
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Assuring Software Dependability of Smart Systems

Permalink
https://escholarship.org/uc/item/1ss0464x

Author
Almanee, Sumaya

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ss0464x
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Assuring Software Dependability of Smart Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Sumaya Almanee

Dissertation Committee:
Assistant Professor Joshua Garcia, Chair

Professor Sam Malek
Assistant Professor Qi Alfred Chen

2022



Chapter 3 © 2021 IEEE
Chapter 4 © 2020 ACM

All other materials © 2022 Sumaya Almanee



DEDICATION

To Hadeel,

H. PYË@
�
é
�
®J


	
P̄ ð QÒªË@

�
é
�
®K
Y�

For always being by my side ... Here’s to another 10 years of true friendship ...

ú


æ
.
Ê
�
¯

�
éËðYë ½J.k


@

To my kitty cat ... Java,

For staying up late when I was working on my deadlines, for poking your tiny head during
my zoom meetings and for comforting me with your purrs and cuddles ...

I love you kiki ...

To family, friends and loved ones ...

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS ix

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Security Updates in Android Apps’ Native Code . . . . . . . . . . . . . . . . 3
1.2 Analysis of Bugs in Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . 5
1.3 Test Generation for Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Research Problem 9
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Software Security in Smart Systems . . . . . . . . . . . . . . . . . . . 10
2.2.2 Software Reliability in Smart Systems . . . . . . . . . . . . . . . . . . 11
2.2.3 Software Safety in Smart Systems . . . . . . . . . . . . . . . . . . . . 11

3 An Empirical Study of Security Updates in Android Apps’ Native Code 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 LibRARIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Feature Vector Extraction . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Version Identification Strings . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 RQ1: Accuracy and Effectiveness . . . . . . . . . . . . . . . . . . . . 24
3.3.2 RQ2: Prevalence of Vulnerable Libraries . . . . . . . . . . . . . . . . 29
3.3.3 RQ3: Rate of Vulnerable Library Fixing . . . . . . . . . . . . . . . . 32
3.3.4 Exploitability Case Study . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 A Comprehensive Study of Autonomous Vehicle Bugs 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Autonomous Vehicle Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Methodology and Classification . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Classification and Labeling Process . . . . . . . . . . . . . . . . . . . 51
4.3.3 Root Causes of AV Bugs . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.4 Symptoms of AV Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.5 Affected AV Components . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 RQ1: Root Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 RQ2: AV Bug Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 RQ3: Causes and Symptoms . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 RQ4: Bug Occurrences in AV Components . . . . . . . . . . . . . . . 65
4.4.5 RQ5: Bug Symptoms in AV Components . . . . . . . . . . . . . . . . 67

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Generating Diverse, Fully-Mutable, Safety-Critical and Motion Sickness-
Inducing Scenarios for Autonomous Vehicles 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Specification of the State Space . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 scenoRITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Domain-Specific Constraints . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Scenario Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.3 Generated Scenarios Player . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.4 Planning Output Recorder . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.5 Grading Metrics Checker . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.6 Duplicate Violations Detector . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.2 RQ1: Accuracy of Generated Scenarios . . . . . . . . . . . . . . . . . 111
5.5.3 RQ2: Effectiveness at Producing Scenarios with Safety and Comfort

Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.4 RQ3: Efficiency of scenoRITA . . . . . . . . . . . . . . . . . . . . . 119
5.5.5 RQ4: Duplicate Violation Detection . . . . . . . . . . . . . . . . . . . 121

5.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

iv



6 Conclusion 126
6.1 Research Contributions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Future Work: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 132

v



LIST OF FIGURES

Page

3.1 LibRARIAN identifies versions of native binaries from Android apps by using
our bin2sim similarity-scoring technique to compare known (ground-truth
dataset) and unknown versions of native binaries. . . . . . . . . . . . . . . . 17

4.1 State-of-the-art Autonomous Vehicle (AV) software system architecture from
most popular AV development classes such as Udacity Self-Driving Car En-
gineer classes [34] and real-world AV systems such as Baidu Apollo [15] and
Autoware [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 A bug found in one of Autoware’s utilities. . . . . . . . . . . . . . . . . . . . 67

5.1 An Overview of scenoRITA . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Genetic representation of: (a) fully-mutable tests in scenoRITA, and (b)

partially mutable tests generated by state-of-the-art approaches. . . . . . . . 92
5.3 (a) two individuals before a crossover, (b) the same individuals after a crossover

for scenoRITA, and (c) how crossover is applied in prior work [130] . . . . 98
5.4 An example of a crossover that produced individuals with invalid attributes

(highlighted in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 (a) mutating a gene in a single individual, (b) mutating a scenario by adding a

fit individual from another scenario, and (c) mutating a scenario by removing
the worst individual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 An illustration of one of five supported driving scenarios in AutoFuzz. (a)
The ego car (in red) starts at a fixed location then turns left at a signalized
junction, while another vehicle (in blue) crosses the intersection from the other
side and a pedestrian crosses the street. (b) The ego car turns left and collides
with an incoming car (in blue). (c) The ego car turns left and collides with a
pedestrian crossing the street. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Three HD maps used by scenoRITA: Borregas Ave is a small map of a
city block in Sunnyvale with 60 lanes and a total length of 3 km; San Mateo
is a medium map with 1,305 lanes and a total length of 24 km; Sunnyvale
is a large map consisting of 3061 lanes, with a total length of 107 km. . . . 108

5.8 An example of one scenario generated by scenoRITA with two reported
violations: collision and hard braking. This image is obtained from Dreamview,
the visual simulator of Apollo. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 The total number of violations in tests reported by scenoRITA++, sceno-
RITA--, and Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



LIST OF TABLES

Page

3.1 List of features LibRARIAN extracts from native binaries of Android apps
along with their type and definition. . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Heuristics used to search for unique per-library strings that contain version
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 List of features bin2sim extracted from native binaries of Android apps along
with their type and overall contribution factor, which measures the average
percentage each feature contributes to the total similarity score . . . . . . . 28

3.4 A list of libraries with reported CVEs found in our repository along with the
number of distinct apps that were affected by a vulnerable library and the
number of distinct apps containing a vulnerable version till now. . . . . . . . 29

3.5 10 out of 14 popular apps from Google Play which include a vulnerable library
that remained unchanged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Combinations of 15 apps and particular vulnerable library versions they have
contained, the date the vulnerability was publicly disclosed (Vul announced),
the period between vulnerability disclosure and patch availability in days (i.e.
Time-to-Release-Patch (TTRP)), and the total number of days elapsed before
a fix was made (i.e. Time-to-Apply-Fix (TTAF )) . . . . . . . . . . . . . . . 34

3.7 Top 10 most negligent apps in terms of the average time to fix a vulnerable
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Top 10 most neglected vulnerable libraries in terms of the average time-to-fix 36

4.1 Statistics of Apollo and Autoware from GitHub . . . . . . . . . . . . . . . . 51
4.2 Additional Core Components with Significant Bugs . . . . . . . . . . . . . . 55
4.3 AV Sub-Components with Significant Bugs . . . . . . . . . . . . . . . . . . . 55
4.4 Root Causes of Bugs in AV Systems . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Symptoms of Bugs in AV Systems . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Frequency of symptoms that each root cause of a bug may exhibit across

Apollo and Autoware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Frequency of bug occurrences for each AV component . . . . . . . . . . . . . 66
4.8 Occurrences of bug symptoms in components of Apollo and Autoware . . . . 68

5.1 Comparing scenoRITA with the related work. . . . . . . . . . . . . . . . . 81
5.2 A list of Domain-Specific Constraints that Scenario Generator adheres to

when creating driving scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



5.3 The set of features, selected for each violation type, and used by the Duplicate
Violation Detector to cluster similar violations together. . . . . . . . . . . . . 105

5.4 The number of all violations (All Viol.) reported by scenoRITA++, sceno-
RITA--, and Random, along with the total number of unique violations
(Unique Viol.), and the percentage of duplicate violations eliminated (Elim.
(%)). We highlight cells with the best reported results in grey. . . . . . . . . 113

5.5 The Average number of all violations (All Viol.) reported by three testing
techniques (Test Tech.): scenoRITA++, scenoRITA-- and Random on
three maps (Borregas, San Mateo, and Sunnyvale), along with the average,
minimum, and maximum number of unique violations (Unique Viol.), and the
percentage of duplicate violations eliminated (Elim. (%)). We highlight cells
with the best reported results in grey. . . . . . . . . . . . . . . . . . . . . . 114

5.6 Ten case studies with reported violations generated by scenoRITA, along
with a description of the scenarios. The videos corresponding to these case
studies can be found in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Efficiency of generated scenarios by scenoRITA++, scenoRITA-- and Ran-
dom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



ACKNOWLEDGMENTS

The journey to my PhD degree has been one of the most challenging and arduous journeys
in my entire life. With all its twists and turns, ups and downs, optimism and hopelessness,
frustrating and exciting moments, and a PANDEMIC, I’m relieved that this unique and
seemingly endless journey has come to an end. I’m extremely grateful for the support,
guidance and love that I received from my advisors, mentors, colleagues, friends and family.
I am where I’m at right now because of you, thank you so much!!!

First, and most importantly, I would like to thank my advisor Joshua Garcia, for believing in
me and guiding me throughout my PhD. There have been numerous times when I seriously
doubted my abilities and thought about dropping out, but his encouragement, empathy and
understanding helped me power-though my self-doubt and hopelessness, and reach this final
lap of my journey. Thank you, Josh! your expertise, knowledge, and understanding made me
a better researcher today; I couldn’t have chosen a better advisor! I’m so grateful.

I’m grateful to my PhD committee members, Sam Malek, and Qi Alfred Chen. Alfred, I’m
fortunate that I had the chance to collaborate with you on multiple projects, and have weekly
meetings with your group ever since you joined UC Irvine in 2018. My projects have benefited
substantially from your insightful recommendations and feedback, thank you for being a
part of my PhD journey. I would further like to thank Cristina Lopes and Ardalan Amiri
Sani for serving on my advancement committee, as well as all of the faculty in the Institute
for Software Research. I’d like to express my sincere gratitude to Mathias Payer, Sharad
Mehrotra and Micah Sherr for guiding me in the early stages of my PhD.

I was fortunate enough to intern with the RISE group at Microsoft Research. I thank Shan
Lu and Markus Kuppe for being an essential part of my research project at Microsoft. I’m
especially grateful to my amazing manager Madan Musuvathi. Thank you, Madan, for
believing in me and giving me the opportunity to work on one of the most exciting projects I
worked on thus far. I particularly appreciate your mentorship, words of wisdom and advice
that you provided me with throughout my internship. I learned a great deal from you and
I’m forever grateful for having the opportunity to work with you.

Special thanks to my fellow lab mates in the SORA and SEAL group–Yuqi, Yuntianyi, Xiafa,
Hongyu, Arda, Tuan, Jessy, Aziz, Navid, and Forough. I’ll always remember our first lab
in DBH and our endless trips to the Nespresso machine. I’m extremely thankful to Negar
whom I got to know better when I moved to the Software Engineering department. I still
remember how she greeted me, showed me around the lab, and made me feel so comfortable.
Negar, I’m grateful for your support and love! I’m so lucky to have you as a close friend.

Dr. Shiva Sarabi, talking to you every week is what I looked forward to the most. You
really helped me through one of the toughest, most stressful years in my life. Thank you for
listening to me, supporting me, and guiding me through the hard days. I am forever indebted
to you.

ix



I could not have made it through my PhD program, and a PANDEMIC, without being
surrounded by an amazing group of friends. I’m enormously grateful to Efi, Martha, Maruf,
Mayara, Pedro and Sameera, thank you for making my PhD experience memorable and
enjoyable. I’m particularly grateful for meeting one of the most amazing, wise, and kind
people during my time in UC Irvine, my best friend Primal. Thank you for being there for
me during the ups and downs, the good and bad, the serious and silly moments. I looked
forward to our daily “cowalks” and our non-stop conversations about life. I’m so lucky to
call you a close friend.

I am grateful to my parents, Abduallah and Helah, my brothers: Yahya, Hamad, Yossef,
and Ibrahim for their constant love and support. I’m specifically grateful to my big sister
and lovely cousin, Ghada for her understanding, never-ending encouragement and for always
being there for me. Your support has meant to me more than you can possibly realize! Thank
you, cousin!

I have to thank my soul mate, my lifetime companion and my best friend, Hadeel. Hadeel,
you have proven that true friendship can survive distance and time constraints. You live on
the opposite side of the world, yet you are the person that I talk to and share everything
with the most. I’m so lucky to share this journey with you! Our daily 30-min voice messages,
us planning our next adventures together, and sharing all the exciting and silly details about
our lives brighten my days. I love you with all my heart!

Finally, I’m deeply indebted to my long-term partner, Francisco, who has been a constant
source of strength, support, patience, and motivation for me throughout this entire experience.
Thank you for the little things you’ve done, like bringing me ”care packages” to snack on
when I work late on my papers; for always planning fun things to do on the weekend to get
my mind off work; for being my biggest cheerleader and my best friend. I am truly blessed to
have you as my partner in this dance called “life”. It’s You and Me Babe, I love you so much!

The text in Chapter 3 of this dissertation is reprinted, with permission, from Arda Ünal,
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ABSTRACT OF THE DISSERTATION

Assuring Software Dependability of Smart Systems

By

Sumaya Almanee

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2022

Assistant Professor Joshua Garcia, Chair

Smart systems are software entities that carry out a set of operations on behalf of a user

or another application with some degree of independence or autonomy [65, 156]. These

systems employ some knowledge or representations of (1) a user’s goals or desires, and (2) the

environment in which they act in to achieve these goals. Such an agent is a system situated

in a technical or natural environment that senses some status from that environment and

acts on it, changing part of its environment or influencing what it senses.

The main characteristics of smart systems [156] are adaptive capacity, indicating that such

systems adapt as information changes, and they may resolve ambiguity and tolerate un-

predictability; learning capability, implying that smart systems reason on data to create

new information and use closed-loop feedback to learn from the output; context awareness,

indicating that smart systems may identify and extract contextual elements such as syntax,

time, location, etc; and dynamic interactivity, indicating that these systems can interact with

users or other applications and cloud services to understand their goals and needs.

Smart systems address environmental, societal, and economic challenges like limited resources,

climate change, and globalization. They are, for that reason, increasingly used in a large

number of sectors such as transportation, healthcare, energy, safety, security, etc. Hence, the

need for effective analysis and testing techniques for such systems has increased more than

xiii



ever.

This dissertation proposes to ensure the dependability (i.e., security, safety, and reliability)

of smart systems by (1) analyzing bugs and vulnerabilities found in such systems and (2)

developing tools to test and detect bugs and vulnerabilities in smart systems automatically.

Experiments conducted on real-world, open-source software applications corroborates the

effectiveness and efficiency of our proposed approaches and their ability to ensure the

dependability of software in smart systems.
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Chapter 1

Introduction

Since the birth of the Internet in the late 1980s, we found ourselves living in two seemingly

parallel worlds: One is the familiar physical world, and the other is this growing world of

information. The convergence of advanced technologies and analytics, cloud computing, and

smart systems allowed these two parallel worlds to collide, as the wave of technology—that

started with personal computers—broke out into the world of physical things. The age

of smart systems is becoming a reality as more products and services that we use every

day—like search-engine applications, face recognition, smart cars, and phones—demonstrate

smart and adaptive behavior. These smart systems incorporate sensing, actuation, and

control functions to analyze and make decisions in a predictive or adaptive manner, thereby

performing smart actions [156]. In most cases, the “smartness” of a system is attributed

to autonomous operation based on closed-loop control, machine learning, and networking

capabilities that enable the system to exhibit adaptive behavior [65]. Nowadays, smart systems

sit at the intersection of humans and technology infrastructures, as they perform basic control

operations for our technology infrastructure and interact with people to understand their

needs and perform required actions.

1



Smart systems address environmental, societal, and economic challenges like limited resources,

climate change, and globalization. They are, for that reason, increasingly used in a large

number of sectors such as transportation, healthcare, energy, safety, security, etc. For example,

in the automotive sector, smart systems integration will be a key enabler for pre-crash systems

and predictive driver assistance features. Yet there are many challenges introduced by the

rise of smart system technologies, such as safety, security, stability, scalability, efficiency, etc.

One example of such challenges is the safety of autonomous vehicles (AVs), a.k.a. self-driving

cars or smart cars. Experts forecast that AVs will drastically impact society, particularly

by reducing accidents [61]. However, crashes caused by AVs indicate that achieving this

lofty goal remains an open challenge. Despite the fact that companies such as Tesla [27],

Waymo [36], or Uber [33] have released prototypes of AVs with a high level of autonomy,

they have caused injuries or even fatal accidents to pedestrians. For instance, an AV of Uber

killed a pedestrian in Arizona back in 2018 [26].

Prior research has revealed a lack of standardized procedures to test AVs [120] and the inability

of current approaches to effectively translate traditional software testing approaches into the

space of AVs [124, 112]. A common practice for testing AV software lies in field operational

tests, in which AVs are left to drive freely in the physical world. This approach is not only

expensive and dangerous but also ineffective since it misses critical testing scenarios [116].

Virtual tests, where AVs are tested in software simulations, offer a far more efficient and

safer alternative. While these tests provide an opportunity to automatically generate tests,

they come with the key challenge of systematically generating scenarios that expose AVs to

safety-critical and motion sickness-inducing situations.

Another challenge in smart systems is related to the improper handling of security updates,

especially security updates in native libraries of smartphones. Vulnerabilities found in such

libraries may propagate to host apps increasing the attack surface of such apps [160, 166].

The security implications in native libraries are critical for the following reasons: (1) app
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developers add native libraries but do not update them, either due to concerns over regressions

arising from such updates, prioritizing new functionality over security, deadline pressures, and

other forms of negligence (such as a lack of tracking library dependencies and their patches)

that results in outdated or vulnerable native libraries remaining in new versions of apps;

(2) native libraries are susceptible to memory vulnerabilities (e.g., buffer overflow attacks)

that are very difficult to exploit with managed code of Android apps, i.e., Dalvik code; (3)

contrary to previous studies [83, 187], native libraries are currently used pervasively in top

mobile apps.

The aforementioned challenges highlight the importance of ensuring software dependability

in smart systems such as safety, security, reliability, maintainability, etc. In the remainder of

this section, I will explain the related background and challenges of smart systems software

in more detail.

1.1 Security Updates in Android Apps’ Native Code

Third-party libraries are an integral part of mobile apps. Android developers opt for third-

party libraries due to their convenience and re-usability, since utilizing them saves time and

effort and allows developers to avoid re-implementing functionality. Furthermore, native

libraries have become more prevalent in recent Android applications (“apps”), especially

social networking and gaming apps. These two app categories—ranked among the top

categories on Google Play—require special functionality such as 3D rendering, or audio/video

encoding/decoding [93, 135, 173, 150, 164]. These tasks tend to be resource-intensive and

are, thus, often handled by native libraries to improve runtime performance.

The ubiquity of third-party libraries in Android apps increases the attack surface [160, 166]

since host apps expose vulnerabilities propagated from these libraries [110, 163]. Another

series of previous work has studied the outdatedness and updateability of third-party Java

libraries in Android apps [79, 58], with a focus on managed code of such apps (e.g., Java
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or Dalvik code). However, these previous studies do not consider native libraries used by

Android apps.

We argue that security implications in native libraries are even more critical for three main

reasons. First, app developers add native libraries but neglect to update them. The reasons

for this may include concerns over regressions arising from such updates, prioritizing new

functionality over security, deadline pressures, or lack of tracking library dependencies and

their security patches. This negligence results in outdated or vulnerable native libraries

remaining in new versions of apps. Second, native libraries are susceptible to memory

vulnerabilities (e.g., buffer overflow attacks) that are straightforward to exploit. Third,

and contrary to studies from almost 10 years ago [83, 187], native libraries are now used

pervasively in mobile apps. To illustrate this point, we analyzed the top 200 apps from

Google Play between Sept. 2013 and May 2020. We obtained the version histories of these

apps from AndroZoo [50] totaling 7,678 versions of those 200 top free apps. From these apps,

we identified 66,684 native libraries in total with an average of 11 libraries per app and a

maximum of 141 for one version of Instagram.

To better understand the usage of third-party native libraries in Android apps and its

security implications, a longitudinal study must be conducted; this study investigates (1) the

prevalence of vulnerabilities in native libraries in the top apps, and (2) the rate at which app

developers apply patches to address vulnerabilities in native binaries. A core challenge we

face in this study is the identification of libraries and their versions, since developers often

rename or modify libraries, making their identification challenging. The previous challenge

requires an approach that accurately identifies native libraries and their versions as found in

Android apps. Chapter 3 describes our approach to identifying security vulnerabilities in

Android apps in more detail.
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1.2 Analysis of Bugs in Autonomous Vehicles

Autonomous Vehicles (AV) technology leverages advanced sensing and networking technologies

(e.g., camera, LiDAR, RADAR, GPS, DSRC, 5G, etc.) to enable safe and efficient driving

without human drivers. Although still in its infancy, AV technology is becoming increasingly

common and could radically transform our transportation system and by extension, our

economy and society. As a result, there is tremendous global enthusiasm for research,

development, and deployment of autonomous vehicles (AVs), e.g., self-driving taxis and trucks

from Waymo and Baidu.

Unfortunately, the nature of AV software bugs is currently not well understood. It is unclear

what the root causes of bugs are in AV software, the kinds of driving errors that may result,

and the parts of AV software that are most often affected. These kinds of information can

aid AV software researchers and engineers with (1) the creation of AV bug detection and

testing tools, (2) the localization of faults that result in AV bugs, (3) recommendations or

automated means of repairing AV bugs, (4) measurement of the quality of AV software, and

(5) mechanisms to monitor for AV software failures.

Previous empirical studies have investigated bug characteristics in a variety of domains

including numerical software libraries [80], machine learning libraries [113, 181, 167], con-

currency bugs [126, 138], performance bugs [114, 159], and error-handling bugs [169, 73, 66].

None of these studies have focused on bugs in AV software systems. Chapter 4 presents a

comprehensive study of bugs in AVs; providing a classification of root causes and symptoms

of bugs, and the AV components affected by these bugs.

1.3 Test Generation for Autonomous Vehicles

The current practice for testing AVs uses virtual tests—where AVs are tested in software

simulations—since they offer a more efficient and safer alternative compared to field op-
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erational tests. Specifically, search-based approaches are used to find particularly critical

situations. While these tests provide an opportunity to generate tests automatically, they come

with the key challenge of systematically generating scenarios that expose AVs to safety-critical

and motion sickness-inducing situations.

Additionally, previous work on AV software testing uses a highly limited number of test

oracles for ensuring safety and no oracles for assessing motion sickness-inducing movement of

an AV. For example, state-of-the-art AV testing approaches (AC3R, AV-Fuzzer, AsFault and

Abdessalem et al. [60, 47]) use only two oracles for checking if (1) the ego car reaches its

final expected position while avoiding a crash (i.e., collision detection) and (2) if a vehicle

drives off the road (i.e., off-road detection); while completely ignoring rider comfort and

motion sickness. Research has shown that a rider’s discomfort increases when a human is

a passenger rather than a driver—with up to one-third of Americans experiencing motion

sickness, according to the National Institutes of Health (NIH) [14, 23, 128].

We address the previous challenges by (1) proposing a test generation approach that automat-

ically generates valid and effective driving scenarios, (2) we utilize 5 test oracles to determine

both safety and motion sickness-inducing violations, and (3) we introduce a novel technique

to identify and eliminate duplicate tests for autonomous vehicles. Chapter 5 describes our

automatic test generation approach for AVs in more detail.

1.4 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 presents the research problem,

three research hypotheses, and the scope of this thesis. Chapter 3 introduces LibRARIAN ,

an approach that accurately identifies native libraries and their versions as found in Android

apps along with a large-scale, longitudinal study that tracks security vulnerabilities in native

libraries used in apps over 7 years[51]. Chapter 4 presents a comprehensive study of bugs

in AV systems which consists of a classification of root causes and symptoms of bugs, and
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the AV components these bugs may affect. Finally, Chapter 5 describes scenoRITA, a test

generation framework that aims to find safety and motion sickness-inducing violations in the

presence of an evolving traffic environment.

The following is the list of my research projects and publications:

• Sumaya Almanee, Xiafa Wu, Yuqi Huai, Qi Alfred Chen, and Joshua Garcia. ”sceno-

RITA: Generating Diverse, Fully-Mutable, Safety-Critical and Motion Sickness-Inducing

Scenarios for Autonomous Vehicle”. Accepted pending Major Revision to appear in

IEEE Transactions on Software Engineering (TSE 2022).

• Sumaya Almanee, Arda Unal, Mathias Payer, and Joshua Garcia. ”Too Quiet in the

Library: An Empirical Study of Security Updates in Android Apps’ Native Code”. In

the 43rd International Conference on Software Engineering (ICSE 2021).

• Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Al-

fred Chen. ”A Comprehensive Study of Autonomous Vehicle Bugs”. In the 42nd

International Conference on Software Engineering (ICSE 2020).

• Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwat, Shantanu Sharma, Sumaya

Almanee. ”Obscure:Information-Theoretically Secure, Oblivious, and Verifiable Aggre-

gation Queries on Secret-Shared Outsourced Data”. IEEE Transactions on Knowledge

and Data Engineering (TKDE 2020).

• Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwat, Shantanu Sharma, Sumaya

Almanee. ”Obscure:Information-Theoretic Oblivious and Verifiable Aggregation Queries”.

In the 45th International Conference on Very Large Data Bases (VLDB 2019).

• Sumaya Almanee, Georgios Bouloukakis, Daokun Jiang, Sameera Ghayyur, Dhruba-

jyoti Ghosh, Peeyush Gupta, Yiming Lin, Sharad Mehrotra, Primal Pappachan, Eun-

Jeong Shin, Nalini Venkatasubramanian, Guoxi Wang, Roberto Yus.”SemIoTic: Bridg-
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ing the Semantic Gap in IoT Spaces”. In the 6th ACM International Conference on

Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2019).
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Chapter 2

Research Problem

2.1 Problem Statement

Smart systems sit at the intersection of humans and technology infrastructures, as they

perform basic control operations for our technology infrastructure and interact with people

to understand their needs and goals. The challenges caused by the lack of techniques to

ensure the dependability of software in smart systems can be summarized as follow: “Smart

systems are increasingly used in a large number of sectors such as transportation, healthcare,

energy, safety, and security. Hence, the need for ensuring software dependability in such

systems has increased more than ever. More specifically, there is a demand for enforcing

measures for the security, reliability, and safety of software found in such systems. For

example, a comprehensive understanding and analysis of the nature of bugs and security

vulnerabilities found in smart systems may lead to a better creation of bug detection techniques

and testing tools for such systems. Additionally, effective and valid test generation techniques

are required to assess the behavior of smart systems (such as smart cars) under different

conditions. Unfortunately, there is a lack of appropriate frameworks and techniques among

the state-of-the-art works which effectively ensures software dependability in smart systems.”
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2.2 Research Hypothesis

2.2.1 Software Security in Smart Systems

Developers rarely perform code reviews on third-party dependencies [79], despite the fact

that prior work [160, 166, 110, 163] has shown that third-party dependencies are often a

source of software vulnerabilities. More specifically, native libraries in Android apps are often

neglected, and as a result, remain outdated with unpatched security vulnerabilities years

after patches become available. Unfortunately, none of the previous studies [79, 58] examined

native third-party libraries in Android apps nor did they look at the security impact of

vulnerable libraries or whether these vulnerabilities are on the attack surface.

Hypothesis 1: An automated and efficient approach can be devised to accurately identify

native libraries and their versions as found in Android apps.

This tool enables me to achieve the second objective in my research which is to:

Hypothesis 2: Conduct a large-scale study to examine the prevalence of security vulnerabil-

ities in Android’s native libraries can be conducted.

Work Progress: To test these hypotheses, I created an approach called LibRARIAN that,

given an unknown binary, identifies (i) the library it implements and (ii) its version. We

then conducted a large-scale, longitudinal study that tracks security vulnerabilities in native

libraries used in apps for over 7 years. We discovered 53/200 popular apps (26.5%) with

vulnerable versions with known CVEs between Sept. 2013 and May 2020, with 14 of those apps

remaining vulnerable. We found that app developers took, on average, 528.71± 40.20 days

to apply security patches, while library developers release a security patch after 54.59± 8.12

days—a 10 times slower rate of update.
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2.2.2 Software Reliability in Smart Systems

One of the objectives of ensuring software reliability in smart systems is identifying the

root cause of failures that might occur in such systems. Previous empirical studies have

investigated bug characteristics in a variety of domains including numerical software libraries

[80], machine learning libraries [113, 181, 167], concurrency bugs [126, 138], performance bugs

[114, 159], and error-handling bugs [169, 73, 66]. None of these studies have focused on bugs

in AV software systems. The nature of AV software bugs is currently not well understood.

It is unclear what the root causes of bugs are in AV software, the kinds of driving errors

that may result, and the parts of AV software that are most often affected. These kinds

of information can aid AV software researchers and engineers with (1) the creation of AV

bug detection and testing tools, (2) the localization of faults that result in AV bugs, (3)

recommendations or automated means of repairing AV bugs, (4) measurement of the quality

of AV software, and (5) mechanisms to monitor for AV software failures.

Hypothesis 3: A comprehensive study of AV bugs can be conducted to identify the root

causes and symptoms of bugs, and the AV components affected by these bugs.

Work Progress: To test this hypothesis, we conducted a comprehensive study of bugs in

two major AV platforms, Apollo and Autoware [15, 13]. We investigated the bugs found in

the previous two AV platforms in addition to their root causes, their impacts, and the type

of AV components they affect. We have studied a total of 499 AV bugs from 16,851 commits

across Apollo and Autoware repositories, of which we have identified 13 root causes and 20

symptoms across 18 AV components.

2.2.3 Software Safety in Smart Systems

The current practice for testing AVs uses virtual tests—where AVs are tested in software

simulations—since they offer a more efficient and safer alternative compared to field op-
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erational tests. Specifically, search-based approaches are used to find particularly critical

situations. While these tests provide an opportunity to generate tests automatically, they

come with the key challenge of systematically generating scenarios that expose AVs to safety-

critical and motion sickness-inducing situations. Prior work [130, 96, 97, 67] ignores the

challenge of ensuring the creation of valid obstacle trajectories, reducing their effectiveness

at generating driving scenarios with unique violations. Moreover, previous work uses a

highly limited number of test oracles for ensuring safety and no oracles for assessing motion

sickness-inducing movement of an AV.

Hypothesis 4: A search-based test generation framework can be devised for smart cars to

find diverse, fully-mutable, safety and motion sickness-inducing violations in the presence of

an evolving traffic environment.

Work Progress: To test this hypothesis, I have developed scenoRITA, a novel search-

based testing framework that generates driving scenarios that expose AV software to 3

types of safety-critical and 2 types of motion sickness-inducing violations. scenoRITA

reduces duplicate scenarios, allows fully mutable obstacles with valid and modifiable obstacles

trajectories, and follows domain-specific constraints obtained from authoritative sources.

Using this approach, we found a total of 1,026 unique safety and comfort violations including

386 collisions, 21 speed violations, 291 unsafe lane changes, 132 fast acceleration violations,

and 196 hard-braking violations.
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Chapter 3

An Empirical Study of Security

Updates in Android Apps’ Native

Code

Android apps include third-party native libraries to increase performance and to reuse

functionality. Native code is directly executed from apps through the Java Native Interface or

the Android Native Development Kit. Android developers add precompiled native libraries to

their projects, enabling their use. Unfortunately, developers often struggle or simply neglect

to update these libraries in a timely manner. This results in the continuous use of outdated

native libraries with unpatched security vulnerabilities years after patches became available.

To further understand such phenomena, we study the security updates in native libraries

in the most popular 200 free apps on Google Play from Sept. 2013 to May 2020. A core

difficulty we face in this study is the identification of libraries and their versions. Developers

often rename or modify libraries, making their identification challenging.

We create an approach called LibRARIAN (LibRAry veRsion IdentificAtioN) that accu-
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rately identifies native libraries and their versions as found in Android apps based on our

novel similarity metric bin2sim. LibRARIAN leverages different features extracted from

libraries based on their metadata and identifying strings in read-only sections.

We discovered 53/200 popular apps (26.5%) with vulnerable versions with known CVEs

between Sept. 2013 and May 2020, with 14 of those apps remaining vulnerable. We find that

app developers took, on average, 528.71± 40.20 days to apply security patches, while library

developers release a security patch after 54.59± 8.12 days—a 10 times slower rate of update.

3.1 Introduction

Third-party libraries are convenient, reusable, and form an integral part of mobile apps.

Developers can save time and effort by reusing already implemented functionality. Native third-

party libraries are prevalent in Android applications (“apps”), especially social networking

and gaming apps. These two app categories—ranked among the top categories on Google

Play—require special functionality such as 3D rendering, or audio/video encoding/decoding

[93, 135, 173, 150, 164]. These tasks tend to be resource-intensive and are, thus, often handled

by native libraries to improve runtime performance.

The ubiquity of third-party libraries in Android apps increases the attack surface [160, 166]

since host apps expose vulnerabilities propagated from these libraries [110, 163]. Another

series of previous work has studied the outdatedness and updateability of third-party Java

libraries in Android apps [79, 58], with a focus on managed code of such apps (e.g., Java

or Dalvik code). However, these previous studies do not consider native libraries used by

Android apps.

We argue that security implications in native libraries are even more critical for three main

reasons. First, app developers add native libraries but neglect to update them. The reasons

for this may include concerns over regressions arising from such updates, prioritizing new
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functionality over security, deadline pressures, or lack of tracking library dependencies and

their security patches. This negligence results in outdated or vulnerable native libraries

remaining in new versions of apps. Second, native libraries are susceptible to memory

vulnerabilities (e.g., buffer overflow attacks) that are straight-forward to exploit. Third,

and contrary to studies from almost 10 years ago [83, 187], native libraries are now used

pervasively in mobile apps. To illustrate this point, we analyzed the top 200 apps from

Google Play between Sept. 2013 and May 2020. We obtained the version histories of these

apps from AndroZoo [50] totaling 7,678 versions of those 200 top free apps. From these apps,

we identified 66,684 native libraries in total with an average of 11 libraries per app and a

maximum of 141 for one version of Instagram.

To better understand the usage of third-party native libraries in Android apps and its security

implications, we conduct a longitudinal study to identify vulnerabilities in third-party native

libraries and assess the extent to which developers update such libraries of their apps. In

order to achieve this, we make the following research contributions:

• We construct a novel approach, called LibRARIAN (LibRAry veRsion IdentificAtioN)

that, given an unknown binary, identifies (i) the library it implements and (ii) its version.

Furthermore, we introduce a new similarity-scoring mechanism for comparing native binaries

called bin2sim, which utilizes 6 features that enable LibRARIAN to distinguish between

different libraries and their versions. The features cover both metadata and data extracted

from the libraries. These features represent elements of a library that are likely to change

between major, minor, and patch versions of a native library.

• We conduct a large-scale, longitudinal study that tracks security vulnerabilities in native

libraries used in apps over 7 years. We build a repository of Android apps and their native

libraries with the 200 most popular free apps from Google Play totaling 7,678 versions

gathered between the dates of Sept. 2013 and May 2020. This repository further contains

66,684 native libraries used by these 7,678 versions.
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Prior work [143, 133, 111, 49] has measured the similarity between binaries. However, these

approaches identify semantic similarities/differences between binaries at the function-level,

with the goal of identifying malware. LibRARIAN , orthogonally, is a syntactic-based tool

which computes similarity between two benign binaries (at the file-level) with the goal of

identifying library versions with high scalability.

We utilize LibRARIAN and our repository to study (1) LibRARIAN ’s accuracy and effec-

tiveness, (2) the prevalence of vulnerabilities in native libraries in the top 200 apps, and (3)

the rate at which app developers apply patches to address vulnerabilities in native binaries.

The major findings of our study are as follows:

• For our ground truth dataset which contains 46 known libraries with 904 versions, LibRAR-

IAN correctly identifies 91.15% of those library versions, thus achieving a high identification

accuracy.

• To study the prevalence of vulnerabilities in the top 200 apps in Google Play, we use

LibRARIAN to examine 53 apps with vulnerable versions and known CVEs between Sept.

2013 and May 2020. 14 of these apps remain vulnerable and contain a wide-range of

vulnerability types—including denial of service, memory leaks, null pointer dereferences, or

divide-by-zero errors. We further find that libraries in these apps, on average, have been

outdated for 859.17± 137.55 days. The combination of high severity and long exposure

of these vulnerabilities results in ample opportunity for attackers to target these highly

popular apps.

• To determine developer response rate of applying security fixes, we utilize LibRARIAN to

analyze 40 apps, focusing on popular third-party libraries (those found in more apps) with

known CVEs such as FFmpeg, GIFLib, OpenSSL, WebP, SQLite3, OpenCV, Jpeg-turbo,

Libpng, and XML2, between Sept. 2013 and May 2020.

We find that app developers took, on average, 528.71±40.20 days to apply security patches,

while library developers release a security patch after 54.59± 8.12 days—a 10 times slower
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rate of update. These libraries that tend to go for long periods without being patched

affect highly popular apps with billions of downloads and installs.

• We make our dataset, analysis platform, and results available online to enable reusability,

reproducibility, and others to build upon our work [134].

3.2 LibRARIAN

Figure 3.1 shows the overall workflow of LibRARIAN . LibRARIAN identifies unknown

third-party native libraries and their versions (Unknown Lib Versions) by (1) extracting

features that distinguish major, minor, and patch versions of libraries that are stable across

platforms regardless of underlying architecture or compilation environments; (2) comparing

those features against features from a ground-truth dataset (Known Lib Versions) using

a novel similarity metric, bin2sim; and (3) matching against strings that identify version

information of libraries extracted from Known Lib Versions, which we refer to as Version

Identification Strings. In the remainder of this section, we describe each of these three major

steps of LibRARIAN .

Unknown 
Lib Versions

Known Lib 
Versions

LibRAry veRsion
IdentificAtioN (LibRARIAN)

Identified 
Library 

Versions

Figure 3.1: LibRARIAN identifies versions of native binaries from Android apps by using our
bin2sim similarity-scoring technique to compare known (ground-truth dataset) and unknown
versions of native binaries.
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3.2.1 Feature Vector Extraction

Our binary similarity detection is based on the extraction of features from binaries combining

both metadata found in Executable and Linkable Format (ELF) files as well as identifying

features in different binary sections of the library. All shared libraries included in Android

apps are compiled into ELF binaries. Like other object files, ELF binaries contain a symbol

table with externally visible identifiers such as function names, global symbols, local symbols,

and imported symbols. This symbol table is used (1) during loading and linking and (2)

by binary analysis tools [102] (e.g., objdump, readelf, nm, pwntools, or angr [162]) to infer

information about the binary.

Feature
Type

Name Definition

M
e
ta

d
a
ta

Exported Globals Externally visible variables, i.e., they can be accessed externally.
Imported Globals Variables from other libraries that are used in this library.
Exported Functions Externally visible functions, i.e., functions that can be called from outside

the library.
Imported Functions Functions from other libraries that are used in this library.
Dependencies The library dependencies that are automatically loaded by the ELF object

D
a
ta Version Identification

Strings
Flexible per-library version strings (e.g., “libFoo-1.0.2” matched to strings in
the .rodata section of an ELF object)

Table 3.1: List of features LibRARIAN extracts from native binaries of Android apps along
with their type and definition.

To distinguish between different libraries and their versions, we need to identify differencing

features. To that end, we define a set of six features inherent to versions and libraries.

Five features represent ELF metadata, these features are used to compute the similarity

score between two binaries as described in Section 3.2.2, hence, we refer to these features as

Metadata Features. Orthogonally, we leverage strings extracted from the .rodata section of

an ELF object, which we refer to as Version Identification Strings. This feature complements

the similarity score from the first set of features. We either use it to verify the correctness of

the version or as a fallback if the similarity to existing binaries in our ground-truth dataset is

low (see Section 3.2.3).

Table 3.1 shows the list of all LibRARIAN features. The features include: (i) five Metadata
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Features based on exported and imported functions, exported and imported globals, and

library dependencies; and (ii) one Data Feature which is applied as a second factor to either

substitute the Metadata Features, in case the reported similarity score is low, or to confirm

the reported score. These 6 features represent the code elements of a library that would be

expected to change based on a versioning scheme that distinguishes major, minor, and patch

versions of a library. Furthermore, these features are stable across platforms regardless of

the underlying architecture or compilation environments. We did not include code features

(e.g., control-flow and data-flow features) as they are extremely volatile and change between

compilations and across architectures. Binary similarity matching is a hard open problem:

While recent work has made progress regarding accuracy [85, 178, 143, 133, 111, 49, 108, 81],

the majority of algorithms have exponential computation cost relative to the code size and

are infeasible for large-scale studies.

We built a dataset of heuristics by inspecting the binaries in our ground-truth dataset.

We developed scripts to process the data in the .rodata sections extracted during feature

processing and search for unique per-library strings that contain version information. For

example, FFmpeg version info is found when applying the regex ffmpeg-([0-9]\.)*[0-9] or

FFmpeg version([0-9]\.)*[0-9]. Table 3.2 shows our list of extracted version heuristics.

Each version heuristic can be produced automatically by constructing regular expressions

from strings in .rodata sections of binaries in our ground-truth dataset. For example, if

the string “libFoo-1.0.2 ” is found in version 1.0.2 of libFoo, LibRARIAN uses a regular

expression replacing the numeric suffix of the string with an appropriate pattern (e.g.,

libFoo-[0-9]+(\.[0-9])*).

We deliberately exclude any metadata or identifying strings for symbols that are volatile

across architectures or build environments like compiler version, relocation information (and

types), or debug symbols. LibRARIAN ’s accuracy results in Section 3.3.1 demonstrate that

our selected set of features suffice to distinguish between different versions of libraries.
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Library Name Extracted Heuristics
Jpeg-turbo Jpeg-turbo version 1(\.[0-9]{1,})*

FFmpeg ffmpeg-([0-9]\.)*[0-9]|FFmpeg version ([0-9]\.)*[0-9]

Firebase Firebase C++ [0-9]+(\.[0-9])*

Libavcodec Lavc5[0-9](\.[0-9]{1,})

Libavfilter Lavf5[0-9](\.[0-9]{1,})

Libpng Libpng version 1(\.[0-9]{1,})*

Libglog glog-[0-9]+(\.[0-9])*

Libvpx WebM Project VP(.*)

OpenCV General configuration for OpenCV [0-9]+(\.[0-9])*|opencv-[0-9]+(\.[0-9])*

OpenSSL openssl-1(\.[0-9])*[a-z]|^OpenSSL 1(\.[0-9])*[a-z]

Speex speex-(.*)

SQLite3 ^3\.([0-9]{1,}\.)+[0-9]

Unity3D ([0-9]+\.)+([0-9]+)[a-z][0-9]|Expected version:(.*)

Vorbis Xiph.Org Vorbis 1.(.*)

XML2 GITv2.[0-9]+(\.[0-9])

Table 3.2: Heuristics used to search for unique per-library strings that contain version
information

The implementation leverages angr’s [162] ELF parser which already is platform independent.

Our extraction platform recovers all metadata from the ELF symbol tables and, if available,

searches for string patterns in the comment and read-only sections. Our filters remove

platform specific information and calls to standard libraries (e.g., C++ ABI calls, vectors, or

other data structures). The current implementation covers x86-64, x86, ARM, and ARM64

binaries—which are all platforms we observed in our evaluation. We accommodate for

architecture differences in two ways: First, we remove architecture noise in feature vectors

(e.g., symbols that are only used in one architecture); and second, we collect, if available,

binaries for the different architectures.

The feature extraction compiles all recovered information as a dictionary into a JSON file.

The dictionary contains arrays of strings for each of the features mentioned above plus

additional metadata to identify the library and architecture.

3.2.2 Similarity Computation

LibRARIAN ’s similarity computation, which we refer to as bin2sim, leverages the five

Metadata Features when computing the similarity scores between an app binary and our

ground-truth dataset. bin2sim is based on the Jaccard coefficient, and is used to determine

the similarity between feature vectors. bin2sim allows LibRARIAN to account for addition
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or removal of features between different libraries and versions. Given two binaries b1 and b2

with respective feature vectors FV1 and FV2, bin2sim computes the size of the intersection

of FV1 and FV2 (i.e., the number of common features) over the size of the union of FV1 and

FV2 (i.e., the number of unique features):

bin2sim(FV1, FV2) =
| FV1 ∩ FV2 |
| FV1 ∪ FV2 |

∈ [0, 1] (3.1)

The similarity score is a real number between 0 and 1, with a score of 1 indicating identical

features, a score of 0 indicating no shared features between the two libraries, and a fractional

value indicating a partial match. Due to the volatility of the similarity score, filtering noise

such as platform-specific details as mentioned in the previous section is essential for the

accuracy of our approach.

LibRARIAN counts an unknown library instance from Unknown Lib Versions as matching a

known library version if its bin2sim is above 0.85. This threshold was determined experimen-

tally and works effectively as our evaluation will demonstrate (see Section 5.5). If bin2sim

results in the same value above the threshold for multiple known binaries, LibRARIAN tries

obtaining an exact match between one of the known binaries and the unknown binary by

using their hash codes to determine the unknown binary’s version.

A low similarity score might result from modifications made by app developers to the original

third-party library which results in the removal or addition of specific features. From our

experience, removal of features from the original library is common among mobile developers

and is likely driven by the need to reduce the size of the library and the app as much as

possible. For example, we observed that the WebP video codec library is often deployed

without encoding functionalities to reduce binary size. Some size optimization techniques

require choosing needed modules from a library and leaving the rest, stripping the resulting
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binary, and modifying build flags. Another factor that reduces similarity as measured by the

Jaccard coefficient is that certain architectures tend to export more features as compared to

others. For instance, 32-bit architectures such as armeabi-v7a and x86 export more features

compared to arm64-v8a and x86 64.

3.2.3 Version Identification Strings

For libraries where LibRARIAN reports low similarity scores (e.g., some libraries like Render-

Script or Unity only export a single function 1), these five features fail to provide sufficient

information about the underlying components in a library. If libraries only export one or

a few functions, the similarity metrics have a hard time distinguishing between different

libraries. We therefore extend the features with strings that uniquely identify the library.

Such strings are often version strings. Based on extracted flexible per-library heuristics from

our ground-truth dataset (see Table 3.2), we heuristically identify exact library versions

and increase overall accuracy. For libraries with high similarity scores, we use these library

heuristics to confirm the correct version.

To identify binaries with low similarity scores, we leverage Version Identification Strings,

which is the set of extracted per-library version strings. For example, say a library version lv

extracted from app a had a similarity score of 0.3 when compared with OpenCV-2.4.11 using

Metadata Features. Given the low score, we search the Version Identification Strings feature

for specific keywords such as General configuration for OpenCV *.*.* or opencv-*.*.*.

Where the asterisk represents the versioning scheme of OpenCV library.

Our feature extraction process logs all strings (arrays of more than 3 ASCII printable

characters ending with a 0 byte) from the .rodata section alongside the other features. As

libraries commonly have large amounts of read-only string data that frequently changes,

1These libraries are “stripped” and hide all functionality internally. The single exported function takes
a string as parameter which corresponds to the target function and they dispatch to internal functionality
based on this string.
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we cannot use this data directly as a feature (due to the low overlap resulting in low

similarity). By processing the .rodata from our ground-truth dataset and clustering the data,

we extract common version identifiers and version strings. We then translate them into

regular expressions that allow us to match versions for different libraries.

3.3 Evaluation

To assess the prevalence of vulnerable native libraries for Android, we answer the following

three research questions:

RQ1: Accuracy and effectiveness of LibRARIAN. Can LibRARIAN accurately and effectively

identify versions of native libraries? How does LibRARIAN compare against state-of-the-

art native-library version identification? How effective are LibRARIAN ’s feature types at

identifying versions of native libraries?

RQ2: Prevalence of outdated libraries. How prevalent are vulnerabilities in native libraries

of Android apps?

RQ3: Patch response time. After a vulnerability is reported for a third-party library, how

quickly do developers apply patches?

To supplement the aforementioned RQs, we conducted a detailed case study on a vulnerable

app (Section 3.3.4), providing practical insight into vulnerabilities in third-party libraries

and possible exploits.

To answer these research questions, we analyze the top 200 apps in Google Play over several

years. We track the version history of these apps from AndroZoo [50], a large repository of

over 11 million Android apps. Our repository contains app metadata including the app name,

release dates, and native binaries.

Note that Google Play unfortunately restricts lists to 200 apps. Overall, we collected 7,678

instances, where each instance is a version of the 200 top apps from Google Play.
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We determined that 145 out of 200 (72.50%) of the distinct apps in our repository contain at

least one native library, i.e., 5,852 out of 7,678 (76.21%) of the total apps in our database.

There are a total of 66,684 libraries in the form of .so files, i.e., shared library files, in our

repository with an average of 11 libraries per app and a maximum of 141 for one version of

Instagram. In fact, Instagram—for which we collected 184 versions since Dec. 2013—contains

a total of 6,677 .so files.

We run LibRARIAN on a machine with 2 AMD EPYC 7551 32-Core CPUs and 512GB of

RAM running Ubuntu 18.04. The average number of features in the extracted feature vectors

is 2,116.86 features. Some outliers such as libWaze and libTensorflow reach up to 79,581

features. This shows that the set of third-party native libraries in our repository is diverse,

some of them are very complex and offer a large number of functionalities. Generating feature

vectors is quick and generally takes a few seconds per library. The most complex library,

libTensorflow takes 4 min and 38 sec to analyze. We found that, out of 7,253 binaries for

which LibRARIAN inferred their versions, the average runtime for library version detection

is 118.19 seconds—with a minimum of 97 seconds and a maximum of 224 seconds.

3.3.1 RQ1: Accuracy and Effectiveness

To determine if LibRARIAN accurately and effectively identifies native library versions

from Android apps, we assess LibRARIAN in three scenarios. For the first scenario, we

compare its accuracy with OSSPolice, the state-of-the-art technique for identifying versions

of native binaries for Android apps. For the second scenario, we assess LibRARIAN on a

larger dataset for which OSSPolice could not be applied and, thus, evaluate LibRARIAN ’s

accuracy independently of other tools. In the third scenario, we assess the effectiveness of

LibRARIAN ’s feature types at identifying versions of native libraries.
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Comparative Analysis

OSSPolice uses source code to build an index that allows it to identify versions of binaries.

OSSPolice measures the similarity between strings extracted from binaries and features found

directly in source repositories. Unlike LibRARIAN , OSSPolice relies on comparing binaries

with source code, resulting in an overly large feature space which, in turn, makes OSSPolice

susceptible to falsely identifying any binary containing a library as exactly matching that

library. For example, OSSPolice falsely identifies MuPDF and OpenCV as matching Libpng

because those two libraries include Libpng in their source code [81].

We repeatedly contacted the OSSPolice authors to obtain a fully-working version of their

tool, but unfortunately they did not provide us their non-public data index or sufficient

information to reproduce their setup. As a result, we performed a comparative analysis

between LibRARIAN and OSSPolice based on the published OSSPolice numbers [81].

The ground-truth dataset in the OSSPolice evaluation contains a total of 475 binaries (out of

which 67 are unique) extracted from 104 applications collected by F-Droid [89]. LibRARIAN

correctly identified 63/67 (94%) unique binaries in the OSSPolice dataset, improving accuracy

by 12% compared to the accuracy reported by OSSPolice (82%) which correctly identified

55/67 libraries. OSSPolice has lower accuracy because it misidentifies reused libraries (as

described above) and it relies on simple syntactic features (e.g., string literals and exported

functions) while our feature vectors extract additional features—such as imported functions,

exported and imported global variables, and dependencies that uniquely identify different

versions of binaries. These additional features were a major factor in the superior accuracy

of LibRARIAN compared to OSSPolice.

LibRARIAN did not identify 4 binaries because the library functions are dispatched from a

single function and do not contain identifying version information that was readily available.

Hence, our extracted features fail to provide sufficient information about the underlying
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components in the library. Nevertheless, LibRARIAN significantly reduces the number of

binaries that need to be manually inspected.

Lastly, it is important to reiterate that these results are only compared against the dataset

used in the OSSPolice paper but without us being able to replicate or reuse OSSPolice, due

to key elements of the tool being unavailable.

Finding 1: LibRARIAN achieves a 12% improvement in its accuracy compared to

OSSPolice on the 67 unique binaries in OSSPolice’s dataset. Unlike OSSPolice, LibRARIAN

obtains this improvement without relying on source code, which may not be available for all

libraries and results in an unnecessarily larger feature space.

Independent Accuracy

We further assess LibRARIAN ’s accuracy on a larger and more recent set of library versions

than those found in OSSPolice’s dataset. To that end, we manually collect a set of binaries

with known libraries and versions (Known Lib Versions in Figure 3.1) and compare the

inferred libraries and versions to the known ones to determine LibRARIAN ’s accuracy. We

build our dataset based on libraries used in common Android apps.

Experiment Setup. We first manually locate the pre-built binaries of libraries to serve as

ground truth. To that end, we use readily available auxiliary data such as keywords found in

feature vectors, binary filenames, and dependencies. Once we identify potential targets, we

retrieve the pre-built binaries of all versions and architectures, if possible.

There are a variety of distribution channels where app developers can obtain third-party

binaries. We obtained such binaries from official websites, GitHub, and Debian repositories.

The binaries with known libraries and versions contain 46 distinct libraries with a total of

904 versions and an average of 19 versions per library.
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Results. LibRARIAN correctly identified the versions of 824/904 (91.15%) libraries in

our ground truth: 553/904 (61.17%) of these library versions have unique feature vectors;

15.16% of the these libraries contain the exact version number in the strings literals; and the

remaining 14.82% of library versions are distinguished using hash codes to break ties between

bin2sim values of binaries.

Misidentification occurs in 8.85% of library versions, where the largest equivalence class

contains 4 library versions. This usually occurs for consecutive versions—minor or micro

revisions (e.g., 3.1.0 and 3.1.1). These minor or micro revisions generally fix small bugs and

do not change, add, or remove exported symbols. Although LibRARIAN cannot pinpoint

the exact library version in this case, LibRARIAN significantly reduces the search space for

post analysis to a few candidate versions.

Finding 2: LibRARIAN correctly identifies 824 of 904 (91.15%) library versions from 46

distinct libraries, making it highly accurate for identifying the native libraries and versions.

For misidentified library versions, LibRARIAN reports a slightly different version.

Feature Effectiveness

To assess the effectiveness of Metadata Features, Version Identification Strings, and their

combination at inferring binaries, we computed the extent to which each feature is capable of

inferring binaries in our repository. To that end, any binary whose library and version can be

inferred with a bin2sim above 0.85 as described in Section 3.2 counts as an inferred binary.

We found that 37.42% of binaries in our repository are inferable by Version Identification

Strings only. 45.29% of the remaining binaries are inferable using only the five Metadata

Features mentioned in Section 3.2.1, while the remaining 17.29% are inferred using both

Metadata Features and Version Identification Strings. This indicates that not all libraries

have the version information encoded directly in the strings. Having a combination of both

Metadata Features and Version Identification Strings is crucial to increase the number of
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inferred binaries.

Feature
Type

Name Contribution
Factor

M
e
ta

d
a
ta

Exported Globals 3.32%
Imported Globals 1.06%
Exported Functions 58.25%
Imported Functions 32.98%
Dependencies 4.39%

Table 3.3: List of features bin2sim extracted from native binaries of Android apps along
with their type and overall contribution factor, which measures the average percentage each
feature contributes to the total similarity score

We further aimed to assess the extent to which each of the five Metadata Features contribute

to computing bin2sim in order to assess each of their individual effectiveness. Recall from

Section 3.2.2 that our matching algorithm leverages five features when computing the similarity

scores between an app binary and our ground-truth dataset. Table 3.3 lists these feature along

with their contribution factor, i.e., the average percentage each one of these features contribute

to the total similarity score. To calculate the contribution factor (contribf) of a feature f ,

we first calculate the similarity score taking all five features into account (scoreall). We then

calculate the similarity score of each feature separately (scoref). For each feature, we find

contribf = scoref/scoreall, which is the percentage each f contributes to the total similarity

score. As shown in Table 3.3, Exported Functions contributes the most when computing

bin2sim (Equation 3.1), i.e., 58.25% of the matching features are Exported Functions, followed

by Imported Functions contributing 32.98%, Dependencies, Exported Globals, and finally

Imported Globals contributing less overall. Still, these five features sometimes manage to

uniquely identify a library and are therefore included as they, overall, improve the similarity

score. Recall that Version Identification Strings is not taken into account when computing

the similarity score between binaries.

Finding 3: 37.42% of binaries are inferable using Version Identification Strings, 45.29%

are inferable using Metadata Features, and 17.29% are inferable using both feature types.

Exported Functions and Imported Functions account for the overwhelming majority of

effectiveness of Metadata Features, contributing 58.25% and 32.98%, respectively.
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3.3.2 RQ2: Prevalence of Vulnerable Libraries

To study the prevalence of vulnerabilities in native libraries, we need to identify their exact

versions. To that end, we leverage LibRARIAN to identify potential library versions from

our repository. Once the versions are identified, we investigate the extent to which native

libraries of Android apps are vulnerable and remain vulnerable.

Experiment Setup. We infer the correct version of 7,253 binaries (10.87% of the total

binaries in our Android repository) using LibRARIAN . Due to the highly time-consuming

nature of the manual collection of ground-truth binaries, we limit ourselves to libraries that

(i) are found in a greater number of apps (more than 10 apps) and (ii) have known CVEs.

As a result, an overwhelming majority of the remaining binaries in our dataset have either

no known CVEs or affect very few apps, making them an unsuitable choice for applying an

expensive manual analysis for studying this research question.

Lib Name No. Vul
Lib Vers

Vul Lib Vers No.
Apps

No.
Apps
Still
Vul

OpenCV 5 2.4.1, 2.4.11, 2.4.13, 3.1.0, 3.4.1 21 7
WebP 3 0.3.1, 0.4.2, 0.4.3 11 1
GIFLib 2 5.1.1, 5.1.4 15 1
FFmpeg 9 2.8, 2.8.7, 3.0.1, 3.0.3, 3.2, 3.3.2, 3.3.4, 3.4, 4.0.2 8 1
Libavcodec 9 55.39.101, 55.52.102, 56.1.100, 56.60.100, 57.107.100,

57.17.100, 57.24.102, 57.64.100, 57.89.100
10 0

Libavformat 3 55.19.104, 56.40.101, 57.71.100 3 0
Libavfilter 3 3.90.100, 4.2.100, 5.1.100 1 0
Libavutil 3 52.48.101, 52.66.100, 54.20.100 2 0
Libswscale 3 2.5.101, 3.0.100, 4.0.100 5 1
Libswresample 2 0.17.104, 1.1.100 1 0
SQlite3 7 3.11.0, 3.15.2, 3.20.1, 3.26.0, 3.27.2, 3.28.0, 3.8.10.2 7 2
XML2 1 2.7.7 3 1
OpenSSL 22 1.0.0a, 1.0.1c, 1.0.1e, 1.0.1h, 1.0.1i, 1.0.1p, 1.0.1s, 1.0.2a,

1.0.2f, 1.0.2g, 1.0.2h, 1.0.2j, 1.0.2k, 1.0.2m, 1.0.2o, 1.0.2p,
1.0.2r, 1.1.0, 1.1.0g, 1.1.0h, 1.1.0i, 1.1.1b

13 3

Jpeg-turbo 2 1.5.1, 1.5.2 3 0
Libpng 7 1.6.10, 1.6.17, 1.6.24, 1.6.34, 1.6.37, 1.6.7, 1.6.8 5 1

Table 3.4: A list of libraries with reported CVEs found in our repository along with the
number of distinct apps that were affected by a vulnerable library and the number of distinct
apps containing a vulnerable version till now.

Results. We found that, out of 7,253 binaries for which we inferred their versions, 3,674

were vulnerable libraries (50.65%) affecting 53/200 distinct apps. 14 new releases of these
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distinct apps remain vulnerable at the time of submission. The complete list of libraries

with reported CVEs between Sept. 2013 and the writing of this chapter can be found in

Table 3.4. As for the number of apps affected by vulnerable libraries, our results show that

53 distinct apps have been affected by a minimum of 1 vulnerable library and a maximum of

16 vulnerable libraries covering dates between Sept 2013 and May 2020.

Finding 4: 53 of the 200 top apps on Google Play (26.5%) were plagued by a vulnerable

library over approximately six years and 8 months (i.e., between Sept. 2013 and May 2020).

14 of those apps still include a vulnerable binary, i.e., 7% of the top 200 apps on Google Play,

even at the time at which we collected apps for this study and are, on average, outdated

by 859.17± 137.55 days. As a result, vulnerable native libraries play a substantial role in

exposing popular Android apps to known vulnerabilities.

We emailed app developers since February 2020 to inform them that their apps continue

to use a vulnerable library. We urged them to take an action (i.e., remove or replace such

libraries) or at least provide some justification as to why such libraries are not updated. Our

investigation is ongoing. While several app developers already updated their apps to remove

the vulnerable library, many updates are still outstanding. Some of the replies we received

simply blame other library developers. For example, we heard back from Discord that the

vulnerable lib is a dependency of another third-party library used in Discord (Fresco): “Until

Fresco fixes this, however, we are not able to address this in our app”.

Four libraries were particularly prevalent in terms of the number of vulnerable versions they

contain (i.e., OpenSSL), the number of apps they affect (i.e., OpenCV and GIFLib), or the

length of time during which the library remained vulnerable (i.e., XML2 in Microsoft XBox

SmartGlass). OpenSSL has the largest number of vulnerable versions (22 in total) included

in 13 distinct apps. 3 apps: Amazon Alexa, Facebook Messenger and Norton Secure VPN

still include vulnerable versions of OpenSSL.
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OpenCV and GIFLib affect the most apps. OpenCV has the largest number of affected apps

with a total of 21 apps where 7 recent apps still have a vulnerable instance of OpenCV. Most

applications do not include OpenCV directly but indirectly through the dependencies of

card.io which enables card payment processing but comes with the two outdated versions

(2.4.11 and 2.4.13) of both opencv core and opencv imgproc. Following OpenCV in the

number of affected apps is GIFLib, which has two vulnerable versions found in a total of 15

distinct apps, 1 app is still affected.

One vulnerable version of XML2 (2.7.7) was found in 35 versions of Microsoft XBox Smart-

Glass and the library was not updated for 6 years—still remaining vulnerable up to the

writing of this chapter. This particular case is notable due to the extremely long amount of

time the library had been vulnerable and remained vulnerable.

To examine the affects of vulnerable libraries on apps further, we list popular apps and the

reported CVEs they expose their users to. Table 3.5 shows 10 out of 14 popular apps that

are using at least one library with a reported CVE at the time of our app collection. We

discuss four of these apps in more detail in the remainder of this section.

Facebook Messenger, which has a download base of over 500M (the largest in this list),

contains OpenSSL-1.1.0, which is vulnerable since Sept. 2016. This vulnerable library

contains multiple memory leaks which allows an attacker to cause a denial of service (memory

consumption) by sending large OCSP (Online Certificate Status Protocol) request extensions.

Amazon Kindle, an app that provides access to an electronic library of books—with a total

of more than 100M installs, uses two vulnerable libraries: XML2-2.7.7 and Libpng-1.6.7.

XML2-2.7.7 contains a variant of the “billion laughs” vulnerability which allows attackers

to craft an XML document with a large number of nested entries that results in a denial

of service attack. XML2-2.7.7 is vulnerable since Nov. 2014 and continues to be used in

recent versions of the app. Libpng-1.6.7 has a NULL pointer dereference vulnerability. This
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vulnerability was published 6 years ago under CVE-2013-6954 and it remains unchanged in

recent releases of Amazon Kindle.

DoorDash, a food delivery app with more than 10M installs includes GIFLib-5.1.4 which was

reported vulnerable over 8 months ago. A malformed GIF file triggers a division-by-zero

exception in the DGifSlurp function in GIFLib versions prior to 5.1.6. This vulnerable library

remains unchanged up to now.

Target uses OpenCV-2.4.11 as a dependency of card.io which enables card payment process-

ing. This version of OpenCV was announced vulnerable in Aug. 2017 yet remains unchanged

in these apps.

App Name Vulnerable Libs No. Installs

Amazon Alexa OpenSSL-1.0.2p, SQlite3-3.27.2 10M+

Amazon Kindle Libpng-1.6.7, XML2-2.7.7 100M+

Amazon Music FFmpeg-4.0.2 100M+

DoorDash GIFLib-5.1.4 10M+

Facebook Messenger OpenSSL-1.1.0 500M+

Grubhub OpenCV-2.4.1 10M+

Sam’s Club OpenCV-2.4.1 10M+

SUBWAY OpenCV-2.4.1 5M+

Norton Secure VPN OpenSSL-1.1.1b 10M+

Target OpenCV-2.4.11 10M+

Table 3.5: 10 out of 14 popular apps from Google Play which include a vulnerable library
that remained unchanged.

Finding 5: These four apps showcase that these vulnerabilities are wide-ranging involving

denial of service, memory leaks, or null pointer dereferences. The high severity and long

exposure time of these vulnerabilities results in ample opportunity for attackers to target

these highly popular apps.

3.3.3 RQ3: Rate of Vulnerable Library Fixing

To determine the vulnerability response rate, we identify the duration between (1) the release

time of a security update and (2) the time at which app developers applied a fix either by (i)

updating to a new library version or (ii) completely removing a vulnerable library. Recall
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that we collected the previous versions of the top 200 apps from Google Play. Moreover, we

inferred the library versions from 7,253 libraries using LibRARIAN . Given the histories of

apps and inferred library versions we can track the library life span per app—i.e., the time

at which a library is added to an app and when it is either removed or updated to a new

version in the app.

To this end, we analyzed 40 popular apps with known vulnerable versions of FFmpeg, GIFLib,

OpenSSL, WebP, SQLite3, OpenCV, Jpeg-turbo, Libpng, and XML2, between Sept. 2013 and

May 2020. We exclude apps that removed a library before a CVE was associated with it and

apps containing libraries that are vulnerable up to the writing of this chapter. We obtained

the date at which a library vulnerability was found; when a security patch was made available

for the library; and the time at which either the library was updated to a new version or

removed. Table 3.6 shows all the combinations of apps and vulnerable libraries.

Finding 6: On average, library developers release a security patch after 54.59± 8.12 days

from a reported CVE. App developers apply these patches, on average, after 528.71± 40.20

days from the date an update was made available—which is about 10 times slower than the

rate at which library developers release security patches.

6 reveals that many popular Android apps expose end-users to long vulnerability periods,

especially considering that library developers released fixed versions much sooner. This

extreme lag between release of a security patch for a library and the time at which an app

developer updates to the patched libraries, or just eliminates the library, indicates that, at

best, it is (1) highly challenging for developers to update these kinds of libraries or, less

charitably, (2) app developers are highly negligent of such libraries.

Developers applied security patches for vulnerable libraries at a rate as slow as 5.4 years, in

the case of Xbox, and as fast as 267 days for Instagram, where a vulnerable version of FFmpeg

was removed in that amount of time. In order to determine what type of fix was applied
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App Name Vul Lib Version Vul Announced TTRP
(Days)

TTAF
(Days)

Xbox XML2-2.7.7 2014-11-04 12 1956

Apple Music XML2-2.7.7 2014-11-04 12 1704

TikTok GIFLib-5.1.1 2015-12-21 87 1429

Zoom Meetings OpenSSL-1.0.0a 2010-08-17 91 1323

Amazon Alexa OpenSSL-1.0.1s 2016-05-04 12 1086

Amazon Kindle Libpng-1.6.34 2017-01-30 330 1019

StarMaker FFmpeg-3.2 2016-12-23 4 1001

eBay OpenCV-2.4.13 2017-08-06 41 905

Fitbit SQlite3-3.20.1 2017-10-12 12 902

Uber OpenCV-2.4.13 2017-08-06 41 830

Snapchat SQlite3-3.20.1 2017-10-12 12 670

Discord GIFLib-5.1.1 2015-12-21 87 665

Lyft OpenCV-2.4.11 2017-08-06 41 662

Twitter GIFLib-5.1.1 2015-12-21 87 457

Instagram FFmpeg-2.8.0 2017-01-23 2 267

Table 3.6: Combinations of 15 apps and particular vulnerable library versions they have
contained, the date the vulnerability was publicly disclosed (Vul announced), the period
between vulnerability disclosure and patch availability in days (i.e. Time-to-Release-Patch
(TTRP)), and the total number of days elapsed before a fix was made (i.e. Time-to-Apply-Fix
(TTAF ))

by a developer, we checked the next app version where a vulnerable library was last seen.

We found that developers either kept the library but updated to a new version, removed a

vulnerable version, or removed all native libraries in an app. In the next paragraphs, we

discuss five popular native libraries used in Android apps that exhibit particularly slow fix

rates: FFmpeg, OpenSSL, GIFLib, OpenCV, and SQLite3.

Multiple vulnerabilities were found in versions 2.8 and 3.2 of FFmpeg in Dec. 2016 and Jan.

2017, respectively. The number of days a security patch was released for these vulnerable

library versions is 4 and 2 days, respectively. However, developers took 267 days to address

vulnerabilities in Instagram, and nearly 3 years to apply a fix in Starmaker.

OpenSSL-1.0.0a and OpenSSL-1.0.1s were associated with CVE-2010-2939 and CVE-2016-

2105 in Aug. 2010, and May 2016 of which OpenSSL developers provided a security patch

91 and 12 days after. However, developers of Zoom took 1,323 days to apply a fix, while

developers of Amazon Alexa took 1,086 days.
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A heap-based buffer overflow was reported in GIFLib-5.1.1 at the end of 2015. The results

show that 3 apps using this vulnerable version of GIFLib have an average time-to-fix, i.e.,

total number of days elapsed before a fix was applied, of 850.33 days (2.3 years), which is 10

times slower. This lag time is particularly concerning since GIFLib released a fix 87 days

after the vulnerable version.

A fix to an out-of-bounds read error that was affecting OpenCV through version 3.3 was

released 41 days after the CVE was published. The vulnerable versions of this library affects

3 apps in total: Uber, Lyft, and eBay. OpenCV has an average time-to-fix of 799 days (i.e., 2

years), which is 19 times slower than the rate at which library developers of OpenCV release

security patches.

SQLite3 released version 3.26.0, which fixes an integer overflow found in all versions prior to

3.25.3. Snapchat and Fitbit removed a vulnerable version of SQLite-3.20.1 library 786 days

later.

Finding 7: The results for these five popular native libraries in Android apps show that it

often takes years for app developers to update to new library versions—even if the existing

version contains severe security or privacy vulnerabilities—placing millions of users at major

risk.

App Name Time-to-Apply-Fix
(Days)

No.
Installs

Apple Music 1704.00 50M+

Amazon Kindle 1019.00 100M+

eBay 905.00 100M+

Fitbit 902.00 10M+

Snapchat 844.00 1,000M+

Xbox 763.67 50M+

ZOOM Meetings 668.33 100M+

Lyft 662.00 10M+

Amazon Alexa 605.50 10M+

Uber 588.50 500M+

Table 3.7: Top 10 most negligent apps in terms of the average time to fix a vulnerable library

To further understand the consequences of outdated vulnerable libraries, we calculated
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the average time-to-fix across all vulnerable libraries per app. Table 3.7 lists the top 10

apps with the most number of days a vulnerable library remained in an app until a fix

for the vulnerability was applied. Apple Music had the longest lag between the vulnerable

library being introduced and fixed, i.e., 4.66 years. Uber was the fastest at almost 589 days.

Individual apps had as few as over 10 million installs and as many as over a billion installs.

Among the social-media apps, Snapchat, which has over 1 billion downloads and the largest

number of installs among the top 10 apps in Table 3.7, fixed its vulnerable libraries after 844

days. These very long times to fix vulnerable libraries in highly popular social-media apps

places billions of users at high security risk.

Finding 8: The most neglected apps in terms of time to fix vulnerable native libraries

range from 588.50 days to nearly five years, affecting billions of users and leaving them at

substantial risk of having those libraries exploited. This finding emphasizes the need for

future research to provide developers with mechanisms for speeding up this very slow fix

rate.

Table 3.8 lists the top 10 most neglected vulnerable libraries across all apps. XML2 is the

most neglected library with an average time-to-fix of 5 years; WebP is the least neglected

library with an average time-to-fix of 213.40 days. Among these 10 libraries, the fact that it

takes app developers 431.81 days, on average, to update vulnerable versions of OpenSSL is

particularly concerning due to its security-critical nature.

Lib Name Time-to-Apply-Fix
(Days)

Genre

XML2 1830.00 XML parser

Libpng 923.20 Codec

Jpeg-turbo 841.67 Codec

FFmpeg 720.90 Multimedia framework

OpenCV 635.27 Computer Vision

OpenSSL 431.81 Network

GIFLib 421.06 Graphis

SQlite3 369.29 RDBMS

WebP 213.40 Codec

Table 3.8: Top 10 most neglected vulnerable libraries in terms of the average time-to-fix
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Finding 9: Future research should focus on these highly neglected libraries as experimental

subjects for determining methods to ease the burden of updating these libraries; running

regression tests to ensure these updates do not introduce new errors; and repairing those

errors, possibly automatically, when they do arise.

3.3.4 Exploitability Case Study

To demonstrate the exploitability of unpatched vulnerabilities in third party apps, we carry

out a targeted case study where we analyze individual applications and create a proof-of-

concept (PoC) exploit. Our PoC highlights how these unpatched vulnerabilities can be

exploited by third parties when interacting with the apps.

XRecoder allows users to capture screen videos, screen shots, and record video calls. Fur-

thermore, XRecoder provides video editing functionalities, enabling users to trim videos and

change their speed. This application uses FFmpeg, an open-source video encoding framework

that provides video and audio editing, format transcoding, video scaling and post-production

effects.

XRecoder embeds the FFmpeg library version 3.1.11, which is vulnerable to CVE-2018-14394

(reported in July 2018). FFmpeg-3.1.11 contains a vulnerable function (ff mov write packet)

that may result in a division-by-zero error if provided with an empty input packet. Hence,

an attacker can craft a WaveForm audio to cause denial of service.

To assess whether this vulnerable function is reachable in XRecoder, we used Radare2 [153]

to replace the first instruction in the vulnerable function with an interrupt instruction. We

run the application after the latter modification which consequently resulted in an app crash,

i.e., allowing us to trigger the vulnerability consistently.

ff mov write packet is called by multiple functions across two different binaries (FFmpeg-

3.1.11.so and the app-specific libisvideo.so) and two different platforms (Dalvik and Na-
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tive). av buffersink get frame, one of the ancestors of ff mov write packet, is called by

nativeGenerateWaveFormData from the Dalvik-side.

3.4 Discussion

Findings in RQ2 (Section 3.3.2) demonstrate that out of 7,253 binaries for which we inferred

their versions, 3,674 were vulnerable libraries (50.65%) affecting 53 distinct apps between

Sept. 2013 and May 2020. This constitutes about 26.5% of the top 200 apps on Google

Play. More alarmingly, new releases of 14 distinct apps remain vulnerable even at the time

at which we collected apps for this study with an average outdatedness of 859.17± 137.55

days. While we have informed app developers about the outdated libraries in their apps, one

interesting piece of follow-up work based on this result is surveying Android app developers

to determine the reason for this extremely slow rate of fixing vulnerable native libraries in

their apps. Such a study can further assess what forms of support app developers would need

to truly reduce this slow rate of updating vulnerable library versions to ones with security

patches.

For RQ3 (Section 3.3.3), we analyzed the speed at which developers updated their apps

to patched libraries and found that, on average, library developers release a security patch

after 54.59± 8.12 days from a reported CVE. While app developers apply these patches on

average after 528.71 ± 41.20 days from the date an update was made available (10 times

slower). Recall that we only consider apps in these cases that actually ended up fixing

vulnerable native libraries. The results for RQ2 and RQ3 corroborate the need to make app

developers aware of the severe risks they are exposing their users to by utilizing vulnerable

native libraries.

Overall, our results demonstrate the degree to which native libraries are neglected in terms of

leaving them vulnerable. Unfortunately, our findings indicate that the degree of negligence of

native libraries is severe, while popular apps on Google Play use native libraries extensively
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with 145 out of 200 top free apps (72.50%). Interesting future work for our study includes

uncovering the root causes of such negligence and means of aiding developers to quickly

update their native libraries. For example, platform providers (e.g., Google) could provide

mechanisms to automatically update native libraries while also testing for regressions and

possibly automatically repairing them. Such an idea is similar to how Debian’s repositories

centrally manage libraries and dependencies between applications and libraries. Whenever a

library is updated, only the patched library is updated, the applications remain the same.

The Android system would highly profit from a similar approach of central dependency and

vulnerability management.

3.5 Threats to Validity

External validity. The primary external threat to validity involves the generalizability

of the data set collection and the selection methodology. Recent changes in Google Play

limited the length of the “top-apps” list to 200 items. Despite the restrictions imposed by

Google Play (limiting our analysis to the top-200 apps), these apps (1) account for the bulk

of downloads and the largest user base on Google Play and (2) are generalizable to popular

apps, thus having the largest impact.

The results from RQ1 show that LibRARIAN detects versions of native libraries with

high accuracy (91.15%). The need to compare against binaries with a known number of

versions and libraries (i.e., Known Lib Versions in Figure 3.1) limits LibRARIAN . Specifically,

misidentification of a library or its version might occur when an unknown binary for which

we are trying to identify a library and version does not exist in Known Lib Versions. In these

cases, LibRARIAN identifies the unknown binary as being the library and version closest to

it according to bin2sim that exists in Known Lib Versions. One possible way of enhancing

LibRARIAN in such cases is to leverage supervised machine learning, which may, at least, be

able to identify if the library is most likely an unknown major, minor, or patch version of a
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known library.

Internal validity. One internal threat is the accuracy of timestamps in AndroZoo and its

effect on the reported patch life cycle findings. To mitigate this threat, we collected AndroZoo

timestamps over three months and correlated updates with Google Play. We verified that

AndroZoo has a maximum lag of 9 days. This short delay is much smaller than the update

frequency of vulnerable apps. Furthermore, we verified that using dates added to AndroZoo

and version codes give us reliable timestamps for earlier time periods.

Construct validity. One threat to construct validity is the labeling of the libraries in our

repository as vulnerable or not. To mitigate this threat, we relied on the vulnerabilities

reported by the Common Vulnerabilities and Exposures database [76] which contains a list of

publicly known security vulnerabilities along with a description of each vulnerability.

We conducted an exploitability case study of one vulnerable library in an app Section 3.3.4.

For the remaining set of discovered vulnerable libraries/apps, we verified that vulnerable native

functions are exported and that the library is loaded from the app/Dalvik-side. Performing

a complete analysis of exploitable/reachable native functions in Android is an interesting

but orthogonal research problem. Building a cross-language control-flow/data-flow analysis

to assess reachability of vulnerable native code from the Dalvik code of an Android app

is an open research problem, worthy of a separate research paper: (1) recovering a binary

CFG/DFG is currently unsound, based on heuristics, and runs into state explosion and (2)

conducting an exploitability study of all vulnerable libraries/apps across our entire dataset is

infeasible due to the large amount of apps/libraries.

Another threat to validity is the possibility of developers manually patching security vulnera-

bilities. To mitigate this threat to validity, we checked the versions identified by LibRARIAN

and found that LibRARIAN correctly identifies an overwhelming majority of patch-level

versions (61.21%). For the patch-level versions that LibRARIAN cannot distinguish as
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effectively, LibRARIAN makes manual identification much easier, by significantly reducing

the search space for post analysis to only 3-4 candidate versions. Furthermore, based on the

results of our dataset, we believe that app developers are unlikely to manually patch a library

they do not maintain given that it already takes years for these developers to simply update

a library version.

3.6 Related Work

A series of work has demonstrated the importance of third-party libraries for managed code

of Android apps (i.e., Dalvik code) and their security effects and implications [79, 58]. Derr

et al. [79] investigated the outdatedness of libraries in Android apps by conducting a survey

with more than 200 app developers. They reported that a substantial number of apps use

outdated libraries and that almost 98% of 17K actively used library versions have known

security vulnerabilities. Backes et al. [58] report, for managed code-level libraries, that app

developers are slow to update to new library versions—discovering that two long-known

security vulnerabilities remained present in top apps during the time of their study. None

of these studies examined native third-party libraries in Android apps nor did they look

at the security impact of vulnerable libraries or whether these vulnerabilities are on the

attack surface. LibRARIAN now explores the attack surface of native libraries, closing this

important gap and calling platform providers to action.

A wide variety of approaches have emerged that identify third-party libraries with a focus on

managed code. These approaches employ different mechanisms to detect third-party libraries

within code including white-listing package names [103, 64]; supervised machine learning

[147, 137]; and code clustering [175, 140, 132]. LibScout [58] proposed a different technique

to detect libraries using normalized classes as a feature that provides obfuscation resiliency.

Some techniques identify vulnerabilities in native libraries by computing a similarity score

between binaries with known vulnerabilities and target binaries of interest [98][85]. VulSeeker
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[98] matches binaries with known vulnerabilities using control-flow graphs and machine learn-

ing. Similarly, discovRE [85] and BinXray [178] matches binaries at the function level. Other

techniques employ a hybrid technique such as BinSim[143], Mobilefinder [133], BinMatch[111],

and DroidNative [49]. These approaches identify semantic similarities/differences between

functions in binaries based on execution traces for the purpose of analyzing/identifying mal-

ware. Unlike these tools, LibRARIAN focuses on benign libraries with the goal of identifying

their versions with high scalability.

Binary Analysis Tool (BAT) [108] and OSSPolice [81] measure similarity between strings

extracted from binaries and features found directly in source repositories. Unlike LibRARIAN ,

these approaches compare source code with binaries, which introduces the issue of internal

clones (i.e., third-party library source code that is reused in the source code of another library).

BAT and OSSPolice rely on simple syntactic features (e.g., string literals and exported

functions). OSSPolice cannot detect internal code clones, while LibRARIAN can, giving it

superior ability to identify versions of native libraries. Furthermore, BAT does not detect

versions of binaries and was shown to have inferior accuracy for computing binary similarity

compared to OSSPolice. Unlike these tools, LibRARIAN extracts additional features—such as

imported functions, exported and imported global variables, and dependencies that uniquely

identify different versions of binaries. As shown in Section 3.3.1, these additional features

were a major factor in the superior accuracy of LibRARIAN compared to OSSPolice.

Other related empirical research studies the prevalence of vulnerable dependencies in open

source projects [69], vulnerabilities in WebAssembly binaries [127], or investigates the up-

datability of ad libraries in Android Apps [145]. Other work such as [107, 179] present third

party library recommendation tools for mobile apps.

Despite the existence of much previous work on survivability of vulnerabilities in Android

apps/libraries, such work has not conducted a large-scale longitudinal study of native third-

party libraries as we did in this work. Moreover, the survivability of vulnerabilities in
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non-native libraries are significantly shorter compared to those reported in our results. While

survivability of vulnerabilities in native Android apps took, on average, 528.71± 40.20 days

in our study, prior work [53, 141] shows that survival times of vulnerabilities in Python and

Javascript are 100 days and 365 days, respectively. 50% of vulnerabilities in npm packages

were fixed within a month, 75% were fixed within 6 months only [78].

None of this aforementioned related work has examined the prevalence of security vulnerabil-

ities in Android’s native libraries or the time-to-fix for vulnerable versions of such libraries.

As a result, our work covers a critical attack vector that has been ignored in existing research.
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Chapter 4

A Comprehensive Study of

Autonomous Vehicle Bugs

Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of

our daily life. About 50 corporations are actively working on AVs, including large companies

such as Google, Ford, and Intel. Some AVs are already operating on public roads, with at

least one unfortunate fatality recently on record. As a result, understanding bugs in AVs

is critical for ensuring their security, safety, robustness, and correctness. While previous

studies have focused on a variety of domains (e.g., numerical software; machine learning; and

error-handling, concurrency, and performance bugs) to investigate bug characteristics, AVs

have not been studied in a similar manner. Recently, two software systems for AVs, Baidu

Apollo and Autoware, have emerged as frontrunners in the open-source community and have

been used by large companies and governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG,

and the US Department of Transportation). From these two leading AV software systems,

this chapter describes our investigation of 16,851 commits and 499 AV bugs and introduces

our classification of those bugs into 13 root causes, 20 bug symptoms, and 18 categories

of software components those bugs often affect. We identify 16 major findings from our
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study and draw broader lessons from them to guide the research community towards future

directions in software bug detection, localization, and repair.

4.1 Introduction

Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of

our daily life. For example, AVs are under rapid development recently, with some companies,

e.g., Google Waymo, already serving customers on public roads [38, 39, 18]. In total, there

are already about 50 corporations actively developing AVs [9, 2]. AVs consist of both software

and physical components working jointly to achieve driving automation in the physical world.

Unfortunately, like any system relying upon software, they are susceptible to software bugs.

As a result, faults or defects in such software are safety-critical, possibly leading to severe

injuries to passengers or even death. For instance, an AV of Uber has already killed a

pedestrian in 2018 [8, 26]. AVs with lower levels of autonomy have resulted in another set

of fatalities during recent years [31, 32, 30, 25, 29, 28]. Given the safety-criticality of such

vehicles, it is imperative that the software controlling AVs have minimal errors.

Unfortunately, the nature of AV software bugs is currently not well understood. It is unclear

what the root causes of bugs are in AV software, the kinds of driving errors that may result,

and the parts of AV software that are most often affected. These kinds of information can

aid AV software researchers and engineers with (1) the creation of AV bug detection and

testing tools, (2) the localization of faults that result in AV bugs, (3) recommendations or

automated means of repairing AV bugs, (4) measurement of the quality of AV software, and

(5) mechanisms to monitor for AV software failures.

Previous empirical studies have investigated bug characteristics in a variety of domains includ-

ing numerical software libraries [80], machine learning libraries [113, 181, 167], concurrency

bugs [126, 138], performance bugs [114, 159], and error-handling bugs [169, 73, 66]. None of

these studies have focused on bugs in AV software systems.
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This chapter presents the first comprehensive study of bugs in AV software systems. Cur-

rently, there are two AV systems that achieve high levels of autonomy and have extensive

issue repositories, i.e., Baidu Apollo [15] and Autoware [13]. Both of these systems have

representative designs and are practical :

For Baidu Apollo, its design is selected by Udacity to teach start-of-the-art AV technology [34],

can be directly deployed on real-world AVs such as Lincoln MKZ [15], and has already reached

mass production agreements with Volvo and Ford [17]. For Autoware, it is an open-source

system for AVs run by the Autoware Foundation [13], whose members include a variety of

industrial organizations, including Intel, Hitachi, LG, and Xilinx. Recently, Autoware has

been selected by the USDOT (US Department of Transportation) to build their reference

development platform for intelligent transportation solutions [10, 7].

We have studied 499 AV bugs from 16,851 commits across the Apollo and Autoware repositories.

From a manual analysis of these bugs and commits, we have identified 13 root causes, 20

symptoms the bugs can exhibit, and 18 categories of AV software components that exhibit a

significant amount of bugs. We further assess the relationships among the three phenomena.

Based on these results, we suggest future research directions for software testing, analysis,

and repair of AV systems. This chapter makes the following contributions:

• We conduct the first comprehensive study of bugs in AV systems through a manual analysis

of 499 AV bugs from 16,851 commits in the two dominant AV open-source software systems.

• We provide a classification of root causes and symptoms of bugs, and the AV components

these bugs may affect.

• We discuss and suggest future directions of research related to software testing and analysis

of AV systems.

• We make the resulting dataset from our study available for others to replicate or reproduce,

or to allow other researchers and practitioners to build upon our work. Our artifacts can
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be found at the following website [6].

The rest of the chapter is organized as follows. The next section provides further background

on AV software systems. Section 4.3 discusses the methodology we use to conduct our

study; the root causes, symptoms, and affected components we identified; and overviews and

motivates the research questions we investigate. We then cover the results of our empirical

study (Section 4.4), follow that with a discussion drawing broader lessons from those results

(Section 4.5), and detail threats to validity (Section 4.6). Finally, we describe related work

(Section 4.7) and conclude.

4.2 Autonomous Vehicle Systems

Perception
(e.g., object det./trk., 

data fusion)

Localization
(e.g., LiDAR locator, 

sensor fusion)

Prediction
(e.g., future 

obstacle traj.)

Planning
(e.g., moving 
traj. planning)

Control
(e.g., lat./long. 

control)

CAN Bus
(e.g., send/recv 

CAN msg.)

HMI
(e.g., monitoring, 

GUI)

HD Map
(e.g., road 

structure, routing)

LiDAR

Radar

Camera

GPS

IMU

Wheel

Brake

Gas

Infrastructure
(e.g., ROS, Cyber RT, utilities, tools)

Autonomous Vehicle Software System

Figure 4.1: State-of-the-art Autonomous Vehicle (AV) software system architecture from
most popular AV development classes such as Udacity Self-Driving Car Engineer classes [34]
and real-world AV systems such as Baidu Apollo [15] and Autoware [13].

The Society of Automotive Engineers (SAE) defines 6 levels of vehicle autonomy [157], with

Level 0 (L0 ) being the lowest, i.e., no autonomy, and Level 5 (L5 ) being the highest, i.e.,

full autonomy in any driving environment. Level 4 (L4 ) is the highest autonomy level for

which no human drivers are required to stay alert and ready to take over control anytime the

system cannot make driving decisions. Compared to L5, L4’s autonomy is limited to certain

driving scenarios (e.g., certain geofenced areas), but it is already enough to enable a number

of attractive use cases in practice such as highway driving, truck delivery, and fixed-route

shuttles, while being easier to ensure safety than L5. Thus, nearly all AV companies aiming

for high-level autonomy are focusing on L4 AV development, e.g., Google, Uber, Lyft, Baidu,

GM Cruise, Ford, Aurora, TuSimple, etc. [2], and some of them are already available to
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the general public, e.g., the Google Waymo One self-driving taxi service [11]. In this work,

we focus on L4 AV systems since they have the highest autonomy level among the AVs in

production today and thus their software bugs and defects have the highest importance in

terms of safety and robustness.

In L4 AV systems, software plays a central role to achieve intelligent driving functionality. For

example, Fig. 5.1 shows the general AV software system architecture based on state-of-the-art

designs referenced in most popular AV development classes such as Udacity Self-Driving

Car Engineer classes [34] and used in representative real-world AV systems such as Baidu

Apollo [15] and Autoware [13]. As shown, such a software system is in charge of all the core

decision-making steps after receiving sensor input. Detailed functionality of each component

in an AV software system is as follows:

• Perception processes LiDAR, camera, and radar inputs and detects obstacles such as

vehicles and pedestrians. AV systems often adopt multiple object detection pipelines to

avoid false detection. For example, Baidu Apollo consists of a camera-based and a LiDAR-

based object-detection pipeline, which uses segmentation models based on Convolutional

Neural Networks (CNNs). The detected obstacles from different pipelines are then fused

together using algorithms such as a Kalman filter. Aside from detecting obstacles, the

Perception component is also in charge of traffic light classification and lane detection.

• Localization provides an estimation of the AV’s real-time location, which serves as the

basis for driving decision-making. It accepts location measurements from GPS and LiDAR.

Particularly, a LiDAR point cloud matching algorithm (e.g., NDT [62] and ICP [109]) finds

the best match of the LiDAR input in a pre-built High-Definition Map (HD Map) to get

the LiDAR-based location measurement. It then uses a multi-sensor fusion algorithm (e.g.,

Error State Kalman filter [63]) to fuse location measurements.

• Prediction estimates the future trajectory of the detected obstacles. Neural networks

(e.g., MLPs and RNNs) are commonly used to evaluate the probabilities of the possible
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trajectories.

• Planning calculates the optimal driving trajectory considering factors such as safety, speed,

and comfort. It incorporates various constraints (e.g., distances to obstacle trajectories,

distance to lane center, smoothness of the trajectory, etc.) and solves a Linear Programming

(LP) or Quadratic Programming (QP) problem to calculate the future trajectory that the

AV needs to follow.

• Control enforces the planned trajectory with lateral and longitudinal control. It uses

control algorithms such as MPC [99] and PID [56] to calculate the required steering and

throttling.

• CAN Bus handles the underlying communication between the software and the vehicle

to send control commands and receive chassis information.

• Infrastructure provides the necessary utilities and tools for the software, such as sensor

calibration tools and CUDA [149]. It also includes a robotics middleware (e.g., ROS [152],

Cyber RT [15]), which supports the communication among components.

• High-Definition Map (HD Map) is queried during runtime for information such as

lane boundaries, traffic sign locations, stationary objects, routing, etc. Some AV systems,

such as Baidu Apollo, use a centralized component called Map Engine to handle the queries;

while others, such as Autoware, handle the map queries separately in each module.

• Human Machine Interface (HMI) collects and visualizes system status and interfaces

with developers and passengers. This is not required for the autonomous driving function,

but real-world AV software systems, e.g., those in both Apollo and Autoware, generally

have it for usability.
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4.3 Methodology and Classification

4.3.1 Data collection

We collect all commits, issues, pull requests of Apollo and Autoware that are created on or

before July 15, 2019 via the GitHub APIs as shown in Table 4.1. In total, we obtain 13,335

commits, 7,414 closed pull requests, and 9,216 issues for Apollo and collect 3,516 commits,

1,318 closed pull requests, and 2,314 issues for Autoware.

Given that the goal of this work is to characterize defects of AV systems, we identify closed

and merged pull requests that fix defects. Such pull requests allow us to (1) confirm that a

bug or fix was accepted by developers and (2) analyze the modified source code, related issues,

and the discussion of developers. Note that, on GitHub, pull requests are used for various

purposes (e.g., new feature implementation, enhancement, and refactoring). To categorize

the purpose of pull requests, developers often employ some keywords to tag them. However,

because tagging is often project-specific, directly filtering bug-fix pull requests based on the

tag may introduce bias. To avoid such bias, we employ a method that helps us to obtain as

many bug-fix pull requests as possible.

To that end, we adopt a method similar to that used in previous studies [171, 80, 113, 181] to

identify bug-fix pull requests. Specifically, we set up a list of bug-related keywords, including

fix, defect, error, bug, issue, mistake, incorrect, fault, and flaw, and then search for these

words in both the tags and titles. If any tags or title of a pull request contain at least one

keyword, we identify it as a bug-fix pull request. This process resulted in 336 and 430 merged

pull requests for Apollo and Autoware that meet the criteria, respectively.
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System Start Date:
End Date

SLOC1

(C/C++)
SLOC
(Python)

Commits Issues Bugs

Apollo 07/04/2017–
07/15/2019

323,624 20,956 13,335 9,216 243

Autoware 08/25/2015–
06/13/2019

164,299 14,463 3,516 2,314 256

1SLOC: source lines of code

Table 4.1: Statistics of Apollo and Autoware from GitHub

4.3.2 Classification and Labeling Process

To characterize AV defects, we focus on analyzing them from three perspectives: (1) the

root causes that reflect the mistakes developers make in code; (2) the symptoms that

bugs exhibit as represented by incorrect behaviors, failures, or errors during runtime; and (3)

the AV component in which a bug resides.

Our manual analysis focused on merged pull requests because these types of issues contain

the code changes, discussions, links to related issues, code reviews, and other information

that can assist us with gaining a comprehensive understanding of bugs and their fixes.

To reduce the subjective bias during the labeling process, we assign each of the 336 and 430

merged bug-fix pull requests identified in the data collection step to two authors of this work.

Our process required each set of two authors to analyze the defect separately. They manually

inspected the source code, commit messages, pull-request messages, and issue messages to

identify the root causes, symptoms, and affected AV components.

Prior research has summarized the causes of software defects and bugs [158, 167, 185, 174].

In this work, we initially adopted the taxonomy of root causes presented in [167, 158] to

analyze AV defects. We then enhanced that taxonomy by using an open-coding scheme to

expand the list of root causes. Specifically, for pull requests whose root causes did not fit

into the initial taxonomy, each author conducting the manual analysis selected her own label

for the root cause. Once all the author’s pull requests were labeled, she met with the author

sharing her assigned pull requests to resolve differences in labeling. For bug symptoms, we
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followed a similar process, starting with an initial taxonomy of symptoms (e.g., crash and

hang) derived from existing literature [80, 113, 181, 167]. We found multiple symptoms may

arise per bug cause. A single issue may have multiple bug symptoms. Bugs may be counted

twice if they fall under two different categories.

For AV components, labels were stable for top-level components (e.g., Planning and Local-

ization). However, certain sub-components appeared frequently (e.g., object detection and

multi-sensor fusion). As a result, for AV components, we also had authors meet to resolve

discrepancies in labeling. Using this overall process resulted in a final list of 243 bugs in

Apollo and 256 bugs in Autoware. Multiple issues may be mapped to the same pull request,

root cause, symptom, and component. If we remove these duplicate issues, we have 211 bug

instances for Autoware instead of 256.

4.3.3 Root Causes of AV Bugs

Using the process described in the previous section, the full list of root causes for AV bugs

are as follows:

• Incorrect algorithm implementation (Alg): The implementation of the algorithm’s

logic is incorrect and cannot be fixed by addressing only one of the other root causes.

• Incorrect numerical computation (Num): This root cause involves incorrect numerical

calculations, values, or usage.

• Incorrect assignment (Assi): One or more variables is incorrectly assigned or initialized.

• Missing condition checks (MCC): A necessary conditional statement is missing.

• Data: The data structure is incorrectly defined, pointers to a data structure are misused,

or types are converted incorrectly.

• Misuse of an external interface (Exter-API): This cause involves misuse of interfaces

of other systems or libraries (e.g., deprecated methods, incorrect parameter settings, etc.)

• Misuse of an internal interface (Inter-API): This cause involves misuse of interfaces
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of other components—such as mismatched calling sequences; violating the contract of

inheritance; and incorrect opening, reading, and writing.

• Incorrect condition logic (ICL): This occurs due to incorrect conditional expressions.

• Concurrency (Conc): This cause involves misuse of concurrency-oriented structures

(e.g., locks, critical regions, threads, etc.).

• Memory (Mem): This cause involves misuse of memory (e.g., improper memory allocation

or de-allocation).

• Invalid Documentation (Doc): This cause involves incorrect manuals, tutorials, code

comments, and text that is not executed by the AV system.

• Incorrect configuration (Config): This cause involves modifications to files for compila-

tion, build, compatibility, and installation (e.g., incorrect parameters in Docker configuration

files).

• Other (OT) causes occur highly infrequently and do not fall into any one of the above

categories.

4.3.4 Symptoms of AV Bugs

Using the process described earlier in this section, we obtained the following AV bug symptoms:

• Crashes terminate an AV system or component improperly.

• Hangs are characterized by an AV system or component becoming unable to respond to

inputs while its process remains running.

• Build errors prevent correct compilation, building, or installation of an AV system or

component.

• Display and GUI (DGUI) errors show erroneous output on a GUI, visualization, or the

HMI of the AV system.

• Camera (Cam) errors prevent image capture by an AV camera.

• Stop and parking (Stop) errors refer to the incorrect behaviors occurring when the AV

attempts to stop or park the vehicle (e.g., sudden stops at inappropriate times, failure to
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stop in emergency situations, and parking outside of the intended parking space).

• Lane Positioning and Navigating (LPN) errors involve incorrect behaviors shown in

lane positioning and navigating (e.g., failing to merge properly into a lane and failing to

stay in the same lane).

• Speed and Velocity Control (SVC) symptoms involve incorrect behaviors related to

the control of vehicle speed and velocity (e.g., failure to enforce the planned velocity and

failing to follow another vehicle at high speed).

• Traffic Light Processing (TLP) errors represent any incorrect behaviors involving

handling of traffic lights.

• Launch (Lau) symptoms occur when an AV system or component fails to start.

• Turning (Turn) symptoms occur when an AV behaves incorrectly when making or

attempting to make a turn (e.g., turning at the wrong angle and problems with turn

signals).

• Trajectory (Traj) symptoms involve incorrect trajectory prediction results (e.g., incorrect

trajectory angles or predicted paths).

• IO errors involve incorrect behaviors when performing inputs or outputs to files or devices.

• Localization (LOC) errors refer to incorrect behaviors related with multi-sensor fusion-

based localization and may manifest as incorrect information on a vehicle’s map.

• Security & safety (SS) symptoms involve behaviors affecting security or privacy proper-

ties (e.g., confidentiality, integrity, or availability), damage to the vehicle, or injury to its

passengers.

• Obstacle Processing (OP) errors occur when AVs incorrectly process detected obstacles

on the road (e.g., failure to correctly estimate distance from an object).

• Logic errors represent incorrect behaviors that do not terminate the program or fit into

the aforementioned symptom categories.

• Documentation (Doc) symptoms include any errors in documentation including man-

uals, tutorial, code comments, and other text intended for human rather than machine
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consumption.

• Unreported (UN) symptoms cannot be identified by reading issue discussions or descrip-

tions, source code, or issue labels.

• Other (OT) symptoms occur highly infrequently and do not fit into the above categories.

4.3.5 Affected AV Components

After the aforementioned labeling process, the following AV components (described in Section

4.2) had a significant amount of bugs: Perception, Localization, Prediction, HD Map, Planning,

Control, and CAN Bus. Both systems structure directories into components shown in Figure

5.1 and share the same reference architecture. Table 4.2 shows other core components found

to have a significant number of bugs after the labeling process was completed.

Component Description

Sensor Calibration Checks, adjusts, or standardizes sensor measurements

Drivers Contains the hardware drivers necessary for operating the AV

Robotics-MW Contains robotics middleware

Utilities & Tools Contains shared functionality that supports the core functionality of other components

Docker Contains the Docker image housing an instance of the AV system

Documentation &
Others

A catch-all component category for representing documentation and sub-components with
secondary functionality that have few bugs and do not fit into other components.

Table 4.2: Additional Core Components with Significant Bugs

Perception, Localization, and CAN Bus components had major sub-components with signifi-

cant amounts of bugs. Table 4.3 depicts those sub-components.

Component Sub-Component Description

Perception

Object Detection Identifies objects around the AV

Object Tracking Tracks object around the AV

Data Fusion Fuses data from different object-detection pipelines

Localization
Multi-Sensor
Fusion

Fuses location measurements

Lidar Locator Obtains location measurements from Lidar

CAN Bus

Actuation Handles CAN Bus operations involving vehicle
actuation

Communication Handles general CAN Bus transmission and receipt
of data

Monitor Tracks information exchanged across the CAN Bus

Table 4.3: AV Sub-Components with Significant Bugs
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4.3.6 Research Questions

To conduct our study, we answer the following research questions that are concerned with

root causes of AV bugs, the symptoms they exhibit, and the components affected by AV bugs.

Previous work that has extensively studied different types of bugs in other application domains

have discussed different causes of bugs. Understanding such causes can aid in localizing a

fault and is necessary for creating correct fixes of bugs. Consequently, we study the following

research question:

RQ1: To what extent do different root causes of AV bugs occur?

The effects of the bugs themselves are critical for triaging them and assessing their impacts.

In particular, the domain-specific symptoms of bugs, in this case as they involve AVs, are of

special interest in this study. As a result, we study the following research question:

RQ2: To what extent do different AV bug symptoms occur?

The kind and frequency of bug symptoms and their root causes are a first step toward better

understanding bugs in AV systems. However, the extent to which a particular root cause

may produce a specific symptom allows engineers to determine more actionable information

as to how to address a bug. This leads us to study our next research question:

RQ3: What kinds of bug symptoms can each root cause produce?

The reference architecture of an AV system allows us to better understand the manner in

which functionality and processing is decomposed into components of a software system.

Certain components may be more prone to bugs or are more important than others for bug

identification and repair. This information further allows researchers to know which parts

of an AV system require further effort in terms of predicting, detecting, and repairing bugs.

Thus, we investigate the following research question:
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RQ4: To what extent do AV components contain bugs?

Closely related to RQ4 are the specific symptoms that occur in AV components. Understand-

ing the relationship between symptoms of bugs and the AV components they affect allows

engineers to allocate more resources (e.g., developer time and effort) to the components that

exhibit the most critical errors or contain the most risky faults. Due to Conway’s law [74],

i.e., the structure of a software system often reflects the groups of people working on the

system, this relationship can also inform managers and technical leads as to how different

bug symptoms will affect different teams of an AV system.

RQ5: To what extent do bug symptoms occur in AV components?

4.4 Experimental Results

Given the previously described methodology, classification, and research questions, we now

discuss our study’s results.

4.4.1 RQ1: Root Causes

We begin discussing experimental results by covering the frequency of AV bugs’ root causes

in Apollo and Autoware, which is depicted in Table 4.4. For both AV systems, incorrect

implementations of algorithms (Alg) and incorrect configurations (Config) are the most

frequently occurring root causes: 74 bugs are due to incorrect algorithm implementations in

Apollo and 65 in Autoware; 34 bugs are caused by incorrect configurations in Apollo and 102

in Autoware.

For incorrect algorithm implementations, repairing their resulting errors often requires non-

trivial and extensive code modifications, potentially affecting many lines of code (i.e., 104 lines

of code on average). As a result, localizing faults in these cases or automatically repairing

them are likely to be highly challenging [177, 101, 146].
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Root Cause Apollo Autoware Totalcause

Algorithm (Alg) 74 65 139

Numerical (Num) 14 15 29

Assignment (Assi) 25 22 47

Missing Condition Checks (MCC) 16 4 20

Data 8 2 10

External Interface (Exter-API) 1 5 6

Internal Interface (Inter-API) 5 0 5

Incorrect Condition Logic (ICL) 17 13 30

Concurrency (Conc) 2 4 6

Memory (Mem) 6 9 15

Incorrect documentation (Doc) 36 13 49

Incorrect Configuration (Config) 34 102 136

Others 5 2 7

Totalsystem 243 256 499

Table 4.4: Root Causes of Bugs in AV Systems

Finding 1: Incorrect algorithmic implementations, often involving many lines of code,

cause 27.86% of AV bugs.

Incorrect configurations—which involve building, compilation, compatibility, and installation—

receive a very high amount of attention in open-source AV systems. They are particularly

frequent in Autoware with 102 such bugs occurring. This result indicates that configur-

ing, compiling, ensuring compatibility, and enabling installations of AV systems is highly

challenging and deserves greater attention by the software-engineering research community.

Finding 2: Incorrect configurations causes a substantial number of AV bugs, i.e., 27.25%

of such bugs.

Root causes of AV bugs that occur a relatively frequent amount but much less frequently

than Alg, Config, or Doc causes are those involving improper assignments or initializations

(Assi), incorrect condition logic (ICL), numerical issues (Num), and missing condition checks

(MCC) with each category occurring a total of 47, 30, 29, and 20, respectively, across both

systems. These kinds of root causes typically involve a relatively small number of lines of

code (e.g., 20 lines or less) and are more amenable to existing fault localization and automatic

program repair techniques [146].
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Finding 3: Root causes of bugs involving relatively few lines of code, i.e., 20 or fewer

lines, cause 25.25% of bugs.

4.4.2 RQ2: AV Bug Symptoms

The next research question we discuss covers the symptoms that AV bugs exhibit. Table

4.5 shows the types of bug symptoms we identified that occur for Apollo and Autoware.

Symptoms specific to the domain of AVs mainly involve errors related to driving, navigating,

or localizing the vehicle itself or perceiving the environment around the vehicle. In total,

these bug symptoms have 140 instances across both AV systems and specifically include the

following types of symptoms: lane positioning and navigation; speed and velocity control;

traffic-light processing; vehicle stopping, turning, trajectory, and localization; and obstacle

processing. It is notable that Apollo’s bugs exhibit significantly more of these types of

symptoms. However, this does not necessarily indicate that Apollo has more driving bugs

than Autoware. Apollo developers may focus more on identifying and fixing these kinds of

bugs than Autoware developers.

Among the driving bugs, the symptoms that occur most frequently involve speed and velocity

control, trajectory, and lane positioning and navigation with 42, 30, and 25 total instances

across both systems, respectively. These results indicate that these kinds of functionality are

difficult to implement correctly. At the same time, they are also among the core functionality

one would expect an AV to perform and are inherently safety-critical. For example, the

following bug description was extracted from one of Autoware‘s issues where one developer

noticed an unexpected behaviour of the steering control and velocity plan 1:

“Correction of angular velocity plan at the waypoint end...At the WayPoint end

point, the steering angle control becomes unstable”

Software testing, bug detection and localization, and automatic repair for such AV bugs

1https://tinyurl.com/y5vd6mqu
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Symptom Apollo Autoware Totalsymp

Crash 24 29 53

Hang 1 2 3

Build 15 66 81

Camera (Cam) 2 7 9

Lane Positioning and Navigation (LPN) 20 5 25

Speed and Velocity Control (SVC) 26 16 42

Launch (Lau) 5 7 12

Traffic Light Processing (TLP) 6 1 7

Vehicle Stopping and Parking (Stop) 8 7 15

Vehicle Turning (Turn) 9 0 9

Vehicle Trajectory (Traj) 26 4 30

IO 2 8 10

Localization (Loc) 2 6 8

Obstacle Processing (OP) 3 1 4

Invalid Documentation (Doc) 36 13 49

Display and GUI (DGUI) 10 29 39

Security and Safety (SS) 3 2 5

Logic 33 24 57

Unreported (Un) 4 25 29

Others (OT) 8 4 12

Totalsystem 243 256 499

Table 4.5: Symptoms of Bugs in AV Systems

would likely be highly beneficial for the AV development community.

Finding 4: 28.06% of bugs directly affect driving functionality of AVs with speed and

velocity control, trajectory, and lane positioning and navigation occur the most frequently

at 8.42%, 6.01%, and 5.01%, respectively.

Among the types of symptoms in our classification, the one that appears the most are actually

build errors—with 15 in the case of Apollo and 66 in the case of Autoware. Autoware bugs

resulting in build errors largely involve changes to upstream components. For instance, new

versions of ROS are released requiring major changes to ensure compatibility in Autoware.

Moreover, the build error differences might be related to the underlying build systems used

by Apollo and Autoware. In particular, Autoware uses the native ROS build system [152],

which reuses the CMake syntax [5] when specifying the compilation configurations. Apollo,

on the other hand, adopts the newer Bazel build system [4] developed by Google. However,

given that both Autoware and Apollo are built on top of robotics middleware (e.g., ROS [152]

60



or Cyber RT [15]), an interesting direction for future work includes determining what aspects

of Autoware’s design or the developers decision-making processes result in them making such

extensive updates.

Bugs that crash an AV software system occur relatively frequently as well, with 53 occurrences

across both AV systems. Note that the bug reports that specify these crashes rarely indicate

whether or not they may directly affect the safe operation of the AV on a road. As a result, it

is not clear that these crashes are necessarily safety-critical. For example, the reports do not

identify whether the bugs would result in the vehicle stalling, being unable to move, stuck

accelerating, etc. One interesting future research direction is determining the extent to which

AV crash bugs result in safety or security-critical errors.

Logic errors occur frequently—with 57 instances in total for both AV systems. Often, there is

no indication that there are any runtime errors that necessarily occur for the bugs reporting

logic errors. However, developers, for this symptom, often report that there is enough

potential for a runtime error occurring in the future.

Display or GUI errors are another frequent and notable type of symptom that occurs in both

AV systems—totalling 39 instances. Apollo and Autoware each provide simulations or GUIs

to allow the user or developer to configure or assess the functionality of an AV.

Finding 5: Build errors, crashes, logic errors, and GUI errors are among the most

frequently occurring domain-independent errors in AV systems amounting to 16.23% of

bugs for build errors, 10.62% for crashes, 11.42% for logic errors, and 7.82% for GUI errors.

Along the lines of safety and security, our explicit category that denotes the number of bugs

that are clearly identified as safety- or security-oriented only totals 5. We found very few

instances where the bug reports clearly specify that a particular bug is in fact a definite

safety or security issue in either AV system. In fact, many of the aforementioned driving bugs

(e.g., speed and velocity control, trajectory, and lane positioning and navigation) are likely
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to be safety-critical. However, we conservatively marked bugs as security or safety issues

only if the bug report clearly denotes the bug in question as being safety- or security-related.

There is significant amount of work that should be conducted to further assess the safety and

security properties of AV systems.

Finding 6: Bugs reported with explicit safety or security symptoms occur highly infre-

quently, constituting only 1% of AV bugs.

4.4.3 RQ3: Causes and Symptoms

A better understanding of the relationship between root causes, symptoms, and the frequency

at which a particular root cause may produce a specific symptom can guide engineers and

researchers working on AVs to prevent, detect, localize, and fix AV bugs. To that end, we

examine the results of RQ3.

RootCause

Symptom
Crash Hang Build Cam LPN SVC Lau TLP Stop Turn Traj IO Loc OP Doc DGUI SS Logic Un OT

Algorithm (Alg) 12 0 0 4 17 15 3 1 7 4 19 2 5 2 0 15 2 23 8 0

Numerical (Num) 1 0 0 0 2 4 0 0 0 3 4 0 1 0 0 3 0 9 2 0

Assignment
(Assi)

5 0 1 2 1 6 0 1 2 2 4 3 1 0 0 4 0 11 2 2

Missing
Condition Checks
(MCC)

5 0 0 1 2 4 0 1 1 0 0 0 0 1 0 1 0 3 1 0

Data 1 0 1 0 0 0 0 3 0 0 1 0 1 0 0 0 0 1 0 2

External
Interface
(Exter-API)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2

Internal Interface
(Inter-API)

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 0 1 0

Incorrect
Condition Logic
(ICL)

4 0 0 0 3 8 0 1 3 0 1 1 0 1 0 1 0 4 3 0

Concurrency
(Conc)

1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Memory (Mem) 10 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1

Incorrect
Documentation
(Doc)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0

Incorrect
Configuration
(Conf)

13 0 79 2 0 3 8 0 1 0 1 1 0 0 0 10 3 5 8 2

Others 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 3

Total 53 3 81 9 25 42 12 7 15 9 30 10 8 4 49 39 5 57 29 12

Table 4.6: Frequency of symptoms that each root cause of a bug may exhibit across Apollo
and Autoware.

Table 4.6 illustrates the extent to which a particular root cause resulted in a specific symptom

across both AV systems. Recall that incorrect algorithm implementations were the most

frequently occurring root cause in our classification scheme. Unsurprisingly, that cause resulted

62



in a wide variety of symptoms, producing 16 out of 20 of the symptoms in our classification

scheme. This root cause results in many symptoms directly affecting the correct driving

of a vehicle (i.e., lane positioning and navigation, speed and velocity control, traffic-light

processing, stopping and parking, vehicle turning and trajectory, localization, and obstacle

processing). Symptoms especially affected by incorrect algorithm implementations include

lane positioning and navigation (17 occurrences), speed and velocity control (15 occurrences),

and trajectory (19 occurrences). This indicates that implementing such algorithms has a high

complexity compared to other aspects of AV driving. Other symptoms that occur frequently

due to incorrect algorithm implementations include crashes (12 occurrences), display and GUI

errors (15 occurrences), and logic errors (23 occurrences). Given that many lines of code (i.e.,

104 lines of code on average) often need to be added or modified to fix AV bugs arising due to

incorrect algorithm implementations, a wide variety of AV-specific and safety-critical bugs are

likely to be inapplicable for state-of-the-art fault localization and automatic program-repair

techniques [177, 101, 146].

Finding 7: Incorrect algorithm implementations involving many lines of code caused all 8

types of symptoms that directly affect the driving of a vehicle and caused 16 out of all 20

symptoms in our classification scheme.

The second-most frequently occurring cause is incorrect configurations involving compilation,

building, compatibility, and installation (Config), as described in Section 4.4.1. Despite

the total number of bugs due to this cause (136 instances) being similar to the number for

incorrect algorithm implementations (139 instances), incorrect configurations only caused

13 out of 20 of the symptoms in our classification schema—with a vast majority of those

symptoms being build errors, i.e., 79 out of 136 (58.09%). This result further reinforces

that simply building or compiling such systems is highly non-trivial and can benefit from

software-engineering research that aids in this process (e.g., bug detection and repair for

handling upstream changes). Besides build errors, incorrect configurations caused a significant

number of crashes, inability of components of the AV system to launch (Lau), display and
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GUI errors (DGUI), and logic errors.

Finding 8: Incorrect configurations caused a wide variety of bug symptoms, 13 out of

20, with a vast majority resulting in build errors, 79 out of 136 (58.09%)—indicating that

properly configuring, building, and compiling these AV systems is a non-trivial maintenance

effort.

Recall that bugs caused by incorrect assignments or initializations occurred relatively fre-

quently across both AV systems, i.e., 47 instances out of a total of 499 (9.42%). This root

cause produced 15 out of 20 of the symptoms in our classification scheme. This cause was

particularly prominent for logic errors, crashes, display and GUI errors, IO errors, errors

involving speed or velocity control, and trajectory errors. A relatively wide variety and

significant amount of such errors may be automatically repaired or, at least, identified and

localized using existing state-of-the-art approaches.

Misuse of conditional statements and incorrect condition logic mainly produced errors

involving lane positioning and navigation, speed and velocity control, and crashes. Such

root causes also resulted in logic errors that may lead to a future runtime error but did

not necessarily occur at the time of the bug report. Fixing these combinations of bugs and

symptoms often involve a relatively small number of changes to code, i.e., about 20 lines of

code or less, making them particularly amenable to existing fault localization and automatic

program-repair approaches.

Finding 9: Incorrect assignments of variables, conditional statements, or condition logic

caused 16 out of 20 AV bug symptoms.

Concurrency and memory errors are infrequently reported, indicating that they also likely

occur infrequently in AV systems. Such root causes also had little effect on the actual

successful driving of the vehicle, with only two instances occurring:
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A concurrency issue and a memory issue caused a bug involving speed and velocity control,

respectively. However, no other driving symptom arose due to such potentially serious errors.

Note that, as expected, memory errors did cause a reasonable number of crashes, i.e., 10 in

our study.

Finding 10: Concurrency and memory misuse caused relatively few bug symptoms, i.e.,

21 out of 499 bugs (4.21%).

4.4.4 RQ4: Bug Occurrences in AV Components

In this section, we examine the frequency of bug occurrences in AV components of the

reference architecture introduced in Section 4.2. Table 4.7 presents the number of occurrences

for each top-level component, as described in Sections 4.2 and 4.3—or sub-component of

the Perception, Localization, or CAN Bus components—for Apollo and Autoware. Bug

occurrences for sub-components are shown if a significant number of bugs were found in them.

The number of bugs found in the Planning components of the AV systems far exceed that

of others, totalling 135 bugs out of 499 (i.e., 27.05% of all bugs). For comparison, the

second-most bug-ridden component type, Perception, only contains 83 bugs across both

systems (i.e., 16.63% of all AV bugs)—resulting in Planning having 61.48% more bugs than

Perception. It is reasonable that developers focus a significant amount of their effort on

Planning because it makes major driving decisions about the safety, speed, and passenger

comfort of an AV.

Bugs are generally found in three Perception sub-components: object detection, object

tracking, and data fusion. The number of bugs in object detection (55) far exceeds the

number of bugs found in either object tracking (11) or data fusion (17). Perception must

handle sensor input from a variety of sources (e.g., LiDAR, camera, and radar) and use

complex algorithms (e.g., Convolutional Neural Networks and Kalman filters). The module
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Component Sub-
Component

Apollo Autoware Totalcomp

Perception

Object
Detection

17 38 55

Object
Tracking

2 9 11

Data Fusion 11 6 17

Localization

Multi-Sensor
Fusion

9 21 30

Lidar Locator 1 26 27

Trajectory Prediction 7 1 8

Map 13 5 18

Planning 93 42 135

Control 4 0 4

Sensor Calibration 11 11 22

Drivers 3 15 18

CAN Bus

Actuation 4 2 6

Communication 2 0 2

Monitor 4 2 6

Robotics-MW 1 6 7

Utilities and Tools 12 41 53

Docker 7 6 13

Documentation and Others 42 25 67

Totalsystem 243 256 499

Table 4.7: Frequency of bug occurrences for each AV component

must also detect obstacles, classify traffic lights, and detect lanes. Due to this complexity, it

is sensible for Perception to have such a high number of bugs.

Following Perception in terms of bug occurrences are Localization components, which account

for 57 bugs out of 499 total (11.42%). Localization estimates an AV’s real-time location

based on a variety of location measurements and fuses them together. Multi-sensor fusion

and lidar locator sub-components each have a similar number of bugs across both systems

with 30 instances and 27 instances, respectively.

Finding 11: The core AV components with the greatest number of bugs across both

systems are Planning, Perception, and Localization—ordered from most bug-ridden to

least—with 135 (27.05%), 83 (16.63%), and 57 (11.42%) bugs, respectively.

A substantial number of bugs involve functionality that does not provide core logic that fits
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into the major components as described in Section 4.2. 53 out of 499 bugs (10.62%) occur in

components that provide utilities or tools that support core functionality and are often used

by a variety of other components.

For example, Figure 4.2 was obtained from one of Autoware’s issues2 and it shows a bug

related to the runtime manager, which is one of the utilities responsible for starting and

terminating Autoware’s functional components. This bug prevented the runtime manager

parameters from getting saved. Another significant number of bugs are either documentation-

oriented, or occur infrequently and do not fit into other component categories, constituting

67 bugs across both AV systems (13.43%).

Finding 12: Many bugs do not occur in the core domain-specific functionality of AV

systems—constituting 53 bugs (10.62%) in the case of utilities and 67 bugs (13.43%)

involving documentation bugs or bugs that do not occur frequently enough to fall into a

major component category.

Figure 4.2: A bug found in one of Autoware’s utilities.

4.4.5 RQ5: Bug Symptoms in AV Components

The final research question we study relates symptoms of bugs with the AV components they

affect. Studying such a relationship allows engineers to better distribute engineering effort

and other development resources (e.g., testing budget) to the components that exhibit the

most bugs or the bug types that are of greatest importance to AV stakeholders.

2https://tinyurl.com/yxskk46n
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Component

Sub-Component

Symptom

Crash Hang Build Cam LPN SVC Lau TFP Stop Turn Traj IO Loc OP Doc DGUI SS Logic UN OT

Perception

Object Detection 12 0 16 1 1 3 2 4 0 0 0 1 0 0 0 5 0 4 6 0

Object Tracking 3 1 2 0 2 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

Data Fusion 5 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 2 4 0

Localization
Multi-Sensor Fusion 3 1 7 4 0 2 1 0 0 0 0 0 5 0 0 1 0 3 3 0

Lidar Locator 8 0 5 0 0 2 0 0 0 0 1 0 3 0 2 0 0 4 1 1

Prediction 0 0 0 0 1 1 0 0 0 0 5 0 0 0 0 0 0 1 0 0

Map 0 0 1 0 4 1 1 1 0 0 3 0 0 0 1 0 0 5 1 0

Planning 8 0 4 0 17 29 0 1 14 6 21 3 0 2 4 4 1 12 8 1

Control 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Calibration 2 0 1 1 0 0 1 0 0 0 0 2 0 1 3 3 0 6 0 2

Drivers 0 0 4 1 0 0 0 0 0 0 0 3 0 0 0 4 0 3 1 2

CAN Bus

Actuation 0 0 2 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1

Communication 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Monitor 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Robotics-MW 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

Utilities 6 0 12 1 0 0 3 0 0 0 0 1 0 0 0 16 2 9 2 1

Docker 0 0 7 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 1

Documentation & Others 2 0 16 0 0 1 1 0 1 0 0 0 0 0 38 4 0 1 1 2

Table 4.8: Occurrences of bug symptoms in components of Apollo and Autoware

Table 4.8 illustrates the extent to which different bug symptoms occur in components and

sub-components across both Apollo and Autoware. Symptoms involving driving and operation

of the vehicle are largely associated with bugs in Planning. Specifically, out of 140 bugs

directly affecting driving of the vehicle, 90 of them affect Planning. Five particular driving

symptoms—i.e., lane positioning and navigation (LPN), speed and velocity control (SVC),

stopping and parking (Stop), vehicle turning (Turn) and trajectory (Traj)—that appear

particularly frequently in Planning constitute 87 of the 140 driving bugs (62.14%). As an

example, the following code snippet from Apollo illustrates a driving bug in Planning 3:

i f ( i n i t t r a j e c t o r y p o i n t . v ( ) <

q p s p l i n e p a t h c o n f i g . u t u r n s p e e d l i m i t ( ) &&

! i s c h a n g e l a n e p a t h &&

q p s p l i n e p a t h c o n f i g . r e f e r e n c e l i n e w e i g h t ( ) > 0 . 0 )

Specifically, the first conditional statement ensures that the current speed is less than the

speed limit enforced for a U-turn.

Besides the sheer number of bugs in Planning identified in the previous section, the symptoms

of bugs exhibited in the component indicate its high importance for assuring an AV system

3https://tinyurl.com/y4v4l7mc
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with low errors and high quality.

Finding 13: Planning components have both a high number of bugs and exhibit many

symptoms that are particularly important for safe and correct driving of AVs (62.14% of

driving bugs).

Many bugs that crash AV components occur mainly in Perception (20 bugs), Localization

(11 bugs), Planning (8 bugs), and Utilities (6 bugs). The fact that AVs can potentially be

crashed substantially through the component that processes sensor inputs (i.e., Perception)

is particularly concerning: A skilled malicious adversary with enough time may be able to

turn a crash into an attack. Additionally, crashing components that let the AV know its

position in the environment (i.e., Localization) or even prevent it from making decisions (i.e.,

Planning) may cause the AV to stop functioning, think it is somewhere it is not, or make

dangerous decisions.

Finding 14: Crash bugs occur throughout critical AV components—especially Perception,

Localization, and Planning—making them susceptible to more dangerous secondary effects.

Build errors affect the overwhelming majority of AV component types, i.e., 16 out of 18 in

our classification scheme. This result further corroborates the non-trivial nature of properly

building and compiling AV systems, providing further evidence that solving and automating

this challenge is an open and important research problem.

Finding 15: Build errors affect many components, 15 out of 18 (83.33%).

Few bug symptoms affect 8 more components or sub-components, i.e., more than 40% of

components in our classification scheme. Besides crashes and build errors, the only symptoms

that occur that frequently include speed and velocity control (SVC), display and GUI errors

(DGUI), and logic errors. SVC bugs, in particular, span 9 or more components, which is

quite high for a domain-specific symptom focused on a particular type of functionality of
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AVs. DGUI and logic errors are relatively general and not domain-specific, so their high

occurrence across components is less surprising.

Finding 16: Bugs exhibiting speed and velocity control errors affect a significant number

of AV components, i.e., 9 out of 18 components (50.00%) .

4.5 Discussion

Using the major findings of the previous section, we will discuss the larger implications of our

study’s results. In particular, we will draw lessons from the findings that can guide future

work in areas related to software testing, analysis, and repair of AVs.

Findings 2. 5, 8, and 15 involve incorrect configurations or build errors. To summarize those

findings, 27.25% of bugs occur due to incorrect configurations, while 16.23% of bugs result in

build errors. Incorrect configurations cause a wide variety of symptoms (13 out of 20) and

build errors affect many components (15 out of 18). This suggests that a major amount of time

and effort expended by engineers are spent simply dealing with compatibility and compilation

issues, upstream changes, and ensuring proper installation. If software-engineering research

can aid engineers with such a problem, this would potentially open up a substantial amount of

time that engineers can spend actually ensuring safe, secure, and correct autonomous-driving

functionality.

Incorrect algorithm implementations cause many bugs (27.86% of AV bugs), often involve

many lines of code (104 lines of code on average), and cause many symptoms (16 out of 20),

including all eight domain-specific driving symptoms, as corroborated by Findings 1 and 7.

These findings strongly suggest that existing bug localization and repair approaches likely

need to be augmented with domain-specific information and the ability to conduct repairs

that involve many lines of non-trivial code.

Despite this, there is evidence that a significant amount of bugs may be applicable to existing

70



bug detection, localization, and repair techniques. Specifically, bugs involving relatively few

lines of code constitute about 25.25% of bugs (Finding 3) and simpler bugs (e.g., incorrect

assignments and condition logic, and missing condition checks) cause 16 out of 20 AV bug

symptoms (Finding 9). These results indicate that our study’s dataset, consisting of AV bug

causes and symptoms, would significantly aid researchers with assessing or constructing bug

detection, localization, and repair techniques.

With few bugs being reported that explicitly identify safety and security concerns in AV

systems (Findings 6), it is unclear how safe or secure open-source AV systems are. This

strongly indicates the need for researchers to focus more effort on assessing and ensuring

these critical properties in AV software. Particularly, certain bugs (e.g., crashes in Finding

14) may have security and safety implications and should be further explored in future work.

Software testing and analysis research for AVs have heavily focused on only a sub-component

of Perception, i.e., object detection [168, 180]. However, our study provides significant

evidence that many bugs, especially those that most involve actually driving the vehicle,

occur in many other components (Findings 15 and 16)—especially Planning and Localization

(Findings 11 and 13). With Planning having the overwhelmingly largest proportion of bugs

(62.14%) and affecting 7 out of 8 driving symptoms, it is arguable that researchers should

focus more on Planning than Perception. Even in the case of Perception, object tracking

and data fusion, two sub-components that are not studied in terms of software testing and

analysis, as far as we are aware, constitute 33.73% of bugs in Perception—while object

detection covers the remaining Perception bugs.

4.6 Threats to validity

Internal threats. The primary internal threat to validity involves subjective bias or errors in

classification of bugs. To reduce this threat, we initiate our labelling process with classification

schemes from existing literature [167, 158], and adopt an open-coding scheme to assist us in
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expanding the initial schemes. To ensure that we focus on real bugs and fixes, we selected

only accepted and closed issues (e.g., when determining issues related to a pull request), or

merged and closed pull requests, and used bug tags when available. Further, each bug is

inspected and labelled by two authors independently. Any discrepancy is discussed until a

consensus is reached.

When issues, pull requests, or code were insufficient for facilitating classification into a

particular category, we assigned the corresponding bug to the OT (Other) category. We

also had discussions with Apollo developers about their bugs, allowing us to improve our

classification, reducing subjective bias and error in the process.

External threats. One external threat is the generalizability of the data set we collected.

We have adopted several strategies to mitigate this threat. First, the raw data we collected

includes all pull requests, commits, and issues from the creation of subject AV systems until

July 15, 2019. This strategy assures this study covers a comprehensive set of data.

Second, we have adopted a method similar to those used in existing bug studies [171, 80, 113,

181] to identify as many bug-fix pull requests as possible in the data pre-processing step.

Third, we have only studied the merged pull requests that fix bugs to ensure that the studied

bugs, as well as their corresponding fixes, are accepted by developers.

Another threat to external validity is the generalizability of our findings. We study two AV

systems, Apollo and Autoware, which are developed by two independent groups. Although

there are only two systems in our study, they are the most widely used open-source AV systems

containing over 520,000 lines of code, over 16,000 commits, and more than 10,000 issues.

Additionally, these AV systems are used by about 50 corporations and governments—including

the US government, Google, Intel, Volvo, Ford, Hitachi, and LG [9, 2, 38, 39, 18, 17, 10, 7].

Furthermore, the number of labeled bugs (499 in this study) is similar in size to that of other

recent bug studies in other domains (e.g., 555 [113] and 175 [181] for deep learning and 269
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for numerical libraries [80]). Given that we focus on L4 AV systems, Apollo and Autoware

are the only systems that achieve that high level of autonomy and have extensive, as well as

publicly accessible, issue repositories [3, 13]. Given the high level of autonomy and sizes of

data in our study, its findings are more likely to be representative and generalizable to other

AV software aiming for L4 autonomy.

4.7 Related Work

Empirical study on bugs. A great number of work has been conducted that studies bugs

in different types of software systems. Franco et al. [80] studied the bugs that occur in

numerical software libraries such as NumPy, SciPy, and LAPACK. Islam et al. [113], Thung et

al. [167], and Zhang et al. [181] investigated machine learning and deep learning frameworks

(e.g., Caffe, Tensorflow, OpenNLP, etc.). Leesatapornwongsa et al. [126] and Lu et al. [138]

analyzed concurrency bugs in distributed systems such as Hadoop and HBase. Jin et al. [114]

and Selakovic et al. [159] studied performance bugs in large-scale software suites such as

Apache, Chrome, and GCC. Different from this prior work, we are the first to perform an

empirical study on bugs in emerging AV software systems.

Across existing empirical studies [80, 113, 167, 181, 126, 138, 114, 159], bugs are often

characterized based on multiple dimensions including bug types, root causes, and bug

symptoms. Some work has categorized bugs using domain-specific characteristics, such as

the triggering of timing conditions for concurrency bugs [138]. Compared to this prior work,

we apply and adapt these bug characterization methods to bugs in a different domain, i.e.,

AV software systems.

AV software robustness.

For AVs, ensuring the robustness of its software system is the top priority—as any software

bugs may incur serious damage to both the road entities and the AV itself. Unfortunately,
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many fatal accidents have occurred in recent years due to the lack of software robustness.

For example, Tesla’s autopilot system has been the culprit of several deaths over recent

years [31, 32, 30, 25, 29, 28]. Uber’s AV system reportedly failed to prevent the crash after

detecting the pedestrian 6 seconds before the accident in Tempe, AZ [8, 26]. Moreover,

machine learning models used in AV systems (e.g., in Perception) have been found vulnerable

to attacks (e.g., physical-world perturbations [88, 87, 183] or sensor attacks [68]). Compared to

these case-by-case discoveries of AV-system robustness issues, we are the first to systematically

collect, taxonomize, and characterize bugs in AV systems, which is a critical first step towards

eliminating them in a principled manner.
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Chapter 5

Generating Diverse, Fully-Mutable,

Safety-Critical and Motion

Sickness-Inducing Scenarios for

Autonomous Vehicles

Autonomous Vehicles (AVs) leverage advanced sensing and networking technologies (e.g.,

camera, LiDAR, RADAR, GPS, DSRC, 5G, etc.) to enable safe and efficient driving without

human drivers. Although still in its infancy, AV technology is becoming increasingly common

and could radically transform our transportation system and by extension, our economy and

society. As a result, there is tremendous global enthusiasm for research, development, and

deployment of AVs, e.g., self-driving taxis and trucks from Waymo and Baidu. The current

practice for testing AVs uses virtual tests—where AVs are tested in software simulations—

since they offer a more efficient and safer alternative compared to field operational tests.

Specifically, search-based approaches are used to find particularly critical situations. These

approaches provide an opportunity to automatically generate tests; however, systematically
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creating valid and effective tests for AV software remains a major challenge. To address

this challenge, we introduce scenoRITA, a test generation approach for AVs that uses

evolutionary algorithms with (1) a novel gene representation that allows obstacles to be fully

mutable, hence, resulting in more reported violations, (2) 5 test oracles to determine both

safety and motion sickness-inducing violations, and (3) a novel technique to identify and

eliminate duplicate tests. Our extensive evaluation shows that scenoRITA can produce

effective driving scenarios that expose an ego car to safety critical situations. scenoRITA

generated tests that resulted in a total of 1,026 unique violations, increasing the number

of reported violations by 23.47% and 24.21% compared to random test generation and

state-of-the-art partially-mutable test generation, respectively.

5.1 Introduction

Autonomous vehicles (AVs), a.k.a. self-driving cars, are becoming a pervasive and ubiquitous

part of our daily life. More than 50 corporations are actively working on AVs, including

large companies such as Google’s parent company Alphabet, Ford, and Intel [36, 20, 37].

Some of these companies (e.g., Alphabet’s Waymo, Lyft, and Baidu) are already serving

customers on public roads [38, 39, 18]. Experts forecast that AVs will drastically impact

society, particularly by reducing accidents [61]. However, crashes caused by AVs indicate that

achieving this lofty goal remains an open challenge. Despite the fact that companies such

as Tesla [27], Waymo [36], or Uber [33] have released prototypes of AVs with a high level

of autonomy, they have caused injuries or even fatal accidents to pedestrians. For instance,

an AV of Uber killed a pedestrian in Arizona back in 2018 [26]. AVs with lower levels of

autonomy have resulted in more fatalities in recent years [31, 32, 30, 25, 29, 21, 28, 26].

Prior research has revealed a lack of standardized procedures to test AVs [120] and the

inability of current approaches to effectively translate traditional software testing approaches

into the space of AVs [124, 112]. A common practice for testing AV software lies in field
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operational tests, in which AVs are left to drive freely in the physical world. This approach

is not only expensive and dangerous, but also ineffective since it misses critical testing

scenarios [116]. Virtual tests, where AVs are tested in software simulations, offer a far more

efficient and safer alternative. While these tests provide an opportunity to automatically

generate tests, they come with the key challenge of systematically generating scenarios which

expose AVs to safety-critical and motion sickness-inducing situations.

To address this challenge, we propose scenoRITA (scenario GeneRatIon Testing for AVs),

a test generation framework which aims to find safety and motion sickness-inducing violations

in the presence of an evolving traffic environment. scenoRITA combines both (i) AV

software domain knowledge and (ii) search-based testing [142, 95]. These two elements have

been combined by previous techniques to test AVs by automatically generating safety-critical

scenarios [130, 97, 67, 52, 60, 47, 184]. However, unlike these approaches, scenoRITA’s gene

representation enables obstacles to be fully mutable, i.e., an obstacle’s individual properties

such as its start and end location, type (e.g., vehicle, pedestrian, and bike), heading, speed,

size, and mobility (e.g., static or dynamic) can be altered. Previous techniques do not

specify their gene representations or do so in such a way that allows obstacles to be only

partially mutable: obstacles’ attributes are altered only during mutation and with a small

probability, while during crossover, obstacles are transferred across scenarios without altering

their states or properties [130, 96, 97, 67, 184]. Thus, these techniques ignore the challenge

of ensuring creation of valid obstacle trajectories, reducing their effectiveness at generating

driving scenarios with unique violations.

Other limitations of prior work include generating driving scenarios with: (i) manually

setup and limited number of scenario types; (ii) a small number of obstacles per scenario (a

maximum of 2 obstacles per scenario); and (iii) obstacles with fixed trajectories and limited

maneuvers which require manual specification. scenoRITA’s gene representation allows

obstacles to fully evolve throughout the test generation process, while still adhering to traffic
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laws and providing the ego car with ample amount of time to react to any potential violations.

This novel gene representation addresses the limitations in the state-of-the-art approaches

(Section 5.2), as follows:

• As shown later in our evaluation results (Section 5.5), a fully-mutable version of sceno-

RITA produces 23% more violations compared to a partially-mutable version of sceno-

RITA. Both representations contain the same components described in Figure 5.1, they

only differ in the gene representation.

• scenoRITA eliminates the need for manual and fixed scenario setup by doing the following:

(i) given any 3D map, scenoRITA parses the map and generates a directed graph of all

points (nodes) residing in the map and their connected lanes (edges), (ii) this directed

graph is used to validate the trajectories of ego car and obstacles at the start of the

test generation, and as they evolve and mutate during the evolution process. In other

words, there is no need to manually set a fixed trajectory for the ego car or obstacles, as

scenoRITA handles that automatically.

• Since there is no need to manually setup any scenarios (i.e., obstacles and ego car can

be placed anywhere in the map and it is ensured that they adhere to traffic laws and are

within acceptable proximity), this allows scenoRITA to generate a much larger, diverse

and complex set of scenario types which: (i) cover as many lanes and lane types, in a map,

as possible (ex. single- or multi-lane roads with either same or opposite traffic direction,

U-turns, roundabouts, cross or T intersections, merged lanes, etc.); (ii) does not have a

limited or fixed number of obstacles; (iii) supports any combination of maneuvers per

scenario for both an ego car and an obstacle. For example, in one scenario, an ego car

can be directed to follow an obstacle before it changes lanes and then turns right at an

intersection.

Additionally, previous work on AV software testing uses a highly limited number of test

oracles for ensuring safety and no oracles for assessing motion sickness-inducing movement of
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an AV: State-of-the-art AV testing approaches (AC3R, AV-Fuzzer, AsFault, AutoFuzz and

Abdessalem et al. [60, 47]) use only two oracles for checking if (1) the ego car reaches its

final expected position while avoiding a crash (i.e., collision detection) and (2) if a vehicle

drives off the road (i.e., off-road detection). As a result, the fitness functions these techniques

utilize are overly simplified—substantially reducing their degree of safety assurance while

completely ignoring rider comfort and motion sickness. Research has shown that a rider’s

discomfort increases when a human is a passenger rather than a driver—with up to one-third

of Americans experiencing motion sickness, according to the National Institutes of Health

(NIH) [14, 23, 128].

To overcome such limitations, scenoRITA utilizes 5 test oracles (i.e., collision detection,

speeding detection, unsafe lane change, fast acceleration, and hard braking) and corresponding

fitness functions—which are based on grading metrics for driving behavior defined by Apollo’s

developers [19]. Apollo is a high autonomy (i.e., Level 4), open-source, production-grade AV

software system created by Baidu. The Society of Automotive Engineers (SAE) defines 6

levels of vehicle autonomy [157, 57], where Level 4 (L4) AV systems, such as Apollo, have the

AV perform all driving functionality under certain circumstances, although human override is

still an option. Apollo is selected by Udacity to teach state-of-the-art AV technology [34]

and can be directly deployed on real-world AVs such as Lincoln MKZ, Lexus RX 450h, GAC

GE3, and others [15, 24], and has mass production agreements with Volvo and Ford [17].

Additionally, Apollo has already started serving the general public in cities (e.g., a robo-taxi

service in Changsha, China [16]).

The main contributions of this chapter are as follows:

• We introduce scenoRITA, a search-based testing framework, with a novel gene represen-

tation and domain-specific constraints, that automatically generates valid and effective

driving scenarios. scenoRITA aims to maximize the number of scenarios with unique

violations and relies on a novel gene representation of driving scenarios, which enables the
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search to be more effective: Our gene representation allows the genetic algorithm to alter

the states and properties of obstacles in a scenario, allowing them to be fully mutable.

Additionally, we specify a set of domain-specific constraints to ensure that the generated

driving scenarios are valid. To the best of our knowledge, we are the first to define the

exact values of these constraints, which are obtained from authoritative sources such as

the National Center for Health Statistics, Federal Highway Administration, and the US

Department of Transportation [71, 91, 90, 92].

• To improve the effectiveness of scenoRITA, we automate the process of identifying and

eliminating duplicate violations by using an unsupervised clustering technique to group

driving scenarios, with similar violations, according to specific features.

• We utilize 5 test oracles and corresponding fitness functions to assess different aspects

of AVs—ranging from traffic and road safety (i.e., collision detection, speeding detection,

and unsafe lane change) to a rider’s comfort (i.e., fast acceleration and hard braking). To

the best of our knowledge, scenoRITA is the first search-based testing technique for AV

software that uses multiple test oracles at the same time and considers both comfort and

safety violations as part of those oracles.

• We evaluate the efficiency and effectiveness of scenoRITA by comparing it with random

search and a state-of-the art search-based approach—which adopts the gene representation

in prior work [130, 67, 97, 184] that allows only partial mutation of obstacles (i.e., obstacles

are transferred across scenarios without altering their states or properties during crossover).

Our extensive evaluation—which consists of executing a total of 31,413 virtual tests on Baidu

Apollo using 3 high-definition maps of cities/street blocks located in California: Sunnyvale

(3,061 lanes); San Mateo (1,305 lanes); and Borregas Ave (60 lanes)—shows that sceno-

RITA generates driving scenarios that expose the ego car to critical and realistic situations.

scenoRITA found 1,026 unique comfort and safety violations, while random testing and the

partially mutable search-based testing found a total of 826 and 831, respectively. We make

our testing platform, dataset and results available online to enable reusability, reproducibility,
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and others to build upon our work [1].

Table 5.1: Comparing scenoRITA with the related work.

scenoRITA AV-Fuzzer [130] AutoFuzz[184]
Avoidable
collisions[67]

AsFault[97]

Main
Objective

Generate driving
scenarios that
expose the ego
car to 3 types of
safety-critical and
2 types of motion
sickness-inducing
scenarios

Find collision
violations of au-
tonomous vehicles
in the presence of
an evolving traffic
environment

A grammar-based
fuzzing technique
for finding colli-
sion and off-road
violations in AV
controllers

A search-based
approach to find
avoidable colli-
sions

Automatically
create virtual
roads for testing
lane-keeping of
self-driving car
software

Requires High
Definition
(HD) Maps

Yes Yes Yes Yes No

Representations
(gene)

Fully Mutable Partially Mutable Not Known Partially Mutable
Virtual Roads only
(no obstacles in-
cluded)

Scenario
Types

Unlimited
Limited (5 scenar-
ios)

Limited (5 scenar-
ios)

Limited (7 scenar-
ios)

N/A

Scenario
Configuration

Automated Manual Manual Manual N/A

Supported
Maneuvers

Supports any
combination
of the following
maneuvers: Lane
Follow, Lane
Change, Left Turn,
Right Turn, Cross
Intersection, U-
Turn, Lane Merge,
Acceleration, De-
celeration.

Supports one
maneuver at time
from 4 possi-
ble maneuvers:
Acceleration, De-
celeration, Lane
Follow, and Lane
Change.

Supports one
maneuver at time
from 6 possi-
ble maneuvers:
Acceleration, De-
celeration, Turn
Left, Turn Right,
Lane Follow, Lane
Change.

Not Known N/A

Ego Car
Routing

Flexible Not Known Fixed Not Known Flexible

No. Obsta-
cles Per Sce-
nario (for ex-
periments)

Up to 70 Maximum of 2 Maximum of 2 No Known No obstacles

Collision
Detection

Supported Supported Supported Supported Not Supported

Speeding
Detection

Supported Not Supported Not Supported Not Supported Not Supported

Unsafe Lane
Change

Supported Not Supported
Supported (only in
Carla, not Apollo)

Not Supported Supported

Fast
Acceleration

Supported Not Supported Not Supported Not Supported Not Supported

Hard Braking Supported Not Supported Not Supported Not Supported Not Supported

5.2 Related Work

A wide array of studies focus on applying traditional testing techniques to AVs

including adaptive stress testing [75], where noise is injected into the input sensors of an
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AV to cause accidents; fitness function templates for testing automated and autonomous

driving systems with heuristic search [106]; and search-based optimization [122]. These

studies provide limited insights into the testing of real-world AVs, since they do not evaluate

their techniques on open-source, production-grade AV software.

Other related work focuses on the vision and machine-learning aspects of AV soft-

ware [186, 165, 180, 121, 151, 47, 60, 104]. Rather than focus on these aspects, scenoRITA

targets the planning component of AV software. Previous work has shown that the most

bug-ridden component of production-grade, open-source AV software systems is the planning

component as opposed to the components responsible for or utilizing vision or machine-learning

capabilities of AVs [100].

Reproducing tests from real crashes: crashes are recreated by replaying the sensory

data collected during physical-world crashes in [84]. Similarly, AC3R [96] generates driving

simulations which reproduces car crashes from police reports using natural language processing

(NLP). However, AC3R requires manual collection of police reports and inherits the accuracy

limitations of the underlying NLP used to extract information from police reports.

Search-based procedural road generation: AsFault [97] uses procedural content genera-

tion and search-based testing to automatically create challenging virtual scenarios for AV

software. Similarly, tools published as part of the Search-Based Software Testing Challenge

(SBST) [44, 45] generate challenging road networks for virtual testing of an automated lane

keep system such as GABezier [123], Frenetic [70], and Deeper [144]. However, none of these

tools take into account the behaviour of other obstacles when testing for safety violations in

AVs. Other tools in the SBST Challenge derive tests for Java such as EvoSuite [155] and

Kex [48]. None of the latter tools are targeted to generate tests for autonomous vehicles.

Next we discuss interesting but orthogonal research problems such as Li et. al. [131]

which discussed the original idea to consider safety and comfort of autonomous vehicles.
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However, this work does not formalize or encode safety and comfort—when evolving driving

scenarios—to produce tests that expose the autonomous vehicle to safety and comfort

violations. This work, instead, aims to provide a quantitative way to measure safety and

comfort of autonomous driving in a test. Another major distinction between scenoRITA and

Li et. al.’s approach is that the latter is not a fully automatic test generation framework.

This approach requires a human expert to vaguely define “test tasks” and perform qualitative

judgments before the simulation-based system can make more precise task definitions and

generate more tests. The human expert then provides feedback to the simulation system to

validate test results.

Another orthogonal related work is by Calò et al. [67] which proposed two search-based

approaches for finding avoidable collisions. They define comfort and speed as weights to rank

short-term paths; however, they do not formalize comfort and speed in the fitness function,

nor do they evaluate them. The main focus of our approach is not introducing a sophisticated

approach to evaluate violations’ “avoidability” but to find as many violations as possible.

Nonetheless, we still ensure that the generated tests are valid using simplistic time-,speed-

and location-related thresholds to determine “avoidable” violations.

As opposed to finding safety and comfort violations, Luo et. al. propose a framework

(EMOOD) [139] that evolves tests to identify combinations of requirements violations. In

other words, EMOOD aims to find different requirements violation patterns for two reasons:

(i) different combinations of requirements violations can expose different types of failures. For

example, the type of failure in which the autonomous vehicle collides while running a red

light is different from the one in which the autonomous vehicle collides while violating the

lane keeping, as the different combinations of requirements violations may provide different

insights about the cause of the collisions; (ii) satisfying all requirements may not be possible

for an ADS in practice, as unexpected events may happen in highly open and dynamic

environments. In response to these unexpected events, the control software of the ADS has
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to make trade-offs among requirements, likely resulting in one or more requirements being

violated.

Table 5.1 compares scenoRITA with the state-of-the-art techniques; AsFault[97], and

Avoidable Collisions [67] address interesting but orthogonal problems to our approach, AV-

Fuzzer and AutoFuzz are closely related to scenoRITA. Scenario Types in Table 5.1 refer to

the number of different scenarios supported by each approach. A scenario type is determined

by (i) a specific part of a map (ex. intersection X in map Y ), (ii) the number of obstacles in

that scenario, (iii) the movement path/routing of obstacles and the ego car (ex. obstacle O

starts at point A and ends at point B), (iv) the allowed maneuvers of obstacles and the ego car

(ex. obstacle O only turns right at an intersection). For example, [82] generates tests for one

scenario type only, which consists of one pedestrian crossing the same street in a given

map, with fixed trajectories for both the ego car and pedestrian, throughout the test generation

process. The approaches depicted in Table 5.1 and similarly [41, 82, 161, 119, 148, 172, 139]

fail to find diverse/unique violations due to the limited number and lack of diversity in

generated scenarios (the maximum number of scenario types supported by any of these tools

is 7 scenario types).

Scenario Configuration in Table 5.1 refers to the means used to set up a Scenario Type. For

example, to set up a Scenario Type similar to Figure 5.6(a) in AutoFuzz [184], one must

manually set (i) start and end location of the ego car in a specific map, (ii) allowed maneuver

of the ego car (ex. in Figure 5.6(a), the ego car always turns left), (iii) the number and type

of obstacles (ex. in Figure 5.6(a), there’s one car and one pedestrian), (iv) start and end

locations for every possible obstacle in that scenario (ex. in Figure 5.6(a), one must specify

the routing info of the blue car and the pedestrian). Any slight difference in one scenario

type in AutoFuzz, requires manually modifying its configuration. We believe that the reason

for the limited number of scenario types and limited maneuvers in related work is due to the

fact that these tools require a manual setup for driving scenarios. In other words, if we would
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want to generate a scenario other than the ones specified by the authors of these tools, we

would have to decide what part of a specific map we would want to run our tests on, what

number of obstacles we would want to include, what is the movement path for each one of

these obstacles, and where would we want to place the ego car in the map. Once we set up a

scenario, all the generated tests will be executed for that specific scenario only.

Furthermore, the need to manually setup these scenarios can be attributed to the gene

representation used in related work. These tools avoid applying search operators on an

obstacle attribute-level (unless its speed) due to the tools’ inability to generate obstacles with

valid new trajectories. For example, applying a crossover between two obstacles can result in

an offspring with a new movement path (trajectory), hence, there needs to be a mechanism

which ensures that the newly generated obstacle has a valid trajectory (i.e., travels in the

direction of traffic, with close proximity to the ego car but still allows the ego car ample

amount of time to react to any potential violations, not placed in the middle of intersections,

etc). The challenging aspect in generating complex and diverse scenarios is to be able to

evolve obstacles fully regardless of the initial setup of such obstacles in a scenario. Related

work, evolve obstacles in tests by either: (i) transferring obstacles across scenarios without

altering their states or properties, or (ii) mutating the speed of such obstacles or moving

them to neighboring lanes. As a result, these works opt for using a fixed, and manually

setup scenarios—throughout test generation—with obstacles and the ego car having fixed

trajectories and limited maneuvers.

Ego Car Routing in Table 5.1 indicates whether an approach supports flexible ego car routing

(i.e., an ego car can traverse different paths in a map, covering as many roads of the map as

possible) or fixed routing (i.e., ego car traverses the same path over and over again), hence,

must be defined manually.

Moreover, the approaches described in this section, only find collision violations [41, 82, 161,

119, 148, 130, 184, 67] or lane keeping [172, 97, 123, 70, 144]. None of them evolve tests for
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a combined set of safety violations (collision, speed, and unsafe lane change) and none of

them report comfort violations.

5.3 Specification of the State Space

To aid in the generation of effective and valid scenarios, we present a formal specification of

the state space in the form of driving scenarios. scenoRITA uses this formal specification

of the state space, along with a genetic algorithm, to generate scenarios that maximizes the

possibility of the ego car (i.e., AV) either violating safety or causing rider discomfort.

Definition 1. A Scenario Sc is a tuple 〈t, E,O,L〉 where:

• t is a finite number that represents the maximum duration of Sc.

• E is the only ego car (i.e., the autonomous driving car) in Sc.

• O is a finite, non-empty set of n obstacles (i.e. non-player characters). A single obstacle is

represented as Ok where O = {Ok : 1 ≤ k ≤ n}.

• L is a finite, non-empty set of lanes, where E and O reside/travel.

Definition 2. An ego car E, is a tuple

〈ZE,HE,PE, SE,AE,CE〉 where:

• ZE = 〈wid, len, hgt〉 represents the width wid, length len, and height hgt of the ego car E.

• HE is a finite, non-empty set representing the ego car’s headings during time instants of

Sc. The heading of E at timestamp j is represented as hEj where HE = {hEj : 1 ≤ j ≤ t}.

• PE is a finite, non-empty set representing the ego car’s positions during time instants of Sc.

The position of E at timestamp j is represented as pEj where PE = {pEj : 1 ≤ j ≤ t}.

• SE is a finite, non-empty set representing the ego car’s speed during time instants of Sc.

The speed of E at timestamp j is represented as sEj where SE = {sEj : 1 ≤ j ≤ t}.

• AE is a finite, non-empty set representing the ego car’s acceleration at time instants of Sc.

The acceleration of E at timestamp j is represented as aEj where AE = {aEj : 1 ≤ j ≤ t}.
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• CE is a finite, non-empty set of durations an ego car spends driving at the boundary of

two lanes at the same time. When an ego car changes lanes, it drives on the markings

between two lanes for a period of time c, before it completely switches to the target lane.

The duration E spends driving on the markings at timestamp j is represented as cEj where

CE = {cEj : 1 ≤ j ≤ t}.

Definition 3. A single obstacle Ok in Sc is a tuple

〈IDOk
, TOk

, ZOk
,MOk

,HOk
,POk

,SOk
〉 where:

• IDOk
represents a unique identification number associated with Ok.

• TOk
represents the type of an obstacle. Examples of obstacle types are: VEHICLE,

PEDESTRIAN, and BICYCLE.

• ZOk
= 〈wid, len, hgt〉 represents the width wid, length len, and height hgt of obstacle Ok.

• MOk
represents the mobility of an obstacle (e.g., static or mobile).

• HOk
is a finite, non-empty set representing the direction of Ok during the entire duration of

Sc. The heading of Ok at timestamp j is represented as hOk
j where HOk

= {hOk
j : 1 ≤ j ≤ t}.

• POk
is a finite, non-empty set representing the positions of Ok at time instants of Sc. The

position of Ok at timestamp j is represented as pOk
j where POk

= {pOk
j : 1 ≤ j ≤ t}.

• SOk
is a finite, non-empty set representing the speed of Ok at time instants of Sc. The

speed of Ok at timestamp j is represented as sOk
j where SOk

= {sOk
j : 1 ≤ j ≤ t}.

Definition 4. A single lane l in L is a tuple 〈Sl,Pl〉 where:

• Sl is a finite, non-empty set representing the speed limit imposed by l. The speed

limit of l, which the ego car is traversing at timestamp j, is represented as slj where

Sl = {slj : 1 ≤ j ≤ t}.

• Pl is a finite, non-empty set representing the position of the closest lane boundary to

the ego car. The position of l’s boundary, which the ego car is traversing at timestamp

j, is represented as plj where Pl = {plj : 1 ≤ j ≤ t}.
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Definition 5. We define a violation v ∈ V = {collision, speed, unsafeChange, fastAccl , hardBrake}.

We elaborate on the oracles corresponding to each of these violations in Section 5.4.5.

5.4 scenoRITA

Figure 5.1 shows the overall workflow of scenoRITA. Our main goal is to create valid and

effective driving scenarios that expose AV software to unique safety and comfort violations.

scenoRITA achieves this goal as follows: (1) it takes as an input a set of domain-specific

constraints, which dictates what constitutes a valid driving scenario (e.g., obstacles should

be moving in the direction of traffic in the lane and have valid obstacle identifiers); (2) The

Scenario Generator uses a genetic algorithm to produce driving scenarios with randomly

generated but valid obstacles, following the domain-specific constraints. The genetic algorithm

evolves the driving scenarios with the aim of finding scenarios with safety and comfort

violations; (3) Generated Scenarios Player converts the genetic representation of scenarios

(Generated Scenarios), from the previous step, into driving simulations where the planning

output of the AV under test is produced and recorded by Planning Output Recorder ; (4)

The planning output is then evaluated by Grading Metrics Checker for safety and comfort

violations; (5) When the evolution process terminates, the Duplicate Violations Detector

inspects the violations produced by Grading Metrics Checker to eliminate any duplicate

violations, and produces a set of unique safety and comfort violations. In the remainder of

this section, we discuss each of these elements of scenoRITA in more detail.

5.4.1 Domain-Specific Constraints

Table 5.2 specifies the list of constraints that Scenario Generator should follow to ensure that

the generated driving scenarios are valid. In this work, we define valid scenarios as those

which contain obstacles that are (1) moving in the direction of traffic in the lane; (2) having

start and end points contained within the boundaries of a fixed-size map; and (3) having
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Table 5.2: A list of Domain-Specific Constraints that Scenario Generator adheres to when
creating driving scenarios.

Scenario
Attr.

Sub-Attr. Description Constraints

Ego Car

Initial Po-
sition

The start position of the ego car in the
map

Initial Position should be within the map bound-
aries

Final Posi-
tion

The destination position of the ego car
in the map

Final Position should be within the map bound-
aries, and there should be a valid path between the
ego car’s Initial and Final Position

Obstacles

ID
A unique identification number associ-
ated with each obstacle in a Scenario

Obstacles in a single Scenario have unique IDs

Initial Po-
sition

The start position of an obstacle in the
map

Initial Position should be within the map bound-
aries

Final Posi-
tion

The destination position of an obstacle
in the map

Final Position should be within the map bound-
aries, and there should be a valid path between the
obstacle’s Initial and Final Position

Heading

The compass direction in which the ob-
stacle is pointing at a given time. It is
expressed as the angular distance rela-
tive to north.

Heading of an obstacle has a minimum of −180◦

(clockwise direction), and a maximum of 180◦

(counter-clockwise direction), i.e., the allowed range
of an obstacle Heading is [−3.14rad - 3.14rad].

Type The type of an obstacle
An Obstacle can be one of the following values:
(VEHICLE, BICYCLE, PEDESTRIAN)

Speed

Speed of an obstacle, measured in
km/hr. The obstacle type dictates the
valid minimum and maximum speed of
an obstacle:

VEHICLE
The speed of a vehicle can range from 8km/hr (e.g.,
parking lots) to 110km/hr (e.g., highways)

BICYCLE
The speed of a bicycle can range from 6km/hr to
30 km/hr

PEDESTRIAN

The speed of a pedestrian can range from 4.5 km/hr
(average walking speed) to 10.5 km/hr (average run-
ning speed)

Width

Width of an obstacle, measured in me-
ters. The obstacle type dictates the
valid minimum and maximum width
of an obstacle:

VEHICLE [1.5 - 2.5] in meters

BICYCLE [0.5 - 1] in meters

PEDESTRIAN [0.24 - 0.67] in meters

Length

Length of an obstacle, measured in me-
ters. The obstacle type dictates the
valid minimum and maximum length
of an obstacle:

VEHICLE [4 - 14.5] in meters

BICYCLE [1 - 2.5] in meters

PEDESTRIAN [0.2 - 0.45] in meters

Height

Height of an obstacle, measured in me-
ters. The obstacle type dictates the
valid minimum and maximum height
of an obstacle:

VEHICLE [1.5 - 4.7] in meters

BICYCLE [1 - 2.5] in meters

PEDESTRIAN [0.97 - 1.87] in meters

Motion The motion of an obstacle An Obstacle can either be: static or mobile
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Figure 5.1: An Overview of scenoRITA

dimensions (i.e. width, height, and length) and speed that account for the obstacle type

(vehicle, pedestrian, or bike). For example, the speed of a pedestrian should not exceed the

average walking/running speed of a human.

When generating the initial and final position of the ego car and obstacles, Scenario Generator

must ensure that these points are (i) within the boundaries of a fixed-size map, and (ii) have

a valid path allowing the ego car and obstacles to move in the direction of traffic. To ensure

that an obstacle is driving in the right direction, the heading attribute should be within a

valid range. An obstacle heading is the compass direction in which an obstacle is pointing at

a given time, and it is expressed as the angular distance relative to the north. An obstacle’s

heading has a positive value in the counter-clockwise direction, with a maximum of 180◦ (π

or 3.14rad), and a negative value in the clockwise direction, with a minimum of −180◦ (−π

or −3.14rad).

Unlike prior work, we consider a wide range of obstacle-related attributes including type, size,

speed, and mobility. An obstacle can be a VEHICLE, BICYCLE, or a PEDESTRIAN, and the type

of an obstacle dictates the minimum and maximum allowed values of its size and speed. An

obstacle is represented as a polygon, hence, its size is expressed in terms of the width, height,

and length (i.e., ZOk
) of the polygon. The ego car E is similarly represented as a polygon
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based on ZE.

To determine the maximum and minimum dimensions of a pedestrian, we followed the most

recent report published by the National Center for Health Statistics (NCHS) [71], which

provides the most recent anthropometric reference data for children and adults in the United

States. The height of a pedestrian ranges from 0.97m (average height of a child) to 1.87m

(average height of an adult aged 20+). The width (shoulder width) ranges from 0.24m to

0.67m, while the length ranges from 0.2m to 0.45m. The speed of a pedestrian can range

from 4.5km/hr (average walking speed) to 10.5 km/hr (average running speed) [129].

To determine the maximum and minimum dimensions and speed for both bicycles and vehicles,

we followed the size and speed regulations imposed by the Federal Highway Administration

and the US Department of Transportation [91, 90]. The speed of a bicycle can range from

6km/hr to 30 km/hr, while the speed of a vehicle can range from 8km/hr (e.g., parking lots)

to 110km/hr (e.g., highways).

5.4.2 Scenario Generator

Our overarching goal is to create valid and effective driving scenarios that expose AV software

to safety and comfort violations. The Scenario Generator takes as input a set of domain-

specific constraints (Section 5.4.1) and uses a genetic algorithm to maximize a defined set

of fitness functions (representing safety and comfort violations) to guide the search for

problematic scenarios. The genetic algorithm is initialized with a starting population of

tests (i.e., driving scenarios). To evaluate the fitness of tests, scenario representations are

transformed into driving simulations, in which navigation plans are generated based on the

origin and destination of the ego car. Additionally, driving trajectories/plans are computed

for the ego car based on the scenario set-up (e.g., number of obstacles, state of the obstacles,

ego car start and target position, etc.). During the simulation, the driving decisions of the

ego car (e.g., driving maneuvers, stop/yield decisions, acceleration) are recorded by Planning
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Output Recorder at regular intervals to identify safety and comfort violations. A set of values

such as the distance between the ego car and other obstacles, the distance between the ego

car and lane boundaries, the speed of the ego car, the acceleration and deceleration of the

ego car are used to compute the fitness of individuals (Section 5.4.2). These values guide

the genetic algorithm when evolving test cases (i.e., driving scenarios) by recombining and

mutating their attributes (Section 5.4.2). The algorithm continues to execute and evolve test

cases until a user-defined ending condition is met, at that point scenoRITA returns the

final test suite and stops.

Representation.

Figure 5.2(a) illustrates the genetic representation of an individual generated by scenoRITA.

A set of individuals together represent a driving scenario which, in turn, represents a single

test. A test suite in scenoRITA is a set of driving scenarios. An individual is represented

as a vector, where each index in the vector represents a gene. The number of input genes is

fixed, where the 10 genes corresponds to the following 10 attributes of a single obstacle Ok:

IDOk
; the initial position pOk

1 of Ok; the final position pOk
t of Ok at the final timestamp t;

initial heading hOk
1 ; length ZOk

.len; width ZOk
.wid; and height ZOk

.hgt; initial speed sOk
i at

timestamp j; type TOk
; and mobility MOk

. Each gene value can change (e.g., when initialized

or mutated), but it still has to adhere to the valid ranges defined in Section 5.4.1.
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Obs
ID

Obs
Initial

Position

Obs
Final

Position

Obs 
Heading

Obs 
Length

Obs 
width

Obs 
Height

Obs 
Speed

Obs 
Type

Obs
MobilityObstacle  

Individual 1 Individual 2 Individual m…
Scenario 

(Test)

Gene (Obstacle
Attribute)

Obstacle!"#$%&' ∈ [−3.14 … 3.14] Obstacle()*" ∈ {VEHICLE, BICYCLE, PEDESTRIAN}

Population 
(Test Suite) Individual 1 Individual 2 Individual m…

Obs
ID

Obs
Initial

Position

Obs
Final

Position

Obs 
Heading

Obs 
Length

Obs 
width

Obs 
Height

Obs 
Speed

Obs 
Type

Obs
Mobility

Scenario  Gene 1 Gene 2 Gene m…

Obstacle 
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Figure 5.2: Genetic representation of: (a) fully-mutable tests in scenoRITA, and (b)
partially mutable tests generated by state-of-the-art approaches.
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The main contribution of our approach is its ability to represent obstacles as ”individuals”

instead of genes which allow them to be fully-mutable. We use a non-traditional way to relate

the test suite (population) to obstacles (individuals) by introducing an intermediate component

(test) that represents driving scenarios. Figure 5.2(b) shows the genetic representation of

tests other meta-heuristic approaches compared to scenoRITA.

Representing obstacles as individuals allows scenoRITA to alter obstacles’ attributes

and states when applying search operators, hence, allowing obstacles to be fully mutable

throughout the test generation process. Figure 5.3(b) demonstrates scenoRITA’s application

of a crossover operator on two individuals (i.e., obstacles) compared to how related work

recombine their individuals (Figure 5.3(c)). Previous approaches [97, 67, 130], represent

obstacles as genes, resulting in obstacles being partially mutable during recombination and

mutation operators. For example, the crossover operator in AV-Fuzzer [130] does not alter

properties of obstacles, instead it simply swaps two randomly selected obstacles in two

scenarios, Scenario B and Scenario D, with a certain probability. For the remainder of the

chapter, we will use scenoRITA++ and scenoRITA-- to refer to fully mutable and partially

mutable approaches, respectively.

By representing obstacles using individual attributes (e.g., location), as opposed to just as a

gene in the case of scenoRITA--, scenoRITA++ must address the challenge of ensuring

the creation of valid obstacle trajectories. To that end, scenoRITA++ includes logic that

allows it to check whether there is a valid path between the newly-generated start and end

locations of an obstacle. If the recombination operator introduces an invalid path, then

scenoRITA++ generate new locations for an obstacle until a valid one is found. This

process allows scenoRITA++ to represent an obstacle’s individual attributes, such as the

start and end locations, as genes while preventing the invalid genes that may be produced

due to the application of search operators. Our evaluation results in Section 5.5 shows

that scenoRITA++ results in 23.47% more effective and unique violations compared to
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scenoRITA--.

Fitness Evaluation.

In each generation, individuals are assessed for their fitness, with respect to the search

objective, to be selected to pass on their genes. scenoRITA determines the fitness of an

individual by evaluating how close they are in terms of causing safety or comfort violations.

This is measured by calculating an individual i’s fitness using a function fv(i) with respect

to a safety and comfort violation v. Recall from Section 5.1 that scenoRITA considers 5

safety and comfort violations based on the grading metrics defined by Apollo’s developers [19]

and, thus, represents violation constructs and thresholds used by professional AV developers.

Three of these metrics assess driving scenarios for traffic and road safety (collision detection,

speeding detection, and unsafe lane change), while the remaining two metrics assess a rider’s

comfort (fast acceleration and hard braking).

The fitness of an individual i is determined as follows:

F (i) =
(
fcollision(i), fspeed(i), funsafeChange(i), ffastAccl(i), fhardBrake(i)

)
(5.1)

Recall that v ∈ V = {collision, speed, unsafeChange, fastAccl , hardBrake} (Definition 5),

hence, F (i) aims to maximize the number of violations. In the remainder of this section, we

define fv(i) in more detail.

Collision Detection. In the context of collision detection, effective tests are those which

cause the ego car to collide with other obstacles. Therefore, scenoRITA uses as a fitness

function fcollision (Equation 5.2), which rewards tests that cause the ego car to move as close

as possible to other obstacles. Given a simulated scenario with a maximum duration of t, a

set of positions PE for the ego car E, and a set of positions for the kth obstacle in a scenario

94



defined as POk
= (pOk

1 , pOk
2 , ..., pOk

t ), we define fcollision as:

fcollision(i) = min{Dc(p
E
j , p

Ok
j ) | 1 ≤ j ≤ t ∧ pEj ∈ PE ∧ pOk

j ∈ POk
} (5.2)

Dc(p
E, pOk) is the shortest distance between the position of a given obstacle and the ego car

at a given time. fcollision captures the intuition that tests causing the ego car to drive closer

to other obstacles (i.e., have a minimum distance between the ego car and an obstacle) are

more likely to lead to a collision.

Speeding Detection. We use a fitness function fspeed (Equation 5.3), which rewards tests

that cause the ego car to exceed the speed limit of the current lane. Given a simulated

scenario with a maximum duration t, the speed profile SE of the ego car E, and a set of

speed limits imposed by lanes of which the ego car traversed SL, we define fspeed as:

fspeed(i) = min{Ds(s
l
j, s

E
j ) | 1 ≤ j ≤ t ∧ sEj ∈ SE ∧ slj ∈ SL} (5.3)

sEj and slj represent the ego car speed and the speed limit of the lane in which the ego car is

travelling at timestamp j, respectively. Furthermore, Ds(s
l, sE) is the difference between the

speed limit imposed by a given lane and the current speed of the ego car. fspeed captures the

intuition that as the ego car approaches the speed limit of a given lane it is more likely to

result in speed violations.

Unsafe Lane Change. A lane change is defined as a driving maneuver that moves a vehicle

from one lane to another, where both lanes have the same direction of travel. We primarily

focus on the duration the ego car spends travelling at the boundary of two lanes while

changing lanes. We define a safe lane-change duration as δsafe. We define a fitness function

funsafeChange (Equation 5.4), which rewards tests that cause the ego car to spend more than
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δsafe driving at the boundary of two lanes. Given a simulated scenario with lane-change

durations CE for ego car E, and a safe lane-change duration δsafe, we define funsafeChange as:

funsafeChange(i) =


max(cEj ) Du(pEj , p

l
j) = 0 | 1 ≤ j ≤ t

min(Du(pEj , p
l
j)) otherwise

(5.4)

Du(pEj , p
l
j) is the shortest distance between the position of the ego car and a lane boundary

at time j. Du(pEj , p
l
j) = 0 indicates that the ego car is driving at the boundary of two

lanes, while cEj ∈ CE represents the duration an ego car spends driving between two lanes.

funsafeChange captures the intuition that tests causing the ego car to spend longer periods of

time driving on lane boundaries are more likely to result in an unsafe lane change violation.

If the ego car is not driving on lane boundaries (i.e., when Du(pE, pl) 6= 0), then funsafeChange

rewards tests that cause the ego car to drive as close as possible to lane boundaries (i.e.,

minimizes the distance between the ego car and lane boundaries).

Fast Acceleration. We use a fitness function ffastAccl (Equation 5.5), which rewards tests

that cause the ego car to accelerate too fast, potentially inducing motion sickness. Given a

simulated scenario with a maximum duration t and the acceleration profile AE for the ego

car E, we define ffastAccl as:

ffastAccl(i) = max{aEj | 1 ≤ j ≤ t ∧ aEj ∈ AE} (5.5)

aEj ∈ AE represents the acceleration of the ego car E at timestamp j. ffastaccl aims to

maximize the acceleration of E to induce a motion sickness violation.

Hard Braking. We use a fitness function fhardBrake (Equation 5.6), which rewards tests that

cause the ego car to brake too hard (i.e., brake suddenly in a manner that induces motion

sickness). Given a simulated scenario with a maximum duration t, the acceleration profile for
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the ego car defined as AE, we define fhardBrake as:

fhardBrake(i) = min{aEj | 1 ≤ j ≤ t ∧ aEj ∈ AE} (5.6)

aEj ∈ AE represents the deceleration of the ego car. fhardBrake captures the intuition that

tests which cause the ego car to decelerate too fast can result in hard braking.

Search Operators.

scenoRITA evolves driving scenarios by applying search operators, which mutate and

recombine the scenario attributes according to certain probabilities. In this section, we

provide a detailed explanation of these search operators.

Selection. scenoRITA uses the Non-dominated Sorting Genetic Algorithm selection

(NSGA-II [77]) for breeding the next generation. NSGA-II is an effective algorithm used for

solving multi-objective optimization problems (i.e., problems with multiple conflicting fitness

functions) and further aims to maintain diversity of individuals.

NSGA-II starts by sorting a set of individuals based on a non-dominated order. In a multi-

objective problem, an individual i1 is said to dominate another individual i2 if (1) i1 is no

worse than i2 for all objective functions (e.g., collision detection, speeding detection, etc.),

and (2) i1 is strictly better than i2 in at least one objective. Once the non-dominated sort is

complete, a crowding distance is assigned to every individual in a given scenario. A crowding

distance measures how close individuals are to each other; a large average crowding distance

will result in better diversity in the population. Once the crowding distance is assigned, parent

individuals are selected to produce offspring based on the fitness and crowding distance; an

individual is selected if its order rank is less than the other, or if the crowding distance is

greater than the other. Only the best N individuals are selected, where N is the population

size.
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The intuition behind using NSGA-II selection is threefold: (1) it uses an elitist principle, i.e.,

the most elite individuals in a scenario are given the opportunity to be reproduced so their

genes can be passed on to the next generation; (2) it uses an explicit diversity-preserving

mechanism (i.e., crowding distance), which maintains the diversity of driving scenarios in

scenoRITA; and (3) it emphasizes the non-dominated solutions.

Scenario D
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Figure 5.3: (a) two individuals before a crossover, (b) the same individuals after a crossover
for scenoRITA, and (c) how crossover is applied in prior work [130]

Crossover. This operator selects two individuals from a given scenario and creates superior

offspring by mixing their parents’ genetic makeup. scenoRITA uses a two-point crossover

strategy, where two crossover points are picked randomly from the mating individuals (i.e.,

parents) and the genes between the two points are swapped. Figure 5.3 illustrates the

application of the two-point crossover operator on two sample individuals; the two individuals

are modified in place and both keep their original length. We opt for the two-point crossover

strategy since it maintains the length of individuals, in addition to increasing the extent of
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disruption in their original values.
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Figure 5.4: An example of a crossover that produced individuals with invalid attributes
(highlighted in red)

Crossover may produce invalid scenario configurations. For example, after crossover of a

vehicle’s attributes with those of a pedestrian (Figure 5.4), some obstacle attributes produced

in the offspring may violate the speed and size constraints in Section 5.4.1, such as having a

pedestrian’s speed changed from 10 km/hr (a valid running speed for a pedestrian) to 50

km/hr (an unrealistic speed for a pedestrian). When such a case is detected, scenoRITA

replaces the violated obstacle attributes with randomly generated values that fall within the

valid ranges described in Section 5.4.1.

Mutation. scenoRITA applies the mutation operator to driving-scenarios in two forms:

(1) it mutates individuals in a single scenario; and (2) it applies mutation operators across

scenarios. The first type of mutation, randomly replaces genes in individuals with new ones,

where the newly generated values follow the constraints defined in Section 5.4.1. For example,

the mutation operator can change the speed of a vehicle from 35 km/hr to 50 km/hr. This

type of mutation does not change the number of individuals in a single scenario. The second
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type of mutation aims to diversify the number of individuals in a given scenario SA
c by (1)

adding the fittest obstacle from another randomly selected scenario SB
c to SA

c , or (2) removing

the least fit individual in SA
c .

Figure 5.5(b) shows the addition of a new individual (highlighted in green) to Scenario A;

while Figure 5.5(c) shows the removal of the least fit individual (highlighted in yellow) from

Scenario A.

Scenario A

23368 … … … PEDESTRIAN

Parent

(a)

(b)

Offspring

1023 … … … VEHICLE

Scenario A

23368 … … … PEDESTRIAN

512 … … … BICYCLE

Scenario A

23368 … … … PEDESTRIAN

1023 … … … VEHICLE

512 … … … BICYCLE

Scenario A

23368 … … … PEDESTRIAN

1023 … … … VEHICLE

512 … … … BICYCLE

(c)

23368 x: 586861,
y: 4141617

x: 586054,
y: 4140880

2.4 rad 5.39 m 2.15 m 4.17 m 35 km/hr VEHICLE Mobile

23368 x: 586861,
y: 4141617

x: 586054,
y: 4140880

2.4 rad 5.39 m 2.15 m 4.17 m 50 km/hr VEHICLE Mobile

Obstacle ID
Obstacle start 

and end position
Obstacle
heading

Obstacle size
(len, wid,hgt)

Obstacle 
speed

Obstacle 
type

Figure 5.5: (a) mutating a gene in a single individual, (b) mutating a scenario by adding
a fit individual from another scenario, and (c) mutating a scenario by removing the worst
individual.

5.4.3 Generated Scenarios Player

Converting the genotypic representation of tests to driving simulations is the key task of

Generated Scenarios Player. Our approach uses code templates to generate the necessary

simulation code, which instantiates the obstacles in the driving simulation, places the ego

car in the starting position, and sets the target position of the ego car. Generated Scenarios

Player ensures that the ego car does not start in the middle of an intersection where it is

too difficult for the ego car to accelerate fast enough to avoid oncoming traffic. Additionally,

starting from and having to accelerate from zero in an intersection causes unrealistic unsafe

lane changes because an intersection has multiple lanes. Once the simulation code is ready,
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Generated Scenarios Player starts the driving simulator, where the planning module computes

the driving trajectory taking into consideration various aspects of the vehicle and elements

of its environment (e.g., distance to lane center, smoothness of the trajectory).

5.4.4 Planning Output Recorder

The behavior of the ego car in the driving simulation (Section 5.4.3) is recorded by the

Planning Output Recorder, which stores the ego car’s driving behaviours in a record file. The

recorded output enables Grading Metrics Checker to identify and report the occurrences of

safety and comfort violations. These violations are checked when the driving scenario ends;

hence, it does not halt the driving simulation after observing the first violation; instead, tests

continue until the end of the scenario. This approach balances the cost of running expensive

simulations with the benefit of collecting as many violations as possible. scenoRITA uses

the output records for reporting violations, and evaluating the fitness of tests which guides the

evolution process in Section 5.4.2. Additionally, stored records enable us to replay scenarios

with reported violations after scenoRITA ends; this allows us to verify the correctness of

generated tests (Section 5.5.2), and to closely analyze them along with their underlying causes.

We make these record files available for researchers and practitioners to reuse, replicate, or

analyze them in future work [1].

5.4.5 Grading Metrics Checker

Previous work [130, 97, 96, 60, 47, 67, 184] considers a limited number of test oracles, mainly

consisting of one test oracle per work (either collision detection or lane keeping). The limited

use of test oracles found in such techniques ignores important safety and comfort issues (e.g.,

driving between lanes for too long or causing motion sickness) and provides significantly

less insight into the testing of industry-grade AVs. Unlike previous work, we consider 5 test

oracles based on grading metrics defined by Apollo’s developers [19]. These grading metrics

test different aspects of AVs, ranging from traffic and road safety to a rider’s comfort. In the
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remainder of this section, we describe each grading metric in detail along with the definition

of its corresponding test oracle.

The Collision Detection oracle checks if the ego car reaches its final destination without

colliding with other obstacles. The test oracle’s passing condition (i.e., not resulting in a

violation) for collision detection is defined as follows:

∀
min avoid≤j≤t

(Dc(p
E
j , p

Ok
j ) 6= 0 ∨ (Dc(p

E
j , p

Ok
j ) ≤ 0 | sEj ≤ thmin speed ∧ collisiontype = “rear-end”))

(5.7)

where t is the total duration of the scenario, and Dc(p
E
j , p

Ok
j ) is a function that calculates

the shortest distance between the position of the ego car pEj and the position of the kth

obstacle pOk
j at timestamp j. The distance is measured, in meters, between the closest two

points between the ego car’s polygon and an obstacle polygon. If function Dc returns a

non-zero distance in meters between the ego car and any other obstacle, this indicates a

passing condition, i.e., a collision avoidance. If a collision does occur (i.e., Dc returns a

distance equal to or less than zero), we exclude rear-end collisions when sEj ≤ thmin speed.

This design effectively eliminates cases where the ego car cannot avoid being hit from behind

when driving at a slow speed (e.g., when stopping or stopped at a red light). Otherwise, an

excessive amount of avoidable collisions are detected as violations, which the ego car cannot

be reasonably responsible for. Lastly, we do not detect collisions until a specified time, i.e.,

min avoid, which is the minimum amount of time the ego car needs to avoid a collision.

min avoid is set to 3 seconds as we determined experimentally.

The Speeding Detection oracle checks if the ego car reaches its final destination without

exceeding the speed limit. The test oracle’s passing condition (i.e., not resulting in a violation)
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for speeding detection is defined as follows:

∀
1≤j≤t

Ds(s
l
j, s

E
j ) ≤ σsafe (5.8)

where t is the total duration of the scenario, and Ds(s
l
j, s

E
j ) is a function that calculates

the difference between the ego car’s speed sEj and the speed limit of the current lane slj at

timestamp j. σsafe represents the allowed threshold for an ego car to drive above the current

speed limit. We allow the ego car to exceed the current speed limit by a maximum of 8

km/hr, anything above that is considered a speed violation. We allow some degree of driving

above the speed limit, since it can be unsafe for the ego car to drive below or at the speed

limit in certain conditions [22] (e.g., driving at the speed limit when other cars are going

much faster can be dangerous).

The Unsafe Lane-Change oracle checks if the ego car reaches its final destination without

exceeding a time limit δsafe when changing lanes. Recall from Section 5.4.2, that δsafe

represents a safe lane-change duration, which averages at 5 seconds [92]. The test oracle’s

passing condition (i.e., not resulting in a violation) for unsafe lane change is defined as follows:

∀
1≤j≤t

cEj ≤ δsafe (5.9)

where t is the total duration of the scenario, and cEj represents the duration an ego car spends

driving between two lanes at timestamp j. If cEj at a given time exceeds δsafe, this indicates

the occurrence of an unsafe lane change.

The Fast Acceleration oracle checks if the ego car reaches its final destination without

causing a rider’s discomfort by accelerating too fast. The test oracle’s passing condition for
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fast acceleration is defined as follows:

∀
1≤j≤t

aEj ≤ αfast (5.10)

where t is the total duration of the scenario, and aEj is the acceleration of the ego car at

timestamp j. αfast represents the maximum acceleration allowed for an ego car before it

violates a rider’s comfort. We allow the ego car to accelerate to a maximum of 4 m/s2, a

threshold utilized in prior work [59] and set by Apollo developers [19].

The Hard Braking oracle checks if the ego car reaches its final destination without causing

a rider’s discomfort by braking suddenly and excessively. The test oracle’s passing condition

for hard braking is defined as follows:

∀
1≤j≤t

aEj ≥ αhard (5.11)

where t is the total duration of the scenario, and aEj is the acceleration of the ego car at

timestamp j. αhard represents the minimum acceleration allowed for an ego car before it

violates a rider’s comfort. We allow the ego car to decelerate to a minimum of -4 m/s2, a

threshold used in prior work [59] and set by Apollo’s developers [19].

5.4.6 Duplicate Violations Detector

One of the challenges of scenario-based testing is the possibility of producing driving scenarios

with similar violations. To improve the effectiveness of test generation, the Duplicate

Violations Detector automates the process of identifying and eliminating duplicate violations;

it achieves this by using an unsupervised clustering technique [86] to group driving scenarios,

with similar violations, according to specific features.

The set of features used by the clustering algorithm are extracted from the recorded files

(Section 5.4.4). For a collision violation, the Duplicate Violations Detector extracts 8 features

104



at time tc, where tc indicates the first timestamp at which a collision occurs. These features

include the location of the ego car pEtc ; ego car’s speed sEtc ; ego car’s heading hEtc ; collision
type,

which indicates where a collision occurs in respect to the ego car (e.g., “rear-end”, “front”,

“left”, etc.); the type of the obstacle (Ok) that collided with the ego car TOk
; the obstacle’s

size ZOk
; obstacle’s speed at collision time sOk

tc ; and obstacle’s heading hOk
tc .

For the remaining violations, we extract their respective features at times ts, tu, tf , and th,

which correspond to the first timestamp a speeding, unsafe lane change, fast accelera-

tion, and hard braking occurs, respectively. These features include the ego car E’s location

at a violation time pE, the speed sE of E, the heading hE of E, the length of time for which

a violation lasts (duration), and the violation value.

Table 5.3: The set of features, selected for each violation type, and used by the Duplicate
Violation Detector to cluster similar violations together.

Grading Metric Extracted Features

Collision Detection {pEtc , s
E
tc
, hE

tc
, collisiontype, TOk

, ZOk
, s

Ok
tc

, h
Ok
tc
}

Speeding Detection {pEts , s
E
ts
, hE

ts
, duration, valuets}

Unsafe LaneChange {pEtu , s
E
tu

, hE
tu

, durationtu}

Fast Acceleration {pEtf , s
E
tf
, hE

tf
, duration, valuetf }

Hard Braking {pEth , s
E
th
, hE

th
, duration, valueth}

Given the extracted representation of driving violations in Table 5.3, Duplicate Violations

Detector clusters driving scenarios with similar violations into groups. For the clustering

itself, we chose DBSCAN (i.e., density-based spatial clustering of applications with noise) [86],

since it is more suited for spatial data. We also experimented with k-means, which resulted in

clusters of undesired structure and quality. We avoided the use of hierarchical clustering [115]

due to it computationally expensive nature.

Existing work has suggested using clustering techniques to automatically categorize traffic

scenarios or driving behaviours [105, 136, 176, 125, 182]. These approaches are geared

towards clustering real-time, multi-trajectory, and multivariate time series data into similar
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driving encounters or scenario types. Unlike these techniques, scenoRITA aims to eliminate

duplicate violations by clustering scenarios with violations. Hence, Duplicate Violations

Detector only requires a carefully-selected, smaller number of features involving just a few

time frames in a scenario.

(a) (c)(b)
Figure 5.6: An illustration of one of five supported driving scenarios in AutoFuzz. (a) The ego
car (in red) starts at a fixed location then turns left at a signalized junction, while another
vehicle (in blue) crosses the intersection from the other side and a pedestrian crosses the
street. (b) The ego car turns left and collides with an incoming car (in blue). (c) The ego car
turns left and collides with a pedestrian crossing the street.

Duplicate elimination in AsFault [97] is based on similar road segments, where the similarity

between roads is calculated using the Jaccard index. In AV-Fuzzer [130], duplicate elimination

is based only on obstacles’ trajectories, where the similarity between trajectories is calculated

using the Euclidean distance.

AutoFuzz [184] detects duplicate traffic violations using a learning-based seed selection and

mutation strategy. Recall from Table 5.1 that AutoFuzz generates a limited number of

scenario types (maximum of 5). The paper claims many violations as unique. However, after

manual inspection of those violations, it is evident that they are, in fact, extremely similar,

but are detected as unique by setting a low threshold for uniqueness in their corresponding

experiments [184]. For example, the ego car in one of the supported scenarios by AutoFuzz

(depicted in Figure 5.6(a)) collides with either incoming traffic (i.e., either a car or truck)
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as shown in Figure 5.6(b), or with a pedestrian crossing the street Figure 5.6(c). Due

to (1) the trajectories for both the ego car and obstacles in an AutoFuzz scenario remain

fixed throughout evolution and (2) collisions occur approximately in the same location (e.g.,

either with incoming traffic in the middle of the intersection or the pedestrian crossing the

street), AutoFuzz counts these slight changes in violations found in a scenario as unique from

each other. For example, up to hundreds of slight variations of Figure 5.6(b) are counted

as different violations, similarly for Figure 5.6(c), which results in a large overcounting of

unique violations. Note that AutoFuzz is, at the point of this chapter’s writing, not published

in a peer-reviewed venue. However, it is the only original implementation of an AV testing

technique that works on a production-grade AV system.

5.5 Evaluation

In order to empirically evaluate scenoRITA, and to understand how its configuration affects

the quality of generated tests, we investigate the following research questions:

RQ1: How accurate are the driving scenarios generated by scenoRITA?

RQ2: How effective are scenoRITA’s generated driving scenarios at exposing AV software

to safety and comfort violations?

RQ3: What is the runtime efficiency of scenoRITA’s generated tests and oracles?

RQ4: To what extent does scenoRITA eliminate duplicate violations?

5.5.1 Experiment Settings

Our extensive evaluation consists of executing 31,413 virtual tests on Baidu Apollo. For

this reason, we conducted our experiments on three machines: 4 AMD EPYC 7551 32-Core

Processor (512GB of RAM), 1 AMD EPYC 7551 32-Core Processor (256GB of RAM), and 1

AMD Opteron 64-core Processor 6376 (256GB RAM) all running Ubuntu 18.04.5. In the

current implementation of scenoRITA, we focus our efforts on testing Baidu Apollo 6.0 [15],
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an open-source and production-grade AV software system that supports a wide variety of

driving scenarios and explicitly aims for both safety and rider’s comfort.

We use Apollo’s simulation feature, Sim-Control, to simulate driving scenarios. Sim-Control[42]

does not simulate the control of the ego car; instead, the ego car acts on the planning results.

Borregas Ave. San Mateo Sunnyvale 

Figure 5.7: Three HD maps used by scenoRITA: Borregas Ave is a small map of a city
block in Sunnyvale with 60 lanes and a total length of 3 km; San Mateo is a medium map
with 1,305 lanes and a total length of 24 km; Sunnyvale is a large map consisting of 3061
lanes, with a total length of 107 km.

We configured scenoRITA to generate driving scenarios for 3 high-definition maps of

cities/street blocks located in California: Sunnyvale is a large map consisting of 3,061 lanes,

with a total length of 107 km; San Mateo is a medium map with 1,305 lanes and a total

length of 24 km; and Borregas Ave, which is a small map of a city block in Sunnyvale with 60

lanes and a total length of 3 km. The three maps consist of various types of road curvature

(e.g., straight, curved, intersections) and different types of lanes (e.g., highways, city roads,

bike lanes, etc.). California is at the center of AV research, and one of the main deployment
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grounds for AV; Waymo, GM Cruise, and 60 other companies have obtained commercial

licenses for testing AVs in CA [40]. As a result, these maps are highly representative of

real-world AV driving scenarios with a wide variety of diverse environmental elements.

We believe that bugs in AV software can be exposed not only by placing certain obstacles

with certain attributes near the ego car, but also generating tests that cover as many different

parts of the map, and subsequently different road setup (intersection, u-turn, multi-lane

roads, etc.), as possible. For example, A large-scale study was conducted on 60,000 collisions

in Orange County between 2010 and 2018, to determine which intersections pose the most

risk for drivers in Orange County [43]. This study ranked certain intersections of cities in

Orange County based on a Crash Risk Index (CRI) score–a composite score that weighs the

volume of collisions and severity of injuries. The study found out that certain intersections,

such as Alicia Parkway and Jeronimo Road–the only Mission Viejo crossing to make the

list–saw the most injuries and the third-highest number of crashes during the study period.

Similarly, in October 2021, a Pony.ai vehicle operating in autonomous mode hit a street

sign on a median in Fremont, California, prompting California to suspend the company’s

driverless testing permit; Pony.ai said that the crash occurred less than 2.5 seconds after the

automated driving system shut down. It said “in very rare circumstances, a planning system

diagnostic check could generate a false positive indication of a geolocation mismatch” [46].

These studies and incidents further emphasize the need to consider as many different parts

of the map as possible, as different road setups might expose more bugs or result in more

violations.Figure 5.7 showcases the scale and degree of complexity between the three maps

used in our experiments. We further discussed in Section 5.5.3 the impact of each map on

the found violations, and how our fully-mutable version of scenoRITA was more effective

in finding violations, especially when running tests on larger and more complex maps.

We did not compare directly against implementations of previous work [130, 184, 97, 67] for

two main reasons: (1) scenoRITA encodes 5 types of violations in its fitness function while
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prior approaches encode a maximum of one violation type per work. To fairly compare against

previous approaches, we would have to make significant changes to them to account for all five

violation types. (2) Prior work was either conducted on unavailable or non-production-grade

AV software. Unlike these approaches, we implemented scenoRITA to generate tests for

open-source, production-grade AV software.

To evaluate the effectiveness of our full approach (scenoRITA++), we compare it with a

a partially mutable representation of scenoRITA (scenoRITA--) and a random version

of our approach that leverages scenoRITA’s domain-specific constraints and randomly

generates obstacles (Random). All three representations of scenoRITA contain the same

components described in Figure 5.1, except for the Scenario Generator, which dictates how

driving scenarios are generated. scenoRITA++ and scenoRITA-- use a genetic algorithm to

guide the test generation by maximizing unique violations. While scenoRITA++ represents

obstacles as individuals allowing them to be fully mutable, scenoRITA-- represents obstacles

as genes, resulting in them being partially mutable. Both scenoRITA++ and scenoRITA--

use the same search operators algorithms described in Section 5.4.2. The Scenario Generator

in Random does not contain any genetic algorithm, and it produces driving scenarios by

randomly generating obstacles.

We evolved populations of 50 scenarios per generation, each with a minimum of 1 obstacle per

scenario and a maximum of 70 obstacles. We configured the maximum scenario duration to

be 30 seconds and stopped scenario generation after 12 hours. We used the crossover operator

with a probability of 0.8 and mutated single individuals with a probability of 0.2. Mutating

a scenario by either adding a new obstacle from another scenario or removing an obstacle

was performed with a probability of 0.1 each. we followed the guidelines in [55, 54]—which

suggests that standard parameter settings are usually recommended—leading us to use default

settings in DEAP-1.3 [94], the framework used in our search-based implementation. We run

each representation (scenoRITA++, scenoRITA-- and Random) on all maps (Borregas,
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San Mateo and Sunnyvale), and repeated each experiment 5 times resulting in a total of 45

experiments and 540 hours of test executions.

5.5.2 RQ1: Accuracy of Generated Scenarios

We manually verify scenoRITA’s accuracy since it is not possible to verify it otherwise, due

to the fact that the tests provided by Apollo’s interfaces only check whether the configuration

of modules are correct. Moreover, there is no available ground truth that enables us to evaluate

the accuracy of our generated scenarios. To that end, we utilize Apollo Dreamview [12], a

web-based application that visualizes the ego car’s driving behaviour. Dreamview’s interface

allows users to view the current behaviour of the ego car along with surrounding obstacles

(i.e., pedestrians, bikes, and cars), the ego car’s speed in km/h and its acceleration/braking

percentage (at the top-right corner of the screen), information about the lanes (i.e., speed

limit imposed by lanes), etc.

Recall from Section 5.4.4, that the Planning Output Recorder is responsible for storing the ego

car’s driving behaviours in record files, that can be replayed on Dreamview. Furthermore, the

Grading Metrics Checker (Section 5.4.5)—while evaluating scenarios for safety and comfort

violations—collects some metadata related to such violations. For example, if a collision is

reported for a scenario, we collect information related to the obstacle that collided with the

ego car (i.e., TOk
and IDOk

), the type of collision (i.e., rear-end, left, right), the location of

the collision on the map, etc. To this end, three of the authors painstakingly and carefully

evaluated the accuracy of generated scenarios by (1) replaying these scenarios on Dreamview

and (2) comparing any observed missing or existing violations (e.g., whether the ego car

collided with obstacle o in lane l, or if the speed of the ego car exceeded the speed limit

imposed by a lane) with those reported by the Grading Metrics checker.

We verify the accuracy (missing or existing violations) of 4,426 out of 19,247 (i.e. 23%) of all

generated scenarios. Since the manual verification takes 1.5-2 minutes per scenario, the total
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At time: 0 seconds (start of the scenario) At time: 7 seconds (``yield to object’’ issued)

At time: 10 seconds (hard braking) At time: 11 seconds (collision)
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Truck
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Figure 5.8: An example of one scenario generated by scenoRITA with two reported
violations: collision and hard braking. This image is obtained from Dreamview, the visual
simulator of Apollo.

time to verify 23% of all generated scenarios is 135 hours. Due to the time-consuming nature

of manually verifying the accuracy of generated scenarios on Dreamview, we randomly sample

a total of 4,426 out of 19,247 reported violations (23%), and visualize them on Dreamview

to verify their correctness. To keep our sample representative of all violations, we select

sample scenarios with (i) a single violation (e.g., collision only), (ii) multiple violations (up

to 4 per scenario), (iii) different combinations of violations per scenario (e.g., collision and

speed, collision and hard braking), and (iv) scenarios selected from different times during the
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test generation process (i.e., scenarios were selected from the first few hours, after 6 hours,

and the last few hours). All of the scenarios in our sample are accurate, i.e., the reported

violations are consistent with the violations observed on Dreamview. Details of the verified

scenarios are available in [1]. As a result, we find that:

Finding 1: Our manual verification of 23% of reported violations show that scenoRITA

is able to generate scenarios with highly accurate safety and comfort violations.

Table 5.4: The number of all violations (All Viol.) reported by scenoRITA++, sceno-
RITA--, and Random, along with the total number of unique violations (Unique Viol.), and
the percentage of duplicate violations eliminated (Elim. (%)). We highlight cells with the
best reported results in grey.

scenoRITA++ scenoRITA-- Random

All
Viol.

Uniq.
Viol.

Elim.
(%)

All
Viol.

Uniq.
Viol.

Elim.
(%)

All
Viol.

Uniq.
Viol.

Elim.
(%)

Collision 411 386 6.08% 328 246 25.00% 305 264 13.44%

Speed 25 21 16.00% 24 18 25.00% 27 18 33.33%

Unsafe
Lane
Change

497 291 41.45% 506 275 45.65% 509 269 47.15%

FastAccl 212 132 37.74% 183 109 40.44% 188 109 42.02%

HardBrake 223 196 12.11% 217 183 15.67% 196 166 15.31%

Total Viol. 1368 1,026 25.00% 1258 831 33.94% 1225 826 32.57%

5.5.3 RQ2: Effectiveness at Producing Scenarios with Safety and

Comfort Violations

RQ2 investigates whether (scenoRITA++) leads to more reported violations, compared

to random search (Random) and a partially-mutable representation (scenoRITA--). In

conducting our evaluation of this research question, we followed the guidelines in [54] for

comparing scenoRITA++ against both scenoRITA-- and Random. Hence, we performed

two statistical tests: 1) Mann-Whitney U-test p-values to determine statistical differences, and

2) Vargha–Delaney’s Â12 index [170] to determine the effect size. The results of these tests,

in our experiments, are interpreted as follows: If Mann-Whitney U-test produces p ≤ 0.05,

this indicates that there is a significant difference between the quality of solutions provided

by scenoRITA++ and scenoRITA-- or Random. The Â12 statistical test measures how
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often, on average, one approach outperforms another; if Â12 = 0.5, then the two approaches

achieve equal performance; if Â12 > 0.5, then the first approach is better; otherwise, the first

approach is worse. The closer Â12 is to 0.5, the smaller the difference between the techniques;

the further Â12 is from 0.5, the larger the difference.

Table 5.4 and Figure 5.9 summarizes the number of unique violations found, by each

representation, for all maps. From Table 5.4, we observe that scenoRITA++ found, on

average, a total of 1,026 unique violations in all maps over the course of our experiments.

Furthermore, we find that scenoRITA++ discovered 23.47% more violations compared to

scenoRITA-- (Â12 = 0.84, p < 0.05), and 24.21% more violations compared to Random

(Â12 = 0.89, p < 0.05).

Table 5.5: The Average number of all violations (All Viol.) reported by three testing techniques
(Test Tech.): scenoRITA++, scenoRITA-- and Random on three maps (Borregas, San
Mateo, and Sunnyvale), along with the average, minimum, and maximum number of unique
violations (Unique Viol.), and the percentage of duplicate violations eliminated (Elim. (%)).
We highlight cells with the best reported results in grey.

M
a
p Test

Tech.

Total Violations Collision Speeding Unsafe Lane Change Fast Acceleration Hard Braking

All
Viol.

Unique Viol.
Elim.
(%)

All
Viol.

Unique Viol.
Elim.
(%)

All
Viol.

Unique Viol.
Elim.
(%)

All
Viol.

Unique Viol.
Elim.
(%)

All
Viol.

Unique Viol.
Elim.
(%)

All
Viol.

Unique Viol.
Elim.
(%)

Avg.Min.Max. Avg.Min.Max. Avg.Min.Max. Avg.Min.Max. Avg.Min.Max. Avg.Min.Max.

B
o
r
r
e
g
a
s

sceno-
RITA++

524 363 336 411 30.73% 196 180 150 198 8.16% 0 0 0 0 0.00% 110 51 33 93 53.64% 137 61 41 90 55.47% 81 71 51 78 12.35%

sceno-
RITA--

520 296 254 390 43.08% 185 122 117 128 34.05% 0 0 0 0 0.00% 122 48 27 106 60.66% 124 57 47 84 54.03% 89 69 37 83 22.47%

Random 508 318 287 345 37.40% 183 148 121 163 19.13% 0 0 0 0 0.00% 116 51 29 93 56.03% 129 53 42 63 58.91% 80 66 48 76 17.50%

S
a
n

M
a
te

o

sceno-
RITA++

377 313 257 358 16.98% 120 113 98 126 5.83% 18 14 10 17 22.22% 125 84 60 123 32.80% 50 49 39 57 2.00% 64 53 43 67 17.19%

sceno-
RITA--

316 237 226 252 25.00% 85 69 57 79 18.82% 14 10 5 15 28.57% 122 76 64 98 37.50% 37 34 23 42 8.11% 58 48 40 62 17.24%

Random 300 225 212 240 25.00% 73 68 63 78 6.85% 16 10 9 12 37.70% 123 72 48 81 41.46% 37 36 24 44 2.70% 51 39 33 43 23.53%

S
u
n
n
y
v
a
le

sceno-
RITA++

467 350 319 380 25.05% 95 93 74 106 2.11% 7 7 5 12 0.00% 262 156 115 183 40.46% 25 22 17 30 12.00% 78 72 61 85 7.69%

sceno-
RITA--

422 298 227 357 29.38% 58 55 45 70 5.17% 10 8 7 11 20.00% 262 151 96 181 42.37% 22 18 14 24 18.18% 70 66 57 83 5.71%

Random 417 283 253 304 32.13% 49 48 41 52 2.04% 11 8 5 13 27.27% 270 146 116 160 45.93% 22 20 15 24 9.09% 65 61 56 70 6.15%

For the collision violation, scenoRITA++ finds, on average, 386 collisions: a 56.91% increase
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Figure 5.9: The total number of violations in tests reported by scenoRITA++, scenoRITA--,
and Random

compared to scenoRITA-- (Â12 = 0.80), and a 46.21% increase compared to Random

(Â12 = 0.77). We observe a similar trend with the fast acceleration oracle, where sceno-

RITA++ reports 21.10% more fast acceleration violations compared to each scenoRITA--

and Random, respectively (Â12 = 0.63 and Â12 = 0.61).

scenoRITA++ reports a 16.67% increase in speeding violations, on average, compared to

scenoRITA-- and Random. Furthermore, our results using the Â12 measure, indicate that

scenoRITA++ statistically outperforms the latter approaches: For 57% and 58% of the

time, scenoRITA++ reports more speed violations compared to Random (Â12 = 0.57) and

scenoRITA-- (Â12 = 0.58). Similarly, scenoRITA++ finds 13 more hard-braking violations

compared to scenoRITA--, and 30 more violations compared to Random; scenoRITA++

reports more hard-braking violations in 59% and 71% of the time compared to the other

approaches. As for unsafe lane change, scenoRITA++ finds, on average, 291 violations; a

5.82% increase compared to scenoRITA-- (Â12 = 0.54), and a 8.18% compared to Random
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(Â12 = 0.54).

The collision violations obtained with scenoRITA++ were significantly higher than sceno-

RITA-- and Random, compared to the other violations (i.e., speeding, unsafe lane change

and hard braking). This result is likely due to the fact that the collision detection encodes

obstacles’ behaviours in its fitness function (Section 5.4.2). One potential way to improve

the reported violations for other oracles can be achieved by encoding more elements into

the fitness function of other violations. For example, in the case of speed detection, we can

encode—into its fitness function—the number of times an ego car was close to violating

a lane’s speed limit. In order to add more complexity to the fitness evaluation of these

violations, we need a better understanding of what causes a specific violation to occur more

often (i.e., is it affected by more or less traffic, specific road curvatures, the existence or

absence of traffic lights and stops signs, etc).

You may notice that there’s a small difference in the reported results between scenoRITA--

and Random. We belive the reason can be attributed to the powerful nature of random

search. As it has been shown in prior work [72], random exploration can achieve higher

coverage compared to sophisticated strategies in other tools.

Table 5.5 shows an exhaustive list of unique violations associated with each map. From

this table we observe that scenoRITA++ found 47.54% and 21.62% more collisions, in

Borregas Avenue, compared to scenoRITA-- and Random, respectively. For San Mateo,

scenoRITA++ found 63.77% and 66.18% more collisions compared to scenoRITA-- and

Random; while in Sunnyvale, it found 69.09% and 93.75% more collision violations compared

to the other techniques. Notice that the number of collision violations generated by each

testing technique is negatively correlated with the size of the map. i.e., these techniques

generate more violations in the smallest/simplest map (Borregas Ave) compared to the largest

and most complex map (Sunnyvale). However, scenoRITA++ performs particularly better

in Sunnyvale compared to the other techniques (i.e., it generates 69.09% and 93.75% more
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collisions compared to scenoRITA-- and Random). We believe that the mutable gene

representation in scenoRITA++ enables it to outperform the other techniques, especially

when running them on larger and more complex maps. As shown in Figure 5.7, Sunnyvale

contains the largest number of lanes and the most complex and diverse roads (e.g., single- or

multi-lane roads with either same or opposite traffic direction, U-turns, roundabouts, cross

or T intersections, merged lanes, etc.). Borregas on the other hand, contains a maximum of

two intersections with straight single-lane roads. No speeding violations were reported by

any testing technique in Borregas Ave. We believe that the simplicity of driving scenarios

generated in Borregas (i.e., the fact that, most of the time, the ego car drives on a single-lane

straight road) prevented these techniques from finding speeding violations. Overall, we

found that the number of speeding violations reported by any technique in any map, was

significantly smaller compared to other violations. One reason might be that Apollo’s current

implementation sets a very strict threshold for the maximum speed that an ego car can

exceed, resulting in the ego car driving at a relatively slow speed most of the time.

Similarly, more unsafe lane change violations were reported, by these techniques, in Sunnyvale

compared to Borregas. As mentioned earlier, Sunnyvale contains multi-lane roads with many

turns and intersections that allows the ego car to perform more diverse driving maneuvers

leading to more unsafe lane change violations. scenoRITA++ generates more unsafe lane

change violations compared to scenoRITA-- and Random in each map. From these results,

we find that:

Finding 2: In our experiments, scenoRITA++ found a total of 1,026 safety and comfort

violations including: 386 collisions, 21 speed violations, 291 unsafe lane changes, 132 fast

acceleration violations, and 196 hard-braking violations. Overall, scenoRITA++ finds, on

average, 23.47% more violations compared to scenoRITA--, and 24.21% more violations

compared to Random.
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Table 5.6 contains a list of ten case studies that demonstrate scenoRITA’s ability to generate

effective and valid scenarios which expose the ego car to critical situations. These case studies

demonstrate Apollo’s limited ability to handle unexpected behaviours by other obstacles

(bicycles, pedestrians, and cars) such as speeding, not yielding to traffic, jaywalking, changing

lanes suddenly, etc. This is alarming since (1) aggressive drivers, jaywalkers, and unexpected

weather and road conditions are common in real life and (2) AV software, such as Apollo,

should cope with such conditions. Similar problems have been revealed in Uber’s self-driving

car that killed a jaywalker in Arizona in 2018 [26]. We discuss one case study in detail

(case study 9) and refer the reader to our dataset [1] for video recordings and details of the

remaining case studies.

Case Study. Figure 5.8 shows a scenario with two reported violations: collision and hard

braking. The ego car is shown approaching an intersection at the beginning of the scenario

(0 seconds). The ego car fails to predict the movement of another obstacle (a truck) crossing

the same intersection from the left side. At 7 seconds, a decision to “yield to an object”

(purple rectangle) is issued by the planning module, causing the ego car to brake suddenly

and stop abruptly at 10 seconds; the speed of the ego car went down from 26 km/hr to 0

km/hr within less than 2 seconds, resulting in a motion sickness-inducing deceleration value

of −4.3m/s2. Since the ego car stopped in the middle of an intersection with oncoming

traffic, the truck travelling on its left collides with it at 11 seconds. These two violations

occur due to the planning module being unable to react to a sudden change in an obstacle

behaviour.

Initially, the prediction module detects that the obstacle travelling on the left would make a

U-turn at the intersection, instead, the obstacle continues driving straight. As the ego car

prepares to cross the intersection, it receives a new decision to yield to the obstacle driving

on its left. Since the decision to yield to oncoming traffic came in late, the ego car was unable

to handle this decision on time. As a result, the ego car stops abruptly in the middle of an
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intersection with oncoming traffic, causing a hard brake followed by a collision violation.

From these case studies, we determine the following finding:

Finding 3: The case studies show that scenoRITA is capable of generating complex

and effective scenarios that expose the ego car to critical and realistic situations. Two of

the case studies demonstrate Apollo’s limited ability to cope with unexpected behaviours

from obstacles, such as aggressive drivers or jaywalkers.

5.5.4 RQ3: Efficiency of scenoRITA

In RQ3, we study the efficiency of scenoRITA++ by measuring its execution time, and

comparing it with the execution time of scenoRITA-- and Random. Table 5.7 shows that

scenoRITA++ takes 63.92 seconds, on average, to execute a scenario from end-to-end (E2E );

it takes 10.43 seconds, on average, to generate the scenario representation and confirm its

validity according to the domain-specific constraints (MISC ); 41.52 seconds to generate the

corresponding driving simulation (Simulation); and 11.97 seconds for checking the grading

metrics (Oracles). Simulating driving scenarios is time-consuming (e.g., transforming the

scenario representation into simulations, running each simulation for 30 seconds, and recording

the car behaviour); hence, the scenario simulation stage strongly affects the efficiency of

the overall test generation process in scenoRITA. We further observe that the difference

in execution-time between all three representations (scenoRITA++, scenoRITA--, and

Random) is negligible. From these results, we find that:

Finding 4: scenoRITA++ is efficient, with an average runtime of 63.92 seconds per

scenario, and can be used in practice to generate driving scenarios that expose AV software

to safety violations. Moreover, scenoRITA++ managed to generate 23.47% and 24.21%

more violations compared to the two other representations in the same amount of time.

119



Table 5.6: Ten case studies with reported violations generated by scenoRITA, along with a
description of the scenarios. The videos corresponding to these case studies can be found
in [1].

Case
Study
No.

Map Violations Description

1 San Mateo Collision
The ego car doesn’t yield to oncoming traffic at an intersection; instead of allowing
an obstacle (truck) to cross the intersection (the truck has the right-of-way), the ego
car turns right and collides with the oncoming truck.

2 San Mateo
Speeding & Unsafe
Lane Change

In an attempt to reach the final destination within the duration of the scenario (30
seconds), the ego car increases its speed (52 km/hr) until it exceeds the speed limit
imposed by the lane its travelling on (40 km/hr). Moreover, the ego car drives on
multiple lane boundaries for more than 5 seconds resulting in an unsafe lane-change
violation.

3 San Mateo Hard Braking
The ego car didn’t detect a pedestrian jaywalking; the decision to yield to the pedes-
trian came late and resulted in the ego car braking too hard to avoid colliding with
the pedestrian.

4 San Mateo
Fast Acceleration
& Hard Braking

The ego car accelerates from an initial speed of 1 km/hr to 30 km/hr within 1.53
seconds (acceleration value of 5.28m/s2). A few seconds later, an obstacle (a truck)—
driving in the next lane (opposite direction), passes by the ego car. The control
modules receives a false ”yield sign in-front” decision, causing the ego car to brake
suddenly and too hard (deceleration value of −8.2 m/s2).

5 Borregas Hard Braking

The ego car could not predict whether an obstacle (a bicycle) is driving straight or
turning left at an intersection. As a result, a decision to “yield” to the obstacle is
triggered, to prevent a collision. However, this decision came in late, causing the ego
car to apply a hard brake.

6 Borregas
Collision & Fast
Acceleration

The ego car didn’t yield to an obstacle (a car) travelling at a high speed at an
intersection. The ego car attempted to avoid the collision by accelerating too fast,
but still couldn’t avoid the collision.

7 Sunnyvale
Collision & Fast
Acceleration

The ego car approaches an intersection and attempts to turn right, while another
obstacle (a car) approaches the same intersection from the left side. The ego car
mispredicts the trajectory of the obstacle; it predicted that the obstacle would make
a left turn instead of driving straight, so it proceeds to turn right. The obstacle
continues to drive straight and collides with the ego car.

8 Sunnyvale
Collision & Unsafe
Lane Change

The ego car didn’t yield to oncoming traffic at an intersection resulting in an accident.
The ego car mispredicted the speed and distance of other obstacles, and attempted
to cross the intersection before they arrive.

9 Sunnyvale
Collision & Hard
Braking

As the ego car is about to cross an intersection, it receives a decision to yield to
oncoming traffic from its left. The decision to yield to obstacles caused the ego car
to suddenly brake in the middle of the intersection causing the oncoming traffic to
collide with it.

10 Sunnyvale Collision

The ego car mispredicts the behaviour of an obstacle (a bicycle), assuming the bicycle
will yield to the ego car, since the former is making a right turn at an intersection.
The bicycle did not yield to the ego car, and this unexpected behaviour was not
handled properly by the ego car, resulting in the ego car hitting the bicycle.

Table 5.7: Efficiency of generated scenarios by scenoRITA++, scenoRITA-- and Random

Execution Time (sec.)

Simulation Oracles MISC E2E

scenoRITA++ 41.52 11.97 10.43 63.92

scenoRITA-- 42.09 12.26 10.17 64.51

Random 41.60 12.07 9.16 62.83
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5.5.5 RQ4: Duplicate Violation Detection

This RQ investigates the extent to which scenoRITA eliminates similar violations, and

compares the percentage of duplicate violations generated by all three representations (sceno-

RITA++, scenoRITA--, and Random). To answer this RQ, we configure DBSCAN [86] to

cluster the scenarios with similar violations into the same group, based on a set of features as

described in Section 5.4.6. We adopted the approach in [154] to automatically determine the

optimal value for epsilon; epsilon defines the maximum distance allowed between two points

within the same cluster. Eliminating duplicate violations is quick and takes, on average, 0.1

seconds per experiment.

To confirm the correctness of generated clusters, three of the authors manually and inde-

pendently evaluated the accuracy of generated clusters in 18 randomly-selected experiments

out of a total of 45 (40%). The authors examined violations in the same clusters to confirm

whether they are similar by comparing a set of features associated with each scenario in the

cluster. For example, consider two scenarios, Scenario1 and Scenario17, both of which are

in the same cluster and have a collision violation: In such a case, we compare the set of

features (from Section 5.4.6) of the two scenarios to confirm that the collision occurred in

the same position in Scenario1 as it did in Scenario17 (pEtc), the ego car in both scenarios

collided with an obstacle with the same type (TOk
) and size (ZOk

), the crash in both scenarios

is the same (collisiontype), etc. The authors also replayed these scenarios on Dreamview to

observe if the scenarios in one cluster have similar violations.

Table 5.4 shows all violations (including duplicates) generated by scenoRITA++, sceno-

RITA--, and Random along with the unique number of violations (generated by the

Duplicate Violations Detector), and the percentage of eliminated violations. From the results

in Table 5.4, we observe that scenoRITA++ eliminated, on average, a total of 342 similar

violations in all maps over the course of our experiments. Furthermore, we observe that
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scenoRITA++ eliminated fewer violations (25%) compared to scenoRITA-- (33.94%) and

Random (32.57%)—indicating that scenoRITA++, overall, generates effective driving

scenarios with less redundant violations.

Similarly, scenoRITA++ eliminated fewer collision violations (6.08%), followed by Random

(13.44%), and finally scenoRITA-- with 25% eliminated duplicates. We notice a similar

trend with the remaining violations, where scenoRITA++ generates more unique violations

overall. Another interesting observation is that, certain violation types tend to have more

duplicates compared to others. For instance, all three representations generate tests with

more than 37% duplicate fast-acceleration violations, but with less similar hard-braking

violations (12.11% - 15.67%).

Table 5.5 shows that the majority of eliminated fast acceleration violations are in Borregas;

55.47% eliminated in scenoRITA++, 54.03% in scenoRITA-- and 58.91% in Random.

We believe that the size of the map (60 lanes with a total length of 3km) and the limited

number of road curvature (Borregas contains only two intersections with traffic lights, and

one road with two lanes without any stop signs or traffic lights) is the main reason why more

similar fast-acceleration violations were found in Borregas compared to other maps.

Overall, we found that scenoRITA++ eliminates fewer duplicate violations compared to

other testing techniques. In the few cases where it eliminated more duplicate violations,

scenoRITA++ was still close enough to the winning technique. For example, in Sunnyvale,

Random eliminated 2.04% duplicate collisions while scenoRITA++ eliminated 2.11%.

However, scenoRITA++ still reported almost twice as many collisions compared to Random,

due to fewer duplicate violations not necessarily resulting in more unique violations.

Finding 5: Our manual verification of 40% of our experiments shows that scenoRITA is

able to identify and eliminate duplicate tests. The Duplicate Violations Detector eliminated

25% duplicate tests in scenoRITA++, 33.94% in scenoRITA--, and 32.57% in Random—
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indicating that scenoRITA++ generates more unique violations compared to the two other

representations.

5.6 Threats to Validity

Internal threats. One potential threat to internal validity is the selection of scenario dura-

tion: Simulation-based tests require the execution of time-consuming computer simulations

to produce violations. We determined from our experimentation that our selected scenario

duration of 30 seconds finds a significant number and variety of violations without incurring

drastically long test execution times.

Another threat to validity is related to choosing DBSCAN (i.e., density-based spatial clustering

of applications with noise) in eliminating duplicate violations. To mitigate this threat to

validity, we ran both k-means and DBSCAN on a random set of scenarios with duplicate

violations, then manually inspected the clusters of scenarios with similar violations generated

by both techniques. We found that (i) k-means resulted in clusters of undesired structure and

quality; (ii) unlike DBSCAN, k-means is not an ideal algorithm for latitude-longitude spatial

data because it minimizes variance, not geodetic distances; (iii) DBSCAN is deterministic

compared to k-means; and (iv) DBSCAN does not require to specify the number of clusters

in advance—it determines them automatically based on epsilon, where epsilon defines the

maximum distance allowed between two points within the same cluster. We avoided using

hierarchical clustering due to its computationally expensive nature.

Another threat to validity arises from verifying the correctness of generated tests. There is

unfortunately no automated strategies nor a ground truth that can be used to, otherwise,

assess the accuracy of generated scenarios. For that reason, we had to manually verify the

generated tests. We want to enable other researchers and practitioners to compare and verify

the correctness of their tests by using the driving scenarios generated by scenoRITA as a
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ground truth.

To account for validity threats arising from randomness in search algorithms, we follow the

guidelines in [54]: (i) we repeated the experiments for each representation (scenoRITA++,

scenoRITA--, and Random) 15 times, (ii) we used the non-parametric Mann-Whitney

U-test to detect statistical differences and reported the obtained p-value, and (iii) we reported

Â12 index (a standardized effect size measure). We make our full experimental results available

in [1].

To mitigate threats arising from our selection of search operators, we selected (i) a widely-used

algorithm in the search-based software engineering (SBSE) community, i.e., NSGA-II and

(ii) crossover and mutation algorithms that best fits our gene representation. For parameter

tuning, we followed the guidelines in [55, 54]—which suggests that standard parameter

settings are usually recommended—leading us to use default settings in DEAP-1.3 [94], the

framework used in our search-based implementation.

External threats. One external threat is that we applied scenoRITA to a single AV

software system, Apollo. To mitigate the threat, we selected the only high autonomy (i.e.,

Level 4), open-source, production-grade AV software system that supports a wide variety

of driving scenarios and explicitly aims for both safety and driver comfort. To mitigate

threats related to generalizability of our results to other maps, we applied scenoRITA to

three high-definition maps of cities in California: Borregas (60 lanes), San Mateo (1,305

lanes), and Sunnyvale (3,061 lanes). Note that Autoware [13], despite being open-source

and widely-used [35], is considered a research-grade and not a production-grade AV software

system [117, 118], which we further verified through speaking with Christian John, the Vice

Chair and Chief Software Architect of Autoware.

Construct Validity. The main threat to construct validity is how we measure and calculate

safety and comfort violations. To mitigate this threat, we measure these violations using
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grading metrics defined by Apollo’s developers [19]. We utilize thresholds (e.g., speeding or ac-

celeration thresholds) set by Apollo’s developers [19]; the U. S. Department of Transportation

[92]; or thresholds used by major AV companies (e.g., Alphabet Waymo [22]).

5.7 Discussion

In this chapter, we propose scenoRITA, a novel search-based testing framework, which

exposes AV software to 3 types of safety-critical and 2 types of motion sickness-inducing

scenarios in a manner that reduces duplicate scenarios, allows fully mutable obstacles with

valid and modifiable obstacles trajectories, and follows domain-specific constraints obtained

from authoritative sources. We evaluate scenoRITA on Baidu Apollo, a high autonomy

(L4), open-source, and production-grade AV software system that supports a wide variety of

driving scenarios. We compare our approach (scenoRITA++) with a state-of-the-art search-

based testing approach using only a partially mutable representation (scenoRITA--) and a

random version of our approach that leverages scenoRITA’s domain-specific constraints

and randomly-generated obstacles. scenoRITA++ found a total of 1,026 unique safety and

comfort violations including: 386 collisions, 21 speed violations, 291 unsafe lane changes,

132 fast acceleration violations, and 196 hard-braking violations. Moreover, scenoRITA++

generates, on average, 23.47% and 24.21% more violations compared to the two other

representations in the same amount of time (63.92 sec/scenario). For future work, we aim to

expand scenoRITA to handle (i) generation of scenarios and oracles focused on traffic lights

and stop signs and (ii) extending the work to other AV software systems (e.g., Autoware).
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Chapter 6

Conclusion

Smart systems are software entities that carry out a set of operations on behalf of a user or

another application with some degree of independence or autonomy. These systems employ

some knowledge or representations of (1) a user’s goals or desires, and (2) the environment in

which they act in to achieve these goals. These systems address environmental, societal, and

economic challenges like limited resources, climate change, and globalization. They are, for

that reason, increasingly used in a large number of sectors such as transportation, healthcare,

energy, safety, security, etc. Hence, the need for effective analysis and testing techniques for

such systems has increased more than ever.

In this thesis, I propose to ensure software dependability, specifically software security, safety,

and reliability of smart systems. In particular, I conduct comprehensive studies of bugs and

vulnerabilities found in such systems, then follow these studies with tools and strategies that

enable us to automatically test and detect vulnerabilities and bugs found in smart systems.

Section 6.1 lists the research contributions of this thesis in details.
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6.1 Research Contributions:

This dissertation makes the following contributions to the Software Engineering research

community:

• Automatic identification of native libraries’ versions in Android apps. I

constructed a novel approach (LibRARIAN) that, given an unknown binary, identifies

(i) the library it implements and (ii) its version. Furthermore, I introduced a new

similarity-scoring mechanism for comparing native binaries which utilizes 6 features that

enable LibRARIAN to distinguish between different libraries and their versions. In our

ground truth dataset which contains 46 known libraries with 904 versions, LibRARIAN

correctly identifies 91.15% of those library versions, thus achieving a high identification

accuracy. LibRARIAN also achieves a 12% improvement in its accuracy compared to

OSSPolice, the state-of-the-art technique for identifying versions of native binaries for

Android apps.

• Longitudinal study of security updates in Android Apps’ native code. I

conducted a large-scale, longitudinal study that tracks security vulnerabilities in native

libraries used in Android apps over 7 years. In particular, I utilized LibRARIAN to

study (1) the prevalence of vulnerabilities in native libraries in the top 200 apps, and

(2) the rate at which app developers apply security patches.

• A comprehensive study of autonomous vehicle bugs. We conducted the first

comprehensive study of bugs in AV systems through a manual analysis of 499 bugs

obtained from 16,851 commits in two dominant AV open-source software systems. In this

study, we provided a classification of root causes, symptoms, and the AV components

affected by these bugs. Based on this study, we discussed and suggested future research

directions related to software testing and analysis of AV systems.

127



• Automatic generation of diverse, fully-mutable, safety-critical, and motion

sickness-inducing scenarios for Autonomous Vehicles. I implemented a search-

based testing framework, with a novel gene representation and domain-specific con-

straints, that automatically generates valid, fully mutable, and diverse driving scenarios.

To improve the effectiveness of this approach, we automate the process of identifying and

eliminating duplicate violations by using an unsupervised clustering technique to group

driving scenarios, with similar violations, according to specific features. Furthermore,

we utilize 5 test oracles and corresponding fitness functions to assess different aspects of

AVs—ranging from traffic and road safety (i.e., collision detection, speeding detection,

and unsafe lane change) to a rider’s comfort (i.e., fast acceleration and hard braking).

• Tools and experiments:

– Automatic identification of native libraries’ versions in Android apps. I imple-

mented the proposed technique and evaluated it on 46 known libraries with 904

versions. This tool is publicly available [134] to enable reusability, reproducibility,

and others to build upon our work.

– Automatic generation of diverse, fully mutable, safety-critical, and motion sickness-

inducing scenarios for autonomous vehicles. I implemented the proposed technique

and evaluated it on Baidu Apollo using 3 high-definition maps of cities/street

blocks located in California. This tool is publicly available [1] to enable reusability,

reproducibility, and others to build upon our work.

• Datasets:

– A dataset of 66,684 native third-party libraries in the top 200 popular Android

Apps. I built a repository of Android apps and their native libraries with the 200

most popular free apps from Google Play totaling 7,678 versions gathered between

the dates of Sept. 2013 and May 2020. This repository further contains 66,684

native libraries used by these 7,678 versions. Moreover, we built a ground truth
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dataset which contains 46 known third-party libraries (such as FFmpeg, GIFLib,

OpenSSL, WebP, SQLite3, OpenCV, Jpeg-turbo, Libpng, and XML2) and their

904 library versions. We make our dataset, analysis platform, and results available

online to enable reusability, reproducibility, and others to build upon our work

[134].

– A dataset of 499 bugs obtained from 16,851 commits in two dominant AV open-

source software systems. We further provide details of the root causes associated

with each of these bugs, their symptoms and the AV component affected by them.

We make the resulting dataset from our study available for others to replicate

or reproduce, or to allow other researchers and practitioners to build upon our

work[6].

6.2 Future Work:

• Software Security in Smartphones: Possible follow-up work of my research on

security updates in Android apps’ native code include: (1) extending LibRARIAN by

using machine learning to improve the identification threshold for determining versions or

library names and automatically extracting heuristics for Version Identification Strings.

This extension aims to improve the current accuracy of LibRARIAN and to reduce some

of the manual labor in extracting version information from libraries; (2) conducting

user interviews to get a better understanding of why app developers are slow in terms

of updating their libraries to patched versions. This study aims to provide a thorough

discussion of solutions and actionable items for different actors in the app ecosystem to

remedy this situation effectively; (3) building a cross-language control-flow/data-flow

analysis to assess the reachability of vulnerable native code from the Dalvik code of an

Android app which will further enable (4) building an automatic exploit generation of

vulnerable libraries; and (5) implementing mechanisms to automatically update native
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libraries while also testing for regressions and possibly automatically repairing them, or,

at least, notifying developers about vulnerable libraries. Such an idea is similar to how

Debian’s repositories centrally manage libraries/dependencies between applications.

• Software Reliability and Safety in Smart Cars: Interesting future work based on

our AV bug study and scenoRITA include: (1) extending scenoRITA to find more

violations and violation types by incorporating additional oracles and generating complex

driving scenarios taking into account other attributes such as traffic lights, crosswalks,

and stop signs; (2) generating tests with bug-revealing violations; (3) designing an “ideal”

framework to find all possible violations in a driving simulation. This NP-hard, optimal

framework requires moving an AV simulator (ex. Apollo Simulator) to a quantum

computer to enumerate all possible scenarios; (4) conducting a comprehensive study to

understand the fix patterns of bugs found in AV software and to identify the challenges

associated with fixing such bugs. This study will inform strategies for repairing AV

software.

• Software Reliability in Large-Scale Cloud Services: Production incidents in

today’s large-scale cloud services can be extremely expensive in terms of customer

impacts and engineering resources required to mitigate them. Despite continuous

reliability efforts, cloud services still experience severe incidents due to various root

causes. Many of these incidents last for a long period as existing techniques and

practices fail to detect and mitigate them quickly. To better understand these issues,

an in-depth study of high severity production incidents is needed. This study should

answer the following questions: (1) what bugs are behind these incidents? (2) when

and how were these bugs introduced? (3) why did these bugs escape testing? (4) why

were they not caught in monitoring? (5) why were they not mitigated quickly? (6)

why are existing fault tolerance tools not effective? and (7) how can we prevent these

incidents from happening again? This study will provide data-driven recommendations
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to improve the effectiveness of current tools, and suggest new tools and extensions with

the goal of improving cloud reliability.
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[51] Sumaya Almanee, Arda Ünal, Mathias Payer, and Joshua Garcia. Too quiet in the
library: An empirical study of security updates in android apps’ native code. In
Proceedings of the 43rd International Conference on Software Engineering, ICSE ’21,
page 1347–1359. IEEE Press, 2021.

[52] Matthias Althoff and Sebastian Lutz. Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1326–1333, 2018.
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Real-world Numerical Bug Characteristics. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, pages 509–519,
Piscataway, NJ, USA, 2017. IEEE Press. event-place: Urbana-Champaign, IL, USA.

[81] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. Identifying
open-source license violation and 1-day security risk at large scale. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security - CCS
’17, pages 2169–2185. ACM Press, 2017.

[82] H. Ebadi, M. Moghadam, M. Borg, G. Gay, A. Fontes, and K. Socha. Efficient and
effective generation of test cases for pedestrian detection - search-based software testing
of baidu apollo in svl. In 2021 IEEE International Conference On Artificial Intelligence
Testing (AITest), pages 103–110, Los Alamitos, CA, USA, aug 2021. IEEE Computer
Society.

[83] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of
android application security. In in Proceedings of the 20th USENIX Security Symposium,
page 16, 2011.

[84] Christian Erbsmehl. Simulation of real crashes as a method for estimating the potential
benefits of advanced safety technologies. In 21st International Technical Conference on
the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety, pages 09–0162,
2009.

[85] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovRE: Efficient
cross-architecture identification of bugs in binary code. In Proceedings 2016 Network
and Distributed System Security Symposium. Internet Society, 2016.

[86] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96,
pages 226–231, 1996.

137



[87] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian
Tramer, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Physical Adversarial
Examples for Object Detectors. In USENIX Workshop on Offensive Technologies
(WOOT), 2018.

[88] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks
on deep learning models. arXiv preprint arXiv:1707.08945, 2017.

[89] F-droid. https://f-droid.org.

[90] Federal Highway Administration, US Department of Transportation. Federal Size
Regulations For Commercial Motor Vehicles, June 1992.

[91] Federal Highway Administration, US Department of Transportation. Bicycle Road
Safety Audit Guidelines and Prompt Lists, May 2012.

[92] Federal Highway Administration, US Department of Transportation. Analysis of
Lane-Change Crashes and Near-Crashes, June 2009.

[93] Ffmpeg. https://ffmpeg.org/.

[94] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner,
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