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ABSTRACT. Technetium-99 is an abundant, long-lived ( 1/2 = 213,000 yr) fission product that creates

challenges for the safe, long-term disposal of nuclear waste. While 99Tc receives attention largely due to its high

environmental mobility, it also causes problems during its incorporation into nuclear waste glass due to the

volatility of Tc(VII) compounds. This volatility decreases the amount of 99Tc stabilized in the waste glass and

causes contamination of the waste glass melter and off-gas system. The approach to decrease the volatility of

99Tc that has received the most attention is reduction of the volatile Tc(VII) species to less volatile Tc(IV)

species in the glass melt. On engineering scale experiments, rhenium is often used as a non-radioactive

surrogate for 99Tc to avoid the radioactive contamination problems caused by volatile 99Tc compounds.

However, Re(VII) is more stable towards reduction than Tc(VII), so more reducing conditions would be

required in the glass melt to produce Re(IV). To better understand the redox behavior of Tc and Re in nuclear

waste glass, a series of glasses were prepared under different redox conditions.  The speciation of Tc and Re in

the resulting glasses was determined by X-ray absorption fine structure spectroscopy.  Surprisingly, Re and Tc

do not behave similarly in the glass melt.  Although Tc(0), Tc(IV), and Tc(VII) were observed in these samples,

only Re(0) and Re(VII) were found.  In no case was Re(IV) (or Re(VI)) observed.

KEYWORDS. Nuclear waste, glass, technetium, rhenium, EXAFS, XANES

INTRODUCTION. The production of plutonium in the U.S. during the Cold War has generated

approximately 80 million gallons of high-level nuclear waste, which is currently stored in large underground

tanks at the Savannah River site in South Carolina and at the Hanford site in eastern Washington.1 Treatment

and safe disposal of this waste is among the most challenging remediation projects in the U. S. The current plan

for stabilization of this waste includes separation into a high-activity and a low-activity waste stream.1 The
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high-activity waste stream, which contains the bulk of the radioactivity but only a small volume of the waste,

will be converted into glass (vitrified) and sent to the high-level waste repository, currently planned at Yucca

Mountain. The low-activity waste stream contains most of the chemical constituents of the waste including

large amounts sodium nitrate, sodium nitrite, sodium hydroxide, and small amounts of organic compounds such

as EDTA, formate, and acetate. The low-activity waste stream will also contain 20% and 80% of the 99Tc

present in the waste tanks at the Savannah River and Hanford sites, respectively. At the Savannah River site, the

low-activity waste stream is currently stabilized in grout waste form, Saltstone, while at the Hanford Site, the

low-activity waste stream will be vitrified.1 In both cases, the resulting low-level waste form will be interred in

an on-site repository.

The radionuclides 237Np, 127I, and 99Tc are of particular concern in the high-level waste repository  due to their

long half-lives and high environmental mobility.2 In the low-activity waste repositories at the Savannah River

and Hanford sites, 99Tc is generally the radionuclide of greatest concern since it dominates the dose received by

people living off-site who drink groundwater or use it for agriculture.3-5 The main reasons that 99Tc is so

important in determining the off site dose are its high fission yield (~6%), which results in a large inventory of

99Tc in high-level nuclear waste, its long half-life, 213,000 yr, and the high solubility and environmental

mobility of pertechnetate, TcO4
-, the most stable form of Tc in aerobic environments.

In addition to creating challenges for the long-term disposal of nuclear waste, technetium also creates

significant problems for vitrification of nuclear waste due to its volatility under these conditions.6-10 During

vitrification, the volatile technetium compounds that are lost from the glass melt must be captured in the off-gas

treatment equipment. Secondary wastes from the off-gas treatment systems must then be either recycled or

stabilized in alternative waste forms, which increases the amount of waste created. Under the conditions present
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in the glass melt, only Tc(VII) and Tc(IV) are expected to be present since Tc(V) and Tc(VI) are unstable with

respect to disproportionation under these conditions. A number of Tc(VII) compounds have significant

volatility at the temperatures (typically 1100-1200 °C) at which waste is vitrified.6,9,10 On the other hand, lower

valent Tc compounds are less volatile under these conditions since reducing conditions reduce the amount of Tc

lost during vitrification.6,11,12 Consequently, one of the major factors in controlling Tc volatility during

vitrification is the redox state of the melt. Since iron is the most abundant redox-active element in the glass, the

redox state is generally expressed as the ratio of iron that is present as Fe(II) to the total amount of iron,

Fe(II)/ Fe. Most nuclear waste vitrification processes operate under relatively oxidizing conditions, typically

Fe(II)/ Fe < 0.3, to prevent the formation of separate metallic and metal sulfide phases,13 which can

compromise the operation of the glass melter.

In addition to presenting problems for the vitrification of waste, Tc volatility also creates practical challenges

for the development of waste-glass formulations. While the preparation of Tc-bearing glasses on the small,

crucible scale is relatively straightforward, preparation of Tc-bearing glasses at larger scales is much more

difficult due to the problems caused by Tc contamination of the melter and associated equipment, especially the

effluent gas treatment system. For this reason, Re is often used as a non-radioactive surrogate for Tc in such

large-scale experiments.6,9 In analogy to Tc chemistry, Re(VII) and Re(IV) are assumed to be stable in the glass

melt. Although ReO3 is known, it is unstable towards disproportionation above 300 °C.14  However, Re is

substantially different from Tc in one respect: the standard reduction potentials, in water, for the reduction of

TcO4
- and ReO4

- to Tc(IV) and Re(IV) are significantly different, 0.74 and 0.51 V, respectively.15,16 This

difference is of great practical importance when using Re as a surrogate for Tc in the development of conditions

used to vitrify waste.
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Since Tc(IV) is less volatile than Tc(VII), reducing conditions decrease technetium volatility. Because of the

difference in reduction potentials for TcO4
- and ReO4

-, a substantially more reducing redox environment would

be required to reduce ReO4
- in comparison to TcO4

-. To investigate the effect of Tc redox state on Tc volatility,

as well as the behavior of Re as its surrogate under the conditions present during vitrification, it is necessary to

know the redox conditions that are required to produce Tc(IV) or Re(IV) in nuclear waste glass. The redox

behavior of Tc and Re in a borosilicate melt has been studied previously by square-wave voltammetry, and

quite different results were obtained for Tc and Re.17

The goal of the present study is to better understand the effect of redox environment on Tc and Re during

vitrification. Toward that end, a series of glass samples was prepared under a range of redox conditions. Among

these glasses are examples that contain only Re, only Tc, and both Tc and Re, the latter of which allows the

direct comparison of the behavior of the two elements under identical redox conditions. The formulations of

these glasses is similar to those that will be used to stabilize the low-activity waste stream at the Hanford site.5

The glasses reported here were prepared from the same solid glass formers as planned for the Hanford facility

(SiO2, B(OH)3, Fe2O3, etc.) together with a chemical simulant of the anticipated low-activity waste stream to

which Tc and/or Re was added as TcO4
- or ReO4

-.

The speciation of Tc and Re was determined using X-ray absorption fine structure (XAFS) spectroscopy. In

glasses where either element was present as a single species, extended x-ray absorption fine structure (EXAFS)

was used to determine the local structure of the metal ion and to identify the species. The X-ray absorption near

edge structure (XANES) spectra of these species were used as standards to determine the speciation in glasses

that contained a mixture of species.



6

EXPERIMENTAL. Reagent-grade chemical stock compounds were used for glass synthesis. Water was

deionized using a MilliQ system. Oxide components of the prepared glasses were determined by X-ray

fluorescence (XRF) spectroscopy with a relative uncertainty of 4%. XRF analyses utilized an ARL 9400 X-ray

fluorescence spectrometer with XRF composition values determined using NIST standard glasses as standards.

Technetium concentrations were determined by liquid scintillation measurements on acid-dissolved glass

samples and have an uncertainty of 4%. B2O3 and Li2O values were determined by direct-coupled plasma

atomic emission spectroscopy on acid-dissolved glass samples. The purity of all crystalline standards used in

this study was verified by powder X-ray diffraction. Fe(II)/Fe(total) ratios were determined colorimetrically

using a manual adaptation of the method described by Whitehead and Malik, and have an absolute uncertainty

of 0.4%.18,19

Two groups of borosilicate glasses were investigated. The first group, crucible glasses, was prepared in a

vertical tube furnace by suspending a Pt / 4% Au crucible in the center of the tube. The top of the tube was

externally cooled and contained quartz wool to trap the volatilized Tc species. Prior to heating, the furnace was

purged with gas (60 mL min-1 for 2 hours, total volume of the furnace is 360 mL) through a long needle. During

the glass synthesis, gas was slowly passed over the top of the tube and through a set of bubblers to trap any

escaping Tc. These glasses were formulations developed for the low-activity waste Envelope C (LAWC)

(specifically, for tank AN-107) and Envelope A (LAWA) (specifically, for tanks AP-101 or AN-105) at the

Hanford Site.20 The glasses were prepared by spiking a tank waste simulant (1.55 mL for LAWC glasses, and

1.60 mL for LAWA glasses) with NaTcO4 (0.32 mL, 0.106 M, 34 μmoles) and NH4ReO4 (0.54 mL, 0.20 M,

0.11 mmol), stirring to create a homogeneous mixture and then adding the glass components (1.63 g for LAWC

glasses and 1.93 g for LAWA glasses) to form a slurry, which was then heated according to the following

schedule:
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30 °C 10 min
     110 °C 2 hr

    140 °C 3 hr
    700 °C

700 °C 2 hr
    770 °C 2 hr

    1150 °C 4 hr
    1150 °C

The glass was cooled to room temperature in the furnace then removed from the crucible. The compositions

of the examples of LAWA and LAWC glasses are given in Table 1, and the synthesis conditions are given in

Table 2. The compositions of the glass components and the waste simulants are given in the supplementary

material.

Table 1. Compositions (wt. %) determined by XRF of crucible glassesa (all glasses prepared in air)

Sample Glass Type TcO2 ReO2 SiO2 Fe2O3 Al2O3 B2O3 Li2O Na2O K2O MgO CaO Otherc

II-118 LAWA 0.005 --b 44 7.5 5.9 9.1 0.23 16.0 2.7 2.1 2.1 8.4

II-121 LAWC 0.003 --b 46 5.9 6.2 10.7 2.4 12.4 0.36 1.7 4.9 7.9

II-127 LAWC 0.048 0.04 45 5.9 6.2 10.3 2.2 15.6 0.38 1.6 4.7 7.6

II-128 LAWC 0.057 0.04 47 6.6 6.5 9.9 2.2 16.1 0.25 1.6 5.1 7.6

II-129 LAWA 0.02 0.01 40 6.6 5.9 8.7 --b 19.5 4.1 1.9 1.9 7.2

a) Relative uncertainty of 6% for the analyses on this sample

b) Element not present or below detection limit.

c) The other principal components are TiO2, ZrO2, and ZnO
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Table 2. Samples prepared under different redox conditions

Sample Name Glass Type Atmosphere Appearance

II-206 LAWA Air Brown

II-205 LAWC Air Brown

II-210 LAWA N2 Dark brown

II-212 LAWC N2 Dark green

II-214 LAWA 1:1 CO2/CO Dark green w/ metallic film

II-216 LAWC 1:1 CO2/CO Dark green w/ metallic film

II-218 LAWC 100 ppm O2 in N2 Dark green

II-219 LAWA 100 ppm O2 in N2 Green-brown

The second group, melter glasses (Table 3), contains two sets of glasses. One set (LAWA1) was synthesized

under oxidizing conditions and used a LAW Sub-Envelope A1 waste simulant.21 The other glass set

(HLWAZ-102) was synthesized under more reducing conditions and used a HLW AZ-102 waste simulant.21

Rhenium-bearing waste glasses were synthesized in two similar continuously-fed DuraMelter 100 (DM100)

ceramic-lined, Joule-heated melters, where the melt pools (~110 kg for LAW and ~180 kg for HLW) were

maintained at 1150 oC and agitated using an air bubbler. Glass production rates of up to 220 kg glass per day

were used for each production run of about 100-hours in duration. Glass samples from the melter were extracted

at various times during the melter run as Re concentrations were changed in the melt pool.
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Table 3. Composition (wt. %) determined by XRF of rhenium glasses prepared in a continuous melter

Sample Type Re2O7 SiO2 Fe2O3 Al2O3 B2O3 Li2O Na2O K2O MgO CaO Othera

WVT-G-128b LAWA1 0.52 42 6.4 6.2 9.0 --b 18.8 0.45 1.51 2.1 9.5

WVT-G-126b LAWA1 0.83 46 5.9 6.4 9.0 --b 19.1 0.49 1.58 2.0 8.7

WVT-G-125c LAWA1 0.48 47 5.5 6.5 9.0 --b 18.7 0.49 1.36 2.1 9.0

WVT-G-150a LAWA1 0.22 45 6.6 6.4 9.0 --b 19.5 0.51 1.94 1.90 8.6

BLG-G-113a HLW AZ-102 0.41 48 11.6 6.0 12.5 3.3 10.9 0.16 0.08 0.37 6.2

BLG-G-85a HLW AZ-102 0.22 49 11.5 6.1 12.5 3.3 10.8 0.18 0.10 0.37 6.7

BLG-G-79a HLW AZ-102 0.07 48 11.4 6.1 12.5 3.3 11.2 0.13 0.11 0.40 6.5

a) The other principal components are TiO2, ZrO2, and ZnO

b) Element not present or below detection limit

Tc K-edge (21044 eV) and Re L2-edge (11959 eV) XAFS data were collected at the Stanford Synchrotron

Radiation Laboratory beamlines 4-1 and 11-2 using a Si (220) double crystal monochromator. The harmonic

content of the beam was reduced with a harmonic rejection mirror or by detuning the monochromator by 50%.

Samples were mounted in polycarbonate holders sealed with Kapton tape. The holders were doubly contained in

heat sealed polyethylene pouches. Data were recorded in transmission using Ar-filled ion-chambers or in

fluorescence using a four-element Ge detector and was corrected for detector dead time effects. For crucible

glasses, the top surface of the intact glass ingot, which was in contact with the tube furnace atmosphere, was

probed with the exception of sample II-219, which shattered.  The top surfaces of the glass pieces were
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examined in this case.  The information depth, above which 68% of the observed fluorescence photons

originate, is 0.26 mm at the Tc K-edge and 0.06 mm at the Re L2-edge.22

EXAFS data analysis was performed by standard procedures23 using the programs ifeffit,24 and

Athena/Artemis;25 theoretical EXAFS phases and amplitudes were calculated using FEFF7.26 EXAFS data

analysis and XANES fitting were performed as previously described.27,28 The XANES fitting errors are

extremely sensitive to the slope of the spectrum produced by the pre-edge correction; to minimize the errors, the

slope of the XANES spectra was included in the fit.  The Tc and Re XANES spectra were also analyzed by

principal component analysis using the program SixPack.29  The Tc spectra were spanned by 3 eigenvectors,

which produced good fits for the spectra of TcO4
-, Tc(IV), and Tc(0) in glass.  The Re spectra were spanned by

2 eigenvectors, which produced good fits for the spectra of ReO4
- and Re(0) in glass.30

The Tc XANES data for the glass samples had higher resolution than the reference spectra, so the spectra of

the glasses were convolved with a 1 eV wide Gaussian. In addition, Tc K-edge XANES spectra for glasses

II-205 through II-219 were smoothed using three iterations of simple three-point smoothing. The Tc K-edge

experimental resolution was ~3 eV and the Tc K-edge core-hole broadening is ~6 eV (from FEFF7) yielding a

spectral resolution of ~7 eV; the fit had a range of 150 eV (21 independent data points) and used six parameters

(energy shift, y-axis shift, y-axis slope, and contribution of three standards). The fit for sample II-219 had a

range of 120 eV due to noise in the pre-edge region. The Re L2-edge XANES experimental resolution was

~2 eV and the Re L2edge core-hole broadening is ~5 eV yielding a spectral resolution of ~6 eV; the fit had a

range of 120 eV (20 independent data points) and used seven parameters (as above, but four standards). The

fitting process was done in two stages. First, the XANES spectra were fit including all of the reference spectra.

Whenever the contribution of the reference spectrum was within one standard deviation of zero, the spectra
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were fit again with that spectrum excluded. The final fit therefore includes only reference spectra that have non-

zero contributions to the fit. The results of initial fitting are included in the supplementary material.

RESULTS

IDENTITIES OF THE TECHNETIUM AND RHENIUM SPECIES IN THE GLASS. One spectroscopic

technique that has been very useful for determining the speciation of Tc in samples that contain a mixture of

species is fitting the Tc K-edge XANES spectra of samples using the XANES spectra of known Tc compounds

as standards.27,28 To determine the speciation of Tc and Re in glass samples in this manner, it is necessary to

obtain standard spectra corresponding to the specific species present in the glass. This can be accomplished by

using pure compounds, such as ReO2, or by demonstrating that the reference sample contains only a single

species. The reference spectra for Tc(VII) and Tc(IV) in glass were previously obtained,27 but the reference

spectra for metallic Tc in glass and for the Re species have not been reported. In this study, ReO2 and ReO3 were

used to obtain the reference spectra for Re(IV) and Re(VI). The other standard spectra were from glass samples

that contained a single species as determined by EXAFS.

NH4ReO4 was initially used as the Re(VII) standard, but its Re L2 XANES spectrum is somewhat different

from that of Re(VII) in glass in that the large peak at the absorption edge (white line) of Re(VII) in glass is

broader than that of NH4ReO4. The EXAFS spectra of Re(VII) in glasses prepared in both crucibles and melters

are shown in Figure 1, and the fit parameters are given in Table 4. In all of these cases, the only important Re

species in the glass is Re(VII), and the fitting parameters are similar. The XANES spectrum of II-205 was used

as the standard for Re(VII) in glass.
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Figure 1. Re L2 XANES spectra (left), EXAFS spectra (center) and Fourier Transforms (right) for Re(VII) in

glass (a) WVT-G-126b, (b) BLG-G-113a, (c) II-205. Data are depicted as points; fit is indicated by the solid

line. Fit range: 3<k<11; 0.8 <R<2.5.cd

Table 4: EXAFS parameters for Re(VII) in glass (S0
2= 1)

Sample E0 (eV) R-factora # of O
neighbors

R (Å) 2 (Å2)

NH4ReO4 6(4) 0.038 4(1) 1.73(1) 0.002(2)

II-205 2(3) 0.023 4.7(8) 1.75(1) 0.002(1)

WVT-G-126b -2(3) 0.031 4.5(8) 1.73(1) 0.003(1)

WVT-G-125c -1(2) 0.015 4.1(5) 1.72(1) 0.002(1)

WVT-G-150a 0(2) 0.008 4.3(6) 1.73(1) 0.003(1)

BLG-G-113a 1(3) 0.018 4.3(9) 1.73(1) 0.002(1)

BLG-G-85b 5(1) 0.012 4.5(9) 1.74(1) 0.001(1)

a) R-factor = (yi(data) yi(fit))
2 (yi(data))

2

The identities of the metallic Tc and Re species in the glass, Tc(0) and Re(0), were determined from the

EXAFS spectra of the LAWA and LAWC glass samples prepared under highly reducing conditions generated

using a 1:1 CO/CO2 atmosphere. In both cases, a metallic film formed on the surface of the glass sample. The
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Tc K edge and Re L2 edge EXAFS spectra of these samples are shown in Figure 2, and the fitting results are in

the supplementary material. The distances determined from fitting the EXAFS are in good agreement with the

hcp structure of the metals.31,32 Both samples are actually Tc/Re alloys: sample II-216 has a Tc/Re ratio of 6:1

and sample II-214 has a ratio of 1:3.  Since II-216 contains mainly Tc in the metallic phase, it is referred to as

Tc(0), and II-214 is referred to as Tc/Re. The very different appearance of the spectra of II-214, compared with

that of II-216, is due to the Ramsauer-Townsend effect, which makes peaks corresponding to the scattering

from Re atoms appear to be split.33 Despite the difference in appearance of the spectra, the structural parameters

derived from the fitting the spectra are very similar in both samples. The EXAFS data are otherwise

unremarkable. Most importantly, the lack of a peak at R<2 shows that no O neighbors are present in either the

Re or Tc coordination environment.
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Figure 2: EXAFS spectrum and Fourier transform for Tc and Re metal standards: II-216 is the Tc(0) standard

and II-214 is Re(0) standard. Data are indicated by points; fit is indicated by the solid line. Fit range, Tc K edge:

3<k<15; 1.9<R<6; Re L2 edge: 3<k<11.8; 1.2<R<5.9. Note: the Re L2 edge EXAFS are truncated at 12 Å-1 due

to the presence of the Re L1 edge at 12527 eV.

The XANES spectra of the standards are shown in Figure 3 along with the XANES spectra of Tc and Re

metal foils. Although the Tc K-edge XANES spectra of metallic Tc in glass, Tc(0) (II-216) and Tc/Re alloy (II-

214), are similar to the spectrum of bulk Tc metal, the spectra are not identical. In particular, the intensity of the

transition at the absorption edge is slightly larger in the Tc(0) and Tc/Re alloy spectra than in Tc-foil, and the

position of the feature at ~21125 eV changes as a function of the Re contents of the alloy. In contrast, the Re L2-

edge XANES spectra of Re foil and Tc/Re are significantly different. Compared to the XANES spectrum of Re
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foil, the white line of the Tc/Re XANES spectrum is significantly larger although the edge shift is only slightly

different from that of Re foil (11957.6 eV versus 11958.2 eV). The white line is due to the 2p1/2 to 6d3/2

transition, and its intensity is proportional the number of vacancies in the 6d3/2 level.34 In a Tc/Re alloy, the

intensity of this transition is expected to be greater than in pure Re metal. Tc is more electronegative than Re

and will lower the Fermi level at Re in a Tc/Re alloy relative to Re in the metal, which would create more

vacancies in the 6d3/2 level of the Tc/Re alloy. This effect has been previously observed in Pt alloys.34,35 Apart

from the intensity of the white lines, the XANES spectra of Re foil and Tc/Re in glass are similar.

21050 21100 21150

Tc foil

Tc(0)

Tc/Re

Tc(IV)

Tc(VII)

11920 11970 12020

Re foil

Tc/Re

ReO2

ReO3

Re(VII)

Photon energy (eV)

Figure 3: Re L2-edge XANES standard spectra (left) and Tc K-edge standard spectra (right) used to determine

Re and Tc speciation in glass samples. Tc(0), Tc/Re, and Re(VII) correspond to II-216, II-214, and II-205,

respectively.

RHENIUM SPECIATION IN MELTER GLASSES. As noted in the introduction, Re is used as a non-

radioactive surrogate for Tc in large-scale melter studies to avoid the hazards created by Tc volatilization. For

this reason, the redox state and Re speciation in a series of Re-containing nuclear waste glasses prepared in a

large melter were examined. The results from fitting the EXAFS spectra of these samples are reported in Table

4. In all cases, the number of oxygen neighbors and the Re-O bond lengths are consistent with the presence of
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only Re(VII). In both ReO2 and ReO3, the Re center has six oxygen neighbors, and the Re-O distances are much

longer, 2.00 Å and 1.87 Å, respectively, while in ReO4
-, the Re center has only four oxygen neighbors and a

shorter Re-O distance as seen in Table 4.36,37 The results from fitting the XANES spectra are reported in Table 5.

Both techniques show that the only important Re species in these samples is Re(VII), which is not surprising in

light of the anticipated stability of Re(VII) in alkali rich glass melts suggested by its aqueous reduction potential

under alkaline conditions, -0.59 V at pH 14.

Table 5: Re speciation in melter glass samples determined from analysis of the Re L2 XANES spectra

Sample Type
Fe(II)/

Fe
Re(0) Re(VII)

WVT-G-128b AZ-102 0.019 0 0.985(6)

WVT-G-126b AZ-102 0.043 0 0.965(2)

WVT-G-125c AZ-102 0.108 0 0.982(3)

WVT-G-150a AZ-102 0.034 0 0.971(3)

BLG-G-113a LAWA1 0.105 0.025(8) 0.967(5)

BLG-G-79a LAWA1 0.128 0 0.986(5)

BLG-G-85b LAWA1 0.058 0 0.989(4)

TC AND RE SPECIATION IN CRUCIBLE GLASSES. The Tc and Re species present in the glasses were

determined by fitting the XANES spectra of the samples using a linear combination of the XANES spectra of

the standard species shown in Figure 3. The XANES spectra and fits for the glass samples are shown in Figure

4, and the fitting results are given in Table 6 along with redox potential (as Fe(II)/ Fe) for each sample. These

results show that Tc(0), Tc(IV), and Tc(VII) may be observed in the samples, depending upon the redox

conditions present during vitrification. In marked contrast, the results from fitting the Re L2 XANES spectra

show that only Re(0) and Re(VII) are present. The fraction of Re(IV) or Re(VI) observed in any of the samples
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was not statistically different from zero. The absence of these oxidation states is most obvious in sample II-212,

which contains both Re(0) and Re(VII) but not Re(IV) or Re(VI).

21000 21060 2112011940 11980 12020
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Figure 4: XANES spectra (red) and fits (black) for glass samples at the Re L2-edge (left) and Tc K-edge (right).

Sample numbers are given above the corresponding spectrum.
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Table 6: Tc and Re speciation in crucible glass samples determined by XANES analysis

Sample
Fe(II)/

Fea
Re(0) Re(VII) Tc(0) Tc(IV) Tc(VII)

II-118 0.119 b b 0 0.21(1) 0.80(1)

II-121 0.237 b b 0 0.78(3) 0.17(4)

II-127 0.139 0 0.98(1) 0.06(1) 0.27(1) 0.67(1)

II-128 0.081 0 0.98(1) 0 0.13(1) 0.87(1)

II-129 0.089 0 0.98(2) 0 0 1.00(1)

II-205 0.223 0 1c 0 0.47(1) 0.52(1)

II-206 0.179 0 1.00(1) 0 0 1.00(2)

II-210 0.162 0 1.02(3) 0 0.48(2) 0.51(3)

II-212 0.988 0.41(1) 0.63(1) 0.78(5) 0.23(4) 0

II-214 0.998 1c 0 1.00(1) 0 0

II-216 0.994 1.05(1) 0 1c 0 0

II-218 0.843 0.09(3) 0.98(2) 1.00(1) 0 0

II-219 0.283 0 1.05(1) 0 1.00(4) 0

a) Standard deviation: 2% of the value, determined from duplicate measurements

b) Sample contains no Re

c) Spectrum used as a standard in fitting

DISCUSSION. The redox environment of the crucible glasses is a function of both the atmosphere under

which the glasses were prepared and the composition of the mixture used to prepare the glass, which contains

both organic compounds that create reducing conditions and high concentrations of nitrate that create oxidizing

conditions during vitrification of the samples. From this standpoint, the main difference between the LAWA

and LAWC glasses is that the LAWC waste surrogate contains a higher concentration of organic compounds,

which produces a more reducing environment than the LAWA glasses during vitrification.
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The speciation of Tc in glasses is expected to vary with oxygen fugacity, fO2, during the preparation of the

glass since the Tc species present in the glass are in equilibrium with O2, as shown in Eq. 1, where n is the

charge of the oxidized species and m is the difference in the number of electrons in the two oxidation states.38-40

Schreiber and coworkers showed that this equilibrium can also be represented by Eq. 2, where E* is the

–log(fO2) at which the concentrations of the two oxidation states are equal, to obtain a straightforward

relationship between the fO2 and the redox state of the metal ion.39 This equilibrium is obeyed by a wide variety

transition metals in borosilicate glasses prepared by equilibrating the glass melt with an atmosphere of known

fO2. Using these results, fO2 for glasses listed in Table 6 can be determined from Eq. 2 and the measured ratio of

Fe(II) to Fe(III) in the glass. The ratio of Tc(IV) to Tc(VII) as a function of fO2 can then be compared as shown

in Figure 5 for samples that contain observable quantities of Tc(IV) and Tc(VII).
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Figure 5. Relationship of Tc redox state to oxygen fugacity determined from Fe(II)/ Fe. Data are indicated by

diamonds and the least-squares fit is indicated by the solid line.

The data shown in Figure 5 are consistent with the anticipated behavior of Tc(VII) and Tc(IV) in the glass.

The least-squares linear fit to the data has a slope of 1.4 versus the expected value of 4/3, and E* is 4.0. The

value of E* may be compared to previous work in a somewhat different system by Freude, et al. in which the

reduction potential, E0’ of the Tc(VII)/Tc(IV) couple was determined to be –0.18 V in a borosilicate melt at

1000 °C by square wave voltammetry.17 The relationship between E* and E0’ is given by Eq. 3,

E* =
4F

Rln(10)

 

 
 

 

 
 
E0
'

T
log(0.21) (3)

where F is the Faraday constant, R is the gas constant, and T is the absolute temperature. The value measured

by voltammetry, E0’ = –0.18 V at 1000 °C, is equivalent to E* =3.6, which is in good agreement with the value

obtained here.  It should be noted that E* for Tc is expected to change somewhat as the glass sample cools since

the Tc(IV)/Tc(VII) couple has a different potential than the Fe(II)/Fe(III) couple,41 which is consistent with the

slightly higher value of E* determined here: E0’ of –0.18 V is equal to E*=4.0 at 825 °C.  Overall, the behavior
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of the Tc(IV)/Tc(VII) couple in the crucible glasses is consistent with the fO2 present during the formation of

the melt as determined from the Fe(II)/Fe(III) ratio in the resulting glass.

As anticipated from their reduction potentials, Re(VII) is more stable towards reduction in the glass than is

Tc(VII).  This difference limits the conditions under which Re is a good surrogate for Tc.  For Fe(II)/ Fe <

~0.1, the speciation of Tc and Re is similar since >90% of both elements are heptavalent under these relatively

oxidizing conditions. Similarly, for Fe(II)/ Fe > 0.95, the speciation of Tc and Re is again identical as both

elements are present as the metal; however, such highly reducing conditions are not very relevant to nuclear

waste glass. Between these extremes, the Re and Tc species present in the glass are generally quite different. As

noted above, a difference in speciation is anticipated because of the difference between the reduction potentials

of Re(VII) and Tc(VII), and the speciation of Tc and Re reflects this difference. When the speciation of Tc and

Re are different, the average oxidation state of the Tc species is lower than that of the Re species, as expected.

However, Tc and Re do not behave congruently as a function of redox state.

In particular, neither Re(IV) nor Re(VI) appears to be stable in the glass. In contrast, the behavior of Tc is

quite different as Tc(0), Tc(IV), and Tc(VII) all appear to be stable. This difference between the behavior of Tc

and Re was unanticipated. It had been assumed that the speciation of Re in glasses created under more reducing

conditions would mimic the speciation of Tc in glasses created under more oxidizing conditions. However, the

observation that only Re(0) and Re(VII) are present in the glass shows that Re may not be a good surrogate for

Tc under certain redox conditions, namely 0.1 < Fe(II)/ Fe < 0.95.

The failure to observe Re(IV) and Re(VI) in these samples suggests that these species might not be stable

under conditions present in the melter. Evaluation of this hypothesis is hampered by a lack of thermodynamic
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data, especially for M(IV) dissolved in the glass melt, where M = Tc or Re. However, the stability of Re(IV)

and Tc(IV) in the melt can be approximated using thermodynamic parameters of the tetravalent compounds

ReO2 and TcO2. For the purposes of this discussion, two disproportionation reactions, Eqs. 4 and 5, are of

interest. The first is disproportionation of M(IV) to M(0) and M(VII), which has already been analyzed in detail

by Migge.9,10 Since the glass melt is sodium-rich, the second reaction may be a better approximation of the

behavior of Tc and Re in the melt.

7 MO2  3 M + 2 M2O7(g) (4)

7 MO2 + 2 Na2SiO3  3 M + 2 SiO2 + 4 NaMO4 (5)

A plot of the Gibbs free energy of reaction 5 as a function of temperature is given in Figure 6.42 A number of

assumptions were necessary to calculate the energy of reaction 5. The heat capacities of NaTcO4 and TcO2 were

assumed to be the same as those of NaReO4 and ReO2, and the heat capacity of Re was assumed to be the same

as W since the heat capacity of Re at high temperature was not available. However, the main assumption is that

reaction 5 is a good approximation of the behavior of these species in the glass melt. Because of the last

assumption in particular, the trends shown in Figure 6 are qualitative rather than quantitative. Nevertheless, the

trends shown in Figure 6 are consistent with the observed behavior of Tc and Re in this study as well as with

previous observations. In particular, the previous voltammetric study of the behavior of Tc and Re in glass

showed that two reduction peaks were present in the Tc system, which could be assigned to the Tc(VII)/Tc(IV)

and Tc(IV)/Tc(0) couples. However, in the Re system, only one reduction peak was observed at all square-wave

frequencies. This observation was explained by a superposition of the Re(VII)/Re(IV) and Re(IV)/Re(0)

couples and the suggestion that Re(IV) was unstable under these conditions was forwarded. Previous
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thermochemical calculations of the rhenium-oxygen system also have suggested that Re(IV) may be unstable

under these conditions.9,10
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Figure 6. Plot of the Gibbs free energy of reaction 5 as a function of temperature. Disproportionation of Re(IV)

becomes exothermic at high temperature.

CONCLUSIONS. The speciation of Re and Tc have been examined in a series of nuclear waste glasses

prepared under different redox conditions. To a large extent, Tc behaves as expected based on its known

chemistry. On the other hand, Re behaves very differently under these conditions, and Re(IV) appears to be

unstable with respect to disproportionation. Calculation of the Gibbs free energy of the disproportionation

reaction using the thermodynamic values of ReO2 and TcO2 as estimates for those of Re(IV) and Tc(IV)

dissolved in the melt suggests that Re(IV) will disproportionate at high temperatures but Tc(IV) will be stable.

This difference limits the applicability of Re as a Tc surrogate. While Re is a good surrogate for Tc under

oxidizing conditions, it is a poor surrogate for Tc under even slightly reducing conditions, including those

intended to limit Tc volatility by converting volatile Tc(VII) into less volatile Tc(VI).  It should be noted that

these conclusions are only valid for the borosilicate glasses examined in this study, and Tc and Re may behave

differently in other glasses, such as iron phosphate glasses.
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TABLE OF CONTENTS SYNOPSIS. A series of nuclear waste glasses containing technetium and its widely

used surrogate, rhenium, have been prepared under a range of redox conditions.  X-ray absorption fine structure

spectroscopy shows that the elements behave quite differently: Tc(IV) is stable in the glass melt while Re(IV)

appears to be unstable towards disproportionation.

Tc K-edge Re L2-edge
II-205 II-212

52% Tc(VII)

63% Re(VII)
47% Tc(IV)

41% Re(0)




