UC Irvine

SSOE Research Symposium Dean's Awards

Title

Fuel Cell Data Center: Renewably Powering the Internet

Permalink

https://escholarship.org/uc/item/1sr9w2jn

Authors

Cheng, Aaron Cobos, Gabrielle Crowley, Michael <u>et al.</u>

Publication Date

2016-04-01

Peer reviewed

Fuel Cell Data Center: Renewably Powering the Internet

Team Members: Aaron Cheng, Gabrielle Cobos, Michael Crowley, Robert Miller, Allen Schellerup, John Stansberry Advisor: Dr. Jacob Brouwer

Background

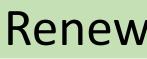
The ever expanding modern internet is stored on huge banks of hard drives called data centers. With the massive growth of data storage needs, a modern engineering challenge is to reduce the carbon footprint of data centers by powering them greenly.

Goal

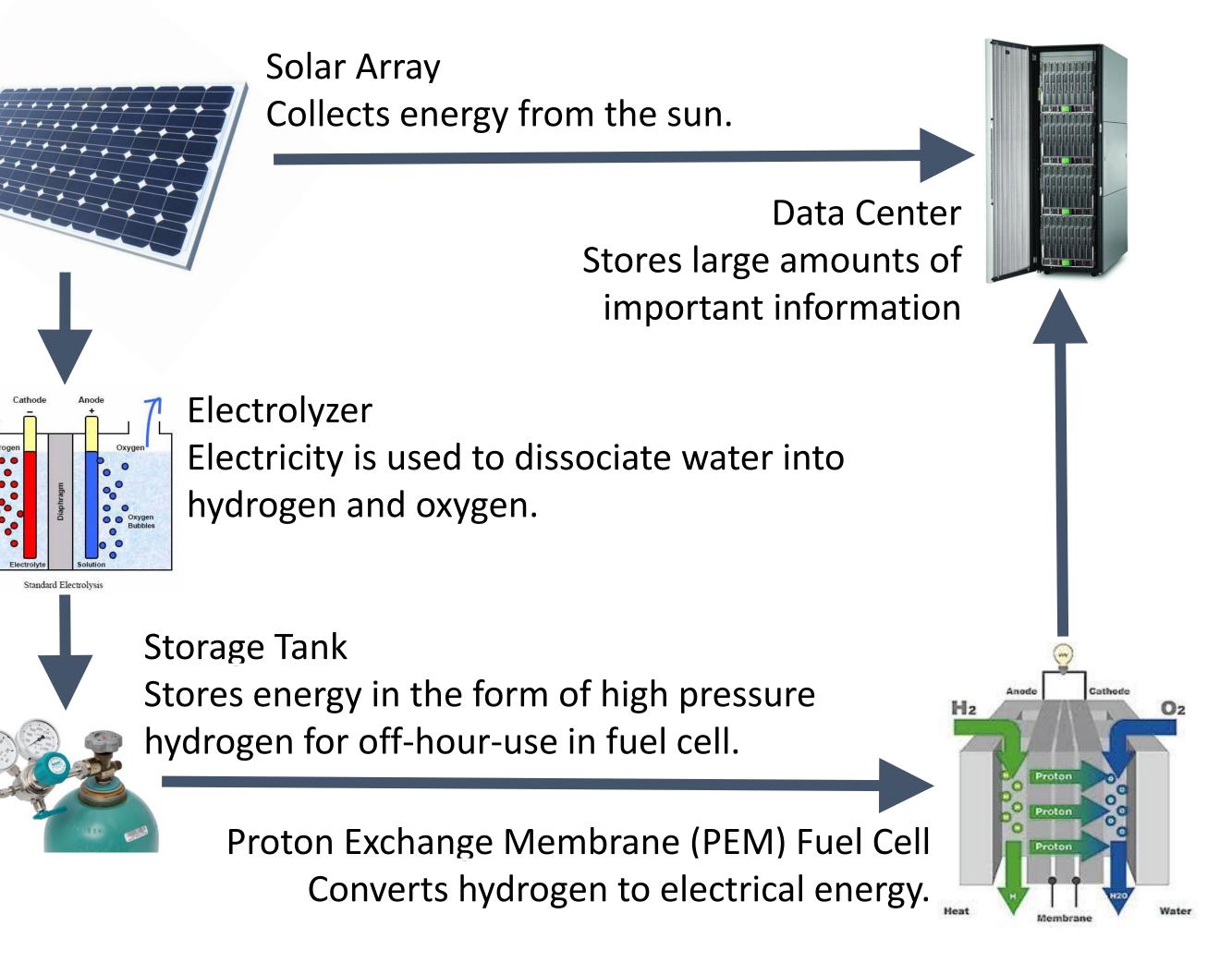
Create a renewable energy model capable of continuously powering a data center using experimentally derived data.

Objectives

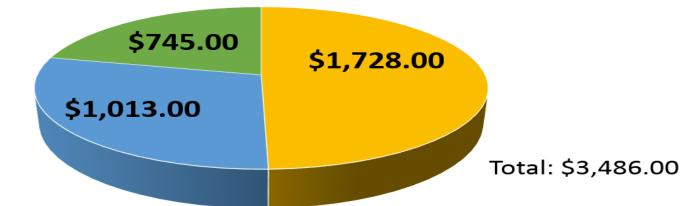
1. Repair key system components and design system interconnects for system integration studies **2.** Gather experimental data for model validation from each individual system component **3.** Generate a computer model to power a 100 MW data center completely on renewable energy **4.** Assess this model and explore real world viability using experimental data and system integration studies


Timeline

Project/Mo.	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Modeling	Solar		Fuel Cell		Electrolyzer		Hydrogen	Storage	Data Center
Solar	Design Test Bed			Build Test	t System Testing			Analyze	
Fuel Cell	Design Co	oling Syste	m	Build Cooling System System Validation Testing					Analyze
Electrolyzer	Testing								Analyze
Write-Up	Literature	Review			Writing				



Renewable Energy Penetration


Providing Consistent Power with Variations in Solar Energy Availability

Photovoltaic Solar Panels and Battery Energy Storage

Budget

- Solar Mountings and Wiring
- Electrolysis and Energy Production
- Fuel Cell Cooling System

Innovation

Fulfill constant power demands with non-constant renewable energy sources in conjunction with energy storage.

Current Status

- **1.** Install cooling system for PEM Fuel Cell
- **2.** Constructing photovoltaic test bed
- **3.** Running various parameters on model

Next Step

- **1.** Achieve start-up and steady state operation on PEM Fuel Cell
- **2.** Gather load demand profile from data center

3. Determine necessary system integration components and controls scheme

For additional information contact team lead: Gabrielle Cobos gcobos@uci.edu

Or scan our QR code:

