (B.8)

This distribution is equivalent to random placement as k →∞, and equivalent to METE
when k = 1.

We want to compare this to our distribution, Eq. 2.7. However, we cannot compare
directly as the unknown normalization C depends on α and n0. Instead, we consider only
the n dependence. If we equate it to the Π distribution:

CNB =
Γ(n+ k)Γ(n0 − n+ k)

Γ(n+ 1)Γ(n0 − n+ 1)
∼ nα + (n0 − n)α

(Γ(n+ 1)Γ(n0 − n+ 1))α−1
= Π.

Then we want to solve

Γ(n+ k)Γ(n0 − n+ k) ∼ (nα + (n0 − n)α)(Γ(n+ 1)Γ(n0 − n+ 1))2−α. (B.9)

To ensure this expression makes sense, we can directly consider the limiting cases of
METE and the binomial distribution. The METE distribution corresponds to α = 1 for our
model, and we can see that for the LHS to have the same n dependence this means k = 1,
which as noted above also corresponds to METE for the conditional negative binomial. For
α = 2, which corresponds roughly to the binomial distribution if we ignore the first term
on the RHS (good up to a factor of 2, see Eq. B.6), the n dependence on the RHS drops
out. For this to be true on the LHS, we need k →∞, which makes the conditional negative
binomial equivalent to the binomial distribution. This means both limiting cases in Eq. B.9
make sense.

It is analytically challenging to equate the n dependence between these two forms more
generally, however by plotting the two distributions (Fig. B.3) we can see that they are quite
similar for specific k and α values.

We can make some comparison by equating the ratios between two different points n
and n′, eliminating the normalization problem. This is not ideal because we are now only
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equating at two artificial points, and it is possible the distributions are different outside of
that. However, by plotting the distributions (Fig. B.3) we can see that matching the peaks
of the distributions roughly makes the distributions match at large enough n0, so we will use
this approximation.

Taking the ratio gives

Γ(n′ + k)Γ(n0 − n′ + k)

Γ(n+ k)Γ(n0 − n+ k)
=

(n′α + (n0 − n′)α)(Γ(n′ + 1)Γ(n0 − n′ + 1))2−α

(nα + (n0 − n)α)(Γ(n+ 1)Γ(n0 − n+ 1))2−α .

We now equate the ratios of the central points by letting n′ → n0/2 + 1, and n→ n0/2.
This gives

n0/2 + k

n0/2 + k − 1
=

(
1 +

2

n0

)2−α(
1

2

(
1 +

2

n0

)α
+

1

2

(
1− 2

n0

)α)
.

Expanding around large n0 and keeping the first order term gives

k ≈ n0

2

(
α− 1

2− α

)
.

For α = 1, we know k = 1, so we use that as the constant offset to get our approximate
relationship

k ≈ n0

2

(
α− 1

2− α

)
+ 1. (B.10)

Figure B.3 plots the conditional negative binomial distribution with k calculated from
Eq. B.10 compared to our distribution for a range of αs. Our derived approximate relation-
ship results in good agreement between these distributions.
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Figure B.3: Conditional negative binomial distributions (solid lines) with k calculated from
Eq. B.10 compared to our predicted distributions with their corresponding α (dashed lines).
n0 = 50.
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B.6 Comparison to Conlisk et al. (2007)

Using our approximate relationship between α and the negative binomial parameter k,
Eq. 2.10, we can relate α to the φ parameter in Conlisk et al. (2007) at the level of a
single bisection. For a single bisection, the probability distribution derived in Conlisk et
al. (2007) is equivalent to the conditional negative binomial with k = (1 − φ)/φ (see their
Theorem 1.3 and 1.5 with c = 2, and Theorem 2.3 with i = 1). Using Eq. 2.10, we find

φ ≈ 2(2− α)

(α− 1)n0 + 4(2− α)
. (B.11)

Note that this relationship agrees for METE and random placement – when α = 2, φ = 0,
and when α = 1, φ = 1/2. Note also that this relationship depends on n0. This makes it
more complicated to compare their Fig. 6 to our results, as there is no single n0 at each
scale. In order to make this comparison, at each scale we use the median n0 across quadrats
and species to relate α to φ. The results are shown in Fig. B.4.

An additional difference between our analyses is our use of a threshold of n0 > 128 for
species to be included in the scaling relationship, and our cutoff of dbh > 100mm rather
than 10mm for the BCI data. However, this does not account for our different scaling results
at the community level. Figure B.5 shows our scaling results without these cutoffs, as well as
the transformed results using Eq. B.11, again using median n0 at each scale. The serpentine
results are largely the same, which makes sense as there are few species with n0 < 128.
While the BCI results change slightly, we still find a difference in scaling compared to Fig. 6
in Conlisk et al. (2007) as BCI looks more random across scales.

Overall, this shows that the scaling patterns we see in the aggregation parameter depend
at least in part on the model of aggregation, and how the data are analyzed. In this case,
the difference between our scaling results at BCI when compared to Conlisk et al. (2007) are
likely due to a difference in how we treat n0 across scales, and in our use of a threshold for
n0.
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Figure B.4: The community α scaling relationship, as Fig. 2.4, where α has been transformed
to φ using Eq. B.11. At each scale, the median n0 across plots and species was used for this
relationship.
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BA

Figure B.5: The community α scaling relationship, as Fig. 2.4, but we have included species
of all abundance (including n0 < 128), and species of all measured dbh (dbh > 10mm).
(A) shows this relationship for α directly, and (B) shows this relationship after α has been
transformed to φ using Eq. B.11. At each scale, the median n0 across plots and species was
used for this relationship.
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B.7 Sampling effect

As noted in the main text, at small spatial scales it becomes difficult to distinguish dif-
ferent patterns of aggregation. More specifically, it is difficult to distinguish aggregation
and randomness when the number of individuals is small. This creates a sampling effect
where patterns are more likely to look random at small spatial scale, particularly when
n0A/A0 << 1 (Harte 2011, pg 63). In our analysis, this sampling effect should not have too
large of an impact. At each spatial scale, we bisect each quadrat, which means A/A0 = 1/2
for all data points. Additionally, as noted in Methods, we used a threshold of n0 > 128 to
avoid too many low abundance cells, as Πα(n) does not depend on α for n0 ≤ 2. Thus, as
long as there are not too many cells with small n0, this sampling effect should be small.

Figure B.6 shows the distribution of n0A/A0 at each scale for each dataset. Since for each
quadrat A/A0 = 1/2, this is the distribution of n0/2 where each data point represents one
species in one qudrat. Note that even at the smallest scale, the median n0A/A0 is greater
than 1 for both datasets.

BA

Figure B.6: The distribution of n0A/A0 at each scale for (A) Serpentine and (B) BCI. Note
that since A/A0 = 1/2, this is equivalently the distribution of n0/2 at each scale, where each
n0 value is the abundance of a single species in a single qudrat at that scale. The boxplots
show boxes from quartile 1 (Q1) to quartile 3 (Q3) with a line at the median. The whiskers
extend to 1.5×(Q3-Q1). The remaining points are plotted as individual circles.
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B.8 Trends in diameter and abundance for BCI data

Each figure in this section displays relationships between α and species characteristics that
may correlate with α. Overall we find that there is a small but significant relationship of
α with the log of abundance, where α and its variance decrease with increasing abundance.
There are no other significant relationships among those tested. The significance of the
regression lines is displayed as a two-sided p-value calculated using a Wald Test with the
null hypothesis that the slope is zero.

Figure B.7 shows the relationship between α and log of species abundance at different
scales, using the BCI data. At smaller scales, the distribution of α is broader and generally
higher, as we found in Fig. 2.2. Note that there aren’t any high abundance high α values.
This relationship is verified by the displayed p-values, where at all scales but the two smallest
p < 0.05. The correlation coefficient r, as well as the slope and its standard error, are shown
in Table B.2.

Figure B.8 shows the relationship between α and the mean dbh for each species at different
scales, again using the BCI data. The correlation coefficients r, the slopes, and the standard
error of the slopes are shown in Table B.3. We still see the trend that at smaller scales the α
distribution is broader, but at no scale is there an apparent relationship between α and the
mean dbh. The relationship at every scale except the finest is very flat. We might expect
that larger species have higher α values at larger scales than smaller species, as they are
competing at a different scale, however we don’t see that effect. It is possible that bisections
are not sufficient to pick up on this difference, or that intraspecies size variation obscures
this trend. Additionally, the range of species’ mean dbh here is only from about 100 mm to
about 500 mm, so it is also possible that we need to consider a much larger range of dbh
before we see this effect. Finally, as mentioned in the main text, it is possible we did not go
to scales small enough to see the difference in aggregation from size variation.

Finally, we can test if the lack of high α high n0 species is a consequence of energy
equivalence. That is, the most abundant species are also the smallest. We didn’t see a trend
in dbh alone, but we may see a trend in species total metabolic rate. For trees, metabolic
rate scales approximately as dbh2. Figure B.9 shows how α scales with the log of the total
metabolic rate of all individuals in a species (which scales as n0×dbh2). Here we see only
one significant relationship at the scale of 64 cells, and at other scales the relationship is not
significant and the slope is small. The correlation coefficients r, the slopes, and the standard
error of the slopes are shown in Table B.4.
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Scale r Slope Std. Error
256 Cells -0.14 -0.22 0.25
128 Cells -0.25 -0.41 0.26
64 Cells -0.34 -0.51 0.22
32 Cells -0.32 -0.30 0.22
16 Cells -0.37 -0.32 0.13
8 Cells -0.33 -0.67 0.31

Table B.2: The correlation coefficients r, as well as the slopes and their standard errors for
the regression lines in Fig. B.7.
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Figure B.7: Species abundance and their corresponding maximum likelihood α value using
the BCI data at a range of spatial scales from 3 bisections to 8 bisections. The absolute
scale is 50 ha divided by the number of cells. The displayed p-value is calculated with the
null hypothesis that the slope is zero using the Wald test.
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Scale r Slope Std. Error
256 Cells 0.29 0.0016 0.0008
128 Cells -0.05 -0.0003 0.0009
64 Cells -0.08 -0.0004 0.0008
32 Cells 0.09 0.0003 0.0005
16 Cells 0.04 0.0001 0.0005
8 Cells -0.01 -0.0001 0.0011

Table B.3: The correlation coefficients r, as well as the slopes and their standard errors for
the regression lines in Fig. B.8.
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Figure B.8: Mean dbh in mm for each species and their corresponding maximum likelihood
α value using the BCI data at a range of spatial scales from 3 bisections to 8 bisections. The
absolute scale is 50 ha divided by the number of cells. The displayed p-value is calculated
with the null hypothesis that the slope is zero using the Wald test.
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Scale r Slope Std. Error
256 Cells 0.11 0.13 0.18
128 Cells -0.24 -0.27 0.18
64 Cells -0.33 -0.34 0.16
32 Cells -0.17 -0.11 0.10
16 Cells -0.23 -0.14 0.10
8 Cells -0.25 -0.34 0.22

Table B.4: The correlation coefficients r, as well as the slopes and their standard errors for
the regression lines in Fig. B.9.
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Figure B.9: Each species’ total metabolic rate scales as n0 ×dbh2, which is plotted against
their corresponding maximum likelihood α value using the BCI data at a range of spatial
scales from 3 bisections to 8 bisections. The absolute scale is 50 ha divided by the number
of cells. The displayed p-value is calculated with the null hypothesis that the slope is zero
using the Wald test.
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