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Abstract

Network science methods can be useful in design, monitoring, and analysis of randomized trials 

for control of spread of infections. Their usefulness arises from the role of statistical network 

models (SNMs) in molecular epidemiology and in study design. Computational models, such 

as agent-based models that propagate disease on simulated contact networks, can be used to 

investigate the properties of different study designs and analysis plans. Particularly valuable 

is the use of these methods to assess how magnitude and detectability of intervention effects 

depend on both individual-level and network-level characteristics of the enrolled populations. Such 

investigation also provides an important approach to assessing consequences of study data being 

incomplete or measured with error. To address these goals, we consider two SNMs: exponential 

random graph models, and the more flexible congruence class models. We focus first on an 

historical use of these methods in design and monitoring of a cluster randomized trial in Botswana 

to evaluate the effect of combination HIV prevention modalities compared to standard of care on 

HIV incidence. We then present a framework for the design of a study of booster vaccine effects 

on infection with, and forward transmission of, SARS-CoV-2 variants. Motivation for the study 

is driven in part by a guidance from the UK to base approval of booster vaccines with “strain 

changes” that target variants on results of neutralizing antibody tests and information about safety, 

but without requiring evidence of clinical efficacy. Using designs informed by our agent-based 

network models, we show it may be feasible to conduct a trial of novel SARS-CoV-2 vaccines in 

a single large campus to obtain useful information regarding vaccine efficacy against susceptibility 

and infectiousness. If needed, the sample size could be increased by extending the study to 

a small number of campuses. Novel network methods may be useful in developing pragmatic 

SARS-CoV-2 vaccine trials that can leverage existing infrastructure to reduce costs and hasten the 

development of results.
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Introduction

This paper discusses how new network methods can contribute to design, monitoring and 

analysis of studies that help in controlling infectious diseases—with applications to SARS-

CoV-2 and HIV infections. Below we discuss how novel network methods were used in the 

design of the Botswana Combination HIV Prevention study (BCPP), and how they might 

be useful in design of studies of efficacy of novel COVID-19 vaccines on susceptibility 

(V ES) and infectiousness (V EI). This is unlikely to be resolved soon; as Borio et al. 

noted: “As with yearly influenza vaccines, an updated formulation targeted to the circulating 

[SARS-CoV-2] variants will likely be needed to maximize protection from infections and 

severe disease.”.1 To illustrate our ideas, we consider issues that would arise in designing 

a pragmatic trial of COVID-19 vaccine effects in a college campus setting. An institution 

with congregate living may be appropriate for such a trial, because a high proportion of 

transmissions might occur within the institution and because data needed to guide study 

design might be available.

Three questions arise with regard to development and implementation of novel vaccines: 1) 

when should currently available vaccines be replaced by others that target new variants?, 2) 

what variants should be targeted?, and 3) What categories of people at risk should receive 

the new vaccine (as initial vaccination or booster)? To help address such questions, extensive 

analyses of immune correlates protection from the mRNA-1273 SARS-CoV-2 Vaccine have 

been performed.2 Their results suggest both that such correlates are likely to play a valuable 

role in formulating policy regarding implementation of SARS-CoV-2 vaccines against newer 

variants and that obtaining clinical evidence of these effects might aid in clarifying exactly 

what this role should be. As Gilbert et al. noted, the estimated percentage of vaccine effects 

mediated by immune correlates appears to compare favorably to those for influenza.2

Additional clinical studies might help in assessing the reliability of decisions based on 

immune correlates or other laboratory measures. For example, Kennedy-Shaffer et al. 

developed methods to estimate vaccine efficacy against infection via effects on viral load; 

such methods are unquestionably of value, but they require an assumption that vaccine 

affects per contact infectiousness only through viral load and other measured covariates—

and that the functional form of relationship is known.3 New studies would be useful for 

goals like: a) prediction of efficacy based on neutralization (and perhaps other laboratory) 

data, and–our focus in this paper– b) direct clinical validation of the public health benefit of 

variant-targeted vaccines developed on the basis of their ability to neutralize variants.

To ground our proposal in published research, we first note that there is a broad literature 

on design of studies intended to investigate V ES and V EI. Halloran et al. (2010) 

defined these quantities and provided several possible designs for estimating them. An 

important goal of such studies is to estimate the indirect effect of vaccination of the 

study participants on protecting the other household members.4 The authors noted that 
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V EI, can be estimated epidemiologically by computing the ratio of 1) the per-contact 

frequency of transmission from vaccinated people who become infected and 2) the per-

contact transmission frequency from unvaccinated people who become infected. As they 

also noted, to evaluate V EI generally requires knowledge of transmission events, which 

may be observable in settings such as households or partnerships in which contacts can be 

defined.5 One of their proposals sets randomized designs in mini-communities (mini-cohorts 

of people in a small transmission unit exposed to an infectious case). For example, one 

might randomize household members in households of an exposed case —at the individual 

member or household level.6 Another proposed approach is an augmented study design, in 

which individuals are recruited from households of randomized index subjects in a vaccine 

trial, whether or not the index subject becomes infected. Yang et al. (2009) proposed 

a Bayesian model for evaluating antiviral efficacy in household studies for a variety of 

possible endpoints related to susceptibility and infectiousness.7 Determining the best design 

can be challenging because of the complexity of the transmission networks and of the 

ongoing evolution of viral variants; therefore, as we discuss below, evaluating the properties 

of different design choices will depend on proper simulation studies.

This paper is organized as follows. We first discuss how novel network methods are useful 

in development agent-based models, and provide an application related to the design of 

the Botswana Combination Prevention Project (BCPP), which evaluated the benefit of 

combination HIV prevention methods. We then illustrate the use of novel network methods 

that can aid in the design of studies evaluating COVID-19 vaccines. Our focus is on 

designing a pragmatic study on the University of California San Diego (UC San Diego) 

campus, making use of available data and models of SARS-CoV-2 transmission on campus. 

We provide a simulation study of a COVID-19 vaccine trial based on development of an 

agent-based model, and then discuss how implementing such a trial in practice would benefit 

from new methods for combining information across different sources to make inference 

about transmission networks. Finally we describe some alternative approaches to evaluation 

of vaccines, based on novel network methods.

Network Methods and Agent Based Models

Network methods can be useful in design, monitoring, and analysis of cluster randomized 

trials for control of spread of viral infections. This usefulness grows out of the 

role of statistical network models in molecular epidemiology and in design of cluster 

randomized trials. Agent-based models (ABMs)–simulations of actions and interactions 

among autonomous agents to assess their effects on entire systems–have been used to 

guide study design.8 In our setting, the agents spread a virus through interactions, which 

collectively are referred to as a contact network; the propagation of the disease over a 

contact network is the focus of simulation. Such interactions include not only those among 

randomized participants in the study, but also those between these participants and people 

who are not enrolled in the study. Evaluation of vaccine efficacy against susceptibility will 

depend on consequences of interactions among randomized participants as well as between 

randomized participants and others.
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Network methods based on models of propagation of virus on transmission networks are 

particularly useful in the evaluation of the impact of interference across randomized unit; 

interference occurs when the randomization status of one randomized unit impacts the 

outcome in a different randomized unit.9 This is important because interference impacts 

power and interpretation of results. For example, the design of the Botswana Combination 

HIV Prevention Study (BCPP) was based on a simulation of interference across 30 villages 

randomized to intervention vs control.8 We also consider a framework for studying the effect 

of booster COVID-19 vaccines in a university setting compared to a two-dose series, in 

order to investigate the feasibility of conducting pragmatic trials of the clinical effects of 

booster vaccines with “strain changes” selected on the basis of neutralizing antibody tests. 

As we describe below, development of such studies would require dealing with error in 

ascertainment of attribution of transmission events. In this regard, we discuss how this error 

might be accommodated in analyses by using new network methods applied to data on 

genetic distances between infection, geographic proximity, residence and other factors.

Use of an ABM in Study Design: Botswana Combination Prevention Project

The BCPP was a cluster randomized trial to compare a combined HIV prevention 

intervention to standard-of-care using a cluster randomized trial of 30 villages (clusters) 

in Botswana.10 Wang et al. (2014) made use of an agent-based model (ABM) of HIV spread 

to aid in the design of this study.8 To do so, the authors simulated the village-level impact 

of the intervention and investigated how network structure within and across randomized 

units (villages) affected power of the study. Much of this investigation focused on the 

impact on power of the proportion of partner pairs in which the two members resided in 

different villages assigned to different conditions, thereby resulting in spillover effects. The 

ABM described above was used to investigate this issue. Parameter values in the model 

were based on published results and information available from a pilot study in Mochudi, 

Botswana.11,12,13,14,15,16

In creating the ABM, the level of sexual mixing among the villages was highly relevant; 

increasing levels of mixing between intervention and standard-of-care communities would 

be expected to reduce the difference between them in cumulative incidence. Only a 

limited amount of information about such mixing was available, and it was known with 

considerably uncertainty. To address this concern, Wang et al. used a class of models that 

had been recently developed–congruence class models–which can accommodate uncertainty 

in network structure (e.g., number of relationships spanning across villages).17 These models 

form a broad class that includes as special cases several common network models, such as 

the Erdős-Rényi-Gilbert model, stochastic block (SB) model and many exponential random 

graph models (ERGMs). A congruence class model is defined by (1) a network property 

or set of properties (such as degree distribution) and (2) a probability mass function on the 

congruence classes defined by values of the network property or properties. congruence 

class models do not impose any constraints on specifying the probability distribution 

associated with network properties included in a model. This flexibility allowed for the 

generation of networks for design of the BCPP study that are consistent with estimated level 

of mixing between pairs of communities as well as the uncertainty of these estimates.8
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Using a simulation study based on the ABM based on a congruence class model, Wang 

et al. concluded that 15 clusters per arm and 500 member of a cohort in which incidence 

was measured would provide 95% power to detect the projected difference in cumulative 

HIV incidence between standard-of-care and intervention villages (3.93% and 2.34%) at the 

end of the third study year, assuming a coefficient of variation (standard deviation of cluster-

specific incidence rates divided by their mean) of 0.25. At the end of the study, a total of 

57 participants in the intervention group and 90 in the standard-care group acquired HIV 

infection (annualized HIV incidence, 0.59% and 0.92%, respectively). The HIV incidence 

ratio in the intervention group compared with the standard-care group was 0.69 (p = 0.09, by 

permutation test; 95% confidence interval [CI], 0.46 to 0.90 by pair-stratified Cox model).10

This ABM was also used during the course of the study to aid in decisions about study 

adaptations to changes in policy. In fact, while the trial was ongoing, the national treatment 

guidelines changed: the Botswana Ministry of Health recommended in 2016 that all HIV-

positive patients, regardless of CD4 count or viral load levels, initiate antiretroviral therapy. 

This guideline change caused the standard care received in the control communities to 

become more similar to that in the intervention communities, raising concerns about a 

reduction in intervention effect that would adversely affect the study power. Based on a 

revision to the ABM that incorporated baseline and implementation process data collected 

during the study as well as the effect of treatment guideline changes, the study team revised 

the projected intervention effect. This effect and the incidence rate in the control arm were 

essential parameters in the conditional power analysis.18 In addition, the agent-based model 

could be used to evaluate the impact of changes in study duration on power. The flexibility 

of the congruence class model-based ABM enabled the study team to guide decisions on 

how best to modify the study to adapt to changing conditions.

One useful feature of the congruence class model it allowed investigation of the impact of 

network features that the study team feared could impact power but about which nothing 

was known. Of particular concern was degree assortativity –the extent to which people with 

many partners have partners that do as well–that has been shown to impact the extent to 

which network structures are robust (i.e. remain relatively unaffected) to removal of high 

degree nodes.19 The implication of this finding is that degree assortativity might potentially 

impact the total effect (indirect and direct) of treatment as prevention. congruence class 

models have the ability to vary levels of degree assortativity without modifying the marginal 

probability distribution of other network properties included in the model, such as degree 

distribution and mixing across communities. This feature permits isolation of the effect of 

degree assortativity on HIV incidence in each arm; and, hence, on the intervention effect. 

Figure 1 shows that the simulated incidence of HIV from the model does not vary based on 

degree assortativity, suggesting that accurate information about degree assortativity was not 

necessary for reasonably accurate estimates of power.

Data and Study Design

UC San Diego COVID-19 Databases and ABM

We consider a study to evaluate efficacy of two different booster vaccines that makes 

use of the extensive infrastructure for COVID-19 monitoring which has been developed 
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at the University of California, San Diego. This infrastructure supports the collection of 

multiple different data types in real time. Currently existing databases contain the following 

information:

1. Testing and vaccination data

2. Residence location, class registration, athletic team participation (which provide 

information on potential contact network)

3. Contact tracing information

4. Wastewater testing at high resolution and frequency

5. Molecular sequencing of individuals and wastewater, both on campus and among 

the broader San Diego community

6. Isolation and quarantine location and status

Overlaying the above information regarding plausible contacts (e.g., common residence, 

classroom, or athletic team) on molecular sequencing trees permits ascertainment of types 

of contacts that are associated with transmission events. This effort is aided by a wastewater 

monitoring program that tests wastewater daily from about 340 buildings on campus. This 

high resolution and high frequency sampling combined with PCR testing is highly effective 

in providing early detection of infections– 85% of individual infections are detected earlier 

in the wastewater than in the individual test, even in the presence of weekly or biweekly 

asymptomatic testing.20 Novel software allows for the resolution of multiple viral strains 

from wastewater.21 Of particular importance for this investigation is the ability to detect 

emerging variants of concern days or weeks earlier compared to clinical samples as well 

as the presence of minor variants not detected in clinical samples. Phylogenetic analysis 

of wastewater and individual clinical samples revealed several small transmission clusters 

associated with campus residence, thereby facilitating containment by campus isolation 

protocols.21 Hence, the extensive integrated data system provides data to inform agent-based 

modeling as well as to identify likely transmission events.

Goyal et al. (2021) made use of the information described above in developing an agent-

based network model of SARS-CoV-2 transmission to assess the potential impact of 

strategies to reduce outbreaks at the UC San Diego.22 They developed a SARS-CoV-2 

transmission model that incorporates important features related to risk at UC San Diego, 

such as community composition (staff, faculty, and students on or off campus), campus 

residential configuration, and course registration. Details regarding the model are described 

in the above-referenced paper, but we summarize briefly here. The model includes 39,500 

students (33,000 undergraduates and 6,500 graduates) who may live either on- or off-

campus, as well as an estimated 18,900 faculty and staff expected to work on campus in 

Fall 2021. Each on-campus student is assigned a room in a UC San Diego residential hall. 

Based on status as undergraduate or graduate student, each student was assigned classes 

using UC San Diego’s class registration or alternative instructional scenarios, developed in 

conjunction with UC San Diego administrative officials. Faculty were each assigned to teach 

one class. The model simulates an individual’s progression through seven disease stages 

(from exposure to recovery). Transmissions among students, staff, and faculty occur through 
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interactions defined by the contact network. One limitation of the model is its failure to 

take into account uncertainty in estimates of network features. Such an accounting would be 

required to evaluate how such uncertainty impacts uncertainty in model-based projections of 

intervention effects. We note that approaches using congruence class models, such as that 

described in the Botswana agent based models above, could address this issue.

The model has been, and continues to be, used to guide policy–in particular regarding 

the UC San Diego “Return to Learn” COVID-19 mitigation strategy as well as similar 

efforts across University of California Campuses. Within UC San Diego, the modeling 

results are regularly presented to the Chancellor, Return To Learn Steering Committee, and 

University Cabinet. The model has been used to inform decisions surrounding asymptomatic 

testing frequency, vaccination recommendations, campus residential and non-residential 

building density, classroom modality and size limits, masking requirements, isolation and 

quarantine housing need, and the nature of the wastewater monitoring program itself. The 

results have also been presented to the University of California system-wide Return to 

Campus Workgroup to inform recommendations regarding asymptomatic testing frequency 

and vaccination.

UC San Diego booster study design

Our pragmatic study uses a design in which students are individually randomized; 

performance of alternative designs in which the unit of randomization is at the residential 

level (room, suite, floor) could also be investigated using the same ABM. Participants are 

randomized to standard of care, standard mRNA booster, or a hypothetical strain-changed 

booster. We use phylogenetic analyses of recent campus infections to identify:

1. Variants of Concern —variants that may result in altered vaccine efficacy.

2. Clusters of identical, or nearly identical, sequences - collections of sequences 

that differ by at most one nucleotide change from the earliest sequence in the 

cluster.

From all study participants, we collect information on vaccination history and clinical 

history. During the study period, we sequence all new infections among people who study 

or work on campus and assign each to an existing cluster (if such exists) and to a variant 

of concern. If a new infection presents with a genetic sequence that differs by more than 

one nucleotide change from any other sequence identified during the study, this sequence 

will serve as the “seed” for a new cluster. We monitor the growth of such clusters of people 

within each arm—as well among all students/employees on campus not in the study. All on 

campus are requested to test daily.

Primary Study Endpoints:

1. Infection with SARS-Cov-2 among randomized cohort.

2. Transmission event from randomized participant to others on campus (student, 

faculty or staff)—-whether in randomized cohort or not.

In practice, we would identify transmission pairs (with uncertainty) using the information 

from items 1–6 in the UC San Diego COVID-19 database. We use contact information as 
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well as viral genetic data and dates of testing to reduce the set of plausible transmission 

pairs. We note that because of the relatively slow rate of mutation of SARS-CoV-2 virus, 

viral genetic information alone may not be sufficient to identify transmission events. Genetic 

information can be very useful, however, in ruling out transmission events between pairs of 

people whose viral sequences have more than a single nucleotide change. Below we describe 

a method for using the totality of available data in analyses of vaccine efficacy. When there 

is more than one potential source partner for a given transmission, we propose weighting 

putative transmission pairs based on strength of evidence for that transmission event. For 

example, this type of analysis might place higher weight on same-sequence roommates 

infected a few days apart than to same-sequence pairs who only share classrooms. Such 

analyses might be used as part of the primary analysis itself, or be provided to an 

adjudication committee that reviews all available information to further reduce the set of 

plausible transmission pairs.

Simulation Study

To simulate the spread of SARS-CoV-2, we use the UC San Diego COVID-19 model 

described above.22 The simulation uses the demographic characteristics of the UC San 

Diego population based on Fall 2021 data. This includes the number of students, staff, and 

faculty returning to campus as well as the number living in residential housing and taking 

in-person courses. Given the high rates of vaccination among the UC San Diego community 

(greater than 90%), we assumed–for the simulation–that all individuals were vaccinated, 

but none had received a booster. We simulated a three-arm randomized trial, where only 

the students (undergraduate and graduate) were assigned to the study arms; enrolling only 

students might make the study easier to implement in practice. Our simulation proceeds 

by randomizing allocation to Arm 1: standard of care (i.e., COVID-19 vaccination without 

booster), Arm 2: booster with current vaccine, and Arm 3: a hypothetical strain-change 

booster (modified based on the primary circulating COV). The trial was simulated for the 

duration of a UC San Diego academic session (80 days). We note that we do not model 

the important impact of waning vaccine efficacy during the trial. The precise impact of 

waning efficacy on power would depend on the exact timing of the vaccinations, the follow-

up period, and the background incidence of SARS-CoV-2 infection. Estimates of vaccine 

efficacy would be averages over time and background incidence. Lower levels of incidence 

during time periods in which vaccine efficacy had been reduced would have less impact on 

power and on estimates of efficacy than if incidence was low when vaccine efficacy was 

highest.

Analytical Methods

A primary goal of our analyses is estimation of booster vaccine efficacy against 

susceptibility to infection, V ES, which measures the direct preventive effect of the booster 

vaccine on the population of interest. An equally important goal is estimation of booster 

vaccine efficacy against infectiousness V EI, defined as the reduction in onward transmission 

from an infected person who had received the booster compared to that from an infected 

person who had only the 2-dose vaccine regimen. We define these effects to be similar to 

those in Kahn et al. and Halloran et al, below.23,4
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1. V ES= 1- θ, where θ = the risk ratio of becoming infected with SARS-CoV-2 

comparing the boosted arm to the 2-dose vaccine alone arm.

2. V EI = 1- Φ, where Φ = the relative infectiousness of a boosted person compared 

to person on 2-dose regimen, both of whom become infected on study.

For each simulated experiment, we estimate θ from the observed number of infections at 

end of follow up and sample size in each arm. Φ is estimated by the ratio of the number 

of onward transmissions per infected person in the boosted arm to that quantity in 2-dose 

arm: [(# infected by booster recipients)/(# infected booster recipients)]/ [(# infected by 

2-dose recipients)/(#infected 2-dose recipients)], where # refers to observed number. In the 

simulation, estimation of V EI is based on our complete knowledge of the transmission 

network. Approaches to dealing with uncertainty in the ascertainment of transmission pairs 

as well as direction of transmission are discussed below.

Another quantity of interest–particularly for public health recommendations from such a 

trial–is the count of all of the infections attributed directly to a randomized participant 

(whether or not the infected person is a participant in the randomized study) plus 1 to 

include infection of that participant. We refer to this quantity as TN; it takes value 0 if the 

randomized participant was not infected. The booster effect on this quantity, V ETN = E(TN|

Z = 1) − E(TN|Z = 0), where Z is an indicator of the randomized assignment. The endpoint 

can be interpreted as the number of infections directly prevented by boosted vaccination.

We can also use our model to simulate the effect of vaccinating all study participants 

with booster compared to providing no booster vaccination. This effect includes both direct 

and indirect effects of vaccination. Carnegie et al. (2014) demonstrated that, in special 

cases, analytical solutions could be found for estimating the causal estimand of interest–

difference in outcome when treating all compared to treating no participants–using data 

from randomized trials.24 Such solutions require models for the spread of a microbe as 

well as times to event (not considered here); Carnegie et al. considered a simple susceptible-

infected (SI) model.24 In the absence of such analytical solutions, our approach allows 

us to investigate the impact of different study designs and levels of vaccine efficacy on 

this important causal estimand through simulation. We could use this same approach to 

provide model-based projections of this causal estimand, using data from an actual study to 

parameterize the ABM.

Inference

We consider permutation tests (achieve through re-randomization) to test the null hypothesis 

of no booster effect on either susceptibility or infectiousness, that is, V ES = V EI = 0. The 

test statistic might be a weighted average of V ES and V EI, the estimated V ES and V EI. 

The weights can depend on the public health questions of most interest. For example, if 

interest lies primarily in infectiousness, one might put weight of 1 on V EI, which is most 

sensitive to departures of V EI from 0. We note the standard re-randomization tests for the 

composite null hypothesis of V EI = 0 (i.e., V ES is left unspecified) in general would not 

be expected to control the nominal Type I error rates because of the difficulty of isolating 

the vaccine effect on infectiousness of the randomized index from its effect on susceptibility 
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(infected participants are a subset of all randomized participants). Nonetheless, we can use 

different test statistics to gain insight regarding vaccine effects.

We also consider another test statistic, which is the estimated booster effect on TN, V ETN. 

Permutation tests based on V ETN will be sensitive to alternatives for which either V ES or V 

EI is not 0, because this test statistic captures between-arm differences in both infection and 

onward transmission.

Interpretation of results is enhanced by considering results of all tests jointly. If the 

permutation test based on V EI provides strong evidence to reject the null hypothesis but one 

based on V ES fails to reject, this would be suggestive of a booster effect on infectiousness 

rather than susceptibility. We note that the available vaccines could potentially be effective 

against severe disease caused by the Omicron variant, but less so against susceptibility; 

if prevention of severe disease were associated with shorter periods of infectiousness, this 

scenario may be plausible. For control of the pandemic, V ETN may be of special interest, as 

it reflects all infections prevented by the vaccine that arose either through the infection of the 

randomized index or direct transmissions from the index after infection.

Simulation Study Results

In our simulation study, we consider 3 different scenarios for booster vaccine efficacy: 1) V 
ES = 0, V EI ≠ 0, 2) V ES ≠ 0, V EI = 0, and 3) V ES ≠ 0, V EI ≠ 0. The study has 3 arms: 

a) standard of care, b) booster with currently available vaccine, c) booster targeting new 

variants. Each of the 3 scenarios is assumed to be represented in one the 3 possible pairwise 

comparisons. Scenario 1 corresponds to comparison of arms 2 and 1; scenario 2, to arms 3 

and 2; scenario 3, to arms 3 and 1. To simulate clinical trials according to these assumptions, 

we set V ES for the currently available booster (Arm 2) compared to standard of care (Arm 

1) to be 0, and the V ES for the booster targetting new variants (Arm 3) compared to the 

standard of care (Arm 1) to be 0.9; this results in V ES comparing Arms 3 and 2 also having 

value 0.9. As our goal is illustration of our ideas rather than a final proposal of a specific 

study, these choices are somewhat arbitrary. The motivation for these particular choices is 

the magnitude of V ES effects against the Wuhan variant observed in studies of licensed 

vaccines. The V EI for the currently available booster compared to standard of care is set 

to 0.75, as is the V EI for the new booster compared to standard of care; this results in the 

V EI comparing Arms 3 and 2 having value 0. This choice reflects the concern that using 

vaccines to prevent onward transmission may be particularly challenging. We investigated 

four settings (denoted as S1 – S4). The first (S1) is a randomized comparison of the effects 

of interest for 5000 participants per arm. The remaining scenarios (S2-S4) simulate the 

effect of vaccinating all students in the UC San Diego campus community with one of the 

vaccine arms:

(S1) Randomized trial with 5,000 participants per arm.

(S2) All students receive standard of care (Arm 1).

(S3) All students receive currently available booster (Arm 2).

(S4) All students receive booster targetting new variants (Arm 3).
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To assess our ability to estimate our primary effect measures (V ES and V EI), we conduct 

10 replicates for the scenario S1. Figure 2 presents boxplot results of vaccine effect 

estimates for susceptibility of infection (V ES) and infectiousness (V EI) comparing Arms 2 

to 1, Arms 3 to 1, and Arms 3 to 2. The dashed lines represent the values of V ES (0 and 0.9) 

and V EI (0 and 0.75) used in the simulations.

The mean difference in the estimates of V ETN are −0.05 (range: −0.04 to −0.07), −0.13 

(range: −0.11 to −0.16), and −0.09 (range: −0.07 to −0.09) for Arm 2 to Arm 1, Arm 3 to 

Arm 1, and Arm 3 to 2, respectively. As expected, the difference from zero was greatest 

for the estimate of V ETN that compared Arms 3 to 1. The fact that the estimated V ETN 

comparing Arms 3 to 2 is larger in magnitude than for that comparing Arms 2 to 1 suggests 

that the V ETN depends more on V ES than on V EI in our simulation study; nonetheless, 

both V ES and V EI contribute to V ETN. The large variability in V EI comparing arms 3 

and 2 arises from the large V ES effect that reduces the number of infections and therefore 

transmissions in arm 3. In this type of setting, V ETN may be particularly useful for 

evaluating the potential public health impact of vaccine effects.

Overall 6.1% of the entire simulated population is infected when the study enrolls 5,000 

people per arm (Scenario S1) over an academic session of 80 days across the 10 simulations. 

When all students are given a booster, the percent infected is 2.9% (S3) for the currently 

available vaccine, and 0.8% (S4) for vaccine targetting new variants. The incidence of 

infection is considerably lower for either of these scenarios than for that in which no one 

receives a booster (S2)–which results in infection of over 9.3% of the population (see Figure 

3).

We perform permutation tests in the scenario where each arm has 5000 participants by 

permuting the vaccine status of the study participants 1,000 times. We compared the 

simulated outcome values to each of the permutations to calculate p-values. This procedure 

was replicated 10 times on 10 different simulated datasets. We note that this randomization-

based test procedure protects type I error control despite the dependence across outcomes 

that arises from the network-based simulation of epidemic spread. Wang and DeGruttola 

(2017) performed a simulation study of cluster randomized trials with correlated outcomes 

across randomized units, which showed protection of type I error control.25

The mean p-values across the 10 replicates using V ES as the test statistic were 0.001 for 

comparisons Arms 3 vs 1 and Arms 3 vs 2; for the comparison between Arms 2 vs 1 the 

mean p-value was 0.211. Using V EI as the test statistic, the mean p-values comparing Arms 

2 vs 1 and Arms 3 vs 1 were 0.001 and 0.023, respectively; that comparing Arms 3 vs 2 

was 0.095. The mean p-values based on V ETN comparing Arms 2 vs 1, Arms 3 vs 1, and 

Arms 3 vs 2 were 0.001. Because V ETN–which assesses the reduction in the number of 

transmissions associated with each randomized index–includes the index as well as the count 

of the people who were infected by this index, it provides a summary measure that includes 

effects against susceptibility and infectiousness.
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Combining Evidence to Accommodate Uncertainty in Transmission 

Networks

Estimation of V EI and V ETN based on a study like the one we describe requires the 

ability to identify the pair of individuals associated with each transmission event. In some 

cases, this is possible with near certainty; however, in many situations there is ambiguity 

about the event of occurrence of transmission and about which of the pair was the source of 

the virus. To deal with such uncertainty requires assessment of the probability of detecting 

transmission events as well as the accuracy of identifying the transmission partner pairs. 

Simulation studies can provide a basis for investigating the effect of varying strategies (e.g., 

increased testing) on this degree of accuracy as well for assessing the value of additional 

information to improve it. Such assessment requires integration of multiple sources of 

information, including the items listed as 1–6 in the UC San Diego COVID-19 Databases 

and ABM section. Wastewater testing may be particularly useful for identifying the potential 

number of un-diagnosed cases, which variants are circulating, and the timing of infections 

that occur before they are detected from individual-level tests. As we describe below, 

simulations using our ABM can be used to evaluate the extent to which the statistical 

analysis can generate reliable conclusions about V E, given errors in the classification of 

transmission events. Of particular interest is investigation of loss of efficiency and bias 

in estimation that arises from errors in inferring transmissions–and the extent to which 

combining across different sources of information can reduce such bias and improve 

efficiency.

Accuracy of estimating not only individual transmission events, but also the entire 

transmission networks, can be aided by making use of the totality of such information. 

Achieving this goal requires a principled method to integrate multiple data sources. There 

have been important statistical developments that can aid in such efforts; for example, 

methods for estimating covariate effects on hazards of infectious contact using phylogenies, 

epidemiological data, and knowledge about the contact network.26 Such methods work 

can be used to estimate V E. While complete knowledge of the contact network is 

rarely feasible, the shape of a phylogeny has been show to strongly depend on the 

contact network structure.27 Inference about contact network structure from epidemiological 

data has also been described (e.g., times of infection).28,29,30 Although these approaches 

focus on contact networks, they nonetheless apply to transmission networks as well. In 

either case, the Bayesian inference approach uses a Markov chain Monte Carlo (MCMC) 

algorithm, which makes it possible to sample networks from their posterior distribution. 

The most recent published work is based on the family of ERGMs, which provides more 

flexibility than previous approaches by allowing the inclusion of covariate information 

(such as place of residence).31 Recently novel methods were developed to for estimation 

of ERGM parameters from ego-centric data obtained in surveys of risk behavior.32,33 In 

order to integrate information from such surveys into analyses that use viral sequence 

and epidemiological data, however, the estimates from Krivitsky et al. (2022) need to be 

incorporated as prior information in the MCMC algorithm proposed by Groendyke et al. 

(2012).30 We know of no available methods for doing so. Furthermore, as mentioned by 

Groendyke et al., there are computational limitations of the approach that restrict estimation 
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of properties for contact networks to dyadic independent properties, thereby precluding 

exploration of dyadic dependent network properties, i.e., dependency across edges (dyads) 

between pairs of nodes.30 Dyadic dependent properties include degree distribution and 

clustering, which have been identified as essential for understanding infectious disease 

transmission dynamics.34

To develop an approach that can integrate the multiple data sources as well as investigate 

dyadic dependent network properties, we propose use of congruence class models. By 

calculating the relative probability of transmission based on the sample from the posterior 

distribution of the congruence class model model, we can estimate the relative probabilities 

of transmission by each possible source partner for each plausible transmission pair–that 

is, the probability of a given directed edge representing the source of infection of a given 

participant. We can use these probabilities to marginalize estimates of V EI over all plausible 

transmission pairs (see Montezeri et al., 2020).35 Such a method is essential for efficient use 

of resources to estimate V EI. Current approaches can rely on a committee to evaluate which 

transmission pairs are and are not valid. But in fact each decision can affect subsequent 

decisions, because of the nature of transmission networks. Furthermore, transmission pairs 

known with certainty are included in analyses in the same way as those that remain 

speculative–again reducing efficiency of estimation and causing variance estimates to be 

too optimistic.

Alternative Approaches to Vaccine Assessment

One alternative approach to estimating booster vaccine effects is based on pairwise 

analyses of transmission event across the entire study population; this approach might be 

particularly valuable if study participants (randomized or otherwise) resided in relatively 

closed communities like those in a university. In a two arm study of, say, strain-changed 

booster (arm 1) compared to other booster (arm 2), one would estimate 4 parameters 

describing 4 types of transmissions: A infects A; A infects B; B infects A; B infects B. This 

analysis would be straightforward if all of the transmissions were known without error. In 

the more plausible case of ascertainment with error, one might use the approach described 

in the section above on combining evidence for modeling the entire observed transmission 

network. This approach identifies collections of plausible networks that are consistent with 

available data. The method would proceed by estimating transmission parameters of interest 

for each network in the collection. (The transmissions associated with a given minor variant 

would consist of network components–sets of nodes that have no links to any other such 

sets). By modeling the entire network using Bayesian methods of Goyal and DeGruttola,22 

we can estimate a posterior probability for each network in the collection. As described 

above, this permits estimation of posterior means (and associated credible intervals) of the 

transmission parameters of interest by marginalizing over the set of posterior probabilities 

for each network. Testing hypotheses regarding these parameters–for example that onward 

transmission from participants in Arm 1 is different from that for those in Arm 2–can be 

achieved through use of permutation tests.

We note that information about transmission networks estimated at universities across the 

US and elsewhere could serve as prior distributions for such analyses and thereby provide 
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insights that are not available from analyses performed only at the pairwise level. In this 

regard, we can use the totality of such evidence to aid in ascertaining plausibility of the 

properties of entire networks–not simply plausibility of pairwise transmissions. For example, 

if networks tended to be assortative (i.e. infected people who transmit to many others 

tend to infect those who go on to do so as well) then priors for assortative networks 

(e.g. those with a structure that supports superspreadering) could be selected to reflect 

this property. Furthermore, the information from the network observed in the study could 

provide additional evidence in support of a given network property. Another advantage 

of the approach we describe is the ability to handle settings for which there is no local 

information to distinguish among plausible sets of transmission pairs. Consider, for example, 

a setting in which two people infected with viruses with identical genetic sequences attend 

a gathering at which larger numbers of people become infected with the same variant. 

From data obtained from this group alone, there is no way to distinguish among the 

large sets of plausible transmission pairs. Our proposed approaches above might either 

spread the posterior probability mass approximately equally among such pairs– and thereby 

accommodate this uncertainty in the inference on the treatment effect–or make use of the 

totality of information regarding individual characteristics and network structures (mixing 

patterns) to distribute the probability mass in some other way.

In addition to marginalizing across sets of plausible networks to estimate transmission 

network properties related to HIV and Ebola transmission, Montezeri et al. (2020) also 

discussed relationships between phylogenies and transmission networks.35 In their setting, 

as in ours, one source of uncertainty is the time order in which people were infected with 

the pathogen under study. An interesting parallel between phylogenetic and transmission 

networks is that likelihoods for the former can also be based on probabilities of directed 

edges between pairs of nodes (genetic sequences). These probabilities characterize features 

of evolution such as the occurrence of different types of transitions and transversions. 

Further investigation of ways to combine across genetic and other sources of individual and 

network-level information could improve our ability to make use of data collected in studies 

such as the one we propose.

Discussion

This paper investigates pragmatic designs of trials of strain-changed and other vaccine 

boosters in a university setting. (We note that a novel vaccine could be modified in some 

other way.) Our main focus was to demonstrate how novel network methods can aid in 

design, monitoring and analysis of studies. Perhaps most original is the idea of using 

congruence class models in analyses of impact of vaccine on infectiousness. This approach 

allows for marginalization across collections of plausible transmission networks–not just 

over sets of pairs–by allowing for estimation of the posterior probability of each network. 

Doing so may not only make more efficient use of the available data, but also provide 

more reliable estimates of variance of estimated vaccine effects. Therefore, it might not only 

reduce bias (if there is some systematic bias in adjudication of transmission events) but also 

provide more realistic evaluation of uncertainty.
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In vaccine studies, the choice of the null hypothesis is often that V ES is less than or equal 

to some lower bound, below which the vaccine would not be considered as appropriate 

for use in practice. Such tests for V ES can be easily performed using parametric models, 

but permutation tests would be more challenging in this setting and require additional 

assumptions (Rabideau and Wang 2021).36 In addition, isolating the effect of V EI would 

require causal modeling to adjust for the fact that it is only measurable on the subset 

enrolled participants who become infected. To illustrate this point, consider a setting 

in which participants with high exposure to SARS-CoV-2 are less protected by booster 

compared to those with low exposure. Consider also the case where infected people with 

high exposure are more likely to transmit. In this setting, estimators of V EI that condition 

of infection of the index could be biased because of the proportion of infected people at 

high risk of transmission would tend to be greater in the boosted than non-boosted groups. 

Our proposed metric V ETN, which assesses the effect of vaccines in blocking infections 

and direct transmissions that follow from it, is measurable on all randomized subjects. 

It might be useful for assessing the potential of a vaccine to control spread of the virus 

under study. Other approaches for settings in which a large number of people will have 

value 0 for outcomes, include the “chop-lump” tests that assign a score of 0 for uninfected 

individuals and disease severity score that is greater than 0 for the infected individuals. An 

equal number of zeros is removed from both groups, and the test is conducted on the on the 

remaining scores, which are mostly greater than zero.37 We note that it would be useful to 

conduct further investigation of different inference methods, including consideration of type 

I error control, power, and empirical coverage of confidence intervals. Such investigation 

might also include additional simulation studies in a variety of settings.

The college setting for many sites chosen by the NIH-funded CoVPN 3006 study offers 

advantages described above with regard to identifying contacts and engaging entire 

communities. Our proposed trial framework shares some of these features but would 

ideally build on already existing infrastructure for testing (including for wastewater 

testing), information about contact networks, and genetic sequencing. We also believe that 

appropriate use of modern network methods could improve precision and efficiency of 

analyses.
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Figure 1. 
Simulated Cumulative HIV Incidence at Year 3 by Degree Assortativity
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Figure 2. 
Vaccine efficacy for susceptibility to infection (V ES) and infectiousness (V EI) of Arm 2 to 

Arm 1, Arm 3 to Arm 1, and Arm 3 to 2; the dashed lines are the values of V ES (0, 0.9, and 

0.9) and V EI (0.75, 0.75, and 0) used in the simulations of S1.
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Figure 3. 
Percent of individuals infected for each of the scenarios (S1-S4) over an academic session of 

80 days.
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