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ORIGINAL RESEARCH
Microgeographic Proteomic Networks of the Human Colonic
Mucosa and Their Association With Inflammatory Bowel Disease

Xiaoxiao Li,1,2,3 James LeBlanc,2 David Elashoff,4 Ian McHardy,2 Maomeng Tong,1

Bennett Roth,4 Andrew Ippoliti,3 Gildardo Barron,3 Dermot McGovern,3

Keely McDonald,5 Rodney Newberry,5 Thomas Graeber,1 Steve Horvath,6

Lee Goodglick,2,† and Jonathan Braun1,2

1Department of Molecular and Medical Pharmacology, 2Department of Pathology and Laboratory Medicine,
4Department of Medicine, 6Department of Human Genetics and Biostatistics, University of California Los Angeles David Geffen
School of Medicine, Los Angeles, California; 3Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai
Medical Center, Los Angeles, California; 5Department of Internal Medicine, Washington University School of Medicine,
St. Louis, Missouri
SUMMARY

By using metaproteomics of the human colonic mucosal
surface, we found evidence for a proteomic ecology of
millimeter-scale protein networks distinguished by func-
tional specialization and cell source predominance, and their
relative abundance across colonic regions and in health vs
quiescent inflammatory bowel disease.
†Deceased.

Abbreviations used in this paper: ANOVA, analysis of variance; CD,
Crohn’s disease; HBD, human b-defensin; HD5, human alpha defensin
5; HNP, human neutrophil peptide; HPLC, high-performance liquid
chromatography; IBD, inflammatory bowel disease; IHC, immunohis-
tochemistry; MALDI, matrix-assisted laser desorption/ionization; MFN,
mucosal functional network; MLI, mucosal–luminal interface; MS/MS,
tandem mass spectrometry; NLME, nonlinear mixed-effect model;
PVCA, principal variance component analysis; TOF, time of flight; UC,
ulcerative colitis; WGCNA, weighted correlation network analysis.
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BACKGROUND & AIMS: Interactions between mucosal cell
types, environmental stressors, and intestinal microbiota
contribute to pathogenesis in inflammatory bowel disease
(IBD). Here, we applied metaproteomics of the mucosal–
luminal interface to study the disease-related biology of the
human colonic mucosa.

METHODS:We recruited a discovery cohort of 51 IBD and non-
IBD subjects endoscopically sampled by mucosal lavage at 6
colonic regions, and a validation cohort of 38 no-IBD subjects.
Metaproteome data sets were produced for each sample and
analyzed for association with colonic site and disease state
using a suite of bioinformatic approaches. Localization of select
proteins was determined by immunoblot analysis and immu-
nohistochemistry of human endoscopic biopsy samples.

RESULTS: Co-occurrence analysis of the discovery cohort meta-
proteome showed that proteins at the mucosal surface clustered
into modules with evidence of differential functional specializa-
tion (eg, iron regulation,microbial defense) and cellular origin (eg,
epithelial or hemopoietic). These modules, validated in an inde-
pendent cohort, were differentially associated spatially along the
gastrointestinal tract, and 7 modules were associated selectively
with non-IBD, ulcerative colitis, and/or Crohn’s disease states. In
addition, the detailed composition of certain modules was altered
in disease vs healthy states. We confirmed the predicted spatial
and disease-associated localization of 28 proteins representing 4
different disease-related modules by immunoblot and immuno-
histochemistry visualization, with evidence for their distribution
as millimeter-scale microgeographic mosaic.

CONCLUSIONS: These findings suggest that the mucosal sur-
face is a microgeographic mosaic of functional networks
reflecting the local mucosal ecology, whose compositional
differences in disease and healthy samples may provide a
unique readout of physiologic and pathologic mucosal states.
(Cell Mol Gastroenterol Hepatol 2016;2:567–583; http://
dx.doi.org/10.1016/j.jcmgh.2016.05.003)

Keywords: Inflammatory Bowel Disease; Mucosal; Networks;
Ecology; Metaproteomics.

he intestinal mucosa plays diverse and critical roles
Tin nutrient uptake, host defense, and local and
systemic endocrinology.1–4 The functional state of the mu-
cosa in health and disease can be affected profoundly by its
interplay with environmental metabolic stressors and
luminal intestinal microbiota.4,5 Studying the mucosal–
luminal interface (MLI) and how it is changed in disease is
difficult because of the many dimensions of complexity of
this ecosystem.6,7 The analytic challenge is central to the
pathogenesis of inflammatory bowel disease (IBD), which is
a multifactorial process involving genetic susceptibility,
environmental factors, and microbiota.8,9

Metaproteomics is an emerging technology to address this
challenge. The metaproteome of the mucosal surface is a
composite of human and microbial products, skewed for
proteins devoted to translation, energy, carbohydrate meta-
bolism, and antimicrobial defense.10–16 Focusing on the met-
aproteome recovered by lavage from the MLI of healthy
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human subjects,wepreviously observed that the predominant
feature is intersubject variation, with an additional significant
intestinal segmental pattern of the surface metaproteome
distinguishing the distal and proximal colon.10 A similar
segmental difference was observed in foundational studies of
the mucosal bacterial composition.17,18 In view of emerging
concepts of intestinal ecology, this suggests that the meta-
proteome reflects the human contribution to the mucosal
habitat.19 With this foundation, this study applies meta-
proteomic analysis to characterize the disease-related features
of the MLI in ulcerative colitis (UC) and Crohn’s disease (CD).
Materials and Methods
Mucosal Lavage Sample Collection and Analysis

The overall study design is shown in the flowchart in
Figure 1. The demographics of the study population and the
sample characteristics are summarized in Table 1. All
enrolled subjects at both Cedars Sinai Medical Center and
the University of California Los Angeles Ronald Reagan
Medical Centers were consented to participate in research
studies approved by the Institutional Review Board. CD and
UC subjects were recruited from those undergoing surveil-
lance colonoscopy; lavage samples were taken from mucosal
sites that were endoscopically normal. Non-IBD control
subjects were recruited from patients undergoing colonos-
copy for colorectal screening. For each patient, 6 colonic
regions were sampled and collected by endoscopic lavage.

All sample collections and processing followed the pre-
analytic proteomic pipeline previously detailed.10 The
demography of an independent control data set of 205
mucosal lavage samples from 38 non-IBD subjects, used as
a validation cohort for this study, was reported
previously.10
Figure 1. Flowchart of
metaproteomic analytic
pipeline.



Table 1.Summary of Sample Collection and Clinical
Characteristics

Normal UC CD

Total subjects 17 13 21

Total mucosal lavage samples 81 75 101

Sex
Female 34 (42%) 35 (47%) 36 (36%)
Male 47 (58%) 40 (53%) 65 (65%)

Age, median ± SD, y 56 ± 13 60 ± 10 40 ± 10

Region
Cecum 14 (17%) 12 (16%) 8 (8%)
Ascending 14 (17%) 13 (17%) 16 (16%)
Transverse 14 (17%) 13 (17%) 19 (19%)
Descending 15 (19%) 11 (16%) 19 (19%)
Sigmoid 12 (15%) 13 (17%) 19 (19%)
Rectum 12 (15%) 13 (17%) 20 (19%)
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Protein Identification
Protein identification was performed by an in silico

search, followed by two strategies: immunoprecipitation
matrix-assisted laser desorption/ionization (MALDI) (when
the antibodies against the target proteins were available), or
high-performance liquid chromatography (HPLC) isolation
followed by tandem mass spectrometry (MS/MS) fragmen-
tation. An in silico search for putative protein identities was
performed using the Empirical Proteomics Ontology
Knowledge Base.20 When a specific antibody was available,
the in silico identification was validated by immunoprecip-
itation of the original clinical isolate using an antibody
specific to the protein of interest, and magnetic beads con-
jugated with either protein A or G (Invitrogen, Carlsbad, CA).
After washing and desalting, specifically bound peptides
were extracted with formic acid and mixed with matrix for
spotting on a MALDI target. Protein identification was per-
formed by confirming the expected m/z of the original
peptide extracted by antibody, as well as examining the
immunodepleted clinical sample to see if the same peptide/
protein mass was reduced quantitatively.

In the second strategy, MALDI MS–defined peptides of
interest were fractionated and isolated by HPLC. Purified
peptides smaller than 10 kilodaltons were fragmented
directly by LC-MS/MS coupled to a Nano2DLC pump
(Eksigent, Dublin, CA) and LTQ-Orbitrap (Thermo Fisher
Scientific, Waltham, MA), or by Ultraflex MALDI-TOF/TOF
(time of flight) with LIFT technology (Bruker, Billerica,
MA). Purified peptides larger than 10 kilodaltons were
digested with trypsin in solution, or in a gel plug
after running a sodium dodecyl sulfate–polyacrylamide
gel electrophoresis, and the fragments were analyzed by
LC-MS/MS. Proteins were identified by searching
against the SwissProt database using Mascot (Matrix Sci-
ence Inc, Boston, MA), and only proteins with a P value less
than .05 were included in the results.
Immunoblotting
Ten mucosal lavage samples from each patient group

were selected randomly, including 5 from proximal and 5
from distal regions, and 50 mg protein was immunoblotted
to ensure equal loading. A Tris-glycine gel system with 0.2-
mm nitrocellulose membranes was used for proteins greater
than 5 kilodaltons, and a tricine system with 0.1-mm
Immobilon-PSQ membranes (followed by 25% glutaralde-
hyde fixation) was used for smaller proteins/peptides
(Millipore, Billerica, MA; Invitrogen, Carlsbad, CA). Primary
antibodies included rabbit anti–human neutrophil peptides
(HNPs)1–3, rabbit anti-human alpha defensin 5 (HD5),
rabbit anti–human b-defensin (HBD)1, rabbit anti-HBD2,
rabbit antihepcidin (all gifts from Dr Tomas Ganz’s labora-
tory at the University of California Los Angeles). Purchased
antibodies included mouse anti-Peptidase M20 Domain
Containing 1 (PM20D1) (ab70916; Abcam, Cambridge,
United Kingdom), and rabbit anti-transferrin (ab30525;
Abcam). Secondary antibodies were horseradish perox-
idase–conjugated goat anti-rabbit or goat anti-mouse IgG
(Jackson ImmunoResearch, West Grove, PA) developed with
enhanced chemiluminescence (ECL) substrate (Pierce, IL),
or alkaline phosphatase–conjugated goat anti-rabbit IgG
antibody (Jackson ImmunoResearch) developed with BCIP
(5-bromo-4-chloro-3-indolyl-phosphate)/NBT (nitro blue
tetrazolium) substrate (MP Biomedicals, Santa Ana, CA). For
quantitation, blots were digitized and pixels were quanti-
tated by Adobe Photoshop (Adobe, San Jose, CA). Each pixel
count was normalized by dividing it with the background
pixel count.
Immunohistochemistry
To examine the cross-sectional histology of human

mucosa, microtome sections of paraffin tissues were ob-
tained from an independent non-IBD human cohort, and
stained by immunohistochemistry with primary antibody
and developed by VECTASTAIN Elite ABC Kit (Vector Lab,
Burlingame, CA) as previously described.21 The same an-
tibodies used in immunoblotting also were used in
immunohistochemistry (IHC), with the exception that the
antihepcidin antibody was replaced by an antiprohepcidin
antibody (gifts from Dr Tomas Ganz’s laboratory). To
examine whole-mounts of intestinal mucosa, 3 cm2 human
intestinal samples were processed as previously
described,22 and reacted with biotin-conjugated primary
antibodies using EZ-link Sulfo-NHS-Biotin (Thermo Fisher
Scientific). Detection was accomplished with horseradish
peroxidase–conjugated streptavidin antibody (Jackson Lab,
Bar Harbor, ME) and 3’-diaminobenzidine metal peroxide
substrate.

Data Analysis
All analyses were conducted using R software (available

from: www.r-project.org). The preprocessing procedures of
proteomics data have been described in detail previously.10

Here, we focused on assembling a bioinformatics pipeline
using readily available statistical tools to resolve unique
challenges in analyzing proteomic data and distill useful and
biologically relevant information.

Because of multiple sources of variance in the meta-
proteome data set, we first used the principal variance

http://www.r-project.org
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component analysis (PVCA) R package23 to evaluate the
intersubject and intrasubject variance. Sources of variance
included in our analysis were subject, collection site, colonic
region, diagnosis, sex, and age (Table 1). The PVCA in-
tegrates 2 methods: principal components analysis (which
finds low-dimensional linear combinations of data with
maximal variability) and variant component analysis (which
attributes and partitions variability into known sources via
a classic random-effects model). The significance of the
difference from the attributed variance was evaluated with a
nonlinear mixed-effect model (NLME), and a permutation
test was used to further evaluate the biogeographic feature
by comparing two colonic sites at a time. NLME modeling
accounted for both fixed effects (eg, diagnosis and biogeo-
graphic) and random effects (eg, subject), and thus was a
good fit for analyzing this data set. Each NLME model was
evaluated using analysis of variance (ANOVA), and the P
values were plotted for visualization of the significance of
the effect of interest. For the permutation test, the data set
was divided into 6 sub–data sets based on the colonic re-
gion. The mean distance was calculated between two
sub–data sets containing different colonic regions (referred
to as the actual distance). The two sub–data sets then were
permutated randomly 1000 times and the mean distance
was calculated after every permutation. If the difference
between the two regions was not significant, the permuta-
tion should have a random effect on the mean distance.
After each permutation test, we calculated the probability
using the following formula: (the number of permutated
mean distances that are larger than the actual mean dis-
tance)/1000. If the probability was less than 0.05, the
interpretation was that the chance of observing such dif-
ference between the two colonic regions being a random
event is less than 5%.

To help distill the number of variables for further vali-
dation, weighted correlation network analysis (WGCNA)
was used to construct protein modules (defined as branches
of a hierarchical cluster tree based on the topologic over-
laps).24,25 A signed, weighted adjacency protein network
was defined by applying a soft threshold of 6, chosen with
the scale-free topology criterion.24 Once the network was
constructed, modules then were defined by applying the
dynamic tree cut method from the package dynamicTreeCut
with a minimal module size of 10 protein members, and
similar modules were merged with a height cut of 0.4,
corresponding to a correlation of 0.6.

There is extensive literature comparing clustering pro-
cedures, including simple k-means, partitioning around
medoid, hierarchical clustering, message passing, and
model-based methods.25–27 Here, different clustering pro-
cedures (hierarchical clustering, partitioning around medoid
clustering) and dissimilarity measures (Topological Overlap
Matrix (TOM) dissimilarity, adjacency matrix, or correla-
tion) were used to produce clusterings on the same IBD data
set for comparison with those produced by WGCNA. The
degree of agreement between different cluster assignments
was measured using the Rand28 index. WGCNA-based clus-
ters were compared with hierarchical clustering resulting
from adjacency matrix-based dissimilarity (Supplementary
Table 1, top 2 tables), partitioning around medoids clus-
tering with adjacency (Supplementary Table 1, middle 2
tables), and partitioning around medoids clustering with a
correlation matrix-based dissimilarity (Supplementary
Table 1, bottom 2 tables). We found high pairwise Rand28

indices (0.796, 0.858, and 0.861, respectively). This anal-
ysis indicated that the protein modules uncovered by
WCGNA could be reproduced with any of these alternative
clustering procedures.

To test the reproducibility of the identified modules
across independent data sets, a module preservation test
was performed using two independent data sets: the IBD
data set and a normal data set published previously.10 The
two data sets were compared, and reduced to include only
common peaks shared by both data sets. Two functions, the
Z-summary test and the median rank test were imple-
mented in the WGCNA package.29 An advantage of the
Z-summary statistic is that it allows for significance
thresholds: a Z-summary < 2 indicates no significant mod-
ule preservation; 2 < Z-summary < 10 indicates moderate
preservation; and a Z-summary > 10 indicates strong
preservation. The median rank statistic, another network-
based module-preservation statistic, allows modules to be
ranked with respect to preservation. Statistical advantages
of the median rank statistic include computational speed
and the result is independent of module size. However,
because the median rank statistic does not make use of a
permutation test, it cannot be used to assign significance
thresholds. Alternative statistics are available to assess the
quality and reproducibility of clusters among data sets.30–33

Our previous work outlined 7 simulation scenarios in which
we compared WGCNA’s module preservation statistics with
the hitherto best-performing alternative approach, and the
Z-summary statistic had distinct advantages when it came to
studying the preservation of network modules.29,34 Detailed
discussions of the pros and cons of these statistics were
presented recently.25,35

To summarize the profiles of each module, we calculated
the weighted average value (defined as the left singular
vector that explains the highest amount of the underlying
variation), referred to as the eigenprotein of each module.
The Kruskal–Wallis test was used to determine whether the
eigenprotein represented intestinal segments and/or
disease-related features. To examine the significance of
differences observed in immunoblotting, ANOVA was used
for quantified data, whereas the Fisher exact test was used
for cross-tabulation data.

All authors had access to the study data and reviewed
and approved the final manuscript.

Results
Profiling the Mucosal Metaproteome
in IBD Patients

MALDI-TOF mass spectrometry was used to analyze
each lavage sample in duplicate or triplicate using a
rigorous pipeline to ensure reproducible intersample com-
parisons. A total of 599 protein/peptide features (peaks)
from 677 spectra were selected for subsequent analysis
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(Supplementary Table 2). In our previous study,10 we used a
shotgun proteomic method (MS/MS fragmentation and
high-probability matching to the nonredundant Uniprot
database (www.uniprot.org) indexed for bacteria and hu-
man proteins) to characterize the metaproteome composi-
tion of the soluble component of the mucosal lavage
compartment (the biospecimen used in the present study).
Sixty-three percent of the proteins were human proteins
and 30% were bacterial. Among the bacterial proteins, 48%
belonged to Bacteroidetes, the most abundant phylum of
human intestinal microbiota. We also observed proteins
from other bacterial phyla, including Proteobacteria, Acid-
obacteria, Firmicutes, Chlorobi, and Cyanobacteria. These
findings showed that mucosal lavage proteins represent a
mixture of host and microbial products.

An analysis of the region- and disease-related effects on
the human mucosal metaproteome is presented in Figure 2
using PVCA. The first component (PC1) accounted for 16.6%
of the total variance in the data (Figure 2A), and the inter-
subject (individual) factor contributed the majority of the
variance (57.5%). Consistent with our previous study, the
relative contributions to the metaproteome were inter-
subject variability (57.5%), disease-related feature (21.5%),
and colonic segmental feature (15%) (Figure 2B), which
explains why we could not observe a clear separation on
the principle component plots of PC1 and PC2 (Figure 2C
and D).

To further examine these factors, we used NLME
modeling to account for individual variations, and to
calculate the significance of the biologically relevant fea-
tures for each peak. A substantial fraction of the proteins
were detected differentially among the 6 different colonic
regions (Figure 2E and G), and 3 disease groups (Figure 2F).
At an uncorrected significance threshold of 0.05, 191 peaks
(31.9%) were significantly different for the biogeographic
regional feature and 146 peaks (24.4%) were significant as
a disease-related feature. To account for multiple compari-
sons, we also used a false-discovery rate threshold of 0.1,
which resulted in 166 peaks that were significant for re-
gions and 85 peaks that were significant for disease
(Supplementary Table 3).
Definition and Preservation of Protein
Modules at the Mucosal Surface

To explore which proteins contributed to the segment-
or disease-related features at the mucosal surface, we
assessed the formation of protein modules, where proteins
within the same module share connectivity through similar
quantitative expression and localization features.36 We hy-
pothesized that such protein modules exist at the MLI, and
Figure 2. (See previous page). Features of IBD mucosal me
proteome. (C) Samples colored by colonic regions plotted ag
D, descending; S, sigmoid; R, rectum. (D) Samples colored
ulcerative colitis; C, Crohn’s disease. (B) Variance components
region-related P value for each protein feature from NMLE ana
protein feature from NMLE analysis. (G) P values between colo
P values (<.05) are shown.
that some may show segment- or disease-related features.
We tested this hypothesis using weighted correlation
network analysis (implemented in the WGCNA R pack-
age)24,25 to construct mucosal protein modules from meta-
proteomic data, calculate eigenprotein values to quantitate
the representation of the modules among samples, and
define intramodular hub proteins.37

By using this approach, 9 distinct protein modules were
identified in the IBD data set (Figure 3A). Because module
detection does not make use of prior biological knowledge
about the protein, the biological meaning of each module
initially is unknown and hence modules initially are
assigned a color label (Table 2). To determine the statistical
robustness of these protein modules, we used 3 different
clustering and dissimilarity methods on the same IBD data
set, and compared the resulting clustering with those pro-
duced by WGCNA. We found that clusters were highly
robust across the 3 independent methodologies
(Supplementary Table 1).

Next, we tested the preservation of the modules between
independent data sets: the present IBD data set, and a
previously published normal dataset,10 an independent
metaproteomic data set of 205 mucosal lavage samples from
38 non-IBD subjects. By using the same WGCNA method,
analysis of the normal data set discovered 6 distinct protein
modules (Figure 3B). To compare protein peaks from the 2
data sets, we smoothed the spectra at 5 m/z to minimize the
isotopic effect on peak ascertainment. This yielded 346
shared peaks, shared in both data sets and selected for
module preservation analysis. The reduced common set of
shared peaks yielded the same module organization: 9
modules in the IBD data set (Figures 3C, upper color panel
IBD), and 6 modules in the normal data set (Figure 3D,
upper color panel normal ).

When the protein memberships of the modules from the
2 data sets were compared (Table 3 and Figure 3C and D,
lower color panel), 4 modules were concordant: cyan, green,
black, and brown. The membership of the largest module
detected in the control data set (yellow) was divided into 4
submodules in the IBD data set (the pink, yellow, red, and
blue modules). The diversification of the yellow module
indicates that the detailed protein composition of the
module changes in disease compared with normal condi-
tions, which is reflected in altered module formation.

To evaluate quantitatively the degree of module
preservation across independent data sets, we used the Z-
summary (Figure 4E and F) and median rank test (Figure 4G
and H) statistics.29 As expected, all modules except one from
the normal data set were highly preserved in the IBD data
set; only the small purple module was absent in the IBD
data set. Conversely, except for the orange and yellow
taproteome. (A) Principal components analysis of the meta-
ainst PC1 and PC2. C, cecum; A, ascending; T, transverse;
by diseases plotted against PC1 and PC2. N, non-IBD; U,
analysis of the principal component 1. (E) Frequency plot of
lysis. (F) Frequency plot of disease-related P value for each
n regions from the permutation test analysis. Only significant

http://www.uniprot.org
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Table 2.Association of Protein Modules With Intestinal Segments and IBD Diagnosis

Module Members, n
Notable
proteins

IBD-related
P valuea Disease association

Region-related
P valuea Regional association

Cyan 41 ENPP7 .46 N/A .89 N/A

Green 32 HBD .038 Increased in CD only .98 N/A

Orange 15 N/A .39 N/A .64 N/A

Black 31 N/A <.001 Reduced in both UC and CD .94 N/A

Brown 17 HD5 <.001 .099 N/A

Pink 76 Elastase .45 N/A .72 N/A

Yellow 34 HNP .01 Increased in both UC and CD <.001 Increased in distal colon

Red 111 N/A .03 Increased in UC only .003
Blue 226 Hepcidin <.001 .005

aP values were generated using the Kruskal–Wallis test. P < .05 is considered statistically significant.
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modules in the IBD data set, all other IBD modules also were
well preserved in the normal data set. Thus, it appeared that
there were 4 core modules (cyan, green, black, and brown)
shared in both normal and IBD data sets.

Association of Protein Modules With
Intestinal Segments and IBD Diagnosis

To test if any IBD modules showed colonic segment- or
disease-related features, we compared the eigenprotein of
each module in different colon regions or diseases using the
Kruskal–Wallis test. Three modules showed a significant
segment-related feature (yellow, blue, and red modules),
which each were more abundant in the distal colon. Six
modules were significantly disease-related: the green mod-
ule was increased in CD; the expression of the brown and
black modules was reduced in both UC and CD, the yellow
module (distal colon-related) was increased in both UC and
CD, and the blue and red modules (distal colon-related)
were increased in UC (Table 2).

Characterizing Individual Protein Modules
To characterize individual modules, we used several

strategies to obtain protein identities of module-associated
peaks. The identified protein peaks are listed in Table 4,
representing 6 of the 9 IBD modules. We then selected 4
modules for detailed analysis, based on the following
criteria: biologically relevant annotation, availability of
detection antibodies, and association with disease-
associated modules (Table 2; Figures 4, 5, 6, and 7).
Figure 3. (See previous page). Definition and preservation of
9 protein modules for 599 protein features from the IBD data set
from the normal data set. Each module was designated by a d
metaproteomic data set. Upper color panel: dendrogram of ove
set. Lower color panel: the corresponding module color of the s
IBD modules in the normal metaproteomic data set. Upper col
WGCNA in the reduced normal data set. Lower color panel: the
IBD data set. (E) Preservation Z-summary test of IBD modules. (
0, no preservation; 0–2, weak preservation; 2–10, moderate pr
vation median rank test of IBD modules. (H) Preservation median
on its degree of preservation.
We first plotted the yellow module eigenprotein vs dis-
ease status (Figure 4A). The eigenprotein had a significantly
higher value in both UC and CD samples compared with
normal, indicating that the proteins of this module are more
abundant in diseased individuals. The yellow module had
both segmental and disease-related features. Therefore, we
separated the samples according to these locations, and
visualized the samples from cecum and sigmoid separately
(Figure 4B). An in silico search and immunoprecipitation
followed by MALDI MS established their identity as a-
defensins, including HNP 1 (3442.69 m/z), HNP2 (3771.75
m/z), and HNP3 (3486.84 m/z). When we visualized each
protein level using beanplots, they all shared a similar
expression pattern, with increased levels in both UC and CD
patients (Figure 4B). Immunoblotting showed that 8 of 10
CD samples and 6 of 10 UC samples were positive
(Figure 4C, top panel). When the immunoblot data were
quantitated by digitization and normalization, a significant
difference between disease and normal samples was
observed (Figure 4C, lower panel), formally established by
ANOVA of disease and normal groups (P ¼ .02). As expected,
tissue expression of HNP1-3 by IHC staining established that
these proteins were associated with sites of tissue neutro-
phil infiltration (Figure 4D), and such sites were strongly
positive in all UC and CD biopsy samples that were
evaluated.

The blue module was the largest protein network, con-
taining 180 proteins. Its eigenprotein was significantly
lower in CD subjects compared with both normal and UC
subjects (Figure 5A). We were able to identify 2 peaks in
protein modules at the mucosal surface. (A) Dendrogram of
. (B) Dendrogram of 7 protein modules for 438 protein features
ifferent color. (C) Preservation of normal modules in the IBD
rlapped peaks generated by WGCNA in the reduced IBD data
ame peak in the reduced normal data set. (D) Preservation of
or panel: dendrogram of overlapped peaks generated by the
corresponding module color of the same peak in the reduced
F) Preservation Z-summary test of normal modules. Less than
eservation; and more than 10, high preservation. (G) Preser-
rank test of normal modules. Each module was ranked based



Table 3.Counts of Overlapped Peaks Between IBD and Normal Modules

IBD modules

M1 M2 M3 M4 M5 M6 M7 M8 M9

Non-IBD modules M1 28 2 1 0 0 0 1 0 3
M2 1 18 0 1 1 0 1 1 0
M3 0 0 0 12 0 0 1 2 2
M4 1 1 1 1 27 8 10 5 13
M5 5 9 4 8 3 42 12 41 75
M6 0 0 2 0 0 1 0 1 1
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this module using HPLC followed by LC-MS/MS. The peak at
2781.92 m/z was hepcidin and the peak at 2721.85 m/z
was a transferrin protein fragment. When we plotted these
2 proteins, we noticed that both were increased slightly in
the cecal samples from UC patients (Figure 5B). Immuno-
blotting of both proteins also showed higher expression in
UC samples (Figure 5C), but only transferrin reached sig-
nificance by the Fisher exact test (P ¼ .01). To test the
cellular origins of the intestinal hepcidin and transferrin, we
performed IHC staining on biopsy tissues from human co-
lons. The major cellular source of hepcidin was epithelial
cells, because these cells expressed the presecretory pro-
hepcidin molecule in a perinuclear vesicular site
(Figure 5D). On rare occasions, we also observed some
sporadic lamina propria hepcidin-positive cells, which might
represent macrophages or monocytes that are known to
express hepcidin.38 Normal or CD tissues uniformly showed
weak or no signal for prohepcidin, but all UC samples had
moderate to high signal levels. For transferrin, a gradient
expression pattern was observed in 4 of the UC tissues,
which showed higher signals toward the bottom of the
crypts but lower signals toward the mucosal surface.
Transferrin was localized to the lamina propria interstitium
and diffuse intracellular uptake, apparently reflecting a
vascular leak of plasma transferrin and local cellular uptake
(Figure 5D, box). In this small sampling, normal and CD
tissues had minimal signal for transferrin, with the excep-
tion of 1 CD sample with very high transferrin localization.

The green module eigenprotein was significantly lower
in CD compared with both normal and UC (Figure 6A),
which indicates that these proteins are greatly diminished in
CD patients. Two abundant peaks of the green module
(3992.28 m/z and 4317.93 m/z) were identified success-
fully through a combination of in silico search and IP-MALDI
as HBD1 and HBD2. When we plotted the intensity of each
protein on a beanplot, both were increased in CD patients,
but decreased in UC patients (Figure 6B). We confirmed this
trend by immunoblotting (Figure 6C), and ANOVA of the
digitized immunoblot data established a significant increase
of HBD1 and HBD2 (P ¼ .04). To explore the cellular origins
of the intestinal HBD1 and HBD2, we performed IHC on
biopsy samples from human colon. We tested 5 biopsy
specimens in each group, and found both HBD1 and HBD2
were expressed exclusively in colonic epithelial cells
(Figure 6D, top and middle panels). For HBD1, 3 of 5 normal
and all UC tissues showed weak staining, but all 5 CD tissues
were strongly positive. For HBD2, all CD samples were very
strongly stained; in contrast, UC samples had weak or no
signal, and normal tissues uniformly showed a moderate
signal. Another peptide also identified within the green
module was a fragment of PM20D1, which shared the same
expression pattern as HBD1 and HBD2, with the highest
expression in CD patients (Figure 6B and C). By using both
immunoblotting and IHC, we also found high levels of
PM20D1 in CD only (Figure 6D, bottom panel).

The brown module was notable for the presence of a-
defensin 5 (HD5) (Table 4). HD5 is secreted specifically by
Paneth cells that classically reside in the small intestine.39,40

Its presence in lavage samples may have reflected distal
luminal migration to the colon from the small intestine.
However, IHC staining showed that specific HD5-positive
cells were readily detectable in the characteristic crypt
base location in colon biopsy specimens (Figure 7C).
Therefore, local colonic production of HD5 appeared to be a
significant source of the colonic HD5 signal.

Assessment of Microgeographic
Distribution of Module Proteins

We used mucosal whole-mount immunohistochemistry
to attempt to visualize protein networks. Mucosal speci-
mens from surgical colonic resections of non-IBD and IBD
patients were evaluated with antibodies for the epithelial-
derived protein members of the yellow and pink modules.
In most specimens, only low expression was detected, as
expected for minimal constitutive expression levels of these
proteins (data not shown). However, some specimens
showed intense protein expression that occurred as an
intermittent mosaic of sites of small dimensions (diameter,
1–4 mm) (Figure 8A). This suggests that module proteins
are expressed intermittently at the mucosal surface in a
microgeographic pattern.

Discussion
General Features of Mucosal
Metaproteome in IBD

Concordant with our previous study of the mucosal–
luminal interface metaproteome, this independent data set
confirmed that its two major properties are individual
variation, and a characteristic segmental feature dis-
tinguishing the proximal (cecum through descending) and
distal (rectum and sigmoid) colon. A recent independent



Figure 4. Characterization of the yellow module. (A) The expression of the yellow module represented by its eigenproteins in
normal and IBD disease states. (B) Beanplots of representative protein levels detected in MALDI segregated by regions.
(C) Immunoblot detection of HNPs in mucosal lavage samples. (D) IHC detection of HNPs in human colonic biopsy specimens
(100�). NM, normal.
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Table 4.List of Identified Proteins/Peptides

Peak m/z Module Protein/peptide ID

2478.37 Cyan Ectonucleotide pyrophosphatase/
phosphodiesterase 7 (Homo sapiens)

3935.44 Cyan a-1 antitrypsin (H sapiens)

4135.65 Cyan a-1 antitrypsin (H sapiens)

2490.45 Green Immunoglobulin heavy-chain variable region
(Homo sapiens) or KIAA0297 (H sapiens)

2980.79 Green Peptidase M20 domain containing 1
(H sapiens)

3222.84 Green Pancreatic amylase a 2A (H sapiens)

3336.94 Green Dynamin-like protein
(Acaryochloris marina MBIC11017)

3992.28 Green b-defensin 1 (H sapiens)

4317.93 Green b-defensin 2 (H sapiens)

3583 Brown a-defensin5 (H sapiens)

2139.78 Pink Elastase 2A preproprotein (H sapiens)

2334.36 Pink ASAH2 protein (H sapiens)

3281.32 Pink Elastase 2A preproprotein (H sapiens)

3309.33 Pink Chymotrypsin-like elastase family
member 2A (H sapiens)

2313.27 Yellow Guanosine triphosphatase activating
Rap/RanGAP domain-like 1 isoform 1
(H sapiens)

2402.33 Yellow Tetratricopeptide TPR_2 repeat protein
(Flavobacteria bacterium)

3107.69 Yellow hCG2042445 (H sapiens)

3253.69 Yellow Tyrosine-protein kinase (Flavobacteria
bacterium BAL38)

3371.75 Yellow a-defensin 2 (H sapiens)

3442.69 Yellow a-defensin 1 (H sapiens)

3486.84 Yellow a-defensin 3 (H sapiens)

2052.13 Blue Haptoglobin (H sapiens) or anti–tumor
necrosis factor-a antibody heavy-chain
Fab fragment (H sapiens)

2159.68 Blue Chymotrypsin C preproprotein (H sapiens)

2197.11 Blue Procarboxypeptidase B (H sapiens)

2607.54 Blue Procarboxypeptidase B (H sapiens)

2721.59 Blue Transferrin (H sapiens)

2781.92 Blue Hepcidin (H sapiens)

11606.9 Blue Serum amyloid protein (H sapiens)
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study of the microbial-associated metaproteome has shown
distinct abundance patterns of microbial proteins among 6
regions of the gastrointestinal tract.14 The present study
adds two new observations regarding the mucosal–luminal
metaproteome. First, it presents evidence that disease state
also significantly alters composition of this metaproteome.
Second, it uncovers a set of protein modules of the MLI
metaproteome, validated bioinformatically and confirmed
by direct visualization using tissue-based cellular immuno-
histochemistry and immunoblot analysis.

Each protein module had a distinct segmental and disease
association. The expression of three modules (Yellow, Red,
and Blue) was associated selectively with both the colonic
regions and diseases. Two modules were overexpressed in
UC, and one module was overexpressed in both UC and CD.
Among the remaining modules, three show only disease
association, but no colonic segmental feature. The green
module was overexpressed in CD compared with both non-
IBD and UC, and both the black and brown modules were
underexpressed in UC and CD. There were also apparent
differences in the module structure between the IBD and
normal data sets. Four modules were highly conserved in
both data sets (cyan, green, brown, and black modules).
These modules may represent biologically resilient networks,
relatively unaffected in composition in non-IBD and IBD
states, even though the abundance of one such module
(green) was disease-associated (increased in CD). Other
modules were present in both data sets, but with different
hierarchical branches indicating module reorganization. For
instance, the yellow module of the normal data set consisted
of a single large module of 270 peaks, but was split into 4
smaller submodules (pink, yellow, blue, and red modules) in
the IBD data sets. Such reorganization of protein networks,
presumably reflecting the altered coordination of source cell
types at the mucosal surface, may provide fresh clues to
these physiologic and disease states of the mucosa.
Functional Features of the Index Module Proteins
Neutrophil infiltration of the mucosa is a common

occurrence in IBD, and thus provides a context for the
increased abundance of the neutrophil products HNP1–3,
and their associated yellow module, in the mucosal meta-
proteome of UC and CD. It is notable that their abundance
was observed in endoscopically quiescent sites, and was
increased in the distal colon of both normal and IBD
patients. Thus, the yellow module may reflect an underap-
preciated level of neutrophil engagement in the subclinical
physiologic inflammation of the distal colon.

HD5 is an a-defensin produced by ileal Paneth cells, and
its production is impaired in a subset of ileal Crohn’s disease
as a result of Paneth cell dysfunction associated with
Nucleotide-Binding Oligomerization Domain Containing 2
(NOD2) and Autophagy Related 16-Like 1(ATG16L1).39,40

UC and CD patients commonly acquire Paneth cell meta-
plasia, however, we also found HD5-positive cells in normal
colon biopsy specimens. This indicates that by the sensitive
detection of HD5 IHC, Paneth cell metaplasia also occurs in
clinically normal colonic mucosa, and may play an antimi-
crobial role in such sites of the distal intestine.

HBD1 and HBD2, predominantly produced by epithelial
cells, are minimally expressed in normal mucosa, but are
induced in active CD and UC.41,42 HBD2 is up-regulated by a
NOD2- or toll-like receptor-dependent nuclear factor-kB
pathway,43,44 but its intestinal expression may be indepen-
dent of NOD2 mutation status in CD patients.45 In this study,
both HBD1 and HBD2 were increased in CD patients
compared with normal and UC; this distinctive pattern may
reflect the antimicrobial peptide features of the colonic
mucosal surface compartment.

Transferrin and hepcidin are two important regulators of
iron homeostasis, and both are linked to innate immune
function and inflammation.38 Hepcidin regulates iron



Figure 5. Characterization of the blue module. (A) The expression of the blue module represented by its eigenproteins in
normal and IBD disease states. (B) Beanplots of representative protein levels detected in MALDI segregated by regions: upper
panel, hepcidin; lower panel, transferrin. (C) Immunoblot detection of hepcidin and transferrin in mucosal lavage samples. (D)
IHC detection (100�) of prohepcidin and transferrin in human colonic biopsy specimens (insets, 400�). NM, normal control.
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homeostasis by binding to the sole iron exporter ferroportin
and promoting its internalization and degradation. Hepcidin
expression is abundant in hepatocytes. Our finding of pro-
hepcidin expression in the colonic epithelium supports this
novel local origin for hepcidin. Transferrin also is expressed
primarily by the liver, and is an abundant serum protein
that regulates iron homeostasis by binding tissue-derived
ferric ions and internalization by ubiquitous cellular trans-
ferrin receptors. We found abundant levels of transferrin in
the lamina propria, probably owing to such cellular uptake;
its vesicular intracellular localization is consistent with
this idea. Because both proteins reduce tissue ferric ions,
overexpression of both hepcidin and transferrin in UC
indicate a more active antimicrobial state. We show that
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Figure 7. Expression of HD5 in colonic mucosal lavage and biopsy samples. (A) Immunoblot detection of HD5 in mucosal
lavage samples. (B) Quantitation of HD5 immunoblots. (C) IHC detection (100�) of HD5 in human colonic biopsy specimens.
NM, normal.
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colonic expression of hepcidin and transferrin are associ-
ated with IBD.

It is not surprising that the most abundantly identified
proteins in our mucosal surface samples were proteases and
protease inhibitors because these are major intestinal
epithelial products in support of alimentary enzymatic
digestion and metabolism. Curiously, the 6 proteins in this
category are associated with several distinct modules,
suggesting local factors that differentially affect their pro-
duction. Several host and microbial-derived proteases have
been associated with IBD,46,47 and increased concentrations
of proteases and proteolytic activities have been reported in
Figure 6. (See previous page). Characterization of the green
by its eigenproteins in normal and IBD disease states. (B) Be
segregated by regions (C) Immunoblot detection of proteins in m
right panel: PM20D1. (D) IHC detection (100�) of HBD1, HBD
400�). NM, normal.
human fecal and colonic biopsy samples. The mechanism of
their differential control and their contribution to the IBD
disease state are open issues, but may relate to their
participation in the well-studied inflammatory tissue met-
alloprotease pathway.48

Mucosal Functional Networks
There is increasing evidence that the mucosal surface is

an integrated ecology formed by the interplay of host cell
types, environmental and dietary biomolecules, and
microbes.4,12–17,19,49 Based on the present metaproteomic
study, we hypothesize that the human mucosal surface is
module. (A) The expression of the green module represented
anplots of representative protein levels detected in MALDI
ucosal lavage samples. left panel, HBD1;middle panel, HBD2;
2, and PM20D1 in human colonic biopsy specimens (insets,



Figure 8. Visualization of MFNs. (A) Whole-mount immunohistochemistry of non-IBD mucosa detected with anti-HNP1 (left)
or anti-elastase 2a (right) antibodies. Scale bars: 1 mm. (B) MFN hypothesis. The human mucosal surface is a mosaic of MFNs.
Host and microbial cells and their products directly interact over a distance of millimeters within its MFN, and reach a
metastable composition and state of activity. Certain MFNs carry disease- or region-related features.

September 2016 IBD–Associated Human MFNs 581
not homogeneous, but instead consists of local mucosal
functional networks (MFNs) (Figure 8B). Our bioinformatic
and immunohistochemistry data suggest that there may be a
few types of networks that are distributed in a mosaic of
microgeographic (millimeter-range) scale. We speculate that
these may form as host and microbial cells, and their
products may interact directly over a distance of microns to
millimeters, and in this physical range reach a metastable
composition and state of activity. Consistent with this idea,
recent work from Lee et al13 suggested that specific bacteria
may colonize unique areas of the gut, as shown by specific
localization of Bacteroides fragilis deep within crypt chan-
nels. Some MFNs also are likely to represent a habitat for
host responses such as inflammation, which may contribute
to preclinical or clinical disease states.

One limitation of the present study was that because of
the metaproteomics method used, our study mostly detec-
ted the human peptides of the mucosal metaproteome.
Accordingly, the relationship of the MFNs to microbial
interaction is uncertain. Recent advances in detection and
bioinformatics methods are enriching the identification of
mucosal microbial proteins, and their use in assessing
microbial functional in the mucosal ecology.10–15 These
microbial findings, and the present human study, suggest
that integrated host-microbial metaproteomics will be a
promising approach to biochemically and functionally link
the local interaction of host, microbiota, and environmental
integration of the mucosal state.
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